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Abstract

Rapid and accurate diagnosis of foot-and-mouth disease (FMD) and virus serotyping are of
paramount importance for control of this disease in endemic areas where vaccination is
practiced. Ideally this virus characterization should be achieved without the need for virus
amplification in cell culture. Due to the heterogeneity of FMD viruses (FMDVSs) in different
parts of the world, region specific diagnostic tests are required. In this study, hydrolysable
probe-based real time reverse transcription quantitative polymerase chain reaction (RT-
gPCR) assays were developed for specific detection and serotyping of the FMDVs currently
circulating in West Eurasia. These assays were evaluated, in parallel with pan-FMDV diag-
nostic assays and earlier serotype-specific assays, using field samples originating from
Pakistan and Afghanistan containing FMD viruses belonging to different sublineages of O-
PanAsia, A-Iran05 and Asia-1 (Group-Il and Group-VII (Sindh-08)). In addition, field sam-
ples from Iran and Bulgaria, containing FMDVs belonging to the O-PanAsia®N""° subline-
age were also tested. Each of the three primer/probe sets was designed to be specific for
just one of the serotypes O, A and Asia-1 of FMDV and detected the RNA from the target
viruses with cycle threshold (C+) values comparable with those obtained with the serotype-
independent pan-FMDV diagnostic assays. No cross-reactivity was observed in these
assays between the heterotypic viruses circulating in the region. The assays reported here
have higher diagnostic sensitivity (100% each for serotypes O and Asia-1, and 92% [95%
Cl =81.4-100%] for serotype A positive samples) and specificity (100% each for serotypes
O, A and Asia-1 positive samples) for the viruses currently circulating in West Eurasia
compared to the serotyping assays reported earlier. Comparisons of the sequences of

the primers and probes used in these assays and the corresponding regions of the circulat-
ing viruses provided explanations for the poor recognition of some of the viruses by the
earlier assays. These new assays should help in the early detection and typing of serotype
O, A and Asia-1 FMDVs circulating in West Eurasia to enable improved disease control.

PLOS ONE | DOI:10.1371/journal.pone.0135559 August 13,2015

1/16


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0135559&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.vet.dtu.dk
http://www.fao.org/ag/againfo/commissions/eufmd/commissions/eufmd-home/en/
http://www.fao.org/ag/againfo/commissions/eufmd/commissions/eufmd-home/en/
http://www.fao.org/ag/againfo/commissions/eufmd/commissions/eufmd-home/en/

@’PLOS ‘ ONE

RT-gPCR Assays for Detection and Serotyping of FMDVs

Competing Interests: The authors have declared
that no competing interests exist.

Introduction

Foot-and-mouth disease (FMD) is an infectious and highly contagious disease of cloven-
hoofed domestic and wild animals, particularly cattle, buffalo, sheep, goats and pigs. The dis-
ease is caused by FMD virus (FMDV), belonging to the genus Aphthovirus within the family
Picornaviridae [1]. FMDV is non-enveloped and has a single-stranded positive polarity RNA
genome of about 8.3 kilobases. The virus exists in seven immunologically distinct serotypes: O,
A, C, SAT (Southern African Territories) 1, SAT 2, SAT 3 and Asia-1. Multiple subtypes can be
identified within each serotype that sometimes fail to induce good cross-protection against
other viruses of the same serotype. The seven serotypes are not distributed uniformly around
the world. Historically, the serotype O, A and C FMDV’s have had the widest distribution glob-
ally and have been responsible for outbreaks in Europe, America, Asia and Africa but serotype
C has not been detected anywhere since 2005 [2]. The serotype SAT 1, SAT 2 and SAT 3
viruses are normally confined to sub-Saharan Africa while serotype Asia-1 is restricted to Asia
but occasional incursions of SAT serotypes into the Middle East/North Africa and of serotype
Asia-1 into Europe have occurred [1].

FMD causes heavy economic losses to the livestock industry globally with an estimated
annual cost of USD 6 t021 billion in agricultural damage and prevention expenditure [3] and
has enormous potential impact on food security. The disease is endemic in many countries of
Africa and Asia. In contrast, Europe, North America, Australia, New Zealand and some coun-
tries in Asia (e.g. Japan and South Korea) are normally free of FMD. However, outbreaks can
spread from endemic areas to disease-free countries as occurred in recent years in the United
Kingdom, France and The Netherlands in 2001 [4], Japan and Korea during 2000, 2010 and
2014, and Bulgaria during 2010-2011 [5-8].

Rapid and accurate diagnosis of FMD is of paramount importance for control of the disease.
Various pan-FMDYV reverse transcription quantitative polymerase chain reaction (RT-qPCR)
assays for the detection of FMDV have been reported [9-12]. These assays target highly con-
served RNA sequences either within the 5'-untranslated region (UTR) or in the sequences cod-
ing for non-structural proteins and they can efficiently detect each of the seven serotypes from
clinical samples. These diagnostic assays possess high analytical sensitivity and specificity.
Their analytical sensitivity has been shown to be at least equal to that of the current reference
standard method, i.e. virus isolation in cell culture [12-14]. However, these assays do not deter-
mine the serotype of the particular FMDV that is detected. Identification of the serotype of the
causative virus from outbreaks is important for vaccine selection, especially in endemic coun-
tries, for control of the disease. This is normally carried out using antigen detection ELISA but,
as this test only has ca. 70% sensitivity (in clinical samples) [15], it is often necessary to propa-
gate the virus in susceptible cells prior to this assay to establish the serotype and this clearly
extends the duration of the procedure.

The VP1 is a surface exposed capsid protein that plays an important role in the antigenicity
and pathogenicity of FMDV. It contains important immunogenic sites including amino acid
residues within the G-H loop and the C-terminus. The G-H loop also includes an arginine-gly-
cine-aspartic acid (RGD) motif, which is required for attachment of the virus to integrin recep-
tors on the host cell [16,17]. Due to their heterogeneity, the nucleotide sequences encoding
VP1 are extensively used for the determination of genetic relationships between different
strains and for the tracing of the origin and movement of outbreak strains [18-23].

