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Abstract Given a theoretical model for a self-propelled particle or
micro-organism, how does one optimally determine the parameters of
the model from experimental data in the form of a time-lapse recorded
trajectory? For very long trajectories, one has very good statistics, and
optimality may matter little. However, for biological micro-organisms,
one may not control the duration of recordings, and then optimality can
matter. This is especially the case if one is interested in individuality
and hence cannot improve statistics by taking population averages over
many trajectories. One can learn much about this problem by study-
ing its simplest case, pure diffusion with no self-propagation. This is
an interesting problem also in its own right for the very same reasons:
interest in individuality and short trajectories. We summarize our re-
cent results on this latter issue here and speculate about the extent to
which similar results may be obtained also for self-propelled particles.

1 Introduction

Given a theoretical model for the motion of a micro-organism or particle, self-propelled
or diffusing, how do we optimally compare the model with “the real thing” when our
experimental results for the real motion consists of time-lapse recorded trajectories?
People typically fit the model’s mean squared displacement as a function of time to
the mean squared displacement calculated from the recorded trajectories. This is a
useful statistics, but it has its problems, known for some time, even for the simplest
case, free diffusion.

For this simplest case, we recently proposed and demonstrated a much simpler
way to estimate the model parameters of interest, the diffusion coefficient, D, and
the standard deviation, σ, of the experimental error on measured positions. The
estimators we proposed require no fitting, as they are explicit functions of the recorded
positions in the trajectory. Moreover, these new estimators are unbiased and as precise
as possible according to information theory: They reach (“saturate”) the Cramér-Rao
lower bound on precision. So they offer their users everything possible and at minimal
effort: “Plug and done!”



2 Will be inserted by the editor

Here we give a mini-review of the derivation of these results of ours for free dif-
fusion1 in Sec. 3. Maybe similar results can be obtained for simple models for the
motion of self-propelled particles and motile micro-organisms; maybe also for sub-
and super-diffusion. We have not investigated this, and we encourage the reader to
do so. In Sec. 4 we briefly speculate about such a research program. The Ornstein-
Uhlenbeck model is a natural starting point and simple enough for us to see where the
program leads. A potential show-stopper is described: The biggest problem may not
be to estimate model parameters from data, but to determine which model is correct
for given data. This problem obviously is relevant also for anomalous diffusion.

Before we do anything else, we motivate our desire to estimate model parame-
ters from single trajectories, even short and noisy ones. We are motivated by some
obvious/well-known statistical facts and common sense, so the reader who finds Sec. 2
trivial can skip forward to Sec. 3.

2 Motivation for estimation based on single trajectories

2.1 Two layers of noise

The experimental trajectories discussed here are typically noisy in two ways: Due to
errors of observation and intrinsically, as part of their dynamics.

2.1.1 Noisy observations

The positions we record differ from the true positions of the object we track. There
can be several reasons for this: If, e.g., we track a submicroscopic particle made
visible with fluorescence, and the particle is much smaller than the wavelength of
the light it emits, its location is determined from its diffraction-limited image with
an experimental uncertainty that depends on the number of photons that formed its
image [2]. This localization error is a white noise: Its standard deviation is constant
in time and it is uncorrelated between different frames.

Alternatively, if we track a motile micro-organism by tracking a point on it, we
must define that point. We might define it as the centroid of the organism’s footprint
or as the centroid of the perimeter of its footprint, since the latter is more sensitive
to pseudopod activity. If the footprint is defined as a set of pixels with output values
above a set threshold, the centroid moves in a “quantized” manner since the footprint
moves by entire pixels being included/excluded from the footprint in one time-lapse.
This gives rise to “round-off” errors in the position found from a given frame, er-
rors that likely are uncorrelated between different frames and have time-independent
standard deviation, i.e., they are a white noise. The same holds for the perimeter of
the footprint, defined as its marginal pixels [3]. It also holds for the case where a cell’s
nucleus is tracked by selecting the pixel that coincides with it, in each frame [4,5].

2.1.2 Inherent noise in a stochastic process

Our models for diffusing particles, self-propelling particles, and motile micro-organisms
are inherently stochastic because we are forced to separate the observed motion in
two parts when we model: A part that we model as deterministic because we can—the

1 Here we consider only diffusion on a substrate at rest. In [1] we also treat diffusion on a
fluctuating substrate.



Will be inserted by the editor 3

information to do so is present in our observations—and another part that describes
the part of the observed motion that we cannot predict because of our ignorance
about the underlying processes, e.g., because of the limited time-resolution of our
observations. This part is described as a white noise.

2.2 Don’t just sample-average!

From a simplistic point of view, one needs not worry about noise, statistics, and error
analysis if one has enough data. So why worry about such difficult issues of secondary
interest if one has plenty of data? What measurement errors there may be, average
to zero for all practical purposes if one averages over enough data. So do fluctuations
in estimates due to the inherent randomness of a stochastic dynamics.

Here is why: if we have a large amount of data, it is silly to settle for sample av-
erages only. We should fit our model to individual trajectories in order to determine
the nature of our sample averages. One pertinent question is: Are values for model
parameters determined from individual trajectories consistent with the hypothesis
that all trajectories are realizations of the same process and hence are described by
the same set of parameter values? That is, do values for model parameters deter-
mined from individual trajectories differ only due to the experimental uncertainty
with which we determine these parameters from individual trajectories? Or do we see
real individuality in our sample of trajectories?

