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Resumé

Denne afhandling omfatter en indledende sammenfatning og fem uddybende ar-
tikler, som alle omhandler forskellige aspekter af implementering af en hybrid-
metode, som kombinerer klassiske simuleringsmetoder med neurale netværk.
Afhandlingen dækker tre hovedomr̊ader. Fælles for alle omr̊ader er, at de
beskæftiger sig med tidsdomæne simuleringer af slanke marine konstruktioner
- dvs. forankringsliner eller fleksible olierør til anvendelse i forbindelse med
offshore-installationer p̊a dybt vand.

Den første del af afhandlingen beskriver hvordan neurale netværk kan de-
signes og trænes til, at dække et stort antal forskellige bølgetilstande. Neurale
netværk er indrettet s̊aledes, at de kun kan genkende mønstre, som er inde-
holdt i de data, der benyttes til træningen af netværket. Udmattelsesanalyser
af marine konstruktioner indbefatter ofte simuleringer med mere end hundrede
forskellige bølgetilstande. Dette betyder, at skal metoden være rigtig effek-
tiv, må træningsdata arrangeres s̊aledes, at ét neuralt netværk kan dække alle
relevante bølgetilstande. Metoden demonstreres p̊a en numerisk model af en
forankringsline til en flydende platform.

Den næste del af afhandlingen undersøger hvordan serieforbundne neurale
netværk kan benyttes til at simulere dynamisk respons af alle kritiske omr̊ader
p̊a fleksible rør. Ved design af forankringsliner kigger man udelukkende p̊a
snitkræfter i toppen af linerne. Disse kræfter er relativt simple at bestemme ved
brug af et enkelt neuralt netværk. Ved rørdesign skal man, afhængigt af hvilken
rørkonfiguration det drejer sig om, undersøge en række kritiske omr̊ader. I
denne forbindelse er der ikke nødvendigvis en direkte sammenhæng mellem ydre
belastninger og resulterende snitkræfter, hvilket betyder at et enkelt neuralt
netværk ikke altid er tilstrækkeligt. Det demonstreres hvordan dette problem
kan løses ved at opsætte en serie af neurale netværk som trinvist simulerer sig
vej igennem konstruktionen.

Endeligt omhandler den sidste del af afhandlingen optimering af neurale
netværk. Det gives eksempler p̊a hvordan trænede neurale netværk kan reduc-
eres voldsomt i størrelse og stadig opretholde en høj simuleringsnøjagtighed.
Udover at opn̊a et mere kompakt netværk, kan denne optimeringsprocedure
benyttes til at rangere vigtigheden af de ydre belastninger p̊a konstruktioner.
S̊adanne følsomhedsstudier kræver normalt et stort antal simuleringer, men med
denne metode, kan de gennemføres ved brug af kun et enkelt sæt data.

Den store fordel ved hybridmetoden er, at den giver anledning til en markant
besparelse i beregningstid i forbindelse med ikke-lineære dynamiske tidsdomæne
simuleringer. Da de neurale netværk ikke kan st̊a alene, men er afhængige af
modeller der genererer træningsdata, må man hele tiden vurdere om tidsbe-
sparelsen ved hybridmetoden opvejes af det ekstra arbejde forbundet med at
etablering af metoden.
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Abstract

This present thesis consists of an extended summary and five appended papers
concerning various aspects of the implementation of a hybrid method which
combines classical simulation methods and artificial neural networks. The thesis
covers three main topics. Common for all these topics is that they deal with
time domain simulation of slender marine structures such as mooring lines and
flexible risers used in deep sea offshore installations.

The first part of the thesis describes how neural networks can be designed
and trained to cover a large number of different sea states. Neural networks can
only recognize patterns similar to those comprised in the data used to train the
network. Fatigue life evaluation of marine structures often considers simulations
of more than a hundred different sea states. Hence, in order for this method to
be useful, the training data must be arranged so that a single neural network can
cover all relevant sea states. The applicability and performance of the present
hybrid method is demonstrated on a numerical model of a mooring line attached
to a floating offshore platform.

The second part of the thesis demonstrates how sequential neural networks
can be used to simulate dynamic response of specific critical hot spots on a flex-
ible riser. In the design of mooring lines only top tension forces are considered.
These forces can easily be determined by a single neural network. Riser design,
depending on the applied configuration, requires detailed analysis of several
critical hot spots along the structure. This means that the relation between ex-
ternal loading and corresponding structural response not necessarily is as direct
as for the mooring line example. Hence, one neural network is not sufficient to
cover the entire structure. It is demonstrated how a series of neural networks
can be set up to sequentially simulate the dynamic response at critical locations
along a complex riser structure.

The final part of the thesis deals with the optimization of neural networks.
It is shown how trained networks can be dramatically reduced in size while still
maintaining a high simulation accuracy. Beside providing a more compact neu-
ral network the optimization procedures can be used to rank the importance of
external effects on structures. Such sensitivity studies usually require numerous
simulations. But by using this method these studies can be based on just one
short simulation sequence which reduces the computational cost significantly.

The great advantage with the hybrid method is that it gives rise to significant
reductions in computation time associated with nonlinear dynamic time domain
simulations. However, since the neural network depends on pre-generated train-
ing data, one must always consider the balance between saved computation time
and time spend on establishing the hybrid method.
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1 Introduction

The overall objective with this project has been to develop a method that can
reduce the excessive computational effort associated with nonlinear dynamic
analysis of flexible marine structures such as mooring lines and risers. In design
and analysis of slender risers and mooring systems for floating offshore units,
there is a very pronounced need for long term time series simulations - both in
evaluation of ultimate limit state and of long term fatigue [1, 2, 3, 4]. Slender
offshore structures exhibit large deformations and therefore require non-linear
models for reliable analysis. The combination of the need for detailed nonlin-
ear models and the demand for long time series simulations makes design and
analysis of these types of structures very time consuming and costly. And even
though numerous suggestions on how to reduce the amount of required simu-
lation data have been suggested, se e.g. [5, 6, 7, 8], this computational task
remains an inevitable part of the analysis of this type of structures.

The use of artificial neural networks (ANNs) for reducing computational cost
has shown to be useful in various aspects of structural engineering. Adeli [9]
gives an overview of applied methods, while Waszczyszyn & Zieminański [10]
demonstrate different possible applications of neural networks in mechanical
engineering. Many of these applications deal with detection of structural fatigue
damage. Gupta [11] applies artificial neural networks and principal component
analysis in detection of fatigue damage by using the two tools as outlier detectors
on observed data sequences. Javier et al. [12] uses a similar approach to detect
damages in bridge-like structures. Also within nonlinear structural response
analysis artificial neural networks have shown to be a powerful tool. Most of
the techniques are based on hybrid methods combining finite element models
and ANNs. Ordaz-Hernandez et. al. [13] demonstrate how ANNs can be trained
to predict the deflection of a nonlinear cantilevered beam. In dynamic analysis
Xu et. al. [14] identifies structural parameters of a five story building using
a neural network on a pre-generated dynamic time domain response history.
Guarize et al. [15] applied a similar network structure to simulate the dynamic
response of a flexible risers in service, thereby reducing calculation time by
a factor of about 20. The ability of the ANN to perform nonlinear mapping
between a given input and a system output makes it capable of performing
response predictions without time consuming equilibrium iterations. Hence,
a properly trained ANN can save a lot of time in response simulations and
thereby help to avoid the infuriating compromise between model sophistication
and computational efficiency.

Time domain dynamic analysis of structures is in practise a matter of solving
a system of differential equations. Since these equations very rarely offer an
explicit solution method for numerical integration must be applied [16, 17]. Even
with efficient algorithms implemented in modern high performance computers,
solving nonlinear differential equations remain a very time consuming task. The
idea with this project is, instead of solving these equations, to simulate the
solution to the equations by use of artificial neural networks. The artificial
neural network is a mathematical tool inspired by the network-like structure
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Figure 1: The brain constantly simulates solutions to equations of motion.

of the human brain [18, 19, 20]. Due to its structure the human brain has a
remarkable ability to recognize patterns with an impressive speed. It is this
ability that makes us able to read hand written letters and to recognize faces.
This ability to recognize patterns can also be utilized to predict patterns of
movement. An example of this is when a girl catches a flying tennis ball as in
Figure 1. When deciding where to put her hands she obviously does not think
about the set of equations that describe the trajectory of the ball through the
air. Instead, the girl recognizes the situation and is able to put her hands at
the right place at the right time. This process provides a very fast and accurate
simulated solution to the equations that describe the underlying laws of nature
which govern the trajectory of the ball. Hence, since the girl has seen many
balls flying through the air she is capable of recognizing and predicting the
trajectory of the ball and thereby to bypass the need for an actual solution to
the governing equations of motion.

To replicate this ability mathematically requires two things. 1: A mathe-
matical formulation with a brain-like network structure such as the ANN and
2: a set of training data to train the network to recognize a given pattern.
The training data corresponds to letting the girl see a series of tennis balls fly
through the air. A girl who has never seen a flying ball will most likely be
unable to catch it. However, after relatively few attempts the girl will recognize
a pattern in the way a ball falls and also be able to predict this pattern and
hence, be able to catch the ball. For the ANN to be able to identify underlying
patterns in a set of data there must be a sufficient amount data to represent the
characteristics of the data generator.

10



It is difficult - if not impossible - to explain exactly how we recognize a
certain pattern e.g. the face of an old friend. Nevertheless, the human brain is
very fast and reliable when it comes to pattern recognition. The same qualities
apply for the ANN. The structure of the ANN makes it impossible to extract any
physical interpretation of the elements in the network as opposed to numerical
models where all individual elements represent a physical property. As Warner
and Misra [21] put it: ”A neural network never reveals the functional relations;
they are buried in the summing of the sigmoidal functions.”

When it comes to complex flexible structures only very few types of anal-
ysis can be carried out satisfactorily by linear methods. This means that the
vast majority of the analyzes associated with design of slender marine struc-
tures require computational demanding and time consuming nonlinear analysis.
Numerical analysis of structures is always a balance between model sophistica-
tion and computational effort. Often linear analysis is not adequate to obtain
satisfactorily accurate results. Over the last decades various methods for ap-
plying pattern recognition tools in order to save computational effort have been
suggested. As mentioned, Guarize et. al [15] showed that the hybrid method,
if only for very distinct types of analysis, can introduce dramatic reductions
in computation time in connection with dynamic time domain simulations of
riser systems. The bold ambition of this PhD project has been to develop and
expand this idea into a set of useful tools ready for implementation. The differ-
ent analysis regimes are illustrated in Figure 2 with respect to computational
cost and ability to comprise structural complexity. Nonlinear numerical models
can include a high degree of structural complexity but are often computation-
ally demanding. Linear numerical models, on the other hand, serve to limit
the computational effort but do that by sacrificing model complexity. The ad-
vantage of a well trained ANN is that it can include nonlinear features while
matching the speed of linear methods.

Beside being able to perform nonlinear mapping the ANN comprise another
interesting feature. That is the robustness of the network structure. If just one
calculation step is deleted in a regular computer the whole process breaks down.
If the functionality of the human brain also collapsed if just one neural connec-
tion was damaged we would be in serious trouble. One of the big advantages
with the structure of the brain is its robustness towards minor damages.

Actually our brain frequently suffers from minor damages in the neural net-
work without impairing the overall performance of the brain. This robustness is
due to the parallel network structure. In case of severe brain damage a person
can loose certain abilities completely. However, through rehabilitation it is of-
ten possible to regain the lost abilities. This is also due to the parallel network
structure that makes it possible to let information flow around a damaged area
and thereby compensate for the damage [22, 23, 24, 25]. The ability to tolerate
damages also applies for artificial neural networks. This has inspired people to
develop methods to conduct deliberate network pruning in order to optimize
the network in terms of size and performance [26, 27, 28].

Over the course of this project the focus has been on three main extensions
to the hybrid methodology. First it has been shown in the appended paper [P1]

11
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Figure 2: Hybrid method simulation can bypass the compromise between model
complexity and computational effort.

that the method can be expanded to cover a complete scatter diagram with
about 150 different sea states for simulation of top tension forces in a mooring
line on a floating offshore platform. Secondly a dynamic response simulation of
a entire flexible riser using a series of simple ANNs has been presented in [P5].
And finally, by using an optimization algorithm and adjusted error measures
evaluated in [P2], it has been demonstrated in [P3,P4] that the hybrid method
can be used as a very reliable tool for efficient parametric studies based on a
single short simulation sequence only.

2 Artificial Neural Networks

The Artificial Neural Network is a pattern recognition tool inspired by the
structure of the human brain. The ANN can be used both for classification and
for regression. In this thesis only regression is considered. In most regression
methods a functional form is imposed on the data. The power of the ANN
approach lies in the fact that it does not assume any functional relationship,
but instead the data define the functional form automatically by itself [21].

The original idea behind Artificial Neural Networks was introduced in 1943
when McCulloch and Pitts [29] presented a computational model for neural
networks. In 1958 Rosenblatt created the perceptron which is a layer based
algorithm for pattern recognition [30]. However, the ANN research stagnated
quite abruptly in 1960’s when Minsky and Papert [31] discovered two funda-
mental problems with the computational neural networks. The first problem
was that computers of that time were not sophisticated enough to handle the
computations associated with large neural networks. This problem is no longer
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an issue. The second problem was that the ANN was incapable of processing
the exclusive-or circuit [32]. The latter problem was solved in 1975 when Wer-
bos [33] developed the backpropagation algorithm. Over the last decades neural
networks have proved to be useful in various practical applications within the
fields of finance, marketing, health, medicine, engineering etc. [34, 35, 36].

There exists vast amount of literature concerning Artificial Neural Networks
and their various features and applications. A quick introduction is given by
Warner and Misra in [21]. A more thorough description of the topic can be
found in [37] by Bishop. All ANN related software developed in this project is
based on the basic ANN toolbox code provided in connection with the course
02457 Non-Linear Signal Processing at Technical University of Denmark.

2.1 Setting up the ANN

The architecture of the ANN used throughout this thesis is shown in Figure
3. The ANN consists of an input layer, a hidden layer and an output layer.
All layers consist of an arbitrary number of neurons. The size of the input
and output layers depend on the specific problem to which the ANN is applied.
As the neurons in the hidden layer have no physical interpretation, the size of
this layer is adjustable. However, since the ability of the ANN to learn complex
patterns is related to the size of this layer, it must have sufficient size to comprise
all underlaying characteristics of the data in question. On the other hand, it
has been shown that for a fixed amount of training data networks with too
many elements do not generalize well [27]. Two neurons in neighboring layers
are connected and each of these connections have a weight. The connections
are represented by the straight lines in Figure 3. The training of an ANN
corresponds to an optimization of these weights with respect to a particular set
of training data. The accuracy and efficiency of the network depends on the
network architecture, the optimization of the individual weights and the choice
of error function used in the applied optimization procedure.

The design and architecture of the ANN and the subsequent training pro-
cedure both follow the approach outlined in [38]. Assume that the vectors x, y
and z contain the neuron variables of the input layer, output layer and hidden
layer, respectively. The output layer and hidden layer values can be calculated
by the expressions

y = W�

Oz, z = tanh
(
W�

I x
)
, x0 ≡ z0 ≡ 1, (1)

where WI and WO are arrays that contain the neuron connection weights
between the input and the hidden layer and the hidden and the output layer,
respectively. By having both x0 and z0 defined equal to unity biases in the data
can be absorbed by the input and hidden layers.

Between the layers a nonlinear transfer function is needed in case of nonlinear
output. Tangent hyperbolic has shown to give rise to fast conversion during
training [37] and is therefore used throughout this thesis.
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Figure 3: Sketch of artificial neural network.

2.2 Training the ANN

The optimal weight components of the arrays WI and WO are found by an
iterative procedure, where the weights are modified to give a minimum with
respect to a certain error function. The error function can be considered as a
landscape in a multi dimensional error space. In this error space each connection
in the ANN represents a dimension. For regressions models the error function
which is minimized during training, is often the mean square error, written as

E (W) =
1

2

N∑
n=1

{
y(xn;WI ;WO)− τn

}2

+
1

2
αW2, (2)

where y is the ANN output, N is the number of training data sets, τ is the
target value for a given input x. The weight decay α in (2) controls the value of
the weights and prevents the ANN from overfiting due to noise in the training
data. Since the ANN in all cases presented in this thesis simulate theoretical
models of physical systems and therefore replicate exact solutions to the systems
equations of motion there is no noise in the target output data. Thus, the weight
decay in (2) is set to zero (α = 0) in the following.

The updating of the weight components is performed by a classic gradient
decent technique, which adjusts the weights in the opposite direction of the
gradient of the error function [39]. For both WI and WO of the ANN this
gradient decent updating can be written as

Wnew = Wold +ΔW, ΔW = −η
∂E (W)

∂W
, (3)
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where η is the learning step size parameter. The two weight arrays WI and
WO must be evaluated separately yielding these weight updates

ΔWO
j = −η

(
N∑
n

(yn − τn) zj

)
(4)

ΔW I
ji = −η

(
N∑
n

(
(1− z2j )W

O
j (yn − τn)

)
xi

)
(5)

The performance of a trained ANN is usually measured in terms of the so-called
validation error, which is calculated in the same way as the training error but
with respect to an entirely new set of data, which has not been part of the
network training.

An ANN with one hidden layer, a sigmoid activation function and a sufficient
number of neurons in the hidden layer is an universal approximater because
it can approximate any continuous function to any degree of accuracy [40].
However, the purpose of the present ANN is not to replicate a specific set of
data but instead to recognize and learn the underlying pattern in the data. That
is why it is needed to save some data for validation and to keep track of the
validation error during the training. This validation error must be monitored
during training of the ANN. The reason is that even though the objective of
the training is to minimize the training error, the ultimate goal is to get the
validation error as low as possible.

3 Hybrid method

The purpose of the hybrid method is to avoid the task of solving computationally
demanding nonlinear differential equations. This is done by training an ANN
to simulate a solution to structural equations of motion. This means that the
ANN relies on data in order to learn a specific pattern. Hence, the ANN can
not stand alone as there must be a source of relevant data. This is why the
method described in this thesis is a so-called hybrid method. It is ’hybrid’ simply
because it combines two different mathematical tools. The training of the ANN
depends on data that contains the relation between the external loading on the
structure and the corresponding structural response. The data may originate
from measurements, experiments or from solutions to numerical models, as long
as the data contains the dynamic characteristics of the structure in question. In
this case, as in most cases, numerical FEM models are used as data generators.

Since the ANN depends on training data and the numerical model therefore
must be established anyway, the hybrid method is mainly relevant in cases
where long time series simulations are required. So when evaluating whether
or not to use the hybrid method one must assess the balance between the time
spend on training the ANN and the time saved once the ANN is ready to
produce the simulations. In most cases the time spend on training is insignificant
compared to the subsequent required amount of simulation time, while the time
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Figure 4: Computational effort associated with nonlinear structural dynamic
simulation using the different methods.

saved on the simulations obviously depends on the amount of simulated data,
as illustrated in Figure 4.

3.1 Combining with structural models

The first step of the hybrid method is to set up a numerical model of the
structure in question, e.g. a FEM model. Having this model it is possible to
apply relevant loading and thereby to generate a series of data that subsequently
can be used to train the ANN. After the training the ANN is able to take over
the simulations at a much higher pace than the corresponding numerical model.

Most of the examples presented throughout this thesis are based on the same
numerical model. The model simulates a floating offshore platform anchored by
18 mooring lines assembled in four main clusters. The model calculates tension
forces in selected mooring lines as function of prescribed platform motion time
histories. A schematic drawing of the floating platform is shown in Figure 5.
The external forces acting on the structure are induced by waves, current and
wind.

The platform motion and mooring line tension forces are mutually depen-
dent. To simplify the computations the response problem is decoupled. First
the platform motions are calculated using a simple quasi-staic catenary moor-
ing line model. Secondly, the dynamic mooring line tension forces are more
accurately calculated using a nonlinear finite element mooring line model with
prescribed platform motion derived from the precalculated platform motions.
The platform motion calculations are carried out by the program SIMO [41]
and the dynamic response analysis of the highest stressed line is carried out by
the program RIFLEX [42]. The platform mooring line model has been used in
appended papers [P1], [P2], [P3] and [P4].
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Figure 5: Mooring system with floating platform and anchor lines.

Beside applying the hybrid method to the model of the mooring line on the
floating platform the method has been tested on two typical riser structures. In
order to do that two simplified FEM models, representing the different typical
riser configurations sketched in Figure 6, were set up. The models were estab-
lished in order to demonstrate that a sequence of neural networks can be used
to simulate all critical locations along the complex structure. To conduct the
FEM simulations a small tool box, using a co-rotational beam element formula-
tion has been developed. The implementation follows the procedure described
in [43] and the riser models have been used in [P5].

4 Mooring line fatigue analysis

The objective of the mooring line analysis in [P1] has been to demonstrate how
the training data can be selected and arranged so that a single ANN be trained
to simulate an entire scatter diagram, which lists the annual occurrence of all
fatigue relevant sea states in terms of significant wave height and wave peak
period [44, 45].

The ultimate purpose of the ANN is to completely bypass the computa-
tionally expensive numerical time integration procedure, which in this case is
conducted by the RIFLEX model. This means that the input to the neural
network must be identical to the input used for the RIFLEX calculations. In
this case the input is therefore the platform motion, represented by the six de-
grees of freedom representing the network input in Figure 7 and illustrated by
the six vectors in Figure 5. In principle the number of neural network output
variables can be chosen freely, and in fact all degrees of freedom from the nu-
merical finite element analysis may in theory be included as output variables
in the corresponding ANN. However, the strength of the ANN in this context
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Figure 6: Sketch of two typical riser configurations.

is that it may provide only the specific output variable that drives the design
of the structure, which in this case is the maximum top tension forces in the
particular mooring line. This leads to a very fast simulation procedure, which
for a well-trained network provides sufficiently accurate results. Thus, the ANN
is in the present case designed and trained to predict the top tension force of
the selected mooring line, and the platform motion (six motion components;
surge, sway, heave, roll, pitch and yaw) are, together with the top tension of
previous time steps, used as input to the ANN. This is indicated in the network
architecture in Figure 7. This means that the input vector xn at time increment
n can be constructed as

xn =
[
[xt xt−h . . . xt−dh] [yt yt−h . . . yt−dh] [zt zt−h . . . zt−dh]

[αt αt−h . . . αt−dh] [βt βt−h . . . βt−dh] [γt γt−h . . . γt−dh]

[Tt−h Tt−2h . . . Tt−dh]
]T

, (6)

where t = nh denotes current time, h is the time increment and d is the number
of previous time steps included in the input, i.e. the model memory. The
corresponding ANN output is the value of the top tension force Tt in the mooring
line

yn = Tt (7)

Since there is only one network output y is a scalar and not a vector as in (1).

