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Abstract

The gear stiffness has a direct influence on the dynamic response of transmission systems that include a
gear box, the stiffness also controls the load distribution among the teeth in mesh. The stiffness of a gear
tooth varies non-linearly as the contact line with the meshing gear tooth moves along the surface of the
tooth and the resulting meshing stiffness also includes discontinuities.

The stiffness estimation for helical gears can only be done using full 3D analysis contrary to spur
gears where 2D often suffice. Besides the usual gear geometry defined by standards two factors are found
to have a large influence on the stiffness. These two factors are the rim thickness included in the stiffness
calculation and the contact zone size. In the contact zone the distribution of the load is also shown to be
important. Simple possible simplifications in relation to the contact load distribution are presented. The
gear stiffness is found using the elastic energy of the loaded tooth. In the finite element calculation the
true gear tooth root profile is applied.

Keywords: Gears, Stiffness, Helical, External, FE.

1 Introduction

One of the most commonly used machine elements is
the helical gear. The shape of which is defined by e.g.
ISO standards, see DIN 867 (1986). Compared to spur
gears the helical gear is superior because of the higher
load carrying capacity and the reduction in noise gen-
eration. The increased load capability is due to the
higher contact ratio and the increased teeth length for
given gear width whereas the noise reduction is caused
by the gradual teeth engagement. In relation to the
contact ratio it should be noticed that for a spur gear
the contact ratio describes the average number of teeth
in contact and the contact is over the full gear tooth
width. This is not the case for helical gears where the
contact starts at one side and ends at the other side of
the tooth. Depending on the geometry the full tooth
is loaded in a part of the engagement. The primary
drawback of the helical gear is the generation of an

axial force.
The non-linearity of gear stiffness is due to e.g.

• The contact zone change due to changes in the
load magnitude and this has a non-linear influence
on the stiffness, i.e. the stiffness of the tooth is a
non-linear function of the load even for a specific
point of contact on the tooth.

• For a constant load magnitude the stiffness vari-
ation is non-linear as the load change position on
the gear, due to the tooth geometry.

• The definition of an overall meshing stiffness intro-
duces discontinuities in the stiffness because there
are a discontinuous number of teeth in contact (in
mesh).

the present paper focuses on the first item.
The stiffness of gears is important for many applica-

tions, due to the intrinsic non-linear and discontinuous
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nature it is a source of vibration excitation in transmis-
sion systems. In order to analyze this, in e.g. a multi-
body formulation, the full gear stiffness description is
needed. The stiffness variation also controls the load
distribution between engaged teeth and therefore indi-
rectly also the strength (root failure). Discussion on
load distribution is found in e.g. Hayashi and Sayama
(1963), Hayashi (1963), Zhang and Fang (1999) and
Pedrero et al. (2010). Despite the extensive use in
practical application the number of scientific publica-
tions devoted specifically to the evaluation of helical
gear stiffness is limited, see Choi and David (1990),
Hedlund and Lehtovaara (2008). For stiffness of spur
gears more references can be found in the literature see
e.g. Arafa and Megahed (1999),Letaief et al. (2008)
and Pedersen and Jørgensen (2014). The loaded gear
stress at either the root or at the contact point deter-
mines the gear fatigue life, the ISO standard for gear
strength calculation is ISO 6336-1 (2006).

The stiffness is in the present paper calculated us-
ing the elastic strain energy method as it can be found
in e.g. Pedersen and Pedersen (2008a), Pedersen and
Pedersen (2008b) and Pedersen and Pedersen (2009).
The primary advantage of the method is that the stiff-
ness is found from the load and the elastic energy, i.e.
the deflection is not used to find the stiffness. The ad-
vantage is that the definition of a deflection related to
a distributed load is not unique and straight forward,
this is however the case when using the elastic energy.
In modelling the stiffness of spur gears it is in Pedersen
and Jørgensen (2014) shown that both the contact area
size and the rim size have a significant influence on the
gear stiffness. Information on gears rim stiffness can
be found in e.g. Letaief et al. (2002) and Letaief et al.
(2008). The stiffness is found without contact analysis
as it may be found in e.g. Tsay (1988) and Hedlund
and Lehtovaara (2006). Instead the load distribution is
assumed given as also found in Pedersen and Pedersen
(2008a).

