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Abstract 

Block copolymer self-assembly holds great promise as a rapid, cheap and scalable approach to 

nanolithography. We present a straightforward method for fabrication of sub-10 nm line patterns 

from a lamellar polystyrene-b-polydimethylsiloxane (SD) block copolymer with total average 

molecular weight of 10.5 kg/mol.  Thin SD films directly spin cast onto silicon substrates and on 

graphene, form regular line patterns of sub-10 nm pitch on the substrates after few minutes of 

annealing at 45 ºC in the presence of toluene vapour. Perfect pattern alignment was achieved by 

confining the films inside the trenches of graphoepitaxial substrates. The SD template was 

furthermore used as lithographic mask to fabricate high-quality sub-10 nm graphene nanoribbons. 

This was realized by one step oxygen plasma treatment, which accomplishes three tasks:  hardening 

the PDMS block by oxidation, and etching both the PS block and the graphene under PS. Raman 

analysis supports the formation of graphene nanoribbons with an average distance between defects 

corresponding to the oxidized PDMS pitch, with no sign of defects generated in the ribbon channel. 

This suggests a high degree of protection of the nanoribbons by the hard oxidized PDMS mask 

formed in situ during oxygen plasma etching. 
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Introduction 

While the need for fast and accurate nanostructuring has primarily been driven by the 

semiconductor industry
1-4

, the appearance of novel 2D materials has highlighted this area as more 

critical than ever, as nanopatterning of these materials is one of the most important means of tuning 

their electrical, chemical and optical properties.
5
 The most versatile and widely studied of these 

materials is graphene: a one atom thick  material composed of only sp
2 

bonded carbon in which 

charge carriers behave as relativistic particles.
6
 Graphene exhibits extremely high carrier mobility 

and for that reason is considered as a highly promising candidate for future fast and densely packed 

electronics.
5
  However, graphene is a zero-bandgap semiconductor; it is therefore not possible to 

effectively switch off the electrical current by changing the applied gate voltage, which is a basic 

operation for field effect transistors, the building block of integrated circuits.
7-9
 In contrast, 

graphene nanoribbons (GNR) and graphene nanomesh/antidot lattices (GAL) have been predicted 

to be two possible modifications that exhibit a band gap.
10, 11

 Experiments so far have shown how 

diminishing GNR width results in an increased transport gap
12-14

 particularly at low temperatures, 

however, no clear proof of an actual energy band gap has been experimentally reported yet for 

lithographically defined nanoribbons.
15

 A key parameter affecting the charge transport in graphene 

nanoribbons is the amount of defects introduced in the GNR channel during fabrication
16

, which 

could be determinant in the realization of a real energy band gap in the monolayer material. In the 

present study we realize sub-10 nm GNRs, which through an enhanced protection from a hardened 

block copolymer based mask, exhibit the traits of a defect free channel. The latter is proved by 

Raman spectroscopy, which indicates that the disorder existent in the nanostructures can be 

accounted for by the inevitable etch disorder,
17, 18

 thus the SD processing avoids the introduction of 

defects in the ribbon channel.   

Block copolymer based nanolithography has been gaining momentum as a viable alternative to 

photolithography for large area, ultra-dense nanofabrication,
18, 19

 and in the ITRS 2013 roadmap, 

directed self-assembly (DSA) using block copolymers is highlighted as a key enabling technique for 

front end lithography. The device feature size is finally defined by the polymer chain length of 

block copolymers and this can be varied by synthesis of each BCP.
20

 Block copolymers with higher 

Flory-Huggins interaction parameter χ self-assemble at relatively lower total molecular weight, 

consenting to realize smaller feature sizes. In addition, comparing two block copolymers with 

similar self-assembled feature sizes the BCP with higher χ will show better segregation between the 
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blocks, which is equivalent with a sharper interface between the blocks and ultimately with better 

defined lithographic pattern transfer.
21

 For these reasons PS-b-PDMS block copolymers with the 

relatively high χ = 0.29 at room temperature, have been the subject of many studies in the recent 

years.
 