4.1 Selection of training data

Since the ANN is a tool for pattern recognition it can in principal only predict
patterns similar to those used for the training of the network. Because of the
need for many realizations of time series with different wave conditions in fatigue
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Figure 7: Sketch of artificial neural network for predicting top tension force in
mooring line.

analysis the ANN must be trained to cover a broad range of wave characteristics
and sea states. This means that the training data must be selected such that
in particular all extreme conditions are included but at the same time comprise
enough of data in between the extremes to secure a satisfactory representation of
the different levels of nonlinear behavior. The sea states used for training in this
example are shown in the scatter diagram in Table 1. In the table ’X’ denotes
fatigue relevant sea states and ’O’ represents sea states selected for network
training. Note that the sea state with Hs = 15m and Tp = 17.5s is in fact not
part of the fatigue calculations and therefore not part of the original scatter
diagram. This specific sea state is merely included to stretch the operational
range of the ANN in order to improve the accuracy for the largest relevant wave
heights.

The selected training data is assembled in a single sequence of time histories
and normalized in the following way,

XANN =
XFEM − μ(XFEM )

σ(XFEM )
, T̂ =

TFEM − μ(TFEM )

σ(TFEM )
(8)

The normalization of data leads to faster training and better convergence as
described in most text books on neural networks, see e.g. [46]. After the nor-
malization the data has a mean value of μ(XANN ) = 0 and a standard deviation
of σ(XANN ) = 1. A similar normalization is applied for the network input that
goes into the ANN after training in the subsequent simulations.

Note that in order to obtain the actual tension force, T̂ must be trans-
formed back using μ(TFEM ) and σ(TFEM ) calculated during normalization of
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Hs/Tp 1.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5

1 X X X X X X X X X X X X O X X X X X O

2 O X X X X X X X X X X X X X X X X X X X X

3 X X X X X X X X X X X X X X X X X X

4 X X X X X X O X X X X X X X X X

5 O X X X X X X X X X X X X X

6 X X X X X X X X X X X O

7 X X X X X X O X X X

8 O X X X X X X X X

9 X X X X X X X X

10 X X X X X X X

11 X X X X O X

12 O X O X O

13 X O O

15 O

Table 1: Scatter diagram of relevant sea states. Training data are marked by ’O’.

the training data in (8).

4.2 ANN design

In order to obtain an optimal ANN structure three variables have been investi-
gated. The ANN has been optimized with respect to the number of neurons in
the hidden layer, the model memory and amount of training data. The model
memory represents the number of previous time steps used as ANN input. As
mentioned previously all data generated by the RIFLEX model must be divided
into two sets - a training set and a validation set. The validation set is used to
asses the quality of the trained ANN with respect to fresh data. The valida-
tion error Etest is calculated in the same way as the training error (2) but with
respect to data that has not been part of the initial ANN training.

Figures 8a-8c show the results of the three investigations. In all figures the
validation error Etest is plotted as function of the investigated free parameter.
All curves represent the mean value of the error from five independent simula-
tions, and the vertical bars show the corresponding standard deviation. Based
on these results an ANN with 100 neurons in the hidden layer and a model
memory of three time steps has been chosen in the subsequent simulations. The
training is in this case based on 1.6 · 104 s of simulated data divided equally on
the 15 selected sea states.

4.3 Assessment of simulation accuracy

One of the challenges associated with the hybrid method is the assessment of
when the ANN simulations are sufficiently accurate. The error function obvi-
ously provides a measure for the ANN accuracy but it is difficult to evaluate
how well the ANN actually performs based on this parameter. Figure 8d shows
the development in ANN error during training. The training error Etrain, which
is minimized by the training algorithm, is represented by the solid curve, while
the dashed curve shows the ANN validation error Etest. This latter measure
indicates how well the ANN performs with respect to fresh data. Since the
goal of the procedure is to train the ANN to actually simulate the structural
response with respect to unknown data, the underlying objective of the training
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Figure 8: Optimization ANN architecture
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Figure 9: ANN and RIFLEX simulation for time series for 3 different sea states.

is therefore to minimize Etest. Hence, one must keep track of the development
of the validation error during the training to avoid overfitting with respect to
the specific training data. An increase in Etest often indicates overfitting, in
which case the training should be terminated. Even though the training re-
duces the error measures as intended it is difficult to evaluate how accurate the
ANN performs based solely on these error magnitudes. Under all circumstance
some form of visual inspection will be an important part of the assessment of
the ANN performance. Figure 9 shows comparisons of the ANN and the FEM
simulations. The figure shows three different sea states that have not been part
of the ANN training.

Since these long time domain simulations are often used in fatigue life cal-
culations an appropriate way to asses the accuracy of the ANN is simply to
compare the accumulated damage. Therefore, a full life time assessment for the
mooring line has been carried out based on all sea states in Table 1. The ex-
pected life time is estimated based on the results obtained by the hybrid method
simulations and then compared to the estimate obtained by the full RIFLEX
analysis. The analysis has been conducted in accordance with offshore standard
and recommended practice for riser analysis by DNV [1, 2].

The damage has been calculated by a Palmgren-Miner summation of the
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Fatigue life [years] Deviation [%] Simulation time
RIFLEX 1698 - ∼ 10 hours
Hybrid 1725 ∼ 1.6 % ∼ 1 minute

Table 2: Calculated expected fatigue life for the anchor line.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

3

4

5

6

7
x 10−5

Hs

S
ca
le
d
fa
ti
g
u
e
d
a
m
a
g
e
[1
/
y
]

(a) Accumulated yearly damage HS.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2
x 10−4

Tp

S
ca
le
d
fa
ti
g
u
e
d
a
m
a
g
e
[1
/
y
]

(b) Accumulated yearly damage TP .

Figure 10: Accumulated yearly damage divided into wave heights and peak
periods. ANN, RIFLEX

stress variation cycles obtained from a rain flow counting procedure for each
simulation time history [47]. The damage from each sea state has been mul-
tiplied with the likelihood of the given sea state. This provides the expected
annual damage and hence the inverse of the expected fatigue life of the mooring
line once the individual contributions are summed over all sea states. The re-
sults are listed in Table 2. It is seen that the hybrid method deviates by only 1.6
% from the RIFLEX analysis, which in this particular case must be considered
as the correct estimate.

Considering that the hybrid method is about 600 times faster than the RI-
FLEX analysis the 1.6 % deviation is remarkable. If the length of the time
domain simulations is increased the reliability of the analysis is also increased.
With the RIFLEX model increasing simulation lengths are quite expensive,
whereas with the hybrid method the simulation length does not make any prac-
tical difference as the simulations after training are very fast.

Figures 10a and 10b show the accumulated damage for all significant wave
heights and wave peak periods, respectively. It is seen that the results of the
ANN simulations are very close to those of the RIFLEX simulations on all
individual levels.
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5 Sequential ANN simulation

The mooring line example presented in section 4 presumably featured a very
direct load-response relation between platform motion and the resulting top
tension forces in the mooring line. For risers where the design is based on section
forces at numerous hot spots along the structure it is not straight forward to
predict section forces at the bottom of the riser merely based on the motion at
the sea surface. A sequential procedure for the analysis of flexible risers has been
proposed in [P5]. The procedure uses a series of ANNs to simulate the response
of the entire riser for a given load history. Each ANN simulates the response
of an adjacent node. This response is then used as input for a subsequent
ANN simulating the response of the next model node. Thereby it is possible
to simulate response histories at all critical locations of the flexible risers. A
simplified two-dimensional FEM model representing typical riser configurations
has been used to demonstrate the sequential ANN scheme. The model does not
consider hydrodynamic effects or interaction with the sea bed. Furthermore, the
only external impact on the structure is a prescribed horizontal movement of the
top node on the riser - corresponding to the movement of a floating platform.

WI

WO

Bias

Bias

Input (x)

Hidden (z)

Output (y)ut

rt

rt

Figure 11: Sketch of artificial neural network.

The ANN used in this example is sketched in Figure 11 and has the exact
same structure as the one used for the mooring line simulations in section 4.
The ANN is trained to predict the horizontal response of the riser based on the
prescribed horizontal movement of the top node. In connection with flexible
riser analysis the variables ut and rt represent the prescribed floating platform
motion and the corresponding structural riser response at time t, respectively.
Structural response at previous time steps are denoted rt .
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Figure 12: Sketch of FEM model.

5.1 Applied to riser in lazy wave configuration

The sequential ANN scheme has been demonstrated on two typical riser config-
urations. In both cases ten model nodes are selected as indicated in Figure 12.
The ambition has been to simulate the response of the bottom node (node 1)
based only on the prescribed motion of the top node (node 10). The first case
is a simple steel catenary riser. In that example it is possible to obtain accurate
simulation of the bottom node by use of a series of just two ANNs. The second
example, which is also the one included in this thesis, considered the somewhat
more complex lazy-wave riser configuration. For this riser configuration it turns
out that, in order to keep the simulation error sufficiently low, it is necessary
to have a distinct ANN for each of the ten selected nodes in Figure 12. Figure
13 shows how the individual networks perform at different locations along the
riser. Except for the first ANN in Figure 13a all networks use simulated input
generated by the previous ANN. This means that any previous inaccuracies are
passed on and thereby remain in subsequent simulations. Despite the accumu-
lation of errors, the sequential hybrid method still manages to maintain a very
high degree of accuracy in the response simulations all the way along the riser
down to the final node 1 at the sea bed. Note that each ANN introduces a short
transient response period before the response gets synchronized with the input.
These transient periods are accumulated trough the sequence which is why it
takes about 200 s before the simulation of node 1 in Figure 13c replicates the
FEM simulation.

The use of more ANNs obviously implies extra work in establishing the
simulation tool. The results of the FEM simulation, which the ANN training
is based on, contain the response histories of all model nodes. This means that
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Figure 13: Comparison of simulations generated by FEM and ANN. �: ANN
input, ◦: ANN output, ANN, FEM
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Figure 14: ANN structure for Lazy-wave simulation.

the training of all the networks involved in the simulation can be done based
on the same FEM simulation. Hence, the sequential scheme requires extra time
for ANN training each time an additional network is introduced, but no extra
time spend on the computational demanding nonlinear FEM simulation.

The series of networks which made it possible to simulate the riser response
all the way down to the sea bed, stepping through the structure continuously
using simulated data one model node as input for a subsequent ANN which
simulates the next node is shown in Figure 14. The simulation of the lazy-
wave riser includes a total of nine ANNs which must be trained individually.
However, considered that all training can be carried out based on just one
FEM simulation and that the time spend on ANN simulation after training is
insignificant, when compared to the time consuming FEM analysis, the extra
training is not considered to be a significant degradation of the hybrid method.

6 Optimization of ANN performance

The following optimizations have been done on the ANN trained to simulate top
tension forces in the mooring line as in section 4. For clarity the optimization
algorithms were applied to a network which is trained to cover only a few sea
states. This reduces the optimal number of neurons in the hidden layer from
about one hundred, as necessary when the ANN must cover the entire scatter
diagram in Table 1, down to just four, which gives exactly the ANN sketched
in Figure 7. In the previous examples the individual neural networks have been
optimized with respect to size of hidden layer, model memory and amount of
training data, but not with respect to internal structure and the objective of
the ANN. This section deals with the possibility of enhancing ANN performance
through general optimization approaches.

6.1 Comparison of error functions

The mean square error (MSE) used as error function so far is very convenient
and usually leads to good ANN performance. But it does not provide any
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Table 3: Deviations on accumulated tension force cycles.

HS E2 Ew
2 E4 Ew

4

2 −3.6 % −16.3 % 7.3 % 65.8 %
4 −6.9 % −13.0 % 4.8 % 32.0 %
6 −4.4 % −8.0 % 2.6 % 14.9 %
8 −2.7 % −4.8 % −1.5 % 8.6 %
10 −2.0 % −3.5 % −1.6 % 6.9 %
12 −1.4 % −3.1 % −1.7 % 5.3 %
14 −0.8 % −0.3 % 2.1 % 3.1 %

Total −1.7 % −3.8 % 1.6 % 6.4 %

extra focus on specific data. For most cases this is probably an advantage.
However, for mechanical structures that is not always the case. The comparison
of error measures presented in [P2] yielded two useful contributions. The paper
describes an attempt to improve the ANN performance through the use of tailor-
made error functions that aim to focus on large response amplitudes as these
contribute excessively to the structural damage. The study compared different
error measures with respect to accuracy in fatigue calculations. The comparisons
were based on the so-called Minkowski-R error:

ER =
1

R

∑
n

c∑
k=1

|yk(xn;W)− tkn|
R (9)

where y is the scalar ANN output and t is the target value. The classic MSE is
seen to be a special case of the Minkowski error with R = 2. Different values
of R have been tested together with the possibility of emphasizing the focus on
large response amplitudes by putting a weight on the error function as

Ew
R =

1

R

∑
n

c∑
k=1

|yk(xn;W)− tkn|
R · |tkn| (10)

The results listed in Table 3 show that raising the power from R = 2 to R = 4
improves the accuracy slightly while the weighted error function in fact impairs
the ANN performance significantly.

In addition to a slight improvement in fatigue life estimation the study pro-
vided a beneficial side effect. Raising the power of the error function from the
usual two to four provides a function to which the second derivative with respect
to the network weight arrays W is easily calculated. The double differentiation
of the error function is important part of the most used ANN optimization
algorithms.
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6.2 Optimization of ANN structure

Appended papers [P3,P4] investigate the possibility of improving the ANN per-
formance by optimizing the structure of the network used in [P2]. The aim of the
optimization procedures is initially to classify the layer connections in terms of
relevance, and subsequently to use this classification to remove connections and
thereby improve the efficiency of the ANN. Thus, the optimization procedures
initiate from a reasonably large network that has been trained to minimum er-
ror. Although the ANN used in the present case already is rather compact in
terms of size of input and hidden layer, it is assumed that the network is still
sufficiently large to be pruned further on individual weight level.

There exist several methodologies for evaluating the saliency of the network
weights [37]. The idea of the pruning methods is to rank the importance of
all network weights and then successively delete the least salient weight. The
simplest possible approach is to simply consider the magnitude of all network
weights and assume that small weights are less important than large weights.
However, according to [37] this concept has little theoretical motivation. Nev-
ertheless, for comparison this method has been implemented and tested in the
following together with the two most renown optimization algorithms Optimal
Brain Damage (OBD) [27] and Optimal Brain Surgeon (OBS) [28].

The starting point for both OBD and OBS is a Taylor expansion of the
error function (9) with respect to the network weights. This Taylor series can
be written as

δE =
∂E

∂WT
δW+

1

2
δWTH δW +O(‖δW‖3), (11)

where

H =
∂2E

∂W∂WT
(12)

is the Hessian matrix containing all second order derivatives of the error function
with respect to the network weights. Both optimization methods are based on
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networks that are initially trained to a local minimum. This means that the
first term in (11) vanishes because ∂E/∂WT = 0 represents the condition for
a function extremum. The higher order terms represented by the latter term
in (11) are furthermore omitted. This implies that the saliency of the network
weights is calculated merely by evaluating the second order derivatives, whereby
the problem reduces to

δE �
1

2
δWTH δW (13)

This approximation of the perturbation of the error function gives the curva-
ture in error space at the local minimum that was reached during the network
training. The particular diagonal element in the Hessian matrix with smallest
magnitude identifies the weight component with least significance with respect
to the error function. This weight is therefore deleted by the pruning proce-
dure. Figure 15 shows a two-dimensional example where the weight Wi,j is less

significant compared to Wk,l because
1
2

∂2E
∂W 2

i,j
W 2

i,j <
1
2

∂2E
∂W 2

k,l
W 2

k,l.The expression

in (13) constitutes the foundation for both the OBD and the OBS procedure,
even though the two methods use different approaches to determine the Hessian
matrix H, as demonstrated next.

6.2.1 Optimal Brain Damage

The OBD procedure trains the initial ANN architecture, where all neurons
between input and hidden layer and between hidden and output layer are con-
nected with non-vanishing weights. The saliency of all weights are computed
and the least important weight is pruned by simply defining the associated
weight to be zero. When a network weight is eliminated the reduced network
must be retrained before the next least salient weight can be selected and subse-
quently removed. The procedure can in principal be repeated until the network
is completely eliminated, whereas in reality the procedure is terminated when a
desired compromise between accuracy and computational efficiency is obtained.

The OBD procedure approximates the Hessian by disregarding the non-
diagonal terms. With the error function given in (9) and R = 4 this assumption
yields the following second derivatives of the network error with respect to the
components of the weight matrices WO and WI , respectively. The diagonal
Hessian components for the hidden-to-output layer connections can be computed
as

∂2E

∂W 2
O,j

= 3

N∑
n=1

(yn − tn)
2
z2j (14)

while for the input-to-hidden layer connections

∂2E

∂W 2
I,ji

=

N∑
n=1

(1− z2j )
(
3(1− z2j )(yn − tn)

2W0,ji − 2zj(yn − tn)
3
)
W0,jix

2
i (15)

Having these double derivatives determined by (14) and (15) it is possible
to evaluate the saliency for all individual network weights as
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LOBD
q =

1

2
HqqW

2
q , (16)

where the subscript represents the q’th weight. Thus, the least salient weight
can be identified by LOBD

q in (16) and subsequently deleted.

6.2.2 Optimal Brain Surgeon

The goal of the OBS method is to minimize the increase in the error function
(9) while setting a specific network weight to zero. The vanishing weight, which
represents the candidate for deletion, is in the following denoted Wq. The con-
dition for elimination of the weight with the smallest saliency can be expressed
by the projection

eTq δW+Wq = 0 (17)

where eq is a zero vector in weight space with unit value corresponding to
weight Wq. The aim is now to solve the following equation, which minimizes
the increase in error while at the same time forcing the selected weight to zero,

min
q

{
min
δW

(
1
2δW

TH δW
)

| eTq δW+Wq = 0
}

(18)

To solve (18) a Lagrangian is formed containing δE = 0, with the perturba-
tion of the error function given in (13), and the condition in (17) enforced by
the Lagrange multiplier λ,

L =
1

2
δWTH δW+ λ(eTq δW+Wq) (19)

When deriving the functional derivatives of this Lagrangian, and employing the
constraint condition in (17), the perturbation of the weight matrix is obtained
as

δW = −2λH−1eq (20)

This is now inserted into (17), which then gives the Lagrange multiplier λ as

λ =
Wq

2 [H−1]qq
(21)

where [H−1]qq represents the diagonal element of the inverse Hessian corre-
sponding to the weight component q. To calculate the optimal change in weight
the value of λ is finally inserted into (20), which gives

δW = −
Wq

[H−1]qq
H−1eq (22)

Now that this optimal change in weight has been determined the resulting
change in the error is obtained by inserting (21) and (22) into (19),

LOBS
q =

1

2

W 2
q

[H−1]qq
(23)
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As seen the inverse Hessian is needed for calculating both the smallest saliency
LOBS
q and the corresponding optimal change in weight δW. Hassibi and Stork

[28] outlines a procedure for the direct evaluation of the inverse Hessian ma-
trix H−1, which avoids the computational effort associated with inversion of
large matrices. However, since the weight matrices used in the example for the
present paper are fairly small, the inversion of H is based on standard numerical
techniques without special considerations.

6.3 Application to structural model

The three optimization algorithms have been applied to the trained ANN. Figure
16 shows the development of the ANN error as the number of deleted network
weights increases. To verify that the three procedures actually select and delete
appropriate weights a fourth algorithm, which randomly deletes weights, is also
included in Figure 16. For the simple approach, OBD and random deletion
of weights the network is retrained each time a weight is deleted whereas for
the OBS the network is trained only once, whereafter the network weights are
adjusted according to the procedure described in Section 6.2.2 and therefore this
procedure requires no additional network training. Apparently this procedure
for updating weights without additional training holds only for a limited number
of deleted weights in this particular example.

The initial network training requires a fairly large amount of iterations
(1 · 105) to reach a local minimum in error. However, the retraining of the
network performed after each weight deletion does not have to be as thorough.
In this example 2000 iterations for the retraining have proven to give satis-
factory results, which means that the retraining is not very time consuming.
Hence, the retraining may therefore be considered as a small adjustment to the
weights and not a complete network training. Even though retraining should be
unnecessary in the OBS procedure it is recommended that the final network is
retrained after the pruning exercise has been terminated. The performance of
the networks pruned by the OBS procedure is shown in Figure 16 by the green
dashed curve. It is seen that the error E of the OBS procedure is relatively low
for up to approximately 25 pruned weights. Although simulations presented by
Hassibi and Stork [28] indicate that the OBS procedure is superior to OBD, it
appears from the present analysis that the OBD procedure is apparently the
best pruning procedure in this particular example concerning dynamic analysis
of a slender off-shore structure. On the other hand, the very simple approach,
where weights are directly deleted according to their magnitude, seems to work
very well in this particular example despite its alleged poor performance in
practice [37].

Figure 17 shows just how well the OBD procedure works for this exam-
ple maintaining a very high simulation accuracy after having pruned the vast
majority of the networks weights.
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6.4 Redundant input components

As the pruning procedure successively cuts network weights until the entire
network is deleted it will at certain stages reach a point where a motion degree
of freedom for the platform is completely ignored by the network. This can
be used to rank the importance of the individual motion components and to
evaluate whether one or more components are in fact negligible. This feature
is addressed in [P4]. When the trained ANN is pruned by the OBD procedure
the optimal network emerges around the same stage as the heave motion of
the platform is completely removed from the network input. The heave motion
component is completely ruled out after 37 deletions. The fact that the optimal
ANN is reached as the heave motion is ruled out indicates that not only is the
heave motion redundant it actually adds noise to the system. The explanation
for this is that the numerical model has a build-in heave compensator that
dampens the effect of the vertical platform motion. Hence, the tension forces
in the mooring line is not directly related to the heave motion of the floating
platform. The next degree of freedom to be completely ignored by the network
is the platform roll motion. This happens after 53 deletions. After 74 deletions
the third motion degree of freedom is ignored by the network. At this stage it is
the platform pitch motion which no longer plays a part in the ANN simulation.
Visual inspection of the simulations in Figure 17 shows that the ANN still
simulates quite accurately at this stage. However, the graphs included in [P4]
reveal that continuing the pruning until a fourth motion component (surge)
is deleted is going to far. At this stage the network still captures the overall
dynamics of the structure, but it is no longer able to do any useful simulation.

