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Line Blander Reinhardt, Mads Kehlet Jepsen, David Pisinger
Department of Management Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby

March 31, 2014

Abstract

We consider an important generalization of the vehicle routing problem with time windows in which
a fixed cost must be paid for accessing a set of edges. This fixedcost could reflect payment for toll roads,
investment in new facilities, the need for certifications and other costly investments. The certifications
and investments impose a cost for the company while they alsogive unlimited usage of a set of roads to
all vehicles belonging to the company.

This violates the traditional assumption that the path between two destinations is well-defined and
independent of other choices. Different versions for defining the edge sets are discussed and formulated.
Both the multigraph case and the direct path case are described and MIP-formulations of the problem is
presented for both cases. A solution method based on branch-and-price-and-cut is applied to the direct
path case. The computational results show that instances with up to 40 customers can be solved in
reasonable time, and that the branch-cut-and-price algorithm generally outperforms CPLEX.

Figure 1: Main road net in Switzerland. To access all the red edges, a vignette needs to be paid. A
transportation company may choose to avoid the toll roads and only use the ordinary highways

1 Introduction

In certain real-life situations the cost of a connection does not entirely depend on the cost of the individual
links (edges). Frequently, in real life, a fee must be paid bythe company for allowing its vehicle to
access roads, areas, bridges or other. Such a fee may in some cases only be required to be paid once by
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the company and is in such cases independent of the number of vehicles accessing any edge in the set.
Companies routing in an area with many ferry connections maypay to access a set of ferries owned by a
company at a monthly rate or at a reduced price. Here, it is important to determine which ferry companies
it is most profitable to use. The same applies to toll roads andbridges, where some countries charge a
company based tax for accessing all freeways in the country (see Figure 1). In war zones or areas of unrest
a company may need to get a certification allowing its vehicles to travel on certain protected roads or to
enter certain protected zones. Even though in some cases theaccess is to be paid only for the vehicle
accessing the edge set the company will often wish to sign up all its vehicles for robustness and easy
administration purposes. Yet another situation where a setof edges can be accessed at a fixed cost is in
cases where there is an option of investing in a facility. In such problems, referred to as location-routing
problems, there is often a fixed charge connected to a facility and location. Nagy and Salhi [20] give an
extensive survey of location-routing problems covering many different routing problems combined with
facility location problems. Belenguer et al. [2] recently presented a branch-and-cut method for the location
routing problem which apart from considering multiple depots, can be seen as a special case of the model
presented in this paper. In all of the mentioned cases there is a fixed charge for accessing a set of edges.
For the case shown in Figure 1 there may be both an edge belonging to an edge set and an edge with no
additional cost connecting the same pair of nodes. A graph where multiple edges exist between two nodes
is called a multi-graph.

The problem of minimizing the overall cost when planning routes which have a cost associated with
sets of edges is in this paper investigated as a generalization of the well known problem of routing vehicles
with capacity and service time window restrictions (VRPTW).

In traditional VRPTW problems, it is assumed that the cost ofan edge is well-defined and independent
of other decisions. This assumption seldom holds in practice, but the literature on VRPTW somehow has
overseen this fact.

In the version of the VRPTW considered here the edges of the graph belong to different edge sets. Once
the cost of accessing the edge set is paid all vehicles can access the edges in the edge set. However, there
might still be a price associated with each of the edges used.Note that the price for accessing the edge set
is paid at most once. This cost has an influence on all the routes since once the access price is paid the
edges can be accessed by another vehicle without paying the access price again. This makes the cost of the
different vehicle routes interdependent. We will denote the considered problem anedge set vehicle routing
problem with time windows (ESVRPTW). In Figure 2 an example of a network with the edges partitioned
into different edge sets is shown. Figure 2 a) shows the entire set of edges, and b) and c) show accessible
edges when paying for different combinations of two edge sets. Clearly the ESVRPTW is NP-hard as it is a
generalization of the VRPTW. Even though edges refers to bidirectional links and directional arcs generally
are used for the VRPTW this does not change the problem as the arcs representing the two directions of
the edge are both assigned to the same edge set.

We will in this paper present a general model for the ESVRPTW and a Danzig-Wolfe decomposition.
We then consider a simplified version of the problem, where only direct edges between two nodes may be
used. This problem occurs when planning transportation of dangerous goods. To avoid unnecessary hazard,
the time on the roads should be kept as short as possible, and,in particular, the vehicles are not allowed to
enter a city (node) except if they have an actual delivery. The problem also occurs when transporting goods
between different countries. In this case the cost of customclearance depends on the start and origin nodes,
and cannot be circumvented by passing through other countries (nodes). In a future paper we will consider
the more general version, where multiple edges exist between each pair of nodes (representing alternative
paths in the original road graph).

The paper is organized as follows. In the following section we give a rough overview of literature for
the vehicle routing problem with time windows and describe relevant results that can be used for solving
the ESVRPTW. Section 3 presents a general MIP model for the ESVRPTW and the decomposition of
the problem into a master and subproblem is described. In Section 4 we consider a simplified variant of
the ESVRPTW where only direct edges between two nodes may be used and a MIP model for this case
is presented. In Section 5 the solution method, decomposition, and valid inequalities are described. In
Section 6 various extensions of the ESVRPTW model are discussed. In Section 7 the test instances are
described. Section 8 reports computational results, and finally the paper is concluded in Section 9 with a
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Figure 2: Accessible edges in a graph; (a) paying for all three edge sets at total cost 1200, (b) paying for
first and second edge set at total cost 700, (c) paying for firstand third edge sets at total cost 800

discussion of general multi-edge VRP problems.

2 Literature review

To the best of our knowledge, the problem of routing vehicleswith an edge set cost has not yet been
investigated in the published literature. However, the underlying problem, the vehicle routing problem
with time windows (VRPTW), has been extensively studied. The vehicle routing problem was introduced
in 1959 by Dantzig and Ramser in [6] as the truck dispatching problem. Many different exact and heuristic
methods have been applied to the problem. The basis of the research in this paper is in the exact methods.
In 1981 Christofides et al. [4] presented a decomposition generatingq-routes for the capacitated VRP. One
of the first exact methods for the VRPTW was by Kolen et al. [16]using the ideas presented in [4] and
applying them to the VRPTW. This was later included in a branch-and-price method by Desrochers et al
[9].

In 1987 a benchmark suite was presented for the VRPTW [22] making it easy to compare solution
methods and the research society has been enticed by the problem of solving these tests. Recently there
has been a strong development in solution times and problem sizes solved to optimality. In 1999 Kohl et
al. [15] and Cook and Rich [5] both applied branch-cut-and-price to the VRPTW.

