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The edge set cost vehicle routing problem with time windows

Line Blander Reinhardt, Mads Kehlet Jepsen, David Pisinger
Department of Management Engineering, Technical UnitiecfiDenmark, DK-2800 Kgs. Lyngby

March 31, 2014

Abstract

We consider an important generalization of the vehicleinguproblem with time windows in which
a fixed cost must be paid for accessing a set of edges. Thisdbstdould reflect payment for toll roads,
investment in new facilities, the need for certificationsl ather costly investments. The certifications
and investments impose a cost for the company while theygialgounlimited usage of a set of roads to
all vehicles belonging to the company.

This violates the traditional assumption that the path betwtwo destinations is well-defined and
independent of other choices. Different versions for defjrihe edge sets are discussed and formulated.
Both the multigraph case and the direct path case are dedaaitd MIP-formulations of the problem is
presented for both cases. A solution method based on bimtiprice-and-cut is applied to the direct
path case. The computational results show that instandisupito 40 customers can be solved in
reasonable time, and that the branch-cut-and-price éhgomgenerally outperforms CPLEX.
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Figure 1: Main road net in Switzerland. To access all the mges, a vignette needs to be paid. A
transportation company may choose to avoid the toll roadaty use the ordinary highways

1 Introduction

In certain real-life situations the cost of a connectiongioet entirely depend on the cost of the individual
links (edges). Frequently, in real life, a fee must be paidth®s company for allowing its vehicle to
access roads, areas, bridges or other. Such a fee may in sse®anly be required to be paid once by



the company and is in such cases independent of the numbehafles accessing any edge in the set.
Companies routing in an area with many ferry connections payto access a set of ferries owned by a
company at a monthly rate or at a reduced price. Here, it i®itapt to determine which ferry companies
it is most profitable to use. The same applies to toll roadshkaittjes, where some countries charge a
company based tax for accessing all freeways in the cousgy/ Figure 1). In war zones or areas of unrest
a company may need to get a certification allowing its vebkitbetravel on certain protected roads or to
enter certain protected zones. Even though in some casextlss is to be paid only for the vehicle
accessing the edge set the company will often wish to signllugsasehicles for robustness and easy
administration purposes. Yet another situation where afsetiges can be accessed at a fixed cost is in
cases where there is an option of investing in a facility. Uarsproblems, referred to as location-routing
problems, there is often a fixed charge connected to a faeifitl location. Nagy and Salhi [20] give an
extensive survey of location-routing problems coveringwndifferent routing problems combined with
facility location problems. Belenguer et al. [2] recenthgpented a branch-and-cut method for the location
routing problem which apart from considering multiple despean be seen as a special case of the model
presented in this paper. In all of the mentioned cases theadiked charge for accessing a set of edges.
For the case shown in Figure 1 there may be both an edge betptman edge set and an edge with no
additional cost connecting the same pair of nodes. A gragrevimultiple edges exist between two nodes
is called a multi-graph.

The problem of minimizing the overall cost when planningtesuwhich have a cost associated with
sets of edges is in this paper investigated as a generaliagitthe well known problem of routing vehicles
with capacity and service time window restrictions (VRPTW)

In traditional VRPTW problems, it is assumed that the costroédge is well-defined and independent
of other decisions. This assumption seldom holds in prachat the literature on VRPTW somehow has
overseen this fact.

In the version of the VRPTW considered here the edges of tiyghdwelong to different edge sets. Once
the cost of accessing the edge set is paid all vehicles cassitite edges in the edge set. However, there
might still be a price associated with each of the edges uset that the price for accessing the edge set
is paid at most once. This cost has an influence on all the s@itee once the access price is paid the
edges can be accessed by another vehicle without payingtkesaprice again. This makes the cost of the
different vehicle routes interdependent. We will denotedbnsidered problem aalge set vehicle routing
problem with time windows (ESVRPTW). In Figure 2 an example of a network with the edgattpned
into different edge sets is shown. Figure 2 a) shows theeesét of edges, and b) and c) show accessible
edges when paying for different combinations of two edge $&learly the ESVRPTW is NP-hard as itis a
generalization of the VRPTW. Even though edges refers todaitional links and directional arcs generally
are used for the VRPTW this does not change the problem agd¢heepresenting the two directions of
the edge are both assigned to the same edge set.

We will in this paper present a general model for the ESVRPT & Danzig-Wolfe decomposition.
We then consider a simplified version of the problem, wheig dinect edges between two nodes may be
used. This problem occurs when planning transportatioaonfidrous goods. To avoid unnecessary hazard,
the time on the roads should be kept as short as possibleingmatticular, the vehicles are not allowed to
enter a city (node) except if they have an actual deliverg fitoblem also occurs when transporting goods
between different countries. In this case the cost of cusiearance depends on the start and origin nodes,
and cannot be circumvented by passing through other cegr{trodes). In a future paper we will consider
the more general version, where multiple edges exist betwaeh pair of nodes (representing alternative
paths in the original road graph).

The paper is organized as follows. In the following sectiangive a rough overview of literature for
the vehicle routing problem with time windows and describlevant results that can be used for solving
the ESVRPTW. Section 3 presents a general MIP model for théREIW and the decomposition of
the problem into a master and subproblem is described. IticBet we consider a simplified variant of
the ESVRPTW where only direct edges between two nodes magdntand a MIP model for this case
is presented. In Section 5 the solution method, decompasitind valid inequalities are described. In
Section 6 various extensions of the ESVRPTW model are disclisin Section 7 the test instances are
described. Section 8 reports computational results, aatlyfithe paper is concluded in Section 9 with a
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Figure 2: Accessible edges in a graph; (a) paying for allela@ge sets at total cost 1200, (b) paying for
first and second edge set at total cost 700, (c) paying fotdirdtthird edge sets at total cost 800

discussion of general multi-edge VRP problems.

2 Literaturereview

To the best of our knowledge, the problem of routing vehiglith an edge set cost has not yet been
investigated in the published literature. However, thearlyihg problem, the vehicle routing problem

with time windows (VRPTW), has been extensively studiede Vahicle routing problem was introduced

in 1959 by Dantzig and Ramser in [6] as the truck dispatchimofplem. Many different exact and heuristic

methods have been applied to the problem. The basis of thanasin this paper is in the exact methods.
In 1981 Christofides et al. [4] presented a decompositioeigimgg-routes for the capacitated VRP. One
of the first exact methods for the VRPTW was by Kolen et al. [d€ihg the ideas presented in [4] and
applying them to the VRPTW. This was later included in a braand-price method by Desrochers et al
[9].