As for the the example in section 4 the performance of the individual ANNs
are compared with respect to accuracy on summarized stress cycles using rain
flow counting. The summation is done for all seven sea state simulations. Devi-
ations from the RIFLEX simulation are listed in Table 4. The table lists results
at the different stages of pruning where a motion degree of freedom is ignored by
the ANN. To test how well the OBD works as a tool for quick parameter study,
a series of RIFLEX simulations are conducted in accordance with the ranking
given by the OBD procedure. Hence, the platform heave motion is left out of the
first calculation, heave and roll left out in the second calculation and so forth.
The deviations in accumulated stress cycles are listed in Table 5. It is seen that
leaving out the heave motion does not degrade the accuracy of the simulation
significantly. When leaving out heave and roll motion from the analysis, the er-
ror increases slightly - as seen for the ANN simulation. For some reason, when
the pitch motion is ignored the error in the stress cycle accumulation drops to
practically nothing. This is in contrast to the ANN simulations where a general
increase in error is seen as the number of input variables are ignored. A closer
look, however, at the data (not included here) reveals that the surprisingly low
deviation in accumulated load stress cycles is coincidental. When all four input
variables are ignored (heave, pitch, roll and surge) the simulation is completely
useless. The inaccuracy of accumulated load stress cycles increases dramatically.
Except for the very low error in the fatigue estimation based on the simulation
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Table 4: Deviations on accumulated tension force cycles when compared to
RIFLEX simulations.

Simulation ANN ANN1 ANN2 ANN3 ANN4

Deviations 1.2 % −1.1 % −3.4 % −8.8 % 7.7 %

Table 5: Deviations on accumulated tension force cycles when compared to
RIFLEX simulations.

Simulation RIFLEX RIFLEX1 RIFLEX2 RIFLEX3 RIFLEX4

Deviations - -0.5 % 3.1 % 0.03 % -65.4 %

conducted with RIFLEX ignoring heave, pitch and roll, the results obtained by
the two methods coincides very well. This implies that, based on just one rela-
tively short simulation sequence including three different sea states, the trained
ANN combined with the OBD procedure is able to evaluate the importance of
the input variables and to estimate the cost of ignoring one or more variables
in the analysis including seven different sea states. In addition, the pruning
procedure detects the stage where the simulation becomes completely useless.

7 Conclusion

The goal for this PhD study has been to develop the hybrid scheme to a point
were it is ready for commercial applications used in design and analysis of slen-
der marine structures. Even though this goal has not been reached completely
the results obtained and presented throughout this thesis indicates that hy-
brid method simulation holds a great potential. Three main contributions have
moved the method closer to a application ready stage.

First there is the novel way of selecting and arranging training data which
makes a single ANN able to simulate all relevant sea states for an entire fatigue
analysis. The example presented in [P1] showed that the time spend on time
domain simulations conducted as part of a fatigue analysis on the mooring lines
on a floating offshore platform could be reduced from about 10 hours to less
than 2 minutes while maintaining an accuracy on the fatigue life estimation of
about 98%.

The second extension of the hybrid method is the sequential ANN procedure
that makes it possible to simulate all critical locations and hot spots on complex
structures. This procedure introduced a series of mutually dependent ANNs
and thereby additional time spend on network training. However, since this
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extra training do not require any additional time consuming FEM analysis,
extra training does not significantly degrade the potential of sequential hybrid
method simulation. Of the contributions presented in this thesis, this sequential
method is probably the one which needs most further development before being
ready for implementation in commercial software.

The third development is the application of optimization algorithms for rank-
ing and evaluating the importance of external effects on structures. It was shown
that the OBD procedure effectively ranked the importance of the platform mo-
tions and also with great accuracy identified insignificant components. Noting
that training and pruning an ANN is a lot less time consuming than running sev-
eral numerical simulations, the described procedure can become a very valuable
tool when investigating the importance of various input variables in mechanical
analysis.

The application of artificial neural networks for dynamic simulation of slen-
der marine structures is not fully develop to the extent where it can be im-
plemented directly into commercial software. However, it is probably closer to
being ready than the most potential users are. Machine learning techniques
are not part of the education for mechanical engineers - and it most probably
won’t be in any near future. In addition, when compared to regular mathemat-
ical tools applied in mechanical engineering, artificial neural networks are still
’black boxes’ when it comes to interpretation of output data. Therefore, one of
the challenges with the hybrid method is to implement it in a way so that it
can be used reliably by engineers who do not possess in-depth knowledge about
these techniques. Hence, the programs must be set up in a way so the architec-
ture, optimization and validation to a large extent is automated. However, if
this is done properly the method potentially can save a tremendous amount of
calculation time in nonlinear dynamic analysis.
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ABSTRACT
Dynamic analyses of mooring line systems are computation-

ally expensive. Over the last decades an extensive variety of
methods to reduce this computational cost have been suggested.
One method that has shown promising preliminary results is a
hybrid method which combines finite element analysis and arti-
ficial neural networks (ANN). The present study presents a novel
strategy for selecting, arranging and normalizing training data
for an ANN. With this approach one ANN can be trained to per-
form high speed dynamic response prediction for all fatigue rel-
evant sea states and cover both wave frequency motion and slow
drift motion. The method is tested on a mooring line system of a
floating offshore platform. After training a full fatigue analysis
is carried out. The results show that the ANN with high preci-
sion provides top tension force histories two orders of magnitude
faster than a full dynamic analysis.

∗Address all correspondence to this author.

INTRODUCTION

The ever increasing energy demand drives oil and gas
exploration towards more and more harsh environments. One
field which draws vast attention these years is deep water
exploration. Deep water oil exploration leads to an increasing
need for structural ability and reliability. Consequences of
structural failure in deep water fields are in general very high in
terms of environmental, human and economical impact. In order
to design safe and reliable structures a lot of attention is put
into setting up realistic and sophisticated models for numerical
analyzes. The finite element method (FEM) is an important tool
in this respect. Time domain simulation of nonlinear systems
using FEM analysis can be computationally very expensive -
especially when long response histories are needed in order to
obtain reliable time series statistics. In design and analysis of
flexible risers and mooring systems for floating offshore units,
there is a very pronounced need for long term time series simula-
tions - both in evaluation of ultimate limit state and of long term
fatigue [1, 2]. Slender offshore structures such as oil/gas risers
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and mooring systems exhibit large deformations and therefore
require non-linear models for reliable analysis. The combination
of the need for detailed non-linear models and the demand for
long time series simulations makes design and analysis of these
types of structures very time consuming and costly. Thus, the
motivation for developing time saving models and methods is
very pronounced. As a consequence of this a broad variety of ap-
proaches and methods have been suggested over the last decades.

One branch of time saving approaches deals with different
types of linearization methods. Many of these methods are
based on the Lagrange and updated Lagrange formulations as
described by Bathe at el. [3] or Zielinski & Frey [4]. Recently,
Kordkheili at el. [5] used a modified updated Lagrange for-
mulation for three dimensional FEM analysis of flexible riser
structures. By decomposing strains and stresses Kordkheili at
el. obtained a linearization scheme that avoids some of the inac-
curacies normally associated with linearization methods when
compared to full nonlinear solutions. In analysis of offshore
structures there is great desire and tradition for using frequency
domain approaches based on wind and wave statistics. But
even though extreme response for FPSO (Floating, Production,
Storage and Offloading) units and risers/mooring lines often
are associated with extreme wave heights and can emerge from
resonant situations, as discussed by A.O. Vázquez-Hernández at
el. in [6], their nonlinear nature makes full frequency domain
analysis inadequate. Spanos at el. [7] compares a statistical
linearization technique and coupled time domain analysis for
modeling of nonlinear spar dynamics. They show a reliable
agreement between the two methods in terms of response
statistics and power spectra and suggests that the statistical
linearization technique is adequate for initial stages of design
analyzes.

In resent years different hybrid methods combining FEM
with other methods have shown promising results in dramatic
reduction in calculation time. Low [8] has shown how a
time/frequency domain hybrid method can reduce computational
costs in riser fatigue analysis dramatically. Low combines the
non-linear time domain simulation with a frequency domain
method separating vibration into wave frequency response and
low frequency response. This methods is based on the assump-
tion that wave frequency induced vibrations are approximately
linear and therefore can be analyzed by use of a frequency
domain approach, while the low frequency response that governs
the large deformation is simulated by nonlinear numerical
analysis. Another hybrid method philosophy which seems to be
booming these years combines classical deterministic models
with various types of machine learning techniques or pattern
recognition tools. Gupta [9] applies artificial neural networks
and principal component analysis in detection of fatigue damage
by using the two tools as out layer detectors on observed

data sequences. Javier et. al. [10] uses a similar approach to
detect damages in bridge-like structures. Among the applied
machine learning techniques the application of Artificial Neural
Networks (ANN) seems to be the mostly used and the one with
the broadest range of applicability. Most of the techniques are
based on hybrid methods combining finite element models and
ANNs. Ordaz-Hernandez et. al. [11] demonstrate how ANN can
be trained to predict the deflection of a nonlinear cantilevered
beam. Waszczyszyn & Zieminański [12] demonstrates different
possible applications of neural networks in mechanical engi-
neering. In dynamic analysis Xu et. al. [13] identifies structural
parameters of a five story building using a neural network on a
pre-generated dynamic time domain response history. Guarize
et. al. [14] used a similar network structure to simulate the
dynamic response of a flexible oil pipe in service and thereby
reduced calculation time by a factor of about 20 compared to
ordinary nonlinear numerical analysis.

The idea with artificial neural networks is to replicate the
human brain’s remarkable ability to learn, recognize and pre-
dict patterns of different kinds. In the present case the ANN is
trained to predict the pattern of motion of a specific structure.
This means that in order to learn this pattern the ANN needs an
example that shows a motion history corresponding to a given
load history. Hence, the ANN cannot stand alone but depends on
pre-generated training data. These training data can come from
experiments, measurements on real structures or from numerical
models such as FEM models. The following study uses training
data generated by a FEM model of a structure. FEM models of
nonlinear structures often require fine element mesh discretiza-
tion, small time step size and iterative procedures in order to ob-
tain equilibrium between internal and external forces. For large
complex models this can be very time consuming. The ANN’s
ability to perform nonlinear mapping between a given input and
a system output makes it capable of response prediction without
equilibrium iterations. Hence, a properly trained ANN can save
a lot of computational effort in response prediction. This paper
presents a hybrid method approach that can be used in dynamic
analysis by predicting the top tension force history for a mooring
chain on a floating offshore platform and how this can be used to
perform efficient fatigue analyzes. A full fatigue analysis of the
mooring lines on the platform is performed based on simulations
generated by the optimized ANN. The calculated estimated ex-
pected fatigue life of the mooring line system is compared to the
result of a equivalent analysis conducted by the two commercial
programs for numerical dynamic simulation of marine structures
SIMO [15] and RIFLEX [16].

1 Artificial Neural Network
The great advantage of the present hybrid method scheme is

that it attempts to take the best from two methods and thereby by-
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FIGURE 1. Sketch of artificial neural network for predicting top ten-
sion force in mooring line.

passes the infuriating compromise between model sophistication
and required computational cost. It is well known that complex
nonlinear numerical models of large structures are computational
demanding. But since the ANN is capable of performing nonlin-
ear mapping between a given input and a corresponding output
with great accuracy and without equilibrium iterations, it is pos-
sible with a hybrid method to maintain all features of a refined
model, e.g. to cover both wave frequency motion and low fre-
quency motion, and still perform fast time domain simulation.

The artificial neural network is a pattern recognition tool that
replicates the ability of the human brain to recognize and pre-
dict various kinds of patterns. In the following an ANN will be
trained to recognize and predict the relationship between loads
on a floating platform and the resulting tension forces in a se-
lected anchor chain.

The architecture of a typical one layer artificial neural net-
work is shown in Figure 1. The ANN consists of an input layer,
a hidden layer and an output layer. Each connection between
two neurons in two neighboring layers has a weight. Training of
an ANN corresponds to optimization of these weights for a given
data training set. If we want the ANN to completely take over the
simulation from the numerical model the network input must be
the same as those used for the numerical model in the first place.
The number of network outputs can be chosen as one wishes. In
principal all output from the numerical model can be included in
the ANN. However, as the purpose of the simulation is to deter-
mine stresses at one specific location in the anchor chain we limit
the output layer to include the response at that specific location
only. Both input and output vectors will be described in detail in
section 4.

Following [17] the ANN set up and training procedure can
be written as follows. The ANN output is calculated by

y=W	
Oz, z= tanh

(
W	
I x

)
, x0 ≡ z0 ≡ 1, (1)

where x is input vector, y is output vector and WI and WO are
neuron connection weights between input and hidden layer and
hidden and output layer, respectively. The tangent hyperbolic
is used as activation function between input and hidden layer.
The tangent hyperbolic is often used in networks like this, which
represent smooth mapping between continuous variables, as it
has shown to give rise to fast convergence in network training
[18].

Training the ANN correspond to minimizing an error func-
tion. The literature suggests many choices of error functions.
The simplest and most often used is the sum-of-squares error
function which can be written as

E (W) =
1
2

N

∑
n=1

{y(xn;W)− ŷn}2, (2)

where y is the ANN output, ŷ is the target value and N is the
number of samples in the training data set. Optimal weights are
found with an iterative procedure stepping in weight space to-
wards minimal error. The weight update is done by gradient de-
cent going the opposite direction of the cost functions gradient
as

Wnew =Wold+ΔW, ΔW=−η
∂E (W)

∂W
, (3)

where η is the learning step size parameter. This parameter can
either be constant or updated during the training of the ANN. For
this application, in order to obtain faster convergence, a dynamic
learning step size parameter is adjusted for each iteration so that
it is increased if the training error is decreased compared to pre-
vious iteration step and reduced if the training error increases.

As seen in (3) the training procedure includes the first
derivative of the error function with respect to the network
weights. This yields

Δwji =−η
(

∑
n
(1− z2j)wj(y− t)xi

)
(4)

Δwj =−η
(

∑
n
(y− t)z j

)
(5)
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as weight updates for input weights and output weights, respec-
tively. Here i and j correspond to the individual elements in the
input vector x and the hidden layer z.

After training the ANN is ready to take over the time domain
simulation from the numerical model. An ANN of this kind with
sufficient number of neurons in the hidden layer can be trained to
a perfect fit to any training data [18]. However, since the purpose
of the training is not to memorize a set of training data but to
’teach’ the ANN the underlaying nature of the structure in ques-
tion it is important that not all of the pregenerated data are use for
training but that some part is saved for validation of the ANN.

2 Mechanical Model of Floating Platfrom
To illustrate the hybrid method scheme a model of a me-

chanical structure is set up. The structure consists of a floating
offshore platform at 105 m water depth anchored by 18 mooring
lines distributed in 4 clusters, see sketch in Figure 2. The exter-
nal forces acting on the structure are induced by waves, current
and wind.

In principal the dynamic analysis of the platform-mooring
system corresponds to solving

M(r)r̈+C(r)ṙ+K(r)r= f(t). (6)

where M, C and K represent the system inertia, damping and
stiffness, respectively. The system inertia matrix account for
structural inertia and response dependent hydrodynamic added
mass. Linear and nonlinear energy dissipation from internal
structural damping and hydrodynamic damping are accounted
for by the damping matrix. The stiffness matrix accounts for
elastic stiffness and response dependent geometric stiffness. The
response of the system is denoted by r and f includes all external
forces: gravity, buoyancy, hydrodynamic loads etc., acting on the
structure.

This means that the platform motion and mooring line ten-
sion are mutually dependent. To simplify things the response
problem is decoupled. First the platform motions are calculated
using a simple quasi-staic catenary mooring line model. Finally,
the dynamic mooring line tension is more accurately calculated
using a nonlinear finite element mooring line model with pre-
scribed platform motion derived from the precalculated platform
motions. Platformmotion calculations are carried out by the pro-
gram SIMO and the dynamic response analysis of the highest
stressed line, see Figure 3, is carried out by the program RI-
FLEX.

Data generated in RIFLEX is used as basis for the hybrid
method ANN described in the following sections.
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FIGURE 2. FLOATING PLATFORMANDMOORING SYSTEM.
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FIGURE 3. FLOATING PLATFORMAND MOORING LINE SYS-
TEM (TOP VIEW).

3 Selection and Normalization of Training Data
Since the ANN is a tool for pattern recognition it can in prin-

cipal only predict patterns similar to those used for training of
the network. Due to the need for many time series realizations
with different wave conditions in fatigue analysis the ANN must
be trained to cover a broad range of wave characteristics. This
means that the training data must be selected such that all ex-
tremes are included but at the same time comprise enough of
data in between the extremes as to secure a satisfactory represen-
tation of different levels of the nonlinear behavior. The sea states
used in training in this example are shown in Table 1. In the
table ’X’ represent fatigue relevant sea states and ’O’ represent
sea states selected for network training. Note that the sea state
with Hs = 15 and Tp = 17.5 is not part of the fatigue calculations
as it was not part of the original scatter diagram. This sea state
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TABLE 1. SCATTER DIAGRAM OF RELEVANT SEA STATES. TRAINING DATA ARE MARKED BY ’O’.

Hs/Tp 1.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5

1 X X X X X X X X X X X X O X X X X X O

2 O X X X X X X X X X X X X X X X X X X X X

3 X X X X X X X X X X X X X X X X X X

4 X X X X X X O X X X X X X X X X

5 O X X X X X X X X X X X X X

6 X X X X X X X X X X X O

7 X X X X X X O X X X

8 O X X X X X X X X

9 X X X X X X X X

10 X X X X X X X

11 X X X X O X

12 O X O X O

13 X O O

15 O

is merely included to stretch the range of the ANN in order to
improve the accuracy for the largest relevant wave heights.

The selected training data are assembled as one long se-
quence and normalized in the following way.

XANN =
XFEM− μ(XFEM)

σ(XFEM)
, ŷ=

TFEM− μ(TFEM)
σ(TFEM)

(7)

Normalization of data provides fast training and better conver-
gence as described in most text books on neural networks, eg.
[19]. After normalization the data has mean value of μ(XANN) =
0 and a standard deviation of σ(XANN) = 1. The same normal-
ization applies for the input that goes into the ANN after training
in the subsequent simulation.

The data that is used for training the ANN is shown in Fig-
ures 4 and 5. Figure 4 shows the normalized top tension forces
for a series containing the 15 different sea states depicted in Ta-
ble 1. Figure 5 shows normalized histories of the corresponding
prescribed six platform motions components as described in sec-
tion 2.

4 ANN training and optimization
The ANN is designed and trained to predict the top tension

of the mooring line. Platform motion is represented by the fol-
lowing six degrees of freedom: surge, sway, heave, roll, pitch
and yaw. They are used as ANN input together with the moor-

ing line top tension at the previous time step Tpast as indicated
in Figure 1. This means that the input vector x at time step t is
given by:

xt =
[
[x̄(t) x̄(t−1) . . . x̄(t−d)] [ȳ(t) ȳ(t−1) . . . ȳ(t−d)]

[z̄(t) z̄(t− 1) . . . z̄(t− d)] [ᾱ(t) ᾱ(t− 1) . . . ᾱ(t− d)]

[β̄(t) β̄ (t− 1) . . . β̄ (t− d)] [γ̄(t) γ̄(t− 1) . . . γ̄(t− d)]

[T̄ (t− 1) T̄ (t− 2) . . . T̄ (t− d)]
]T

, (8)

where x̄, ȳ, z̄, ᾱ, β̄ and γ̄ are normalized prescribed platfrom
motions, T̄ is the is the normalized tension forces from previous
time steps and d is number of previous time steps included in the
input i.e. the model memory. ANN output is the current mooring
line tension in the top chain link at the platform.

yt = [T̄ (t)] (9)

Note that in order to obtain the actual tension force T̄ must be
transformed back using μ(TFEM) and σ(TFEM) calculated dur-
ing normalization of the training data (7).

In order to obtain an optimal ANN structure three variables
are investigated. The ANN is optimized with respect to number
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of neurons in the hidden layer, model memory and amount of
training data. As mentioned earlier the simulation data gener-
ated by the RIFLEX model is divided into two sets - a training
set and a validation set. The purpose of the training set is to teach
the ANN the nature of the structure i.e. the underlaying mapping
between RIFLEX input and output. The validation set is used
to test the performance of the trained ANN with respect to fresh
data. The validation error (or test error) is calculated in the same
way as the training error (2). This validation error must be moni-
tored during training of the ANN. The reason is that even though
the objective of the training is to minimize the training error, the
ultimate goal is to get the validation error as low as possible.

In Figure 6 the validation error Etest is plotted against the
number of neurons in the hidden layer. The figure shows the re-
sults of five runs. The line indicates the mean value of the error
of the validation set over the five runs. The vertical bars indi-
cate the standard deviation. The figure shows that the error and
the scatter in performance of the trained ANN reach a minimum
when the number of neurons is about 100. Apparently the figure
also shows that there is no gain in increasing the number of neu-
rons beyond 120. In fact the opposite seems to be the case, as the
mean error and scatter increase slightly as the number of hidden
units grow. Therefore, 100 neurons in the hidden layer are used
in the following calculations.

In Figure 7 the validation error is plotted against the model
memory - that is how many previous time steps that are used as
network input - corresponding to d in (8). The picture shows that
including memory in the model reduces the error significantly.
On the other hand it is seen that increasing the memory to include
more than three steps does not improve the ANN performance.
In fact there seems to be a minimum validation error a d = 3.
Thus, a memory of three time steps is used in the following.

Figure 8 shows the validation error against amount of train-
ing data. It is clear that selecting a sufficient amount of training
data is vital in order for the ANN to perform satisfactorily. As
seen in Figure 5 a total of 1.6e4 seconds simulated data is used
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FIGURE 7. OPTIMAL ANN MEMORY.
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FIGURE 8. OPTIMAL AMOUNT OF TRAINING DATA.

for ANN training in this example. Note that these set of data
covers all 15 selected sea states. The amount of required training
data obviously depend on the number of included sea states.