Some of the most recent developments in solving the VRPTW aredescribed in [1], [8],[12], and [14].
Both Jepsen et al. [12] and Baldacci et al. [1] use the valid cuts summarized by Lysgaard et al. [19] to sep-
arate candidate edge sets for branching. Even though the cuts in [19] are implemented for the capacitated
vehicle routing problem (CVRP) they may be used for the VRPTW, as the solutions to the VRPTW are a
subset of the solution to the corresponding CVRP. Jepsen et al. [12] implemented a branch cut and price
algorithm with a label-setting bi-directional algorithm for elementary shortest paths developed by Righini
and Salani [21]. Jepsen et al. added the subset-row (SR) inequalities on the master problem variables and
modified the subproblem to include the reduced cost from these inequalities. These SR inequalities are
included by both Desaulniers et al. [8] and Baldacci et al. [1] in their algorithms.

Desaulniers et al. in 2008 [8] further improved the results by using Tabu search for finding improving
routes in the subproblem and generalized thek-path inequalities originally formulated by Kohl et al. [15].

Baldacci et al. [1] introduce an enumeration framework. Themaster problem is solved using a subgra-
dient optimization algorithm and enumeration is done by solving an ESPPRC where standard dominance
is limited. To improve the dominance a lower bound for the completion of each label is found using the
so-calledng-routes.

In this paper we formulate the ESVRPTW and solve it using the solution method used by Jepsen et al.
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[12] on the VRPTW as this method can be easily adapted to solvethe ESVRPTW.

3 Multigraph Model

Our mathematical model is based on the 3-index model for the VRPTW presented in Jepsen et al. [12].
In the VRPTW we may pre-calculate the cheapest costcij of traveling from nodei to nodej, and ignore
the underlying road network hereafter. This is, as mentioned in section 1, not the case in the general
ESVRPTW problem, since the cheapest costcrij depends on the set of edges available, and hence there are
multiple paths between two nodes.

In the multigraph version of the ESVRPTW there can be severaledges between two nodes in the graph.
These edges must belong to different edge sets as two edges between the same two nodes in the same edge
set would dominate each other so that one can be removed in preprocessing. Letcrij be the edge cost of
using the edge(i, j) belonging to a setr. Notice that the edge cost may vary depending on which setr the
edge belongs to.

Given the following sets:

R The set of all edge sets

C The set of customers, whereCr denotes the customers covered by the edges in setr ∈ R

V The set of nodes representing the customers inC and the depot defined as 0

A The set of arcs(i, j) in V , whereAr is the set of arcs(i, j) belonging to the setr ∈ R

K The set of vehicles, where|K| ≤ |C| as usual for VRPTW problems

The variables are defined as:

xrv
ij Binary variable indicating if the arc(i, j) ∈ Ar is used by vehiclev ∈ K

yr Binary variable which is one if an edge from edge setr ∈ R is used and zero otherwise

tvi The time vehiclev visits i ∈ V .

The parameters are defined as:

D The capacity of the vehicles

di The demand which must be delivered to nodei ∈ V . The demand at the depot is zero

ai The availability time for customeri ∈ C. Note thatai ≥ 0.

bi The required completion time for customeri ∈ C with bi ≥ ai

θrij The time it takes to travel fromi ∈ C to j ∈ C on arc(i, j) ∈ Ar.

crij The cost of using an arc(i, j) ∈ Ar

cr The cost of accessing the arcs in edge setr ∈ R

A model (MGM) for the multigraph case of the ESVRPTW can now be formulated. Since the problem
is a generalization of the VRPTW the model presented here forthe ESVRPTW is the standard VRPTW
model presented in the survey by Kallehauge [13], with an additional set of constraints used to formulate
the edge set costs. The cost of the edge sets are inserted intothe objective. In the presented model the
assumption is that each edge belongs to exactly one edge set,however, alternatives to this assumption are
discussed in Section 6.

MGM : min
∑

r∈R

∑

v∈K

∑

(i,j)∈Ar

crijx
rv
ij +

∑

r∈R

cryr (1)
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s.t. yr −
∑

v∈K

xrv
ij ≥ 0 ∀r ∈ R, (i, j) ∈ Ar (2)

∑

r∈R

∑

v∈K

∑

j:(i,j)∈Ar

xrv
ij = 1 ∀i ∈ C (3)

∑

r∈R

∑

i∈C

xrv
i0 =

∑

r∈R

∑

i∈C

xrv
0i ∀v ∈ K (4)

∑

r∈R

∑

j:(j,i)∈Ar

xrv
ji −

∑

r∈R

∑

j:(i,j)∈Ar

xrv
ij = 0 ∀i ∈ C, ∀v ∈ K (5)

∑

r∈R

∑

(i,j)∈Ar

dix
rv
ij ≤ D ∀v ∈ K (6)

ai ≤ tvi ≤ bi ∀ i ∈ V, v ∈ K (7)

(tvi + θrij)x
rv
ij − tvj ≤ 0 ∀ v ∈ K, r ∈ R, (i, j) ∈ Ar (8)

xrv
ij ∈ {0, 1} ∀ r ∈ R, (i, j) ∈ Ar, v ∈ K (9)

yr ∈ {0, 1} ∀ r ∈ R (10)

tvi ∈ R
+
0 ∀ i ∈ V, v ∈ K (11)

The objective (1) is the sum of the cost on the edges used and the sum of the cost of accessing the sets of
the edges used by the vehicles. The constraints (2) ensure that if an edge, in a edge set, is used then the
cost of accessing the edge set is paid. Note that due to the minimization objective and the constraints (2)
the integrality of thexrv

ij variables implies integralyr variables. Constraints (3) ensure that every customer
is visited. Constraints (4) ensure that all vehicles start and end their journey at the depot. Constraints (5)
ensure that vehicles arriving at a customer also leaves the same customer. Constraints (6) ensure that the
capacity of a vehicle is not exceeded. Constraints (7) ensure that customers are visited in their respective
time window. Finally, constraints (8) find the time of vehicle v at customeri. If vehicle v does not visit
customeri any time can be chosen. Constraints (8) also ensures that theroute is simple. The variablesxv

ij

andyr are in (9) and (10) defined to be binary and the variabletvi is in (11) defined to be a positive real
number. Note that constraints (8) can be replaced by the linear constraints:

tvi + θrij − tvj ≤ M(1− xrv
ij ) ∀ v ∈ K, r ∈ R, (i, j) ∈ A (12)

WhereM must be selected so that it is greater than the duration of anyroute.

3.1 Tightening the edge set constraints

In the ESVRPTW each customer must be visited exactly once. This requirement is ensured by constraints
(3) and can be used to tighten the constraints in (2). Since each customer is visited once, we know that
if several edges belonging to the same edge set leave the samecustomer then at most one of them can be
used, and if one of them is used then the cost of the edge set must be accounted for. See Figure 3 for an
illustration.