Perhaps this issue is better appreciated with a different example: Suppose we have
measured the height of each person in a population sample. Pertinent questions are:
The different heights we determined, are they consistent with the hypothesis that all
individuals in the sample have the same height? That is, do they differ only due to
the experimental uncertainty with which we can determine height? Or do we see real
individuality within our sample? Do different individuals have different heights?

We know that people have individual heights. Microorganisms or particles that
propel themselves in a manner described by our model may also have individual
values for model-parameters. We don’t know, unless we investigate this issue. Values
for model parameters obtained by averaging over a sample reflect a belief that “one
size fits all.” This does not hold for baseball caps, and it does not hold for model
parameters obtained by sample averaging—not unless we have explicitly demonstrated
that we cannot resolve individuality within our sample.

2.3 Don’t just time-average!

Having decided to resolve individuality within our sample of trajectories, if it is there,
we rephrase our initial question to: Given a theoretical model for the motion of a self-
propelled particle or micro-organism, how do we optimally compare the model with ’the
real thing’ when our experimental result for the latter consists of a single time-lapse
recorded trajectory?

Typical motility models are not explicitly time dependent, so model parameters
can in principle be determined with any desired precision from a single trajectory,
provided it is sufficiently long. A model with no explicit time-dependence describes a
system in a steady state, however, and hence it requires data taken from a system in
a steady state for a comparison to be meaningful. Here again is a property that we
cannot just assume valid for our data. We must investigate it. Micro-organisms, e.g.,
may run out of energy [3] or decide to divide [4].

An ideal way to investigate whether the data in a recorded trajectory are consistent
with a steady-state hypothesis, proceeds by dividing the trajectory up into a number
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of segments, each of which is treated as an independent trajectory and compared
with our model. If our model fits the data in each segment, we ask whether the
parameter values returned by these fits are consistent with the hypothesis of the
steady state. That is, do they differ only due to the experimental uncertainty with
which we determine these parameters from individual segments? Or do we see real
‘individuality’ in our set of segments, i.e., real dependence on time?

This ideal investigation is rarely achieved because it works only for long time series
of high quality. A simpler, robust statistics, such as the average speed in consecutive
time intervals, can obviously detect non-steady-state behavior in a trajectory [3].
However, after such a simple statistics has been used to select a sample that is consis-
tent with the steady-state hypothesis according to this statistics, we still don’t know
if the sample is consistent with the steady-state hypothesis when fitted by our model.
It is now more likely to be the case, but unproven. This emphasizes the value of
being able to determine model parameters from individual trajectories with limited
statistics: It enables us to treat the segments of a longer trajectory as independent
trajectories and thus check whether the longer trajectory was produced by a system
in a steady state. This requires simple, robust statistics, qualities possessed by our
new statistics for the simple case of simple diffusion.

2.4 Finite statistics

Our desire to test the steady-state hypothesis correctly is just one reason to look for
estimators that optimally determine model parameters from individual trajectories:
The better such an estimator is, the shorter trajectories can be tested.

A more important reason is that short trajectories sometimes are all we have.
The steady-state hypothesis, e.g., may only be consistent with data for a limited
time: Micro-organisms may tire [3] or decide to divide [4], as already mentioned once.
Or they may move outside our field of view [4]; when the first organism or particle
does this, the experiment is over: We cannot continue with the remaining movers,
because they would form a biased sample, selected for being slower than the one that
disappeared.

Even more obvious: We may not control the duration of trajectories. We observe
only and must accept the data we obtain in that manner, even if we would prefer
longer trajectories. For example, below we discuss a protein that attaches to DNA,
diffuses along the DNA for a while, then spontaneously detaches again [1].

In these and other situations that saddle us with finite data, finite statistics de-
termines the precision with which model parameters can be determined, and conse-
quently the extent to which individuality can be discerned. Optimal estimators are
highly desirable in that situation.

2.5 Poor statistics?

Suppose we can do a lot of particle-tracking, but we cannot control the duration of a
trajectory. We may then end up having a large number of short trajectories. Is that
a lot of data or not? The answer depends on how good we are at gleaning parameter
values from short trajectories, i.e., it depends on having optimal estimators that apply
to short, noisy trajectories, the subject of this mini-review. In [1] we estimated the
diffusion coefficient of hOGG1 proteins diffusing on DNA from individual time-lapse
recorded trajectories with down to only twelve points on the trajectory. We had
thousands of short trajectories at each of several experimental conditions. Is that a
lot of data or not? And what about those serious statistical considerations above,
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over the hypothesis of the steady state? We obviously could not divide a trajectory of
only twelve points into segments to be analyzed independently and then compared.

We reasoned that since the trajectories were so short, the system was likely to be
in a steady state. So we time-averaged over each trajectory; we applied an optimal
estimator for the diffusion coefficient to each trajectory as well as an optimal estimator
for the localization error. These estimators were derived under the assumption that
the system is in a steady state. Actually, we could not do anything else with down to
just twelve points in a trajectory.