Conventional RT-PCR assays using primers targeting the VP1 coding region for serotyping
of FMDV have been reported [24-26]. However, these assays either have relatively poor sensi-
tivity and specificity, due to the genetic diversity within all FMDYV serotypes, or are cumber-
some and unsuitable for routine use [27,28]. Furthermore these assays are not sensitive enough
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to replace antigen detection and serotyping ELISA and virus isolation although they can be
used as supportive tests [29,30]. Ideally, the serotyping should be performed without the need
for virus amplification in cell culture.

Due to the heterogeneity of FMDV’s circulating in different parts of the world, region-spe-
cific tests are required. Region-specific antigen detection ELISA and conventional RT-PCR
assays for differentiation of FMDYV serotypes, using multiple primers designed from nucleotide
sequences of viruses circulating in that geographical area, have been developed [31]. These
assays demonstrated the potential use of tailored molecular tools for the identification of sero-
type(s), within specific geographical regions, as an alternative to, or support for, the pan-
FMDYV RT-qPCR assays. Region-specific RT-qPCR assays have recently been reported for
detection of SAT 2 (Group-VII) FMDVs circulating in East Africa [32] and for the serotyping
of FMDVs circulating in the Middle East [33] and East Africa [34]. This study builds on the
use of such systems as described previously.

Analyses of field samples from Pakistan and Afghanistan using primers and probes
described by Reid and colleagues [33] showed that some viruses were not detected in these
assays although they were positive in the pan-FMDV RT-qPCR assays described previously
[10,12]. This failure in virus detection indicates the need to develop further RT-qPCR assays
for typing of FMDV:s (serotypes O, A and Asia-1) that circulate in West Eurasia. The present
study was aimed at the development of such assays and to assess these assays in comparison
with those described earlier [33].

Materials and Methods
Design of serotype-specific primers and TagMan probes

FMDV VP1 coding region sequences derived from viruses originating within the West Eur-
asian region were obtained from GenBank (www.ncbi.nlm.nih.gov). These sequences were
aligned using MEGA 6 [35] and conserved regions were identified. Serotype-specific primers
and probes for serotypes O, A and Asia-1 FMDVs were designed from the conserved sequences
in the alignments (see Table 1).

Samples

Field samples (epithelial or oral swabs) originating from Pakistan and Afghanistan, containing
FMDVs belonging to the lineages O-PanAsia, A-Iran05, A-Pak09 and Asia-1 (Groups II

and VII), collected under the Italian funded FAO regional project, GTFS/INT/907/ITA (as
described previously [20-22]), were used to evaluate the assays for the FMDYV serotypes O, A

Table 1. Sequences of primer and probe sets designed for serotyping of West Eurasian FMDVs using RT-qPCR assays.

Name of Primer/probe
O-JB-F

0O-JB-R

O-JB-F-P

A-JB-F

A-JB-R

A-JB-F-P

As-JB-F

As-JB-R

As-JB-F-P
doi:10.1371/journal.pone.0135559.t001

Orientation FMDYV serotype Sequence (5'- 3')

Forward O GAGACAGCGTTGGAYAACACC

Reverse O TGWGGTGCCGTGTAAGGCAG

— (0] Fam—AATCCAACGGCTTACCACAAGGCACC—Tamra
Forward A GCCACGACCATCCACGAGCT

Reverse A GTCCTGYGACRACACTTCCAC

— A Fam—CTCGTGCGYATGAAACGTGCYGAGCT—Tamra
Forward Asia-1 TGCCYACYTCXTTYAAYTACGG

Reverse Asia-1 CARAGGYCTRGGGCAGTATGT

— Asia-1 Fam—CGTTTCATGCGRATYAAMAGCTCAGTGAT—Tamra
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and Asia-1. The serotype and subtypes of these samples had been identified using phylogenetic
analyses of the VP1 coding sequences of these viruses. These sequences have been deposited in
GenBank and the accession numbers are listed (see S1 Table and [20-22,36]). In addition, the
serotype of a few samples had been determined using the antigen-ELISA. One sample (2953),
that was positive in the pan-FMDV RT-qPCR assays, had not been serotyped, by sequencing,
due to inadequate yield of product in the RT-PCR. Clinical samples collected from cases of
FMD from Iran (2010) (unpublished results) and Bulgaria (2011) [5] were also included in the
analyses. Details of the all the samples are shown in the S1 Table.

Sample preparation

Epithelial samples. The epithelial samples were homogenized in RLT buffer (Qiagen, Hil-
den, Germany) prior to RNA extraction as described previously [20]. Briefly, the epithelial
samples were processed by mixing with disruption beads and 1 ml of RLT buffer in a homoge-
nizer (FastPrep, FP120 Thermo Electron Corporation) for 30 seconds at a setting of 6.5 m/s.
After centrifugation of the homogenate at 14462 x g for 10 minutes (min), the supernatants
were passed through QIA Shredder Mini Spin Columns (Qiagen). The filtrates were used for
RNA extraction.

Oral swab samples. The oral swab samples, preserved in RLT buffer, were thawed, vor-
texed and then centrifuged at 664 x g for 10 min. The supernatants were used for RNA
extraction.

RNA extraction and cDNA synthesis

Total RNA was extracted from the samples either using manual (QIAamp RNA Blood Mini
Kit) or robotic (MagNA Pure) protocols as described elsewhere [23]. In each case, the RNA
was eluted in 50 pl of water.

The cDNA was synthesised by adding 7 ul of random hexamer primers (50 ng/pl) to 20 pl
of template RNA and 8 pl water. The samples were heated to 65°C for 10 min, cooled on ice for
2 min and then transferred into tubes containing Ready-to-Go beads (GE Healthcare Life Sci-
ences), vortexed and incubated at 40°C for 60 min followed by incubation at 90°C for 5 min to
heat inactivate the reverse transcriptase. Water was added to the cDNA to give a volume of
200 pl to provide sufficient test material for each of the assays.

