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Abstract. The combined treatment of pressurized gas nitriding and cold rolling is proposed as 

a new approach to rapid preparation of a strong and tough nitrided layer for steel 38CrMoAlA. 

The microstructural characteristics and properties of the modified surface layer in comparison 

with those of the conventionally gas nitrided sample have systematically been evaluated. The 

results show that the hardness and toughness of the nitrided surface layer can be significantly 

improved by the combined treatment. Especially, the wear resistance of nitrided surface layer 

under heavy loads was greatly enhanced. It can provide a new approach to rapidly preparing a 

nitrided layer with high strength and toughness. 

1.  Introduction 

Gas nitriding (GN), one of the well-established commercial surface modification techniques, has been 

widely used for improving the mechanical properties and wear/corrosion resistance of alloys and steels 

[1-3]. During GN, a gradient composite structure with a hard surface compound layer and a tough 

diffusion layer, is formed via thermochemical treatment in an NH3 containing atmosphere. However, 

conventional GN processes are usually performed at 500~590°C for a long duration (20~80 h), which 

results in high energy consumption and low production efficiency in industrial applications [1-3]. 

Moreover, compared with the diffusion layer, the compound layer consisting of a heterogeneous 

mixture of ɛ-Fe2-3N and γ′-Fe4N phase, is very thin and contains high internal stresses, so that the 

nitrided surface layer is friable and brittle [4-9]. This will affect the performance of the nitrided 

components subjected to severe service environments involving high shear, compressive and impact 

loading conditions [4,5,7]. 

Up to now, many rapid GN technologies have been developed to improve GN efficiency such as a 

surface nanocrystallization pretreatment [10,11], an activated GN by adding ammonia chloride 

[12,13], as well as a cathode sputtering pretreatment [14]. Meanwhile, some methods of nitriding such 

as two-stage GN and controlled GN with the nitriding potential below the critical value were 
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developed to obtain a single γ′-Fe4N phase or to form a nitrided surface without a compound layer 

[4,5,15]. However, it would take a longer duration when nitriding under the lower nitriding potential 

using an extremely low ammonia flow rate. Although the brittleness of the surface nitrided layer could 

be eliminated by means of the two-stage nitriding process, consisting of conventional nitriding and 

decomposition of the compound layer by ion sputtering, serious deterioration of the surface hardness 

and wear resistance of the nitrided steel will be induced [4]. Therefore, it is necessary to develop a 

technical method that can not only get a compound-free nitrided layer with excellent toughness on the 

steel surface, but also have a high production efficiency. 

The previous works show that pressurized gas nitriding (PGN) can significantly accelerate the 

nitriding efficency due to the faster reaction rates, the sufficient and stable nitrogen surface 

concentration under higher pressure [16,17]. It is noted that the nitriding potential of PGN can be 

adjusted by the nitriding pressure and ammonia flow rate. This implies that it is possible to rapidly 

prepare a compound-free nitrided layer by means of a PGN treatment using continuous NH3. In fact, it 

has been reported that the hardness of this tough nitrided layer can be further improved by means of 

cold rolling (CR) or a surface mechanical attrition treatment (SMAT) without leading to spalling on 

the steel surface [4]. But what effect of the combined treatment (PGN + CR) on the surface 

performance for the nitrided steel has not been clarified so far. 

The present work aims to examine the effects of a combined treatment (PGN + CR) on the 

microstructure and surface properties of the nitrided steels, and compare with those in the CGN and 

PGN sample, and to provide theoretical and experimental warrants for developing a rapid preparation 

of a highly strengthened and toughened nitrided layer for steels. 