The stiffness evaluation is in the present paper done
using the finite element method (FEM). The helical
gear geometry is truly 3 dimensional and it is not pos-
sible to find the true stiffness without modelling in 3D.
The helical gear can be viewed as infinitely thin slices
of a spur gear rotated relative to each other. The stiff-
ness of a spur gear can be found by 2D modelling, and
the stiffness’s of the slices could be summarized to form
the helical gear stiffness. This kind of assumption does
not include the axial deformation and the stress inter-
action between the slices. The involute gear shape has
a mathematically clear definition, the gear tooth root
is defined by the envelope of the cutting tool tooth top,
see DIN 867 (1986). The root can be found as curve
segments which have individual mathematical defini-

tion. In the present paper the standard root shape
is applied, optimized root shapes can be found in e.g.
Pedersen (2009) and Pedersen (2015). An example of
a standard helical gear tooth loaded over part of the
gear width is seen in Figure 1.
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Figure 1: Example of loaded helical gear tooth. The
contact is here illustrated to lie between the
two lines on the tooth face.

The same overall results as found in Pedersen and
Jørgensen (2014) are found for the helical gear anal-
ysis performed here. The gear stiffness is primarily
controlled by two factors; the boundary condition (the
rim size) and the contact zone size. The contact load is
assumed to have a Hertzian distribution over the con-
tact zone width (smallest dimension of the shown con-
tact zone in Figure 1). In the length direction different
distributions are presented with the overall conclusion
that both the contact zone size and the distribution
have an influence on the stiffness.

The paper is organized as follows. Section 2 includes
a presentation of the geometric definitions of helical
gears, and the procedure for estimating the stiffness
used together with the FE modelling details. The con-
tact zone is discussed in Section 3, a simple geometric
procedure for finding the contact zone is presented. In
Section 4 the influence from the contact zone on the
tooth stiffness is discussed. The rim size (boundary
condition) influence on the stiffness is discussed in Sec-
tion 5.
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The same overall results as found in Pedersen and
Jørgensen (2014) are found for the helical gear anal-
ysis performed here. The gear stiffness is primarily
controlled by two factors; the boundary condition (the
rim size) and the contact zone size. The contact load is
assumed to have a Hertzian distribution over the con-
tact zone width (smallest dimension of the shown con-
tact zone in Figure 1). In the length direction different
distributions are presented with the overall conclusion
that both the contact zone size and the distribution
have an influence on the stiffness.

The paper is organized as follows. Section 2 includes
a presentation of the geometric definitions of helical
gears, and the procedure for estimating the stiffness
used together with the FE modelling details. The con-
tact zone is discussed in Section 3, a simple geometric
procedure for finding the contact zone is presented. In
Section 4 the influence from the contact zone on the
tooth stiffness is discussed. The rim size (boundary
condition) influence on the stiffness is discussed in Sec-
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tion 5.

2 Geometric definitions

The basic geometry for helical gears is the same as
for spur gears i.e. the involute. The basic geometry
definitions can be found in many textbooks on gear
geometry (see e.g. Litvin and Fuentes (2004)), in order
to facilitate an easy reference some of the equations are
also presented here.

The ISO spur gear profile is controlled by the cutting
tools outer profile design, see DIN 867 (1986). The spur
gear tooth geometry is the envelope defined by rotating
and simultaneously translating the cutting tool (rack).
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Figure 2: Base circle and involute geometry, the angle
is defined by the base circle arc length s1.

The envelope of the straight sides of the cutting tool
defines the gear contacting geometry; this segment cor-
responds to the involute shape presented in Figure 2
and can be given as a function of s1. The coordinate
system in Figure 2 is fixed to the tooth and therefore
rotates with the gear. For the spur gear the two di-
mensional geometry is simply extruded in the z direc-
tion. The contacting tooth surface is given in paramet-
ric form, in tooth coordinate system, as
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where W is the gear tooth width, the parameter s1 is
the base circle arc length which is directly related to

the involute arc length and limited by minimum and
maximum values. The base circle radius rB is given by

rB = M
nz

2
cos(α) (2)

where nz is the number of gear teeth, M is the tooth
module and α is the pressure angle defined by the cut-
ting tool (α = π/9 for normal gears).
The geometry for the helical gear is found by a fixed

out-of-plane cutting rack rotation, the angle of rotation
is β and the axis of rotation is the Y -axis see Figure
3. Depending on the sign of β the result is a left hand
helical gear or a right hand helical gear. The curved
surface is in parametric form given as
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where the base circle radius, rb, for a helical gear is
defined as
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where it is used the transverse module and the pressure
angle defined by
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The factor κ is defined as
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The remaining part of the gear is defined by top
cylinder (addendum) and the gear root geometry. As-
suming that the root geometry is given in parametric
form xroot, yroot for z = 0 either analytically or numer-
ically, as it can be found in e.g. Pedersen (2015), then
the root surface is given as.
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2.1 Stiffness evaluation