In 1987 a benchmark suite was presented for the VRPTW [22]imgak easy to compare solution
methods and the research society has been enticed by themrobsolving these tests. Recently there
has been a strong development in solution times and prohsrs solved to optimality. In 1999 Kohl et
al. [15] and Cook and Rich [5] both applied branch-cut-anidegto the VRPTW.

Some of the most recent developments in solving the VRPTWeseribed in [1], [8],[12], and [14].
Both Jepsen et al. [12] and Baldacci et al. [1] use the valtd summarized by Lysgaard et al. [19] to sep-
arate candidate edge sets for branching. Even though thénc[it9] are implemented for the capacitated
vehicle routing problem (CVRP) they may be used for the VRP&8\the solutions to the VRPTW are a
subset of the solution to the corresponding CVRP. Jepsen 2 implemented a branch cut and price
algorithm with a label-setting bi-directional algorithiorfelementary shortest paths developed by Righini
and Salani [21]. Jepsen et al. added the subset-row (SR)afitgs on the master problem variables and
modified the subproblem to include the reduced cost frometlimsqualities. These SR inequalities are
included by both Desaulniers et al. [8] and Baldacci et dliftheir algorithms.

Desaulniers et al. in 2008 [8] further improved the resujtsibing Tabu search for finding improving
routes in the subproblem and generalizedittath inequalities originally formulated by Kohl et al. [15

Baldacci et al. [1] introduce an enumeration framework. fifaster problem is solved using a subgra-
dient optimization algorithm and enumeration is done byisgl an ESPPRC where standard dominance
is limited. To improve the dominance a lower bound for the ptation of each label is found using the
so-calledng-routes.

In this paper we formulate the ESVRPTW and solve it using ttetn method used by Jepsen et al.



[12] on the VRPTW as this method can be easily adapted to $o&/ESVRPTW.

3 Multigraph Model

Our mathematical model is based on the 3-index model for tREMV presented in Jepsen et al. [12].
In the VRPTW we may pre-calculate the cheapest egsdf traveling from node to nodej, and ignore
the underlying road network hereafter. This is, as mentianesection 1, not the case in the general
ESVRPTW problem, since the cheapest egstiepends on the set of edges available, and hence there are
multiple paths between two nodes.

In the multigraph version of the ESVRPTW there can be seweslgés between two nodes in the graph.
These edges must belong to different edge sets as two edgesebehe same two nodes in the same edge
set would dominate each other so that one can be removedpnogessing. Let;; be the edge cost of
using the edgéi, j) belonging to a set. Notice that the edge cost may vary depending on which Het
edge belongs to.

Given the following sets:

R The set of all edge sets

C The set of customers, whe€é denotes the customers covered by the edges in se®
\%4 The set of nodes representing the customers and the depot defined as 0

A The set of arc$i, j) in V, whereA, is the set of arcéi, j) belonging to the set € R
K The set of vehicles, whetd&'| < |C| as usual for VRPTW problems

The variables are defined as:

TUV

Ty Binary variable indicating if the ar@, j) € A, is used by vehicle € K
Yr Binary variable which is one if an edge from edgerset R is used and zero otherwise
t7 The time vehicle visitsi € V.

The parameters are defined as:

D The capacity of the vehicles

d; The demand which must be delivered to nedeV. The demand at the depot is zero
a; The availability time for customeare C. Note thata; > 0.

b; The required completion time for customies C with b; > a;

03 The time it takes to travel fromhe C'to j € C on arc(i, j) € A,.

cij The cost of using an ar@, j) € A,

Cr The cost of accessing the arcs in edgersetR

A model M GM) for the multigraph case of the ESVRPTW can now be formulaBeace the problem
is a generalization of the VRPTW the model presented herthtbESVRPTW is the standard VRPTW
model presented in the survey by Kallehauge [13], with ariteaél set of constraints used to formulate
the edge set costs. The cost of the edge sets are insertetiéntbjective. In the presented model the
assumption is that each edge belongs to exactly one eddeosetyer, alternatives to this assumption are
discussed in Section 6.

MGM:  min) > Y ail +> e 1)

reRveEK (i,j)EA.. reR



st Y= @l >0 VreR, (i,j) € A, (2)
veK

XY ap=t VieC 3)

reRveEK j:(i,j)EA,

DD ay =D ap Vo e K 4)

reRieC reRicC

S awp=> > =0 VieC,VveK (5)
rER j:(j,i)EAL reRj:(i,j)€A,

> Y daly <D Yo € K (6)
r€ER (i,j)EA,

a; <t <b; VieV,ve K (7
(t7 +07)a;) —t5 <0 Vve K, reR, (i,j) € A, (8)
zjl €{0,1} VreR, (i,j) €A, ve K 9
yr € {0,1} VreR (10)
t! e RY VieV,veK (11)

The objective (1) is the sum of the cost on the edges used anglith of the cost of accessing the sets of
the edges used by the vehicles. The constraints (2) ensatrd #n edge, in a edge set, is used then the
cost of accessing the edge set is paid. Note that due to thenirétion objective and the constraints (2)
the integrality of ther7? variables implies integraj, variables. Constraints (3) ensure that every customer
is visited. Constraints (4) ensure that all vehicles stadt @nd their journey at the depot. Constraints (5)
ensure that vehicles arriving at a customer also leavesatine sustomer. Constraints (6) ensure that the
capacity of a vehicle is not exceeded. Constraints (7) erthat customers are visited in their respective
time window. Finally, constraints (8) find the time of vel@iel at customei. If vehicle v does not visit
customer; any time can be chosen. Constraints (8) also ensures thatuteeis simple. The variables)
andy, are in (9) and (10) defined to be binary and the variaplis in (11) defined to be a positive real
number. Note that constraints (8) can be replaced by tharic@nstraints:

t; + 05—t < M(1— 7)) Vve K, reR, (i,j) €A (12)

WhereM must be selected so that it is greater than the duration ofarig.

3.1 Tightening the edge set constraints

In the ESVRPTW each customer must be visited exactly onces. réquirement is ensured by constraints
(3) and can be used to tighten the constraints in (2). Sinck eastomer is visited once, we know that
if several edges belonging to the same edge set leave thecsmtoener then at most one of them can be
used, and if one of them is used then the cost of the edge s¢tmascounted for. See Figure 3 for an
illustration.

