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Abstract

The presence of generalist predators is known to have important ecological impacts in several fields.

They have wide applicability in the field of biological control. However, their role in the spatial

distribution of predator and prey populations is still not clear. In this paper, the spatial dynamics of a

predator-prey system is investigated by considering two different types of generalist predators. In one

case, it is considered that the predator population has an additional food source and can survive in

the absence of the prey population. In the other case, the predator population is involved in intraguild

predation, i.e., the source of the additional food of the predator coincides with the food source of the

prey population and thus both prey and predator populations compete for the same resource. The

conditions for linear stability and Turing instability are analyzed for both the cases. In the presence of

generalist predators, the system shows different pattern formations and spatiotemporal chaos which has

important implications for ecosystem functioning not only in terms of their predictability, but also in

influencing species persistence and ecosystem stability in response to abrupt environmental changes.

This study establishes the importance of the consideration of spatial dynamics while determining

optimal strategies for biological control through generalist predators.

Keywords: Generalist predator, additional food, intraguild predation, Turing instability, pattern

formation, biological control

1. Introduction1

Predator-prey interactions are determinants of the composition and distribution of species in a2

community. These interactions mainly depend on the type of predators and their activities. Generalist3
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predators, that utilize a possibly wide variety of food sources, play a crucial role in determining the4

dynamics of such communities. For example, raccoons (a medium-sized mammal native to North5

America) are an important part of our ecosystem as they feed on insects, small mammals and birds,6

eggs, and plant foods. For the last couple of decades, generalist predators have received considerable7

attention in the context of invasion ecology and pest control, which are important for sustainable and8

integrated pest-management strategies (Rosenheim et al., 1995; Symondson et al., 2002; Magal et al.,9

2008; Crowder and Snyder, 2010). Generalist predators affect pest populations in various ways. The10

ability of generalist predators to ingest new invasive pests can have drastic effects on the local pest11

populations. For example, the control of the local tomato pest Bemisia tabaci populations enhances12

by the generalist predator Macrolophus pygmaeus in the presence of invasive alien pest Tuta absoluta13

(Jaworski et al., 2013). However, predator-prey interactions generally occur over a wide range of spatial14

and temporal scales and the spatial components of ecological interactions play an important role in15

shaping ecological communities. In this respect, spatial patterns are ubiquitous in nature and often16

change the temporal dynamics of the system (Malchow et al., 2008; Seurout, 2009; Chakraborty et al.,17

2015). But, till now, very less attention has been paid to investigate the role of generalist predators18

under the influence of heterogeneous environments.19

In the past, several researchers used mathematical models to investigate the role of generalist preda-20

tors on ecological dynamics. Most of them modeled generalist predators simply by using a sigmoidal21

Holling type III response (which reflects prey switching at low prey concentrations) without considering22

another food source (Rosenzweig, 1971; Steele and Henderson, 1992; Hesaaraki and Moghadas, 2001;23

Xu et al., 2004; Kar and Matsuda, 2007; Morozov and Petrovskii, 2009; Chakraborty and Feudel,24

2014). However, this is inconsistent with the fact that generalist predators can survive in the ab-25

sence of focal prey. Only a few studies investigated the role of generalist predators in the presence26

of additional food source in predator-prey systems. Spencer and Collie (1995) and Chakraborty and27

Chattopadhyay (2008) considered a linear growth term to represent the growth of a predator due to28

the additional food source apart from the growth due to focal prey species. van Baalen et al. (2001)29

examined the switching between a focal prey and alternative food source by considering the alternative30

food density as constant. van Leeuwen et al. (2007) discussed the validation of different functional31
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responses for generalist predators and found that generalist predators can have both stabilizing and32

destabilizing effects on the system dynamics. Similar to Spencer and Collie (1995), Magal et al. (2008)33

also considered additional food for a generalist predator, but Holling type II functional response for34

the uptake of focal prey rather than a sigmoidal functional response. Recently, Erbach et al. (2013)35

modeled a generalist predator by density-dependent birth rate of the predator and a linear death rate.36

Moreover, there are also few studies where generalist predators are modeled in the presence of spatial37

heterogeneity. Some of them did not consider an extra food source for the generalist predator (Rosen-38

zwig, 1973; Segel and Levin, 1976) whereas others did not investigate different pattern formations due39

to the presence of generalist predators (Magal et al., 2008; Kumari, 2013). In the present paper, I40

investigate how a generalist predator affects the spatial distribution of the populations and results in41

different pattern formations.42

Here, a two-dimensional reaction-diffusion predator-prey system is considered where the predator43

is a generalist predator and has additional food source apart from the focal prey population. The main44

focus of the paper is to investigate how the presence of a generalist predator affects the spatial distri-45

bution of the predator and prey populations. The dynamics with linear as well as density-dependent46

birth rate of the predator as considered in Spencer and Collie (1995) and Erbach et al. (2013), respec-47

tively, is investigated. Furthermore, the situation when the additional food source coincides with the48

food source of the focal prey is also examined. This kind of predation is known as intraguild predation49

(also mixotrophy), a special case of generalist predation (Gagnon et al., 2011; Kang and Wedekin,50

2013). In this case, the predator is involved in competition for the common resources with the prey in51

addition to predate on them. For example, the scorpion Paruroctonus mesaenis eats smaller arachnid52

and insect predators together with the prey of these predators (Polis and McCormick, 1987). Several53

other examples of intraguild predation from natural communities can be found in Polis et al. (1989).54