From this observation we can construct the constraints:
∑

v∈K

∑

j∈C:(i,j)∈Ar

xrv
ij ≤ yr ∀r ∈ R, i ∈ C (13)

In this case the integrality of thex variables again imposes the integrality of they variables and the number
of constraints in (13) is|C||R|. Note that constraints (13) do not apply to the depot as more than one edge
belonging to an edge set may leave the depot. Therefore the constraints of type (13) cannot entirely replace
the constraints (2). However, by formulating a new edge set of constraints similar to the constraints (13)
for edges entering every customer:

∑

v∈K

∑

j∈C:(j,i)∈Ar

xrv
ji ≤ yr ∀r ∈ R, i ∈ Cr, (14)

5



d

f

g

i h

j

k

Edge set: set 1
set 2

Figure 3: Illustration of the bound on outgoing edges. At most one of the arcs(i, j) and(i, h) can be used,
thereforey1 must always be greater than the sum of the outgoing arcs ofi in edge set 1.

then all edges will be covered by the two constraints (13) and(14) and they can therefore replace the
constraints (2). Thereby the constraints (2) can be replaced by 2|C||R| constraints or less. These tighter
constraints will in Section 5 and onwards replace constraints (2) in the model.

4 Direct path model

As mentioned in Section 1 an important variant of the ESVRPTWoccurs when transporting dangerous
goods or when transporting goods between countries. In thiscase only the direct connection between
nodesi andj may be used. Lettingcij denote the cost of using arc(i, j) ∈ A we get the model (DPM):

DPM : min
∑

v∈K

∑

(i,j)∈A

cijx
v
ij +

∑

r∈R

cryr (15)

s.t.
∑

v∈K

∑

j:(j,i)∈Ar

xv
ji ≤ yr ∀r ∈ R, i ∈ Cr (16)

∑

v∈K

∑

j:(i,j)∈Ar

xv
ij ≤ yr ∀r ∈ R, i ∈ Cr (17)

∑

v∈K

∑

j:(i,j)∈A

xv
ij = 1 ∀i ∈ C (18)

∑

i∈C

xv
i0 =

∑

i∈C

xv
0i ∀v ∈ K (19)

∑

j:(j,i)∈A

xv
ji −

∑

j:(i,j)∈A

xv
ij = 0 ∀i ∈ C, ∀v ∈ K (20)

∑

(i,j)∈A

dix
v
ij ≤ D ∀v ∈ K (21)

ai ≤ tvi ≤ bi ∀ i ∈ V, v ∈ K (22)

(tvi + θij)x
v
ij − tvj ≤ 0 ∀ v ∈ K, (i, j) ∈ A (23)

xv
ij ∈ {0, 1} ∀ (i, j) ∈ A, v ∈ K (24)

yr ∈ {0, 1} ∀ r ∈ R (25)

tvi ∈ R
+
0 ∀ i ∈ V, v ∈ K (26)

Note, that the main difference between the modelMGM and the modelDPM is that ther index on the
variablexrv

ij , cost parametercrij and time parameterθrij is removed in the latter model. Here the tighter
constraints (13) and (14) are replacing the constraints (2)in the above model.
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As before the constraints (23) can be replaced by linear constraints:

tvi + θij − tvj ≤ M(1− xv
ij) ∀ v ∈ K, (i, j) ∈ A (27)

WhereM is a large constant greater than the duration of any route.

5 Solution method

The branch-cut-and-price method has with success been applied to the VRPTW and the best results for
finding exact solutions to the problem have been produced using this method (see e.g. Jepsen et al. [12],
Desaulniers et al. [8] and Baldacci et al. [1]). Since the ESVRPTW is a generalization of the VRPTW the
solution methods for the VRPTW may successfully be applied to the direct path case of the ESVRPTW
(model DPM). Therefore we have applied the BCP algorithm to theDPM using cuts for the original formu-
lation of the VRPTW presented by Fukasawa et al. in [11] and byLysgaard et al. [19] for the CVRP. This
corresponds to the algorithm developed by Jepsen et al. [12]for the VRPTW. Jepsen et al. also introduced
the Subset Row valid inequalities into the master problem formulation. We will later argue that these cuts
can with the same benefits be applied to theDPM.

Both models for the ESVRPTW can be decomposed into a master and pricing problem similar to the
Dantzig-Wolfe decomposition of the standard model for the VRPTW, where the pricing problem is to find
an elementary shortest path problem with some resource constraints. In Sections 5.1 to 5.5 the solution
method for theDPM will be described. In Section 5.6 it is discussed how this decomposition and solution
method can be applied to theMGM.

5.1 Master Problem

The master problem (DPMM) for ESVRPTW is similar to the standard VRPTW master problemusing the
decomposition presented by Desrochers et al. [9]. However,the cost of the edge sets are kept in the master
problem and these costs will be reflected in the dual variables from the solution of the linearly relaxed
master problem.

DPMM : min:
∑

p∈P

∑

(i,j)∈A

cijαijpλp +
∑

r∈R

cryr (28)

s.t.
∑

p∈P

∑

j:(j,i)∈Ar

αjipλp ≤ yr ∀i ∈ C, ∀r ∈ R (29)

∑

p∈P

∑

j:(i,j)∈Ar

αijpλp ≤ yr ∀i ∈ C, ∀r ∈ R (30)

∑

p∈P

∑

i:(i,j)∈A

αijpλp = 1 ∀j ∈ C (31)

λp ∈ {0, 1} ∀ p ∈ P (32)

yr ∈ {0, 1} ∀ r ∈ R (33)

The setP contains routes satisfying the time window constraints andthe capacity constraints. When
λp is one then routep ∈ P is used andλp is zero otherwise. The constantαijp is one if the edge(i, j) ∈ A

is used by the routep and zero otherwise. Constraints (29) and (30) corresponds to the constraints (13)
and (14) which ensure that access to the edge set is paid if an edge from the edge set is used in one of
the selected routes. Constraints (31) ensure that every customer is visited exactly once by the set of routes
selected. The master problem can be recognized as a set partitioning problem with side constraints. It is
important to note that the constraints (29) and (30) do not change the domain of valid solutions but only
affect the value of the solutions.
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5.2 Pricing problem

The linear relaxation of the master problem can be solved through delayed column generation. The pricing
problem then becomes an elementary shortest path problem with resource constraints. Letφ′

ir ∈ R
−
0 be

the dual variables of constraints (29) and letφir ∈ R
−
0 be the dual variables of constraints (30). Letπj ∈ R

for j ∈ C be the dual variables of constraint (31) and letπ0 = φ′
0r = φ0r = 0. Then, the reduced cost for

a route in the pricing problem becomes:

c̄p =
∑

(i,j)∈A

cijαijp −
∑

(i,j)∈A

πjαijp −
∑

r∈R

∑

(j,i)∈Ar

φ′
irαjip −

∑

r∈R

∑

(i,j)∈Ar

φirαijp (34)

=
∑

(i,j)∈A

(cij − πj)αijp −
∑

r∈R

∑

(i,j)∈Ar

(φir + φ′
jr)αijp (35)

This can be transformed to a elementary shortest path problem with resource constraints (ESPPRC) where
each edge(i, j) has the cost̄cij = cij − πj −

∑

{r|(i,j)∈Ar}
(φir + φ′

jr). The resource constraints in
our problem are the capacity constraint and the time window constraints. Per definition of the elementary
shortest path problem, each customer is visited at most once. A label setting algorithm can be used to solve
the problem to optimality.