Pan-FMDV and serotype-specific RT-gPCR assays

The cDNA was used in RT-qPCR assays using the serotype-specific primers/probes sets
designed in this study and run in parallel with the primers/probe set described by Reid and col-
leagues [33] and the pan-FMDYV primers/probe sets targeting the 3D coding region [10] and
the 5’-UTR [12]. The reactions were performed in a MX4000 thermal cycler (Stratagene, The
Netherlands) using 50 cycles of amplification with the following programme: 50°C for 2 min
for UNG digestion, 1 cycle; denaturation at 95°C for 10 min, 1 cycle; 95°C for 15 sec, 60°C (or
55°C for Asia-1 assay) 1 min, 50 cycles. The Cr values obtained with pan-FMDYV assays (3D
and 5'-UTR) and the serotype-specific assays were compared. The primers/probe sets of the
serotype-specific assays were aligned (using MEGAG®6 software) with the VP1 coding region
nucleotide sequences of the samples that were not efficiently amplified in the assays or showed
a clear (>4) difference in Ct values between the different assays.
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Table 2. Summary of the RT-qPCR results using serotype O-, A- and Asia-1-specific and pan-FMDV 5'-UTR and 3D assays.

Serotype 5'-UTR 3D

assay assay
O 24*/24 24/24
A 25/25 25/25

Asia-1 10/10 10/10

O (Reidetal. O («2™ A (Reidetal. A (“2" Asia-1 (Reid Asia-1 (“2™

[33] assay) generation” [33] assay) generation” et al. [33] generation” assay)
assay) assay) assay)

23**/24 24/24 1/24 0/24 0/24 0/24

0/25 0/25 21/25%** 23/25*** 1/25%** 1/25%*

0/10 0/10 0/10%** 1/10%** 10/10 10/10

* two samples had high Ct values (38.9 and 37.9)
** two samples had high Ct values (38.1 and 38.9)
*** includes sample positive for both serotypes A and Asia-1

doi:10.1371/journal.pone.0135559.1002

Results

Diagnostic sensitivity and specificity of serotype-specific RT-qPCR
assays

RNA samples derived from known cases of FMD were assayed using the well-established diag-
nostic RT-qPCR assays [10,12]. These assays included the pan-FMDYV assays, targeting part of
the 3D coding region and the 5'-UTR within the FMDV genome, plus the serotype-specific
assays described previously [33] that target the VP1 coding regions of FMDYV serotypes circu-
lating in the Middle East. In addition, the same samples were assayed using the multiple prim-
ers/probe sets designed in this study to recognize the coding sequences for the VP1 proteins of
FMDV serotypes O, A and Asia-1 currently circulating in West Eurasia. The data generated
are summarized in Table 2. The pan-FMDYV assays confirmed the presence of FMDV RNA in
all the 59 samples tested.

Use of the “first generation” serotype specific assays. The “first generation” serotype O-
specific RT-qPCR assay described previously by Reid and colleagues [33] were able to identify
FMDYV serotype O in 22 out of 24 samples that were known to be positive for serotype O
FMDV. These samples contained various different virus strains within O-PanAsia i.e. O-PanA-
sia-II*N"1%, O-PanAsia-1I"** "%, O-PanAsia-II* "', O-PanAsia-11"*""*” and O-PanAsia-1II
(Fig 1). Two samples could not be detected by these serotype O-specific assays; these belonged
to the O-PanAsia-II*N" ' sublineage (sample No. Nzm21) and O-PanAsia-III (sample No.
1343) lineage. Indeed, the latter sample was mis-classified as belonging to serotype A using this
assay. However, the assay was able to identify one sample (B-17), obtained from serotype O
FMDYV outbreaks in Bulgaria in 2011, as serotype O that had been identified as positive in the
pan-FMDV RT-qPCR but its serotype was unknown. Using this collection of samples, the
diagnostic sensitivity of the “first generation” serotype O specific assay was found to be 91.7%
[95% CI = 80.6-100%] and the specificity was 97.1% [95% CI = 91.6-100%].

The Reid et al. [33] serotype A-specific assay correctly detected and identified serotype A
FMDV in 21 out of 25 serotype A FMDYV positive samples. Among the four samples which were
not detected, two belong to the A-Iran05 lineage while two others belong to a different lineage,
designated as the A-Pak09 lineage [22] (Fig 2). The two undetected FMDVs belonging to the
A-Iran05 lineage were members of the A-Iran05*"“"” and A-Iran05<"™"%° sublineages (note
this sub-lineage has also been termed A-Tran05"*"'° by the WRL-FMD). The diagnostic sensitiv-
ity of this assay was calculated to be 84% [95% CI = 69.6-98.4%)] and the specificity was 97.1%
[95% CI = 91.6-100%]. The “first generation” serotype Asia-1 specific assay successfully detected
all the 10 serotype Asia-1 positive samples belonging to two different Groups, i.e. Group I and
Group VII/Sindh-08 (Fig 3), thus showing 100% diagnostic sensitivity and specificity.
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Sample
number

B-3
B-20
B-19
B-18

B-1

Nzm-5
Nzm-16

Nzm21

Nzm28

PanAsia-ll

1370

1414

1417
2826

O-PanAsia
|: |

1-709

630

643

PanAsia-lll
100

86 1412
86

1494

55 84 1499
1497

4 1347
1346

1343

88 1413

0O/Manisa

0.01

3D
assay
19.8
22.6
27.1

22.0

18.4

27.2

33.3

16.7

26.0

24.4

29.8

35.2

28.2

313

30.2

26.1

21.7

20.7

22,5

234

22.7

5'UTR
assay
30.2
32.6
38.0
32.0
31.8
18.3
29.3
35.2
18.1
24.4
27.0
32.2
29.4
17.0
35.9
23.6
32.6
28.6
23.2
20.4
22,5
25.3
36.4

24.3

o (znd

O(Reidet A(2™ A(Reidet Asia-1(2™ Asia-1

generation) al. [33]) generation) al. [33]) generation) (Reid et al.

assay
22.6

21.6

25.9

214

23.7

20.5

30.9

35.7

18.9

25.1

26.4

32.2

28.6

17.9

33.9

25.2

31.9

30.0

23.5

22.0

24.2

25.5

36.0

25.8

assay assay assay assay  [33]) assay

Fig 1. Diagnostic sensitivity and specificity of FMDV serotype O specific RT-qPCR assays. The C+ values obtained in the different RT-qPCR assays

for the indicated serotype O virus samples are shown. The genetic relationships between the various strains from West Eurasia, based on VP1 coding

sequences, are also indicated.

doi:10.1371/journal.pone.0135559.g001

Use of “second generation” serotype-specific assays. The “second generation” serotype

O-specific assay described here successfully detected and identified all the 24 serotype O