With 7 input tracks (6 prescribed motion components and 1
from previous tension force) and a 3 time step memory the input
vector x for the ANN will have the dimension [22×1]. And with
100 neurons in the hidden layer the input weight matrixWI has
the dimension [100× 22]. As the ANN has just one output the
output matrixWO reduces to a vector of size [101× 1]

In order to keep the underlaying equilibrium algorithm in
RIFLEX stable the time step of the dynamic simulation is 0.1 s.
For the ANN, the time step size must be chosen so that the net-
work is able to recognize the dynamics of the structure. There-
fore, in many cases the ANN is capable of handling a larger time
step size than the corresponding numerical model. Using a larger
time step for the ANN, i.e. omitting a number of data points,
means that it is possible to cover more vibration cycles with the
same training data sample size and hence reduce the time spend
on ANN training. For this particular structure a time step of 2
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seconds have shown to give good results. Thus, 95 % of the data
can be ignored without compromising the accuracy of the ANN.
This is, however, highly dependent on the response frequencies
of the structure why the time step size of 2 seconds can not be
considered as a general appropriate step size.

5 Simulation using the optimized ANN
When the ANN is trained it is able to generate nonlinear

output without equilibrium iterations and hence at a remarkable
pace. Figure 9 shows comparisons of RIFLEX and ANN simu-
lations of the top tension force in the mooring line for three dif-
ferent randomly picked sea states (sea states that where not part
of the ANN training). For this particular simulation the trained
ANN calculates a factor of about 600 times faster than RIFLEX.
However, one must still consider the total costs of the hybrid
method when assessing wether the hybrid method is cost effec-
tive.

1. Setting up the artificial neural network
2. Selecting training data
3. Training the network

As it is stated in many textbooks on ANNs, obtaining an
optimal network is more an art form than a well defined science.
Hence, finding a reliable network structure is a matter of trial and
error and requires some degree of experience. However, setting
up the network probably must only be done once. After finding
an appropriate network architecture the same network will then
be able to handle most slender marine structures.

If this method shall be useful on a larger scale, it is vital to
have a robust standard procedure for selecting sea states used for
training. As mentioned earlier, the training data must cover the
entire desired range of the ANN - at least so that extremes and
some intermediate levels are included. In a case like this where
different sea states do not contribute equally to the fatigue dam-
age of the structure. Some types of waves contribute a lot to the
fatigue because they cause large stresses in the structure (typi-
cally large waves and waves with peak periods close to eigen-
periods of the structure) while other more moderate waves con-
tribute significantly due to their large number. The training data
should be selected so that the main focus is on the most harmful
sea states seen over the complete life time. Since this information
is part of the result of the analysis one must rely on experience
to evaluate this.

The training of the network is a fairly quick task. However,
the training must be repeated every time the required simulation
moves outside any previous ’training data range’. This means
that if something in the analysis is changed and this change in-
fluences the response pattern the network must be retrained.

6 Fatigue life evaluation
To evaluate the accuracy of the hybridmethod a full life time

assessment for the mooring line is carried out. The expected life
time is estimated based on results obtained by hybrid method
simulation and then compared to the estimate obtained by the
full RIFLEX analysis. The analysis is done in accordance with
DNV’s offshore standard and recommended practice for riser
analysis [1, 2].

For the fatigue analyses a complete Hs-Tp scatter diagram is
applied. Only the worst weather direction with respect to moor-
ing line fatigue damage is considered. Short term sea states
are constructed of the maximum significant wave height and
weighted spectral peak period within each block of the scatter
diagram and an associated wind speed and an associated cur-
rent speed. The wind speed associated with the significant wave
height is found by matching the directional cumulative distri-
bution function (CDF) of significant wave heights with the di-
rectional CDF of wind speeds. Similarly, the current speed as-
sociated with the significant wave height is found by matching
the omni-directional CDF of significant wave heights with the
omni-directional CDF of current speeds. Waves, wind and cur-
rent are assumed to act collinearly. Waves are simulated from a
Torsethaugen wave spectrum, wind speed is simulated from the
ISO wind spectrum. Time series of platform motion are simu-
lated for each of the sea states defined above using SIMO. Non-
linear load effect analyses of the mooring line subjected to forced
platformmotion and wave loads are performed with RIFLEX us-
ing platform motions from SIMO. Current loads on the mooring
line are not included. Fatigue damage is computed for the moor-
ing chain link located at the fairlead applying the DNV studless
chain SN-curve and stress concentration factors 1.15.

The damage is calculated by a Palmgren-Miner summation
of the stress variation cycles from a rain flow count of each simu-
lation history. The damage from each sea state is then multiplied
with the likelihood of the given sea state. This gives the expected
annual damage and hence the inverse of the expected fatigue life
of the anchor line when summed over all sea states. The results
are listed in Table 2. It is seen that the hybrid method deviates by
only 1.6 % from the RIFLEX analysis, which in this case must
be considered as the correct estimate.

Considering that the hybrid method is more than two orders
of magnitude faster than the RIFLEX analysis the 1.6 % devia-
tion is remarkable. If the length of the time domain simulations
is increased the reliability of the analysis is also increased. With
the RIFLEX model increasing simulation lengths are quite ex-
pensive, whereas with the hybrid method the simulation length
does not make any practical difference as the simulation it self
after training is so fast (about 600 times faster than RIFLEX).

Figures 10 and 11 show the accumulated damage for all sig-
nificant wave heights and wave peak periods, respectively. It
is seen that the ANN tends to overestimate the damage on the
smallest wave heights whereas the damage from the large wave
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TABLE 2. Calculated expected fatigue life for the anchor line.

Fatigue life [years] Deviation [%]

RIFLEX 1698 -

Hybrid 1725 ∼ 1.6 %

height is underestimated. The same tendency is seen for wave
periods. One could argue that the 1.6 % deviation is a matter
of luck since the over- and underestimations coincidentally can-
cels each other out. However the figures clearly show that the
ANN simulations are very close to the RIFLEX simulations on
all individual levels.

7 Concluding remarks
In the example presented in this paper the reduction in CPU

time spend on a simulation of the mooring line top tension force
history is about a factor of 600 when using the ANN compared
to RIFELX - that is when the ANN is set up and trained. This
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factor is obviously dependent on the structure, the loading, model
configuration etc. However, the results presented in this paper
indicate that the hybrid method holds a great potential.

Since the ANN relies on training data, and hence a model
to generate these data, e.g. a FEM model, the hybrid method is
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only relevant in cases where several long time series simulations
are needed. However, this is exactly the case for most nonlinear
structures subject to large displacements and fatigue.

It is shown how a fatigue calculation that usually takes 10+
hours, with this hybrid method can be completed within an hour.
However, designers using this method must be very careful when
selecting training data. It is important that the training data cov-
ers the whole range of the final simulated data and also that the
training set contains a sufficient amount of data. In order for the
hybrid method to be useful on a larger scale a reliable training
data selection procedure must be standardized. This will require
experience and methods to predict the most damaging sea states
and required amount of training data before an analysis is per-
formed. Furthermore, due to the ’black box’ nature of the ANN
it is vital to perform a reliable and adequate validation of the
trained ANN before conducting a full analysis.
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Training of an artificial neural network (ANN) adjusts the internal weights of the network in order to minimize a predefined
error measure. This error measure is given by an error function. Several different error functions are suggested in the literature.
However, the far most common measure for regression is the mean square error. This paper looks into the possibility of improving
the performance of neural networks by selecting or defining error functions that are tailor-made for a specific objective. A neural
network trained to simulate tension forces in an anchor chain on a floating offshore platform is designed and tested. The purpose
of setting up the network is to reduce calculation time in a fatigue life analysis. Therefore, the networks trained on different error
functions are compared with respect to accuracy of rain flow counts of stress cycles over a number of time series simulations. It is
shown that adjusting the error function to perform significantly better on a specific problem is possible. On the other hand. it is
also shown that weighted error functions actually can impair the performance of an ANN.

1. Introduction

Over the years, oil and gas exploration has moved towards
more and more harsh environments. In deep and ultra-deep
water installations the reliability of flexible risers and anchor
lines is of paramount importance. Therefore, the design and
analysis of these structures draw an increasing amount of
attention.

Flexible risers and mooring line systems exhibit large
deflections in service. Analysis of this behavior requires
large nonlinear numerical models and long time-domain
simulations [1, 2]. Thus, reliable analysis of these types of
structures is computationally expensive.Over the last decades
an extensive variety of techniques and methods to reduce
this computational cost have been suggested. A review of
the most common concepts of analysis is given in [3]. One
method that has shown promising preliminary results is a
hybrid method which combines the finite element method
(FEM) and artificial neural network (ANN) [4]. The ANN

is a pattern recognition tool that based on sufficient training
can perform nonlinear mapping between a given input and a
corresponding output. The reader may consult, for example,
Warner and Misra [5] for a fast thorough introduction to
neural networks and their features. The idea with the hybrid
method is to first perform a response analysis for a structure
using a FEM model and then subsequently to use these
results to train an ANN to recognize and predict the response
for future loads. As demonstrated by Ordaz-Hernandez et
al. [6] an ANN can be trained to predict the deformation
of a nonlinear cantilevered beam. A similar approach was
used by Hosseini and Abbas [7] when they predicted the
deflection of clamped beams struck by a mass. In connection
with analysis of marine structures Guarize et al. [8] have
shown that a well-trained ANN with very high accuracy
can reduce dynamic simulation time for analysis of flexible
risers by a factor of about 20. However, a problem with this
method is that an ANN can only make accurate predictions
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based on sufficiently known input patterns. This means that
a network trained on one type of load pattern will have
difficulties in predicting the response when the structure is
exposed to different types of loading conditions. Recently,
a novel strategy for arranging the training data has been
proposed by Christiansen et al. [9], where the idea is to
select small samples of simulated data for different sea states
and collect these in one training sequence. With a proper
selection of data an ANN can be trained to predict tension
forces in a mooring line on a floating offshore platform for
a large range of sea states two orders of magnitude faster
than the corresponding direct time integration scheme. It
has been shown how computation time, when conducting
the simulations associated with a full fatigue analysis on a
mooring line system on a floating offshore platform, can be
reduced from about 10 hours to less than 2 minutes.

Training of an ANN corresponds to minimizing a pre-
defined error function. Several studies on the efficiency of
using different objective functions for ANN training have
been conducted over the last decades. Accelerated learning in
neural networks has been obtained by Solla et al. [10] using
relative entropy as the error measure and Hampshire and
Waibel [11] presented an objective function called classifica-
tion figure of merit (CFM) to improve phoneme recognition
in neural networks. A comparative study performed by
Altincay and Demirekler [12] showed that the CFM objective
function also improved the performance of neural networks
trained as classifiers for speaker identification. However,
these references all consider networks used for classification
whereas the one used in this paper is trained to perform
regression between time-continuous variables. Hence, the
problem studied in this paper calls for different cost functions
from those used for neural classifiers.

This study evaluates and compares four different error
functions with respect to ANN performance on the fatigue
life analysis of the same floating offshore platform as used
in [9]. A numerical model of a mooring line system on a
floating platform subject to current, wind, and wave forces
is established. The model is used to generate several 3-hour
time domain simulations at seven different sea states with
2m, 4m, . . ., and 14m significant wave height, respectively.
The generated data is then divided into a training set and a
validation set.The training set consists of series of simulations
at only the sea states with 2m, 8m, and 14m wave height.
The remaining part is then left for validation of the trained
ANN. The full numerical time integration analysis is carried
out by the two tailor-made programs SIMO [13] and RIFLEX
[14], while the neural network simulations are conducted by
a small MATLAB toolbox.

2. Artificial Neural Network

The artificial neural network is a pattern recognition tool
that replicates the ability of the human brain to recognize
and predict various kinds of patterns. In the following an
ANNwill be trained to recognize and predict the relationship
between the motion of a floating platform and the resulting
tension forces in a specific anchor chain.

2.1. Setting Up the ANN. The architecture of a typical one
layer artificial neural network is shown in Figure 1. The ANN
consists of an input layer, where each input neuron represents
a measured time discrete state of the system. In the present
case in Figure 1 the neurons of the input layer represent the
sixmotion components (𝑥, 𝑦, . . .) of the floating platform and
the previous time discrete anchor chain tension force (𝑇past).
The input layer is connected to a single hidden layer, which is
then connected to the output layer representing the tension
force (𝑇). Two neurons in neighboring layers are connected
and each of these connections has a weight.The training of an
ANN corresponds to an optimization of these weights with
respect to a particular data training set. The accuracy and
efficiency of the network depend on the network architecture,
the optimization of the individual weights, and the choice of
error function used in the applied optimization procedure.

The design and architecture of the ANN and the sub-
sequent training procedure follow the approach outlined in
[15]. Assume that the vectors x, y, and z contain the neuron
variables of the input layer, output layer, and hidden layer,
respectively. The output layer and hidden layer values can be
calculated by the expressions

y = W⊤𝑂z, z = tanh (W⊤𝐼 x) , 𝑥0 ≡ 𝑧0 ≡ 1, (1)

whereW𝐼 andW𝑂 are arrays that contain the neuron connec-
tion weights between the input and the hidden layer and the
hidden and the output layer, respectively. By setting 𝑥0 and 𝑧0
permanently to one, biases in the data can be absorbed into
the input and hidden layer. The tangent hyperbolic function
is used as an activation function between the input and the
hidden layer. A nonlinear activation function is needed in
order to introduce nonlinearities into the neural network.
The tangent hyperbolic is often used in networks of this type,
which represent a monotonic mapping between continuous
variables, because it provides fast convergence in the network
training procedure; see [16].

The optimal weight components of the arrays W𝐼 and
W𝑂 are found by an iterative procedure, where the weights
are modified to give a minimum with respect to a certain
error function. The updating of the weight components is
performed by a classic gradient decent technique, which
adjusts the weights in the opposite direction of the gradient
of the error function [17]. For the ANN this gradient decent
updating can be written as

Wnew = Wold + ΔW, ΔW = −𝜂𝜕𝐸 (W)𝜕W , (2)

where 𝐸 is a predefined error function and 𝜂 is the learning
step size parameter. This parameter can either be constant or
updated during the training of the ANN. For the applications
in the present paper the learning step size parameter is
dynamic and will be adjusted for each iteration so that it
is increased if the training error is decreased compared to
previous iteration steps and reduced if the error increases.

2.2. Error Functions. As mentioned above in Section 2.1 the
training of anANNcorresponds tominimizing the associated
measure of error represented by the predefined error function
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Figure 1: Sketch of artificial neural network for predicting top tension force in mooring line.

𝐸. The literature suggests many choices of error functions
[16].

The simplest and most commonly used error function
in neural networks used for regression is the mean square
error (MSE). However, the purpose of the present ANN is to
significantly reduce the calculation time for a fatigue analysis
of the marine type structure. And since the large amplitude
stresses contribute far the most to the accumulated damage
of the mooring lines it is of interest to investigate how a
different choice of error measure will affect the accuracy
and efficiency of the fatigue life calculations. Four different
error functions are therefore tested and compared to the full
numerical solution obtained by time simulations using the
RIFLEX code.

The comparison is based on the so-called Minkowski-R
error:

𝐸 = 1𝑅∑𝑛
𝑐∑
𝑘=1

𝑦𝑘 (x𝑛;W) − 𝑡𝑘𝑛𝑅, (3)

where 𝑦 is the scalar ANN output and 𝑡 is the target value.
The classic MSE is seen to be a special case of the Minkowski
error with 𝑅 = 2. In many situations the performance and
accuracy of the ANN are equally important regardless of
the magnitude of the actual output. However, when dealing
with analysis of structures this is not always the case. For
example, the purpose of the ANN in the present paper is
to simulate the top tension force time history in a mooring
line, which is subsequently used to evaluate the fatigue life of
the line. And since by far the most damage in the mooring
line is introduced by large amplitude stress cycles, the ANN
inaccuracy on large stresses is much more expensive than
errors on small and basically unimportant amplitudes. One
way to specifically emphasize large amplitudes is to increase
the 𝑅-value in (3). Another and more direct way to place
additional focus on the importance of large stress amplitudes
is by multiplying each term in (3) by the absolute value of

the target values. This yields the following weighted error
function:

𝐸𝑤 = 1𝑅∑𝑛
𝑐∑
𝑘=1

𝑦𝑘 (x𝑛;W) − 𝑡𝑘𝑛𝑅 ⋅ 𝑡𝑘𝑛𝑅. (4)

The performance of a trained ANN is usually measured
in terms of the so-called validation error, which is calculated
in the same way as the training error but on entirely new
data set that has not been part of the network training. This
means that when comparing networks that have been trained
using different error functions the validation error is the
commonmeasure to assess performance in terms of accuracy
and computational effort. Obviously the various networks
considered in the following could be tested and compared
against any of the error functions that the networks have
been trained by. But that would definitely favor the particular
ANN that has been trained by the specific error function that
is chosen as the validation measure. And since the ultimate
objective of the ANN is to predict the fatigue life of the
mooring line it is appropriate to calculate and compare the
accumulated damage in the mooring line caused by all seven
sea state realizations previously mentioned in Section 1.

2.3. Network Training. In (2) the steepest decent correction
of the weight vector for the training of the network requires
the first derivative of the error function 𝐸 with respect to the
weight arrays W. Differentiation of (3) with respect to the
components of the two weight matricesW𝐼 andW𝑂 yields

𝑑𝐸𝑑𝑊𝑂,𝑘𝑗 = ∑
𝑛

𝑦𝑘 (x𝑛;W) − 𝑡𝑘𝑛𝑅−1𝑧𝑗,
𝑑𝐸𝑑𝑊𝐼,𝑗𝑖 = ∑

𝑛

((1 − 𝑧2𝑗)
𝑐∑
𝑘=1

𝑤𝑘𝑗𝑦𝑘 (x𝑛;W) − 𝑡𝑘𝑛𝑅−1)𝑥𝑖.
(5)

These gradients are now inserted into (2) and thereby
govern the correction of the weights for each iteration step in
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the training procedure. Similar differentiation of theweighted
error function (4) yields

𝑑𝐸𝑤𝑑𝑊𝑂,𝑘𝑗 = ∑
𝑛

𝑦𝑘 (x𝑛;W) − 𝑡𝑘𝑛𝑅−1𝑧𝑗 ⋅ 𝑡𝑘𝑛 ,
𝑑𝐸𝑤𝑑𝑊𝑂,𝑗𝑖
= ∑
𝑛

((1 − 𝑧2𝑗)
𝑐∑
𝑘=1

𝑤𝑘𝑗𝑦𝑘 (x𝑛;W) − 𝑡𝑘𝑛𝑅−1)𝑥𝑖 ⋅ 𝑡𝑘𝑛 .
(6)

The above equations are implemented into the training
algorithm and tested for the two power values 𝑅 = 2 and 𝑅 =4. This gives a total of four different error functions, which in
the following will be denoted as

(i) 𝐸2: unweighted error function with 𝑅 = 2;
(ii) 𝐸𝑤2 : weighted error function with 𝑅 = 2;
(iii) 𝐸4: unweighted error function with 𝑅 = 4;
(iv) 𝐸𝑤4 : weighted error function with 𝑅 = 4.

It should be noted that the first case 𝐸2 represents the classic
MSE function.

3. Application to Structural Model

The structure used as the basis for the comparison of the
different error functions is shown in Figure 2. It consists of
a floating offshore platform located at 105m water depth,
which is anchored by 18 mooring lines assembled in four
main clusters. The external forces acting on the structure are
induced by waves, current, and wind.

3.1. Structural Model. In principal the dynamic analysis of
the platform-mooring system corresponds to solving the
equation of motion:

M (r) ̈r + C (r) ̇r + K (r) r = f (𝑡) . (7)

In this nonlinear equation r contains the degrees of
freedom of the structural model, and f includes all external
forces acting on the structure from, for example, gravity,
buoyancy, and hydrodynamic effects, while the nonconstant
matricesM, C, and K represent the system inertia, damping,
and stiffness, respectively. The system inertia matrixM takes
into account both the structural inertia and the response
dependent hydrodynamic added mass. Linear and nonlinear
energy dissipation fromboth internal structural damping and
hydrodynamic damping are accounted for by the damping
matrix C. Finally, the stiffness matrix contains contributions
from both the elastic stiffness and the response dependent
geometric stiffness.

The nonlinear equations of motion in (7) couple the
structural response of the floating platform and the response
of themooring lines. However, the system is effectively solved
by separating the solution procedure into the following steps.

First the motion of the floating platform is computed by
the program SIMO [13], assuming a quasistatic catenary
mooring line model with geometric nonlinearities. The plat-
form response from this initial analysis is subsequently used
as excitation in terms of prescribed platform motion in a
detailed nonlinear finite element analysis for the specific
mooring line with highest tension stresses. The location of
the mooring line with largest stresses is indicated in Figure 3.
For this specific line the hot-spot with respect to fatigue is
located close to the platform and is in the following referred
to as the top tension force. From the detailed fully nonlinear
analysis performed by RIFLEX the time history of the top
tension force at this hot-spot is extracted.

Based on the simulated time histories for both the
platformmotion and the top tension force an ANN is trained
to predict the top tension force in the selected mooring line
with the platform response variables as network input. This
is considered next in Section 3.2. In [9] a multilayer ANN
was trained to simulate the top tension force two orders of
magnitude faster than a corresponding numericalmodel.The
training data was set up and arranged so that a single ANN
with a single hidden layer could simulate all fatigue relevant
sea states and thereby provide a significant reduction in the
computational effort associated with a fatigue life evaluation.
For clarity the ANN used in this example covers only a few
sea states, with different significant wave heights and constant
peak period. This gives a compact neural network that is
conveniently used to illustrate the influence of changing the
error function in the training of the network.