The load and resulting deflection of a helical gear is not
uniformly distributed when the gear teeth is in mesh,
the direction of the load can however be estimated from
the geometric definitions. In many applications of sim-
ulation it is preferred to have the stiffness represented
by a single value although it is distributed, this enables
a simple spring stiffness analogy. The purpose of this
section is to describe the stiffness by a single value in
a concise manner.

The stiffness is evaluated using the finite element
method (FEM), and the numerical tool used is the
COMSOL program (COMSOL AB (2015)). The com-
mon definition of stiffness is that it relates deflection
to load, i.e. with given load what is the deflection? As-
suming linearity the stiffness is the linearity constant
defined by

K =
F

D
(9)

where F is the force and D is the corresponding de-
flection. This definition works fine for single loads but
for distributed loads the definition can not be applied
straight forward, i.e. there is not a single nodal deflec-
tion that can represent the distributed deflection. The
stiffness can instead be derived from the total elastic
energy U , which equals twice the strain energy in the
linear case Uε = U/2.

In general the linear solution to a FE problem can
be stated as

{F} = [K]{d} (10)

where {F} is the nodal load vector, {d} the nodal de-
flection and [K] the stiffness matrix. Assuming that
the load vector is defined by a constant unit vector
and the size Fn

{F} = Fn{v} (11)

then the corresponding deflection is given by

{d} = Dn{w} (12)

where {w} is a constant unit vector and Dn is the de-
flection vector size. The FE equilibrium (10) can then
be given as

Fn{v} = KnDn{w} (13)

In a FE calculation the total elastic energy is given
by

U = {F}T {d} (14)

We find by substitution that

U = Fn{v}TDn{w} = Fn{v}TFn{v}
1

Kn
=
F 2
n

Kn
⇒

Kn =
F 2
n

U
(15)

This way of establishing the stiffness is also used in
relation to bolt plate stiffness in Pedersen and Pedersen
(2008a), Pedersen and Pedersen (2008b) and Pedersen
and Pedersen (2009). In the present paper 3D FE anal-
ysis is used for finding the total elastic energy.

We assume linearity and if a unit load is applied then
the stiffness is numerically directly given as the inverse
of the total elastic energy.

3 Contact zone

To apply the load on the tooth the contacting zone and
the pressure distribution over this zone is needed. The
aim in the present paper is to avoid a traditional con-
tact modelling, primarily due to the very high number
of finite elements and the iterative solution needed for
a satisfactory analysis. The contact zone is to some
extent controlled by the basic gear geometry (see e.g.
Litvin and Fuentes (2004)).

The load direction on the helical gear is defined by
the normal to the surface (3). In the tooth coordinate
system the normal to the surface is given by





Nx
Ny
Nz



 =





s1
rb

sin(s1/rb + κs2)

−s1
rb

cos(s1/rb + κs2)

κs1





(16)

Using the scalar product and vector product the an-
gle βb between the normal vector and the transverse
plane is found, it is given by
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sin(βb) =
Nz√
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x +N2
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√
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y +N2
z

=
1√
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(18)

from which it is directly found that

tan(βb) = κrb (19)

utilizing the scalar product again relative to a unit vec-
tor in the y direction it is found that

sin(α)

sin(αt)
=

√
N2
x +N2

y
√
N2
x +N2

y +N2
z

= cos(βb) (20)

and then by substitution and the use of (6) that

sin(βb) = sin(β) cos(α) (21)

As seen from (19) and (21) the angle βb is independent
on any profile shift.

The contact zone center line (hereafter termed con-
tact line) is well defined and controlled by the involute
shape. The contact line must lie on the contact plane,
this plane is the same as for the spur gear. The con-
tact plane is the plane that is tangential to the base
cylinders (cylinders with the radius equal to the indi-
vidual base radii) of the two gears in mesh, see Figure
3. In the tooth coordinate system shown in Figure
3 the transverse plane is shown with a possible profile
shift, i.e. αtw is the transverse pressure angle assuming
profile shift. The coordinate system origin is assumed
to be placed in the Z-direction such that the helical
gear extends into the negative Z-direction.