From this observation we can construct the constraints:

o> <y, VreR,ieC (13)

vEK jEC:(i,j)EA,

In this case the integrality of thevariables again imposes the integrality of theariables and the number
of constraints in (13) i$C|| R|. Note that constraints (13) do not apply to the depot as niane bne edge
belonging to an edge set may leave the depot. Therefore tigtramts of type (13) cannot entirely replace
the constraints (2). However, by formulating a new edge Bebnstraints similar to the constraints (13)
for edges entering every customer:

Z Z i <y, Vre R,i € C,, (14)

veK jeC:(j,i)€Ar



Edgeset: —- setl
— set2

Figure 3: lllustration of the bound on outgoing edges. At tmoe of the arc$i, j) and(i, k) can be used,
thereforey; must always be greater than the sum of the outgoing arcsaddge set 1.

then all edges will be covered by the two constraints (13) @4 and they can therefore replace the
constraints (2). Thereby the constraints (2) can be redlage|C||R| constraints or less. These tighter
constraints will in Section 5 and onwards replace congs4R) in the model.

4 Direct path model

As mentioned in Section 1 an important variant of the ESVRPd&turs when transporting dangerous
goods or when transporting goods between countries. Inciss only the direct connection between
nodes andj may be used. Letting;; denote the cost of using aft; j) € A we get the modellfPM):

DPM: min Y ST il + > o

s.t.

veEK (i,j)EA

> it
vEK j:(j,i)EAy
oD <
veEK j:(i,j)EA,
S Y e
vEK j:(i,j)€EA
DT = b
ieC iceC
SIETD SR
j:(4,5)EA j:(i,5)EA
> dia; <D
(i,5)€EA
a; <t} <b;
(tz) + 91']'),@% - t;-} <0
'r;'jj € {Oa 1}
yr €{0,1}
t! e RY

rE€R

Vre R,i e C,

Vr e R,i € C,
VieC
Yv e K
VieC,Vve K

Vv e K

VieVve K
VveK, (i,j) € A
V(i,j) e A,ve K
VreR
VieV,ve K

(15)

(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

(25)
(26)

Note, that the main difference between the mdd&M and the modeDPM is that ther index on the
variablez];, cost parameter;; and time parametet; is removed in the latter model. Here the tighter
constraints (13) and (14) are replacing the constraintm (&) above model.



As before the constraints (23) can be replaced by lineartcnts:
] 405 — ] < M(1 —x3)) VveK,(i,j) €A (27)

WhereM is a large constant greater than the duration of any route.

5 Solution method

The branch-cut-and-price method has with success beeredpplthe VRPTW and the best results for
finding exact solutions to the problem have been producedjukis method (see e.g. Jepsen et al. [12],
Desaulniers et al. [8] and Baldacci et al. [1]). Since the REYW is a generalization of the VRPTW the
solution methods for the VRPTW may successfully be appliethé direct path case of the ESVRPTW
(model DPM). Therefore we have applied the BCP algorithrh&®tPM using cuts for the original formu-
lation of the VRPTW presented by Fukasawa et al. in [11] antysgaard et al. [19] for the CVRP. This
corresponds to the algorithm developed by Jepsen et alf¢i#je VRPTW. Jepsen et al. also introduced
the Subset Row valid inequalities into the master problemmédation. We will later argue that these cuts
can with the same benefits be applied toEHM .

Both models for the ESVRPTW can be decomposed into a mastigpréazing problem similar to the
Dantzig-Wolfe decomposition of the standard model for thRPT'W, where the pricing problem is to find
an elementary shortest path problem with some resourcdraons. In Sections 5.1 to 5.5 the solution
method for theDPM will be described. In Section 5.6 it is discussed how thisod@gosition and solution
method can be applied to théGM.

5.1 Master Problem

The master problenDPM M) for ESVRPTW is similar to the standard VRPTW master probleing the
decomposition presented by Desrochers et al. [9]. Howéwveost of the edge sets are kept in the master
problem and these costs will be reflected in the dual vargafstem the solution of the linearly relaxed
master problem.

DPMM :  min: > Y cijoujpdp + D crur (28)
PEP (i,j)€EA reR
st Y > iy S Vie C,Vr € R (29)
pEP j:(j,i)EA,
Y i <u Vie C\Vr € R (30)
PEP j:(i,j)EAr
Y)Y aiph =1 VjieC (31)
pEP i:(i,j)EA
A € {0,1} VpeP (32)
yr €{0,1} VreR (33)

The setP contains routes satisfying the time window constraints thiedcapacity constraints. When
Ap is one then routp € P is used and,, is zero otherwise. The constany;, is one if the edgei, j) € A
is used by the routg and zero otherwise. Constraints (29) and (30) correspantigetconstraints (13)
and (14) which ensure that access to the edge set is paid diganfeom the edge set is used in one of
the selected routes. Constraints (31) ensure that evetgroasis visited exactly once by the set of routes
selected. The master problem can be recognized as a séfopartj problem with side constraints. It is
important to note that the constraints (29) and (30) do nahgk the domain of valid solutions but only
affect the value of the solutions.



5.2 Pricing problem

The linear relaxation of the master problem can be solvexutjin delayed column generation. The pricing
problem then becomes an elementary shortest path problémregiource constraints. Lef, € R, be
the dual variables of constraints (29) anddgt € R, be the dual variables of constraints (30). ketc R
for j € C be the dual variables of constraint (31) anddgt= ¢, = ¢o = 0. Then, the reduced cost for
a route in the pricing problem becomes:

Z CijQijp — Z TjQijp — Z Z ¢;7‘O‘jip_z Z Pirtijp (34)

(i,5)€A (i,§)EA r€R (j,i)EA, T€ER (i,j)EA,
= > (e =Ty — > > (i + )y (35)
(1,7)€EA r€R (i,j)EA,

This can be transformed to a elementary shortest path probith resource constraints (ESPPRC) where
each edgdi, j) has the cost;; = cij — T — > 1, i.)ea, ) (@ir + ¢},). The resource constraints in
our problem are the capacity constraint and the time wmcinmstralnts Per definition of the elementary
shortest path problem, each customer is visited at most énlebel setting algorithm can be used to solve
the problem to optimality.

The label setting algorithm will at each node have a set aéllabepresenting a path from the depot
to the node. A label is in our implementation represented tripke containing: a pointer to the label of
the previously visited node, a number that indicates the ftonsumption, and a number indicating the
capacity consuption.

To reduce the number a dominance test is used to remove laftdésading to the optimal solution. Let
¢(L) be the cost of the path represented by labeind letd(L) andZ(L) be respectively the capacity and
time consumption. Let be the node and let( L) be the set of feasible partial paths frerto the depot. A
label L’ is dominated by another labgl’ if:

&Ly < e(L) (36)
d(L") < d(L) (37)
(L") <HL) (38)
n(L') Ce(L”) (39)

We use the state of art methods for solving the ESPPRC bastx dridirectional shortest path algo-
rithm presented by Righini and Salani [21].