FMDVs tested. As with the earlier serotype O-specific assay [24], the new assay was able to

assign serotype identity to one sample (B-17) that had been identified as positive in the pan-
FMDV RT-qPCR but whose serotype was unknown. Both the diagnostic sensitivity and speci-

ficity of this assay was found to be 100%. In addition, of the 25 serotype A FMDYV positive

samples, the “second generation” serotype A-specific assay detected 23 of them but could not
detect two. These two samples belonged to the A-Pak09 lineage (Fig 2) and were not detected

by the Reid et al. [33] assays either (see above). The diagnostic sensitivity and specificity of this
assay was found to be 92% [95% CI = 81.4-100%] and 100%, respectively. The new serotype
Asia-1-specific assay correctly classified all the 10 serotype Asia-1 FMDVs as positive for this
serotype with no cross reactivity with other serotypes, showing 100% diagnostic sensitivity and

specificity.
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Sample 3D 5°UTR 0O (2nd O(Reidet A(2 A(Reidet Asia-1(2nd Asia-1 (Reid
number assay assay generation) al.[33]) generation) al.[33]) generation) etal. [33])
assay assay assay assay assay assay

64 1575  17.3 16 19 184 [EETYe:
1576  17.8  16.6 191 179 [EEX
1428 213 235 245 236 LIS
1411 217 25 25 234 IS
1430 18 20.1 215 203 [EECYe:
1491 221 229 26 24 No Ct
97497 1355 29 31.2 30.8 29.7 No Ct
1354 322 34 3.1 306 (LS
2819 277 305 3.7 314 [EEYS:
3641  19.8 188 207 207 QIS
il ool 1711 186 172 19.9 191 (Y
1421 196 189 - 21 192
2808 29 30.8 295 30
o 629 23 265 267 254
m 8* 255 268 ! 25.6 24.6
o ms s P
" ” o 22 s
ml_ 1435 227 245
100 1486 285 269
BAR-08 693 251 2738
1495 193 21
2813 218 27.2
SAD-09  prrn 2816 264 275

1364 31.4 334
A-Pak09
100 2809 25.1 28.6
A22
——
0.02

Fig 2. Diagnostic sensitivity and specificity of FMDV serotype A-specific RT-qPCR assays. The Ct values obtained in the different RT-gPCR assays
for the indicated serotype A virus samples are shown. The genetic relationships between the various strains from West Eurasia, based on VP1 coding
sequences, are also indicated. Note, sample 8 is marked with an * to indicate this sample contained two different serotypes of FMDV.

doi:10.1371/journal.pone.0135559.g002

As indicated above, one serotype O positive sample (1343) tested positive for serotype A
in the Reid et al. [33] serotype A specific assay but negative with the serotype O-specific set.
This sample was, however, identified as positive only for serotype O using the “second genera-
tion” serotype-specific assays (Fig 1), consistent with the sequence determination. In principle,
it is possible, although unlikely, that this sample contained a mixture of serotype O and A
viruses and that the new serotype A-specific assay failed to detect the presence of the serotype
A virus while the Reid et al. [33] serotype O-specific assay failed to detect the serotype O
FMDV. In summary, no apparent cross-reactivity was observed when the “second generation”
serotype-specific assays were tested on samples containing each of the serotype O, A and Asia-
1 FMDVs. Sample No. 8, which contained both serotypes A and Asia-1 [21,22], tested positive
for both serotypes within the “second generation” serotype-specific assay as expected. This
sample tested positive for serotype Asia-1 FMDYV with the Reid et al. [33] serotype-specific
assay but not for serotype A. Both the “first” and “second generation” serotype-specific assays
were successful in assigning the serotype identity to sample No. 2953 as serotype Asia-1, that
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100

30 5UTR 02 O(Reidet A2 A(Reidet Asia-1(2" Asia-1(Reid
Sample generation) al.[33]) generation) al.[33]) generation) et al.[33])
number assay assay assay assay assay assay

— =

As/Shamir/69

0.02

98

Fig 3. Diagnostic sensitivity and specificity of FMDV serotype Asia-1-specific RT-qPCR assay. The Ct values obtained in the different RT-gPCR
assays for the indicated serotype Asia-1 virus samples are shown. The genetic relationships between the various strains from West Eurasia, based on VP1
coding sequences, are also indicated. Note, sample 8 is marked with an * to indicate this sample contained two different serotypes of FMDV.

doi:10.1371/journal.pone.0135559.g003

was also positive in both the pan-FMDV 3D and 5'-UTR assays but could not be sequenced
(and hence serotyped) due to the low yield of the conventional RT-PCR product.

Comparison of cycle threshold (C+) values obtained in the different RT-
gPCR assays

A comparison between the cycle threshold (Cr) values for the pan-FMDYV assays, the Reid

et al. [33] serotype-specific assays and the “second generation” serotype-specific assay is shown
in Fig 4. Similar Cr values were obtained for the samples positive in the pan-FMDYV assays and
the “second generation” assays. In contrast, Ct values obtained with pan-FMDYV 3D assay and
the Reid et al. [33] assays show some differences particularly for the serotype O and A FMDVs
that were tested. Lower Cr values were obtained in the “second generation” assay for 8 samples
belonging to serotype O and for 4 serotype A FMDVs compared to the Reid et al. [33] assays
(Figs 1 and 4), indicating that the new assays are more sensitive. Although no significant differ-
ences were noted in Cr values obtained between the two serotype-specific assays specific for
the serotype Asia-1 FMDVs, clear differences can be noted in the slope of the amplification
curves for the two assays (please see below for more detail).