This scheme worked exceedingly well: We obtained thousands of individual esti-
mates for diffusion coefficients, obviously. Those obtained from short trajectories had
substantial error bars, of course. But when we averaged over values obtained from tra-
jectories of similar durations, the resulting average values all had much smaller error
bars, irrespective of their different durations, because our huge sample of trajectories
was strongly biased towards brief trajectories. Much to our surprise, the averaged
values for the diffusion coefficient clearly depended on the duration of trajectories!
This scheme worked so well that it could falsify our assumption of steady state. That
is a result, if not the most satisfying one.

Fortunately, there is more to this. This result drew our attention to the distribution
of durations of trajectories. Remember that durations of trajectories were not under
our experimental control. We just observed: When a protein attached to the DNA,
we saw this because the protein was fluorescently labeled. We tracked it, and we saw
it detach, because it then promptly disappeared from our field of view, transported
by the buffer flow that stretched the DNA. So the duration of a trajectory was an
experimental result, and a histogram showed that detachment was not a Poisson
process: durations were not exponentially distributed; far too many trajectories of
brief duration were recorded, while those of longer duration indeed were exponentially
distributed. The distribution of recorded durations was consistent with a sum of
two exponential distributions. This, and the duration-dependence of the diffusion
coefficients, pointed to a two-state model for the protein on DNA, and the minimal
version of such a model described all our data.

This story points to the value of optimized estimators that squeeze maximum
information from individual trajectories. If such estimators are so valuable for catching
individuality in a protein that just diffuses, imagine what value optimal estimators
may have for the study of motile micro-organisms.

3 Optimal estimation of diffusion coefficients from single-particle
trajectories

So now the question is: How does one optimally determine the diffusion coefficient
of a diffusing particle from a single time-lapse recorded trajectory? It comes with
the associated question: How does one optimally determine whether a single time-
lapse recorded trajectory of a particle describes a diffusing particle? First we must
determine whether a trajectory is consistent with diffusion. Only after that has been
confirmed, does it make sense to estimate its diffusion coefficient. The answer to both
questions must be found in the statistics of recorded time series for diffusing particles,
since we test for diffusion by testing for consistency with diffusion.
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3.1 Statistics of recorded time series

3.1.1 Single-time-lapse displacements

We consider a particle diffusing in d dimensions. We record its trajectory using time-
lapse photography with constant time lapse ∆t. We determine the position of the
particle in each frame using a localization algorithm. For a fluorescent particle, this
algorithm would be a method from super-resolution microscopy, and we wish, of
course, to squeeze maximal information out of each frame by using a method that is
optimized for precision, as described in Ref. [2], so localization errors are minimal.

The result is a time series of positions, r0, r1, . . . , rN . We form single-time-lapse
displacements denoted∆rn = rn−rn−1, and have a series of these,∆r1, ∆r2, . . . ,∆rN .
This series of displacements is stationary, as opposed to the series of positions. It being
stationary ensures that averages formed from it will converge to their expected values
as N →∞. Since the Cartesian coordinates of a particle diffusing in an isotropic and
homogeneous medium have identical and independent dynamics, we will, with no loss
of generality, consider diffusion in only one dimension from here on.

3.1.2 Motion blur

Motion blur is a non-issue for slowly moving micro-organisms, so readers with only
that interest can skip this subsection. For a submicroscopic object made visible with
fluorescence, there is a trade-off between larger localization error due to fewer photons
in a faster acquired image and motion blur due to longer exposure time ensuring more
photons. This trade-off favors maximal exposure time in our case of a single protein
diffusing on DNA and a number of other cases [6]–[20], while recent stroboscopic
techniques fashion the motion blur to one’s needs [21,22]. So we need the bit of extra
math required to describe motion blur.

In all generality, we let the function ς(t) describe the deterministic state of the
camera shutter during a time-lapse ∆t. ς(t) = 0 means closed shutter, while ς(t) >
0 means open shutter. The scale of ς(t) is fixed by the normalization condition∫∆t
0

ς(t)dt = 1. The measured x-coordinate of the particle’s position at time tn = n∆t
is then given by [22]

xn =

∫ tn

tn−∆t
xtrue(tn − t)ς(t)dt+ σξn . (1)

Here xtrue is the true position of the particle, and the time integral describes the
motion blur that results from finite exposure time. Infinitely short shutter time gives
no motion blur, of course, and is recovered from this formalism by inserting ς(t) = δ(t),
Dirac’s delta-function, in Eq. (1), which then reads

xn = xtrue(tn) + σξn . (2)

The second term in Eqs. (1) and (2) describes localization errors associated with
the position given by the first term. The stochastic variable ξn is a normalized, Gaus-
sian white noise: it has zero mean, unit variance, and for n 6= m, ξn and ξm are
independent. The real, positive parameter σ is the standard deviation of the localiza-
tion error. This error is the sum of all localization errors in effect, including substrate
motion, if relevant and of such high frequency that it contributes in this place only [1].
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From Eq. (1) the covariance matrix of the measured displacements ∆x1, . . . ,∆xN
of the diffusing particle is found to be tri-diagional with elements [22]

〈(∆xn)2〉 = 2D∆t+ 2(σ2 − 2RD∆t) (3)

〈∆xn∆xn+1〉 = −(σ2 − 2RD∆t) (4)

〈∆xm∆xn〉 = 0 , for |n−m| > 1 . (5)

Here 〈. . .〉 denotes the expected value, and the parameter R is the motion blur coef-
ficient defined by

R =
1

∆t

∫ ∆t

0

S(t)[1− S(t)]dt , (6)

where S(t) =
∫ t
0
ς(t′)dt′ [22]. This motion blur coefficient can take values in the

interval [0, 1/4] and in the case of no blur, R = 0. If the camera shutter is kept open
for the full duration of the time-lapse, R = 1/6.