For the helical gear the contact line is still a straight
line but relative to the spur gear it is rotated the angle
βb in the contact plane. The contact line can, from
the previous, be found in an analytical form, what re-
mains is the contact zone extension perpendicular to
the contact line.

The spur gear contacting surface is parabolic, i.e.
one principal normal curvature is zero. Therefore, for
spur gears the usual assumption used is Hertzian line
contact (two cylinders in contact) the second princi-
ple normal curvature is directly given by 1/s1 and the
value of s1 is constant along the contact line. The spur
gear does not have a constant second principal nor-
mal curvature, as a cylinder has, since the s1 changes
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Figure 3: Transverse plane with indication of global co-
ordinate system with origo in pitch point and
the contact plane.

value along the involute shape. Due to the small con-
tact zone width the assumption of Hertzian cylinder
contact stress is still valid.
For the helical gear the contacting surface is also

parabolic and the contact line is also here in the direc-
tion of zero normal curvature. For the helical gear the
radius of curvature in the transverse plane is still given
by the s1 variable but the second principle normal ra-
dius of curvature is needed, which is given by

s1
cosβb

(22)

For the helical gear, contrary to a spur gear, s1
change value along the line of contact. The variation
is linear and depends on the βb angle and the position
t along the contact line, it is given by

s1(t) = s1(0) + t sin(βb) (23)

For the involute gear contact the sum of the two
base circle arc length, sc, is constant (see Figure 4 and
is given by.

sc = s1 + s2 = (rb1 + rb2) tan(αtw) (24)

where rb1 and rb2 are the base circle radii of the two
gears and αtw is the transverse pressure angle found
from the iterative solution of (see e.g. Niemann and
Winter (1985))
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by the s1 variable but the second principle normal ra-
dius of curvature is needed, which is given by
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(22)

For the helical gear, contrary to a spur gear, s1
change value along the line of contact. The variation
is linear and depends on the βb angle and the position
t along the contact line, it is given by

s1(t) = s1(0) + t sin(βb) (23)

For the involute gear contact the sum of the two
base circle arc length, sc, is constant (see Figure 4 and
is given by.
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where rb1 and rb2 are the base circle radii of the two
gears and αtw is the transverse pressure angle found
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from the iterative solution of (see e.g. Niemann and
Winter (1985))

ps1 + ps2 = (z1 + z2)
inv(αtw)− inv(αt)

2 tan(α)
(25)

with the involute angle defined as

inv(θ) = tan(θ)− θ (26)

If there is no profile shift (ps1 +ps2 = 0) then αtw = αt.
The half-width, a, of Hertzian contact depends on

the radius of curvature for both bodies in contact and
is then given by

a ≈
√

4

π
(m1 +m2) ·

√
Fc

cos(βb)b
·
√
s1 − s21/sc =

C1 ·
√
s1 − s21/sc (27)

m1 = m2 =
1− ν2
E

(28)

where b is the contact length, C1 is a constant depend-
ing on the load size, on the geometry (b and βb) and
on the gear material (E is modulus of elasticity and ν
is Poisson’s ratio; here it is assumed that the same ma-
terial for both gears). If the load has a variation along
the contact line this will therefore have an influence on
the contact width.

If it is first assumed that the load is evenly dis-
tributed along the contact line then the variation in
a along the contact line primarily depends on the vari-
ation in the base circle arc length (23). The largest
variation is found in the case of small number of teeth
on pinion gear (gear 1) and a large gear ratio, and if si-
multaneously s1 has the largest possible variation along
the contact line, i.e. s1 ∈ [smin : smax]. In Figures 5
and 6 the variation of the contact zone half width is
illustrated for different gear ratio values u and for dif-
ferent number of teeth on the pinion in both plots given
values are β = π/9 and α = π/9. The different curves
are normalized so that the maximum value is unit in
order to focus on the variation.