Nucleotide substitutions at primer/probe binding sites

The FMDV RNA samples which were not detected in either of the two serotype-specific assays
or that showed a clear (>4) difference in the Cr values between these assays were investigated
further. The primer/probe binding sites within the virus genomes were compared to the respec-
tive primer and probe sequences to identify nucleotide substitutions at these sites; these are
shown in Fig 5. One nucleotide mismatch to the forward primer and four nucleotide mis-
matches to the reverse primer were noted in the corresponding binding sites within the VP1
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doi:10.1371/journal.pone.0135559.g004

coding region of the two samples (samples No. 1364 and 1809) which were not amplified in
either the Reid et al. [33] (Fig 5A) or the “second generation” serotype A-specific assay (Fig
5B). As indicated above, these samples contained FMDV's that belong to the A-Pak09 cluster.
Sample No. 1495, which was not detected in the Reid et al. [33] serotype A-specific assay, has
two nucleotide mismatches in the probe binding site (Fig 5A). Similarly, the Reid et al. [33]
serotype A-specific assay failed to identify serotype A within sample No. 8 (which actually con-
tained both serotype A and Asia-1). Comparison of the sequences within the primers and
probe binding sites of this sample revealed three nucleotide mismatches in the reverse primer
of the first generation serotype A-specific assay (Fig 5A). Four serotype A positive samples,
that showed clear difference in Cr values between the two serotype-specific assays, have three
nucleotide mismatches in the reverse primer binding site in the Reid et al. [33] serotype A-spe-
cific assay (Fig 5B), which may explain the higher Cy values obtained.

Of the two serotype O positive samples that the Reid et al. [33] serotype O-specific assay did
not detect, one (1343, belonging to the O-PanAsia-III lineage) had one nucleotide mismatch in
the forward primer binding site, two mismatches in the probe binding site and three
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Fig 5. Comparison between nucleotide sequences of selected FMDV samples and the primers and probes. Panel (A) Sequences of serotype A FMDV
samples indicating mismatches with primers and probe of the Reid et al. [33] serotype A-specific assay. Samples numbered 1495, 1364 and 2809 were not
detected in the serotype A-specific assays described by Reid and colleagues [33]. Panel (B) Sequences of serotype A FMDVs indicating mismatches with
primers and probe of the new serotype A-specific assay. Samples numbered 1364 and 2809 were not detected in the new assay. Panel (C) Nucleotide
sequences of serotype O FMDV samples indicating mismatches with primer and probe sequences of the Reid et al. [33] serotype O-specific assay. The
samples 1343 and Nzm21 were not detected in this assay.

doi:10.1371/journal.pone.0135559.g005

substitutions in the reverse primer binding site (Fig 5C). These mismatches may have reduced
the efficiency of detection and it is noteworthy that the level of FMDV RNA in this sample was
low as well (note the high Cr values obtained in the pan-FMDYV assays). Two mismatches in
the probe binding site and three mismatches in the reverse primer binding site were noted in
the second FMDV (Nzm21, belonging to O-PanAsia-II*™""'° sublineage) which was not
amplified in the Reid et al. [33] serotype O-specific assay. Among the three mismatches in the
reverse primer binding site, one substitution occurred in the second nucleotide from the 3" end
(Fig 5C) which may explain this failure in detection.

Comparison of amplification curves of the serotype-specific RT-qPCR
assays

A comparison of the amplification curves of selected samples between the Reid et al. [33] assays
and the “second generation” serotype-specific assays individually for serotypes O, A and Asia-
1 FMDVs is shown in Fig 6. Clear differences can be noted in the slope of amplification curves
of the new (2™ generation) and the Reid et al. [33] serotype O-specific assays (see Fig 6(A)).
The amplification curves seen in the serotype A-specific assays were also more homogeneous
in the new assay compared to the Reid et al. [33] serotype A-specific assay (see Fig 6(B)). Simi-
larly, the amplification curves for serotype Asia-1 FMDV's were more consistent in shape in the
new serotype Asia-1 specific assay and in many cases yielded higher fluorescence (dR) values
compared to that of the Reid et al. [33] assay (Fig 6(C)).

Discussion

Various techniques are in use for diagnosis of FMD including ELISA, virus isolation, conven-
tional and real time RT-qPCR assays [1]. In order to control FMD outbreaks, an early and
accurate identification of the causative FMDV is very important. In countries using a “stamp-
ing out” policy, simple detection of FMDV can be sufficient. Virus detection is usually carried
out using pan-FMDV FMDV RT-qPCR assays that have been extensively evaluated for routine
use [10-12,14]. Simple detection of FMDYV using these assays is, however, not sufficient in
countries where prophylactic vaccination is used to contain the disease as serotype identifica-
tion is crucial to allow selection of the most appropriate vaccine, at least at the serotype level, as
there is no cross-protection. Ideally the vaccine should be well matched to the outbreak virus
but often there are practical limitations about this, e.g. in terms of vaccine availability, and vac-
cine matching studies or sequence determination can take some time.

Identification of conserved sequences as targets for primers and probes to specifically recog-
nise all viruses within a particular serotype but without cross reactivity towards viruses of other
serotypes is challenging. This is due to the high heterogeneity within the region of the FMDV
genome (encoding the capsid proteins) that determines serotype and the lack of conserved
sequences within all strains in individual serotypes worldwide. In order to overcome this issue,
efforts have been made to detect viruses belonging to specific lineages within particular sero-
type(s) circulating in distinct geographical regions rather than across all strains globally [32-
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Fig 6. Comparison of amplification curves of the serotype-specific RT-qPCR assays. (A) Amplification
curves for the six selected serotype O samples obtained with the 1% generation assay [33] (+ symbols) and
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the 2"? generation serotype O-specific assay described here (round symbols). (B) Amplification curves for the
six selected serotype A samples obtained with the 15! generation assay [33] (+ symbols) and the 2™
generation serotype A-specific assay described here (round symbols). (C) Amplification curves for the six
selected serotype Asia-1 samples obtained with the 15! generation assay [33] (+ symbols) and the 2"
generation serotype Asia-1-specific assay described here (round symbols).

doi:10.1371/journal.pone.0135559.g006

34]. This study builds on the use of this approach to develop serotype-specific RT-qPCR assays
for detection and serotyping of FMDV:s circulating in West Eurasia.

In the present study, primers and probe sets specific for serotypes O, A and Asia-1 FMDV
were designed by individually aligning the VP1 coding sequences of serotypes O, A and Asia-1
FMDV circulating in West Eurasia. Comparison of the VP1 coding nucleotide sequences
reveals a tendency for similar viruses to circulate in the same geographical area and analyses of
these sequences have distributed FMDV's into seven different regional pools [37,38]. The
primer and probe sets designed in this study effectively and specifically detected genomes
belonging to a variety of different FMDV sublineages of O-PanAsia (see Fig 1), A-Iran05 (see
Fig 2) and Asia-1 strains (see Fig 3) as intended. Two samples of serotype A FMDV that were
not detected belong to a distinct lineage, designated as A-Pak09 [22]. The serotype-specific
assays described by Reid and colleagues [33] also failed to amplify these two samples and addi-
tionally failed to amplify some other FMDYV positive samples either belonging to the A-Iran05
or the O-PanAsia lineages. The pan-FMDV assays do recognize these strains so it is apparent
that FMDV is present. It should be possible to design assays specifically to detect this lineage if
required. There is a continued need to adapt such assays to strains circulating within a region
but clearly the assays described here recognize most of the viruses that have circulated recently
within this region.