The dominance criteria developed and presented by Desasiktial. [7] for removing all labels which
are not efficient Pareto optimal, given that the resourcesdditive or the function on them is monotone,
can be used here. However, when introducing the SR cutsajmetlby Jepsen et al. [12] the objective
is no longer additive and the function used is not monotond3]l Blander Reinhardt and Pisinger cover
several different ESPPRCs with objectives containing fiens which are not monotone.

Before running the label setting algorithm, a time windoduetion, as described by Desrochers et al.
[9], is performed to speed up the label setting algorithme ESPPRC is NP-hard in the strong sense (Dror
[10]), therefore it is desirable to try to find improving pathithout solving the ESPPRC to optimality. For
this purpose a simple heuristic has been implemented. @it iheuristic does not find any improving
paths, the ESPPRC is solved to optimality using a labelngetiigorithm. The heuristic is based on a
greedy approach, always extending the label with the loa@stt

5.3 Branch-cut-and-price

Branch-cut-and-price algorithms have with success beplieahto several transportation problems, hence
we solve theDPMM using this approach. The branch-cut-and-price algoritinng through the following
steps, starting with the root node as the only unprocesseet no

Step 1: Choose an unprocessed node. If several unprocesdes exist the node with the lowest lower
bound is selected. If the lower bound of a node is above themppund then the node will be
removed from the unprocessed node list.



Step 2: Solve the LP relaxed master problem. Update the lbauend.

Step 3: Search for routes with negative reduced cost usingstie methods. If any route is found with
negative reduced cost then add columns to the master prayidrgo to step 2. The heuristic used
is a simple greedy approach.

Step 4: Solve the pricing problem, formulated as an elemgrsfaortest path problem with resource
constraints, to optimality. If routes with negative reddicest are found then add them to the master
problem and go to step 2. If no routes with negative reducetiax@ found then the lower bound of
the node is updated. If the updated lower bound is above tit@agupper bound then the node is
deleted. Goto step 1.

Step 5: If any violated cuts are found then add them to theenpsbblem and go to step 2.

Step 6: Mark the node as processed. If the solution to the l&Red master problem is integral then
update the upper bound. If the solution is fractional theanbh and add the children to the list of
unprocessed nodes. Go to step 1.

Note that time window reduction, as described by Desrocber. [9], is applied in the pricing
problem. This will also eliminate infeasible arcs. The abbranching rules are described in more details
in the next subsection.

5.4 Cuts

As can be seen from the algorithm in Section 5.3, cuts aredatidthe master problem in Step 5 of the
algorithm. If the added cuts are valid inequalities derifredh the original formulation, th®PM, then the
dual can be transferred directly to the cost of the arcs. 8utshcould be capacity inequalities, strengthened
capacity inequalities, framed capacity inequalitiegrsgthened comb inequalities, multi star inequalities
and generalized large multi star inequalities. Howevehéfcuts added are expressed in the path variables
the dual cost can be more complicating to transfer as theadtfz¢ constraints may be activated not only by
a single edge but a combination of edges. However, the sudbsetuts have with success been introduced
into the master problem variables by Jepsen et al. [12]. Tiiwoas also developed a method of handling
the reduced cost of a route for the ESPPRC where the objduatiation is not strictly in- or de- creasing

as a result of the reduced cost achieved from the Subset Rsw cu

5.4.1 Valid Inequalitiesin the original form

Many valid inequalities have been developed for the VRPTWeSE valid inequalities will also be appli-
cable for ESVRPTW as the ESVRPTW does not change the setsibfeaolutions but only changes the
objective function. Valid inequalities for the VRPTW aresdabed in e.g. [11], [17] and [19]. The valid
inequalities in the original form applied are, as mentiopegViously, the capacity inequality, the strength-
ened capacity inequality, the framed capacity inequatlity,strengthened comb inequality, the multi star
inequality and the generalized large multi star inequalityese inequalities have all been developed for the
capacitated vehicle routing problem CVRP but also apph&MURPTW. However, since they are devel-
oped for the CVRP they do not include the time window resbit to possibly tighten inequalities. The
separation algorithm used in our implementation is the @sedbed by Lysgaard et al. [19] and accessible
in the framework developed by Lysgaard [18].

5.4.2 Valid Inequalities expressed using the master problem variables

Jepsen et al. [12] introduced the Subset-R&R)(inequalities to generate cuts in the set partitioning
formulation of the master problem with the path variable$he SR inequalities are inspired by the clique
and odd hole inequalities for the set-packing problem. Thdirected conflict grapli’ (P, E) is defined

as follows: Each column is a node @ and an edge in the grapghf represents a conflict between the
two nodes (columns) it connects. A conflict appears, in thse cd VRPTW and also ESVRPTW, if two
columnsp andq both have an edge leaving the same customer. This meansi¢haddes representing



andgq in the conflict grapiG’ has an edge connecting them if there is a customer whichitedisy both
the path inp and the path ir. R
Clearly for a fully connected subgraghe G’ (also called a clique) it is true that

d <t

peP

Because otherwise two conflicting nodes (columns) wouldebected.
For a cycle of node# in the conflict graptG’ it must hold that

>re 3]

peEP

as two neighboring nodes cannot be visited without intrattpa conflict in the original problem.

Since restricting a node visit corresponds to a row (comgjrim the master problem then a conflict in
the conflict graph corresponds to one or more conflicting ravirés lead to the nam&ibset row inequali-
ties.

The inequalities are not based on the edges directly buteorotite variables and formulated as follows:

s Y E ) aJ e | B (40)

peP €S

WhereS is a subset of the constraints (31), k is a positive integer flean or equal t6| and

Qip = E Qijp

(i,5)€8% (4)

The SR inequalities are cuts on the variables which are used to cut away some of the region wiich i
feasible in the linear relaxation of the master problem lmtiffeasible to the integer master problem.

The inequalities (40) are clearly not affected by the caists (29) and (30) and therefore they can also
be introduced into the master problem for the ESVRPTW piteskim Section 5.1. Moreover the effect
of introducing the SR cuts into the ESVRPTW should be the sagria the VRPTW as the set of feasible
solutions does not differ between the ESVRPTW and the VRPTW.

The problem with these inequalities is that the dual of eaelguality can not be mapped directly to
the cost of the individual edges. Using the notation fronséepet al. [12] we let the dual variable of an
SR inequality ber. We can then formulate the dual cost of a ropites

(Zies Z(i,j)65+(i) aijp)
k

Note that the dual variable is not activated before at leashodes in the se$ have been visited.

