

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Tramp Ship Routing and Scheduling - Incorporating Additional Complexities

Vilhelmsen, Charlotte; Larsen, Jesper; Lusby, Richard Martin

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Vilhelmsen, C., Larsen, J., & Lusby, R. M. (2014). Tramp Ship Routing and Scheduling - Incorporating Additional
Complexities. Department of Management Engineering, Technical University of Denmark. (DTU Management
Engineering. PhD thesis; No. 1. 2015).

http://orbit.dtu.dk/en/publications/tramp-ship-routing-and-scheduling--incorporating-additional-complexities(1eb7e3d5-c020-47e1-a840-c496d06efdf5).html

Charlotte Vilhelmsen
August 2014

Tramp Ship Routing and Scheduling
– Incorporating Additional Complexities

PhD thesis 1.2015

DTU Management Engineering

PhD thesis

Tramp Ship Routing and Scheduling
- Incorporating Additional Complexities

Charlotte Vilhelmsen

August 3, 2014

ii

Dansk titel:
Ruteplanlægning i trampfart - inddragelse af yderligere kompleksiteter
Type: Ph.d.-afhandling

Forfatter: Charlotte Vilhelmsen

ISBN:

DTU Management Engineering
Department of Management Engineering
Technical University of Denmark

Produktionstorvet, Building 426,
DK-2800 Kgs. Lyngby, Denmark
Phone: +45 45 25 48 00, Fax: +45 45 25 48 05
phd@man.dtu.dk

August, 2014

Summary

In tramp shipping, ships operate much like taxies, following the available demand. This contrasts
liner shipping where vessels operate more like busses on a fixed route network according to a
published timetable. Tramp operators can enter into long term contracts and thereby determine
some of their demand in advance. However, the detailed requirements of these contract cargoes
can be subject to ongoing changes, e.g. the destination port can be altered. For tramp operators,
a main concern is therefore the efficient and continuous planning of routes and schedules for the
individual ships. Due to mergers, pooling, and collaboration efforts between shipping companies,
the fleet sizes have grown to a point where manual planning is no longer adequate in a market
with tough competition and low freight rates.

This thesis therefore aims at developing new mathematical models and solution methods for
tramp ship routing and scheduling problems. This is done in the context of Operations Research,
a research field that has achieved great success within optimisation-based planning for vehicle
routing problems and in many other areas.

The first part of this thesis contains a comprehensive introduction to tramp ship routing and
scheduling. This includes modelling approaches, solution methods as well as an analysis of the
current status and future direction of research within tramp ship routing and scheduling. We
argue that rather than developing new solution methods for the basic routing and scheduling
problem, focus should now be on extending this basic problem to include additional complexities
and develop suitable solution methods for those extensions. Such extensions will enable more tramp
operators to benefit from the solution methods while simultaneously creating new opportunities
for operators already benefitting from existing methods.

The second part of this thesis therefore deals with three distinct ways of extending the basic
tramp ship routing and scheduling problem to include additional complexities. First, we explore
the integration of bunker planning, then we discuss a possible method for incorporating tank
allocations and finally, we consider the inclusion of voyage separation requirements. For each of
these extensions, we develop a new solution method and discuss the impact of incorporating these
additional complexities.

Aside from a comprehensive introduction to tramp ship routing and scheduling, the main
contribution of this thesis is the exploration of the three aforementioned extensions of the basic
tramp ship routing and scheduling problem. The work on these three distinct extensions together
represent a diverse collection of both problems and solution methods within tramp ship routing
and scheduling.

iii

iv

Resumé (Summary in Danish)

Indenfor trampfart sejler skibene i stor stil som taxaer efter den tilgængelige efterspørgsel. Dette
er forskelligt fra liniefarten, hvor skibene sejler mere som busser efter et p̊a forh̊and fastlagt
rutenetværk og en offentliggjort tidsplan. Tramp operatører kan indg̊a længerevarende kontrak-
ter og p̊a den m̊ade fastlægge en del af deres fremtidige efterspørgsel. Imidlertid kan dele af
oplysningerne ang̊aende s̊adanne kontraktlaster løbende ændre sig. F.eks. kan destinationshavnen
ændres. Effektiv og kontinuerlig ruteplanlægning for de individuelle skibe i fl̊aden er derfor et
vigtigt problem for tramp operatører. Sammenlægninger og samarbejder imellem rederier har f̊aet
fl̊adestørrelserne til at vokse til et punkt, hvor manuel planlægning ikke længere er tilstrækkelig i
et marked, hvor konkurrencen er h̊ard og fragtpriserne lave.

Form̊alet med denne afhandling er derfor at udvikle nye matematiske modeller og løsnings-
metoder til ruteplanlægning indenfor trampfart. Dette udføres indenfor rammerne af Operations-
analyse, et forskningsomr̊ade der har opn̊aet stor succes med optimerings-baseret planlægning af
rutelægning for biler og mange andre omr̊ader.

Første del af denne afhandling indeholder en grundig introduktion til ruteplanlægning indenfor
trampfart. Det inkluderer tilgange til modellering, løsningsmetoder og desuden en analyse af den
nuværende status og fremtidige retning for forskning indenfor ruteplanlægning i trampfart. Vi
argumenterer for, at fremfor at udvikle nye løsningsmetoder til det basale rutelægningsproblem,
s̊a bør fokus nu ligge p̊a at udvide det basale problem til at inkludere yderligere kompleksiteter.
S̊adanne udvidelser vil muliggøre, at flere tramp operatører kan gavne af løsningsmetoderne og
samtidig skabe nye muligheder for operatører, der allerede har gavn af de eksisterende metoder.

Anden halvdel af denne afhandling omhandler derfor tre forskellige måder at udvide det basale
trampfarts rutelægningsproblem til at inkludere yderligere kompleksiteter. Først undersøger vi
integrationen af brændstofsplanlægning, s̊a diskuterer vi en mulig metode til at inkorporere tank
allokeringer og til sidst betragter vi inklusionen af krav til rejseadskillelser. For hver af disse
udvidelser udvikler vi en ny løsningsmetode og diskuterer effekten af at inkorporere disse yderligere
kompleksiteter.

Det største bidrag fra denne afhandling er, udover en grundig introduktion til ruteplanlægning
indenfor trampfart, undersøgelsen af de tre førnævnte udvidelser af det basale ruteplanlægnings-
problem. Arbejdet med disse tre forskellige udvidelser repræsenterer tilsammen en mangfoldig
samling af b̊ade problemer og løsningsmetoder til ruteplanlægning indenfor trampfart.

v

vi

Preface

This thesis has been submitted at Department of Management Engineering, Technical University
of Denmark in partial fulfillment of the requirements for acquiring the Doctor of Philosophy degree.

The PhD study has been partly funded by the Danish Maritime Fund and conducted at De-
partment of Management Engineering, Technical University of Denmark from January 2010 to
August 2014. The work was supervised by Professor Jesper Larsen and co-supervised by Associate
Professor Richard Lusby, both from Department of Management Engineering, Technical University
of Denmark.

The thesis deals with different aspects of optimisation within tramp shipping and consists of
two parts. The first part serves as an introduction to tramp shipping in general and to the specific
topics explored during the PhD study. This part also contains a detailed overview of the work
conducted during the PhD study as well as an overall conclusion on the conducted study. The
second part of the thesis contains a collection of three research papers written during the PhD
study. These research papers are all co-authored and self-contained with individual bibliographies.

Kgs. Lyngby, Denmark, August 2014

Charlotte Vilhelmsen

vii

viii

Acknowledgements

First, I want to thank my supervisor Professor Jesper Larsen for embarking on this journey with
me into an industry neither of us knew much about when the project started. Your guidance,
support and continuing optimism is what kept me going through these last years and there is no
doubt that I could not have completed my journey without your help. Next, I want to thank my
brilliant co-supervisor Associate Professor Richard Lusby for being my go-to-guy for everything
from proofreading to implementation. Your advice and help along the way have been an invaluable
contribution to this project.

I also want to thank my colleagues at DTU Management Engineering for many fruitful discus-
sions and in general for providing a great work atmosphere. In particular I want to thank Line
Blander Reinhardt for sharing her office with me, helping me with practical matters and most of
all for being a fantastic friend through these last years. Berit Dangaard Brouer also deserves a
special thanks for her help and support on both personal and work related matters.

Without any prior knowledge of the shipping industry, this project has at times had me going
in circles. Therefore, I feel very privileged to have worked with Professor Kjetil Fagerholt at NTNU
in Trondheim. His knowledge of and experience within optimisation of maritime transportation
seem endless, and his willingness to share this with me has provided invaluable guidance for this
project. I want to thank him for his support and for letting me visit him and his colleagues at
NTNU on several occasions. From their research group at NTNU, a special thanks goes to Inge
Norstad for helping me with data and advice for the project on evenly spread voyages.

This PhD project would never have seen the light of day if not for the financial support from
The Danish Maritime Fund who partly funded the project. I thank them for this opportunity and
further want to thank their administrator Carsten Melchiors for supporting me along the way and
for forgiving me when the administrative side of the project was neglected.