The label setting algorithm will at each node have a set of labels representing a path from the depot
to the node. A label is in our implementation represented by atriple containing: a pointer to the label of
the previously visited node, a number that indicates the time consumption, and a number indicating the
capacity consuption.

To reduce the number a dominance test is used to remove labelsnot leading to the optimal solution. Let
c̄(L) be the cost of the path represented by labelL and letd̄(L) andt̄(L) be respectively the capacity and
time consumption. Letv be the node and letη(L) be the set of feasible partial paths fromv to the depot. A
labelL′ is dominated by another labelL′′ if:

c̄(L′′) ≤ c̄(L′) (36)

d̄(L′′) ≤ d̄(L′) (37)

t̄(L′′) ≤ t̄(L′) (38)

η(L′) ⊆ c̄(L′′) (39)

We use the state of art methods for solving the ESPPRC based onthe bidirectional shortest path algo-
rithm presented by Righini and Salani [21].

The dominance criteria developed and presented by Desaulniers et al. [7] for removing all labels which
are not efficient Pareto optimal, given that the resources are additive or the function on them is monotone,
can be used here. However, when introducing the SR cuts developed by Jepsen et al. [12] the objective
is no longer additive and the function used is not monotone. In [3] Blander Reinhardt and Pisinger cover
several different ESPPRCs with objectives containing functions which are not monotone.

Before running the label setting algorithm, a time window reduction, as described by Desrochers et al.
[9], is performed to speed up the label setting algorithm. The ESPPRC is NP-hard in the strong sense (Dror
[10]), therefore it is desirable to try to find improving paths without solving the ESPPRC to optimality. For
this purpose a simple heuristic has been implemented. Only if the heuristic does not find any improving
paths, the ESPPRC is solved to optimality using a label setting algorithm. The heuristic is based on a
greedy approach, always extending the label with the lowestcost.

5.3 Branch-cut-and-price

Branch-cut-and-price algorithms have with success been applied to several transportation problems, hence
we solve theDPMM using this approach. The branch-cut-and-price algorithm runs through the following
steps, starting with the root node as the only unprocessed node:

Step 1: Choose an unprocessed node. If several unprocessed nodes exist the node with the lowest lower
bound is selected. If the lower bound of a node is above the upper bound then the node will be
removed from the unprocessed node list.
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Step 2: Solve the LP relaxed master problem. Update the lowerbound.

Step 3: Search for routes with negative reduced cost using heuristic methods. If any route is found with
negative reduced cost then add columns to the master problemand go to step 2. The heuristic used
is a simple greedy approach.

Step 4: Solve the pricing problem, formulated as an elementary shortest path problem with resource
constraints, to optimality. If routes with negative reduced cost are found then add them to the master
problem and go to step 2. If no routes with negative reduced cost are found then the lower bound of
the node is updated. If the updated lower bound is above the global upper bound then the node is
deleted. Go to step 1.

Step 5: If any violated cuts are found then add them to the master problem and go to step 2.

Step 6: Mark the node as processed. If the solution to the LP relaxed master problem is integral then
update the upper bound. If the solution is fractional then branch and add the children to the list of
unprocessed nodes. Go to step 1.

Note that time window reduction, as described by Desrocherset al. [9], is applied in the pricing
problem. This will also eliminate infeasible arcs. The applied branching rules are described in more details
in the next subsection.

5.4 Cuts

As can be seen from the algorithm in Section 5.3, cuts are added to the master problem in Step 5 of the
algorithm. If the added cuts are valid inequalities derivedfrom the original formulation, theDPM, then the
dual can be transferred directly to the cost of the arcs. Suchcuts could be capacity inequalities, strengthened
capacity inequalities, framed capacity inequalities, strengthened comb inequalities, multi star inequalities
and generalized large multi star inequalities. However, ifthe cuts added are expressed in the path variables
the dual cost can be more complicating to transfer as the dualof the constraints may be activated not only by
a single edge but a combination of edges. However, the subsetrow cuts have with success been introduced
into the master problem variables by Jepsen et al. [12]. The authors also developed a method of handling
the reduced cost of a route for the ESPPRC where the objectivefunction is not strictly in- or de- creasing
as a result of the reduced cost achieved from the Subset Row cuts.

5.4.1 Valid Inequalities in the original form

Many valid inequalities have been developed for the VRPTW. These valid inequalities will also be appli-
cable for ESVRPTW as the ESVRPTW does not change the set of feasible solutions but only changes the
objective function. Valid inequalities for the VRPTW are described in e.g. [11], [17] and [19]. The valid
inequalities in the original form applied are, as mentionedpreviously, the capacity inequality, the strength-
ened capacity inequality, the framed capacity inequality,the strengthened comb inequality, the multi star
inequality and the generalized large multi star inequality. These inequalities have all been developed for the
capacitated vehicle routing problem CVRP but also apply to the VRPTW. However, since they are devel-
oped for the CVRP they do not include the time window restrictions to possibly tighten inequalities. The
separation algorithm used in our implementation is the one described by Lysgaard et al. [19] and accessible
in the framework developed by Lysgaard [18].

5.4.2 Valid Inequalities expressed using the master problem variables

Jepsen et al. [12] introduced the Subset-Row (SR) inequalities to generate cuts in the set partitioning
formulation of the master problem with the path variablesλ. The SR inequalities are inspired by the clique
and odd hole inequalities for the set-packing problem. The undirected conflict graphG′(P,E) is defined
as follows: Each column is a node inG′ and an edge in the graphG′ represents a conflict between the
two nodes (columns) it connects. A conflict appears, in the case of VRPTW and also ESVRPTW, if two
columnsp andq both have an edge leaving the same customer. This means that the nodes representingp
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andq in the conflict graphG′ has an edge connecting them if there is a customer which is visited by both
the path inp and the path inq.

Clearly for a fully connected subgrapĥP ∈ G′ (also called a clique) it is true that

∑

p∈P̂

λp ≤ 1

Because otherwise two conflicting nodes (columns) would be selected.
For a cycle of nodes̄P in the conflict graphG′ it must hold that

∑

p∈P̄

λp ≤

⌊

|P̄ |

2

⌋

as two neighboring nodes cannot be visited without introducing a conflict in the original problem.
Since restricting a node visit corresponds to a row (constraint) in the master problem then a conflict in

the conflict graph corresponds to one or more conflicting rows. This lead to the namesubset row inequali-
ties.

The inequalities are not based on the edges directly but on the route variables and formulated as follows:

SR:
∑

p∈P

⌊

1

k

∑

i∈S

αip

⌋

λp ≤

⌊

|S|

k

⌋

(40)

WhereS is a subset of the constraints (31), k is a positive integer less than or equal to|S| and

αip =
∑

(i,j)∈δ+(i)

αijp

TheSR inequalities are cuts on theλi variables which are used to cut away some of the region which is
feasible in the linear relaxation of the master problem but not feasible to the integer master problem.