Therefore to introduce the reduced cost of these consdriaitat the pricing problem the ESPPRC needs
to be modified. As mentioned in Section 5.2, the ESPPRC isedahith a label-setting algorithm using
dominance for the time, load and cost criteria. Iebe a label at a node so that each label at v
represents a path from the depottorhe usual dominance criteria which holds for additive s@sthat a
label is dominated if there exists another label at the samde where all criteria are less than or equal to
the dominated labels criteria values. However, this doé&olol for the reduced cost introduced by the SR
inequalities. One label may be better than the other evédrifabels have the same or worse cost. In our
implementation we uské = 2 and|S| = 3, meaning that we include cuts which do not allow two or more
routes to visit two nodes from a set of three customers.

To solve the ESPPRC with the dual cost from the SR inequsilitiepsen et al. [12] modified the
dominance rule for the cost criteria in the label settingpatgm which is used when solving the ESPPRC.
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In the case where the cost of aphas been accounted for in a laldel and not accounted for in a
dominated label ;, the dominance rule for the cost of two labels at the same hedemes:

(L) =Y o < éLy) (41)
q€Q

where(@ represents a subset of the SR cuts for which the route rapeesby L; has visited two nodes

in the SR cut, and the route represented/ljyhas not visited two nodes in the SR cut, and < 0.
The dominance rules for the cost, capacity and time comstrare the standard dominance rules given by
Desaulniers et al. [7] as the functions are nondecreasorfuRher details see Jepsen et al. [12].

1,2) (2,1)

(1,0)

Figure 4: Assume that an edge have two associated valudst{oas. Let there be a valid SR cut whese
contains 3 elements arkd= 2. The setS contains nodes, t, ¢q. Let us assume that the dual cest —1.

At nodej the label for the pathij is (3,3) and for the pathzj the label is (3,2), when not considering the
SR dominace rule (41). Clearly when not considering the SRidance the pathz;j would dominate the
pathsij. When using the SR dominace rule (41) the labels la¢comes (3,3) for patkij and (4,2) for
pathszj. On the pathsz;jt two nodes of the sef are visited. Therefore at nodehe actual cost and time
of the two paths is (5,4) fosijt and (6,3) for pattszjt. Clearly these two paths cannot dominate each
other.

5.5 Branching

In most algorithms for the VRPTW branching is performed oa dinc variables remaining after prepro-
cessing. We have chosen to do branching on the edge setlearabwell. Since the number of edge set
variables is comparably small, branching on the edge s&hias can significantly reduce the number of
free arc variables at a node and thereby reduce the numbedefrin the search tree. In addition, the
branching of Fukasawa et al. [11] is implemented which bnasmn the number of vehicles servicing a
set of nodes/customers. This branching can be formulatéelttiyg S C C be a subset of the set of arcs
remaining after preprocessing and one brancijs. - >=; i s+ (s)(#}; + 2%;) = 2 whered™ () is the
edges leaving the sétand the other branch where at least two vehicles servicestlses represented by
constraintsy i > (; jes+(s)(@i; + 23;) = 4. To separate candidate sets the Lysgaard cut library [18]
is used. From preliminary tests it was clear that branchinthe edge set variables tended to improve the
solution time for the problem significantly.

5.6 Multigraph Version

In the multigraph version of the ESVRPTW there can be sewaiges between two nodes in the graph.
These edges must belong to different edge sets as two edtyeselbethe same two nodes in the same
edge set would dominate each other so that one can be remoyedprocessing. In this section the
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decomposition of the path based model for the multigraph cdthe ESVRPTW is presented (see model

MGM).
Using a similar branch-cut-and-price method as presenteti¢ direct path ESVRPTW, the path based

master problemN] GMM) can be formulated as:

MGMM = min: Y N ST cal A+ D e (42)

reRpeP (i,j)€EA reR
YYD A Vie C,Vr € R (43)
PEP j:(j,i)EA,
S apA Vie C,VreR (44)

PEP j:(i,j)EAx

Z Z Z aliA Vie O (45)
r€RPEP j:(ji)EA

A €{0,1} VpeP (46)
y, € {0,1} VreRr (47)

Note that the only difference between the above moded M is ther index of thea”;,, parameter
and thec; cost parameter.

As for the direct path ESVRPTW the linear relaxation of thetigtaph ESVRPTW master problem
MGMM can be solved through delayed column generation with ESP#RBe pricing problem.

Figure 5: Transformation of a multi-graph to an ordinarypdrén the ESPPRC subproblem. Nodesd;
have three intermediate edges in the multi-graph so wedatre;’, j” as auxiliary nodes. The cost of the
edges:;;, ¢;;» andc;;~ is the original cost of the first to the third edge betweéamd in the multigraph.
The same applies to the travel time, whéyg 6;;, andf;;~ is the original travel time on the three edges.
Note thatc;:;, ¢, 6;; andé; ; are all zero.

When solving the ESPPRC we transform the multigraph to amarg graph by using an auxiliary
node for each extra connection between two nodes. A gramxaaple of this is shown in Figure 5. The
edge(i, j) is the first edge in the multigraph and the pathg’, j) and(i, 7, j) corresponds to the second
and third edge between the nodesdj.

In a future paper we will extend the presented cuts to theigrafth version of the problem and imple-
ment them in a branch-cut-and-price framework.

6 Closely related formulations and problems

Several variants of the ESVRPTW exist. So far it has beemasduhat edges only belong to one edge set,
however situations occur where an edge may belong to moneatihe edge set. If an edge may belong to
more than one edge set, the charge for using it can follovouaniules, as discussed in the sequel.

In the simplest variant, the cost of using an edge must befpaall the edge sets the edge belongs to.
This case occurs if several pieces of equipment are needesktthe edge, or if several permissions are
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needed to cross the edge. This problem can be formulated aemmstraints (13) and (14) with the only
difference that an edge may be included in more than onereanistor each node.

6.1 Edgesbelongingto multiple edge sets

Assume that for an edge belonging to several edge sets,¢bhesacost only needs to be paid for one of the
edge sets containing the edge. This occurs when variouddslidiscount deals give access to the same
connection. In such a case it is important to determine whedl to pay for so that the least money is
spent overall. This variant of the problem can be modeledplacing constraints (13) and (14) with the
following constraints:

Soay - > yr <0, V(i,j) € A, (48)

veEK {r|reRA(i,j)EA}

The constraint is very similar to constraints (2); howeirethis case the integrality of the}; variables
does not necessarily imply integrality of the variables. Note that when replacing constraints (29) and
(30) with:

D aiphy < Sy Vi) €A, (49)

pEP {r|reRA(i,j)EA,}

representing the (48) constraints in the master problem then each edgg, j) in the ESPPRC subprob-
lem will have cost;; — m; — p;; wherep is the dual variable for the constraints (48). This will ndtany
complications to the ESPPRC algorithm as the cost of a patlaires additive and the non additive cost
introduced by the SR cuts are handled as in the VRPTW.