The new assays described here did not show any cross-reactivity with heterotypic serotypes
of FMDV. However, some apparent cross-reactivity was noted in the assays described by Reid
et al. [33] as one sample, identified as positive for serotype O FMDYV also tested positive for
serotype A. The clear detection of both serotype A and Asia-1 FMDYV in one sample (sample 8)
that indeed contained viruses of both serotypes (see [21,22]) reveals the utility and advantages
of the RT-qPCR assays in identifying mixed infections over ELISA-based assays in which some
cross-reactivity frequently occurs [1].

Cycle threshold (Cr) values are not only used to determine the presence of FMDV RNA but
they are also used to quantify the level of viral RNA in a sample. The Cr values obtained with
the assays reported here were consistent with that of the pan-FMDV 3D or 5'-UTR assays.
However, differences in Ct values were observed between the Reid et al. [33] assays and the
new assays reported here; in some cases, lower Cr values were recorded with the new assays
reported here compared to the Reid et al. [33] assays indicative of higher sensitivity.

In the TagMan RT-qPCR assays, the amount of amplified DNA is measured after each cycle
of amplification via dyes that generate fluorescent signals, the magnitude of which is propor-
tional to the amount of the amplicon generated. The amplification curves, generated by plot-
ting the fluorescence against the number of cycles, represent the accumulation of product over
the duration of the reaction. Initially, the fluorescence signals increase exponentially with the
number of thermal cycles. In general, the magnitude of the fluorescence signal was higher in
the new assays for serotypes O, A and Asia-1 compared to that obtained in the Reid et al. [33]
assays and the amplification curves were more consistent (Fig 6). It is apparent that a small
number of nucleotide mismatches between the primers and probes can have a significant effect
on the ability of the assays to detect the virus (see Fig 5); analogous observations have been
reported previously [13].
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Although the new serotype A-specific assays also failed to detect two samples positive for
serotype A FMDV:s (these do not belong to the A Iran05 lineage), the new serotype specific
assays reported here have clear advantages over the Reid et al. [33] assays for samples collected
within West Eurasia (e.g. see Fig 6) and thus may help in the early detection and typing of
FMDV serotypes O, A and Asia-1 circulating there. Due to continuous changes in the FMDV
RNA sequences, monitoring of the sequences, within circulating strains, at the primer and
probe binding sites is required to ensure that the diagnostic sensitivity and specificity of these
assays is maintained.

Supporting Information

S1 Table. Details of the FMDYV positive samples used in this study.
(DOCX)

Acknowledgments

The authors are grateful to Preben Normann for excellent technical assistance. Thanks are also
due to Keith Sumption (EuFMD) for his interest. We also thank the World Reference Labora-
tory for FMD at The Pirbright Institute (United Kingdom) for providing prototype FMDV
sequences to enable sub-lineage identification.

Author Contributions

Conceived and designed the experiments: SMJ GJB. Performed the experiments: SMJ. Ana-
lyzed the data: SM] GJB. Wrote the paper: SMJ GJB.

References

1. Jamal SM, Belsham GJ (2013) Foot-and-mouth disease: past, present and future. Vet Res 44: 116.
doi: 10.1186/1297-9716-44-116 PMID: 24308718

2. Sumption K, Rweyemamu M, Wint W (2008) Incidence and Distribution of Foot-and-Mouth Disease in
Asia, Africa and South America; Combining Expert Opinion, Official Disease Information and Livestock
Populations to Assist Risk Assessment. Transbound Emerg Dis 55: 5-13. doi: 10.1111/j.1865-1682.
2007.01017.x PMID: 18397505

3. Knight-Jones TJD, Rushton J (2013) The economic impacts of foot and mouth disease—What are they,
how big are they and where do they occur? Prev Vet Med 112: 161-173. doi: 10.1016/j.prevetmed.
2018.07.013 PMID: 23958457

4. Valarcher JF, Leforban Y, Rweyemamu M, Roeder PL, Gerbier G, Mackay DK et al. (2008) Incursions
of foot-and-mouth disease virus into Europe between 1985 and 2006. Transbound Emerg Dis 55: 14—
34.doi: 10.1111/1.1865-1682.2007.01010.x PMID: 18397506

5. Valdazo-Gonzalez B, Polihronova L, Alexandrov T, Normann P, Knowles NJ, Hammond JM et al.
(2012) Reconstruction of the transmission history of RNA virus outbreaks using full genome
sequences: foot-and-mouth disease virus in Bulgaria in 2011. PLoS One 7: e49650. doi: 10.1371/
journal.pone.0049650 PMID: 23226216

6. Brito BP, Rodriguez LL, Hammond JM, Pinto J, Perez AM (2015) Review of the Global Distribution of
Foot-and-Mouth Disease Virus from 2007 to 2014. Transbound Emerg Dis.

7. Shin J-H, Sohn H-J, Choi K-S, Kwon B-J, Choi C-U, Kim JH et al. (2003) Identification and isolation of
foot-and-mouth disease virus from primary suspect cases in Korea in 2000. J Vet Med Sci 65: 1-7.
PMID: 12576697

8. Sakamoto K, Kanno T, Yamakawa M, Yoshida K, Yamazoe R, Murakami Y. (2000) Isolation of foot-
and-mouth disease virus from Japanese black cattle in Miyazaki Prefecture, Japan, 2000. J Vet Med
Sci 64:91-94.