3.2. Selection of Training Data. The ultimate purpose of the
ANN is to completely bypass the computationally expensive
numerical time integration procedure, which in this case is
conducted by the RIFLEX model. This means that the input
to the neural network must be identical to the input used for
the RIFLEX calculations. In this case the input is therefore the
platform motion, represented by the six degrees of freedom
denoted in Figure 1 and illustrated in Figure 2. In principle
the number of neural network output variables can be chosen
freely, and in fact all degrees of freedom from the numerical
finite element analysis can be included as output variables in
the corresponding ANN. However, the strength of the ANN
in this context is that it may provide only the output variable
that drives the design of the structure, which in this case is
the maximum top tension forces in the particular mooring
line. This leads to a very fast simulation procedure, which for
a well-trained network provides sufficiently accurate results.
Thus, the ANN is in the present case designed and trained to
predict the top tension of the mooring line, and the platform
motion (six motion components; surge, sway, heave, roll,
pitch, and yaw) is, together with the top tension of previous
time steps, used as input to the ANN; see Figure 1. This
means that the input vector x𝑛 at time increment 𝑛 can be
constructed as

x𝑛 = [ [𝑥𝑡 𝑥𝑡−ℎ ⋅ ⋅ ⋅ 𝑥𝑡−𝑑ℎ] , [𝑦𝑡 𝑦𝑡−ℎ ⋅ ⋅ ⋅ 𝑦𝑡−𝑑ℎ] ,
[𝑧𝑡 𝑧𝑡−ℎ ⋅ ⋅ ⋅ 𝑧𝑡−𝑑ℎ] , [𝛼𝑡 𝛼𝑡−ℎ ⋅ ⋅ ⋅ 𝛼𝑡−𝑑ℎ] ,[𝛽𝑡 𝛽𝑡−ℎ ⋅ ⋅ ⋅ 𝛽𝑡−𝑑ℎ] , [𝛾𝑡 𝛾𝑡−ℎ ⋅ ⋅ ⋅ 𝛾𝑡−𝑑ℎ] ,
[𝑇𝑡−ℎ 𝑇𝑡−2ℎ ⋅ ⋅ ⋅ 𝑇𝑡−𝑑ℎ] ]𝑇, (8)
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where 𝑡 = 𝑛ℎ denotes current time, ℎ is the time increment,
and 𝑑 is the number of previous time steps included in the
input, that is, the model memory. The corresponding ANN
output is the value of the top tension force 𝑇𝑡 in the mooring
line:

𝑦𝑛 = 𝑇𝑡. (9)

Since there is only one network output 𝑦 is a scalar
and not a vector as in (1). For the training of the ANN
nonlinear simulations in RIFLEX are conducted for sea states
with a significant wave height of 𝐻𝑠 = 2m, 8m, and
14m, respectively. While neural networks are very good at
interpolatingwithin the training range, they are typically only
able to perform limited extrapolation outside the training
range. Thus, the selected training set must contain both the
minimum wave height (2m), the maximum wave height
(14m), and in this case a moderate wave height (8m) to
provide sufficient training data over the full range of interest.
With these wave heights included in the training data the
ANN is expected to be able to provide accurate time histories
for the top tension force for all intermediate wave heights.
The seven 3-hour simulation records generated by RIFLEX

are divided into a training set and a validation set. The data
that is used for training of the ANN is shown in Figures 4
and 5. Figure 4 shows the time histories for the six motion
degrees of freedom of the platform calculated by the initial
analysis in SIMO and used as input to both the full numerical
analysis in RIFLEX and the ANN training and simulation.
Figure 5 shows corresponding time histories for top tension
force determined by RIFLEX. The full time histories shown
in Figures 4 and 5 are constructed of time series for the
three significant wave heights. The first 830 seconds of the
training set represent 2m significant wave height, the next
830 seconds are for 8m wave height, and the remaining part
is then for 14m wave height.

The SIMO simulations are conductedwith a time step size
of 0.5 s. In the subsequent RIFLEX simulations the time step
must be sufficiently small as to keep the associated Newton-
Raphson iteration algorithm stable. In these simulations a
time step size of 0.1 s is therefore chosen, which means
that the additional input parameters are obtained by linear
interpolation between the simulation values from SIMO.
For the ANN the time step size ℎ must be chosen so that
the network is able to grasp the dynamic behavior of the
structure. Therefore, in many cases the ANN is capable of
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Figure 4: Platform motion used as ANN training input data.
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handling fairly large time step increments compared to the
corresponding numerical models. When using a larger time
step in the ANN simulations, for example, by omitting a
number of in-between data points, it is possible to reduce
the size of the training data set and thereby reduce the
computational time used for ANN training and eventually
also for the ANN simulation. In the example of this paper a
time step size of ℎ = 2.0 s is found to yield a good balance
between accuracy and computational efficiency, and this time
step ℎ is therefore used for the ANN simulations.

3.3. Design of ANN Architecture. In the design of the ANN
architecture three variables are investigated: (1) number of
neurons in the hidden layer, (2) size of the model memory𝑑, and (3) required amount of training data. When the
ANN has been trained and ready for use the network size
has no significant influence on the total simulation time
and computational effort. The main time consumer is the
training part, and time used for training of the network highly
depends on network size and the size of the training data set.
Hence, it is of great interest to design an ANN architecture
that is as compact and effective as possible.

Figure 6 shows a plot of the test error measure 𝐸test
relative to the number of neurons in the hidden layer of the
ANN. In this section, where the three basic ANN variables
are chosen the errormeasure is themean square error (MSE),
corresponding to the 𝐸2 error measure in Section 2.3. The
curve in Figure 6 furthermore represents the mean value of
the error based on five simulations, while the vertical bars
indicate the standard deviation. It is seen from this curve that
the performance and the scatter in performance of the trained
ANN is lowest when the hidden layer contains four neurons.
Therefore, an effective and fairly accurate ANN performance
is expected when four neurons in the hidden layer are used
in the following simulations.

Figure 7 shows the test error relative to the model
memory 𝑑, which represents the number of previous time
steps used as network input. First of all it is found that
including memory in the model significantly reduces the
error. However, it is also seen from the figure that an
increase of the memory beyond four previous steps implies
no significant improvement in the ANN performance. Thus,
a four-step memory, that is, 𝑑 = 4, is used in the following
numerical analyses.

For the training of any ANN it is always crucial to
have a sufficient amount of training data in order to cover
the full range of the network and secure applicability with
sufficient statistical significance. Figure 8 shows the test error
as function of the length of the training data set. As for the
parameter studies in Figures 6 and 7 the present curve shows
the mean results based on five simulation records. To make
sure that a sufficient amount of data is used for the training of
the ANN a total simulated record of 2500 s is included, which
corresponds to approximately a length of 14 minutes for each
of the three sea states. It is seen in Figure 8 that this length of
the simulation record is more than sufficient to secure a low
error.

The trained ANN is able to generate nonlinear output
without equilibrium iterations and hence at an often sig-
nificantly higher computational pace compared to classic
integration procedures with embedded iteration schemes.
Figure 9 shows the simulation of the top tension force in
the mooring line calculated by the finite element method
in RIFLEX and by the trained ANN. The four subfigures
in Figure 9 represent the four wave heights that were not
part of the ANN training, that is, 𝐻𝑠 = 4m, 6m, 10m,
and 12m. For these particular simulation records the trained
ANN calculates a factor of about 600 times faster than the
FEM calculations by RIFLEX.

3.4. Comparison of Error Measures. In the design of the
ANN architecture presented above the results are obtained
for an ANN trained with the MSE as objective function or
error measure. It is in the following conveniently assumed
that this ANN architecture is valid regardless of the specific
choice of error function. Thus, the various error measures
presented in Section 2.3 are in this section compared for the
ANN with four neurons in the hidden layer, four memory
input variables, and a training length of 2500 s.

As mentioned earlier some of the pregenerated data are
saved for performance validation of the trained ANN. These
data are used to calculate a validation error 𝐸test which
is the measure for the accuracy of the trained network.
Figure 10 shows the development in the validation error
during the network training with all four different error
functions present in Section 2.3. It is clearly seen that all four
error measures are minimized during training, whereas it is
difficult to compare the detailed performance and efficiency
of the four different networks based on these curves.

Figure 11(a) summarizes the development of the valida-
tion error for the four ANN, but this time the validation error
is calculated using the same MSE error measure (𝐸2) to give
a consistent basis for comparison. Thus, the four networks
have been trained with four error measures, respectively,
while in Figure 11(a) they are compared by the MSE. Even
though the networks here are compared on common ground
it is still difficult to evaluate how well they will perform
individually on a full fatigue analysis. Figure 11(b) illustrates
the accuracy of the four networks by showing a close up
of a local maximum in the top tension force time history.
It is seen that the two unweighted error functions, 𝐸2 and𝐸4, perform superiorly compared to the weighted functions.
Also the unweighted error measures provide a smaller MSE
error in Figure 11(a).This indicates that weighting of the error
functions implies no improvement of the performance and
accuracy of the ANN.

3.5. Rain FlowCount. Themagnitude of the various test error
measures is difficult to relate directly to the performance of
theANNcompared to the performance of theRIFLEXmodel.
Since these long time-domain simulations are often used in
fatigue life calculations an appropriate way to evaluate the
accuracy of the ANN is to compare the accumulated rain
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Figure 8: Validation error as function of amount of training data.

flow counts of the tension force cycles for each significant
wave height. In these fatigue analyses the RIFLEX results
are considered as the exact solution. For these calculations
the full 3-hour simulations are used and Figure 12 shows the
results of the rain flow count of accumulated tension force
cycles for each of the significant wave heights. Deviations
between RIFLEX and ANN simulations are listed in Table 1.
It should be noted that the deviations for the individual seven
sea states do not add up to give the total deviation because the
individual sea states do not contribute equally to the overall
damage. It is seen that the various networks perform verywell
on all individual sea states and that the best networks thereby
obtain a deviation of less than 2% for the accumulated tension
force cycles when summing up the contributions from all
sea states. This deviation is a robust estimate and is likely to
also represent the accuracy of a full subsequent fatigue life
evaluation.

It is seen from the rain flow counting results in Figure 12
and Table 1 that the neural networks trained with unweighted

Table 1: Deviations on accumulated tension force cycles.

𝐻𝑆 𝐸2 𝐸𝑤2 𝐸4 𝐸𝑤4
2 −3.6% −16.3% 7.3% 65.8%
4 −6.9% −13.0% 4.8% 32.0%
6 −4.4% −8.0% 2.6% 14.9%
8 −2.7% −4.8% −1.5% 8.6%
10 −2.0% −3.5% −1.6% 6.9%
12 −1.4% −3.1% −1.7% 5.3%
14 −0.8% −0.3% 2.1% 3.1%
Total −1.7% −3.8% 1.6% 6.4%

error function in general perform slightly better than those
trained with weighted error functions.Thus, placing a weight
on the error function does not seem to have the desired effect
in this application concerning the analysis of a mooring line
system for a floating platform.
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4. Conclusion

It has been shown how a relatively small and compact
artificial neural network can be trained to performhigh speed
dynamic simulation of tension forces in a mooring line on
a floating platform. Furthermore, it has been shown that a
proper selection of training data enables the ANN to cover
a wide range of different sea states, even for sea states that
are not included directly in the training data. In the example
presented in this paper it is clear that weighting the error
function used to train an ANN in order to emphasize peak
response does not improve the network performance with
respect to accuracy of fatigue calculations. In fact, the ANN
appears to perform worse when trained with the weighted
error function. On the other hand it appears that increasing
the power of the error function from two to four provides a
slight improvement to the performance of the trained ANN.

However, the idea of a weighted error function seems to
reduce the ANN performance. So apparently focusing on
the high amplitudes seems to deteriorate the low amplitude
response more than it improves the response with large
amplitudes.

As a conclusion the Minkowski error with 𝑅 = 4 is inter-
esting for the mooring line example in more than one aspect.
It provides more focus on the large amplitudes and improves
the ANN slightly. Furthermore, the second derivative of the𝐸4 is fairly easy to determine, which makes this objective
function suitable for several network optimizing schemes,
such as Optimal Brain Damage (OBD) and Optimal Brain
Surgeon (OBS), that are based on the second derivative of
the error function. Network optimization is, however, not
considered further in this paper but will be subject of future
work.
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Abstract
When using artificial neural networks in methods for dynamic analysis of slender structures, the computational effort
associated with time-domain response simulation may be reduced drastically compared to classic solution strategies.
This article demonstrates that the network structure of an artificial neural network, which has been trained to simulate
forces in a mooring line of a floating offshore platform, can be optimized and reduced by different optimization proce-
dures. The procedures both detect and prune the least salient network weights successively, and besides trimming the
network, they also can be used to rank the importance of the various network inputs. The dynamic response of slender
marine structures often depends on several external load components, and by applying the optimization procedures to a
trained artificial neural network, it is possible to classify the external force components with respect to importance and
subsequently determine which of them may be ignored in the analysis. The performance of the optimization procedures
is illustrated by a numerical example, which shows that, in particular, the most simple procedures are able to remove
more than half of the network weights in an artificial neural network without significant loss of simulation accuracy.
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Introduction

In recent years, an increasing amount of machine learn-
ing techniques has proven to be useful in many aspects
of structural engineering. Especially, the use of artificial
neural networks (ANNs) has drawn vast attention over
the last decades. A proper introduction and overview
of a variety of neural network applications in civil engi-
neering is given by Adeli.1 In most situations, machine
learning techniques are used to extract information
from large datasets, which means that they are used for
pattern identification. The ability to recognize patterns
can be very useful in, for example, damage detection
on existing structures where the ANN can be used to
detect changes in the structural behavior due to possi-
ble damage in structural members, see Bakhary et al.2

for further details.
Furthermore, neural networks hold a great potential

in structural design analysis because they are capable of
performing nonlinear dynamic analysis at a competitive
pace. An example is provided by Guarize et al.3 who
showed how a hybrid method, combining the finite

element method (FEM) and an ANN, can simulate the
dynamic response of a flexible oil pipe in service about
20 times faster than an ordinary nonlinear numerical
analysis. A similar approach has recently been used by
Christiansen et al.4 to reduce the simulation time dra-
matically when conducting a full fatigue life analysis of
a mooring line on a floating platform. The same plat-
form structure has been used in Christiansen et al.5 to
investigate the influence of using different error mea-
sures or cost functions in the network training, and it
was, furthermore, found that the resulting trained
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network used in that analysis simulated more than two
orders of magnitude faster than a corresponding non-
linear numerical analysis.

The aim of this study is to show that the ANN pre-
sented in Christiansen et al.5 can, in fact, be further
optimized and reduced in size. The literature suggests a
broad variety of pruning methods for optimizing the
ANN architecture, and an overview over various prun-
ing algorithms is given in the survey article of Reed.6

This study considers the simplest possible pruning strat-
egy, which assumes that small weights are less impor-
tant than large weights, and two of the most prominent
procedures: optimal brain damage (OBD)7 and optimal
brain surgeon (OBS).8 The procedures effectively iden-
tify and prune the least salient network weights in an
ANN. The OBD procedure was introduced by Le Cun
et al.7 in the early 1990s, where it was used to optimize
an ANN that was trained to read handwritten and
printed zip code digits. The OBS procedure was pre-
sented by Hassibi et al.8 some years later. The OBS fol-
lows the same line of philosophy as the OBD but uses a
different approach that eliminates some of the limiting
assumptions of the original OBD procedure.

The three procedures are tested in this article on
data generated by a numerical (FEM) analysis of the
mooring lines on a floating offshore platform structure.
Based on dynamic time-domain simulations of the plat-
form, the ANN is trained to predict the relationship
between platform motion and tension forces in the
mooring lines. The performance of the ANN is evalu-
ated with respect to common error measures and fati-
gue damage for the most critical mooring lines. It is
demonstrated that the performance of the ANN can be
improved by deleting the least salient network connec-
tions identified by the various pruning procedures. It is
demonstrated that when using the simple procedure or
the OBD procedure, it is possible to eliminate more
than half of the network connections in the ANN with-
out impairing the simulation accuracy significantly.

ANN

The ANN is a machine learning tool with a simple
structure inspired by real neural circuits. This structure
makes the ANN capable of recognizing patterns in
large datasets. This ability can be utilized to perform
nonlinear simulations, often at a very high computa-
tional rate. A thorough introduction to neural net-
works, and their various features, is given by Warner
and Misra.9 In the following, an ANN which has been
trained to recognize and predict the relationship
between the motion of an offshore floating platform
and the resulting tension forces in a selected mooring
line will be optimized by the use of the three pruning
procedures mentioned previously. For additional
details concerning the ANN used in this article, see
Christiansen et al.5

Architecture of ANN

The architecture of a typical single-layer ANN is shown
in Figure 1. The ANN consists of an input layer, where
each input neuron represents a measured time discrete
state of the system. In the present case, in Figure 1, the
neurons of the input layer represent the six motion
components (x, y,.) of the floating offshore platform
(as illustrated in Figure 3) and the previous time dis-
crete values of the mooring line tension force (Tpast).
The input layer is connected to a single hidden layer,
which is then connected to the output layer represent-
ing the current time value of the tension force (T). In
the network, neurons in neighboring layers are con-
nected, and each of these connections carries a weight.
The training of an ANN corresponds to an optimiza-
tion of these weights with respect to a particular data
training set. The accuracy and efficiency of the network
depend on the network architecture, the optimization
of the individual weights and the choice of error func-
tion used in the applied optimization procedure.

The design and architecture of the ANN and the
subsequent training procedure both follow the
approach outlined in Bishop.10 Assume that the vectors
x, y and z contain the neuron variables of the input
layer, output layer and hidden layer, respectively. The
output layer and hidden layer values can be calculated
by the expressions

y=WT
Oz, z= tanh WT

I x
� �

, x0 [ z0 [ 1 ð1Þ

where WI and WO are arrays that contain the neuron
connection weights between the input and the hidden
layers and the hidden and the output layers, respec-
tively. By having both x0 and z0 defined equal to unity
biases in the data can be absorbed by the input and hid-
den layers. The tangent hyperbolic function is used as

Surge (x)

Sway (y)

Heave (z)

Roll (α)

Pitch (β)

Yaw (γ)

T

W I

WO

Bias
Bias

Input

Hidden

Output

Tpast

Figure 1. Sketch of artificial neural network for predicting top
tension force in a mooring line.
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an activation function between the input and the hid-
den layers. A nonlinear activation function is needed in
order to introduce nonlinearities into the neural net-
work. The tangent hyperbolic function is often used in
networks performing regression between continuous
variables because it provides fast convergence in the
network training procedure.11

The optimal weight components of WI and WO are
found by an iterative procedure, where the weights are
modified to give a minimum with respect to a certain
error function. In the present case, the Minkowski-R
error12 with R=4 is used. In Christiansen et al.,5 it has
been demonstrated that this particular error function
yields good ANN performance for the offshore applica-
tion considered in this article. The Minkowski-4 error
function can be written as

E Wð Þ= 1

4

XN
n=1

y xn;WI,WOð Þ � tnf g4 ð2Þ

where N is the number of training datasets, y is the
ANN output obtained by combining the individual
contributions in equation (1), while t is the associated
target value. In equation (2), the vector W contains the
weight components of WI and WO, respectively.

The updating of the weight components is performed
by a classic gradient decent technique, which adjusts
the weights in the opposite direction of the gradient of
the error function, see, for example, Fletcher13 for
details on conjugate gradient optimization. For the
ANN, this gradient decent updating can be written as

Wnew=Wold+DW, DW=� h
∂E Wð Þ
∂W

ð3Þ

where h is the learning step size parameter. This para-
meter can either be constant or updated during the
training of the ANN. For the applications in this arti-
cle, the learning step size parameter is dynamic and will
be adjusted for each iteration, so that it increases when
the training error decreases compared to previous itera-
tion step, while it decreases when the error increases. In
the weight update (3), the increment DW must be evalu-
ated separately for the components of WI and WO.

Network optimization algorithms

The aim of the optimization procedure in this article is
initially to classify the layer connections in terms of
relevance and subsequently to use this classification to
remove connections and thereby improve the efficiency
of the ANN. Thus, the optimization procedures initiate
from a reasonably large network that has been trained
to minimum error. Although the ANN used in the pres-
ent case already is rather compact in terms of size of
input and hidden layer, it is assumed that the network
is still sufficiently large to be pruned further on individ-
ual weight level.

There exist several methodologies for evaluating the
saliency of the network weights.11 The idea of the

pruning methods is to rank the importance of all net-
work weights and then successively delete the least sali-
ent weight. The simplest possible approach is to simply
consider the magnitude of all network weights and
assume that small weights are less important than large
weights. This approach requires that all input and out-
put data are normalized prior to the training of the
ANN, so that all datasets have the same range of mag-
nitude. Thereby, the ranking of network weights
becomes embedded in the training as it is assumed that
the ANN training procedure ‘‘ignores’’ the least impor-
tant inputs by reducing the magnitude of the associated
weights. The normalization of data is done regardless
of the optimization procedures, as it has shown to lead
to better and faster convergence. However, according
to Bishop,11 this concept has little theoretical motiva-
tion. Nevertheless, for comparison, this method is
implemented and tested in the following together with
the two previously mentioned algorithms OBD and
OBS.

The starting point for both OBD and OBS is a
Taylor expansion of the error function given in equa-
tion (2) with respect to the network weights. This
Taylor series can be written as

dE=
∂E

∂WT
dW+

1

2
dWTHdW+O jjdWjj3

� �
ð4Þ

where

H=
∂2E

∂W∂WT
ð5Þ

is the Hessian matrix containing all second-order deri-
vatives of the error function with respect to the net-
work weights. Both optimization methods are based on
networks that are initially trained to a local minimum.
This means that the first term in equation (4) vanishes
because ∂E=∂WT =0 represents the condition for a
function extremum. The higher-order terms represented
by the latter term in equation (4) are furthermore
omitted. This implies that the saliency of the network
weights is calculated merely by evaluating the second-
order derivatives, whereby the problem reduces to

dE ’ 1

2
dWTHdW ð6Þ

This approximation of the perturbation of the error
function gives the curvature in error space at the local
minimum that was reached during the network train-
ing. The particular diagonal element in the Hessian
matrix with smallest magnitude identifies the weight
component with least significance with respect to the
error function. This weight is, therefore, deleted by the
pruning procedure. Figure 2 shows a two-dimensional
example, where the weight Wi,j is less significant com-
pared to Wk,l because (1=2)(∂2E=∂W2

i, j)W
2
i, j \

(1=2)(∂2E=∂W2
k, l)W

2
k, l. The expression in equation (6)

constitutes the foundation for both the OBD and the
OBS procedures, even though the two methods use
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different approaches to determine the Hessian matrix
H, as demonstrated in the following.

OBD

The OBD procedure trains the initial ANN architec-
ture, where all neurons between input and hidden layers
and between hidden and output layers are connected
with nonvanishing weights. The saliency of all weights
is computed, and the least important weight is pruned
by simply defining the associated weight to be 0. When
a network weight is eliminated, the reduced network
must be retrained before the next least salient weight
can be selected and subsequently removed. The proce-
dure can, in principle, be repeated until the network is
completely eliminated, whereas in reality, the procedure
is terminated when a desired compromise between accu-
racy and computational efficiency is obtained.