7 Test data

Following the tradition of the VRP, the test data are baseitheisolomon instances [22] making it possible
to relate our results to the existing literature. We haveegated test instances based on the RC201 to
RC204 instances by assigning subsets of edges to disjaletssts, and associating a fixed cost with each
edge set. For the RC201 to RC204 Solomon instances diffeetagories of test instances have been
constructed. The instances can be grouped into two cagsgori

1. random edge sets: In these instances, the edges in each edge set are randeletdjes. These
instances should reflect a toll on accessing bridges, tarunderries. These facilities are randomly
scattered in the plane, but frequently a set of facilitiesiisby the same operator.

2. spanning tree edge sets: In these instances the selected edges form cheap spamaiplgsgof a
randomly selected subset of nodes. Each subset of nodestsoofshalf of the total number of
nodes. This case should reflect payment of toll on motorwisiggorways usually form a spanning
network covering the main cities in a country.

In all test cases, each edge is assigned to at most one eddémebver exactly one edge connects each
pair of nodes. Thus the test cases all represent the dirdttpse of the ESVRPTW.

For each Solomon instance, test instances containing 3J B adge sets were generated, each having
an associated cost for accessing the edge set.

For therandom edge setsinstances, 50% of the edges are assigned to edge sets willdifinrzal cost.

For each combination of Solomon instance and number of extgetest instances were generated with the
costs of an edge set calculateddas: 5% of the average cost of the edges in the edge set multipliebéby t
number of nodes cover by edges in the edge set.

In the case ofpanning tree edge sets, the cost of a given edge set is chosen as the most expensive
edge in the graph minus the average value of the edges in ¥ba gdge set. This implies that edge
sets containing cheaper spanning trees (i.e. fast tratagjpor times) are more costly than the edge sets
containing more expensive spanning trees.

The construction of the edge sets and costs is in both casesajed so that the edge sets are likely to
be attractive. For the spanning tree edge sets the cosidarstselected differently than from the random
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instance | opt solution solution times
test ||R]| |objective] R* | CPLEX| bcp C+SR Bp| bcpSR bcp C
rc201| 3 4239 3| *0.06| 1.22(@®)| 1.16(1) 1.223) 1.20Q2)
rc201| 5 4539| 4| *0.06 1.09(1)| 1.23(4)| 1.18(3)|] 1.16(2)
rc201| 8 4878| 5| *0.09 1.62(2)| 1.52(1)| 1.66(3)| 1.71(4)
rc202| 3 3723 2| 473.82| *13.55(1)| 14.86(2)| 16.85(3)| 21.76(4)
rc202| 5 4120 3| 200.19| 10.26(2)| *9.40(1)| 11.71(4)| 11.51(3)
rc202| 8 4166| 3| 25.54| *9.96(1)| 10.13(2)[ 17.06(4) 11.75(3)
rc203| 3 3371 1 *29.07(1)| 29.19(2)| 30.30(3)| 54.01(4)
rc203| 5 3635 2 *44.34(1)| 44.66(2)| 47.71(3)| 58.24(4)
rc203| 8 3545 2 *75.54(1)| 81.25(2) 88.53(3)| 100.63(4)
rc204| 3 3148 1 - [ *130.83(1)| 147.04(3)| 183.59(4)| 136.88(2)
rc204| 5 3414| 2 - |*123.00(1)| 205.80(3)| 153.72(2)| 308.24(4)
rc204| 8 3215 1 100.40(3)| *43.06(1)| 119.16(4)| 54.43(2)

Average Rank 1.50 2.0 3.25 3.17

Table 1:RC201-RC204 instances with 20 customeesdom edge sets. | R| is the number of edge sets, whil is

the number of selected edge sets in an optimal solutionel&tgorithm has not terminated within 7500 seconds it is
indicated with "-". The best running time for each instaneeniarked with a "*". C indicates that the cuts implemented
in [18] are used, SR indicates that SR-cuts are used, whigRdndicates that both families of cuts are used.

edge sets as more expensive spanning trees would othemvis@h more expensive edge set cost making
them very unattractive compared to the less expensive @gsh a situation would be unlikely in a free
market.

For the Solomon instances RC201 to RC204, test cases weeeadet with 15, 20, 30 and 40 cus-
tomers.

8 Results

The program has been implemented in C++ using the COIN brariiland CLP as the linear programming
solver. The tests have been run on a Linux machine with a G4teitXeon 2.67 GHz CPU. The CPLEX
used for the CPLEX test runs is version 12.1 with all defauts¢urned on. The edge set constraints have
been implemented in the framework for vehicle routing peofd with time windows by Jepsen et al. [12]
provided to us by the authors. On the RC201 - RC204 tests Wittu&tomers we have tested the effect of
running branch-cut-and-price with the cuts implementefd 8} only, the SR cuts [12] only, both the cuts
from [18] and SR cuts, and without any cuts. In Table 1 thetsmiutimes for the four algorithms and for
CPLEX are shown. In about half of the instances, CPLEX is hte t solve the routing problem within the
time limit of 7500 seconds. For all four branch-and-pricd Branch-cut-and-price algorithms the solution
was found within 500 seconds. We have ranked the resultedbtir branch-cut-and-price algorithms by
solution times. For the objective value of the optimal solutis given in the column "objective” and the
number of edge sets payed access to in the optimal solutginds in the column "sets”.

In Table 1 the rank of a solution is stated in parenthesis #ftesolution time. The average of the ranks
is calculated for each solution algorithm and shown in tiseliae of Table 1.

It is seen that CPLEX is the fastest for the three RC201 irstsnwhile the branch-cut-and-price
algorithm using both VRPTW cuts implemented in [18] and SEsds the fastest for seven instances.
The plain branch-and-price algorithm is fastest for twddanses while the remaining branch-cut-and-price
algorithms using only one of the two described cut familiesfastest on none of the instances. The ranking
average clearly shows that the branch-cut-and-price ihigousing both the cuts from [18] and SR cuts
has the best average rank. Therefore the branch-cut-acelgdgorithm used for the tests in Tables 2, 3
and 4 includes the cuts implemented in [18] and SR cuts.