9. Reid SM, Ferris NP, Hutchings GH, Zhang Z, Belsham GJ, Alexandersen S. (2002) Detection of all
seven serotypes of foot-and-mouth disease virus by real-time, fluorogenic reverse transcription poly-
merase chain reaction assay. J Virol Methods: 105: 67-80. PMID: 12176143

PLOS ONE | DOI:10.1371/journal.pone.0135559 August 13,2015 14/16


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135559.s001
http://dx.doi.org/10.1186/1297-9716-44-116
http://www.ncbi.nlm.nih.gov/pubmed/24308718
http://dx.doi.org/10.1111/j.1865-1682.2007.01017.x
http://dx.doi.org/10.1111/j.1865-1682.2007.01017.x
http://www.ncbi.nlm.nih.gov/pubmed/18397505
http://dx.doi.org/10.1016/j.prevetmed.2013.07.013
http://dx.doi.org/10.1016/j.prevetmed.2013.07.013
http://www.ncbi.nlm.nih.gov/pubmed/23958457
http://dx.doi.org/10.1111/j.1865-1682.2007.01010.x
http://www.ncbi.nlm.nih.gov/pubmed/18397506
http://dx.doi.org/10.1371/journal.pone.0049650
http://dx.doi.org/10.1371/journal.pone.0049650
http://www.ncbi.nlm.nih.gov/pubmed/23226216
http://www.ncbi.nlm.nih.gov/pubmed/12576697
http://www.ncbi.nlm.nih.gov/pubmed/12176143

@’PLOS ‘ ONE

RT-gPCR Assays for Detection and Serotyping of FMDVs

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

Callahan JD, Brown F, Osorio FA, Sur JH, Kramer E, Long GW et al. (2002) Use of a portable real-time
reverse transcriptase-polymerase chain reaction assay for rapid detection of foot-and-mouth disease
virus. Am Vet Med Assoc 220: 1636-1642.

Moniwa M, Clavijo A, Li M, Collignon B, Kitching PR (2007) Performance of a foot-and-mouth disease
virus reverse transcription-polymerase chain reaction with amplification controls between three real-
time instruments. J Vet Diagn Invest 19: 9-20. PMID: 17459827

Reid SM, Grierson SS, Ferris NP, Hutchings GH, Alexandersen S (2003) Evaluation of automated RT-
PCR to accelerate the laboratory diagnosis of foot-and-mouth disease virus. J Virol Methods 107: 129—
139. PMID: 12505626

King DP, Ferris NP, Shaw AE, Reid SM, Hutchings GH, Giuffre AC et al. (2006) Detection of foot-and-
mouth disease virus: comparative diagnostic sensitivity of two independent real-time reverse transcrip-
tion-polymerase chain reaction assays. J Vet Diagn Invest 18: 93-97. PMID: 16566264

Shaw AE, Reid SM, King DP, Hutchings GH, Ferris NP (2004) Enhanced Laboratory diagnosis of foot
and mouth disease by real-time polymerase chain reaction. Rev Sci Tech 23: 1003—-1009. PMID:
15861896

Ferris NP, Dawson M (1988) Routine application of enzyme linked immunsorbent assay in comparison
with complement fixation for the diagnosis of foot-and-mouth and swine vesicular diseases. Vet Micro-
biol 16:201-209. PMID: 3376418

Fox G, Parry NR, Barnett PV, McGinn B, Rowlands DJ, Brown F. (1989) The cell attachment site on
foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid).
J Gen Virol 70: 625-637. PMID: 2543752

Jackson T, Sharma A, Ghazaleh RA, Blakemore WE, Ellard FM, Simmons DL et al. (1997) Arginine-
Glycine-Aspartic Acid-specific binding by foot-and-mouth disease viruses to the purified integrin av3
in vitro. J Virol 71:8357-8361. PMID: 9343190

Samuel AR, Knowles NJ (2001) Foot-and-mouth disease type O viruses exhibit genetically and geo-
graphically distinct evolutionary lineages (topotypes). J Gen Virol 82: 609-621. PMID: 11172103

Cottam EM, Thébaud G, Wadsworth J, Gloster J, Mansley L, Paton DJ et al. (2008) Integrating genetic
and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc R
Soc B 275: 887-895. doi: 10.1098/rspb.2007.1442 PMID: 18230598

Jamal SM, Ferrari G, Ahmed S, Normann P, Belsham GJ (2011) Genetic diversity of foot-and-mouth
disease serotype O viruses from Pakistan and Afghanistan, 1997-2009. Infect Genet Evol 11: 1229—
1238. doi: 10.1016/j.meegid.2011.03.006 PMID: 21419880

Jamal SM, Ferrari G, Ahmed S, Normann P, Belsham GJ (2011) Molecular characterization of serotype
Asia-1 foot-and-mouth disease viruses in Pakistan and Afghanistan; emergence of a new genetic
Group and evidence for a novel recombinant virus. Infect Genet Evol 11: 2049-2062. doi: 10.1016/j.
meegid.2011.09.015 PMID: 21983559

Jamal SM, Ferrari G, Ahmed S, Normann P, Curry S, Belsham GJ (2011) Evolutionary analysis of sero-
type A foot-and-mouth disease viruses circulating in Pakistan and Afghanistan during 2002—-2009. J
Gen Virol 92: 2849-2864. doi: 10.1099/vir.0.035626-0 PMID: 21813704

Jamal SM, Ferrari G, Hussain M, Nawroz AH, Aslami AA, Khan E et al. (2012) Detection and genetic
characterization of foot-and-mouth disease viruses in samples from clinically healthy animals in
endemic settings. Transbound Emerg Dis 59: 429—440. doi: 10.1111/1.1865-1682.2011.01295.x PMID:
22212855

Vangrysperre W, De Clercq K (1996) Rapid and sensitive polymerase chain reaction based detection
and typing of foot-and-mouth disease virus in clinical samples and cell culture isolates, combined with a
simultaneous differentiation with other genomically and/or symptomatically related viruses Arch Virol
141: 331-144. PMID: 8634024

Callens M, De Clercq K (1997) Differentiation of the seven serotypes of foot-and-mouth disease virus
by reverse transcriptase polymerase chain reaction. J Virol Methods 67: 35-44. PMID: 9274816

Alexandersen S, Forsyth MA, Reid SM, Belsham GJ (2000) Development of reverse transcription-PCR
(oligonucleotide probing) enzyme-linked immunosorbent assays for diagnosis and preliminary typing of
foot-and-mouth disease: a new system using simple and aqueous-phase hybridization. J Clin Microbiol
38: 4604—-4613. PMID: 11101603