The rest of the article is organized as follows: Section 2 deals with the model considering linear55

and density dependent birth rate of the predator due to the additional food source. Specifically, the56

model with linear birth rate of the predator due to the additional food and diffusion is presented in57

Section 2.1. Section 2.2 and 2.3 consist of the linear stability analysis of the model without diffusion58

and Turing instability conditions of the model with diffusion, respectively. In Section 2.4, different59
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dynamics of the system are examined numerically and different types of pattern formation are shown60

in subsection 2.5 and 2.6. In subsection 2.7, a system with density-dependent birth rate of the predator61

is stated and the results are compared with the results from the previous section. A model with an62

intraguild predator is presented and analyzed in Section 3. Finally, the paper ends with a discussion.63

2. A predator-prey model with a generalist predator64

2.1. Basic model structure65

Here, a reaction-diffusion system with a prey and a generalist predator in the presence of additional66

food for the predator is considered in the following form:67

∂n

∂t
= r1n

(
1− n

K

)
− gnp

h+ n
+D1

(
∂2n

∂x2
+
∂2n

∂y2

)
,

∂p

∂t
= r2p+

egnp

h+ n
−mH(p)p+D2

(
∂2p

∂x2
+
∂2p

∂y2

)
, (1)

where n(x, y, t) and p(x, y, t) denote the densities of the prey and the predator, respectively, at location68

(x, y) ∈ <2 and time t ≥ 0, r1 and K are the intrinsic growth rate and carrying capacity of the prey69

population, respectively, g is the prey capturing rate by the predator, h is the corresponding handling70

time, e is the efficiency of converting prey into predator biomass (e < 1), r2 is the growth rate of the71

predator due to the additional food source, D1 and D2 are diffusion coefficients of prey and predator,72

respectively, mH(p) is the death rate of the predator. Concerning the form of H(p), several functions73

are used in literature with various ecological interpretations (Steele and Henderson, 1992). However, in74

the present work, to take into account the predation of higher-order predators on the generalist predator75

that is not explicitly included in the model, a quadratic closure term is chosen, i.e., H(p) = p. This76

form of H(p) assumes that the higher predator population changes in proportion with the generalist77

predator (Steele and Henderson, 1981).78

Let, Ω be the two-dimensional bounded connected square domain with ∂Ω as boundary, and ∂
∂η be79

the outward drawn normal derivative on the boundary. In Ω, the following initial conditions are taken80

for system (1)81

n(0, x, y) = n0(x, y) > 0, p(0, x, y) = p0(x, y) > 0, ∀ (x, y) ∈ Ω82

and the zero-flux boundary conditions are chosen as83
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∂n
∂η |(x,y) = ∂p

∂η |(x,y) = 0, where (x, y) ∈ ∂Ω.84

It is to be noted here that the general model structure of system (1) is similar with the model of85

Magal et al. (2008) where a host-parasitoid model was considered to search for the conditions to86

restrict the growth of the host population. However, the motivation of the present work is completely87

different; here different pattern formations in a predator-prey system are investigated depending on88

the additional food source. In the following, the conditions for local asymptotic stability and Turing89

instability will be derived.90

2.2. Linear stability analysis91

To study Turing instability, first we need to analyze the stability criteria of the non-diffusive version92

of system (1). The corresponding non-diffusive model is93

dn

dt
= r1n

(
1− n

K

)
− gnp

h+ n
,

dp

dt
= r2p+

egnp

h+ n
−mp2. (2)

System (2) possesses four different equilibrium points: (i) the population free equilibrium E0 = (0, 0),94

(ii) the predator free equilibrium E1 = (K, 0), (iii) the prey free equilibrium E2 = (0, r2m ), and (iv) the95

interior equilibrium E∗(n∗, p∗) with p∗ = r1
g (1− n∗

K )(h+ n∗), and n∗ is a positive root of the equation96

n3 + an2 + bn+ c = 0,97

where98

a = 2h−K, b = gK
r1m

+ h2 − 2hK, c = hK( r2gr1m
− h).99

It is clear that the equilibrium points E0, E1 and E2 always exist. Let us denote100

α = a2 − b and β = 2a2 − 3ab+ c.101

Then the existence conditions of the interior equilibrium are obtained by using the criteria given by102

Murray (1989) as:103

(i) If α > 0 and either β = 0 or |β| ≤ 2α
2
3 , there is a possibility of the existence of zero, one, two104

or three non-trivial equilibria. It is to be mentioned here that this is a necessary but not sufficient105

condition to obtain three non-trivial equilibria.106
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(ii) If α > 0 and |β| > 2α
2
3 or α ≤ 0, we have at most one non-trivial equilibrium.107

From the biological point of view (regarding pattern formation), the most interesting thing would be108

to study the stability of the interior equilibrium point E∗. The Jacobian matrix corresponding to E∗109

can be written as:110

J =

 a11 a12

a21 a22

 ,111

where a11 = − r1n∗
K + gn∗p∗

(h+n∗)2 , a12 = − gn∗
h+n∗

, a21 = eghp∗
(h+n∗)2 , a22 = −mp∗.112

The corresponding characteristic equation of J is113

λ2 +Aλ+B = 0,114

where115

A = −(a11 + a22) = r1n∗
K +mp∗ − gn∗p∗

(h+n∗)2 ,116

B = a11a22 − a12a21 = mp∗

(
r1n∗
K − gn∗p∗

(h+n∗)2

)
+ eg2hn∗p∗

(h+n∗)3 .117

Here A and B are the trace and determinant of J , respectively. Our main interest is to investigate118