I owe a great deal of my current knowledge about the tramp shipping industry to the experienced
staff at Maersk Tankers A/S and I want to thank them for this. In particular I would like to thank
Jakob Tørring for his help and advice on the bunker project.

Last, but certainly not least, I want to extend a heartfelt thanks to my family and friends for
supporting me through these last years. In particular my dad has never failed to encourage me in
this direction or to let me know how proud he is of me. Even as a small child, I remember him
challenging me with small mathematical puzzles and supporting me when I dreamed of ’sitting
in an office doing something math related’ as opposed to becoming a nurse, firefighter or simply
superwoman.

No doubt my children, my wonderful boys Alexander and Storm, have benefitted from my
flexible working hours but suffered from my travels and periods of total work occupation. I love
them with all my heart and thank them for their smiles, hugs and kisses and for providing me with
an Operations Research free environment at home during this project. The closest thing we ever
came to a work related discussion was when Alexander at 3 years old over the dinner table asked
“so, mom, how did you decide the ships should sail today”. Their “ignorance” and never ending
love has seen me through the hard times of this project.

At the very bottom of this long list of acknowledgements I find the man who is at the very
top of my list of people I love: My beloved husband Michael. Without your ongoing love, support,
strength and confidence, I would have never embarked on this journey and certainly not completed
it. You truly are my very best friend, the one I laugh with, the one I dream about, the one I live
for, the one I love. Thank you for being mine.

ix

x

Contents

I Introduction and Theory 1

1 Introduction 3
1.1 Thesis Structure . 5

2 The Tramp Ship Routing and Scheduling Problem 7
2.1 Problem Description . 7
2.2 Mathematical Formulation . 8
2.3 Ship Routing vs. Vehicle Routing . 10
2.4 Literature on the TSRSP . 11
2.5 Solution Approaches for the TSRSP . 13

2.5.1 Exact Solution Approaches for the TSRSP 13
2.5.2 Heuristic Solution Approaches for the TSRSP 13

3 Incorporating Additional Complexities 15
3.1 Current Status of the TSRSP . 15
3.2 Current and Future Research Direction for the TSRSP 16
3.3 Thesis Focus . 17
3.4 Literature for TSRSP extensions . 18

4 Methods and Tools 21
4.1 Column Generation . 21

4.1.1 Master Problem . 21
4.1.2 A Priori Column Generation . 23
4.1.3 Dynamic Column Generation . 24
4.1.4 Full Column Generation Scheme . 25

4.2 Heuristic Solution Approaches . 27

5 Thesis Contribution 29
5.1 Incorporating Bunker Planning . 29
5.2 Determining Tank Allocations . 30
5.3 Incorporating Voyage Separation Requirements . 32

6 Conclusion 35
6.1 Main Contributions . 35
6.2 Future research directions . 36

II Scientific Papers 43

7 Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 45
7.1 Introduction . 45
7.2 Literature review . 46
7.3 Problem Description . 48

7.3.1 The Pure Tramp Ship Routing and Scheduling Problem 48
7.3.2 Incorporating Bunker . 48

xi

Contents xii

7.3.3 Mathematical model . 50
7.4 Solution Method . 52

7.4.1 The Master Problem . 53
7.4.2 The Subproblem - Generation of promising schedules 53
7.4.3 Full Column Generation Scheme . 54
7.4.4 Solving the subproblem . 55

7.5 Problem Instance Generators . 59
7.6 Parameter Tuning . 60
7.7 Computational Results . 62
7.8 Concluding Remarks . 67

8 A Heuristic and Hybrid Method for the Tank Allocation Problem in Maritime
Bulk Shipping 71
8.1 Introduction . 71
8.2 Problem description . 73
8.3 Solution Method . 77

8.3.1 Diversification . 78
8.3.2 Cargo priority - function selectCargo() . 78
8.3.3 Reserving sufficient capacity - function selectTanks() 79

8.4 Data . 83
8.4.1 Instability for locked cargoes . 83

8.5 Tuning . 85
8.6 Computational Results . 86

8.6.1 Results from optimal method . 86
8.6.2 Modifying the optimality-based method . 88
8.6.3 Results from the developed heuristic . 88
8.6.4 Devising a hybrid solution method . 90
8.6.5 Comparing algorithms . 91

8.7 Concluding Remarks . 92

9 Tramp Ship Routing and Scheduling with Voyage Separation Requirements 95
9.1 Introduction . 95
9.2 Literature Review . 96
9.3 Problem Description . 97

9.3.1 Mathematical model . 98
9.4 Decomposition . 101

9.4.1 Master Problem . 102
9.4.2 Subproblems - Pricing out new schedules 103
9.4.3 Pricing Strategy . 105

9.5 Branching . 106
9.5.1 Time Window Branching . 106
9.5.2 Constraint Branching . 114
9.5.3 Branching Strategy . 115

9.6 Computational Study . 116
9.6.1 Data instances . 116
9.6.2 Computational Results . 117

9.7 Concluding Remarks . 120

Part I

Introduction and Theory

1

Chapter 1

Introduction

In 2012, global seaborne trade was estimated to have reached over 9 billion tons for the first time
ever (UNCTAD, 2013). This translates into well over a tonne of cargo for every single individual
on the planet, every single year, or equivalently 80% of world trade by volume. World trade
therefore depends on the international shipping industry’s efficiency and competitive freight rates.
Furthermore, even though international shipping is the most carbon efficient mode of transport,
the CO2 emissions from the industry as a whole are still estimated to be around 3% of current
global emissions and are, if nothing changes, expected to rise considerably as world trade increases
(Michelsen, 2012). For several years now, the maritime sector has been subject to low freight rates
caused by surplus fleet capacity and the weak economy. The combination of low freight rates and
high bunker oil prices has made it difficult for many operators to produce earnings sufficient to cover
just their minimum operating costs. The shipping industry itself, therefore, has as much incentive
as any to improve their cost-effectiveness and recent years have shown increased exploration of
strategies in this direction, e.g. slow steaming, which refers to the practice of operating ships at
reduced speeds in order to save fuel. At the same time, the maritime sector also has an incentive
to take their CO2 emissions into consideration, both due to political pressure and to the fact that
the industry itself is bound to be affected by the impacts of climate change, such as rising sea levels
and more extreme weather. From all sides there is therefore an interest in research to increase
efficiency within maritime transportation.

Within commercial shipping it is common to distinguish between three different basic operating
modes although they need not be mutually exclusive: liner, tramp and industrial (Lawrence, 1972).
Within liner shipping, which is primarily characterised by container shipping, vessels operate much
like busses on a fixed route network according to a published timetable. In contrast, tramp ships
operate much more like taxies following the available cargoes. Many tramp operators do however
know some of the demand in advance as they can enter into long term agreements called contracts
of affreightment (COAs). Such contracts state that the tramp operator is obliged to transport
specified quantities of cargo between specified ports at a given rate during a specified time period.
In addition to these contract cargoes, a tramp operator then tries to maximise profit from optional
cargoes called spot cargoes. In industrial shipping, the ship operator is also the cargo owner and
the objective is therefore to carry all the predefined cargoes at the minimum cost. Tramp and
industrial shipping are primarily characterised by tankers and dry bulk carriers.

UNCTAD (2013) reports that although it is estimated that more than half of seaborne trade
in dollar terms is containerized, this segment only accounts for 16% of global seaborne trade
by volume. Furthermore, container ships only account for 13% of the world fleet deadweight
tonnage while bulk carriers and oil tankers are responsible for respectively 42% and 30%. Similarly,
UNCTAD (2013) reports that in 2012, bulk commodities accounted for nearly three quarters of
the total ton-miles performed that year. Tramp and industrial operators are therefore accountable
for a massive part of the global fleet as well as the total ton-miles performed each year, and hence
even small improvements in efficiency within these operating modes can be expected to have great
impact both from an economic and an environmental aspect.

As such, tramp shipping is not characterised by large economies of scale. Therefore, this
shipping mode is generally not difficult to enter and has previously been comprised of many small

3

Chapter 1. Introduction 4

operators. Perhaps this is the reason why research within tramp shipping has previously lagged far
behind that of industrial shipping (Christiansen et al., 2004). However, recent trends of mergers,
pooling, and collaboration efforts between shipping companies have increased fleet sizes to a point
where manual planning is no longer adequate (Christiansen et al., 2004). A further motivation for
research within tramp shipping is that many companies previously involved in industrial shipping
have now outsourced their transportation to independent shipping companies while some have even
chosen to branch out and become more involved in the spot market in order to better utilise their
existing fleet (Christiansen et al., 2004). Both these situations have created a shift from industrial
to tramp shipping which, in combination with the increased need to minimise manual planning,
has been reflected in the growing literature on research within tramp shipping and also motivated
the tramp ship focus of this thesis.

Within tramp shipping, and for that matter also industrial shipping, the main focus in tactical
planning, and to some extent also operational planning, is routing and scheduling the existing fleet.
This thesis deals with tactical routing and scheduling where high-level routes and schedules are
constructed. More detailed plans are made at the operational level once berth availability, weather
conditions etc. are known. For tramp operators the tactical routing and scheduling problem
boils down to determining which spot cargoes to transport, assigning all contract cargoes as well
as chosen spot cargoes to specific ships while simultaneously finding the sequence and timing of
port calls for all ships. The need to decide which spot cargoes to transport can greatly affect
the requirements for solution methods. This is for instance the case if a broker calls the tramp
operator with a specific cargo request and wants to know almost immediately whether or not the
tramp operator is able and willing to transport the given cargo. This need to provide a yes/no
answer very quickly means that solution methods with short running time are required. This is in
contrast to most other tactical planning problems where running time is rarely an issue.