Reid SM, Hutchings GH, Ferris NP, De Clercq K (1999) Diagnosis of foot-and-mouth disease by RT-
PCR: evaluation of primers for serotypic characterisation of viral RNA in clinical samples. J Virol Meth-
ods 83:113-123. PMID: 10598089

Reid SM, Ferris NP, Briining A, Hutchings GH, Kowalska Z, Akerblom L. (2001) Development of a rapid
chromatographic strip test for the pen-side detection of foot-and-mouth disease virus antigen. J Virol
Methods 96: 189-202. PMID: 11445149

PLOS ONE | DOI:10.1371/journal.pone.0135559 August 13,2015 15/16


http://www.ncbi.nlm.nih.gov/pubmed/17459827
http://www.ncbi.nlm.nih.gov/pubmed/12505626
http://www.ncbi.nlm.nih.gov/pubmed/16566264
http://www.ncbi.nlm.nih.gov/pubmed/15861896
http://www.ncbi.nlm.nih.gov/pubmed/3376418
http://www.ncbi.nlm.nih.gov/pubmed/2543752
http://www.ncbi.nlm.nih.gov/pubmed/9343190
http://www.ncbi.nlm.nih.gov/pubmed/11172103
http://dx.doi.org/10.1098/rspb.2007.1442
http://www.ncbi.nlm.nih.gov/pubmed/18230598
http://dx.doi.org/10.1016/j.meegid.2011.03.006
http://www.ncbi.nlm.nih.gov/pubmed/21419880
http://dx.doi.org/10.1016/j.meegid.2011.09.015
http://dx.doi.org/10.1016/j.meegid.2011.09.015
http://www.ncbi.nlm.nih.gov/pubmed/21983559
http://dx.doi.org/10.1099/vir.0.035626-0
http://www.ncbi.nlm.nih.gov/pubmed/21813704
http://dx.doi.org/10.1111/j.1865-1682.2011.01295.x
http://www.ncbi.nlm.nih.gov/pubmed/22212855
http://www.ncbi.nlm.nih.gov/pubmed/8634024
http://www.ncbi.nlm.nih.gov/pubmed/9274816
http://www.ncbi.nlm.nih.gov/pubmed/11101603
http://www.ncbi.nlm.nih.gov/pubmed/10598089
http://www.ncbi.nlm.nih.gov/pubmed/11445149

@’PLOS ‘ ONE

RT-gPCR Assays for Detection and Serotyping of FMDVs

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Reid SM, Ferris NP, Hutchings GH, De Clercq K, Newman BJ, Knowles NJ et al. (2001) Diagnosis of
foot-and-mouth disease by RT-PCR: use of phylogenetic data to evaluate primers for the typing of viral
RNA in clinical samples. Arch Virol 146: 2421-2434. PMID: 11811689

Reid SM, Hutchings GH, Ferris NP, De Clercq K (1999) Diagnosis of foot-and-mouth disease by RT-
PCR: evaluation of primers for serotypic characterisation of viral RNA in clinical samples. J Virol Meth-
ods 83:113-123. PMID: 10598089

Giridharan P, Hemadri D, Tosh C, Sanyal A, Bandyopadhyay SK (2005) Development and evaluation
of a multiplex PCR for differentiation of foot-and-mouth disease virus strains native to India. J Virol
Methods 126: 1-11. PMID: 15847913

Ahmed HA, Salem SA, Habashi AR, Arafa AA, Aggour MG, Salem GH et al. (2012) Emergence of foot-
and-mouth disease virus SAT 2 in Egypt during 2012. Transbound Emerg Dis 59: 476—481. doi: 10.
1111/tbed.12015 PMID: 23025522

Reid SM, Mioulet V, Knowles NJ, Shirazi N, Belsham GJ, King DP (2014) Development of tailored real-
time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth
disease virus lineages circulating in the Middle East. J Virol Methods 207: 146—153. doi: 10.1016/j.
jviromet.2014.07.002 PMID: 25016065

Bachanek-Bankowska K, Knowles NJ, Kasanga C, Balinda S, Normann P, Belsham GJ et al. (2014)
Development of tailored specific real-time RT-PCR assays for detection of FMDV serotypes A, O, SAT
1 and SAT 2 circulating in East Africa. Open Session of the Standing Technical and Reserach Commit-
tees of the European Commission for the Control of Foot-and-mouth disease (EuFMD). Cauvtat,
Croatia. pp. 198.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGAG: Molecular Evolutionary Genet-
ics Analysis version 6.0. Mol Biol Evol 30: 2725-2729. doi: 10.1093/molbev/mst197 PMID: 24132122

Belsham GJ, Jamal SM, Tjgrnehgj K, Batner A (2011) Rescue of foot-and-mouth disease viruses that
are pathogenic for cattle from preserved viral RNA samples. PLoS One 6: e14621. doi: 10.1371/
journal.pone.0014621 PMID: 21298025

Di Nardo A, Knowles NJ, Paton DJ (2011) Combining livestock trade patterns with phylogenetics to
help understand the spread of foot and mouth disease in sub-Saharan Africa, the Middle East and
Southeast Asia. Rev Sci Tech 30: 63—85. PMID: 21809754

Sumption K, Domenech J, Ferrari G (2012) Progressive control of FMD on a global scale. Vet Rec:
637-639.

PLOS ONE | DOI:10.1371/journal.pone.0135559 August 13,2015 16/16


http://www.ncbi.nlm.nih.gov/pubmed/11811689
http://www.ncbi.nlm.nih.gov/pubmed/10598089
http://www.ncbi.nlm.nih.gov/pubmed/15847913
http://dx.doi.org/10.1111/tbed.12015
http://dx.doi.org/10.1111/tbed.12015
http://www.ncbi.nlm.nih.gov/pubmed/23025522
http://dx.doi.org/10.1016/j.jviromet.2014.07.002
http://dx.doi.org/10.1016/j.jviromet.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25016065
http://dx.doi.org/10.1093/molbev/mst197
http://www.ncbi.nlm.nih.gov/pubmed/24132122
http://dx.doi.org/10.1371/journal.pone.0014621
http://dx.doi.org/10.1371/journal.pone.0014621
http://www.ncbi.nlm.nih.gov/pubmed/21298025
http://www.ncbi.nlm.nih.gov/pubmed/21809754