The inequalities (40) are clearly not affected by the constraints (29) and (30) and therefore they can also
be introduced into the master problem for the ESVRPTW presented in Section 5.1. Moreover the effect
of introducing the SR cuts into the ESVRPTW should be the sameas in the VRPTW as the set of feasible
solutions does not differ between the ESVRPTW and the VRPTW.

The problem with these inequalities is that the dual of each inequality can not be mapped directly to
the cost of the individual edges. Using the notation from Jepsen et al. [12] we let the dual variable of an
SR inequality beσ. We can then formulate the dual cost of a routep as

ĉp = c̄p − σ









(

∑

i∈S

∑

(i,j)∈δ+(i) αijp

)

k









Note that the dual variableσ is not activated before at leastk nodes in the setS have been visited.
Therefore to introduce the reduced cost of these constraints into the pricing problem the ESPPRC needs

to be modified. As mentioned in Section 5.2, the ESPPRC is solved with a label-setting algorithm using
dominance for the time, load and cost criteria. LetL be a label at a nodev so that each labelL at v
represents a path from the depot tov. The usual dominance criteria which holds for additive costs is that a
label is dominated if there exists another label at the same node where all criteria are less than or equal to
the dominated labels criteria values. However, this does not hold for the reduced cost introduced by the SR
inequalities. One label may be better than the other even if the labels have the same or worse cost. In our
implementation we usek = 2 and|S| = 3, meaning that we include cuts which do not allow two or more
routes to visit two nodes from a set of three customers.

To solve the ESPPRC with the dual cost from the SR inequalities, Jepsen et al. [12] modified the
dominance rule for the cost criteria in the label setting algorithm which is used when solving the ESPPRC.
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In the case where the cost of cutq has been accounted for in a labelLi and not accounted for in a
dominated labelLj , the dominance rule for the cost of two labels at the same nodebecomes:

ĉ(Li)−
∑

q∈Q

σq ≤ ĉ(Lj) (41)

whereQ represents a subset of the SR cuts for which the route represented byLi has visited two nodes
in the SR cut, and the route represented byLj has not visited two nodes in the SR cut, andσq < 0.
The dominance rules for the cost, capacity and time constraints are the standard dominance rules given by
Desaulniers et al. [7] as the functions are nondecreasing. For further details see Jepsen et al. [12].

u u ut

u

u

u

uq

(1,2)

(1,1)

(2,1)

(1,1)

(2,1)

(1,0)

s

i

z

y

j

P ′
sj

Psj

Pjt

Figure 4: Assume that an edge have two associated values (cost, time). Let there be a valid SR cut whereS
contains 3 elements andk = 2. The setS contains nodesz, t, q. Let us assume that the dual costσ = −1.
At nodej the label for the pathsij is (3,3) and for the pathszj the label is (3,2), when not considering the
SR dominace rule (41). Clearly when not considering the SR dominance the pathszj would dominate the
pathsij. When using the SR dominace rule (41) the labels atj becomes (3,3) for pathsij and (4,2) for
pathszj. On the pathszjt two nodes of the setS are visited. Therefore at nodet the actual cost and time
of the two paths is (5,4) forsijt and (6,3) for pathszjt. Clearly these two paths cannot dominate each
other.

5.5 Branching

In most algorithms for the VRPTW branching is performed on the arc variables remaining after prepro-
cessing. We have chosen to do branching on the edge set variables as well. Since the number of edge set
variables is comparably small, branching on the edge set variables can significantly reduce the number of
free arc variables at a node and thereby reduce the number of nodes in the search tree. In addition, the
branching of Fukasawa et al. [11] is implemented which branches on the number of vehicles servicing a
set of nodes/customers. This branching can be formulated bylettingS ⊂ C be a subset of the set of arcs
remaining after preprocessing and one branch is

∑

v∈K

∑

(i,j)∈δ+(S)(x
v
ij + xv

ji) = 2 whereδ+(S) is the
edges leaving the setS and the other branch where at least two vehicles services thesetS is represented by
constraints

∑

v∈K

∑

(i,j)∈δ+(S)(x
v
ij + xv

ji) ≥ 4. To separate candidate sets the Lysgaard cut library [18]
is used. From preliminary tests it was clear that branching on the edge set variables tended to improve the
solution time for the problem significantly.

5.6 Multigraph Version

In the multigraph version of the ESVRPTW there can be severaledges between two nodes in the graph.
These edges must belong to different edge sets as two edges between the same two nodes in the same
edge set would dominate each other so that one can be removed in preprocessing. In this section the
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decomposition of the path based model for the multigraph case of the ESVRPTW is presented (see model
MGM).

Using a similar branch-cut-and-pricemethod as presented for the direct path ESVRPTW, the path based
master problem (MGMM) can be formulated as:

MGMM : min:
∑

r∈R

∑

p∈P

∑

(i,j)∈A

crijα
r
ijpλp +

∑

r∈R

cryr (42)

s.t.
∑

p∈P

∑

j:(j,i)∈Ar

αr
jipλp ≤ yr ∀i ∈ C, ∀r ∈ R (43)

∑

p∈P

∑

j:(i,j)∈Ar

αr
ijpλp ≤ yr ∀i ∈ C, ∀r ∈ R (44)

∑

r∈R

∑

p∈P

∑

j:(j,i)∈A

αr
jipλp = 1 ∀i ∈ C (45)

λp ∈ {0, 1} ∀ p ∈ P (46)

yr ∈ {0, 1} ∀ r ∈ R (47)

Note that the only difference between the above model andDPMM is ther index of theαr
jip parameter

and thecrji cost parameter.
As for the direct path ESVRPTW the linear relaxation of the multigraph ESVRPTW master problem

MGMM can be solved through delayed column generation with ESPPRCas the pricing problem.

i

j′′

j′

j

Figure 5: Transformation of a multi-graph to an ordinary graph in the ESPPRC subproblem. Nodesi andj
have three intermediate edges in the multi-graph so we introducej′, j′′ as auxiliary nodes. The cost of the
edgescij , cij′ andcij′′ is the original cost of the first to the third edge betweeni andj in the multigraph.
The same applies to the travel time, whereθij , θij′ andθij′′ is the original travel time on the three edges.
Note thatcj′j , cj′′j , θj′j andθj′′j are all zero.

When solving the ESPPRC we transform the multigraph to an ordinary graph by using an auxiliary
node for each extra connection between two nodes. A graphical example of this is shown in Figure 5. The
edge(i, j) is the first edge in the multigraph and the paths(i, j′, j) and(i, j′′, j) corresponds to the second
and third edge between the nodesi andj.

In a future paper we will extend the presented cuts to the multigraph version of the problem and imple-
ment them in a branch-cut-and-price framework.

6 Closely related formulations and problems

Several variants of the ESVRPTW exist. So far it has been assumed that edges only belong to one edge set,
however situations occur where an edge may belong to more than one edge set. If an edge may belong to
more than one edge set, the charge for using it can follow various rules, as discussed in the sequel.