Sub-10 nm features and sub-20 nm periods are easily realized by such block copolymers, 

while the very popular block copolymers of composition PS-b-PMMA with χ = 0.06 cannot form 

self-assembled patterns at these reduced length-scales.
22

  

Controlling the out-of-plane and in-plane alignment of block copolymer thin films is generally 

challenging due to the complexity of the interplay between the block segregation and interface 

energies.
22, 23

 The most popular strategy to control the out-of-plane BCP arrangement is to 

chemically modify the substrate with a neutral brush layer, thus avoiding the preferential wetting of 

the substrate by any of the blocks.
24

 Apart from complicating the overall procedure, which is always 

costly at these length scales, this step shows some essential drawbacks and in the best case only 

partially helps controlling the vertical alignment of the BCP on the substrate. Firstly, air or vacuum 

at the BCP-air interface is in most cases not neutral relative to the blocks, with the noticeable 

exception of PS-b-PMMA annealed at around 200ºC;
20

 in the case of PS-b-PDMS the PDMS block 

with the lowest surface energy will tend at equilibrium conditions to cover the polymer-air 

interface.
25

 Secondly, there are substrates like graphene that are unsuited for chemical modification 

by grafting of a neutral layer, as this would lead to adverse effects such as changes in band structure 

or doping.
26

 In such cases another step of substrate coverage with e.g. a silica thin layer has been 

applied, which then can be used for grafting of a neutral brush layer.
26

 This further complicates the 

sample preparation procedure and the etching process. Thirdly, the choice of the brush layer 

composition as neutral surface for a given block copolymer requires fine tuning, thus rendering the 

procedure highly non robust; even different batches of essentially the same block copolymer may 

require readjustment of the brush layer composition.  

In the present manuscript we demonstrate self-assembly of a lamellar SD block copolymer directly 

on silicon and graphene substrates, without any preliminary substrate surface treatment. The use of 

solvent vapor annealing allows creation of regular line patterns without an upper/lower PDMS 

wetting layer. In the case of graphene we also show that the mask pattern can be transferred to 

graphene by direct application of oxygen plasma on the spin cast and annealed block copolymer. 

Remarkably, the oxygen plasma in this case fulfills three functions: (1) etching of the PS block, (2) 

hardening by oxidation of the PDMS block, (3) etching of graphene under the PS domains. Raman 

estimations of the graphene crystallite size are in excellent agreement with the width of the BCP 
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trenches measured by SEM (both ~10 nm), indicating that the etching process is ‘clean’ and does 

not introduce additional point defects in the channel of the nanostructured graphene. This is in 

marked contrast with competing top-down techniques based on electron beam lithography (EBL) 

and/or gas-phase chemical narrowing of the ribbons,
16, 27

 where additional defects are inserted in the 

ribbon channel degrading their structural quality and modifying their electronic properties
16, 27

. 

Both, the high-density capability and the absence of undesired point defects in the channel of the 

here presented graphene nanoribbons proves the suitability of the PS-b-PDMS BCP lithography 

technique for graphene patterning at wafer scale. 

 

Results and Discussion 

Figure 1 illustrates the overall process of PS-b-PDMS (5k-5.5k) block copolymer based 

nanopatterning on planar silicon substrate, topographically patterned silicon substrate and graphene 

substrate. No surface pre-treatment or application of any brush layer prior to BCP deposition was 

necessary. As mentioned in Figure 1 all the BCP coated films were solvo-thermally annealed to 

induce pattern formation. 

Figure 1: Schematics showing the process flow of BCP lithography for nanopatterning of graphene. 
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The block copolymer thin films of PS-b-PDMS were spin-coated at a spin speed of 3200 rpm for 30 

s, annealed at different conditions, and finally subject to PS removal and oxidation of PDMS. 

Figure 2 shows a set of samples where the annealing temperature was varied between 22 ºC (room 

temperature) and 55 ºC, and the annealing time between 5 min and 20 min. The success of the 

proposed method relies on identifying the process window within which the line pattern is fully 

developed with minimal dewetting. We found that samples annealed at 45 ºC for 15 min exhibit a 

highly ordered lamellar SD patterns as also shown in the corresponding image in figure 2. The 

quality and spacing of the line pattern is similar for all the images shown at the right-bottom 

quadrant of fig. 2, i.e. at annealing times of 15-20 min and at temperatures of 45-55 ºC. However, 

minimum dewetting was observed at a narrow window of approximately ± 2 min and ± 2 ºC around 

the optimum conditions, which can be defined as the process window for the present procedure. 