the Turing instability of the system where the uniform steady state of the system without diffusion is119

stable, but it is unstable in the partial differential equations with diffusion terms. Now, the condition120

for the uniform steady state to be stable for the corresponding ordinary differential equation (2) is121

given by122

A > 0 and B > 0.123

2.3. Turing instability124

Here, the condition for Turing instability of the spatially positive steady state E∗ of system (1)125

will be investigated. Although, the Turing instability criterion is obtained following the standard126

analysis (Murray, 2003; Edelstein-Keshet, 1988; Okubo and Levin, 2001; Segel and Jackson, 1972), it127

is included here for the completeness of the text. To study this, let us consider the linearized form of128

system (1) about E∗(n∗, p∗) as follows:129

∂n1

∂t
= a11n1 + a12p1 +D1

(
∂2n1

∂x2
+
∂2n1

∂y2

)
,

∂p1

∂t
= a21n1 + a22p1 +D2

(
∂2p1

∂x2
+ +

∂2p1

∂y2

)
, (3)
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where, n = n∗ + n1, p = p∗ + p1. Here, (n1, p1) are small perturbations of (n, p) about the interior130

equilibrium point E∗(n∗, p∗). Now consider the solution of system (3) in the form131  n1

p1

 =

 Nk

Pk

 eλ1t+i(κxx+κyy)
132

where λ1 is the growth rate of perturbation in time t, κx and κy represent the wave numbers of the133

solution. The Jacobian matrix of the linearized system can be written as:134

J̃ =

 a11 −D1(κ2
x + κ2

y) a12

a21 a22 −D2(κ2
x + κ2

y)

 .135

In the spatial model, the value of λ1 depends on the sum of the square of wave numbers κ2
x + κ2

y136

(Baurmann et al., 2004). As a result, both wave numbers affect the eigenvalues. This makes clear137

that some Fourier modes will vanish in the long-term limit whereas others will amplify. For the sake138

of simplicity, we can make use of λ1 being rotational symmetric function on the (κx, κy)-plane and139

substitute κ2 = κ2
x + κ2

y and obtain the results for the two-dimensional case from the one-dimensional140

formulation. Thus, the corresponding characteristic equation of system (1) is given by141

λ2
1 + Ãλ1 + B̃ = 0, (4)

where142

Ã = A+ κ2(D1 +D2),143

B̃ = B − (a11D2 + a22D1)κ2 +D1D2κ
4.144

Using the Routh-Hurwitz criterion, it appears that the equilibrium point E∗ is locally asymptotically145

stable in the presence of diffusion iff Ã > 0 and B̃ > 0. Clearly, A > 0 implies Ã > 0. Therefore,146

diffusive instability occurs only in the case when B > 0, but B̃ < 0. Hence, the condition for diffusive147

instability is given by148

H(κ2) = D1D2κ
4 − (a11D2 + a22D1)κ2 +B < 0. (5)

This shows that diffusion can induce the loss of stability with respect to perturbations of certain wave149

numbers. Here, H is a quadratic function of κ2 and the graph of H(κ2) = 0 is a parabola. Let, the150

minimum of H(κ2) = 0 is reached at κ2 = κ2
c , where κ2

c is given by151
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κ2
c = (a11D2 + a22D1)/2D1D2.152

Therefore, with the above value of κ2
c , the condition for diffusive instability given in Eq. (5) can be153

written as154

(a11D2 + a22D1)2 > 4D1D2B.155

In explicit form, the condition becomes156 {
mp∗D1 +

(
r1n∗
K
− gn∗p∗

(h+ n∗)2

)
D2

}2

> 4D1D2

{
mp∗

(
r1n∗
K
− gn∗p∗

(h+ n∗)2

)
+
eg2hn∗p∗
(h+ n∗)3

}
. (6)

Since it is not prominent from analytic conditions how the local asymptotic stability and the Turing157

instability depend on r2, further investigation in the form of numerical simulation is carried out in the158

following.159

2.4. Numerical simulation160

In this section, numerically it is examined how a generalist predator influences the system dynamics161

depending on the availability of the additional food source. Specifically, the growth rate of the predator162

due to the additional food, r2, is varied and observe the changes in the dynamics of the system where163

the other parameter values are fixed at r1 = 2, K = 10, g = 2, h = 5, e = 0.25, m = 0.016. The164

bifurcation results are obtained by using the software XPPAUT and plotted in MATLAB, whereas the165

other figures are drawn by writing code in MATLAB.166

First, the existence of equilibria (marked with filled black circles) and their stability are observed167

in the phase plane starting at (n, p) = (2, 4) (marked with open black circles) for different r2. In168

Figure 1(a), n and p-nullclines, marked by the dashed blue and green lines, respectively, are plotted at169

r2 = 0. There exist three different equilibria: (i) E0 = (0, 0), E1 = (10, 0) (not shown in the figure) and170

E∗ = (1.05, 5.41). Here, the eigenvalues of E0 are 0 and 2, and therefore it is unstable. The eigenvalues171

of E1 are −2 and 0.33, and therefore it is an unstable saddle. The eigenvalues of E∗ are 0.007±0.3456i,172

and therefore it is an unstable focus surrounded by a limit cycle. The trajectory approaching the limit173

cycle is shown by the red line. Figure 1(b) is drawn at r2 = 0.05 having four different equilibria: (i)174

E0 = (0, 0), E1 = (10, 0) (not shown in the figure), E2 = (0, 3.12) and E∗ = (0.35, 5.16). Here, the175

eigenvalues of E0 are 2 and 0.05, and therefore it is an unstable node. The eigenvalues of E1 are −2176

and 0.3833, and therefore it is an unstable saddle. The eigenvalues of E2 are 0.75 and −0.05, and177
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Figure 1: Phase plane of the model system (2) at different values of r2: (a) r2 = 0, (b) r2 = 0.05 and (c) r2 = 0.1. Blue

and green dashed lines are the n and p-nullclines, respectively. Different equilibria are marked by the filled black circles.

