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Abstract
The transmissions as functions of energy are central for electron or phonon transport in the Landauer transport picture. We suggest

a simple and computationally “cheap” post-processing scheme to interpolate transmission functions over k-points to get smooth

well-converged average transmission functions. This is relevant for data obtained using typical “expensive” first principles calcula-

tions where the leads/electrodes are described by periodic boundary conditions. We show examples of transport in graphene struc-

tures where a speed-up of an order of magnitude is easily obtained.

1603

Introduction
Calculations of electronic conductance based on first principle

methods such as density functional theory (DFT) provide a

valuable tool in order to gain insights into electronic transport in

nano-conductors and comparison to experiments without

employing fitting parameters. This is for example the case in

the field of single-molecular devices [1]. Popular methods are

based on DFT in combination with the non-equilibrium Green’s

function approach (DFT-NEGF), see, e.g., [2-4], or scattering

wave-function approaches [5]. The electrodes in such calcula-

tions are typically treated employing periodic boundary condi-

tions in the direction transverse to the transport direction with a

corresponding k-point average of the electronic states and trans-

missions. This means that for each transverse k-point the system

essentially behaves as a one-dimensional conductor with

diverging density of states and discontinuities in the transmis-

sion function at energies corresponding to band on-sets/channel

openings. It is well known that often in order to obtain smooth,

well-converged density of states and transmissions as a func-

tion of energy, a substantial number of transverse k-points are

needed due to the rapid variations of these functions for indi-

vidual k-points [6]. Certain quantities, for example the Seebeck

coefficient and thermo-electric figure of merit (ZT), are based

on the detailed behavior of the transmission [7,8] and thus

exceedingly sensitive to energy and k-resolution of the calcula-
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tions. This can amount to a significant computational burden for

large systems treated by first principle methods. Thus it is

highly interesting to devise simple ways to make this more effi-

cient and get maximum information from the data.

Sophisticated methods to tackle this include the transformation

to a smaller basis-set using maximally localized Wannier func-

tions [9], or to construct a optimized minimal basis-set and

using this to determine the transmission [10]. Both require one

to examine the details of the chemical bonds in the system, rele-

vant energy windows, and storing wavefunctions, which tend to

be elaborate. In this paper we present a simple and efficient

post-processing interpolation scheme which can significantly

speed up the convergence with respect to k-points. We illus-

trate the method by applying it to various graphene-based nano-

structures which are prone to bad convergence due to its vanish-

ing density of states at the Fermi level.

In the remaining parts of the paper we first explain the work-

ings of the interpolation scheme in section Results and Discus-

sion, while we investigate various test cases in section Example

cases, and finally discuss limitations to the scheme and con-

clude in section Conclusion.

Results and Discussion
Description of the method
The use of computationally “expensive” first principles DFT-

NEGF calculations for determining the transmission through

nano-structured systems is limited by the amount of time one

can afford to spend on the k-grid resolution. Often the rough

behavior of the transmission is already seen with a limited

number of k-points but the convergence of the average is slow

since the functions are changing abruptly with energy, e.g.,

around a band onset or a resonance. The position of the abrupt

feature will typically shift in a smooth way with changing

k-point, but a linear interpolation of the curves between two

consecutive k-points will be of little use since it will simply

contain, say, half of each abrupt feature. Instead, we propose an

interpolation scheme which can make use of a coarse, non-

converged k-grid, and thus reduce the computation cost simply

by using a “clever” technique to approximate the transmission

curves for intermediate k-points. The method does not magi-

cally guess the correct interpolated curves, and one has to have

a reasonable amount of k-point resolved transmission curves in

order to obtain a useful result, but smooth averaged curves can

be obtained, as we will illustrate below, using a significantly

smaller number of k-points. The interpolation is done by using a

shortest-path solver to determine a correspondence between two

k-adjacent curves. The correspondence is then used to find

intermediate curves which can be used to determine the aver-

aged transmission. The proposed interpolation scheme consists

of three separate steps, which will be described in detail in the

following sections.

In order to show the validity of our proposed scheme we have

determined the transmission through pristine graphene for

increasing number of transverse k-points (see Figure 1a). The

computational details are given in section Example cases. We

compare N = 6, 8, …, 54 to a well-converged calculation with

N = 600 k-points. By applying our algorithm we significantly

reduce the mean absolute deviation from a fully converged

transmission, as shown in Figure 1b. We see that the interpo-

lated transmissions converge much quicker than the raw data.