In Figures 5 and 6 the assumption is that the load
is evenly distributed along the contact line which to
some extent is verified in Hayashi (1963) except at the
contact line end points. In some cases a parabolic con-
tact load distribution along the contact line might be
argued, see e.g. Norton (2000). In the FE stiffness
calculation the assumption used in the present paper
is either a constant load distribution or a parabolic

distribution. The parabolic distribution can easily be
included by changing the contribution of Fc in (27).
The assumption of a parabolic distribution along the
contact line is defined in the t parameter used in (23),
and due to the linear relation between s1 and t the
parabolic distribution influence on the half-width can
be expressed as

a ≈ C2 ·
√

(smin − s1)(s1 − smax)(s1 − s21/sc) (29)

where C2 is a constant that depends on the total load
size, on the geometry and on the gear material. The
parabolic distribution is here given for the specific case
where the minimum and maximum value of s1 along
the contact line is the overall minimum and maximum
value for the base circle arc length. To visualize the in-
fluence from the parabolic distribution Figure 7 shows
the variation of the contact zone half-width for three
different gear ratios. In the figure the largest possible
variation s1 ∈ [smin : smax] is assumed and the pinion
gear has nz = 17 teeth.

In Figure 7 it is noticed how the shape is perfectly
symmetric for a gear ratio of one while the shape gets
increasingly distorted for larger gear ratios. The typ-
ically maximum allowable gear ratio is u = 7 so the
shapes in Figure 7 illustrate the boundaries for the
variation.

4 Influence on stiffness from
contact zone width

The first assumption of two spur gears in contact is
to model it as two cylinders in contact. The contact
between the two cylinders is non-linear principally be-
cause the contact width depends on the load, and can
be approximated by a Hertzian contact model. To ex-
emplify half a cylinder with a diameter of 1m, length of
1m, modulus of elasticity E = 2.1·1011Pa and Poisson’s
ratio 0.3 is used. Evaluating the stiffness as described
previously the relationship between contact zone half-
width and stiffness as seen in Figure 8 is found, the
stiffness presented in Figure 8 is the secant stiffness.
It is clear that for increasing contact width an almost
linear relationship between stiffness and contact width
is the result. For smaller values of a this linear rela-
tionship is no longer valid. In Pedersen and Jørgensen
(2014) the same overall stiffness dependence on the
contact width was reported.

Due to the shape of the graph in Figure 8 it is possi-
ble to specify curve-fits that can facilitate the inclusion
of the non-linear stiffness.

The discussion in the remaining part of the paper is
based on a specific choice of standard gear parameters;
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parameter s1(0).

s1(0) = rb(αt − π/45) ≈ 29.74mm

In this position the contact length has the maximum
possible value given by

tmax =
W

cos(βb)
≈ 84.48mm

4.1 Constant contact width assumption

In the first case the contact width is assumed constant,
i.e. the force is evenly distributed along the contact
line and the contact pressure is the same for all nor-
mal surface cuts which have the contact line as surface
normal.
In Figure 9 the tooth is shown and the contact area

is also seen. Following the results of Pedersen and
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possible value given by
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W

cos(βb)
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4.1 Constant contact width assumption

In the first case the contact width is assumed constant,
i.e. the force is evenly distributed along the contact
line and the contact pressure is the same for all nor-
mal surface cuts which have the contact line as surface
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Jørgensen (2014) the tooth stiffness using only one
tooth is estimated. The load is applied to the con-
tact area with a Hertzian distribution and the tooth is
clamped at the bottom and the sides, indicated in Fig-
ure 9 by the different colour. This boundary condition
is selected in this case where the focus is specifically on
the influence from the contact area and the load dis-
tribution. The influence from the rim size is discussed
in the next section. Figure 10 shows the tooth stiffness
as a function of the contact zone half-width.

The same conclusions are made here as for the cylin-
der contact, i.e. the contact zone width, and therefore

the contact load, has a significant influence on the se-
cant stiffness achieved. The influence is not as large as
for the previously shown cylinder example but this is
to be expected since for the tooth the base structure is
also loaded in bending that contributes to the stiffness.

4.2 Constant force along contact line

Keeping the assumption of constant force along the
contact line but changing the contact width as spec-
ified by Hertzian theory the results are presented in
Figure 11. The stiffness results found are shown by
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Jørgensen (2014) the tooth stiffness using only one
tooth is estimated. The load is applied to the con-
tact area with a Hertzian distribution and the tooth is
clamped at the bottom and the sides, indicated in Fig-
ure 9 by the different colour. This boundary condition
is selected in this case where the focus is specifically on
the influence from the contact area and the load dis-
tribution. The influence from the rim size is discussed
in the next section. Figure 10 shows the tooth stiffness
as a function of the contact zone half-width.

The same conclusions are made here as for the cylin-
der contact, i.e. the contact zone width, and therefore

the contact load, has a significant influence on the se-
cant stiffness achieved. The influence is not as large as
for the previously shown cylinder example but this is
to be expected since for the tooth the base structure is
also loaded in bending that contributes to the stiffness.