The OBD procedure approximates the Hessian by
disregarding the nondiagonal terms. With the error
function given in equation (2), this assumption yields
the following second derivatives of the network error
with respect to the components of the weight matrices
WO andWI, respectively. The diagonal Hessian compo-
nents for the hidden-to-output layer connections can be
computed as

∂2E

∂W2
O, j

=3
XN
n=1

yn � tnð Þ2z2j ð7Þ

while for the input-to-hidden layer connections

∂2E

∂W2
I, ji

=
XN
n=1

1� z2j

� �
3 1� z2j

� �
yn � tnð Þ2W0, ij

�

�2zj yn � tnð Þ3ÞW0, jix
2
i ð8Þ

Having these double derivatives determined by equa-
tions (7) and (8), it is possible to evaluate the saliency
for all individual network weights as

LOBD
q =

1

2
HqqW

2
q ð9Þ

where the subscript represents the qth weight. Thus, the
least salient weight can be identified by LOBD

q in equa-
tion (9) and subsequently deleted.

OBS

The goal of the OBS method is to minimize the increase
in the error function given in equation (2) while setting
a specific network weight to 0. The vanishing weight,
which represents the candidate for deletion, is in the fol-
lowing denoted as Wq. The condition for elimination of
the weight with the smallest saliency can be expressed
by the projection

eTq dW+Wq =0 ð10Þ

where eq is a zero vector in weight space with unit value
corresponding to weight Wq. The aim is now to solve
the following equation, which minimizes the increase in
error while forcing the selected weight to 0

min
q

min
dW

1

2
dWTHdW

� �
jeTq dW+Wq =0

� 	
ð11Þ

To solve equation (11), a Lagrangian is formed con-
taining dE=0, with the perturbation of the error func-
tion given in equation (6), and the condition in
equation (10) enforced by the Lagrange multiplier l

L=
1

2
dWTHdW+ l eTq dW+Wq

� �
ð12Þ

When deriving the functional derivatives of this
Lagrangian, and employing the constraint condition in
equation (10), the perturbation of the weight matrix is
obtained as

dW=� 2lH�1eq ð13Þ
This is now inserted into equation (10), which then

gives the Lagrange multiplier l as

l=
Wq

2 H�1

 �

qq

ð14Þ

where ½H�1�qq = eTqH
�1eq represents the diagonal ele-

ment of the inverse Hessian corresponding to the
weight component q. To calculate the optimal change
in weight, the value of l is finally inserted into equation
(13), which gives

dW=� Wq

H�1

 �

qq

H�1eq ð15Þ

Now that this optimal change in weight has been
determined, and the resulting change in the error is
obtained by inserting equations (14) and (15) into equa-
tion (12)

Wi ,j

Wk,l

Figure 2. Error function around a local minimum. The
curvature of the error surface in each direction corresponds to
the saliency of the associated weight. In this illustration, we see
that (1=2)(∂2E=∂W2

i, j)W
2
i, j \ (1=2)(∂2E=∂W2

k, l)W
2
k, l.
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LOBS
q =

1

2

W2
q

H�1

 �

qq

ð16Þ

As seen, the inverse Hessian is needed for calculating
both the smallest saliency Lq and the corresponding
optimal change in weight dW. Hassibi et al.8 outline a
procedure for the direct evaluation of the inverse
Hessian matrix H21, which avoids the computational
effort associated with the inversion of large matrices.
However, since the weight matrices used in the example
for this article are fairly small, the inversion of H is
based on standard numerical techniques without spe-
cial considerations.

Marine structural model

The structure used for ANN training and simulation is
sketched in Figure 3. It consists of a floating offshore
platform located at 105-m water depth and anchored
by 18 mooring lines, which are assembled in four main
clusters. The external forces acting on the structure are
induced by waves, current and wind.

In principle, the dynamic analysis of the platform–
mooring system corresponds to time integration of the
discretized equation of motion

M rð Þ€r tð Þ+C rð Þ_r tð Þ+K rð Þr tð Þ= f tð Þ ð17Þ
In this nonlinear equation, r contains the degrees of

freedom of the structural model, f includes all external
forces acting on the structure from, for example, grav-
ity, buoyancy and hydrodynamic effects, while the non-
constant matrices M, C and K represent the system
inertia, damping and stiffness, respectively. The system
inertia matrix M takes into account both the structural
inertia and the response-dependent hydrodynamic
added mass. Linear and nonlinear energy dissipations
from both internal structural damping and hydrody-
namic damping are accounted for by the state-
dependent damping matrix C. Finally, the stiffness
matrix contains contributions from both the constitu-
tive elastic stiffness and the response-dependent geo-
metric stiffness.

The nonlinear equations of motion in equation (17)
couple the structural response of the floating platform
and the response of the mooring lines. However, the
system is effectively solved by separating the solution
procedure into the following steps. First, the motion of
the floating platform is computed by the program
SIMO,14 assuming a quasi-static catenary mooring line
model with geometric nonlinearities. The platform
response from this initial analysis is subsequently used
as excitation in terms of prescribed platform motion in
a detailed nonlinear finite element analysis for the spe-
cific mooring line with largest tension stresses. The
location of the mooring line with largest stresses is indi-
cated in Figure 4. For this specific line, the hot spot
with respect to fatigue is located close to the platform,
and it is in the following referred to as the top tension
force. From the detailed fully nonlinear analysis per-
formed by RIFLEX,15 the time history of the top ten-
sion force at this hot spot is extracted. Seven different
3-h time-domain simulations are generated. The simu-
lations cover seven different sea states with 2-, 4-,..., 14-
m significant wave height, respectively. All sea states
have a peak period of 10 s. In the following, these time
histories are used for training and validation of the
ANN and for demonstration of the various optimiza-
tion techniques.

Results

In Christiansen et al.,5 an ANN was trained to predict
the top tension forces in the selected mooring line with
the platform response variables as network input. The
network training was based on the simulated time his-
tories for both the platform motion and the top tension
force. In Christiansen et al.,4 a multilayer ANN was
trained to simulate the top tension force two orders of
magnitude faster than a corresponding time integration
solution of the numerical model. The training data were
set up and arranged, so that a simple ANN with a sin-
gle hidden layer could simulate all fatigue relevant sea
states and thereby provide a significant reduction in
the computational effort associated with a fatigue life
evaluation. For clarity, the ANN used in Christiansen
et al.5 covered only a few sea states, with different

y

x

z α

β

γ

Figure 3. Mooring system with floating platform and anchor
lines.

x
y Traveling direction of

waves, current and wind

mooring line with highest stress

Figure 4. Mooring line system (top view).
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significant wave heights and constant peak period. This
gave a compact neural network, conveniently reused in
this article to illustrate the influence of applying the
various optimization algorithms.

Network design

Optimal network architecture and design for this appli-
cation have been investigated in Christiansen et al.,5

where it is demonstrated that a network with four neu-
rons in the hidden layer and a model memory of three
time steps give a compact and yet very accurate ANN
with a total of 93 network weights, as shown in Figure
1. Furthermore, it was found that it is beneficial to use
a different time step size than the one used in the
RIFLEX simulations. In order to keep the associated
Newton–Raphson iteration algorithm stable, RIFLEX
uses a time step size of 0.1 s. However, it was shown in
Christiansen et al.5 that a time step size of h=2 is suf-
ficient for the ANN to grasp the dynamic behavior of
the structure. When using the platform motion compo-
nents together with the top tension force from previous
time steps as the ANN input, the input network vector
can be written as

xn = ½xt xt�h xt�2h �½ ½yt yt�h y2t�h �½
½zt zt�h z2t�h � ½at at�h at�2h�
½bt bt�h bt�2h� ½ gt gt�h gt�2h�
½Tt�h Tt�2h Tt�3h ��T ð18Þ

where T denotes the top tension force; t is the current
time; h is the time increment; and x, y, z, a, b and g
represent the platform motion components shown in
Figure 3: surge, sway, heave, roll, pitch and yaw,
respectively. The corresponding ANN output is the
current top tension force Tt

yn =Tt ð19Þ
Since there is only a single network output in this

analysis, y is now a scalar quantity and not a vector as
originally assumed in equation (1). For the training of
the ANN, nonlinear simulations in RIFLEX are con-
ducted for sea states with a significant wave height of
Hs=2, 8 and 14m, respectively. With these wave
heights included in the training data, the ANN is able
to provide accurate time histories for the top tension
force T for all intermediate wave heights as well.5 The
data used for training of the ANN are shown in
Figures 5 and 6. Figure 5 shows the time histories for
the six motion degrees of freedom of the platform cal-
culated by the initial analysis in SIMO and subse-
quently used as input to both the full numerical
analysis in RIFLEX and the ANN training and simula-
tion. Figure 6 shows the corresponding time history of
the top tension force T determined by RIFLEX. The
full time histories shown in Figures 5 and 6 are con-
structed of time series for the three significant wave
heights. It should be mentioned that the initial 830 s of
the training dataset represents a significant wave height
Hs=2m, the intermediate 830-s interval is for
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Figure 5. Platform motion used as ANN training input data. Dimensions are in meters for x, y and z and in degrees for a, b and g.
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Hs=8m, while the remaining final part of the dataset
is for Hs=14m. Before being fed into the network, all
data are normalized, so that mean values are equal to 0
and all standard deviations are equal to 1. This leads to
better and faster convergence during the network training.

Optimization of network

As mentioned previously, it is one of the basic assump-
tions for the optimization methods that the pruning
procedures initiate from a network which has been
trained to a local minimum. Hence, the first step when
applying the pruning methods is to train the ANN.
Figure 7 shows the development in ANN error E from
equation (2) during training. It is assumed that 105

training iterations are sufficient to assume that the net-
work has reached a minimum in the network error E.
The solid lines in the graph are the results of 10 runs.
The bold line represents the ANN which is used in the
subsequent optimization. The dashed line shows the
corresponding test error Etest calculated on the test data
which are not part of the training dataset. The test
error indicates the starting point for the optimization
in Figure 8. The three optimization algorithms have
been applied to the trained ANN.

Figure 8 shows the development of the ANN error
as the number of deleted network weights increases. To
verify that the three procedures actually select and
delete appropriate weights, a fourth algorithm, which

randomly deletes weights, is also included in Figure 8
(dotted line). For the simple approach, OBD and ran-
dom deletion of weights, the network is retrained each
time a weight is deleted, whereas for the OBS, the net-
work is trained only once, whereupon the network
weights are adjusted according to the procedure
described in section ‘‘OBS,’’ and therefore, this proce-
dure requires no additional network training.
Apparently, this procedure for updating weights with-
out additional training holds only for a limited number
of deleted weights in this particular example. The initial
network training requires a fairly large amount of itera-
tions and takes about 10 min before a local minimum
in error is reached. However, the retraining of the net-
work performed after each weight deletion does not
have to be as thorough. In this example, 2000 iterations
for the retraining have proven to give satisfactory
results, which means that the retraining is not very
time-consuming. Hence, the retraining may, therefore,
be considered as a small adjustment to the weights and
not a complete network training. This means that the
OBD also takes in the order of 10 min. The OBS proce-
dure does not involve any retraining. However, as the
evaluations of the inverse Hessian H21 is done via a
sequential summation over all training data for each
step in the pruning procedure,8 the computation time
saved compared to OBD is insignificant. Even though
retraining should be unnecessary in the OBS procedure,
it is recommended that the final network is retrained
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Figure 6. Tension force history used as ANN training target data.
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Figure 8. Development in error E as number of pruned
network weights increases: � – � – � – simple, ——— OBD, – – –
OBS and ........... random.
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after the pruning exercise has been terminated. The per-
formance of the networks pruned by the OBS procedure
is shown in Figure 8 by the green dashed curve. It is seen
that the error E of the OBS procedure is relatively low for
up to approximately 25 pruned weights. Although simula-
tions presented by Hassibi et al.8 indicate that the OBS
procedure is superior to OBD, it appears from the present
analysis that the OBD (solid blue line) procedure is appar-
ently the best pruning procedure in this particular example
concerning dynamic analysis of a slender offshore struc-
ture. On the other hand, the very simple approach

(dashed-dotted red curve), where weights are directly
deleted according to their magnitude, seems to work very
well on this particular example despite its alleged poor
performance in practice.11

It is not straightforward to relate an error measure
to the accuracy of the corresponding ANN simulation.
Figures 9–12 compare the time integration solutions
obtained by RIFLEX to the simulations performed by
the ANNs optimized by the three pruning algorithms.
These figures show the top tension force for the same
time interval at different stages of the pruning
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Figure 9. Simulation after 20 pruned connections: � – � – � – simple, ——— OBD, – – – OBS and ........... RIFLEX.
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Figure 10. Simulation after 40 pruned connections: � – � – � – simple, ——— OBD, – – – OBS and ........... RIFLEX.
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Figure 11. Simulation after 60 pruned connections: � – � – � – simple, ——— OBD, – – – OBS and ........... RIFLEX.
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Figure 12. Simulation after 70 pruned connections: � – � – � – simple, ——— OBD, – – – OBS and ........... RIFLEX.
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procedures. It is seen that the OBS network looses
accuracy fairly quickly, while the simple method and
the OBD maintains a high degree of accuracy even
after 70 weights have been deleted.

As the ultimate purpose of the hybrid simulation
method is to reduce the computational effort associated
with, for example, fatigue analysis of the offshore struc-
ture, a robust measure for comparison of the perfor-
mance of the pruned networks is to evaluate the
accuracy with respect to summation of stress cycles
using the rain flow counting method.16 Thus, the com-
parison is not based on a complete fatigue life analysis
including S-N curves and so on but merely based on a
summation of stress cycles. The summation is per-
formed for simulations of all seven sea states, and
deviations relative to the full RIFLEX simulations are
listed in Table 1. This table shows results at different
stages of pruning for all three methods, and the values
confirm the results from Figure 8. The simple and the
OBD procedures are able to maintain a small deviation
much longer into the pruning procedure than the corre-
sponding OBS procedure. Furthermore, the last col-
umn of this table shows the accuracy of the optimal
networks found by the three procedures. For each step
in the pruning procedures, the test error is measured
and after the pruning, the best network in test is
selected as the ‘‘optimal.’’ Again, the simple method
and the OBD perform superior to the OBS and reach
the optimized networks much later in the pruning pro-
cess. The architectures of the final optimized ANNs
obtained by the simple pruning procedure and OBD
are indicated in Figure 13. Although the two methods
reach their optimum at different stages of the pruning
and do not identify the exact same weights to be
pruned during the process, the two algorithms clearly

identify the same groups of weights as being the least
important.

The training of the ANN initiates from a set of ran-
dom weights. As the gradient descent technique used
for minimizing the error during the training does not
guarantee that the global minimum is reached, two net-
works trained with the same set of data will possibly
have different weights in the final configuration. This
means that the starting point for the pruning algorithms
will be different if the entire procedure is repeated.
Thus, the optimization procedures discussed in this arti-
cle will find different orders of pruning. However, it is
found that the overall pattern with respect to increase
in error as the pruning algorithms progress is the same
when the procedure is repeated. The level of success for
the three applied pruning methodologies seems to con-
tradict what has been stated in many textbooks and
articles.8,11 The very simple approach of assuming that
small weights are less important than large weights
works surprisingly well and designates the same weights
for pruning as the OBD. The success of the simple
approach is presumably a consequence of the data nor-
malization which provides that all input signals have
the same order of magnitude. Thereby, the saliency of
the individual weights becomes a direct part of the
training, as the ANN is able to identify the least impor-
tant input variables and therefore reduces the magni-
tude of the corresponding network weights. The OBS
procedure, on the other hand, performs very poorly in
the given example. The trained ANN used in this exam-
ple yields a Hessian matrix with very small diagonal ele-
ments. Thus, inversion of this matrix leads to numerical
problems, which is why the procedure breaks down
unless this problem is addressed. The small diagonal
elements indicate that the corresponding weights have

Table 1. Deviations on accumulated tension force cycles when compared to RIFLEX simulations.

Pruned weights 0 20 40 60 70 Optimal
a

Simple 1.4% 1.0% 21.0% 21.5% 24.7% 0.04%
OBD 1.4% 1.3% 20.3% 22.3% 20.4% 0.06%
OBS 1.4% 7.5% 49.0% 60.6% 377.0% 1.0%

OBD: optimal brain damage; OBS: optimal brain surgeon.
aOptimal ANN in test during pruning: simple procedure after 45 pruned weights, OBD after 29 pruned weights and OBS after 4 pruned weights.

Simple OBD

Figure 13. Optimal ANN in test during pruning: simple procedure after 45 pruned weights and OBD after 29 pruned weights.
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little significance with respect to the ANN output. One
way to avoid the very small diagonal elements is by net-
work regularization which effectively adds the term
ajWj2 to the error function given in equation (2).
Regularization can mitigate the numerical problems
associated with the inversion of the Hessian matrix.
However, regularization is usually applied in order to
prevent the network from overfitting to noise in the
training data. In the present example where the ANN is
trained to simulate the exact solution to the equation of
motion, there is no noise in the training data and that
may be the reason why the OBS algorithm performs
poorly in this specific case.

Concluding remarks

It has been demonstrated how an ANN which has
already undergone an overall optimization can be
reduced further in size by different optimization proce-
dures. Using the most simple approach and the OBD
procedure, it has been possible to prune more than half
of the original network weights and still maintain a
very high simulation accuracy. The literature8 indicates
that the OBS is superior to the OBD when tested on the
classical XOR problem17 and the MONK’s problem.18

However, in the present case, where the aim has been
to obtain the dynamic response of a mechanical struc-
ture, the simple and the OBD procedures turned out to
be more effective than the OBS with respect to the
degree of pruning. After fairly few network weights are
pruned by the OBS procedure, the error begins to
increase beyond an acceptable level, while when using
the other two algorithms, very robust and reliable pro-
cedures have been obtained, which are able to effec-
tively identify insignificant inputs. One of the apparent
advantages of the OBS is that the adjustment of weights
is done without retraining of the ANN. However, since
it is sufficient to use relatively few iterations in this
retraining part, the additional computational effort
associated with OBD is very limited. Thus, the OBD
procedure seems to be very effective for the marine
structure ANN application considered in this article.
As mentioned in section ‘‘Network design,’’ the ANN
used in this study has been optimized in terms of model
memory and size of hidden layer before the optimiza-
tion algorithms are applied. This initial optimization
maybe can be superseded if the optimization algorithms
are applied to an ‘‘oversize’’ ANN. However, as net-
works with too many elements do not generalize well,7

this may not be a feasible approach. This topic has not
been investigated in this study.
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ABSTRACT
Dynamic analyses of slender marine structures are compu-

tationally expensive. Recently it has been shown how a hybrid
method which combines FEM models and artificial neural net-
works (ANN) can be used to reduce the computation time spend
on the time domain simulations associated with fatigue analy-
sis of mooring lines by two orders of magnitude. The present
study shows how an ANN trained to perform nonlinear dynamic
response simulation can be optimized using a method known as
optimal brain damage (OBD) and thereby be used to rank the
importance of all analysis input. Both the training and the op-
timization of the ANN are based on one short time domain sim-
ulation sequence generated by a FEM model of the structure.
This means that it is possible to evaluate the importance of input
parameters based on this single simulation only. The method is
tested on a numerical model of mooring lines on a floating off-
shore installation. It is shown that it is possible to estimate the
cost of ignoring one or more input variables in an analysis.

∗Address all correspondence to this author.

INTRODUCTION

In resent years an increasing amount of machine learning
techniques has proven to be useful in many aspects of structural
engineering. Especially the use of Artificial Neural Networks
(ANN) has drawn vast attention over the last decades. Adeli [1]
gives a quick overview of the broad variety of neural network
applications in civil engineering. Machine learning techniques
are mostly used to extract information from large data sets. Very
often it is a matter of identifying patterns in the data. This ability
to recognize patterns can be very useful in damage detection on
existing structures. In that case the application detects changes
in structural behavior which can be consequences of damages in
structural members, see eg. Bakhary et al. [2].

Also in structural design analysis neural networks hold a
great potential as these are capable of performing nonlinear anal-
ysis at a remarkably high pace, see e.g. Ordaz-Hernandez et.
al. [3] who demonstrated how ANN can be trained to predict
the deflection of a nonlinear cantilevered beam. This approach
has also proven to be very use full in dynamic analysis. Guar-
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ize et. al. [4] showed how a hybrid method combining the Fi-
nite Element Method (FEM) and an ANN can simulate the dy-
namic response of a flexible oil pipe in service about 20 times
faster than ordinary nonlinear numerical analysis. Christiansen
et al. [5] used a similar approach to conduct a full fatigue life
analysis of a mooring line on a floating platform cutting down
the simulation time dramatically. The same platform structure
was used in [6] where different error functions used during net-
work training were tested on a very small and compact ANN.
The trained network used in that analysis simulated more than
two orders of magnitude faster than a corresponding numerical
FEM analysis.

Recently it has been shown in [7] how the ANN designed
in [6] can be further optimized and reduced in size. The liter-
ature suggest various kinds of optimization schemes [8], where
the study in [7] considers two of the most renown pruning meth-
ods for optimizing ANN architecture: Optimal Brain Damage
(OBD) [9] and Optimal Brain Surgeon (OBS) [10]. For the spe-
cific application in [7] the OBD procedure performed far superior
to OBS and it was able to delete more than half of the network
connections and still maintain its simulation accuracy.

The present paper demonstrates how the optimization oper-
ations can be used as a quick ranking of the importance of the
various inputs that go into the analysis. Dynamic response of
slender marine structures, such as the mooring lines on the float-
ing platform, always depends on several external loads. By ap-
plying the pruning procedure to a trained ANN it is possible to
determine which of these external load components that play the
least significant role and also evaluate if one or more components
can be ignored completely in the analysis. Hence, the optimiza-
tion procedures can serve as an input parameter study based on
one simulation only. In the example presented in this paper it
is possible to completely exclude one of the input variables and
thereby actually improve the accuracy of the simulations signif-
icantly. The results are compared with respect to accumulated
structural fatigue damage.