In the simplest variant, the cost of using an edge must be paidfor all the edge sets the edge belongs to.
This case occurs if several pieces of equipment are needed touse the edge, or if several permissions are
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needed to cross the edge. This problem can be formulated using constraints (13) and (14) with the only
difference that an edge may be included in more than one constraint for each node.

6.1 Edges belonging to multiple edge sets

Assume that for an edge belonging to several edge sets, the access cost only needs to be paid for one of the
edge sets containing the edge. This occurs when various bundled discount deals give access to the same
connection. In such a case it is important to determine whichdeal to pay for so that the least money is
spent overall. This variant of the problem can be modeled by replacing constraints (13) and (14) with the
following constraints:

∑

v∈K

xv
ij −

∑

{r|r∈R∧(i,j)∈Ar}

yr ≤ 0, ∀(i, j) ∈ A, (48)

The constraint is very similar to constraints (2); however,in this case the integrality of thexv
ij variables

does not necessarily imply integrality of theyr variables. Note that when replacing constraints (29) and
(30) with:

∑

p∈P

αijpλp ≤
∑

{r|r∈R∧(i,j)∈Ar}

yr, ∀(i, j) ∈ A, (49)

representing the (48) constraints in the master problem form then each edge(i, j) in the ESPPRC subprob-
lem will have costcij −πj − ρij whereρ is the dual variable for the constraints (48). This will not add any
complications to the ESPPRC algorithm as the cost of a path remains additive and the non additive cost
introduced by the SR cuts are handled as in the VRPTW.

7 Test data

Following the tradition of the VRP, the test data are based onthe Solomon instances [22] making it possible
to relate our results to the existing literature. We have generated test instances based on the RC201 to
RC204 instances by assigning subsets of edges to disjoint edge sets, and associating a fixed cost with each
edge set. For the RC201 to RC204 Solomon instances differentcategories of test instances have been
constructed. The instances can be grouped into two categories:

1. random edge sets: In these instances, the edges in each edge set are randomly selected. These
instances should reflect a toll on accessing bridges, tunnels or ferries. These facilities are randomly
scattered in the plane, but frequently a set of facilities isrun by the same operator.

2. spanning tree edge sets: In these instances the selected edges form cheap spanning graphs of a
randomly selected subset of nodes. Each subset of nodes consists of half of the total number of
nodes. This case should reflect payment of toll on motorways.Motorways usually form a spanning
network covering the main cities in a country.

In all test cases, each edge is assigned to at most one edge set. Moreover exactly one edge connects each
pair of nodes. Thus the test cases all represent the direct path case of the ESVRPTW.

For each Solomon instance, test instances containing 3, 5 and 8 edge sets were generated, each having
an associated cost for accessing the edge set.

For therandom edge sets instances, 50% of the edges are assigned to edge sets with an additional cost.
For each combination of Solomon instance and number of edge sets, test instances were generated with the
costs of an edge set calculated asβ = 5% of the average cost of the edges in the edge set multiplied by the
number of nodes cover by edges in the edge set.

In the case ofspanning tree edge sets, the cost of a given edge set is chosen as the most expensive
edge in the graph minus the average value of the edges in the given edge set. This implies that edge
sets containing cheaper spanning trees (i.e. fast transportation times) are more costly than the edge sets
containing more expensive spanning trees.

The construction of the edge sets and costs is in both cases generated so that the edge sets are likely to
be attractive. For the spanning tree edge sets the cost function is selected differently than from the random
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instance opt solution solution times
test |R| objective R∗ CPLEX bcp C+SR Bp bcp SR bcp C
rc201 3 4239 3 *0.06 1.22 (3) 1.16(1) 1.22(3) 1.20(2)
rc201 5 4539 4 *0.06 1.09(1) 1.23(4) 1.18(3) 1.16(2)
rc201 8 4878 5 *0.09 1.62(2) 1.52(1) 1.66(3) 1.71(4)
rc202 3 3723 2 473.82 *13.55(1) 14.86(2) 16.85(3) 21.76(4)
rc202 5 4120 3 200.19 10.26(2) *9.40(1) 11.71(4) 11.51(3)
rc202 8 4166 3 25.54 *9.96(1) 10.13(2) 17.06(4) 11.75(3)
rc203 3 3371 1 - *29.07(1) 29.19(2) 30.30(3) 54.01(4)
rc203 5 3635 2 - *44.34(1) 44.66(2) 47.71(3) 58.24(4)
rc203 8 3545 2 - *75.54(1) 81.25(2) 88.53(3) 100.63(4)
rc204 3 3148 1 - *130.83(1) 147.04(3) 183.59(4) 136.88(2)
rc204 5 3414 2 - *123.00(1) 205.80(3) 153.72(2) 308.24(4)
rc204 8 3215 1 - 100.40(3) *43.06(1) 119.16(4) 54.43(2)

Average Rank 1.50 2.0 3.25 3.17

Table 1:RC201-RC204 instances with 20 customers,random edge sets. |R| is the number of edge sets, whileR∗ is
the number of selected edge sets in an optimal solution. If the algorithm has not terminated within 7500 seconds it is
indicated with ”-”. The best running time for each instance is marked with a ”*”. C indicates that the cuts implemented
in [18] are used, SR indicates that SR-cuts are used, while C+SR indicates that both families of cuts are used.

edge sets as more expensive spanning trees would otherwise have an more expensive edge set cost making
them very unattractive compared to the less expensive ones.Such a situation would be unlikely in a free
market.

For the Solomon instances RC201 to RC204, test cases were generated with 15, 20, 30 and 40 cus-
tomers.

8 Results

The program has been implemented in C++ using the COIN bcp library and CLP as the linear programming
solver. The tests have been run on a Linux machine with a 64 bitIntel Xeon 2.67 GHz CPU. The CPLEX
used for the CPLEX test runs is version 12.1 with all default cuts turned on. The edge set constraints have
been implemented in the framework for vehicle routing problems with time windows by Jepsen et al. [12]
provided to us by the authors. On the RC201 - RC204 tests with 20 customers we have tested the effect of
running branch-cut-and-price with the cuts implemented in[18] only, the SR cuts [12] only, both the cuts
from [18] and SR cuts, and without any cuts. In Table 1 the solution times for the four algorithms and for
CPLEX are shown. In about half of the instances, CPLEX is not able to solve the routing problem within the
time limit of 7500 seconds. For all four branch-and-price and branch-cut-and-price algorithms the solution
was found within 500 seconds. We have ranked the results of the four branch-cut-and-price algorithms by
solution times. For the objective value of the optimal solution is given in the column ”objective” and the
number of edge sets payed access to in the optimal solution isgiven in the column ”sets”.

In Table 1 the rank of a solution is stated in parenthesis after the solution time. The average of the ranks
is calculated for each solution algorithm and shown in the last line of Table 1.