Red lines are the corresponding trajectories starting at (n, p) = (2, 4), marked with open black circles. Parameter values

used: r1 = 2, K = 10, g = 2, h = 5, e = 0.25, m = 0.016. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Figure 2: Two-dimensional bifurcation plot of model system (1) in r2 −m plane which divides the r2 −m parametric

space into different regions; RE (blue): stable E2; RS (white): stable E∗; RO (red): oscillating E∗; and RT (green):

Turing instability. Here TH and TB are Turing-Hopf and Takens-Bogdanov bifurcations, respectively. The upper part

of RO starting from the dashed-dot line is corresponding to the Turing-Hopf domain. Along the lines L1, L2 and L3,

Figs. 3 (a), -(c) are drawn, respectively. Parameter values used D1 = 0.01 and D2 = 0.6 and the other parameter values

are same as in Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

therefore it is also an unstable saddle. The eigenvalues of E∗ are −0.0132 ± 0.2324i, and therefore178

it is a stable focus and the corresponding trajectory reaching towards E∗ is shown by the red line.179

Next, Figure 1(c) is drawn at r2 = 0.1. In this case, E∗ does not exist. The other equilibria are: (i)180

E0 = (0, 0), E1 = (10, 0) (not shown in the figure), and E2 = (0, 6.25). The eigenvalues of E0 are 2181

and 0.1, and therefore it is an unstable node. The eigenvalues of E1 are −2 and 0.43, and therefore it182

is an unstable saddle. The eigenvalues of E2 are −0.5 and −0.1, and therefore it is a stable node and183

the corresponding trajectory reaching E2 is shown by the red line.184

To get a clearer view on how the presence of additional food source influences different dynamical185

behavior of the system, a two-parameter bifurcation diagram is drawn by varying the growth rate of186

the predator (r2) due to the additional food and the mortality of the predator (m) (Figure 2). There187

are four different dynamical behaviors of the system marked by different regions RE , RS , RO, and188

RT . In region RE (marked by the blue color), E2 is locally asymptotically stable (LAS), i.e., in this189

parametric region prey population becomes extinct due to high predation pressure and the predator190
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population survives solely on the additional food source. Region RS (marked by the white color) is191

corresponding to the stable E∗, i.e., both the populations stably coexist in this parametric region. In192

region RO (marked by the red color), E∗ becomes unstable, and both the populations coexist with193

fluctuating densities. Region RT (marked by the green color) is the Turing space, i.e., in this region,194

E∗ remains stable for the system without diffusion, but becomes unstable in the presence of diffusion.195

As a result, different stationary spatially inhomogeneous patterns of predator and prey populations196

emerge within this region. The existence of two codimension-2 bifurcations are also observed, where197

the bifurcation curves interact. The first one is the Takens-Bogdanov bifurcation (TB) where the198

Hopf bifurcation and transcritical bifurcation meet. The other one is Turing-Hopf bifurcation (TH)199

where the Turing bifurcation and Hopf bifurcation meet. The backward extended lower boundary of200

the Turing space, marked by the dash-dot line, divides the region RO into two parts. The upper part201

of this region is the Turing-Hopf domain where the inhomogeneous stationary patterns caused by the202

Turing instability interacts with the oscillations due to the Hopf bifurcation. Clearly, at lower rates203

of predator mortality, the presence of additional food to the predator helps in the stabilization of the204

system, whereas very high growth due to additional food results in prey extinction. On the other205

hand, when the mortality rate is comparatively high, the presence of additional food can make the206

distribution of the prey and predator inhomogeneous in space.207

To get an overview of how prey abundance changes with r2, three one-dimensional bifurcation208

diagrams are plotted (Figure 3) by varying r2 continuously at (a) m = 0.01, (b) m = 0.017, and209

(c) m = 0.025, which are drawn along the lines L1, L2 and L3, respectively, as indicated in Figure210

2. Specifically, the steady-state values of the abundances of the prey population are plotted with211

r2. The black and red (dashed) lines indicate that the interior steady state is stable and unstable,212

respectively. The magenta (dashed) lines indicate that the steady state corresponding to the extinction213

of prey is stable. Additionally, the green lines represent the maximum and minimum abundances of214

the populations for the stable limit cycle. Color coding of the ranges of r2 is same as in Figure 2. From215

Figure 3(a) it is clear that the prey population shows high fluctuation at low values of r2. However, an216

increase in r2 stabilizes system dynamics and finally prey population goes extinct from the system. In217

this case Turing instability does not occur. Figure 3(b) shows a similar kind of behavior except for the218
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Figure 3: One-dimensional bifurcation diagrams to show how prey abundances change with r2 at (a) m = 0.01, (b)

m = 0.017 and (c) m = 0.025. They are drawn along the lines L1, L2 and L3, respectively, of Fig. 2. Color coding

represents similar regions as that of Fig. 2. The black and red (dashed) lines indicate that E∗ is stable and unstable,

respectively. The magenta (dashed) line is corresponding to stable E2. The green lines represent the maximum and

minimum abundances of the populations for the stable limit cycle. The other parameter values are same as in Fig.