In Tables 2, 3 and 4 the optimal solution of the ESVRPTW prabie presented together with the
number of edge sets payed for access to and the amount payeth set access in the optimal solution.
Moreover a the cost having to pay if the problem was solvedcnosidering the edge set and solved as
a VRPTW. Each instance is solved using CPLEX and branclawdtprice using the cuts from[18] and
the SR cuts and in Tables 2, 3 and 4 the lower bound at the ralet aod the number of branching nodes
processed are reported along with the solution time.

Tables 2 and 3 consider test instances wathdom edge sets. In Table 2 and Table 3 it is seen that the
branch-cut-and-price with both the cuts from [18] and SRs@iten has a significantly reduced running
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instance opt sol with set cost | opt sol without set cosf CPLEX Bcp SR+L

total . route sef total . route se root time root time
test  |R| cost cost cost cost cost cost LB nodes (s) LB nodes (s)
rc201 37100 3 4904 21967100 3 4904 21966381.68 1874  *1.0$6483.00 7 9.3
rc201  5/7173 2 5669 15048552 5 4904 36487027.00 1163  *0.146744.00 11 13.7%
rc201 8| 7685 3 5727 19589908 7 4904 50047549.67 102 *0.41 7254.00 19 28.31
rc202 3| 5660 1 4891 7696384 3 4188 21963804.68 - -1 5396.00 7 *52.90
rc202  5/5886 2 4382 15047836 5 4188 36484061.77 - - 5599.00 11 *206.1
rc202 8| 5915 2 4434 14818471 6 4188 42834561.27 10003 2897.365728.00 9 *128.2%
rc203  3|5144 1 4375 7696270 3 4074 21962695.67 - - 5066.00 5 *104.2
rc203 5| 5429 1 4643 78¢7722 5 4074 36483024.38 - - 5133.00 9 *509.7
rc203 8| 5821 2 4340 14819874 8 4074 58003591.21 - - 5276.00 25 *870.11
rc204  3|4847 1 4108 7396017 3 3821 21962604.24 - - 4650.00 5 *262.2]
rc204 5 - - - - - - - - - - - - - -
rc204 8 - - - - - - - - - - - - - -

Table 2:RC201-RC204 instances with 30 customeesidom edge sets. | R| is the number of edge sets, whif is
the number of selected edge sets in an optimal solutionel&tgorithm has not terminated within 7500 seconds it is

indicated with "-". The best running time is marked with a ™*”

instance opt sol with set cost opt sol without set cost CPLEX Bcp SR+L

total .. route sef total . route sef root time root time
test  |R| cost cost cost cost cost cosf LB nodes (s) LB nodes (s)
rc201 3| 8660 2 6590 2070 9256 3 6116 314(8591.99 58 *0.478283.00 3 7.7
rc201 5| 9431 3 6321 311011340 5 6114 52249284.68 466 *1.148930.00 11 62.16
rc201 8| 10064 3 7196 286813308 7 6116 71929543.44 1504 *4.8%9454.00 23 152.61
rc202 3| 7805 1 6769 1036 8917 3 5777 3140(05184.79 - - 7504 9 *226.13
rc202 5| 8518 2 6440 207811001 5 5777 52245562.14 - - 7973.00 13 *737.9
rc202 8| 8755 2 6771 198414187 8 5777 84105793.10 - - 8257.00 17 *4316.1
rc203 3| 7098 1 6062 1036 8375 3 5235 314(4057.88 - - 6709.00 5 *430.4
rc203 5| 7120 1 6162 95810459 5 5235 52244259.85 - -| 6949.00 5 *1647.74
rc203 8 - - - - - - - - - - - - - -
rc204 3 - - - - - - - - - - - - - -
rc204 5 - - - - - - - - - - - - - -
rc204 8 - - - - - - - - - - - - - -

Table 3:RC201-RC204 instances with 40 customeesidom edge sets. | R| is the number of edge sets, whiff is
the number of selected edge sets in an optimal solutionel&tgorithm has not terminated within 7500 seconds it is
indicated with "-". The best running time is marked with a ™*”

time. However, for all of the instances based on RC201 CPLEdsfithe solutions within seconds and
always much faster than the branch-cut-and-price algoritMoreover note that the lower bound at the
root node is often better using CPLEX on the RC201 instariteis.may be due to the default CPLEX cuts
such as cover, clique, Gomory fractional, multi commodibyflcuts which can not be used when using
branch-cut-and-price.

In Table 2 there are two instances with 30 customers whichaidre solved within 7500 seconds using
the branch-cut-and-price algorithm. However, more thdhdidghe instances cannot be solved by CPLEX
within the time limit of 7500 seconds. For the RC201 to RC2@&tances with 40 customers shown in
Table 3 only the RC201 instances were solved by CPLEX withenttme limit, and 9 instances were
not solved by the branch-cut-and-price algorithm withia time limit. Notice, that most of the instances
not solved by CPLEX within the time limit were solved by branzut-and-price. More than half of the
instances were solved by branch-cut-and-price in less3B@rseconds (5 minutes).

Table 2 and Table 3 show the running time for instances getefeom RC201 to RC204 with respec-
tively 30 customers and 40 customers. The running times loleT2 show that the branch-cut-and-price
for most of the instances runs much faster than CPLEX. Theesannue for the running times in Table 3
when only considering instances where at least one of thwitighs terminated within the time limit.

Table 4 contains the test results for instances RC201 to RGAG spanning tree edge sets. For the
RC201 instances, CPLEX solves the instances within a seanddonsiderably faster than the branch-
cut-and-price algorithm. For the RC201 to RC204 instanbesbranch-cut-and-price algorithm solves
the problem faster than CPLEX. The last instance has not $&lead within the time limit by any of the
algorithms. In general the branch-cut-and-price algoritiolves considerably more problems to optimality
than CPLEX within the given time limit. This result is in acdance with observations for the VRPTW.