2.  Experimental procedure 

The tested steel 38CrMoAlA was cut from a hot-rolled bar with the chemical composition (mass%) of 

0.39 C, 1.62 Cr, 0.22 Mo, 1.04 Al, 0.31 Si, 0.42 Mn, 0.021 P, 0.018 S and bal. Fe. Before nitriding, the 

samples were oil quenched from 940°C, and tempered at 650°C for 1.5 h to produce the desired 

mechanical properties (with a hardness of 310 HV). All of the treated samples were cut to 60 mm × 50 

mm × 3 mm, surface ground and washed carefully with acetone and absolute alcohol, then 

immediately hung in a pressurized GN furnace for nitriding [16]. For the nitriding treatment, high-

purity NH3 (99.99 vol.%) gas was used as the nitriding medium. The CGN was performed at 530°C 

for 30 h using a nitriding potential of 1/2

N =1.96 atmr   (NH3 flux: 0.5 l/minute) under 1 atm pressure, 

whereas the PGN was performed at 530°C for 5 h using a nitriding potential of 1/2

N =0.26 atmr   (NH3 

flux: 0.2 l/minute) under 5 atm pressure. Nitriding potential is defined as 
3 2

3/2

N NH H= /r p p , where p  

denotes partial pressure [1-3]. Note that, on applying this nitriding potential for PGN, hardly any iron 

nitrides can develop in the case of the nitrided sample, according to the Lehrer diagram [18]. After the 

PGN treatment, the PGN samples were cold rolled by 30%. 

Cross-sectional observations of the nitrided samples were performed by optical microscopy (OM). 

The phases in the surface layer were identified by means of a D/MAX-PC 2500 X-ray diffractometer 

(XRD) using CuKα radiation, operated at 40 mA and 40 kV. A JEM-2010 TEM was employed to 

characterize the microstructural features in the surface layer of the PGN + CR (PGNC) sample. The 

depth-dependent hardness of the nitrided sample was measured using an FM-ARS 9000 micro-Vickers 

hardness tester with a load of 200 g and a holding time of 10 s. Before the toughness test, a mirror 

finish was performed to ensure minimal loss of surface layer, the surfaces of the treated samples were 

slightly polished using 1 μm diamond paste. The polished surfaces were then subjected to a Vickers 

hardness test using a load of 10 kg. 

The wear tests were carried out in a pin-on-disc machine at room temperature under 1 atm pressure. 

The GCr15 steel pin (with a hardness of 63~65 HRC) was turned in an anti-clockwise motion at 50 

rpm in contact with the nitrided sample (disc) under two loads of 100 and 400 N, respectively. After a 

sliding distance of about 170 m, the experiment was stopped, and then the worn surfaces were 

examined using an S-4800 scanning electron microscope (SEM). 
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3.  Results and discussion 

3.1.   Microstructural characterization of the surface layer 

Fig. 1a shows the cross-sectional microstructure of the steel 38CrMoAlA sample after CGN at 530°C 

for 30 h. It was clearly observed that the nitrided layer was subdivided into a bright compound layer 

(CL) and a gray diffusion zone. The XRD patterns revealed that the CL with about 15 μm in thickness 

was composed of ε-Fe2-3N and γ′-Fe4N, as well as a few oxide phases (Fig. 1b). The presence of the 

oxide phases suggested that slight oxidation had occurred during the long GN duration. After the PGN 

treatment at 530°C under 5 atm for 5 h, the nitrided surface layer almost consisted of αN phases except 

for a very small amount of γ′-Fe4N phase (Fig. 1d), which was consistent with the OM observation of 

the PGN sample (Fig. 1c). Moreover, it is worth noting that the thickness of the nitrided layer in the 

PGN sample is about 282 μm, which is almost equal to that (~ 316 μm) after CGN for 30 h. The above 

results demonstrated that a compound-free nitrided layer can be rapidly prepared by PGN with a 

controlled nitriding potential, which was obtained through adjusting the nitriding pressure and 

ammonia flow rate.  

  

  

Figure 1. Cross-sectional optical micrographic observations of (a) CGN sample and (c) PGN sample, 

and the XRD patterns of (b) CGN sample and (d) PGN sample. 