1 Artificial Neural Networks
The artificial neural network is a machine learning tool with

a simple brain-like structure that makes it capable for recogniz-
ing patterns in large data sets. This ability can be utilized to
do non-linear simulation at a very high pace. See e.g. Warner
and Misra [11] for a fast thorough introduction to neural net-
works and their features. In the following an ANN which has
been trained to recognize and predict the relationship between
the motion of a floating platform and the resulting tension forces
in a selected mooring line will be optimized by use of the OBD
pruning procedure . The ANN was designed and trained in [6].
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Heave (z)

Roll (α)

Pitch (β )

Yaw (γ)

T

WI

WO

Bias
Bias

Input

Hidden

Output

Tpast

FIGURE 1. Sketch of artificial neural network for predicting top ten-
sion force in mooring line.

1.1 Architecture
The architecture of a typical one layer artificial neural net-

work is shown in Figure 1. The ANN consists of an input layer,
where each input neuron represents a measured time discrete
state of the system. In the present case in Figure 1 the neurons
of the input layer represent the six motion components (x, y, . . . )
of the floating platform and the previous time discrete mooring
line tension force (Tpast). The input layer is connected to a single
hidden layer, which is then connected to the output layer repre-
senting the tension force (T ) in the selected mooring line. Two
neurons in neighboring layers are connected and each of these
connections has a weight. The training of an ANN corresponds
to an optimization of these weights with respect to a particular
data training set. The accuracy and efficiency of the network
depends on the network architecture, the optimization of the in-
dividual weights and the choice of error function used in the ap-
plied optimization procedure.

The design and architecture of the ANN, and the subsequent
training procedure, follow the approach outlined in [12]. Assume
that the vectors x, y and z contain the neuron variables of the in-
put layer, output layer and hidden layer, respectively. The output
layer and hidden layer values can be calculated by the expres-
sions

y=W	
Oz, z= tanh

(
W	
I x

)
, x0 ≡ z0 ≡ 1, (1)

whereWI andWO are arrays that contain the neuron connection
weights between the input and the hidden layer and the hidden
and the output layer, respectively. By setting x0 and z0 perma-
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nently to one, biases in the data can be absorbed into the input
and hidden layer. The tangent hyperbolic function is used as
an activation function between the input and the hidden layer.
A non-linear activation function is needed in order to introduce
non-linearities into the neural network. The tangent hyperbolic
is often used in networks performing regression between contin-
uous variables, because it provides fast convergence in the net-
work training procedure, see [13].

The optimal weight components of WI and WO are found
by an iterative procedure, where the weights are modified to give
a minimumwith respect to a certain error function. The literature
suggests many choices of error functions. In this case we use the
Minkowski−R error [14] with R = 4, which has shown to yield
good ANN performance for this particular application [6]. The
error function can be written as

E (W) =
1
4

N

∑
n=1

c

∑
k=1

{y(xn;WI ;WO)k− tnk}
4, (2)

where y is the ANN output and t is a target value that corresponds
to a specific input. The updating of the weight components is
performed by a classic gradient decent technique, which adjusts
the weights in the opposite direction of the gradient of the error
function [15]. For the ANN this gradient decent updating can be
written as

Wnew =Wold+ΔW, ΔW=−η
∂E (W)

∂W
, (3)

where η is the learning step size parameter. This parameter can
either be constant or updated during the training of the ANN.
For the applications in the present paper the learning step size
parameter is dynamic and will be adjusted for each iteration, so
that it is increased if the training error is decreased compared to
previous iteration step and reduced if the error increases. Note
that ΔWI and ΔWO must be evaluated separately.

1.2 Optimization Algorithm
The optimization procedure initiates from a reasonably large

network that has been trained to minimum error. Even though the
ANN used here already is as compact as possible in terms of size
of input and hidden layer, it is assumed that the network is still
sufficiently large to be pruned further on individual weight level.

In the following the OBD algorithm will be implemented
and tested. The idea of the method is to rank the importance of
all network weights and then successively delete the least salient
weight. The starting point is a Taylor expansion of the error func-
tion (2) with respect to network weights. The Taylor series can
be written as

Wi, j

Wk,l

FIGURE 2. The error function around a local minimum. The curva-
ture of the error surface in each direction corresponds to the saliency of
the associated weight. In this illustration we see that ∂ 2E

∂W 2
i, j
< ∂ 2E

∂W 2
k,l
.

δE = (
∂E
∂W

)T δW+
1
2

δWTHδW+O(‖δW‖3), (4)

where H ≡ ∂ 2E/∂W2 is the Hessian matrix containing all sec-
ond order derivatives. The OBD optimization method is based
on networks that are trained to a local minimum. This means
that the first term in (4) vanishes, (δE/δw = 0). Furthermore,
higher order terms are ignored. Thereby the saliency of the net-
work weights is calculated merely by looking at the second order
derivatives. Thus, the problem reduces to

δE ≈
1
2

δWT ·H ·δW (5)

This expression gives the curvature in error space at the lo-
cal minimum that was reached during the network training. The
smallest component in the Hessian identifies which weight com-
ponent that is least significant with respect to increase in error
and hence, which weight it is cheapest to delete, as sketched for
two dimensions in Figure 2 where each weight represent a di-
mension in error space.

The OBD procedure trains the initial ANN configuration,
which is fully connected between inputs and hidden layer and
between hidden layer and outputs. The saliencies of all weights
are computed and the least salient weight is pruned (put perma-
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nently to zero). After each time a network weight is deleted the
network must be retrained before the Hessian can be reevaluated
and the next least salient weight can be selected. The procedure
can in principal be repeated until the network is completely gone.
Each time a weight has been pruned the network is tested and af-
ter the pruning the best network in the test is selected.

The procedure approximates the Hessian by disregarding the
non-diagonal terms. With the error function given in (2) the as-
sumption of a diagonal Hessian leads to the following second
order derivatives of the network error with respect to the two
weight matricesWO andWI , respectively

∂ 2E
∂W 2

O, j
= 3

N

∑
n=1

(yn− tn)2 z2j (6)

∂ 2E
∂W 2

I, ji
=

N

∑
n=1

(1− z2j)
(
3(1− z2j) · (yn− tn)

2W0, ji− 2z j(yn− tn)3
)
W0, jix2i

(7)

where N is the number of training data sets. Equation (6) and
(7) give the saliency for all network weights whereby the least
salient weight can be identified and deleted.

2 Application to marine structure
The structure that the ANN is trained to simulate is sketched

in Figure 3. It consists of a floating offshore platform located
at 105 m water depth, which is anchored by 18 mooring lines
assembled in four main clusters. The external forces acting on
the structure are induced by waves, current and wind.

2.1 Structural Model
In principal the dynamic analysis of the platform-mooring

system corresponds to solving the equation of motion

M(r)r̈+C(r)ṙ+K(r)r= f(t), (8)

In this nonlinear equation r contains the degrees of freedom of
the structural model, f includes all external forces acting on the
structure from for example gravity, buoyancy and hydrodynamic
effects, while the non-constant matrices M, C and K represent
the system inertia, damping and stiffness, respectively. The sys-
tem inertia matrixM takes into account both the structural inertia
and the response dependent hydrodynamic added mass. Linear
and nonlinear energy dissipation from both internal structural
damping and hydrodynamic damping are accounted for by the

y

x

z α

β

γ

FIGURE 3. Mooring system with floating platform and anchor lines.

damping matrix C. Finally, the stiffness matrix contains contri-
butions from both the elastic stiffness and the response dependent
geometric stiffness.

The nonlinear equations of motion in (8) couple the struc-
tural response of the floating platform and the response of the
mooring lines. However, the system is effectively solved by
separating the solution procedure into the following steps. First
the motion of the floating platform is computed by the program
SIMO [16], assuming a quasi-static catenary mooring line model
with geometric nonlinearities. The platform response from this
initial analysis is subsequently used as excitation in terms of
prescribed platform motion in a detailed nonlinear finite ele-
ment analysis for the specific mooring line with highest tension
stresses. The location of the mooring line with largest stresses
is indicated in Figure 4. For this specific line the hot-spot with
respect to fatigue is located close to the platform, and is in the
following referred to as the top tension force. From the detailed
fully nonlinear analysis performed by RIFLEX [17] the time his-
tory of the top tension force at this hot-spot is extracted.

In [6] an ANN was trained to predict the top tension forces
in the selected mooring line with the platform response variables
as network input. The network training was based on the sim-
ulated time histories for both the platform motion and the top
tension force. In [5] a multi layer ANN was trained to simulate
the top tension force two orders of magnitude faster than a cor-
responding numerical model. The training data was set up and
arranged so that a simple ANN with a single hidden layer could
simulate all fatigue relevant sea states and thereby provide a sig-
nificant reduction in the computational effort associated with a
fatigue life evaluation. For clarity the ANN used in [6] covered
only a few sea states, with different significant wave heights and
constant peak period. This gave a compact neural network that
is conveniently used in this paper to illustrate the influence of
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FIGURE 4. Mooring line system (top view).

applying the optimization algorithm.

2.2 Network design
Optimal network architecture and design for this application

was investigated in [6]. It was shown that a network with four
neurons in the hidden layer and a model memory of three time
steps gave a small and very accurate ANN. Using the platform
motion together with the top tension force of previous time steps
as ANN input gives an input vector which can be written as

xn =
[
[xt xt−h xt−2h] [yt yt−h yt−2h] [zt zt−h zt−2h]

[αt αt−h αt−2h] [βt βt−h βt−2h] [γt γt−h γt−2h]

[Tt−h Tt−2h Tt−3h]
]T

, (9)

where T denotes the top tension force, h is the time increment
and x,y,z,α,β and γ represent platform motion (surge, sway,
heave, roll, pitch and yaw, respectively). The corresponding
ANN output is the current top tension force Tt in the mooring
line

yn = Tt (10)

Since there is only one network output y is now a scalar and not
a vector as in (1). For the training of the ANN nonlinear simu-
lations in RIFLEX are conducted for sea states with a significant
wave height of Hs = 2m, 8 m and 14 m, respectively. With these
wave heights included in the training data the ANN is able to
provide accurate time histories for the top tension force for all
intermediate wave heights [6]. The data that is used for training
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Training iterations
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FIGURE 7. Tension force history used as ANN training target data.

of the ANN is shown in Figures 5 and 6. Figure 5 shows the time
histories for the six motion degrees of freedom of the platform
calculated by the initial analysis in SIMO and used as input to
both the full numerical analysis in RIFLEX and the ANN train-
ing and simulation. Figure 6 shows corresponding time history
for the top tension force determined by RIFLEX. The full time
histories shown in Figures 5 and 6 are constructed from time se-
ries for the three significant wave heights. The first 830 seconds
of the training data set represent 2 m significant wave height, the
next 830 seconds are for 8 m wave height and the remaining part
is then for 14 m wave height.

2.3 Network training
As mentioned previously it is one of the basic assumptions

for the optimization method that the pruning procedure initiates
from a network which has been trained to a local minimum.
Hence, the first step when applying the method is to train the
ANN. Figure 7 shows the development in ANN error during
training. It is assumed that 105 training iterations are sufficient to
consider the network as having reached a local minimum in error.
Note that the ANN error is plotted on logarithmic axes. The full
network and the network simulation compared to the RIFLEX
simulation are shown in Figure 8.

The optimization algorithm has been applied to the trained
ANN. Figure 9 shows the development of ANN error as the num-
ber of deleted network weights increases. To verify that the pro-
cedure actually selects and deletes appropriate weights an addi-
tional algorithm that simply deletes random weights is also in-
cluded in the graph. The retraining of the ANN applies for both
algorithms in the graph.

The initial network training requires a fairly large amount
of iterations to reach a local minimum in error. However, the
retraining of the network performed after each weight deletion
does not have to be as thorough. In this example 2000 itera-
tions in retraining have shown to give satisfactory results, which
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0 500 1000 1500 2000 2500
−50

0
50

0 500 1000 1500 2000 2500
−20

0
20

0 500 1000 1500 2000 2500
−2

0
2

0 500 1000 1500 2000 2500
−5

0
5

0 500 1000 1500 2000 2500
−5

0
5

0 500 1000 1500 2000 2500
0
5

10

Time [t]

Su
rg
e

Sw
ay

H
ea
ve

R
ol
l

Pi
tc
h

Ya
w
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FIGURE 6. Tension force history used as ANN training target data.
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FIGURE 8. Full network before pruning. ANN, RIFLEX
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means that the retraining is not nearly as time consuming as one
might imagine at first glance at the procedure. Hence, the retrain-
ing is just a brief adjustment to the weights and not a complete
network training.

2.4 Network optimization
The original purpose of the OBD procedure is to optimize

the ANN and identify the best network in test. Figure 9 shows
that OBD finds the best ANN after 34 weight deletions. How-
ever, as the pruning procedure successively cuts network weights
until the entire network is deleted it will at certain stages reach
a point where a motion degree of freedom for the platform is
completely ignored by the network. This can be used to rank the
importance of the individual motion components and perhaps to
evaluate weather one or more components are in fact negligible.
In this example the optimal network emerges around the same
stage as the heave motion of the platform is completely removed
from the network input. The heave motion component is com-
pletely ruled out after 37 deletions. The heave motion of the
platform is represented in the ANN input layer by neurons 7-9,
see Figure 1. The ANN with 37 pruned weights is shown in fig-
ure 10. The figure also shows the ANN simulation together with
the RIFELX series. The fact that the optimal ANN is reached as
the heave motion is ruled out indicates that not only is the heave
motion redundant it actually adds noise to the system. The ex-
planation for this is that the numerical model has a build-in heave
compensator that dampens the effect of the vertical platform mo-
tion. Hence, the tension forces in the mooring line is not directly
related to the heave motion of the floating platform.

The next degree of freedom to be completely ignored by the
network is the platform roll motion. This happens after 53 dele-
tions. The network and corresponding simulation performance

is plotted in figure 11 (The roll motion of the platform is rep-
resented in the ANN input layer by neurons 10-12, see Figure
1). After 74 deletions the third motion degree of freedom is ig-
nored by the network. At this stage it is the platform pitch motion
which no longer plays a part in the ANN simulation (The pitch
motion of the platform is represented in the ANN input layer by
neuron 13-15). Figure 12 shows the network at this stage and
also that it apparently still simulates the tension force with high
accuracy. Figure 13, on the other hand, clearly shows that con-
tinuing the pruning until a fourth motion component (surge) is
deleted is going to far. At this stage the network still captures the
overall dynamics of the structure, but it is no longer able to do
any useful simulation.

It is difficult to relate the error measure in Figure 9 to how
accurate the ANN actually simulates. Visual inspections of the
curves in Figures 10-13 give an indication of how well the net-
works perform. However, as the ultimate purpose of the hybrid
method is to reduce the computational effort associated with fa-
tigue analysis, an obvious measure for comparing the perfor-
mance of the pruned networks is to evaluate their accuracy on
summarized stress cycles using rain flow counting. The summa-
tion is done for all seven sea state simulations. Deviations from
the RIFLEX simulation are listed in Table 1. The table lists re-
sults at different stages of pruning. The numbers confirm the
graph in Figure 9. The highest accuracy is obtained by the net-
work that ignores the heave motion but includes the rest of the
platform motion. This ANN lies very close to the expected opti-
mal network at 34 deleted weights.

The training of the ANN initiates from a set of random
weights. As the gradient descent technique used for minimizing
the error during the training does not guarantee that the global
minimum is reached, two networks trained on the same set of
data will most likely have completely different weights in the fi-
nal configuration. This means that the starting point for the prun-
ing algorithms and also the pruning sequence will change if the
procedure is repeated. However, the overall pattern with respect
to increase in error and which weights are deleted as the pruning
algorithms progress is the same when the procedure is repeated.

To test how well the OBD works as a tool for quick parame-
ter study, a series of RIFLEX simulations are conducted in accor-
dance with the ranking given by the OBD procedure. Hence, the
platform heave motion is left out of the first calculation, heave
and roll left out in the second calculation and so forth. The de-
viations in accumulated stress cycles are listed in Table 2. Cor-
responding time domain simulations are shown in Figure 14. It
is seen that leaving out the heave motion does not degrade the
accuracy of the simulation significantly. When leaving out heave
and roll motion from the analysis, the error increases slightly - as
seen for the ANN simulation. For some reason, when the pitch
motion is ignored the error in the stress cycle accumulation drops
to practically nothing. This is in contrast to the ANN simulations
where we saw a general increase in error as the number of input
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TABLE 1. Deviations on accumulated tension force cycles when compared to RIFLEX simulations.

Simulation ANN ANN1 ANN2 ANN3 ANN4

Deviations 1.2 % −1.1 % −3.4 % −8.8 % 7.7 %
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FIGURE 10. ANN1: Network with one input component pruned (heave) - 37 weights deleted by OBD ANN, RIFLEX
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FIGURE 11. ANN2: Network with two input components pruned (heave and roll) - 53 weights deleted by OBD. ANN, RIFLEX

TABLE 2. Deviations on accumulated tension force cycles when compared to RIFLEX simulations.

Simulation RIFLEX RIFLEX1 RIFLEX2 RIFLEX3 RIFLEX4
Deviations - -0.5 % 3.1 % 0.03 % -65.4 %

variables were ignored. Nothing in the simulation comparison
in Figure 14c indicates that this analysis is more accurate than
the previous. A closer look at the data (not included in this pa-
per) reveals that the surprisingly low deviation in accumulated
load stress cycles is coincidental. When all four input variables
are ignored (heave, pitch, roll and surge) the simulation is com-
pletely useless. The inaccuracy of accumulated load stress cycles
increases dramatically and simulation in Figure 14d is obviously
way off.

Except for the very low error in the fatigue estimation based
on the simulation conducted with RIFLEX ignoring heave, pitch
and roll, the results obtained by the two methods coincides very
well. Based on just one relatively short simulation sequence
including three different sea states, the trained ANN combined
with the OBD procedure is able to evaluate the importance of the
input variables and to estimate the cost of ignoring one or more
variables in the analysis including seven different sea states. In
addition, the pruning procedure detects the stage where the sim-
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FIGURE 12. ANN3: Network with two input components pruned (heave, roll and pitch) - 74 weights deleted by OBD. ANN,
RIFLEX
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FIGURE 13. ANN4: Network with four input components pruned (heave, roll, pitch and surge) - 77 weights deleted by OBD. ANN,
RIFLEX

ulation becomes completely useless. Noting that training and
pruning an ANN is a lot less time consuming than running sev-
eral numerical simulations, the describe procedure can become a
very valuable tool when investigating the importance of various
input variables in mechanical analysis.

3 Concluding remarks
It has been shown how an ANN which has already under-

gone an overall optimization can be reduced further in size by the
OBD optimization procedure. Using the OBD procedure it was
possible to prune more than half of the original network weights
and still maintain a very high simulation accuracy. In this process
it turned out that three out of six platform motion components
could be completely ignored in the simulation input without sig-
nificantly impairing the accuracy of the ANN. In fact, leaving
out one of the input variables improved the simulation accuracy
of the ANN. The results were tested on additional RIFLEX sim-
ulations where input variables were ignored in accordance with

the recommendations given by the OBD algorithm. The addi-
tional simulations showed that the ANN/OBD procedure can be
used to identify redundant variables and also be used to give an
estimate of the cost of simplifying an analysis.

Using OBD seems like a very robust and reliable proce-
dure able to effectively identify insignificant inputs. Hence, this
method can be used as a cost effective parameter study based on
one simulation sequence only.
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This paper presents a novel procedure to utilize artificial neural networks (ANN) in dynamic
analysis of nonlinear structures. The procedure is based on a hybrid method that combines
the finite element method (FEM) and ANN. This hybrid method has been established over

the last decade and provides in many cases a significant reduction in the computational
effort associated with nonlinear structural analysis. Unfortunately, the method has only been
applied to structures with a very direct load-response relation. The present paper therefore
proposes a sequential procedure for the analysis of oil pipes and flexible risers, where it is
possible to simply step through the structural model, and thereby simulate the response of the
entire riser for a given load history. A simplified numerical riser model is used to demonstrate
the sequential procedure for two typical flexible riser configurations. It is demonstrated that
when using a series of simple ANNs it is possible to simulate response histories at all critical
locations of the flexible risers around two orders of magnitude faster compared to conventional
numerical analysis.

Keywords: Nonlinear dynamics; slender marine structures; neural networks; flexible risers

1. Introduction

Over the years oil and gas exploration has moved towards more and more harsh
environments. In deep and ultra deep water installations the reliability of flexible
risers and anchor lines are of paramount importance. Therefore, the design and
analysis of these structures draw an increasing amount of attention. Slender offshore
structures such as oil/gas risers and mooring systems exhibit large deflections and
therefore require nonlinear numerical models for reliable analysis. Furthermore, in
design and analysis of flexible risers and mooring systems for floating offshore units,
there is a very pronounced need for long time series simulations - both in evaluation
of ultimate limit state and of long term fatigue [1, 2]. The combination of the need
for detailed nonlinear models and the demand for long time series simulations
makes design and analysis of these types of structures very time consuming and
costly. Thus, the motivation for developing time saving models and methods is
very high. And even though there have been several suggestions on how to avoid
this computationally expensive task, see e.g. [3] which discusses the possibilities of
reducing the amount of time domain simulations, it still remains a time consuming
part of riser design.

∗Corresponding author. Email: Niels.Christiansen@dnvgl.com
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The use of artificial neural networks (ANN) for reducing computational cost
has shown to be useful in various aspects of structural engineering. Adeli [4] gives
an overview of applied methods. Many of these applications deal with detection
of structural fatigue damage, see e.g. [5], while others use a neural network ap-
proach to simulate load histories [6]. The ability of the ANN to perform nonlinear
mapping between a given input and a system output makes it capable of perform-
ing response predictions without time consuming equilibrium iterations. Hence, a
properly trained ANN can save a lot of time in response simulations and thereby
reduce the need for the infuriating compromise between model sophistication and
computational efficiency. Many of the hybrid method techniques combine the fi-
nite element method (FEM) and ANNs. For example, Ordaz-Hernandez et. al. [7]
have shown that an ANN can be trained to predict the deflection of a nonlinear
cantilevered beam, while Guarize et. al. [8] applied a similar network structure to
simulate the dynamic response of a flexible oil pipe in service, thereby reducing
calculation time by a factor of about 20. Within the field of slender marine struc-
tures the hybrid method has only been used to predict forces in the upper part of
risers and mooring lines.
However, in order to really utilize the method it should be possible to predict

section forces at all critical locations along the flexible riser. This paper therefore
shows how a series of neural networks can be used to perform simulations of the
dynamic response of the full flexible riser model. A simplified two-dimensional FEM
model representing typical riser configurations are used to demonstrate the hybrid
method. The nonlinear FEM model uses a co-rotational beam element formulation
similar to the approach presented by Yazdchi and Crisfield [9]. In order for the
authors of the present paper to maintain a complete overview of all details within
the numerical simulations, instead of using commercial software, both the FEM
analysis of the risers and the subsequent ANN training and response simulations
are conducted by small (in-house) numerical toolboxes developed in Matlab. The
examples presented in this paper show that when using the proposed sequential
hybrid method scheme it is possible to obtain high simulation accuracy for all parts
of the riser structures, while reducing the calculation time by around two orders
of magnitude.