It is seen that CPLEX is the fastest for the three RC201 instances, while the branch-cut-and-price
algorithm using both VRPTW cuts implemented in [18] and SR cuts is the fastest for seven instances.
The plain branch-and-price algorithm is fastest for two instances while the remaining branch-cut-and-price
algorithms using only one of the two described cut families are fastest on none of the instances. The ranking
average clearly shows that the branch-cut-and-price algorithm using both the cuts from [18] and SR cuts
has the best average rank. Therefore the branch-cut-and-price algorithm used for the tests in Tables 2, 3
and 4 includes the cuts implemented in [18] and SR cuts.

In Tables 2, 3 and 4 the optimal solution of the ESVRPTW problem is presented together with the
number of edge sets payed for access to and the amount payed for edge set access in the optimal solution.
Moreover a the cost having to pay if the problem was solved notconsidering the edge set and solved as
a VRPTW. Each instance is solved using CPLEX and branch-cut-and-price using the cuts from[18] and
the SR cuts and in Tables 2, 3 and 4 the lower bound at the root node and the number of branching nodes
processed are reported along with the solution time.

Tables 2 and 3 consider test instances withrandom edge sets. In Table 2 and Table 3 it is seen that the
branch-cut-and-price with both the cuts from [18] and SR cuts often has a significantly reduced running
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instance opt sol with set cost opt sol without set cost CPLEX Bcp SR+L

test |R|
total

R∗ route set total
R∗ route set root

nodes
time root

nodes
time

cost cost cost cost cost cost LB (s) LB (s)
rc201 3 7100 3 4904 21967100 3 4904 21966381.68 1874 *1.086483.00 7 9.30
rc201 5 7173 2 5669 15048552 5 4904 36487027.00 1163 *0.146744.00 11 13.75
rc201 8 7685 3 5727 19589908 7 4904 50047549.67 102 *0.41 7254.00 19 28.31
rc202 3 5660 1 4891 7696384 3 4188 21963804.68 - - 5396.00 7 *52.90
rc202 5 5886 2 4382 15047836 5 4188 36484061.77 - - 5599.00 11 *206.10
rc202 8 5915 2 4434 14818471 6 4188 42834561.27 10003 2897.365728.00 9 *128.22
rc203 3 5144 1 4375 7696270 3 4074 21962695.67 - - 5066.00 5 *104.29
rc203 5 5429 1 4643 7867722 5 4074 36483024.38 - - 5133.00 9 *509.70
rc203 8 5821 2 4340 14819874 8 4074 58003591.21 - - 5276.00 25 *870.11
rc204 3 4847 1 4108 7396017 3 3821 21962604.24 - - 4650.00 5 *262.21
rc204 5 - - - - - - - - - - - - - -
rc204 8 - - - - - - - - - - - - - -

Table 2:RC201-RC204 instances with 30 customers,random edge sets. |R| is the number of edge sets, whileR∗ is
the number of selected edge sets in an optimal solution. If the algorithm has not terminated within 7500 seconds it is
indicated with ”-”. The best running time is marked with a ”*”.

instance opt sol with set cost opt sol without set cost CPLEX Bcp SR+L

test |R|
total

R∗ route set total
R∗ route set root

nodes
time root

nodes
time

cost cost cost cost cost cost LB (s) LB (s)
rc201 3 8660 2 6590 2070 9256 3 6116 31408591.99 58 *0.47 8283.00 3 7.73
rc201 5 9431 3 6321 311011340 5 6114 52249284.68 466 *1.14 8930.00 11 62.16
rc201 8 10064 3 7196 286813308 7 6116 71929543.44 1504 *4.859454.00 23 152.61
rc202 3 7805 1 6769 1036 8917 3 5777 31405184.79 - - 7504 9 *226.13
rc202 5 8518 2 6440 207811001 5 5777 52245562.14 - - 7973.00 13 *737.95
rc202 8 8755 2 6771 198414187 8 5777 84105793.10 - - 8257.00 17 *4316.18
rc203 3 7098 1 6062 1036 8375 3 5235 31404057.88 - - 6709.00 5 *430.43
rc203 5 7120 1 6162 958 10459 5 5235 52244259.85 - - 6949.00 5 *1647.74
rc203 8 - - - - - - - - - - - - - -
rc204 3 - - - - - - - - - - - - - -
rc204 5 - - - - - - - - - - - - - -
rc204 8 - - - - - - - - - - - - - -

Table 3:RC201-RC204 instances with 40 customers,random edge sets. |R| is the number of edge sets, whileR∗ is
the number of selected edge sets in an optimal solution. If the algorithm has not terminated within 7500 seconds it is
indicated with ”-”. The best running time is marked with a ”*”.

time. However, for all of the instances based on RC201 CPLEX finds the solutions within seconds and
always much faster than the branch-cut-and-price algorithm. Moreover note that the lower bound at the
root node is often better using CPLEX on the RC201 instances.This may be due to the default CPLEX cuts
such as cover, clique, Gomory fractional, multi commodity flow cuts which can not be used when using
branch-cut-and-price.

In Table 2 there are two instances with 30 customers which cannot be solved within 7500 seconds using
the branch-cut-and-price algorithm. However, more than half of the instances cannot be solved by CPLEX
within the time limit of 7500 seconds. For the RC201 to RC204 instances with 40 customers shown in
Table 3 only the RC201 instances were solved by CPLEX within the time limit, and 9 instances were
not solved by the branch-cut-and-price algorithm within the time limit. Notice, that most of the instances
not solved by CPLEX within the time limit were solved by branch-cut-and-price. More than half of the
instances were solved by branch-cut-and-price in less than300 seconds (5 minutes).

Table 2 and Table 3 show the running time for instances generated from RC201 to RC204 with respec-
tively 30 customers and 40 customers. The running times in Table 2 show that the branch-cut-and-price
for most of the instances runs much faster than CPLEX. The same is true for the running times in Table 3
when only considering instances where at least one of the algorithms terminated within the time limit.

Table 4 contains the test results for instances RC201 to RC204 with spanning tree edge sets. For the
RC201 instances, CPLEX solves the instances within a secondand considerably faster than the branch-
cut-and-price algorithm. For the RC201 to RC204 instances the branch-cut-and-price algorithm solves
the problem faster than CPLEX. The last instance has not beensolved within the time limit by any of the
algorithms. In general the branch-cut-and-pricealgorithm solves considerably more problems to optimality
than CPLEX within the given time limit. This result is in accordance with observations for the VRPTW.