2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

12



0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

κ
2

H
(κ

2
)

(a)r
2
=0

r
2
=0.02

r
2
=0.03

r
2
=0.04

r
2
=0.05

0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

κ
2

R
e
(λ

1
)

0 5 10
−0.01

0

0.01

κ
2

R
e
(λ

1
)

(b)

r
2
=0

r
2
=0.05

Figure 4: (a) The graph of the function H(κ2) at r2 = 0 (blue), 0.02 (magenta), 0.03 (cyan), 0.04 (green) and 0.05 (red).

The other parameter values are same as in Fig. 3(c). An increase in the value of r2 increases the possibility of diffusive

instability by increasing the interval of negativity of H(κ2). (b) Dispersion relation plotting the largest real part of the

eigenvalues at different r2; r2 = 0 (blue) and r2 = 0.05 (red). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

range of r2 just after the Hopf bifurcation where Turing instability occurs. For comparatively higher219

values of m, Figure 3(c) shows the non-existence of oscillating and prey-extinction regions. However,220

the range of r2 for Turing instability is much larger compared to the previous case. In this case, the221

conditions of Turing instability obtained analytically (Eq. (5)) are also checked by plotting H(κ2)222

for different values of r2. Turing instability condition min(H(κ2)) < 0 is satisfied within the range223

r2 ∈ (0.28, 0.9). In Figure 4(a), the curve H(k2) = 0 is plotted for r2 = 0 (blue), 0.02 (magenta),224

0.03 (cyan), 0.04 (green) and 0.05 (red). The largest real parts of the eigenvalues of the characteristic225

equation (4) of system (1) are also drawn (Figure 4(b)) for r2 = 0 (blue) and r2 = 0.05 (red). The226

length of the interval of κ2 within which the largest real part of the eigenvalues are positive provides227

the existence of diffusive instability.228

In the following, different pattern formations are investigated at different values of r2.229

2.5. Pattern formation230

Here, extensive numerical simulations of the spatial model system (1) are performed in two dimen-231

sional space using the forward finite difference method, and the results of different pattern formations232

due to the variation of r2 are shown.233
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To analyze the dynamic behavior of system (1), the stationary distributions of the prey population234

are plotted in two-dimensional spaces. Here, the system is studied on a squared spatial grid of 50× 50235

points with the Neumann boundary conditions and run the simulation up to the time t = 5000 for236

different values of r2. The space step is taken as 0.2, and the time step as 0.005. It is assumed that the237

prey and predator populations are spread over the whole domain at the beginning of the simulation. We238

know that the choice of the initial distribution of the populations greatly affects the spatial dynamics239

of a system. If the initial spatial distributions of the prey and predator are homogeneous, then the240

species distribution remains homogeneous forever, which is not so interesting (Petrovskii and Malchow,241

1999). Apart from that, from a biological point of view, it is reasonable to consider a scattered non-242

uniform initial distribution of populations over the space under consideration. Here, such scattered243

initial distribution has been employed by considering a random sampling of the prey and predator244

populations around the equilibrium values of the corresponding non-spatial model. It is assured that245

the time at which simulations are stopped is sufficient for the patterns to attain the stationary state246

and they do not change further with time.247

Figure 5 plots the stationary distribution of prey over the spatial domain for four different values248

of r2 (r2 = 0.032, 0.037, 0.045, 0.08) keeping m fixed at 0.025. Specifically, r2 is varied along the line L3249

in Figure 2 in such a way that r2 lies within the Turing domain. It is to be mentioned here that, the250

distribution of the prey and predator remains homogeneous in space in the absence of additional food251

(r2 = 0) (the figure is not shown). Clearly, as r2 increases, different types of dynamics emerge and252

it is observed that the distributions of prey and predator are always of the same type. Consequently,253

it is enough to show only the distributions of the prey for different r2. At r2 = 0.032, a cold spot254

pattern is observed. As we increase r2, at r2 = 0.037, the stripe pattern dominates the space. Again,255

at r2 = 0.045, a mixture of hot spot and stripe patterns can be found, although hot spots dominate in256

this case. Finally, at r2 = 0.08, we see stable hot spots with high prey densities in isolated zones.257

2.6. Spatiotemporal chaos258

Next, the spatial pattern formations of system (1) are examined by considering the parameters lying259

outside the Turing domain and inside the Hopf domain. Following the insightful work of Medvinsky260

et al. (2002), Wang et al. (2010), and Upadhyay et al. (2010), three different initial distributions are261
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Figure 5: Stationary pattern formations of prey population over space at different values of r2; r2 = 0.032: cold spots;

r2 = 0.037: stripes; r2 = 0.045: mixture of stripes and hot spots; r2 = 0.08: hot spots. Parameter values used

m = 0.025, D1 = 0.01, D2 = 0.6 and the other parameter values are same as in Fig. 2.
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Figure 6: Formation of spiral pattern and its destruction for prey population at t = 0, 400, 800, and 3000. The parameter

values used m = 0.01, r2 = 0.01, D1 = 0.1, D2 = 0.2 and the other parameters are same as in Fig. 2 and the initial

distribution is given in Eq. (7).
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Figure 7: (a) Plot of spatial average values of prey population against time with parameter values same as in Fig. 6

showing chaotic oscillation. (b) Time evolution of prey population at the spatial location (25, 25).
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chosen to investigate the evolutionary process of the prey population in pattern formation. In this262

case, the system is studied on a squared spatial grid of 200× 200 points and the parameters used are263

r2 = 0.01, m = 0.01, D1 = 0.1, and D2 = 0.2, whereas the other parameters are same as in Fig. 5.264