2. Artificial Neural Network

The artificial neural network (ANN) is a pattern recognition tool that replicates the
ability of the human brain to recognize and predict various kinds of patterns. The
reader may consult e.g. Warner and Misra [10] for a fast and thorough introduction
to neural networks and their features.

2.1. Setting up the ANN

The architecture of the ANN used in this paper is shown in Figure 1. The ANN
consists of an input layer, a hidden layer and an output layer. All layers consist
of a number of neurons. Each neuron in the input layer represent a time discrete
state of the system. The neuron in the output layer gives the system response
at a specific location for a given input. In connection with flexible riser analysis
the variables ut and rt represent the prescribed floating platform motion and the
corresponding structural riser response at time t, respectively. Structural response
at previous time steps are denoted rt . This is described in more detail in section
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3.2. As the neurons in the hidden layer have no physical interpretation, this layer
can be of arbitrary size. However, since the ability of the ANN to learn complex
patterns is directly related to the size of this layer, it must have sufficient size to
comprise all underlaying dynamic characteristics of the system. Two neurons in
neighboring layers are connected and each of these connections have a weight. The
training of an ANN corresponds to an optimization of these weights with respect to
a particular data training set. The accuracy and efficiency of the network depends
on the network architecture, the optimization of the individual weights and the
choice of error function used in the applied optimization procedure. The design
and architecture of the ANN, and the subsequent training procedure, follow the
approach outlined in [11]. Assume that the vectors x, y and z contain the neuron
variables of the input layer, output layer and hidden layer, respectively. The output
layer and hidden layer values can be calculated by the expressions

y = W�

Oz, z = tanh
(
W�

I x
)
, x0 ≡ z0 ≡ 1, (1)

where WI and WO are arrays that contain the neuron connection weights between
the input and the hidden layer and the hidden and the output layer, respectively.
By setting x0 and z0 permanently to one, biases in the data can be absorbed into
the input and hidden layer. The tangent hyperbolic function is used as an activation
function between the input and the hidden layer. A non-linear activation function
is needed in order to introduce nonlinearities into the neural network. The tangent
hyperbolic is often used in networks of this type, which represent a monotonic
mapping between continuous variables, because it provides fast convergence in the
network training procedure, see [12].

WI

WO

Bias

Bias

Input (x)

Hidden (z)

Output (y)ut

rt

rt

Figure 1. Sketch of artificial neural network.

The optimal weight components of the arrays WI and WO are found by an
iterative procedure, where the weights are modified to give a minimum with respect
to a certain error function. The error function which is minimized during training
can be written as

E (W) =
1

2

N∑
n=1

{
y(xn;WI ;WO)− τn

}2
+

1

2
αW2, (2)

where y is the ANN output, N is the number of training data sets, τ is the target
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value for a given input x and W represents either WI or WO. The weight decay α
controls the value of the weights and prevents the ANN from overfiting due to noise
in the training data. Since the ANN in this case simulate a theoretical model of a
physical system and therefore replicates an exact solution to the system equations
of motion there is no noise in the target output data. Thus, the weight decay in
(2) is set to zero (α = 0) in the following.
The updating of the weight components is performed by a classic gradient decent

technique, which adjusts the weights in the opposite direction of the gradient of
the error function [13]. For both WI and WO of the ANN this gradient decent
updating can be written as

Wnew = Wold +ΔW, ΔW = −η
∂E (W)

∂W
, (3)

where η is the learning step size parameter. This parameter can either be constant
or updated during the training of the ANN. For this application the dynamic
learning step size parameter is adjusted for each iteration so that it is increased if
the training error is decreased compared to previous iteration steps and conversely
reduced when the training error increases. The two weight arrays WI and WO

must be evaluated separately yielding these weight updates

ΔWO
j = −η

(
N∑
n

(yn − τn) zj

)
(4)

ΔW I
ji = −η

(
N∑
n

((
1− z2j )W

O
j (yn − τn

))
xi

)
(5)

The performance of a trained ANN is usually measured in terms of the so-called
validation error, which is calculated in the same way as the training error (2) but
with respect to an entirely new data set, which has not been part of the network
training.

3. Hybrid method

The training of the ANN depends on data that contain the relation between exter-
nal effects on the structure and the corresponding structural response. This means
that the ANN can not stand alone as there must be a source of relevant data. The
data can come from measurements, experiments or from numerical models as long
as the data contain the dynamic characteristics of the structure in question. In this
case, as in most cases, a numerical FEM model will be used as data generator.

3.1. Numerical Model

To illustrate the hybrid method a numerical model of a flexible oil/gas pipe is
established, as sketched in Figure 2. The FEM model of the structure uses a two-
dimensional co-rotational beam element formulation as described in [14]. This for-
mulation is effective for analysis of structures with large deflections because it
separates the overall beam motion into two parts: a rigid body type motion as-
sociated with a local frame of reference, and a deformation of the beam within
this local frame. The local deformations of the beam element can be considered
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Figure 2. Sketch of two typical riser configurations.

small, but geometrical stiffness contributions which depend on the deformation are
introduced. Thus, a nonlinear model which can handle large deflections and defor-
mations is obtained when the governing equations of motion can be stated in the
following form,

Mr̈(t) +Cṙ(t) +K(r)r(t) = f(t). (6)

The lumped masses and beam stiffness contributions are assembled in a mass ma-
trix M and a (tangent) stiffness matrix K, respectively. Structural damping is
introduced by the viscous damping matrix C, which is constructed in the classic
Rayleigh damping format. The force vector f consists of external force components
at each degree of freedom (DOF) for each time step and the vector r contains
the corresponding degrees of freedom of the structure. Note that the components
in the stiffness matrix K dependent on the deflection r of the structure. The re-
sponse of the structure is calculated by the Newmark direct integration method.
The Newton-Raphson method is used to achieve force equilibrium in each time
step and the update of the stiffness matrix follows the procedures described in [14].
In order for the equilibrium algorithm to converge and remain stable a time step
increment of Δt = 0.01 s is used in the numerical simulation. This increment is
sufficient to resolve the governing dynamics of the numerical models considered
in Section 4. Finally, equilibrium within the Newton-Raphson iteration loop is ac-
cepted when the force and displacement residuals are below 10−4 relative to the
corresponding load and displacement increments, respectively.

3.2. Simulation

The ANN can in principal be designed to simulate any desired output from the FEM
analysis. For simplicity the networks used in the following examples are trained to
predict the horizontal deflection of the risers. Note that the ANN output only gives
the response at one desired location and hence, as oppose to the FEM model, not
the response of all model DOFs. The horizontal platform motion together with the
riser response r of previous time steps constitute ANN input vector

xt = [ut ut−h . . . ut−dh rt−h rt−2h . . . rt−dh]
T , (7)
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Figure 3. Sketch of riser in initial configuration.

where u is the prescribed platform motion, r is the horizontal riser response of a
selected node in the FEMmodel, t denotes current time, h is the time increment and
d is number of previous time steps included in the input, i.e. the model memory.
Note that the ANN not necessarily uses the same time step increment as the
numerical integration algorithm, why h may be different from Δt introduced in
Section 3.1. The ANN output of the simulations is the current time horizontal
deflection of the selected node in the riser model,

yt = [rt] (8)

The output layer in an ANN can in principal have any number of elements. How-
ever, since the ANN used in this example simulates the response of a single node
only, the output y in (8) is simply a scalar, and not a full vector as in (1).
After training the ANN is able to predict the riser response to a similar platform

motion history as the one used to generate the training data. The ANN training,
i.e. the minimization of the error function (2), is performed with a certain represen-
tative training data set. It has been shown that an ANN with one hidden layer and
a sufficient number of elements in the hidden layer can replicate any continuous
function [15]. However, the purpose of the ANN is not to replicate a specific set
of data, but to learn the underlaying characteristics of the structural FEM model.
This means that the ANN must be tested during training. For each iteration the
test result must be stored in order to keep track of the development in the vali-
dation error to avoid overfitting with respect to the specific data in the training
set. As the ANN validation is performed using ’fresh’ data all the data generated
by the FEM model must be divided into a training part and a validation part. As
mentioned, the validation error Etest is calculated in the same way as the training
error in Etrain (2) but with respect to fresh data, which has not been part of the
network training.

4. Two riser configurations

The sequential hybrid procedure is demonstrated for two different riser configura-
tions: A steel catenary riser (SCR) and a Lazy-wave riser. Both risers are installed
at 100 m water depth, as sketched in Figure 2. The demonstration is divided into
three main steps. The first two steps are conducted by the FEM model. The pur-
pose of the first task (step 1) is to get the riser model in place, i.e. in equilibrium.
For both riser configurations this first step is initiated from a situation, where the
riser is placed in a straight line between the sea bottom and the sea level. The riser
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Figure 4. Final configuration, Initial configuration; ’o’ Buoyancy modules.

is prevented against translations by the simple support at the bottom, while at the
sea level it is restrained against vertical displacements. The initial configuration is
shown in Figure 3. Since the numerical FEM model does not consider hydrody-
namic damping and any added mass effects, the mechanical and model properties
are both adjusted so that they give realistic dynamic behavior. In the present case
this specifically involves adding significant supplemental mass to the numerical riser
models, simply to secure the correct order of magnitude of the natural frequencies.
Hence, the FEM model does not explicitly represent an entirely realistic flexible
riser, but is merely to be considered as a numerical generator of useful data for the
demonstration of the hybrid method with ANNs. For the lazy-wave configuration
a lifting force, corresponding to the lift from the intermediate buoyancy modules,
are applied to a sequence of adjacent element nodes in the FEM model. The place-
ment of the riser is now carried out as a (quasi-static) dynamic simulation, where
the top node is initially released, whereafter the forces from gravity and buoyancy
place the risers in their representative equilibrium states. The initial and the final
configurations for the SCR and lazy-wave riser are shown in figures 4(a) and 4(b),
respectively.
Having the risers in the desired final configuration the next step (step 2) is then to

apply a horizontal motion history to the top node. This motion history corresponds
to the horizontal motion of a floating offshore platform with a mean (offset) of 2.6
m, a standard deviation of 2.4 m, a dominant wave frequency of about 0.1 Hz and
a low frequency motion with a period of around 80 s.
This study considers the simplest possible example of riser structures. The nu-

merical model is two dimensional, there are no forces from waves and current acting
on the riser and there is no interaction with the seabed, which means that the risers
are hanging freely. The only external effect on the structure is the prescribed hori-
zontal motion (surge) of the top node at the sea level. Even though hydrodynamic
effects and vertical motion (heave) at the top node of the riser contribute signifi-
cantly to the horizontal riser deflection, in order to keep the analysis as simple as
possible, these effects are omitted in following. The FEM analysis calculates the
time histories for all DOFs at all element nodes of the entire FEM model. How-
ever, in this numerical illustration of the sequential hybrid method we are merely
interested in the horizontal motion of a selected number of element nodes along
the riser. As mentioned earlier, the top tension forces in risers and mooring lines
can fairly easily be predicted by properly trained neural networks, [8, 16]. But in
order for this hybrid method to become useful in riser design we need a way to
make it work for all critical locations along the risers, for example the touch down
zone at the seabed. Otherwise, the computationally expensive simulations based on
equilibrium iterations must be conducted anyway. However, as this paper merely
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aims to illustrate the sequential ANN method on a very simple FEM model, the
response simulations do not consider specific fatigue critical hot spots on the riser
structures, but only serve to demonstrate that all locations from top to bottom
may be covered by the present ANN simulation technique.
The last step (step 3) is to set up and train an ANN with respect to the data

generated in the FEM analysis (step 2). The ultimate goal for this method is of
course to predict pipe section forces at the hot spots of the analysis, for example
the tension forces in the touch down zone directly using only the platform motion
at the sea level as input to the ANN. But for simplicity this first demonstration in
this paper considers the horizontal motion at a number of selected and regularly
spaced element nodes. A sketch of the FEM model and the selected nodes for the
SCR configuration are shown in Figure 5.

4.1. Steel catenary riser

As mentioned previously, the architecture of the ANN depends on a number of
network variables. Because there are no explicit rules for determining the optimal
ANN, determining an appropriate network architecture is often done by trail and
error measures. Using this approach for the SCR data shows that a hidden layer
with 35 neurons gives accurate simulations, while still having a relatively compact
and efficient ANN. In Figure 6(a) the test error determined by (2) is plotted with
respect to model memory, which is the number of previous time steps that are
used as network input - corresponding to d in (7). The figure shows that including
memory in the model reduces the error significantly. On the other hand it is seen
that including more than approximately 10 steps does not seem to improve the
ANN performance noticeably. Thus, in the following d = 10 is chosen.
Earlier studies have shown that the size of the time step in the ANN simulation

can be significantly larger than the corresponding time step used in the FEM
analysis, see [16]. Thus, in this example a time step size of h = 2 s has proven
to be sufficient. This corresponds to approximately five individual discrete data
points for each wave period. By omitting the majority of the FEM data the time
spend on ANN training is significantly reduced and it furthermore also improves
the performance of the ANN simulations. The training and the validation are now
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Figure 6. Finding optimal ANN architecture.

both carried out using 1200 s (20 minutes) of response history generated by the
FEM model. The full time history is divided into 700 s of training data and 500 s of
validation data, with a time step size of 2 s. This leads to 300 discrete data points
for both the training set and the corresponding validation set.
Now that the ANN architecture has been chosen the next step is to determine for

how large a spatial separation between the network input and output variables the
ANN can obtain accurate simulation results by just using the prescribed motion
of the riser top node as input. Figure 6(b) shows the development in ANN error
during training. The training error Etrain, which is minimized by the training
algorithm, is represented by the solid curve, while the dashed curve shows the ANN
validation error Etest. This latter measure indicates how well the ANN performs
with respect to fresh data. Since the goal of the procedure is to train the ANN to
actually simulate the structural response with respect to unknown data, the implicit
objective of the training is therefore to minimize Etest. Hence, it is important to
keep track of the development in the validation error during the training to avoid
overfitting with respect to the specific training data. An increase in Etest often
indicates overfitting, in which case the training should be terminated. Figure 6(b)
shows how the error measure is reduced during training for the ANN simulating
the horizontal motion of node 2 with the prescribed platform motion motion at
node 10. Both training error (solid curve) and validation error (dashed curve) are
plotted with respect to the number of iterations in the training procedure. It is
seen that both error measures are reduced as intended.
Figure 7 summarizes the sequence of simulations performed by the sequential

hybrid method for the SCR. Figure 7(a) shows that the simulation for the SCR is
accurate all the way down to node 2 when using just the top node (node 10) as
ANN input. Figure 7(b) shows that going all the way to the bottom of the riser
at node 1 the ANN with input from node 10 still captures the overall pattern,
but the simulation results are not as accurate as for node 2. However, because
good simulation accuracy is available at node 2 with respect to the top node mo-
tion, the simulation procedure for the bottom node 1 is now modified, so that the
motion records of both node 10 and node 2 are used as input to the ANN when
trying to simulate the response at the bottom node 1. This augmentation of the
procedure is the basis of the sequential analysis, where ANN simulations not only
depend on the original top node motion, but also on intermediate response histo-
ries obtained by the ANN. In the present case this sequential procedure obviously
requires two ANNs. The training of the additional ANN is done using those data
already generated by the FEM calculation. Hence, it is very important to stress
that the augmentation of the hybrid ANN procedure does not require any addi-
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Table 1. Validation error for the three simulations in

Figure 7.

input/output: 10/2 10/1 10,2/1
Etest: 6.5 · 10−3 10.0 · 10−3 9.4 · 10−3

tional time consuming FEM analysis. The training itself is a computationally fairly
cheap task, in particular when comparing the effort to the significant reduction in
computational time provided by the use of the hybrid method. With that in mind
the additional ANN is not considered as a significant degradation of the perfor-
mance of the hybrid method, and cost associated with this network expansion is
considered to be insignificant. The results of having two nodes as ANN input when
trying to simulate the response at node 1 are shown in Figure 7(c), and it is found
that using two input histories to the ANN yields a much more accurate simulation
result.
One of the challenges with this sequential form of the hybrid method is to decide

on an appropriate acceptance level for the validation error. In Table 1 the validation
error is listed for the three networks that have been used to generate the curves
in Figure 7. The error is calculated following 2 · 105 training iterations, and it
is questionable whether it is possible to say anything conclusive based on these
error measures. It would obviously be convenient to have a threshold level for
the error to determine when an ANN output is sufficiently accurate. However,
establishing such a threshold value would require more examples and experience
with this method, and the present paper therefore only addresses the proof-of-
concept. Most likely, some form of visual inspection will under any circumstances
be part of the assessment of the ANN performance.
The above conclusions concerning the sequential procedure of the hybrid method

are summarized in the ANN flowchart in Figure 8. The first network ANN2 sim-
ulates the response u2 of the SCR at node 2, and this response prediction is sub-
sequently used as input for ANN1, which computes the response u1 of the bottom
node 1. Together with the motion of the top node the output of ANN2 is therefore
used as input to the next network ANN1, which is based on these two input signals
and predicts the horizontal response of node 1.

4.2. Lazy wave

The sequential analysis in the previous section for the SCR is now repeated for the
somewhat more complex lazy-wave riser configuration. All model parameters are
the same as for the SCRmodel, i.e. same element stiffness, same number of elements
and same water depth. The only difference between the models of the two riser
configurations is the introduction of the intermediate buoyancy modules attached
to the riser, as indicated in both figures 2 and 4. The ANN training and validation
is again based on 20 minutes of simulation data. However, this divided into 750 s
for training and 450 s for validation. The architecture of the ANN for the lazy-wave
riser model is the same as the one used in the SCR simulations. Again a sequence of
ANNs is used in this hybrid method strategy, where the output of a particular ANN
is used as input to the next ANN, simulating the response of the adjacent node in
the riser model. This sequential approach of course requires a fine balance between
accuracy and the number of nodes along the riser used by the sequential hybrid
method. For every time an ANN is used in the sequence of simulations an error is
accumulated and passed on to the next ANN. Thus, even small inaccuracies in the
intermediate simulations will be accumulated and potentially affect the accuracy of
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(c) Response at Node 1 using Node 2 and 10 as input.

Figure 7. �: ANN input, ◦: ANN output, ANN, FEM

the target response, e.g. at the bottom node of the riser. In addition to accumulation
of error, an additional ANN also yields additional time spend on training, validation
and simulation. Therefore, it is obviously desirable to keep the number of required
ANNs in the sequential hybrid approach at a minimum, while still being able to
generate accurate and robust results.
Another drawback of introducing additional neural networks in the sequence is

that each network is associated with an initial transient time region, where the
network must get synchronized with the input, which means that in a sequential
procedure the removal of these transient parts for each network reduces the effective
length of the corresponding time histories. In practice this means that the length
of the time history of the top node at sea level increases with the number of ANNs
required along the riser.
For the lazy wave riser configuration it turns out that, in order to keep the sim-

ulation error sufficiently low, it is necessary to have a distinct ANN for each of
the selected nodes in Figure 9. Figures 10-12 show how the individual networks
perform at different locations along the flexible lazy-wave riser. Except for the first
ANN in Figure 10(a) all networks use simulated input generated by the previous
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ANN, as illustrated in figures 10-12 where the boxes on the riser sketches indi-
cate which nodes that are used as ANN input while the circles indicate the ANN
output node. This means that any previous inaccuracies are somehow passed on
and thereby remain in subsequent simulations. This phenomenon can be detected
in the series of simulations shown in figures 10-12. For example, in Figure 11(a) a
small simulation inaccuracy seemingly occurs after approximately 350 s. This error
is not pronounced in the previous simulations shown in Figure 10. However, when
inspecting the subsequent simulations in Figure 11 it is seen that this validation
error still exists. Despite the accumulation of errors, the sequential hybrid method
still manages to maintain a very high degree of accuracy in the response simulations
all the way along the riser down to the final node 1 at the sea bed.
Figure 13 shows the ANN flowchart used for the lazy-wave riser configuration in

the case where the horizontal motion of node 1 depends on the response obtained
by the previous nine ANNs of the sequential analysis. The actual time spend on
simulating after having designed and trained is insignificant, compared to the time
used to perform the original FEM simulation. As for the SCR, the training of the
nine ANNs can be done entirely by the data generated for a single FEM analysis.
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Figure 10. �: ANN input, ◦: ANN output, ANN, FEM

5. Concluding remarks

For the sequential hybrid method to be beneficial the extra time spend on setting
up and training the neural networks must be less than the time spend on calculat-
ing the required amount of time domain simulation when using the FEM model.
Time domain simulations using classical numerical methods can in many cases
take hours or even days before a sufficient amount of data is obtained, whereas
ANN simulation, once the series of networks is trained and ready, is so fast that
simulation time is usually a matter of seconds. Figure 14 illustrates a reasonable
relationship between required simulation time and computation time for the two
methods.
In the example presented in this paper the difference in computational time

spend on the individual simulations by using the ANN and using the classic FEM
model lies around a factor of 100 - that is once the ANN is constructed, trained
and validated. This factor obviously depends on the type of structure, the loading
conditions, the model configuration and various other key elements. However, the
examples in this paper indicate that the sequential hybrid method holds a great
potential. Furthermore, the reduction in calculation cost may be increased even
more if it is possible to avoid one or more post processing steps so that, instead of
just predicting the structural response, the ANN can in fact be trained to predict
material stresses or structural damage directly based on the FEM model input
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(c) Response at Node 4 using Node 5 and 10 as input.

Figure 11. �: ANN input, ◦: ANN output, ANN, FEM

data. In this paper FEM and ANN simulations have been compared only by visual
inspection of the relatively short time domain simulations in Figure 7 and figures
10-12. It would be interesting to evaluate the ANN accuracy by comparing statistics
on long time domain simulations. This will be part of future work. Another obvious
next step will be to test the sequential method on more detailed numerical riser
models, e.g. on data generated by recognized commercial software such as RIFLEX
or OrcaFlex.
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