One could also have chosen to solve the problem by brute-force enumerating all subset of the edge setsR,
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instance opt sol with set cost opt sol without set cost CPLEX Bcp SR+L

test |C| |R|
total

R∗ route set total
R∗ route set root

nodes
time root

nodes
time

cost cost cost cost cost cost LB (s) LB (s)
rc201 15 3 2618 1 2386 232 2865 3 2213 6522504.00 42 *0.05 2601.00 7 0.75
rc201 15 5 3153 3 2386 767 3522 5 2213 13093039.00 54 *0.04 3074.00 13 1.98
rc201 15 8 3474 4 2386 10884056 7 2213 18433474.00 0 *0.06 3406.00 13 1.92
rc202 15 3 2478 2 2061 417 2647 3 1995 6521629.34 148540 176.172375.00 7 *5.03
rc202 15 5 2773 2 2480 293 3112 4 1995 11171980.84 37984 33.742675.00 9 *9.13
rc202 15 8 3154 4 2294 860 3312 4 1995 13172199.40 35999 93.062907.00 25 *40.43
rc203 15 3 2400 0 2400 0 2647 3 1995 6521258.05 944763 556.142324.00 9 *5.37
rc203 15 5 2665 1 2369 296 3112 4 1995 11171474.43 131586 268.442519.00 17 *16.88
rc203 15 8 2982 2 2386 606 3312 4 1995 13171742.39 59345 4342.912769.00 27 *151.65
rc204 15 3 2240 0 2240 0 2583 3 1931 6521076.64 - - 2232.00 5 *6.21
rc204 15 5 2526 1 2230 296 3048 4 1931 11171411.57 749482 6698.492444.00 5 *36.80
rc204 15 8 2859 2 2253 606 3508 5 1931 15771694.75 374593 2438.212628.00 27 *402.83
rc201 20 3 3733 2 3446 284 3889 2 3291 5983698.87 11 *0.02 3733.00 0 0.26
rc201 20 5 4302 3 3449 853 4470 4 3291 11794267.16 2 *0.03 4233.00 7 1.34
rc201 20 8 4931 3 3952 979 5094 7 3291 18034865.74 9 *0.05 4858.00 5 2.42
rc202 20 3 3464 1 3180 284 3970 3 3069 9012582.38 38716 107.583439.00 5 *3.88
rc202 20 5 3862 2 3255 607 4563 5 3069 14943069.67 22019 56.453862.00 0 *1.25
rc202 20 8 4635 4 3361 12745402 7 3069 23333575.66 79652 1276.844402.00 13 *163.60
rc203 20 3 3042 0 3042 0 3614 3 2713 9011429.29 - - 3015.00 3 *7.09
rc203 20 5 3366 1 3055 311 4207 5 2713 14941873.09 - - 3237.00 15 *136.39
rc203 20 8 4120 3 3122 998 5341 8 2713 25282562.29 - - 3749.00 43 *2986.15
rc204 20 3 2845 0 2845 0 3475 3 2574 9011292.22 - - 2845.00 0 *6.82
rc204 20 5 3301 1 2990 311 4068 5 2574 14941778.30 - - 3137.00 11 *1160.77
rc204 20 8 3790 2 3149 641 5102 8 2528 25742378.05 - - 3594.00 29 *6469.83
rc201 30 3 5599 1 5183 416 6098 3 4904 11945553.11 22 *0.11 5455.00 5 4.44
rc201 30 5 6204 2 5332 872 6955 5 4904 20515995.16 893 *0.34 5850.00 13 12.57
rc201 30 8 6998 4 5332 16667809 7 4904 29056832.00 813 *0.24 6492.00 19 37.11
rc202 30 3 4832 1 4440 392 5382 3 4188 11942812.14 - - 4715.00 7 *21.95
rc202 30 5 5478 2 4624 858 6239 5 4188 20513412.50 - - 5113.00 19 *99.57
rc202 30 8 6431 5 4779 16527386 8 4188 31984212.98 - - 5756.00 71 *1482.03
rc203 30 3 4418 0 4418 0 5268 3 4074 11941997.00 - - 4418.00 0 *14.01
rc203 30 5 5191 2 4418 773 6125 5 4074 20512571.25 - - 4935.00 17 *374.77
rc203 30 8 5877 3 4574 13037308 8 4074 32343228.88 - - 5383.00 39 *4458.23
rc204 30 3 4292 0 4292 0 5015 3 3821 11941923.95 - - 4292.00 0 *24.82
rc204 30 5 4953 2 4095 858 5872 5 3821 20512461.95 - - 4649.00 25 *5606.51
rc204 30 8 - - - - - - - - - - - - - -

Table 4: RC201-RC204 instances,spanning edge tree edge sets. |R| is the number of edge sets, whileR∗ is the
number of selected edge sets in an optimal solution. If the algorithm has not terminated within 7500 seconds it is
indicated with ”-”. The best running time is marked with a ”*”.

and for each subset to solve the corresponding VRPTW with thebranch-cut-and-price algorithm. There
are2|R| combinations to be considered, and each time the VRPTW algorithm must be run. For|R| = 3 the
VRPTW algorithm must be run8 times, while for|R| = 10 it must be run1024 times. To get an estimate
of the running times, using this approach, we have used the VRPTW algorithm to solve one of the2|R|

combinations and then estimated how long time it would take to run it2|R| times. Since some combinations
of groups may lead to an infeasible problem we consider the combination where all sets are selected.

For the instance RC201 with 30 customers it took 0.5 seconds to solve the problem for one combination
of the edge sets. A rough estimate indicates that it will takearound 4 seconds for|R| = 3, and around 128
seconds for|R| = 8. This indicates that for a small number of subsets it is faster to solve the a VRPTW
for each combination of edge sets, while for a large number ofsubsets it is better to solve the ESVRPTW.

We also tested the instance RC203 with 30 customers. In this case it took 3.6 seconds to solve one
combination of edge sets. A rough estimate indicates that itwould take around 29 seconds to solve the
problem for|R| = 3, and around 922 seconds to solve the problem for|R| = 8.

We expect that the more groups are present in the problem the more advantageous it is to solve the
ESVRPTW. The implemented branch-cut-and-price branches on the group variables first and thereby can
eliminate combinations of groups using upper bounds provided by other combinations. This synergy is not
achieved when running the combinations individually.

9 Conclusion

The vehicle routing problem with time windows and fixed costsfor accessing an edge set (ESVRPTW) has
been presented in this paper. To the best of our knowledge, itis the first time this type of problem has been
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investigated. A mathematical model has been presented for the ESVRPTW. We have applied the branch-
cut-and-price method to the problem and shown that including the SR cuts and the cuts implemented in
Lysgaard [18] for the VRPTW and CVRP improves the solution times for this problem. Many related
routing problems may with advantage be implemented this wayusing the extensive research available
for the CVRP and the VRPTW. These problems are often solved using heuristic methods. Although the
heuristic solution methods are very useful and relevant in real life applications it is also important for the
evaluation of the heuristics to have access to some optimal solutions.

On a more general level the paper has opened the door to considering VRPTW problems completely
differently than in previous literature. Previous papers on VRPTW assume that the shortest path between
two destinations is well-defined and unique, making it possible to abstract from the underlying graph.
However, this assumption seldom holds in practice, and the here presented model is only one example of
such models. One could also imagine problems where multipleedges (roads) are present between each pair
of nodes, having different cost and time. For instance, driving along a freeway imposes a higher cost but
shorter travel time in comparison to using a highway. In our future work, we will look deeper into these
variants of VRPTW.
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