After the CR treatment to the PGN sample, a continuous flat surface without spalling was formed, 

and elongation of the microstructure along the rolling direction could be observed in the cross-

sectional microstructure of the PGNC sample, as shown in Fig. 2a. The thickness of the plastic 

deformation nitrided layer is approximately 170 μm. A TEM image and SAED pattern of the 

nitrides in the top surface layer of the PGNC sample are shown in Fig. 2b. Besides a high-density of 

dislocations, a few particles of about 100-200 nm sizes were also found in the matrix of the top surface 

layer. The corresponding electron diffraction pattern verified that these particles are γ′-Fe4N nitrides.  
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Figure 2. (a) Cross-sectional microstructure of PGNC sample. (b) A TEM image and electron 

diffraction pattern (inset) of the nitrides in the top surface layer of the PGNC sample. 

3.2.   Hardness and toughness of the nitrided layer 

Previous investigations have shown that the CL consisting of ε-Fe2-3N and γ′-Fe4N phases presents a 

relatively high hardness with a high brittleness, whereas a thin mono-phase layer of γ′-Fe4N or a 

compound-free diffusion layer has a relatively low hardness with a good toughness and supports a 

high dynamical force [6,8,19]. Fig. 3 shows the hardness variation with depth below the surface of the 

steel 38CrMoAlA sample treated by different process. It was found that the surface microhardness of 

PGNC sample could reach about 1165 HV, which was notably higher than that of the PGN sample 

(1080 HV), and almost equal to that of the CGN sample (1160 HV). It was also evident that in the first 

50 μm of the nitrided layer, the hardness of the PGNC sample was higher than that of the CGN 

sample. This phenomenon can be explained by the dislocations and other defects induced by CR in the 

α phase [11]. Based on the previous work, the effective case depth of the nitrided sample can be 

calculated as the case hardness value reaches the substrate hardness plus 50 HV [4]. The effective case 

depths are approximately 349, 306 and 198 μm for the CGN sample, PGN sample and PGNC sample, 

respectively. The results demonstrated that the nitriding kinetic process could still be significantly 

accelerated by PGN, although under a lower nitriding potential. 

 
Figure 3. Variations in the microhardness along the depth from the top surface layer for the 

CGN sample, PGN sample and PGNC sample. 

It has been shown that the morphological feature of the indentation produced by the hardness test 

reflects the bearing capacity and the toughness of the nitrided layers [4,20]. In order to qualitatively 

evaluate the toughness of the surface layer in each treated sample, Fig. 4 shows the indentation 

morphologies of the surfaces under a load of 10 kg. There are apparently different morphological 

features immediately noticed in these optical micrographs. It can be seen that, for the CGN sample 

(Fig. 4a), obvious linear cracks extending outward along each corner of the indentation could be noted, 
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and serious damage near an edge was also observed. For comparison, there existed a regular 

indentation with no cracks in the PGN sample and PGNC sample after the test, as shown in Fig. 4b 

and c. The results indicated that the CGN sample presented the lowest bearing capacity and toughness. 

Hence, it can be confirmed that a compound-free nitrided layer with a relatively high hardness and 

satisfactory toughness can be rapidly prepared by the combined treatment (PGN+CR). 

   

Figure 4. Optical micrographs of Vickers indentation for (a) CGN sample, (b) PGN sample and 

(c) PGNC sample under a load of 10 kg. 

3.3.   Wear properties 

Fig. 5 shows the weight losses of wear scars after a wear test with a sliding distance of 170 m and at a 

load of 100 N and 400 N for the three treated samples, respectively. It can be seen that the wear weight 

loss measured at 100 N was significantly smaller than that obtained under the load of 400 N, but the 

corresponding wear behaviors were apparently different. It should be noted that the CGN sample, 

which exhibited the best wear resistance under the load of 100 N, had the largest wear loss amongst all 

the treated samples when the applied load was up to 400 N. Additionally, the wear loss of the PGNC 

sample was similar to one half of that of the CGN sample under the load of 400 N, indicating that 