The tough competition between operators in todays low market adds pressure to devise the
most efficient fleet schedules to properly utilise the existing fleet. However, as already mentioned,
recent years have shown an increase in fleet sizes to a point where the construction of efficient
schedules is both very time consuming and extremely difficult even for the most experienced plan-
ner. As an example we note that one of the collaborating partners during this PhD study, the
pool manager Handytankers, is responsible for around 100 product tankers transporting petroleum
products worldwide. At the same time, uncertainty plays a big part in maritime optimization where
planners face a constantly changing environment with large daily variations in demand and many
unforeseen events. Therefore, it is often necessary to re-plan routes and schedules continuously to
accommodate new cargoes and changes to existing plans. This is even more relevant for tramp
operators than for industrial operators due to the interaction with the spot market.

Hence, there is a need for an automated approach to this dynamic and ongoing planning problem
that can both aid the construction of efficient schedules and enable fast changes to existing schedules
in case of new or changed customer demands. Some commercial tools for optimisation of vessel
fleet scheduling has been developed. Even so, many tramp operators still use experienced planners
to manually route and schedule their fleets. We reflect on some of the reasons for this later in this
thesis; however, for now we note that further work is needed in this area. The main goal of this
PhD study has therefore been the development of new mathematical models and solution methods
for tramp ship routing and scheduling.

Note that from an operations research point of view, the industrial ship routing and scheduling
problem (ISRSP) can be viewed as a special case of the tramp ship routing and scheduling problem
(TSRSP) where there are no spot cargoes. In such a case, the profit maximising tramp objective
can be replaced by a cost minimisation objective as used in industrial shipping. Furthermore,
compared to the fixed number of cargoes to carry in industrial shipping, the addition of spot
cargoes in tramp shipping also yields greater flexibility suggesting greater financial impact from
schedule optimisation within TSRSP than within ISRSP. The fact that TSRSP can be viewed
as a generalisation of ISRSP, and that the financial impact from TSRSP can be expected to be
greater than that of ISRSP, yields further motivation for focusing on tramp shipping as opposed
to industrial shipping.

5 1.1. Thesis Structure

1.1 Thesis Structure

This thesis is divided into two separate parts. The first part contains an introduction to tramp
shipping and the specific topics explored during this PhD study. Aside from this introductory
chapter, Part I consists of five separate chapters:

• In Chapter 2 we discuss in further details the main characteristics of the basic TSRSP and
also provide an example of a mathematical formulation for this problem. We also relate the
TSRSP to vehicle routing problems and discuss some distinctions between these two related
problems. Finally, we review literature on the TSRSP as well as commonly used solution
methods for the this problem.

• In Chapter 3 we review the current status of research and applications within TSRSP and
use this to reflect on the possible future research directions. We argue that, rather than
developing new solution methods for the basic TSRSP, the main research focus should now
be to extend this basic problem to include additional complexities. We use this argument to
further motivate the specific research focus of this PhD study and give a brief overview of
the topics explored in Part II of this thesis. Finally, we review literature on such extensions
of the basic TSRSP.

• Chapter 4 contains a description of the common methods and tools used in Part II of this
thesis and also relates these methods and tools to literature within tramp shipping.

• In Chapter 5 we list the main contributions of the work conducted during this PhD study.
This includes a detailed overview of the work contained in the research papers that constitute
Part II of this thesis.

• Finally, in Chapter 6 we arrive at a conclusion on the work of this thesis. We also highlight
the contributions from this thesis and reflect on the directions for future research within
tramp ship routing and scheduling.

The second part of this thesis contains a collection of three self-contained research papers written
during the PhD study:

• In Chapter 7 we describe a new extension of the basic TSRSP to also include bunker planning.
This work contains a detailed description of this new problem as well as a mathematical
formulation for it. We also devise a solution method for it and provide a computational
study on the effect of incorporating bunker planning into the routing and scheduling phase.

• In Chapter 8 we explore the Tank Allocation Problem and develop a randomised heuristic for
finding feasible solutions to this problem. We also modify an earlier optimality-based method
and create a hybrid method by combining our heuristic with this modified optimality-based
method. This hybrid method is sufficiently fast to be used as a subproblem solution method
in an extension of the basic TSRSP that includes the tank allocation aspect.

• In Chapter 9 we consider a previously studied extension of the TSRSP which includes re-
quirements on a minimum time spread between some consecutive voyages. We present a
new, exact method for solving this problem and provide a computational study to explore
the efficiency of this method compared to a previously used method.

Two of the research papers have been submitted for publication in international journals, and
one of these has been accepted for publication at the time of writing. The last paper will also
be submitted and is simply awaiting approval from collaborating partners. We note that minor
changes have been made to the layout of these papers to give the thesis a uniform look. However,
the content of each paper is exactly the same as the content submitted to the journals.

Chapter 1. Introduction 6

Chapter 2

The Tramp Ship Routing and
Scheduling Problem

In this chapter we use Section 2.1 to describe the main characteristics of the TRSRP and also
discuss some of the operator specific characteristics of the problem. In Section 2.2 we present a
mathematical model for a specific version of the TSRSP, while we use Section 2.3 to reflect on the
similarities and distinctions between the TSRSP and vehicle routing problems. In Section 2.4 we
review literature for the TSRSP, and, finally, in Section 2.5 we discuss solution approaches for the
TSRSP.

2.1 Problem Description

The fleet size and mix is determined at the strategic planning level. In the TRSRP we therefore
assume a fixed heterogeneous fleet comprised of ships of different sizes, load capacities, bunker
consumptions, speeds, and other characteristics. Since ships operate around the clock, some ships
can be occupied with prior tasks when planning starts, so each ship is further characterized by
the time it is available for service and the location at which it is when it becomes available. The
characteristics of each ship determine which cargoes, ports and canals it is compatible with, e.g. the
draft of a ship can prohibit it from entering a shallow port and thereby make the ship incompatible
with all cargoes being either loaded or discharged in this specific port. For some ships there can
also be maintenance requirements during the planning horizon, and these must be respected in the
scheduling process.

During the planning horizon, the tramp operator is obliged to transport a given list of contracted
cargoes and can then turn to the spot market to derive additional revenue from spot cargoes if fleet
capacity allows it, and if it is profitable. Each cargo is mainly characterized by the quantity to be
transported, the revenue obtained from transporting it, and the pickup and discharge port. There
is also a ship specific service time in port for loading and discharging, and a time window giving
the earliest and latest start for loading. In some cases there is also a time window for discharge.

Since we consider a fixed fleet, we can disregard the fixed setup costs and focus on the variable
operating costs which consist mainly of ship dependent fuel and port costs. Other costs can be
relevant depending on the specific operator.

The objective of the TSRSP is then to create a profit maximizing set of fleet schedules, one
for each ship in the fleet, where a schedule is a sequence and timing of port calls representing
cargo loading and discharging. The optimal solution therefore combines interdependent decisions
on which optional cargoes to carry, the assignment of cargoes to ships, and the optimal sequence
and timing of port calls for each ship.

The above problem description is generic, and further operator specific characteristics are
needed to properly model and solve the problem. Below we state some key operator characteristics
and refer the reader to Christiansen et al. (2007) for further details on each of these, including
mathematical arc flow formulations and some related literature.

7

Chapter 2. The Tramp Ship Routing and Scheduling Problem 8

• Full shiploads or multiple cargoes: Full shiploads correspond to the case where a ship
can at most carry one cargo at a time, while multiple cargoes corresponds to the case where
each ship can carry multiple cargoes at once. The full shipload case yields a much simpler
mathematical formulation since the tasks of picking up and discharging each cargo can be
aggregated into one task since no other cargoes can be handled in between. This also means
that capacity constraints as well as precedence and coupling constraints are implicitly handled
in the preprocessing phase.

• Fixed or flexible cargo sizes: Quite naturally, the fixed cargo size case refers to the case
where each cargo size is a fixed quantity whereas the flexible case refers to the situation
where each cargo size is given in an interval. Cargo revenues are, in the flexible case, defined
as an amount per unit transported. Note that in the full shipload case, the same model
can be used for both fixed and flexible cargo quantities since the specific cargo quantity
transported by each ship can be determined from ship capacity during preprocessing along
with the corresponding revenue.

• Mixable or multiple (non-mixable) products: In the case of mixable products, different
cargoes are compatible with each other whether they consist of the same product or of
multiple mixable ones. In either case, different cargoes can be loaded onboard a ship with
no consideration to the type of products already onboard. In the case of multiple (non-
mixable) products, different cargoes are not necessarily compatible and must be transported
in different tanks onboard the ship in order to be onboard simultaneously. This situation
leads to even further problem characteristics as the tanks can be of either fixed or flexible
sizes.