Fitting data with a power law, we can estimate the amount of

k-points needed in order to obtain a deviation of less than one

percent, thus giving a speed-up factor of η = 220/41 = 5.37.

Figure 1: Analysis of transmission in pristine graphene: (a) Transmis-
sion converges as the number of transverse k-points increases (darker
colors). (b) The mean absolute deviation from fully converged data
shown for TranSiesta data before and after using our interpolation
scheme.

Transform of data
In the following we will outline the method in general terms

and denote the data points by (x, y), corresponding to the trans-

mission function data point, (E, Tk(E)), for given k-point and

energy in the concrete examples. Initially, we transform the set

of data points (x, y) into points with a maximum Euclidian dis-

tance . The new data points span line segments (when
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Figure 2: We seek an interpolation of the two datasets (red, blue) containing N1 and N2 points, respectively. The three steps in the algorithm: (a) The
original data sets are transformed into line segments of a maximum length  = 0.1. Thus, for example the line segment a–c is split into 50 points.
(b) The weighted Euclidean distance is calculated for all point on both curves, and the shortest path from (1, 1) to (N1, N2) is found. (c) The curves are
linearly interpolated using the found path with N = 10 intermediate curves.

connected) on the curve  consisting of N different individual

points. In practice the transformation of data is done by looping

through all segment lengths L and inserting additional data

points if L> . Figure 2a shows data where the distance between

points a, c is much larger than , and thus requires extra points

between points a, c. The optimal value of the segment length 

depends on the given data. A value close to the median of the

original point distance is a good starting guess, and is chosen as

the default value.

The two curves in Figure 2a are required to smoothly interpo-

late into each other – a process which can be estimated by hand

(gray arrows). The proper path is found by overall minimiza-

tion of the interpolation distance, which will described in the

following subsection.

Correspondence between curves
Given two data sets, i.e., the curves , , we construct a

matrix  containing the weighted Euclidean distances between

points on opposite curves,

(1)

where i = 1 … N1, j = 1 … N2 denote all points on the curves

, , respectively. Thus, the dimension of the matrix  is

N1×N2. The weights wx,y are added to ensure a degree of

tunability when interpolating. This is due to the fact that x and y

are different quantities and thus have different scales. In order

to interpolate one curve into the other we need to determine the

shortest path for all points on either curve. This is done by

considering the distance matrix as a landscape and moving from

the start (1, 1) to the destination (N1, N2) using the smallest cost

possible. This is essentially identical to finding the minimum

energy path on an potential energy surface, which can be done

using either string methods or the nudged elastic band approach

[11]. We will instead use Dijkstra’s algorithm, which loops

through coordinates in the distance landscape and iteratively

compares all found paths until the target point is found. Each

iteration is done while keeping track of the cost and path. For

more information see [12]. The coordinates along the returned

shortest path is saved in a correspondence matrix  containing

two columns ( , ), which is used in the final step of our

routine. The distance matrix  in Figure 2b shows the shortest

path as a white line propagating along the distance landscape

minimum (black/dark blue).

Interpolation of curves
Once the data is transformed and a correspondence matrix is

obtained we interpolate the curves , . Instead of a simple

linear interpolation we use the correspondence matrix to obtain

intermediate curves. A simple linear, discretized interpolation is

used, i.e.,

(2)

(3)

where α is the interpolation parameter between zero (curve )

and one (curve ), and xi[M] means that we use the indices M

of the vector xi. The found intermediate data sets (x12α, y12α)

can then be sampled back to the original grid. In practice we

loop over α to generate the different interpolated curves.

Figure 2c shows the data in Figure 2a interpolated into N = 10

intermediate curves and transformed back onto the original grid.
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We note that the choice of weights wx, wy depends on the input

data scales. Changing the values can highly affect the outcome

of the shortest-path solver, since the distance landscape is

changed. Usually, it is advisable to rescale the data (using the

weights) so that the two data ranges are comparable. Similarly,

the length  has to be chosen wisely: A large value can result in

crude interpolations while a too small value makes the algo-

rithm too time-consuming.

Finally, we note that the algorithm described in the previous

subsections allows us to interpolate data in general. We can

apply the algorithm specifically to transmissions and DOS by

providing it with the needed data. In the case of TranSiesta and

the utility TBTrans we need to weight the interpolated curves

using k-grid weights and sum to obtain average transmission

curves. In the case of 3D transport we have a 2D k-grid, which

can be investigated using bilinear interpolation. In the following

section we apply the interpolation scheme to three example

cases.