excellent wear resistance could be obtained in the PGNC sample. The prior investigations have shown 

that the wear characteristics of the nitrided sample depend on many factors such as the compound 

layer composition, compound layer toughness, mode of mechanical loading, etc [5-8]. The compound 

layer will be flaked and formed into hard abrasive particles in the initial stage of sliding when the 

contact pressure exceeds a critical value [9]. These hard abrasive particles that stay in the contact zone 

between the pin and the disc will accelerate the abrasive wear and promote an increasing of the weight 

loss [5-7]. This would explain the wear behavior found for the nitrided samples in the present study. In 

order to further explain the wear characteristics occurring in each surface of the nitrided sample, the 

surface morphologies of the nitrided samples were presented in Fig. 6. 

 
Figure 5. Wear weight loss for different samples at the applied loads of 100 N and 400 N. 

Fig. 6a-c show the morphologies of the worn surfaces after a wear test with a load of 100 N and 

sliding distance of 170 m. Apparently, when the wear load was 100 N, no obvious traces of abrasive 

wear had been found in all of the sample surfaces. The worn surface of the CGN sample was very 
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smooth with some thin grooves (Fig. 6a), whereas the worn surface of the PGN sample was relatively 

rough with more grooves and spalling (Fig. 6b). The PGNC sample shared a similar wear mechanism 

with the CGN sample, and a small amount of surface layer removal was observed in this case (Fig. 

6c). Increasing the wear load from 100 N to 400 N caused an obvious increase in the surface wear rate, 

as shown in Fig. 6d-f. Three different wear morphologies, indicative of different wear mechanisms, 

could be distinguished. The worn surface of the CGN sample is shown in Fig. 6d. It is clear that the 

compound layer was being removed from the wear track during testing, indicating that abrasive wear 

had occurred in this case. Traces of adhesive wear could be clearly observed on the worn surface of 

the PGN sample (Fig. 6e). The original surface had been worn away, and wear debris was 

agglomerated in the machined grooves and then formed the discontinuous compacted surface. The 

worn surface of the PGNC sample consisted of a large number of thin abrasion grooves and pits along 

the sliding direction, and no obvious surface layer removal was observed (Fig. 6f), demonstrating a 

minor weight loss during sliding. This emphasizes the fact that a good combination of hardness and 

toughness of the coating is crucial for good wear resistance [21]. The hardness distribution and 

compressive residual stress in the compound-free nitrided layer can be further improved by means of 

plastic deformation, which is attributed to the existence of a lot of defects [4,11]. Especially, the 

compressive residual stress is recognized to hinder the crack initiation and propagation [4,21]. 

Therefore, it is reasonable to believe that the wear resistance under heavy loads can be improved on 

the PGNC sample in comparison to the PGN sample. 

   

   

Figure 6. SEM images of the wear scars formed at an applied load of 100 N in (a) CGN, (b) GN and 

(c) PGNC sample and at 400 N in (d) CGN, (e) PGN and (f) PGNC sample. 

4.  Conclusions 

A compound-free nitrided layer on steel 38CrMoAlA steel with a relatively low hardness but good 

toughness can be rapidly prepared by PGN with a controlled nitriding potential. After a CR treatment 

to the PGN sample, the surface hardness can be further improved without loss of toughness. The CGN 

sample treated for 30 h showed excellent wear resistance under light loads due to its higher surface 

hardness, but showed a serious deteriorated performance under heavy loads, which can be attributed to 

the fracture of the compound layer leading to the formation of the hard abrasive particles. The greatly 

enhanced hardness as well as the surface toughness contributed to the best bearing capacity and wear 

resistance under heavy loads in the combined treated sample (PGN for 5 h + 30% CR). The formation 

of the compound-free nitrided layer by using the PGN and CR technique not only provides a new 

approach to improve the surface hardness, toughness and wear resistance of the nitrided layer, but also 

increases the manufacturing efficiency. 
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