Annealing at room temperature resulted into poorly defined patterns for all the annealing times. The 

annealing process depends on a combination of two major effects: (1) PS has a higher surface 

tension (γC = 32.8 mNm
-1

) than PDMS PS (γC = 24 mNm
-1

) that would lead to preferential PDMS 

surface segregation; (2) this may be compensated by the fact that the annealing solvent is toluene, 

δHildebrand ≡ δH = 18.2 (MPa)
½

, which is a preferential solvent for PS, δH = 18.7 (MPa)
½

,  over 

PDMS, δH = 14.9 (MPa)
½

. At 22 ºC the toluene vapour pressure is low and insufficient in the 

studied time window to compensate for the PDMS surface segregation, while the compensation is 

realized at the higher temperatures. The line pattern persistence length shows some variation for 

independently prepared samples, even at the optimum process window.  
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Figure 2. Top-down SEM images of lamellar PS-b-PDMS (5k-5.5k) spin coated on silicon 

substrate at 3200 rpm for 30 s and annealed, after PS removal. Left to right: annealed from 5 min to 

20 min. Top to bottom: annealed at 22 ºC to 55
 
ºC. The highlighted SEM image at 45 ºC for 15 min 

shows the best ordered and regular BCP patterns. All images have 200 nm scale bars. 

Figure 3A shows the top down SEM image of wafer-wide silicon nanofins fabricated through SD 

with oxidised PDMS on top of it.  Highly regular line spacing patterns with sub-10 nm features 

were obtained without any application of brush layer. Typically, this kind of regular alignment can 

be achieved by chemoepitaxial or graphoepitaxial (directed) self-assembly, DSA, with application 

of brush layer.
28

 Examples of DSA of our SD without any brush layer are shown in figure 3(B-E). It 

is remarkable that direct spin casting of our SD onto flat silicon wafer followed by fast solvo-

thermal annealing produces highly aligned line patterns as illustrated in fig. 3A. CA Ross and co-

worker’s made significant progresses in graphoepitaxy using PS-b-PDMS systems but it must be 

noted that polymer brushes have been applied in all cases to induce vertical alignment.
28
 Here we 

demonstrate the confinement of 1-9 PDMS lines inside trenches of varying width. The top down 

SEM images in Figure 3(B-E) show a variation of SD pitch size as the trench width decreases from 
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200 nm to 30 nm. PS preferentially wets the trench side walls. The pitch size in the 200 nm trenches 

is 22 nm, which is only slightly higher than the pitch size of 21 nm in the open area. The 

incommensurability between the natural SD period of 21 nm and the trench width increases with the 

decreasing of the trench width, reaching a maximum of 43% wider trench than the natural SD 

period. At the same time the wall roughness increases for the narrower trenches. It is amazing that 

the SD adapts to the large incommensurability and conforms to the trench width variations. This 

hints to a large enthalpy of adsorption of the PS block to the trench walls that can compensate for 

the unfavourable entropy of chain strain. 

 

Figure 3. Top-down SEM images of silicon nanofins on planar and topographically patterned 

silicon substrates. (A) low magnification SEM image of silicon nanowires on planar substrate 

fabricated via brushless self-assembly of PS-b-PDMS. (B-E) Topographically patterned silicon 

substrate with different trench width shows the confinement of oxidised PDMS structures. 

Raman analysis of graphene nanoribbons 

Figure 1 schematically describes the array of GNR fabrication using lamellar SD. Graphene thin 

film was grown on a Cu foil using chemical vapour technique (CVD) and then transferred to a p-

doped Si wafer with 300 nm thick thermally grown SiO2 on top. Direct spin casting and solvo-

thermal annealing of PS-b-PDMS created regular line patterns on the graphene substrate, as shown 

in Figure 4A.  This process is similar to the silicon substrate previously discussed, although in this 
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case the regular lines appear at random places within the entire substrate area. The line direction 

and persistence length can be controlled by e.g. graphoepitaxy, similarly to the already presented 

case of silicon substrate. Graphoepitaxy with SU-8 ridges is a single-step lithography approach 

allowing to control the position and orientation of BCP line array patterns as shown in figure SI.1.   