4.2 Constant force along contact line

Keeping the assumption of constant force along the
contact line but changing the contact width as spec-
ified by Hertzian theory the results are presented in
Figure 11. The stiffness results found are shown by
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Figure 7: Normalized variation in the contact zone half-width for different gear ratios ranging from u = 7 to
u = 1, the load is assumed to have a parabolic variation along the contact line. The plot is made for
a pinion gear with nz = 17, β = π/9 and α = π/9.

In Figure 9 the tooth is shown and the contact area
is also seen. Following the results of Pedersen and
Jørgensen (2014) the tooth stiffness using only one
tooth is estimated. The load is applied to the con-
tact area with a Hertzian distribution and the tooth is
clamped at the bottom and the sides, indicated in Fig-
ure 9 by the different colour. This boundary condition
is selected in this case where the focus is specifically on
the influence from the contact area and the load dis-
tribution. The influence from the rim size is discussed

in the next section. Figure 10 shows the tooth stiffness
as a function of the contact zone half-width.

The same conclusions are made here as for the cylin-
der contact, i.e. the contact zone width, and therefore
the contact load, has a significant influence on the se-
cant stiffness achieved. The influence is not as large as
for the previously shown cylinder example but this is
to be expected since for the tooth the base structure is
also loaded in bending that contributes to the stiffness.
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Figure 8: Stiffness of half a cylinder (radius 0.5m and length 1m) as a function of the contact zone half-width.

Figure 9: Outline of helical tooth, the specific contact area selected is shown for constant contact width of 1mm.
The clamped boundaries are indicated by a different colour for the side and bottom.

crosses, while the full line is the stiffness found from
the previous constant contact zone width assumption.
For comparison the stiffness is shown as a function of

the mean contact zone half-width, amean. The results
with this contact force distribution are for all practical
application the same as for the contact width case. It
is therefore concluded that an assumption of constant
contact width is suitable for the stiffness evaluation.
The conclusion is still, that the contact zone width is
highly important for the stiffness values found.

4.3 Parabolic distribution of force along
contact line

Finally the influence on the stiffness is examined if the
force is not evenly distributed along the contact line.
The load will vary along the contact line depending on
the amount of crowning used. The force distribution

examined here is parabolic. Following the results from
the previous section the contact zone width is assumed
to be constant.

The results of the calculation with parabolic force
distribution are seen by the broken line in Figure 12,
the full line is the stiffness found from the previous
constant force and contact zone width assumption.

The results indicate that the force distribution along
the contact line has a significant influence on the stiff-
ness and therefore the actual force distribution should
be taken into account. In order for the full parabolic
force distribution to be valid a significant amount of
gear crowning is needed, i.e. over the full gear width.
The assumption of constant force along the contact line
is probably the most correct one except for the region
close to the gear sides.

With respect to the finite element model used for the
contact zone influence on the stiffness it can be com-
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is therefore concluded that an assumption of constant
contact width is suitable for the stiffness evaluation.
The conclusion is still, that the contact zone width is
highly important for the stiffness values found.

4.3 Parabolic distribution of force along
contact line

Finally the influence on the stiffness is examined if the
force is not evenly distributed along the contact line.
The load will vary along the contact line depending on
the amount of crowning used. The force distribution

examined here is parabolic. Following the results from
the previous section the contact zone width is assumed
to be constant.

The results of the calculation with parabolic force
distribution are seen by the broken line in Figure 12,
the full line is the stiffness found from the previous
constant force and contact zone width assumption.

The results indicate that the force distribution along
the contact line has a significant influence on the stiff-
ness and therefore the actual force distribution should
be taken into account. In order for the full parabolic
force distribution to be valid a significant amount of
gear crowning is needed, i.e. over the full gear width.
The assumption of constant force along the contact line
is probably the most correct one except for the region
close to the gear sides.
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Figure 9: Outline of helical tooth, the specific contact area selected is shown for constant contact width of 1mm.
The clamped boundaries are indicated by a different colour for the side and bottom.

4.2 Constant force along contact line

Keeping the assumption of constant force along the
contact line but changing the contact width as spec-
ified by Hertzian theory the results are presented in
Figure 11. The stiffness results found are shown by
crosses, while the full line is the stiffness found from
the previous constant contact zone width assumption.