Example cases
The usefulness of the presented algorithm is showcased by

considering transmission calculations through the simulated

nano-systems shown in Figure 3: (a) a pristine graphene sheet,

(b) a graphene nano-constriction [13], and (c) hydrogenated

kinked graphene [14]. The shown structures have minimal unit-

cells in the transverse transmission direction due to periodic

boundary conditions, and carbon atoms are shown in black

while hydrogen atoms are shown in white.

The transmission through the graphene sheet in Figure 3a is

calculated with the TranSiesta simulation suite, which utilizes a

localized basis set. For the present work a DZP basis set is used

in conjunction with a mesh cut-off of 300 Ry, a force tolerance

of 0.02 eV/Å, and a Monkhorst–Pack grid of 24 × 5 ensuring

absolute convergence. Exchange and correlation is described

using the PBE GGA functional [15]. A minimal transverse unit-

cell is used due to periodic boundary conditions, while an

energy window of ±10 eV around the Fermi energy is consid-

ered both for a crude transverse transmission k-grid (Nk = 20)

and a fully converged k-grid (Nk = 600). The coarse transmis-

sion spectrum is interpolated using the presented interpolation

scheme, as can be seen in the upper row in Figure 4. The upper

window of each column describes the full transmission versus

k-point. A good agreement is seen between the interpolated and

the converged data sets. A few places the interpolation guesses

incorrectly (for instance around E = −4 eV for k = 0.25 ).

These occur since the input data is too coarse. However, despite

the few differences between interpolated data and converged

data, the averaged curves have a remarkable resemblance and

the mean deviation is below 2% (Figure 1b).

Figure 3: Structures used as example cases: (a) a graphene sheet
consisting entirely of carbon atoms, (b) a graphene hydrogen-passi-
vated nano-constriction, and (c) a kinked graphene sheet decorated
with hydrogen along the kink lines. The left and right electrodes have
been highlighted with blue and red, respectively. Minimal unit-cells in
the transverse transmission direction have been used due to the peri-
odicity. Carbon atoms are shown in black, while hydrogen atoms are
shown in white.

The transmission through the graphene nano-constriction and

kinked graphene shown in Figure 3b and Figure 3c have been

extracted from the original datasets (see [13,14]), and are shown

in the middle and lower windows in Figure 4. As with the pris-

tine graphene example we see a remarkable resemblance to the

converged data set. The discrepancies are negligible, which

stems from the fact that a finer k-point sampling has been

performed in the original data. In the three cases we obtain

speed-ups of approximately 5, 6, and 8, for the pristine

graphene sheet, the graphene nano-constriction, and the kinked
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Figure 4: Algorithm applied to raw transmission data for the graphene-based systems in Figure 3. The raw data (left column) is interpolated (middle
column) and compared to the fully converged transmission curve (right column). The upper window of each subfigure is the full transmission for each
k-value, while the lower window shows the averaged value.

graphene sheet, respectively. Thus, we have demonstrated that

by applying a simple post-processing interpolation scheme we

can speed up convergence of roughly an order of magnitude.

Conclusion
We have presented a simple post-processing interpolation

scheme which speeds up transmission calculations on nano-

structured materials. The algorithm uses a shortest-path solver

to determine the optimal interpolation of a set of k-dependent

transmission curves, which ultimately can be summed to obtain

a smoothed average transmission.

We note that as a post-processing tool the algorithm relies on

the quality of the original data. Since this data is used as a base

for the interpolation any fluctuations will be present in the inter-

polated data and thus propagate to the final result. The present

implementation of the shortest-path solver is based on

Dijkstra’s algorithm which is stable but very slow [12]. A far
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quicker implementation would be to use a heuristic to guide the

shortest-path search in the distance landscape, thus changing the

solver to an industry standard algorithm known as an A*-search

[16]. However, due to the complexity of the input data the

construction of such a heuristic is not a straight-forward task.

By considering three sample cases we have demonstrated that it

can speed up calculations by roughly an order of magnitude.

We have illustrated the method using electron transport through

graphene nano-structures and k-point averaging of transmission

functions. However, the method is generally applicable also to

phonon transport and to other functions such as density of states

or other types of interpolation parameters such as electrostatic

gating etc.

Our interpolation scheme can easily be implemented in already

existing code. We provide a sample MatLAB code (Supporting

Information File 1) that can read and interpolate data obtained

from TranSiesta and TBTrans [2], which are built on-top of the

ab initio software package Siesta [17].

Supporting Information
Supporting Information File 1
A sample MatLAB code that can read and interpolate data

obtained from TranSiesta and TBTrans.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-6-164-S1.m]
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