3.1.3 Diffusion length of time lapse. Signal-to-noise ratio

Diffusion is a scale-free process, but the time-lapse ∆t defines a time-scale, and the
root-mean-squared displacement taking place during this time lapse,

√
2D∆t, defines

the associated so-called diffusion length. This length is the amplitude of our signal, the
signal being the displacement recorded for each time lapse. The standard error on this
signal is

√
2σ, where σ is the standard deviation of the localization error as defined

above, and the factor
√

2 results from the fact that a displacement is the difference
between two recorded locations. For given length N of a time series and motion blur
coefficient R, the performance of an estimator is then entirely characterized by the
signal-to-noise ratio that results from inserting estimates for D and σ in

SNR ≡
√

2D∆t√
2σ

=

√
D∆t

σ
. (7)

Typically, 1 < SNR < 20 [9,10,20,23,24]. We can thus completely characterize esti-
mators below by comparing how they perform as function of R, N , and SNR. We
also compare the variances of the best estimators to the ultimate lower bound on the
variance of any unbiased estimator, the Cramér-Rao bound [25], to see whether yet
another estimator may do better than those we have. This turns out not to be the
case, and thus we have proven that our best estimator, the covariance-based estimator
(CVE), is the ultimate estimator (see Sec. 3.3).

The variances thus discussed are only marginally affected by the value of the
motion blur coefficient R [6]. So below we only discuss the performance of estimators
for the case of maximal exposure time, R = 1/6, noting here that similar performances
result for other values of R.

3.2 Mean squared displacements

Einstein argued that for a particle suspended in a static liquid, the mean squared
displacement (MSD) is proportional to time, and the constant of proportionality
gives the particle’s diffusion coefficient, D [26]. Including the effects of localization
errors and motion blur, we find that the expected value of the measured squared
displacement of a diffusing particle is a first-degree polynomial in time,

〈d(tn)2〉 =
〈
[xn − x0]2

〉
= 2Dtn + 2(σ2 − 2RD∆t) for n ≥ 1 . (8)
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Consequently, diffusion coefficients have been determined from trajectories of in-
dividual particles with Eq. (8) or variants thereof [27,28]. This works when data are
so rich that precision is not an issue. When precision is an issue, the MSD is a poor-
to-miserable estimator. Its precision depends strongly on the extent to which one
accounts for the fact that its values, d2n, at different times tn = n∆t are highly cor-
related [Fig. 3.2(a)] [27], when they all are estimated from the same (or a few) time
series of positions x0, x1, . . . , xN using

d2n =
1

N − n+ 1

N−n∑
i=0

(xi+n − xi)2 . (9)

This fact is not common knowledge [7]–[20,28,29]. Neither is the fact that for a good
signal-to-noise ratio, an ordinary least squares (OLS) or weighted least squares (WLS)

fit of a straight line to d2n vs. n yields an estimate for D that becomes worse when more

points (n, d2n), n = 1, 2, . . . , nmax ≤ N , are included in the fit [Fig. 3.2(b)] [13,27].

One might intuit that more data-points supply more information. Such intuition
is based on experience with statistically independent data-points. The values of the
MSD are not statistically independent, however. They are so strongly correlated that
when more values are included in a fit, the added noise may exceed the added signal.

This counter-intuitive result can be understood by considering the simpler case
of absent motion blur and localization error, R = 0 and σ = 0. In this case the
experimentally measured displacements equal the actual displacements, and the lat-
ter are just random Gaussian values, independent, and identically distributed about

zero. The single data point (1, d21), calculated from the trajectory of N consecutive

displacements, then gives the optimal estimate, d21, for the variance of the Gaussian
distribution of displacements, and there is no more information to be obtained, since
displacements are independent. Thus, including more points gives no new information

about D. If we furthermore treat these points as independent of the first point (1, d21)
of the measured MSD (as in WLS) or, even worse, also give them the same weight as

given to this first point (1, d21) (OLS), we decrease the precision of our estimate of D.

This underscores the danger of being naive about statistics: In situations where
Eq. (8) is very true, common estimators based on Eq. (9) nevertheless give poor
estimates for D: though accurate, they are not precise. Thus, an excellent particle-
tracking experiment may yield mediocre results if the analysis naively is based on
MSD.

Note that one is not assured good estimates even if one takes into account the
full covariance-matrix of the experimental MSD-values, which the generalized least
squares (GLS) fit does [1]. Another undesirable statistical characteristic of the MSD
is responsible for this: its non-stationarity. This means that the GLS estimate of the
diffusion coefficient is not guaranteed to converge to its true value as the number of
data points increases [Fig. 2c,d]. In the language of statistics, the technical term for
this is that the GLS-fit to the MSD does not result in a consistent estimate for D.