 

Figure 4. Raman analysis of nanopatterned graphene. (A) SEM image of an array of GNR after PS 

and graphene etch. Inset shows high magnification of GNR with ~ 8 ± 2 nm ribbon width; 

Confinement of GNR between SU-8 trenches are shown in supplementary figure SI.1. The spatial 

homogeneity of ribbons was proved by Raman maps of I(G) and I(D) as shown in figure SI.2. (B) 

Raman spectra of graphene before BCP deposition, after BCP deposition and after PS and graphene 

etch. (C) Evolution of I(D)/I(G) ratio (black)  and I(2D)/I(G) intensity ratio (red) during the fabrication of 

BCP graphene nanoribbons. (D) Evolution of FWHM (G) (black) signal together with FWHM(2D) (red)  
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during the fabrication of BCP graphene nanoribbons.(E) Shifts in the G (black) and 2D (red) peak positions 

during the fabrication process.  

Oxygen based plasma removes PS and graphene, while the oxidized PDMS remains on top of the 

graphene nanoribbons. Figure 4B shows the Raman spectra of the graphene before processing 

(black) and the evolution after the two main steps of the process: BCP deposition, before etching 

(red) and after etching (blue). Initially, the graphene used in this study showed residual D and D’ 

peaks (I(D)/I(G) ~ 0.02). Such  disorder may occur during the CVD growth process and/or transfer 

to SiO2 substrates, as reported.
29

 We also note that the graphene is doped since the position of the G 

peak (Pos(G)) is upshifted with respect to the value of pristine graphene (~1585 cm
-1

).
30

  The 

spinning and growing of the BCP films on the graphene increases the I(D)/I(G) ratio to 0.06 (Fig. 

3C). At a first glance, the increase of I(D)/I(G) could be attributed to the introduction of a slight 

amount of disorder in the monolayer occurring during the polymer deposition. However, the sudden 

increase of the full width half maximum of the G peak, FWHM(G) (Figs. 4B, 4D), from 16 to 38 

cm
-1

 and the absence of any change in the full width half maximum of the 2D peak (FWHM(2D)) 

does not support the formation of point defects in graphene at this stage. This type of disorder 

would cause a comparable increment of both FWHM(G) and FWHM(2D),
31

 which is not the case 

here. Instead, the observed changes of the I(D)/I(2D) ratio, FWHM(G) and FWHM(2D)  could be 

explained due to the existence of amorphous carbon (αC) deposited on top of graphene;
32
 or more 

realistically, it could be an artifact coming from the presence of the PS polymer on top of graphene. 

The latter is supported by the fact that PS has to peaks close to the G peak at 1592cm-1 and 1613 

cm-1, respectively.
33

 

In addition, the increase in peak position of the G (Pos(G)) and 2D (Pos(2D)) peaks (Fig. 3E) 

indicate that the polymer layer introduces n doping in the graphene sheet.
30

 This evidence is 

corroborated with a considerable decrease of the I(2D)/I(G) ratio 
30

 from 1.3 to 0.57 (Fig. 4C). 

After the PS etching with O2 plasma, we observe a significant increase of the I(D)/I(G) ratio to 1.07, 

a slight increment of the D’ peak with respect to the initial graphene and the appearance of a small 

D+D’ peak. The I(D)/I(G) increment is consistent with the actual creation of the graphene 

nanoribbon, discarding the major creation of additional random point defects in the monolayer 

during the lithographic process. This minimal presence of defects is supported by the increase of the 

ratio I(2D)/I(G) from 0.57 to 0.83 (Fig 4C). Disorder should lead to a decrease of the I(2D)/I(G) 

ratio,
31

 but in this case it increases due to the decrement in doping of the final graphene ribbons.
30
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Also, the FWHM(2D) increases only slightly by 3 cm
-1

 with respect to the previous stages. In 

general, FWHM(2D) remains constant for changes in doping level and increases only with 

disorder.
31

 These trends show that the insertion of disorder in the process is moderated and is most 

likely to be introduced only near the ribbon edge, where the PDMS masking is least efficient.  

Finally, it is interesting to point out that etching lead to a decrease of the FWHM(G). This can be 

understood just by noting that the PS areas are completely removed after the etching process, thus, 

confirming that the solely increment of FWHM(G) in the Raman spectra at the previous stage 

(polymers on top of graphene) was indeed an artifact due to the presence of PS. 