• Disallowing or allowing spot vessels: If the capacity of the fixed fleet is not sufficient to
carry the contracted cargoes, it can be allowed to charter in outside spot vessels to transport
these cargoes at a specified cost. There can even be cases where fleet capacity is actually
sufficient, but where it is simply profitable to charter in outside vessels to transport some
contract cargoes thereby freeing up fleet capacity to instead transport spot cargoes.

A typical example of the full shipload case is the transportation of crude oil. Multiple cargoes, on
the other hand, is common within dry bulk shipping and also for transportation of chemicals and
refined oil products. Although the pool manager Handytankers mentioned in Chapter 1 transports
refined oil products, they mostly sail full shiploads. Even though they have a fleet size of around
100 ships, this means that their planning problem can easily be less complex than that of an
operator with “only” 50 ships carrying multiple cargoes. Therefore, the fleet size alone does not
give an accurate indication of the complexity of the corresponding planning problem. However, in
Chapter 1 we had not introduced the above problem characteristics; hence, the fleet size was used
as a crude indication of problem complexity.

Flexible cargo sizes are often seen within transportation of bulk products. In particular, trans-
portation of liquid products more or less implies flexible cargo sizes in order to prevent sloshing in
partially empty tanks during sailing, and also to ensure stability of the ship. Within transportation
of liquid products we also find transportation of chemicals, and this segment is a typical example of
the multiple product case. A chemical tanker can have as many as 50 different tanks and hazardous
materials regulations play a major role when allocating the products to the different tanks. E.g.
products in neighboring tanks must be non-reactive and incompatible products must not succeed
each other in a tank unless it is cleaned.

As far as we know, the use of spot vessels is not typical for any specific shipping segment but
is a much more operator specific problem characteristic.

2.2 Mathematical Formulation

The research presented in this thesis covers a broad range of problem types using different combi-
nations of the above operator specific characteristics. As can be seen in Christiansen et al. (2007),
the different combinations lead to associated mathematical formulations differing in both size and
complexity. It is not the aim of this section to present all the different mathematical formulations

9 2.2. Mathematical Formulation

derived from these main characteristics. Neither is it the aim to repeat the specific mathemati-
cal formulations used in the scientific papers written as part of this PhD study and presented in
Part II of this thesis. However, it is the aim to provide the reader with a basic understanding of
the structure of the TSRSP. Therefore, we here present an arc flow formulation for a simple version
of the TSRSP, namely the one with full shiploads and without spot vessels. Note that due to the
assumption of full shiploads, it does not really matter whether we assume fixed or flexible cargo
sizes, or if we assume mixable or multiple products.

So, let V be the set of ships, and let N denote the set of cargoes to be transported during the
planning horizon. We partition the cargo set N into the two smaller and disjoint sets, NC and
NO, containing, respectively, the contracted cargoes and the optional spot cargoes.

In order to define the problem on ship specific graphs, we define an origin node and a destination
node for each ship v ∈ V and denote these o(v) and d(v) respectively. The origin node corresponds
to the geographical location of the ship when planning starts, while the destination node is artificial
and simply corresponds to the geographical location of ship v at the end of the planning horizon.
We can also represent each cargo i ∈ N as a network node, and this node corresponds to the full
transportation of cargo i, i.e. to both the pickup port and the discharge port of cargo i. Due to
port and cargo compatibility, capacity and time requirements, as well as other restrictions, not all
ships can transport all cargoes. Therefore, we define N v as the set of nodes that ship v can visit,
i.e. the nodes o(v) and d(v) as well as all nodes corresponding to cargoes, that can be transported
by ship v. We further define ship specific arc sets, Av, containing all arcs (i, j) ∈ {N v×N v} where
it is possible for ship v to transport cargo j directly after transporting cargo i. Note that Av also
contains the arc (o(v), d(v)) corresponding to ship v being idle during the entire planning horizon.

For each cargo i ∈ N v we have a time window [avi , b
v
i] describing the earliest and latest time

to start service for this cargo, when transported by ship v. For o(v) this window is collapsed into
the time, ship v is available for service. For any arc (i, j) ∈ Av, T v

ij denotes the fixed time from
arrival at the pickup port of cargo i to the arrival at the pickup port of cargo j and includes any
port time for pickup and discharge of cargo i. For each arc (i, j) ∈ Av we also have a ship specific
profit, P v

ij , which takes into account the revenue incurred from transportation of cargo i, the ship
dependent port costs from transportation of cargo i, the sailing cost of transporting cargo i on
ship v, and finally the cost of traveling ballast with ship v from the discharge port of cargo i to
the pickup port of cargo j.

For the mathematical formulation we define binary flow variables xvij for v ∈ V, (i, j) ∈ Av

that are equal to 1, if ship v transports cargo i just before transporting cargo j, and 0 otherwise.
The start time for service for each cargo is also variable; hence we define time variables tvi for each
v ∈ V and i ∈ N v.

We can now give an arc flow formulation of this simple version of the TSRSP:

max
∑
v∈V

∑
(i,j)∈Av

P v
ijx

v
ij (2.1)

s.t.∑
v∈V

∑
j∈Nv

xvij = 1, ∀i ∈ NC , (2.2)

∑
v∈V

∑
j∈Nv

xvij ≤ 1, ∀i ∈ NO, (2.3)

∑
i∈Nv

xvo(v)i = 1, ∀v ∈ V, (2.4)∑
j∈Nv

xvji −
∑
j∈Nv

xvij = 0, ∀v ∈ V, i ∈ N v \ {o(v), d(v)}, (2.5)

∑
i∈Nv

xvid(v) = 1, ∀v ∈ V, (2.6)

xvij(t
v
i + T v

ij − tvj) ≤ 0, ∀v ∈ V, (i, j) ∈ Av, (2.7)

avi ≤ tvi ≤ bvi , ∀v ∈ V, i ∈ N v, (2.8)

xvij ∈ {0, 1}, ∀v ∈ V, (i, j) ∈ Av. (2.9)

Chapter 2. The Tramp Ship Routing and Scheduling Problem 10

The objective function (2.1) maximises the joint profit from all ships in the fleet. Constraints (2.2)
and (2.3) ensure that all contract cargoes are transported by exactly one ship, and that all spot
cargoes are transported by at most one ship. Constraints (2.4) and (2.6) together with the flow
conservation constraints in (2.5) ensure that each ship is assigned a schedule starting at the origin
node and ending at the destination node. Constraints (2.7) ensure that if ship v transports cargo
i directly before cargo j, the time for start of service for cargo j cannot begin before service start
time for cargo i plus port time for transportation of cargo i plus travel time for transporting cargo
i plus ballast travel time from the discharge port of cargo i to the pickup port of cargo j with ship
v. Since waiting time is allowed, the constraints have an inequality sign. In constraints (2.8), the
service time for ship v for cargo i, tvi , is forced to be within its time window, thereby also ensuring
that no ship can start its schedule before it is available for service. Note that if ship v does not
transport cargo i, the time variable tvi has no effect and is in some sense artificial. Finally, the flow
variables are restricted to be binary in (2.9).

We note that constraints (2.7) are nonlinear and should in fact be:

xvij = 1 ⇒ tvi + T v
ij ≤ tvj ∀v ∈ V, (i, j) ∈ Av. (2.10)

However, as long as we require the xvij variables to be binary, we can easily linearise these constraints
by following the approach presented in Desrosiers et al. (1995). This approach introduces a large
constant Mv

ij for each ship v ∈ V and each arc (i, j) ∈ Av. This constant, Mv
ij , must be the largest

value that tvi +T v
ij− tvj can take, i.e. Mv

ij ≥ bvi + T v
ij − avj . The linearised constraints then become

tvi + T v
ij − tvj ≤Mv

ij(1− xvij), ∀v ∈ V, (i, j) ∈ Av.

Similar linearisation can be performed for nonlinear equations relating to capacity constraints
and other constraints relevant depending on the problem characteristics. Thereby, the arc flow
formulation for many TSRSPs, though not all, can easily be linearised. However, this is only
relevant if we want to solve the arc flow formulations by use of standard commercial optimisation
software for mixed integer linear programming. However, for most real life sized instances, this
approach will be too time consuming.

2.3 Ship Routing vs. Vehicle Routing

As can be detected from the problem description in Section 2.1 and seen from the mathematical
formulation in Section 2.2, the TSRSP is closely related to the Vehicle Routing Problem (VRP)
and its many variants for which we refer the reader to Toth and Vigo (2002). Looking through
literature, it is also quite clear that modelling approaches as well as solution methods for these
two problems share great similarities, and that researchers within each of the two transportation
modes have benefited from research within the other transportation mode. Literature also shows
that research on the TSRSP has lagged far behind that of the VRP, though recent years have seen
a huge increase in the amount of literature on the TSRSP. Therefore, the exchange of research
ideas have most likely not been equally balanced between the two research communities. However,
we note that one of the most successful solution methods from the vehicle routing literature is
based on decomposition and dynamic column generation, and the application of this method for a
pickup and deliver problem with time windows was first studied by Appelgren (1969) for a TSRSP
application.