In the first case, the initial distribution of the populations is chosen as265

n(x, y, 0) = n∗ − ε1(x− 100),

p(x, y, 0) = p∗ − ε2(y − 100), (7)

with ε1 = 2 × 10−3 and ε2 = 3 × 10−3. Snapshots of the spatial distributions are shown in Figure 6266

for t = 0, 400, 800, and 3000. Clearly, the formation of the irregular patchy structure can be preceded267

by the evolution of a regular spiral pattern. Here, the occurrence of the spiral is not due to the268

initial conditions. The center of the spiral is situated at the critical point (x∗, y∗) = (100, 100) with269

n(x∗, y∗) = n∗, v(x∗, y∗) = p∗. After the formation of the spiral, it grows upto a certain time, following270

the destruction of the spiral by making an irregular patchy pattern all over the domain.271

Here, the distribution of the prey population does not converge to any stationary state. The spatial272

average of the prey population with time is plotted in Figure 7(a) which shows chaotic oscillation. The273

prey abundance at the spatial position (25, 25) is also plotted with respect to time in Figure 7(b) which274

also shows an irregular oscillation with time.275

In the second case, a different set of initial distribution of the populations is chosen as276

n(x, y, 0) = n∗ − ε1(x− 40)(x− 160)− ε2(y − 60)(y − 140),

p(x, y, 0) = p∗ − ε3(x− 90)− ε4(y − 100), (8)

with ε1 = 3 × 10−6, ε2 = 8 × 10−6, ε3 = 3 × 10−4, and ε4 = 6 × 10−4. Snapshots of the spatial277

distribution are shown in Figure 8 for t = 0, 600, 900, and 3000. Here, the initial distribution contains278

two critical points, which are (40, 140) and (160, 60). As a result, two spirals emerge with centers279

situated at the above mentioned points. In this case also the spiral pattern is destroyed and an280

irregular patchy pattern is formed all over the domain.281

Finally, another set of initial distribution of the populations is considered as mentioned in the282

following283

n(x, y, 0) = n∗ − ε1(x− 40)(x− 160),
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Figure 8: Formation of spiral pattern and its destruction for prey population at t = 0, 600, 900, and 3000 with parameter

values same as in Fig. 6. The initial distribution is given in Eq. (8).
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Figure 9: Formation of spiral pattern and its destruction for prey population at t = 0, 400, 800, and 3000 with parameter

values same as in Fig. 6. The initial distribution is given in Eq. (9).
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p(x, y, 0) = p∗ − ε2(y − 40)(y − 160), (9)

with ε1 = 2× 10−5 and ε2 = 3× 10−5. Snapshots of the spatial distribution are shown in Figure 9 for284

t = 0, 400, 800, and 3000. Here, the occurrence of four spirals is observed, which are finally destroyed285

and makes the spatial domain patchy.286

2.7. Density dependent birth rate for the generalist predator287

The behavior of system (1) is also checked by considering a density dependent birth rate of the288

generalist predator due to the additional food source (Erbach et al., 2013) in the form r2p
h1+p where h1289

represents the half saturating constant for the growth of the predator due to the additional food source.290

In the absence of focal prey, the reproduction term of the predator population looks like Beverton-Holt291

function.292

The behavior of the new system is checked at h1 = 1. It is observed that the new system shows293

qualitatively similar spatial behavior as system (1). Only the difference is that the region of oscillation,294

RO (comparing with Figure 2) is relatively bigger and the prey extinction occurs at larger values of295

r2.296

3. Model with intraguild predation297

In this section, a particular type of generalist predator is considered, called intraguild predator.298

In the case of intraguild predation, the additional food source of the predator coincides with the food299

source of the prey (Gagnon et al., 2011; Kang and Wedekin, 2013). System (1) can be modified in the300

presence of intraguild predation as:301

∂n

∂t
= r1n

(
1− n+ εp

K

)
− gnp

h+ n
+D1

(
∂2n

∂x2
+
∂2n

∂y2

)
,

∂p

∂t
= r2εp

(
1− n+ εp

K

)
+
egnp

h+ n
−mp2 +D2

(
∂2p

∂x2
+
∂2p

∂y2

)
, (10)

where ε is the fraction of the predator population involved in intraguild predation. Clearly, ε = 0302

represents the situation where p is not an intraguild (generalist) predator.303

It is to be noted here that the intraguild predators share the same food as that of the prey population304

and as a result, they are involved in competition with the prey population for the common food source305

in addition to predate on them. A special kind of intraguild predation is known as mixotrophy where306
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mixotrophs use a mix of different sources of energy and carbon, and because of that they compete with307

their prey organisms. Our mathematical form of intraguild predation is similar with the form used308

by Hammer and Pitchford (2005) where mixotrophy was explained in a phytoplankton-zooplankton309

system.310

In the absence of diffusion, system (10) possesses four different equilibrium points: (i) the popu-311

lation free equilibrium Ē0 = (0, 0), (ii) the predator free equilibrium Ē1 = (K, 0), (iii) the prey free312

equilibrium Ē2 = (0, r2εm ), and (iv) the interior equilibrium Ē∗(n̄∗, p̄∗) which can be obtained by solving313

the equations314

r1

(
1− n+ εp

K

)
− gp

h+ n
= 0,

r2ε

(
1− n+ εp

K

)
+

egn

h+ n
−mp = 0.