3.3 Covariance-based estimator (CVE)

Equations (3) and (4) tell us how to construct simple, unbiased estimators for D and
σ2 from a single recorded trajectory. We replace the expected values in Eqs. (3) and
(4) by unbiased estimators of these and solve for D and σ2. This gives unbiased CVEs
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Figure 1. Performance of MSD-based estimators. (a) Experimental MSDs, d21, d
2
2, . . . , d

2
N ,

calculated from simulated Brownian motion trajectories. Each color represents one trajec-
tory. The straight black line shows their expected values 〈d(tn)2〉. The values of d2n for
different n-values are highly correlated because they are estimated from the same trajectory.
The variance of d2n increases with n. (b) Variances of MSD-based estimates of the diffusion
coefficient D as a function of the number of MSD points used in the fit. Variances of or-
dinary (OLS), weighted (WLS), and generalized (GLS) least-squares fits are compared to
their information-theoretical lower limit, the Cramér-Rao bound (CR bound) for SNR = 10.
(c,d) The three red curves connect red points that are plots of the mean value plus/minus

the standard error of the GLS estimate of the diffusion coefficient, D̂ measured in units of
its true value D. Edges of shaded grey region indicate the Cramér-Rao lower bound on the
standard error of an unbiased estimator for the diffusion coefficient, here shown in units
of the true value D. Due to the non-stationary nature of the MSD, the relative bias and
variance of the GLS compared to the Cramér-Rao bound increases with increasing number
of recorded data points, N : (c) N = 10, (d) N = 100.

of D and σ2,

D̂ =
(∆xn)2

2∆t
+
∆xn∆xn+1

∆t
, (10)

σ̂2 = R(∆xn)2 + (2R− 1)∆xn∆xn+1 , (11)

where · · · denotes averages over the time series ∆x1, . . . ,∆xN [1].
If the value of the parameter σ2 is known a priori, or if it has been estimated

in advance, as described in Section 3.3.2, then the CVE of the diffusion coefficient
reduces to

D̂ =
(∆xn)2 − 2σ2

2(1− 2R)∆t
. (12)
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units of the true value D as function of SNR. These values were calculated from estimates D̂
obtained with approximate MLE, MLE, and CVE applied to 1,000 Monte Carlo generated
time series of positions of a freely diffusing particle recorded with motion blur and noise on
positions. Edges of the shaded grey regions represent the Cramér-Rao bound. (a,c) Time
series of length N = 10. (b,d) Time series of length N = 100. All simulations were done
with maximal exposure time (R = 1/6). (a,b) For unknown amplitude of localization errors,
the MLEs reach and even surpass the Cramér-Rao bound at high SNR at the cost of a
systematic bias. The CVE is unbiased by construction and attains the Cramér-Rao bound
for SNR > 1. (c,d) For known amplitude of localization errors, both MLEs and CVE are
unbiased and attain the Cramér-Rao bound for SNR > 1.

The CVEs of D [Eqs. (10,12)] are guaranteed to be unbiased and are practically
optimal, as long as the SNR is larger than one (Fig. 2).

3.3.1 Variance of the CVE

Equation (10) results in the following variance of its estimate for D to second order
in 1/N ,

Var
(
D̂
)

= D2

[
6 + 4ε+ 2ε2

N
+

4(1 + ε)2

N2

]
, (13)

where ε = σ2/(D∆t)− 2R [1, Appendix C].
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Equation (12), on the other hand, results in the following variance of its estimate

for D̂,

Var
(
D̂
)

=
D2(2 + 4ε+ 3ε2)

N(1− 2R)2
+

Var
(
σ̂2
)

(1− 2R)2(∆t)2
. (14)

Here the second term describes the contribution from a stochastic error on our known

value for σ2. This contribution is proportional to the variance Var
(
σ̂2
)

when, as

assumed here, the error on σ2 is uncorrelated with the error on (∆xn)2.
For importance-weighting of estimates—e.g., when calculating the weighted mean

of estimates from time series of different lengths—the length N of a time series should
be used as weight when possible, since it is known exactly, in contrast to the inverse
variance of an estimate, which itself is known only as an estimate, and consequently
should be avoided as weight when possible, because fluctuations in its value towards
lower values will lend artificially high importance to estimates that typically are not
known with precision, when estimates for their variances are not. For a dramatic
example illustrating this, see case of weighted least squares in [2, Fig. 4ei]. This
precaution also avoids complications such as bias due to correlations between the
estimated parameters and the estimated variances; see [30] for an example of such
correlations and resulting bias of estimates.

3.3.2 Independent determination of the variance of localization errors

The position of a diffusing fluorescent particle is estimated by fitting to its measured
point-spread function (PSF). When this is done as described in [2], one can estimate
the variance σ2 of localization errors directly from the fitting procedure.