Even though the TSRSP is closely related to the VRP and its many variants, there are however
important differences that facilitate the development of industry specific solution methods. Ronen
(1983, 2002) elaborate on the operational differences between ships and trucks while Christiansen
et al. (2004) add to this list of differences as well as reflect on similarities and differences between
ships and trains, and ships and aircrafts. Rather than repeating it here, we refer the reader to
Ronen (1983, 2002) and Christiansen et al. (2004) for an extensive discussion on the differences
between ship routing and scheduling problems, and those of other transportation modes. Below
we list a few of these differences including one specific for the tramp shipping industry.

• Continuous operation: As opposed to trucks, ships operate around the clock. This means
that ship schedules usually do not have periods of idleness to absorb any delays. It also means

11 2.4. Literature on the TSRSP

that ships do not only have different starting positions but also different starting times, as
some ships can be occupied with prior tasks when planning begins.

• No common depot: Even in multi-depot versions of the VRP, vehicles must return to their
home depot, whereas ships do not have to return to their starting point.

• Compatibility issues: In shipping, compatibility issues can arise between ships and car-
goes, ships and ports, and ships and canals due to equipment, capacity, draft, size etc. Even
the flag of the ship can prevent it from entering ports in countries that have political or cul-
tural issues with the nation corresponding to the flag of the ship. Even more complicating,
the draft of the ship is affected by the current load of the ship, and since this affects its
compatibility with both ports and canals, the compatibility between ship and cargoes, ports
and canals can be affected by the current onboard cargo.

• Optional cargoes: Specific for the TSRSP, the distinction between contract cargoes and
optional spot cargoes leads to a priority on cargoes not used in standard vehicle routing
problems where all customers must be serviced at minimum cost. In contrast, the tramp
objective is to maximize profit as in the less known Pickup and Deliver Selection Problem,
see Schönberger et al. (2003).

2.4 Literature on the TSRSP

As mentioned in Chapter 1, the three different basic operating modes, liner, tramp, and industrial,
are not mutually exclusive. Especially tramp and industrial shipping are very closely related, and
to some extent, the TSRSP can be viewed as a generalisation of the ISRSP. Thereby, it can be
difficult as well as meaningless to separate the literature on these two problems into two distinct
groups. Rather, most work on the TSRSP can be considered relevant for research within the ISRSP,
and similarly, most work on the ISRSP can be considered relevant for research within the TSRSP.
With research in these two fields dating as far back as the 1950s, the total amount of literature on
these topics is quite extensive. It is therefore not our aim to provide a comprehensive review of all
literature relevant for the TSRSP. For this, we instead refer the reader to the four review papers
Ronen (1983), Ronen (1993), Christiansen et al. (2004) and Christiansen et al. (2013), which, on
a decade basis, have provided the research community with comprehensive reviews on the latest
research on ship routing and scheduling within all operating modes. Here, we instead review the
very recent work on the TSRSP, and give some pointers to both recent and earlier work that
together cover the different combinations of operator specific characteristics listed in Section 2.1.
Note that since the purpose of this review is to frame the work presented in this thesis, we do not
include the research papers from Chapters 7-9 here.

Even though the latest review paper was published in 2013, several papers on the TSRSP
have been published since then. In 2012, St̊alhane et al. (2012) extend the basic problem to
allow split loads, i.e. allow each cargo to be split among several ships. They present a new
path flow formulation and devise a Branch-Price-and-Cut procedure to solve the problem. The
optimal cargo quantities are determined by solving multi-dimensional knapsack problems within the
subproblems. Their computational results show that their solution method outperforms existing
methods for certain types of instances. Kang et al. (2012a) consider the interaction between ship
routing and scheduling, and ship deployment, though in a context quite different from ours. They
use a commercial solver to directly solve their formulation.

Norstad et al. (2013) also consider a problem that combines ship routing and scheduling with
ship deployment, although in a context very similar to the TSRSP. They add voyage separation
requirements to the problem in order to perform similar voyages fairly evenly spread in time to
reduce inventory costs for the charterer. They present an arc flow formulation that is solved
directly using commercial software. They also present a path flow formulation, which is solved
by a priori path generation and a commercial solver for the final problem. Their computational
results show that both formulations can be used to solve smaller instances, while the path flow
formulation can also be used to solve problems of more realistic sizes. Results also show that
the inclusion of voyage separation requirements yields a much better spread of voyages and at
little profit reduction. We return to this paper several times in this thesis, as it relates closely

Chapter 2. The Tramp Ship Routing and Scheduling Problem 12

to the work done in Chapter 9. Fagerholt and Ronen (2013) note that most research within this
area has focused on solving simplified versions of reality. They present and consolidate results
for three practical problems that each extend these simplified problem versions by adding further
complexities and opportunities. The first extension considers flexible cargo quantities, the second
allows split cargoes, while the third includes sailing speed optimization. Their results show that
by using advanced heuristics, these extensions can, despite the increased problem complexity, be
solved to achieve significantly better solutions. We discuss these findings further in Section 3.2.

St̊alhane et al. (2014) combine traditional tramp shipping with a vendor managed inventory
service in an attempt to challenge the traditional contract of affreightment. They present an arc
flow formulation for this problem as well as a path flow formulation. The path flow formulation is
solved by a hybrid method that combines Branch-and-Price with a priori path generation. Larger
instances are solved using a heuristic version of path generation. Their computational results show
that the heuristic can significantly speed up computation time compared to the exact method, and
at only a small reduction in solution quality. Their computational results also show that the profit
and efficiency of the supply chain can be significantly increased by using vendor managed inventory
services compared to the traditional contracts of affreightment. Cóccola et al. (2014) present a
novel column generation approach in which the conventional dynamic programming route-generator
is replaced by a continuous time MILP slave problem. Their computational results show that
their method outperforms both a pure exact optimisation model and a heuristic solution method
previously reported in the literature. Castillo-Villar et al. (2014) present a Variable Neighborhood
Search based heuristic procedure for solving the TSRSP with discretised time windows. They ignore
spot cargoes and therefore seek to minimise cost rather than to maximise profit. The discretisation
approach allows them to incorporate several practical extensions and they specifically investigate
the inclusion of variable speed. Their computational results show that the heuristic is able to find
good solutions within reasonable computation time. It is, however, only tested on smaller instances.
Finally, somewhere between tramp shipping and liner shipping, Moon et al. (2014) investigate a
combined ship routing and fleet deployment problem. They propose a genetic algorithm with local
search to solve the problem, as well as a simple heuristic. Their computational results show that
the genetic algorithm with local search is most efficient.

We note that the first review paper (Ronen, 1983) contains only two references on tramp ship-
ping, while the second (Ronen, 1993) does not contain any. The third review paper (Christiansen
et al., 2004) lists five new tramp references, though some of these are for problems with a mix of
tramp and industrial shipping. Finally, the fourth review paper (Christiansen et al., 2013) lists
around 30 papers related to the TSRSP, though some of these are specifically for industrial ship-
ping. These numbers show a clear trend of increased research interest within the TSRSP, and we
note that we above listed eight references on the TSRSP from just within the last year.

Examples of TSRSPs for full shiploads can be found in Appelgren (1969, 1971) and Norstad
et al. (2013), and we note that the work presented in Chapters 7 and 9 is also for full shiploads.
The multiple cargo case can be found in e.g. Korsvik et al. (2010), Andersson et al. (2011b) and
Cóccola et al. (2014). Although the work presented in Chapter 8 does not directly consider the
TSRSP, it does however consider a subproblem for routing and scheduling tramp fleets carrying
multiple cargoes.

Although flexible cargo sizes relates to most operators transporting bulk products, and in
particular liquid products, this problem characteristic is neglected in most work on the TSRSP.
We do however find a few examples on flexible cargoes, e.g. Brønmo et al. (2007b), Brønmo et al.
(2010) and Korsvik and Fagerholt (2010). Also, we note that for full shipload cases, such as the
work considered in Chapters 7 and 9, flexible cargo sizes can be implicitly included since the
specific cargo quantity transported by each ship can be determined from ship capacity during
preprocessing along with the corresponding revenue.

Similarly, the added complexity of the multiple (non-mixable) products is rarely considered in
the literature. A few examples of work in this area can be found in Fagerholt and Christiansen
(2000a), Kobayashi and Kubo (2010), Oh and Karimi (2008) and Neo et al. (2006), although
the latter only considers one ship. The work presented in Chapter 8 also relates to the multiple
(non-mixable) products case.

Finally, we note that the inclusion of spot vessels only results in minor changes to the arc
flow formulation from Section 2.2, and as such does not complicate the solution procedure further.

13 2.5. Solution Approaches for the TSRSP

Therefore, the inclusion of this characteristic does not on its own constitute an interesting research
area. Rather, it is included in a wide variety of papers, depending on the real life application
considered in those papers. We note that spot vessels are included in the work presented in
Chapter 9, where their presence does, however, complicate the solution procedure.