For comparison the stiffness is shown as a function of
the mean contact zone half-width, amean. The results
with this contact force distribution are for all practical
application the same as for the contact width case. It
is therefore concluded that an assumption of constant
contact width is suitable for the stiffness evaluation.
The conclusion is still, that the contact zone width is
highly important for the stiffness values found.

4.3 Parabolic distribution of force along
contact line

Finally the influence on the stiffness is examined if the
force is not evenly distributed along the contact line.
The load will vary along the contact line depending on
the amount of crowning used. The force distribution
examined here is parabolic. Following the results from
the previous section the contact zone width is assumed
to be constant.

The results of the calculation with parabolic force
distribution are seen by the broken line in Figure 12,
the full line is the stiffness found from the previous
constant force and contact zone width assumption.

The results indicate that the force distribution along
the contact line has a significant influence on the stiff-
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Figure 10: Helical tooth stiffness as a function of contact zone half-width.
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Figure 11: Helical tooth stiffness as a function of mean contact zone half-width under the assumption of evenly
distribution of contact load along the contact line. The full line is for constant contact zone half-
width, crosses are for varying (according to Hertzian distribution) contact zone half-width.

mented that all of the helical gear stiffness evaluations
are made with a large number of elements. Here just
over 1 million d.o.f. are used., and the elements are
more dense in the areas where it is needed, i.e. in the
contact zone and the tooth root. The stiffness values
will be slightly reduced with an increased number of el-
ements in the FE calculation but the influence on the
overall stiffness value is insignificant.

5 Rim size (boundary condition)
influence on stiffness

The rim thickness, rt (see Figure 13), included in the
stiffness calculation has a significant influence on the
found stiffness value, as it can be found in e.g. Letaief
et al. (2008) or Pedersen and Jørgensen (2014) specifi-
cally in relation to spur gears. The size of this influence
is typically greater than the influence from the con-
tact zone size. In evaluating the full stiffness of a gear
the stiffness of the shaft that the gear is attached to
should also be included. The stiffness of the shaft can
be rather easily estimated and therefore not included
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ness and therefore the actual force distribution should
be taken into account. In order for the full parabolic
force distribution to be valid a significant amount of
gear crowning is needed, i.e. over the full gear width.
The assumption of constant force along the contact line
is probably the most correct one except for the region
close to the gear sides.

With respect to the finite element model used for the
contact zone influence on the stiffness it can be com-
mented that all of the helical gear stiffness evaluations
are made with a large number of elements. Here just
over 1 million d.o.f. are used., and the elements are
more dense in the areas where it is needed, i.e. in the

contact zone and the tooth root. The stiffness values
will be slightly reduced with an increased number of el-
ements in the FE calculation but the influence on the
overall stiffness value is insignificant.

5 Rim size (boundary condition)
influence on stiffness

The rim thickness, rt (see Figure 13), included in the
stiffness calculation has a significant influence on the
found stiffness value, as it can be found in e.g. Letaief
et al. (2008) or Pedersen and Jørgensen (2014) specifi-
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Figure 12: Helical tooth stiffness as a function of contact zone half-width under the assumption of evenly distri-
bution of contact load along the contact line. The full line is for the assumption of evenly distribution
of contact load along the contact line, the broken line corresponds to the assumption of parabolic
force distribution along the contact line.

in the present paper. The focus is on the tooth and
rim stiffness.
For finding the rim size influence the FE model is

changed so that the whole rim is included, as seen in
Figure 13. The figure shows the FE mesh in the case of
rt = Mt. The number of elements in the shown model
is over 500000 so it is clear that the elements are more
dense in the desired areas, i.e. the root and the contact
zone.
The model is clamped at the inner cylindrical bound-

ary, and the load is assumed to be parabolically dis-
tributed along the contact line and at the same time
the contact zone half-width is constant and fixed at
0.05Mt, finally the load is applied at the same position
as done in the previous section.
The stiffness variation is shown in Figure 14. It can

be seen that the value for rt = Mt, in Figure 14, cor-
responds very closely to what is found in Figure 12 for
the same contact width, i.e. there is not a significant
difference between using the partial rim model in Fig-
ure 9 and a model with the full rim included.
The same overall results as given in Figure 14 are

found in Pedersen and Jørgensen (2014) for spur gears.
For smaller rim size, rt < 2Mt, the stiffness/rim size
relation is non-linear, while for a intermediate rim size
the relation is linear. For large rim size values the
behaviour is again non-linear. The initial nonlinear
behaviour is due to the bending of the tooth, while
for intermediate values the decrease in the stiffness is
primarily controlled by the cylinder torsion. For large
rim size values where the hole in the cylinder becomes
relatively small the boundary condition is the reason
for the non-linear behaviour.