If it is not possible to estimate σ2 directly from the fitting procedure, an alternative
approach may be used: If estimates of σ2 from many time series are indistinguishable
up to stochastic errors, then these estimates can be averaged to obtain a more precise
estimate of the noise amplitude. Diffusion coefficients can then be estimated again,
using the average noise variance estimate as a fixed parameter, since this averaged
quantity co-varies little with the individual time series. In this manner, essentially
all information in a time series is used to estimate its diffusion coefficient D. This
reduces the standard error on estimates of the diffusion coefficient by a factor of up
to 1.8 in the limit of high SNR and absence of motion blur (R = 0). The standard
error of the CVE is reduced by a factor ≈ 1.5 for maximally open shutter (R = 1/6)
[Compare Fig. 2c,d to a,b].

3.4 How to test whether a recorded trajectory describes free diffusion

Equation (5) is as important as Eqs. (3) and (4), since it states that the signature of
free diffusion is ∆xn∆xm ≈ 0 for |n−m| > 1. Specifically, in order for a time series to
be consistent with free diffusion, these covariance estimates must scatter about zero
[Fig. 3a,d] with variances that depend on D and σ2 as [1, Appendix C]

Var
(
∆xn∆xm

)
=
α2 + 4αβ + 6β2

N − |n−m|
− 2β2

(N − |n−m|)2
. (15)

Here α = 2D∆t and β = σ2 − 2DR∆t are, respectively, the squared diffusion length
corresponding to the time lapse and half the contribution of localization error and
motion blur to the measured squared diffusion length.
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The estimated covariances are correlated, however, and they are Gaussian dis-
tributed only in the limit of long time series. This makes them unsuitable for statistical
testing of whether a given time series of displacements is consistent with free diffusion
or not—just like the MSDs are. Instead, one should compare the periodogram based
on the discrete sine transform (DST) [1, Eq. (11)] of the measured displacements
with its expected values (the power spectrum) for the case of a freely diffusing parti-
cle; see [1, Section IIIB] for details. Figure 3b,d shows such periodograms and their
expected values. The comparison is made easy by the fact that periodogram-values
corresponding to different frequencies are statistically independent of each other.

3.5 A note on the relationship between the CVE and the MSDs

The MSD in Eq. (8) suggests a maximally simple MSD-based estimator of the diffusion

coefficient D constructed from d21 and d22: D̂msd = (d22 − d21)/(2∆t). On average, this
MSD-based estimator is exactly equivalent to the CVE of D: Because both estimators
are unbiased, they have the same expected value, D. This follows from the relations
〈d(2∆t)2〉 = 2〈(∆xn)2〉+ 2〈∆xn∆xn+1〉 and 〈d(∆t)2〉 = 〈(∆xn)2〉. Thus〈

D̂msd

〉
=

〈
(∆xn)2

〉
+ 2 〈∆xn∆xn+1〉

2∆t
=
〈
D̂cve

〉
. (16)

CVE, however, is the more precise of the two. The estimates of 〈d(n∆t)2〉 by

d2n and of 〈∆xm∆xn〉 by ∆xn∆xm do not use the information present in the dis-

placements (∆x1, ∆x2, . . . ,∆xN ) in the same way. d2n places less weight on the end
displacements ∆x1 and ∆xN , while CVE weights all displacements equally [1, Ap-
pendix C]. This makes CVE of D more precise than the MSD-based method.

3.6 Simple problems have simple solutions

Diffusion as described by Einstein is a very simple process.2 Consequently, it should
not surprise that this simple problem has a simple solution for how to estimate its
one parameter optimally from a noisy trajectory.

It is an open question whether CVE is a “one-hit wonder” made possible only by
this utmost simplicity. Does it generalize to other, less simple processes or not? The
next and final section presents speculations about this.

4 Beyond free diffusion

4.1 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process [36] is a simple extension of Einstein’s simple
theory for Brownian motion. It is the simplest possible model for persistent random
motion, analytically solvable, and hence textbook material. Consequently, it seems
not too challenging to try to find a variant of the CVE that estimates the parameters
of this model from noisy, time-lapse recorded trajectory data.

2 It is, nevertheless, such a good approximation to reality that a century passed before
single-particle tracking was able to resolve the differences between Einstein’s simple model
and the hydrodynamically correct theory for classical Brownian motion in an incompressible
fluid [31]–[35].
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Figure 3. Statistics of single-time-lapse displacements of a diffusing particle. (a,b) The
statistics of a time series of length N = 100. (c,d) The same statistics for N = 1,000.
(a,c) Autocovariance function of single-time-lapse displacements calculated from a Monte
Carlo (MC) simulated time series, shown in units of D∆t and compared to its expected
values. The theoretical autocovariance function shows an isolated large, positive value at
zero lag, the signature of free diffusion. A small negative value at unit lag is the signature
of localization errors; motion blur makes it less negative and may even change its sign.
Consequently, the value at unit lag may be difficult to resolve on a background of stochastic
noise. (b,d) Periodogram of single-time-lapse Monte Carlo generated displacements in units
of D(∆t)2 compared to their expected values, the power spectrum. The power spectrum is
the sum of a term due to localization errors (‘Noise’) and a term due to diffusive motion of
the particle (‘Diff.’). Shown values are block averages over ten (b) and 100 (d) periodogram
values each [31]. This averaging facilitates comparison by eye with the expected values, the
theoretical curve. The grey area marks the 68% confidence interval (CI) for the blocked
values, which is equivalent to the s.e.m. for Gaussian distributed data. On average 2/3 of
the points should fall in the grey area. The theoretical curve is not a fit to the data, but
the ultimate truth, which is known in Monte Carlo simulations. For real experimental data,
fitting is necessary before comparing, and should be done to CVE-data or MLE-data as
described in [1]. Block averages are shown since the raw periodogram values have a signal-
to-noise ratio of 1/

√
2, which makes visual comparison unpractical.