2.5 Solution Approaches for the TSRSP

Before diving into the existing solution methods for the TSRSP, we briefly want to clarify some
terms used in relation to solution methods throughout this thesis. First, an exact solution approach
is one that guarantees an optimal solution to the considered problem. Many such approaches
require long running times; hence, there is an obvious trade off between solution quality and
computation time. Therefore, in many cases a solution method that sacrifices optimality for
the sake of shorter running time is often more appropriate. Such methods are called heuristics.
Heuristic solution approaches are often tailor made for the problem at hand, though some have
been generalised to so called metaheuristics, which constitute a generic heuristic framework for
solving a wide range of problems. Finally, we use one last class of heuristics called optimisation-
based methods, which contains methods that are based on exact solution approaches but where
some components have been made heuristic to save computation time.

2.5.1 Exact Solution Approaches for the TSRSP

Most work on the TSRSP contain a problem specific arc flow formulation or refer to similar work,
that contains such a formulation. As mentioned in Section 2.2, most of these formulations can
easily be linearised, and, in theory, solved by use of standard commercial optimisation software for
mixed integer linear programming. An example of this approach can be found in Norstad et al.
(2013). However, just as Norstad et al. (2013) conclude, for most real life sized instances, this
approach will be too time consuming.

A standard approach is therefore to reformulate the original model to a path flow formulation in
which columns constitute feasible ship routes or schedules. This approach allows the ship specific
constraints to be handled in subproblems, which generate the columns. These columns can either
be generated a priori or dynamically. We discuss both these approaches in detail as well as related
literature in Chapter 4, where we describe the methods and tools used in the work from the research
papers presented in Chapters 7-9.

2.5.2 Heuristic Solution Approaches for the TSRSP

Optimisation-based methods for the TSRSP mainly relates to heuristic modifications of the above
mentioned exact approach of column generation. As we discuss this method in details in Chapter 4,
a discussion on optimisation-based methods, as well as related literature, can also be found in that
chapter.

Regarding more general heuristics and metaheuristics, we can find numerous examples of such
work in the literature. Brønmo et al. (2007a) solve the multiple cargo TSRSP using a multi-start
local search heuristic. They compare their heuristic approach with an a priori column generation
approach, and computational results show that the heuristic returns optimal or near-optimal so-
lutions within reasonable time for real-life instances. Korsvik et al. (2010) solve the same problem
using a tabu search heuristic and compare their method to the multi-start local search heuristic
from (Brønmo et al., 2007a). Results from this comparison show that the tabu search heuristic
performs better than the multi-start local search heuristic, especially for large and tightly con-
strained problems. Also for the multiple cargo TSRSP, Malliappi et al. (2011) present a variable
neighborhood search heuristic, and compare their method to both the tabu search heuristic and
the multi-start local search method, though with their own implementation of these two methods.
Computational results from modified benchmark instances from land transportation show that the
variable neighborhood search on average performs best.

Although using a different model than the above references, Lin and Liu (2011) also solve the
multiple cargo TSRSP. They develop a genetic algorithm and show that it outperforms solving
their mathematical formulation directly by commercial software. Kang et al. (2012b) and Jung

Chapter 2. The Tramp Ship Routing and Scheduling Problem 14

et al. (2011) also develop a genetic algorithm, though this is for a quite special TSRSP involving
transportation of cars.

Korsvik and Fagerholt (2010) propose a tabu search algorithm for solving the TSRSP with
flexible cargo sizes. Their compuational results show that this method provides optimal or near-
optimal solutions within reasonable time for real-life instances. For project shipping with cargo
coupling constraints, a special real-life TSRSP, Fagerholt et al. (2011) also propose a tabu search
algorithm. This algorithm is a modified version of the one from Korsvik et al. (2010). Again,
computational results show that the tabu search heuristic yields optimal or near-optimal solutions
within reasonable time.

Yet another different approach is considered in Korsvik et al. (2011), where they allow split
loads. They present a large neighbourhood search heuristic, and their results show this heuristic is
able to provide good solutions to real-life instances within reasonable time. Finally, Norstad et al.
(2011) allow variable speed in the TSRSP and solve this problem using a multi-start local search
based on the work presented in Brønmo et al. (2007a).

Chapter 3

Incorporating Additional
Complexities

In this chapter we first review the current status of the TSRSP in Section 3.1, and afterwards
discuss a direction for current and future research within the area in Section 3.2. In Section 3.3
we frame the topics covered in this thesis in the context of this research direction. Finally, in
Section 3.4 we present some literature consistent with and relevant for this research direction.

3.1 Current Status of the TSRSP

As noted in Section 2.4, recent years have shown a dramatic increase in the amount of research
not just within maritime transportation in general but also specifically within tramp ship routing
and scheduling. Complemented by the simultaneous improvements in both software and hardware,
this has made the development of both heuristic and exact methods reach a level of efficiency that
renders most realistic sized instances of the TSRSP now solvable within reasonable time.

Even so, many tramp operators still use experienced planners to manually route and schedule
the fleet, and it is only natural to reflect on the reasons for this. Below we list some of the reasons
we believe are responsible for this remaining gap between research and implementation.

• Conservative industry: The shipping industry has a long and proud tradition of using
planners with practical experience from a background in shipping rather than a more aca-
demic background. Therefore, most planners are very skeptical towards optimisation-based
tools not to mention reluctant to facilitate development of systems that could eventually
make the company less dependent on them. Fagerholt (2004) presents some experience from
the development and implementation of a decision support system for vessel fleet scheduling,
and also describes the struggle to convince the planners of the value of such a system. At
the same time, the conservative nature of the industry has made many shipping companies
unwilling to share data for research projects, and without real life data, the gap between
research and implementation naturally remains.

• Industry under pressure: Previously the research and technology were not at an ade-
quate level to facilitate implementation of optimisation-based tools, and now that they are
adequate, the industry is under such pressure that it is hard to find resources for anything
that is not immediately income generating. Certainly, it can be hard to justify the allocation
of resources to a research project that might in the future turn out to be valuable, when
the company is at the same time struggling to create revenues matching just their minimum
operating costs.

• Inability to plan ahead: Uncertainty is known to play a big part in maritime optimisation
where planners face a constantly changing environment with large daily variations in demand
and many unforseen events caused, among other things, by changing weather conditions. This
uncertainty coupled with the long voyages spanning several days and sometimes even weeks,

15

Chapter 3. Incorporating Additional Complexities 16

makes it hard to plan far ahead. The financial impact, not to mention loss of goodwill, from
not adhering to agreed cargo transportation is simply too big to allow planning far ahead.
For some operators the uncertainty is so high that they cannot plan even a single voyage
ahead. Instead they simply wait for a ship to become idle and then assign it the currently
best transportation request. This is for instance the case in transportation of refined oil
products where the discharge port and date can be unknown right up until actual discharge.
A loaded ship simply waits at sea until oil prices in ports reach a satisfactory level. This can
make the combinatorial puzzle, of finding the best match of ships to cargoes, seem simple
and make it even harder for conservative planners to see the potential in optimisation-based
tools.

• Dynamic nature of problem: The fact, that the basic TSRSP can be solved, is naturally a
requirement for the development of a planning tool in this area. However, the basic TSRSP is
a static and simplified version of reality. As already mentioned, there is great uncertainty in
maritime transportation; hence, it can be necessary to continuously solve a modified version
of the problem. This means that the fleet information must continuously be updated as well
as cargo information. Note that even things such as the changing tidal conditions can affect
the solution to the problem and create cause for reoptimisation. Similarly, the planning tool
must somehow be linked to information from the spot market and continuously update these
data. Overall, this means that the optimisation component itself will in many cases be just
a very small part of the full planning tool and hence, implementation will lag behind that of
research within methods for solving the TSRSP.

• Modelling issues: Most mathematical models are simplified versions of reality, but in
shipping this is even more so. Aside from operational considerations completely ignored in
the modelling process, those considerations that have been included in the models have been
greatly simplified. In shipping there are a lot of constraints that are simply so difficult, if not
impossible, to accurately model that simplification is the only option. To give a few examples
we note that time windows are in reality often soft since extensions can be negotiated at a
certain cost. However, this is not always possible; hence, modelling time windows as soft is
not accurate either. Similarly, the constraints describing ship-port compatibility is affected
by both the current load of the ship and the tidal conditions, and these constraints can even
in some cases be of a rather subjective nature since a risk-willing captain can agree to sail a
ship into a shallow port even if the draft of the ship should not allow this.

• Simplified problem: Adding to the above, the basic TSRSP is a simplified version of reality.
In most cases, the problem must be extended to incorporate operator specific complexities
in order for the solutions to be applicable in real life. Conversely, planners must find ways
to modify solutions from the simplified problem in order to take into account the additional
practical aspects and complexities ignored in the simplified problem.

3.2 Current and Future Research Direction for the TSRSP

The first two items, and to some extent also the third, on the above list do not as such suggest
further research within tramp ship routing and scheduling, but rather that researchers take on a
more consultant like role in order to better sell their ideas to the industry. At the same time it
is probably a matter of giving the shipping industry a little more time to get to a point where
they are both interested in and able to accept optimisation-based tools. In fact, the shipping
industry has started to change in this direction by gradually employing more planners with more
academic background and less practical experience. The third item on the list also require changes
from within the industry itself. Operators will be able to plan further ahead if they are given more
flexibility to cope with the high uncertainty, e.g. send a different ship than originally agreed, arrive
later or earlier than planned etc.