In comparison with the graphene before processing, both FWHM(G) and FWHM(2D) increased 

only slightly after etching (3-4 cm
-1

), which supports the notion of  disorder mainly at the edge of 

the ribbons  and not in the channel. Since in our present study the oxidized PDMS is left on top of 

graphene nanoribbons we comment about its final influence in the nanoribbons. From the initial 

pristine graphene layer, we have an overall shift from 1592cm-1 to 1596cm-1 for Pos(G) and from 

2721cm-1 to 2730cm-1 in the case of Pos(2D). Knowing that FWHM(G) is kept below 20 cm-1 

during the entire process, the introduced disorder is low, mainly located at the ribbon edge, and we 

can ascribe these peak shifts uniquely to PDMS doping.
34

 Thus, we observe that PDMS introduces 

of hole-dopants in the monolayer
35, 36

  and its density can be estimated to be ~5 x10
12

 cm-2;
30, 35, 37

 a 

doping value which is ~50% larger than the initial doping value  (~1 x10
13

 cm-2 ).
30, 37, 38

 We note 

that the removal of the oxidized PDMS could be done with HF, however, for clarity we leave this 

task out of the present work. 

  In order to quantify the amount of disorder introduced in the etching process, we analyze the 

obtained Raman spectra accounting for the two different types of defects that may be present in the 

system.  First, the patterning itself  could introduce a characteristic crystallite length scale related to 

the  boundaries of the GNR, and second, point defects may occur within the ribbon (not only in the 

channel but also at the edge) if the PDMS mask is invasive (i.e. it damages graphene) or fails in 

providing complete protection during the etching step.
35

 

The disorder in a nano-crystallite can be quantified by the amount of boundaries with respect to the 

crystallite area, which is a measure of the inverse nano-crystallite size 1 ���⁄ .
32-38

 Meanwhile, 

disorder generated by point defects is better quantified by the point-like defect concentration, given 

by (1 ���
	)	⁄ , where LPD is the average inter-defect distance.

35
 For our analysis, we use the 
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Tuinstra-Koenig relation to obtain LNC and a modified version of this relation
32-38

 to extract LPD (the 

latter is valid in the case of low defect density, i.e. LPD > 6 nm): 

���(nm) = (2.4 × 10���)������
� (�� ��

 )��  Eq.1 (Tunistra-Koenig) 

L"#
	(nm) =

$%��

&'()*+
, (I# I.

 )-�                       Eq.2 (Modified Tunistra-Koenig) 

Supposing that the disorder originates from ’clean’ graphene boundaries, Eq.1 estimates a ribbon 

channel (���) of 9.6 nm, perfectly agreeing with the 8-10 nm width as shown in inset in figure 4A. 

The entire activation of the D band measured in BCP graphene nanoribbons would be, thus, fully 

accounted for by the ribbon edges.  Nevertheless, we need to take into account the other extreme 

case, the full activation of the D band through point defects; since the possibility of achieving a 

perfectly clean graphene boundary from a plasma etch process is remote. From Eq.2, the interdefect 

distance ���	is 7.8 nm, matching again with the width of the nanoribbon. This fact indicates that the 

contribution of point defects in the graphene ribbons is residual and probably located close to the 

edges, where the PDMS masking is least efficient. 

In order to inspect the homogeneity of the ribbon width, we performed a Raman map of a 8 µm x 8 

µm area (Fig.SI. 2). Clearly, I(D) and I(G) show similar values over the entire mapped area, proving 

the homogeneity of the above estimated ribbon channel (I(D)/I(G) ~ 1). 

Next, we compare the quality of the here presented BCP graphene nanoribbons with respect to other 

fabrication procedures reported in literature.
16, 27

 As quantified above through the I(D)/I(G) ratio, 

the presence of point defect in BCP graphene ribbons is residual, which is corroborated with a 

I(2D)/I(G) ratio of 0.83 (despite the presence of doping), an almost non-existent D+D’ peak and a 

FWHM(2D) close to the one of pristine graphene (33cm
-1

).
39
 Meanwhile, other top-down 

techniques such as EBL patterned graphene using HSQ exhibit larger feature sizes with respect to 

the BCP nano-patterning technique used in our work, together with a considerable amount of 

amorphization within the graphene ribbon.
15

 In addition, the combined technique composed of EBL 

lithography and a gas-phase chemical narrowing,
27

 produces similar feature sizes to our BCP case. 