The process was developed by Ornstein3 as a model for Brownian motion with
inertia, after Smoluchowski in a lecture posed the question of how to do that [40].
The same model was developed independently by Fürth, who also was inspired by

3 Inspired by the PhD-thesis of de Haas-Lorentz [37,38,39].
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Smoluchowski’s lecture. Fürth illustrated the model with experimental data for the
persistent random motion of infusoria (aquatic microorganisms) [41,42].4

We write the OU-process in one dimension as the Langevin equation for the in-
stantaneous velocity, v(t), of the tracked object,

P
dv

dt
(t) = −v(t) +

√
2Dη(t) . (17)

Here P is the so-called persistence time, and
√

2D parameterizes the amplitude of the
random component of the dynamics. P−1 is the rate with which a velocity is forgotten
by the motile cell, P is the characteristic time for ballistic motion in trajectories
governed by this equation, while D is the diffusion coefficient characterizing the long-
time behavior of the same trajectories. The “function” η(t) is a Gaussian white noise.
For our purposes, one only needs to know that its autocovariance5 is a Dirac delta-
function,

〈 η(t) 〉 = 0 ; 〈 η(t′)η(t′′) 〉 = δ(t′ − t′′) . (18)

4.2 Analytic results for the Ornstein-Uhlenbeck model [50]

Solved with an initial condition v = v(t0) at t = t0, Eq. (17) gives

v(t) = e−(t−t0)/P v(t0) +

√
2D

P

∫ t

t0

e−(t−t
′)/P η(t′) dt′ , (19)

from which follows the autocovariance function

φ(t1 − t2) = 〈 v(t1)v(t2) 〉 = e−|t1−t2|/P 〈 v2 〉 =
D

P
e−|t1−t2|/P (20)

and the mean squared displacement (Kubo relation)

〈d(t)2〉 =

∫ t

0

∫ t

0

φ(t′ − t′′) dt′ dt′′ = 2D[t− P (1− e−t/P )] . (21)

From φ(t) we can easily find analytical results for 〈(∆xn)2〉, 〈∆xn∆xn+1〉 and
〈∆xm∆xn〉 in the absence of localization errors. For dimensional and mathematical
reasons, it is a priori clear that these quantities are linear combinations of DP and
D∆t and the dimensionless coefficients in these linear combinations are polynomials
in exp(−∆t/P ) with maximal power |n −m| + 1. This is a good starting point and

4 The apparently random motion of infusoria had previously been recorded and described
successfully by Przibram [43]. He was motivated by the similarity between the Brownian
motion of colloid particles and the apparently random motion of these microorganisms.
He investigated this similarity quantitatively and found coincidence with Einstein’s simple
theory. That was in 1913, before Smoluchowski’s lecture. Fürth, with a different inspiration
and a better experimental technique, observed persistent motion—this is an early example
of the co-evolution of dynamical models for Brownian motion and for self-propelled micro-
organisms [5,44,45].

5 Given a time series, its autocovariance is the name used in statistics [46] for the function
which in statistical mechanics is called its correlation function [47]. At zero time-separation
this one function equals the variance of the time series considered. In statistics, the corre-
lation function or autocorrelation function of a time series is its autocovariance divided by
its variance [48,49]. Thus, at zero time-separation this relative measure of covariance equals
one.
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inspiration for what to use as, hopefully, optimal estimators, because if we cannot
find optimized estimators in the absence of localization errors, we also cannot in the
presence of localization errors.

The effect of localization errors on this starting point is also easily derived. One
just adds a white-noise error term to all recorded positions, exactly as done in the
calculations leading to Eqs. (3–5). Motion blur we have not reflected on, because a
new obstacle that was absent in the case of simple diffusion, reduces the value of this
program compared to the value it had for simple diffusion.

4.3 A complication: Which theory to fit?

Neither Eq. (20) nor Eq. (21) are unique to the OU-process. They are only second
moments of x. Equation (21) is shared by all processes that have a simple exponen-
tial autocovariance. A self-propelled particle with constant speed follows trajectories
described by the Kratky-Porod worm-like chain model [51], and it is another such
process.

So, while Brownian motion (the Wiener process) is the only stochastic process with
continuous path and independent increments with stationary distribution (and hence
a Dirac delta-function as velocity-autocovariance) [52], there are several processes
that have a two-sided exponential velocity-autocovariance.

This illustrates a general complication: It is not all that complicated to argue from
circumstances and/or test statistically whether or not simple Brownian motion may
be the correct theory to use in the analysis of given time-lapse recorded trajectories.
It is more complicated when the candidate theory is less primitive. Thus, how to esti-
mate the parameters of the process may be a lesser challenge than how to determine
what the process is; which theory should be used? Examples of how that may be ap-
proached are given in Refs. [3,4,5,53]. The approach in these examples relies on, and
demonstrates, steady-state behavior in the motile microorganisms that are tracked.