Here, the condition for LAS of the non-diffusive version of system (10) is315

A1 > 0 and B1 > 0,316

where317

A1 = −(a11 + a22) = r1n̄∗
K +mp̄∗ − gn̄∗p̄∗

(h+n̄∗)2 + r2ε
2p̄∗
K , and318

B1 = a11a22 − a12a21 = (mp̄∗ + r2ε
2p̄∗
K )

(
r1n̄∗
K − gn̄∗p̄∗

(h+n̄∗)2

)
+
(
r1εn̄∗
K + gn̄∗

(h+n̄∗)

)(
− r2εp̄∗K + eghp̄∗

(h+n̄∗)2

)
.319

Here, A1 and B1 are the trace and determinant of the corresponding Jacobian, respectively. The320

condition for diffusive instability is given by321

H1(κ2) = D1D2κ
4 −

(
(mp̄∗ +

r2ε
2p̄∗
K

)D1 +

(
r1n̄∗
K
− gn̄∗p̄∗

(h+ n̄∗)2

)
D2

)
κ2 +B1 < 0. (11)

Following the same method as previous, it is possible to write down the explicit form of the condition322

for diffusive instability as323

{
(mp̄∗ +

r2ε
2p̄∗
K

)D1 +

(
r1n̄∗
K
− gn̄∗p̄∗

(h+ n̄∗)2

)
D2

}2

>

4D1D2

{
(mp̄∗ +

r2ε
2p̄∗
K

)

(
r1n̄∗
K
− gn̄∗p̄∗

(h+ n̄∗)2

)
+

(
r1εn̄∗
K

+
gn̄∗

(h+ n̄∗)

)(
−r2εp̄∗

K
+

eghp̄∗
(h+ n̄∗)2

)}
. (12)

First, the condition of Turing instability obtained analytically in Eq. (11) is checked by plotting324

H1(κ2) for different values of ε. In Figure 10 (top), the curve H1(k2) = 0 is plotted for ε = 0 (blue),325

0.01 (magenta), 0.02 (cyan), 0.03 (green) and 0.04 (red). Clearly, the Turing instability condition326
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Figure 10: (Top) The graph of the function H1(κ2) for system (10) at ε = 0 (blue), 0.01 (magenta), 0.02 (cyan),

0.03 (green) and 0.04 (red). (Bottom) Stationary pattern formations of prey population over space at ε = 0.07. The

parameter values used r1 = 0.8, D1 = 0.001, D2 = 0.1 and the other parameter values are same as in Fig. 4. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

min(H1(κ2)) < 0 is satisfied for higher values of ε which results in Turing pattern formation. Next,327

a numerical example of Turing pattern formation is shown. Figure 10 (bottom) is drawn at ε = 0.07328

which clearly shows stationary pattern formation by the prey population in the presence of intraguild329

predator.330

4. Discussion331

Predator-prey interactions affect species composition and community dynamics. The complexity332

in a community depends on the type of predation, which differs for different predators. Generalist333

predators increase such complexity by feeding on a variety of prey items. In the present work, the334
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influences of two different types of generalist predators are investigated: (i) the predator is having335

an additional food source apart from the focal prey, and (ii) the predator is an intraguild predator336

where the additional food source coincides with the food of the prey, which results in a competition337

between the prey and the predator for the common food. Here, a separate growth term for the338

generalist predator is considered to represent its growth due to the additional food sources. The339

non-spatial version of the model shows stabilizing effect of generalist predators on system dynamics.340

However, the most interesting result occurs after considering diffusion in the model system in order to341

investigate the role of the generalist predator in the presence of spatial movements of both predator342

and prey populations. Although, the presence of the generalist predator assures temporal stability, the343

distribution of both prey and predator populations can become inhomogeneous in space and results344

in different patterns, like stripes, spots, and the mixture of them depending on the availability of345

the additional food to the generalist predator. Moreover, spatiotemporal chaotic patterns have also346

been observed for a certain range of the availability of additional food and mortality of the generalist347

predator.348

Most of the previous modeling studies revealed the stabilizing role of generalist predators (Ander-349

sson and Erlinge, 1977; Turchin and Hanski, 1997; van Baalen et al., 2001; Smout et al., 2010). The350

presence of generalist predators results in the dampening or elimination of the cyclical interactions351

between predators and their prey (Hanski et al. 1991). Several empirical evidences also support this352

claim (Erlinge et al., 1983; Hanski et al., 1991). However, under certain conditions, it can also have353

destabilizing effects (Chakraborty and Chattopadhyay, 2008). Matthiopoulos et al. (2007) studied the354

interaction between a generalist predator Hen Harrier (Circus cyaneus) and three of its prey species355

in the United Kingdom, the Meadow Pipit (Anthus pratensis), the field vole (Microtus agrestis), and356

the Red Grouse (Lagopus lagopus scoticus). They found that the generalist predator can damp or357

suppress the cyclic oscillation in grouse population when the alternative prey density remains low.358

But, the presence of high alternative prey results in an increase in the oscillation. The present spatial359

system can also show a similar destabilizing effect on system dynamics in the presence of additional360

food. However, in this case, the destabilization occurs in space, whereas the temporal dynamics still361

remain stable. Under different conditions, additional food can also stabilize the system in both time362
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and space.363