These latter ribbons are, however, almost fully amorphous as demonstrated by the absence of a 

clear 2D peak.
27
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Being a top-down approach, the technique presented here produces similar ribbon quality to 

bottom-up alternatives, such as multilayer graphene ribbons created by unzipping carbon 

nanotubes,
40-43

 although the latter are not scalable alternatives. We also note that although being 

within the state of the art in terms of feature size and demonstrating a high integrity of the ribbons, 

this type of fabrication method is unable to select the edge chirality of the ribbon as recently 

reported in 40 nm wide graphene ribbons on SiC.
44
  

Experimental  

On-chip BCP mask development and pattern transfer: Silicon substrates as received within clean 

room environment and with no prior surface treatment or cleaning were cut into 2.0 cm
2
 pieces.  

PS-b-PDMS (5k-5.5k) block copolymer thin films were spin cast from a 1 wt% toluene solution at 

3200 rpm for 30 s.  The BCP films were initially solvo-thermal annealed at 22 ºC (room 

temperature), 35 ºC, 45 ºC and 55 ºC for 5 to 20 min under toluene vapours in a covered steel 

chamber mounted on a hot plate to control temperature via a thermocouple in the solvent reservoir. 

Once the optimal BCP annealing condition was obtained then it was investigated on topographically 

patterned Si and graphene substrates. After annealing at a given time all the samples were 

immediately removed from the chamber and left to cool and dry at ambient conditions. 

The solvo-thermal annealed PS-b-PDMS films were subjected to selective PS etch using O2 

plasma for 10 s with 2000 W power in ICP and 400 W power in RIE at 2.0 Pa pressure. SF6 and 

CF4 plasma at 70 sccm and 35 sccm flow rate with ICP (inductively coupled plasma) and RIE 

(reactive ion etching) powers of 1200W and 200 W at 1.9 Pa pressure was used to etch silicon. 

Oxygen plasma at RIE was used to subsequently etch PS and graphene for 20 s with RIE power of 

200 W. 

Scanning Electron Microscopy: Top-down SEM images of BCP, oxidised PDMS, oxidised PDMS 

on top of nanopatterned graphene and  silicon nanofeatures were obtained by using a Field 

Emission Zeiss Ultra Plus scanning electron microscope with a Gemini column operating at an 

accelerating voltage of 3 kV. Unless otherwise stated, all the shown SEM images were taken after 

PS removal by O2 plasma and consequential oxidation of PDMS. 

Raman analysis:  Raman spectra were measured using a DXR Raman Microscope from Thermo 

Scientific equipped with a 100x objective. The excitation wavelength of the laser was 455 nm. The 

laser power was below 1mW to avoid sample heating and the acquisition time was of the order of a 

few minutes. The experimental resolution of the apparatus is ~ 2 cm
-1

.  The calibration was carried 
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out by checking Rayleigh band and Si band at 0 cm
−1

 and 521 cm
−1

, respectively. Raman peaks 

from 3 individual samples were fitted with a single symmetrical Lorentzian function to extract the 

corresponding experimental parameters. The spectra were treated with a statistical analysis, in order 

to minimize the error in the measurements.  

 

 

Conclusion 

In summary, we have demonstrated highly ordered line patterns formed by self-assembly of 

lamellar PS-b-PDMS (5k-5.5k) without any surface treatment on both silicon and graphene 

substrates. Topographically pre-patterned substrates allow for predictable structure alignment and 

controlled number of lines of oxidized PDMS in each trench, from 9 lines inside 200 nm tranches to 

a single line inside 30 nm trenches. This rapid brushless on-chip mask template was used for direct 

patterning of graphene to get sub-10 nm GNRs. Raman analysis not only shows that the buried 

graphene is indeed nanopatterned, but also that the disorder is mainly arising from the lithographic 

edges rather than point defects in the channel. The realization of nanoribbons free of disorder in the 

channel is one of the crucial conditions for such structures to exhibit energy band gaps or ballistic 

transport, as predicted in theoretical studies.
11
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SEM image of sub-10 nm graphene nanoribbons fabricated using brushless lamellar PS-b-PDMS 

block copolymer and its Raman analysis. 
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