4.4 More complications: Theories that change in time

Steady-state may be absent in the behavior of tracked objects. This is typically the
case when intracellular transport is studied with tracer particles. In that case, one ob-
serves alternating active and passive transport [54]–[58]. Attempts to characterize this
motion thus face short time series for any one of several behaviors: ballistic motion,
sub-, super- and normal diffusion. Intracellular transport thus poses the problem of
characterizing the nature of motion in a short trajectory from that trajectory alone,
as well as estimating the parameters of the motion found. Moreover, the problem of
locating the points in time, when one behavior switches to another, must be handled.
So must the issue of whether there are such points in time or maybe only intervals of
transitory behavior.

One approach to this challenge does a time-resolved mean-squared displacement
analysis [55,57]: The MSD(τ) is estimated as function of the lag time, τ , from a
limited number of consecutive points on the time-lapse recorded trajectory, e.g. 60
points. Then the diffusion coefficient D and the exponent α are determined by fitting
2Dτ0(τ/τ0)α to the experimental result for MSD(τ) for the first few values of τ .6

This procedure is then repeated with different sets of 60 consecutive points from the

6 Here τ0 is a fixed lag time chosen before fitting; it is the lag time at which D is defined
as D = MSD(τ0)/(2dτ0), where d is the dimension of space. For normal diffusion, the right-
hand side of this equation is a constant, independent of τ0, so it defines D in a manner that
does not depend on τ0. Not so for anomalous diffusion, for which one must accept that D is
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trajectory. For each such window of points, a local value of D and α is found. These
time-dependent parameter values then report whether it is ballistic transport or one
of several diffusive behaviors that is observed in a given time window.

Obviously, this time-resolved statistics has stochastic errors due to the limited data
it is based on in any given window. It is consequently of much interest to optimize the
estimators used. Partial optimization was done in Ref. [61] by varying the number
of different values for the time-lag τ for which the theory was fitted to the estimates
for MSD(τ). In computer simulations of simple Brownian motion, the authors found
maximal precision when they fitted only to MSD-values for τ = ∆t and τ = 2∆t [61,
Fig. 5]. This is what one would expect with the hindsight provided by our own results
presented above. Note, however, that in Ref. [61] also α was fitted.

On the other hand, vanishing localization error was assumed in Ref. [61]. But
since the scheme works at zero localization error, it will also work with moderate
localization errors. If the amplitude of the localization error is unknown, it must also
be estimated in this scheme, so one needs to fit to the first three values of the MSD.
Thus, while an optimal estimator is likely to do better, as long as we don’t have one, a
fit to estimates for MSD at τ = ∆t, 2∆t, and, if necessary, 3∆t may do an acceptable
job.

4.5 Anomalous diffusion, fractional Brownian motion, conclusion

The present article was prompted by repeated questions about the possible general-
izability of CVE to anomalous diffusion and fractional Brownian motion, time-lapse
recorded with localization errors, maybe also motion blur. We wish we knew, but
don’t.

We do know that it typically is a problem in motility experiments to obtain data
that are sufficiently rich to support claims of anomalous diffusion convincingly. If, al-
ternatively, one can determine the microscopic mechanisms that control the diffusion,
its nature follows logically from that and needs not be established from tracking data.
With the nature of the motion thus being given, the analysis of tracking data is lim-
ited to determination of parameter values in the given model. However, it is typically
also a problem to determine the microscopic origin of anomalous diffusion, be it the
viscoelasticy of the medium (giving rise to fractional Brownian motion), diffusion in
a dense network of immobile obstructions (giving rise to percolation-like obstructed
diffusion), or random trapping and release characterized by heterogeneous waiting
times (modeled by continuous-time random walks) [62]. Obviously, better statistical
methods might help with that for want of better data.

Leaving this pressing problem aside, a well-defined and simpler problem remains:
Given that a trajectory was time-lapse recorded for a process that is known to be
a specific type of anomalous diffusion, say fractional Brownian motion, what is the
optimal estimator for, here, the Hurst exponent? To the best of our knowledge, this
is an open question.

The MSD naturally suffers from the same problems as in the simpler case of free
diffusion: high correlations and non-stationarity. So it does not seem to be a good
starting point in a search for the optimal estimator. The success of the CVE for
free diffusion begs the question of whether a similar simple and optimal estimator
based on the covariance of measured displacements can be found for fractional Brow-
nian motion. Alternatively, an estimator based on the Fourier transform of individual

defined with reference to a particular lag time, τ0, and one must remember that a different
choice of τ0 results in a different value for D. Alternatively, one can define a generalized
diffusion coefficient Kα = Dτ1−α0 [60].
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displacements, similar to an approximate maximum likelihood estimator for free dif-
fusion presented in [22], may be conceived. Such an estimator relies on the Fourier
transform’s ability to decorrelate measured time-series, something that may not work
work here due to the (very) long-range correlations of fractional Brownian motion.
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42. R. Fürth. Über die Anwendung der Theorie der Brownschen Bewegung auf die unge-

ordnete Bewegung niederer Lebewesen. Pflügers Arch. Physiol., 184:294–299, 1920.
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