The presence of generalist predators can make the system dynamics very complex. Previously,364

bistability between two alternative stable coexistence states, and bistability between a coexistence365

state and a stable limit cycle have been observed in a single prey-generalist predator system (Spencer366

and Collie, 1995). Magal et al. (2008) found the existence of homoclinic loops in the presence of367

generalist predator. Moreover, Erbach et al. (2013) found bistability, limit cycles and several global368

bifurcations in a simple predator-prey system with generalist predator. The present paper shows369

that, in spite of having less complex dynamics in the temporal model, the consideration of spatial370

inhomogeneity can result in different complex behaviors due to the presence of generalist predators.371

Addition of diffusion results in Turing instability, where the prey and predator populations oscillate in372

space although remain stationary in time. Similar kind of Turing instability was previously observed373

in a host-parasitoid model with generalist predation on host population by Wilson et al. (1999).374

They extended the Nicholson and Bailey model (1935) by incorporating the dispersal of both host375

and parasitoid offspring and found either stable pattern or rapid host extinction depending on the376

initial conditions. Generalist predation has also been observed to produce spatially varying stable377

patterns in the context of the McArthur-Resenzweig predator-prey model (Rosenzwig, 1973; Segel378

and Levin, 1976). However, the consideration of additional food source for the generalist predator379

which helps generalist predator to survive in the absence of focal prey makes the present approach380

more realistic and unique. Moreover, the existence of Turing-Hopf bifurcation and Takens-Bogdanov381

bifurcation is also observed, which are codimension-2 bifurcations resulting due to the interaction of382

Hopf and Turing bifurcations, and Hopf and transcritical bifurcations, respectively. The existence of383

spatiotemporal chaos in the presence of generalist predator is another interesting finding of the present384

work. Previously, Kumari (2013) observed the existence of chaos in a spatial prey-predator-top predator385

system where the top predator was considered as the generalist predator. In the present case, chaos386

occurs in a parametric range that falls outside the Turing domain. Such generation of chaotic patterns387

outside the Turing domain was found in some of the previous studies without generalist predators388

(Baurmann et al., 2007; Banerjee and Petrovskii, 2011; Banerjee and Abbas, 2014).389

Spatial variations in population densities due to the variation of extrinsic factors such as nutrient390
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concentration, moisture and temperature, are normal phenomena in ecological systems. In comparison,391

empirical evidences of intrinsically generated fixed spatial patterns are difficult to identify as it is hard392

to neglect the extrinsic factors as well as the difficulty in accurately estimating the key interactions393

and dispersal parameters. In spite of such difficulty, researchers found several evidences of spatial394

pattern formations due to biological factors. For example, the clustered spatial pattern of ant nests395

emerges from the natural history of the ant/scale/beetle interaction (Liere et al. 2012). With the help396

of experimental and modeling studies, Shiyomi (1980) showed that the spatial pattern of a population397

of Galleria mellonella is affected by the frequency of attack by the predator Podisus maculiventris398

(attack ability), the homogeneity of the attack ability within a predator population and the mobility399

of the predator. There are also evidences of spatial pattern formation due to the predation by generalist400

predators. In a field study, Winder et al. (2005) found a deep impact of spatial distribution of cereal401

aphids in the presence of two generalist predators, Pterostichus melanarius and P. madidus. These402

observations support the findings of the present study regarding the possibility of pattern formation403

in the presence of generalist predators.404

Generalist predators have important ecological impacts and wide applicability in the field of bi-405

ological control. In practice, generalist predators are used to control the populations of ecologically406

damaging species, particularly of agricultural weed and insect pests (DeBach, 1974; Holt and Hochberg,407

1997). Such biological controls are environment friendly alternatives for the use of insecticides. How-408

ever, the success in controlling damaging species depends on the preferences of the generalist predator409

for the focal prey and alternative food (Koss and Snyder, 2005) as well as on the spatial and tem-410

poral scales at which the process is studied (Walde, 1994). In this respect, theoretical studies can411

provide significant insights in finding optimal strategies for control mechanisms. Previously, Magal et412

al. (2008) examined conditions under which the invasion of leafminers can be stopped and reversed413

by generalist parasitoid in spatial scale. The present study reveals that the theoretical prediction of414

a temporal model can go horribly wrong in real systems where populations are involved in spatial415

movements. In the presence of a generalist predator, the system can show different pattern formations416

and spatiotemporal chaos which has important implications for ecosystem functioning not only in417

terms of their predictability, but also in influencing species persistence (Huisman and Weissing, 1999)418
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and ecosystem’s stability in response to abrupt environmental changes (Petrovskii et al., 2004). The419

relevance of investigating the role of generalist predators in spatially extended domain was recently420

mentioned by Erbach et al. (2013).421

To the best of our knowledge, the present paper is the first possible theoretical work showing differ-422

ent pattern formations due to the presence of generalist predators. In nature, predator-prey systems423

are more complex than what a simple two dimensional model can capture. Further investigation and424

empirical support are needed to confirm the importance of generalist predators in spatial scale. Our425

next step would be to investigate the effects of generalist predators in the presence of a specialist426

predator. In that case, the generalist predator would be either sharing food with the focal prey or427

simply depend on the additional food different from the food source of the focal prey in addition to428

compete with the specialist prey for the focal prey. To determine proper optimal strategy for biological429

control we need to examine different mechanisms of pattern formation as they mimic the processes of430

ecological patterning in real world ecosystems.431
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