One could also have chosen to solve the problem by brute-fmmamerating all subset of the edge dets
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instance opt sol with set cost | opt sol without set cosf CPLEX Bcp SR+L

total .. route sef total ., route se root time root time
test |C] |E] cost cost cost cost cost cost LB nodes (s) LB nodes (s)
rc201 15 32618 1 2386 2322865 3 2213 6522504.00 42 *0.0§2601.00 7 0.74
rc201 15 53153 3 2386 7673522 5 2213 13093039.00 54  *0.04 3074.00 13 1.98
rc201 15 8 3474 4 2386 10884056 7 2213 18483474.00 0 *0.06§ 3406.00 13 1.92
rc202 15 3 2478 2 2061 4172647 3 1995 6521629.34 148540 176.1f72375.00 7 *5.03
rc202 15 52773 2 2480 2933112 4 1995 11171980.84 37984  33.742675.00 9 *9.19
rc202 15 83154 4 2294 86(3312 4 1995 13172199.40 35999  93.062907.00 25  *40.4
rc203 15 32400 0 2400 02647 3 1995 6521258.05 944763 556.142324.00 9 *5.37
rc203 15 5 2665 1 2369 29¢3112 4 1995 11171474.43 131586 268.442519.00 17 *16.88
rc203 15 8 2982 2 2386 6063312 4 1995 13171742.39 59345 4342.912769.00 27 *151.6
rc204 15 32240 0 2240 02583 3 1931 6521076.64 - 4 2232.00 5 *6.21
rc204 15 52526 1 2230 2963048 4 1931 11171411.57 749482 6698.42444.00 5  *36.8(
rc204 15 82859 2 2253 6063508 5 1931 15771694.75 374593 2438.212628.00 27 *402.8
rc201 20 3 3733 2 3446 2843889 2 3291 598$3698.87 11 *0.02 3733.00 0 0.2
rc201 20 5 4302 3 3449 8534470 4 3291 11794267.16 2 *0.03 4233.00 7 1.34
rc201 20 84931 3 3952 9795094 7 3291 18034865.74 9  *0.0§ 4858.00 5 2.43
rc202 20 33464 1 3180 2843970 3 3069 9012582.38 38716 107.583439.00 5 *3.84
rc202 20 5 3862 2 3255 6074563 5 3069 14943069.67 22019 56.453862.00 0 *1.25
rc202 20 8 4635 4 3361 12745402 7 3069 23383575.66 79652 1276.844402.00 13 *163.6l
rc203 20 3 3042 0 3042 Q 3614 3 2713 9011429.29 - - 3015.00 3 *7.09
rc203 20 53366 1 3055 3114207 5 2713 14941873.09 - 4 3237.00 15 *136.3
rc203 20 84120 3 3122 9935341 8 2713 25282562.29 - 4 3749.00 43 *2986.1
rc204 20 3 2845 0 2845 Q3475 3 2574 9011292.22 - - 2845.00 0 *6.8
rc204 20 5 3301 1 2990 3114068 5 2574 14941778.30 - 4 3137.00 11 *1160.7
rc204 20 8 3790 2 3149 6415102 8 2528 25742378.05 - - 3594.00 29 *6469.8
rc201 30 35599 1 5183 4166098 3 4904 11945553.11 22 *0.115455.00 5 4.4
rc201 30 56204 2 5332 8726955 5 4904 20515995.16 893  *0.345850.00 13 12.5
rc201 30 8 6998 4 5332 16667809 7 4904 29056832.00 813 *0.24 6492.00 19 37.1
rc202 30 3 4832 1 4440 3925382 3 4188 11942812.14 - - 4715.00 7 *21.9
rc202 30 55478 2 4624 8586239 5 4188 20513412.50 - 45113.00 19 *99.5
rc202 30 86431 5 4779 16527386 8 4188 31984212.98 - 4 5756.00 71 *1482.0:
rc203 30 34418 0 4418 05268 3 4074 11941997.00 - 4 4418.00 0 *14.0
rc203 30 5 5191 2 4418 7736125 5 4074 20512571.25 - - 4935.00 17 *374.7
rc203 30 8 5877 3 4574 13087308 8 4074 32343228.88 - - 5383.00 39 *4458.2
rc204 30 34292 0 4292 05015 3 3821 11941923.95 - 44292.00 0 *24.8
rc204 30 54953 2 4095 8585872 5 3821 20512461.95 - 4 4649.00 25 *5606.5
rc204 30 8 - - - - - - - - - - - - - -

Table 4: RC201-RC204 instancespanning edge tree edge sets. |R| is the number of edge sets, whil¢" is the
number of selected edge sets in an optimal solution. If tgerdhm has not terminated within 7500 seconds it is
indicated with "-". The best running time is marked with a ™*”

and for each subset to solve the corresponding VRPTW wittbtaach-cut-and-price algorithm. There
are2!”l combinations to be considered, and each time the VRPTWittigpmust be run. FofR| = 3 the
VRPTW algorithm must be ru8 times, while for| R| = 10 it must be runl024 times. To get an estimate
of the running times, using this approach, we have used thRTWR algorithm to solve one of tha!
combinations and then estimated how long time it would take it2! %! times. Since some combinations
of groups may lead to an infeasible problem we consider thebawation where all sets are selected.

For the instance RC201 with 30 customers it took 0.5 secansisitve the problem for one combination
of the edge sets. A rough estimate indicates that it will ekeind 4 seconds foR| = 3, and around 128
seconds fofR| = 8. This indicates that for a small number of subsets it is fastsolve the a VRPTW
for each combination of edge sets, while for a large numbsubsets it is better to solve the ESVRPTW.

We also tested the instance RC203 with 30 customers. In #sis it took 3.6 seconds to solve one
combination of edge sets. A rough estimate indicates thaoitld take around 29 seconds to solve the
problem for| R| = 3, and around 922 seconds to solve the problem®pr= 8.

We expect that the more groups are present in the problem the advantageous it is to solve the
ESVRPTW. The implemented branch-cut-and-price brancheéb@group variables first and thereby can
eliminate combinations of groups using upper bounds peaVidy other combinations. This synergy is not
achieved when running the combinations individually.

9 Conclusion

The vehicle routing problem with time windows and fixed cdstsaccessing an edge set (ESVRPTW) has
been presented in this paper. To the best of our knowledigahié first time this type of problem has been
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investigated. A mathematical model has been presentetiddeEVRPTW. We have applied the branch-
cut-and-price method to the problem and shown that inctytiie SR cuts and the cuts implemented in
Lysgaard [18] for the VRPTW and CVRP improves the solutionets for this problem. Many related
routing problems may with advantage be implemented this usigg the extensive research available
for the CVRP and the VRPTW. These problems are often solved) ueuristic methods. Although the
heuristic solution methods are very useful and relevanga life applications it is also important for the
evaluation of the heuristics to have access to some optihaiens.

On a more general level the paper has opened the door to eoingid/RPTW problems completely
differently than in previous literature. Previous papaisdiRPTW assume that the shortest path between
two destinations is well-defined and unique, making it dulssto abstract from the underlying graph.
However, this assumption seldom holds in practice, and éne presented model is only one example of
such models. One could also imagine problems where muttjides (roads) are present between each pair
of nodes, having different cost and time. For instance,inigialong a freeway imposes a higher cost but
shorter travel time in comparison to using a highway. In auife work, we will look deeper into these
variants of VRPTW.
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