The fourth and fifth item on the list focus mainly on the implementation side. They advocate
the development of decision support tools that allow much interaction between the user and the
planning tool to facilitate the construction of several good solutions as opposed to just one solution
that is, at least on paper, optimal. The development of decision support tools is certainly interesting

17 3.3. Thesis Focus

and relevant work. However, the aim of this PhD project is the development of new mathematical
models and solution methods for tramp ship routing and scheduling. Therefore, the implementation
side is left as promising work for others.

The last item on the above list does however advocate further research within tramp ship
routing and scheduling in the direction of development of new mathematical models and solution
methods. However, this research should focus on extensions of the basic problem described in
Chapter 2. The ability to solve such extended TSRSPs will hopefully facilitate more real life
implementations since the corresponding extended models will fit the reality of a broader range of
tramp operators. Furthermore, even operators previously able to benefit from solution methods
for the basic TSRSP can benefit from these extensions as they can create new opportunities for
profit maximisation as well as increased customer satisfaction. To give an example, we note that
the basic TSRSP assumes that each ship sails at fixed speed while determination of the actual
speed along each voyage leg is left for operational planning. Recent years has, however, shown
quite a bit of research where the variable speed aspect is incorporated into the basic TSRSP and,
not surprisingly, results show that operators can increase profits from such an approach, see e.g.
Norstad et al. (2011). Below is a quote from Fagerholt and Ronen (2013) supporting the general
idea of further research within extensions of the basic TSRSP:

”This demonstrates that it is much more important to model and solve the right problem,
considering the opportunities that often arise in practical problems, than to strive for optimal

solutions to simplified versions of the problem.”

In general, the development of research within tramp ship routing and scheduling over recent years
is also consistent with the notion of extending the basic TSRSP to include additional complexities.
In Section 3.4 we present an overview of this literature covering a broad range of extensions of the
basic TSRSP.

3.3 Thesis Focus

Summing up, some tramp operators rely on further research on extensions of the basic TSRSP
to be able to benefit from sophisticated planning tools while others will simply experience further
benefits from such extensions. Furthermore, solution methods and technology are now advanced
enough to facilitate the incorporation of additional complexities, and the aim of this thesis is
therefore to consider just such extensions. More specifically, in Part II, we present three distinct
research projects covering each their extension. Chapter 5 gives a detailed description of each of
these; hence, below we just present a quick overview of them.

• Incorporating bunker planning: The first project explores the opportunities for and
effects of integrating the additional complexity of bunker planning, which is normally con-
sidered an operational planning problem.

• Incorporating tank allocation: The second project aims at developing a solution method
to find feasible tank allocations very quickly in order to allow the method to be used as a
subproblem routine in the TSRSP extended to include the additional complexity of tank
allocations. Tank allocation is, just as bunker planning, normally considered an operational
planning problem.

• Incorporating voyage separations requirements: The third project aims at developing
an efficient solution method for the TSRSP with the practical aspect of voyage separation
requirements incorporated to improve customer service. The additional complexity of such
separation requirements is not dealt with in the basic TSRSP; accordingly, planners adhering
to optimisation tools must either ignore these requirements at the risk of poor customer
service or they must manually modify the solutions from the basic TSRSP.

Chapter 3. Incorporating Additional Complexities 18

3.4 Literature for TSRSP extensions

Naturally, there will be quite different perceptions of what constitutes the ‘basic TSRSP’ and what
qualifies as ‘additional complexities’. Here, we let the existing literature on tramp ship routing
and scheduling guide our definition of the basic problem. We do this by first noting that, although
the multiple cargo case is much more complex than the full shipload case, plenty of literature
deal with multiple cargoes. We already mentioned several examples in Section 2.4, and adding to
this we note that, among many others, Norstad et al. (2011) also manage to incorporate further
complexities in the multiple cargo problem as they in this paper allow variable speed. Therefore,
although the multiple cargo case does add complexity compared to the full shipload case, in our
definition of the ‘basic TSRSP’ we allow for both full shiploads and multiple cargoes. However, as
we noted in Section 2.4, flexible cargo sizes are neglected in most work on the TSRSP. This stands
in contrast to the fact that flexible cargo sizes are relevant for most tramp operators transporting
bulk products, and in particular liquid products. Therefore, we consider this problem characteristic
as an ‘additional complexity’. Similarly, we noted in Section 2.4 that the multiple (non-mixable)
product case is rarely considered in the existing literature on the TSRSP; hence, we do not consider
this problem characteristic as part of the basic TSRSP. Finally, we noted in Section 2.4 that the
inclusion of spot vessels does not as such complicate the solution procedure, and that this problem
characteristic is included in a wide variety of papers on the TSRSP. Accordingly, in our definition
of the basic TSRSP we allow the use of spot vessels, though they are certainly not required to be
used.

Any complicating problem characteristic not already mentioned or implicitly excluded by the
mathematical formulation of the problem in Section 2.2 (e.g. variable speed), can, in our opinion, be
considered an ‘additional complexity’. Below we list some examples of such additional complexities
as well as literature on these examples.

We have already mentioned both flexible cargo sizes and multiple (non-mixable) products as
additional complexities and provided examples of work on these topics in Section 2.4. Again, we
note that due to the full shipload assumption in Chapters 7 and 9, the flexible cargo size assumption
can be implicitly included during preprocessing. The work in Chapter 8 concerns a subproblem in
the full solution procedure for a TSRSP with multiple (non-mixable) products; hence the inclusion
of flexible cargo sizes will depend on the full solution procedure.

An extension of the basic TSRSP, which has received a lot of attention in recent years, is the
incorporation of variable speed. This recent interest in speed optimisation has been motivated by
both steep bunker fuel price increases as well as an increased focus on the environmental impact
of maritime transportation (and transportation in general). Examples of routing and scheduling
combined with speed optimisation can be found in Norstad et al. (2011) and Gatica and Miranda
(2011).

Another topic that has recently received increased attention due to the increase in fuel prices, is
the aspect of bunkering, i.e. refueling. The main attention on this topic has been directed towards
liner shipping, see e.g. Plum et al. (2014, forthcoming) who present an overview of formulations,
solution methods as well as results on this topic. In the majority of work on bunkering, the problem
is solved for a fixed route, and this assumption is certainly obvious within liner shipping. However,
since tramp ships do not sail according to fixed route networks, we have explored the integration
of bunker planning in the TSRSP in Chapter 7.

Recent years have also shown an increase in literature involving several parts of the supply
chain. The majority of this work is related to industrial shipping, where the supply chain aspect
fits naturally, since the industrial ship operator is also the cargo owner; hence, he/she is also
responsible for any inventory management at the ends of the maritime transportation legs. Such
situations leads to a specific class of problems called maritime inventory routing problems. We
refer the reader to Christiansen et al. (2013) for a thorough introduction as well as literature
review on such problems. The inventory aspect is less obvious within tramp shipping. Even so,
we note that St̊alhane et al. (2014), as already mentioned, combine tramp shipping with a vendor
managed inventory service. In this work the tramp operator has both mandatory cargoes that
must be transported, optional cargoes that can be transported, as well as inventory pairs that may
be serviced a number of times to keep inventories within their limits. Also mentioned previously,
Norstad et al. (2013) add voyage separation requirements to the routing and scheduling problem

19 3.4. Literature for TSRSP extensions

in order to reduce inventory costs for the charterer, and we consider basically the same problem
in Chapter 9.

Although we can find other examples of additional complexities added to the basic TSRSP, we
end this section by one last example, namely the split load case, where each cargo can be split
among several ships. We have already mentioned that Korsvik et al. (2011) and St̊alhane et al.
(2012) consider this problem, and note that split loads are also considered in Andersson et al.
(2011a).

Chapter 3. Incorporating Additional Complexities 20

Chapter 4

Methods and Tools

In Section 2.5 we discussed solution methods found in the literature, and in this chapter we discuss
some common methods and tools used to solve the TSRSP extensions explored in the three research
papers in Part II of this thesis. We also relate these methods and tools to literature within the
area.

4.1 Column Generation

As can be seen from both Section 2.4 and 2.5, the methods used to solve the TSRSP and its
extensions are quite diverse, ranging from simple heuristics to exact methods. Naturally, the choice
of method must depend on the complexity of the problem at hand as well as the requirements for
solution quality and computation time. Even though literature contains such a broad range of
both problems and methods, one method seems to receive much more attention than any of the
others: Column generation. The popularity of this method is in line with research within many
other fields. We note that both crew scheduling and vehicle routing problems are very often solved
using this approach, and that the method has achieved great success within these areas and many
others, see e.g. Butchers et al. (2001) and Toth and Vigo (2002). Furthermore, Desaulniers et al.
(2005) devoted two whole chapters to column generation in maritime problems. Looking through
the literature, it seems that this approach has become more popular within recent years where
focus has been on TSRSP extensions. This is on one hand a little surprising since the added
complexity contained in these extensions should indicate the use of heuristic methods to achieve
reasonable running times. On the other hand, the increase in software and hardware has allowed
more focus on exact methods, and one of the main advantages of the column generation approach
is that it allows complicating constraints to be handled in ship specific subproblems. Furthermore,
it should be noted that even though this is an exact method, it can easily be modified in a heuristic
direction as we discuss in Section 4.2. No matter the heuristic or exact nature of the method, the
frequent use of the column generation approach for a broad range of complex instances, not just
within shipping but also within many other research areas, demonstrates the great advantage and
flexibility of this method that allows easy incorporation of complicating constraints. In Part II of
this thesis, we present two scientific papers which both utilise column generation, as well as a third
one which considers a problem that can be used as a subproblem in a column generation routine.