That the stiffness is higher for smaller rim size rela-
tive to a larger rim size is due to the boundary condi-
tion being closer to the load. In estimating the overall
stiffness the stiffness of the shaft must be added.

6 Conclusion

In the present paper the stiffness of a helical gear is
estimated using the elastic strain energy method. The
stiffness is found using the load magnitude and the
elastic strain energy. The advantage of this method is
that the need for defining a single displacement related
to a distributed load is avoided. By doing this the
stiffness is evaluated in a clear and concise manner.

The contact is modelled by a contact load distribu-
tion, i.e. the FE calculations are solved directly with-
out the need for iterations. The load distribution is
assumed to be Hertzian. The paper shows that it is
sufficiently accurate to assume that the contact zone
width is constant along the contact line, i.e. the in-
fluence from the change in the combined curvatures
along the contact line can be neglected. The stiffness
is however influenced from the load distribution along
the contact line. So the level of crowning used has a
direct influence on the gear tooth stiffness.

The results of the present paper facilitates a study of
the complete stiffness variation of helical gears and the
combined meshing stiffness needed in, e.g. a multibody
simulation.
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Figure 12: Helical tooth stiffness as a function of contact zone half-width under the assumption of evenly distri-
bution of contact load along the contact line. The full line is for the assumption of evenly distribution
of contact load along the contact line, the broken line corresponds to the assumption of parabolic
force distribution along the contact line.

cally in relation to spur gears. The size of this influence
is typically greater than the influence from the con-
tact zone size. In evaluating the full stiffness of a gear
the stiffness of the shaft that the gear is attached to
should also be included. The stiffness of the shaft can
be rather easily estimated and therefore not included
in the present paper. The focus is on the tooth and
rim stiffness.

For finding the rim size influence the FE model is
changed so that the whole rim is included, as seen in
Figure 13. The figure shows the FE mesh in the case of
rt = Mt. The number of elements in the shown model
is over 500000 so it is clear that the elements are more
dense in the desired areas, i.e. the root and the contact
zone.

The model is clamped at the inner cylindrical bound-
ary, and the load is assumed to be parabolically dis-
tributed along the contact line and at the same time
the contact zone half-width is constant and fixed at
0.05Mt, finally the load is applied at the same position
as done in the previous section.

The stiffness variation is shown in Figure 14. It can
be seen that the value for rt = Mt, in Figure 14, cor-
responds very closely to what is found in Figure 12 for
the same contact width, i.e. there is not a significant
difference between using the partial rim model in Fig-
ure 9 and a model with the full rim included.

The same overall results as given in Figure 14 are
found in Pedersen and Jørgensen (2014) for spur gears.
For smaller rim size, rt < 2Mt, the stiffness/rim size
relation is non-linear, while for a intermediate rim size
the relation is linear. For large rim size values the

behaviour is again non-linear. The initial nonlinear
behaviour is due to the bending of the tooth, while
for intermediate values the decrease in the stiffness is
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rim size values where the hole in the cylinder becomes
relatively small the boundary condition is the reason
for the non-linear behaviour.

That the stiffness is higher for smaller rim size rela-
tive to a larger rim size is due to the boundary condi-
tion being closer to the load. In estimating the overall
stiffness the stiffness of the shaft must be added.

6 Conclusion

In the present paper the stiffness of a helical gear is
estimated using the elastic strain energy method. The
stiffness is found using the load magnitude and the
elastic strain energy. The advantage of this method is
that the need for defining a single displacement related
to a distributed load is avoided. By doing this the
stiffness is evaluated in a clear and concise manner.

The contact is modelled by a contact load distribu-
tion, i.e. the FE calculations are solved directly with-
out the need for iterations. The load distribution is
assumed to be Hertzian. The paper shows that it is
sufficiently accurate to assume that the contact zone
width is constant along the contact line, i.e. the in-
fluence from the change in the combined curvatures
along the contact line can be neglected. The stiffness
is however influenced from the load distribution along
the contact line. So the level of crowning used has a
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Figure 13: FE mesh for the rim size influence on the stiffness, left the full mesh; right a zoom of the tooth.
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