4.1.1 Master Problem

Since most of the TSRSP constraints relate to a specific ship, it seems natural to decompose
the problem and use column generation. Whether we use a priori column generation or dy-
namic/delayed column generation, the master problem of such a decomposition is the same. It
is a path formulation containing only the constraints which couple the ships together and ensure
that each ship follows exactly one path. In the basic TSRSP, the coupling constraints correspond
to constraints (2.2) and (2.3), though these must be expressed by new path flow variables while a
similar reformulation of the original objective function (2.1) must be performed.

21

Chapter 4. Methods and Tools 22

To arrive at this new path formulation for the basic TSRSP discussed in Chapter 2 as well as
many of its extensions, we let Rv denote the set of all feasible schedules for ship v. We denote the
profit of a schedule by pvr for r ∈ Rv and define a binary schedule variable λvr that is equal to 1 if
ship v sails schedule r, and 0 otherwise. The profit pvr is calculated based on information from the
underlying schedule, which holds all necessary information, i.e. the ship it is constructed for, the
cargoes carried, and the timing of port calls during the schedule. Finally, we let the parameter avir
be equal to 1 if ship v carries cargo i in schedule r, and 0 otherwise.

The master problem is now given by the following path flow reformulation of the original arc
flow model:

max
∑
v∈V

∑
r∈Rv

pvrλ
v
r (4.1)

s.t.∑
v∈V

∑
r∈Rv

avirλ
v
r = 1, ∀i ∈ NC , (4.2)∑

v∈V

∑
r∈Rv

avirλ
v
r ≤ 1, ∀i ∈ NO, (4.3)∑

r∈Rv

λvr = 1, ∀v ∈ V, (4.4)

λvr ∈ {0, 1}, ∀v ∈ V, r ∈ Rv. (4.5)

The objective function (4.1) maximises profit from chosen schedules. Constraints (4.2) and (4.3) are
the path flow reformulations of constraints (2.2) and (2.3), respectively. The convexity constraints
(4.4) and binary restrictions on the schedule variables in (4.5) ensure that each ship is assigned
exactly one schedule. If slack variables are added to constraints (4.3), we recognise the master
problem as a Set Partitioning Problem in which the columns corresponds to feasible ship schedules.

Allowing Convex Schedule Combinations

For some applications it can be acceptable to use convex combinations of different schedules for
the same ship as an actual schedule for this ship, as long as the schedules included in the convex
combination correspond to the same geographical route. This means that the binary restrictions
in (4.5) can be replaced by restrictions of the form

{r : λvr > 0} correspond to equal geographical routes, ∀v ∈ V. (4.6)

This approach is used in e.g. Christiansen and Nygreen (1998) for a ship routing problem with
inventory constraints. We also allow such convex schedule combinations in the paper presented
in Chapter 9. However, as we conclude below when discussing the integer property of the master
problem, unless further complexities are added to the master problem, this relaxation of the binary
restrictions has no effect. With the solution method used in Chapter 9, this is exactly the case.
Furthermore, there can be many situations where convex schedule combinations do not qualify as
actual schedules, primarily due to cost calculations. One example is when the TSRSP is extended
to allow variable speed as in Norstad et al. (2011). Since the fuel consumption function is a
convex function of speed, once we include variable speed we can no longer allow convex schedule
combinations, since the convex combination of schedule costs would overestimate the actual cost of
the schedule. Therefore, we must select exactly one schedule for each ship. Another example is in
the work presented in Chaper 7 where we extend the TSRSP to include bunker planning. In this
case the schedules also contain information on bunker stops, and each of these stops corresponds
to a predefined price for a specific bunker option at a given time. Assume now that two schedules
for the same ship each contain a stop at a bunker option, B, though at different times denoted tB1
and tB2 with different bunker prices, PB

1 and PB
2 , respectively. The convex combination of these

two schedules will have an arrival time somewhere in the interval (tB1 , t
B
2), assuming that tB1 ≤ tB2 .

Due to price fluctuations, there is no guarantee that the bunker price in this interval corresponds
to the convex combination of the bunker prices PB

1 and PB
2 . Therefore, in this situation as well,

we must select one single schedule for each ship and so constraints (4.6) cannot be used.

23 4.1. Column Generation

Master Problem Integer Property

Before going into details with the actual column generation procedure, we want to briefly discuss the
underlying structure of the master problem and the implied integer properties from this structure.
To ease notation, we let V denote the number of vessels, |V|, and by Av we denote the |N | × |Rv|
submatrix containing the schedules for ship v ∈ V, i.e. the avir entries. If we insert slack variables,
s1, . . . , s|NO|, in constraints (4.3), then the constraint matrix looks as in Figure 4.1, where zero
entries are ignored. The convexity constraints (4.4) are generalised upper bound constraints, and

Figure 4.1: The master problem constraint matrix

because of these, the submatrix for each ship is perfect. This means that fractional solutions can
never occur solely within one of the individual ship submatrices. Fractional solutions can, however,
appear across submatrices for different ships. Thereby, the LP solution can only be fractional if
two or more ships are competing for the same cargo. We refer the reader to Padberg (1973) and
Conforti et al. (2001) for a discussion on perfect matrices and their properties.

Note that for problems with this integer property, once we have eliminated fractionalities across
submatrices for different ships, the solution will never contain more than one schedule for each ship;
accordingly, there is no point in checking for “equal geographical routes” as in constraints (4.6).

4.1.2 A Priori Column Generation

For the TSRSP, and most of its extensions, there is no need to include all feasible schedules
for each ship in the master problem. Instead we can limit the column set to contain the profit
maximising schedule for each combination of ship and cargo set. Due to the uncertainty involved
in maritime transport as well as the long voyages, many operators are prohibited from planning
more than a few voyages ahead for each ship. This is especially true for the full shipload case,
and for such operators, depending on the constraints for ship-cargo compatibility, the number of
feasible combinations of ships to cargo sets can be small enough to allow a priori full enumeration
of all these combinations, and hence of all the columns in the master problem. Examples of tramp
related work using the a priori column generation approach can be found in Kim and Lee (1997),
Brønmo et al. (2007b), and Andersson et al. (2011b).

Generating the Columns

For each feasible cargo set for each ship, we therefore need to determine the profit maximising
schedule, i.e the order and timing of port visits, that yields the best profit for this cargo set.
Depending on the TSRSP considered, it can be necessary to determine other schedule details
simultaneously, e.g. the load quantities in case of flexible cargo sizes. Naturally, only feasible
schedules can be considered; hence, the timing of port visits must adhere to the cargo time windows,
ship capacity must be respected and so on. Generally speaking, all constraints from the original

Chapter 4. Methods and Tools 24

arc flow formulation that corresponds to the considered ship, must be adhered to in this column
generation process.

The column generation in the a priori approach therefore consists of repeatedly determining
the optimal route and schedule for a given ship and a given cargo set. This can be done by
simply enumerating all feasible routes for the given cargo set or by dynamic programming. The
enumeration approach is used in e.g. Brønmo et al. (2007b). The dynamic programming approach,
on the other hand, is used in e.g. Fagerholt and Christiansen (2000b).

4.1.3 Dynamic Column Generation

Some instances of the TSRSP and its extensions are too large to allow full enumeration of all
combinations of ships to cargo sets. There can also be situations where full enumeration is actually
possible, but where additional coupling constraints in the master problem means that the profit
maximising schedule for one ship and cargo set is not necessarily profit maximising when taking
the entire fleet into account. This is the case in the scientific paper presented in Chapter 9. There,
we have temporal dependencies between the schedules for different ships, and these dependencies
require us to enumerate all feasible schedules rather than just all profit maximising schedules.
Therefore, for several reasons, there can be situations where we are prohibited from using the a
priori column generation approach. In such situations, we use dynamic column generation, and
this is the approach used in the scientific papers of Chapters 7 and 9. We refer the reader to
Desaulniers et al. (2005) for a detailed description of this method.

We also note that both Appelgren (1969) and Brønmo et al. (2010) have found dynamic column
generation more efficient than a priori generation for situations where a priori generation was
actually possible. They find the dynamic approach both faster and more flexible as it allows them
to deal with larger and more loosely constrained instances than the a priori approach.

In the dynamic column generation approach, the master problem initially only contains a small
subset, R′v, of the feasible schedules for each ship v ∈ V, and new columns that have the potential
to improve the current master problem solution are then generated iteratively. The new columns
are generated in subproblems, or pricing problems, derived from a Dantzig-Wolfe decomposition,
and there are as many independent subproblems as there are ships. Each subproblem corresponds
to a specific ship and contains all constraints related to this ship from the original formulation. In
each iteration we solve the restricted master problem (RMP), which is the linear relaxation of the
original master problem though with only its current restricted column set. The dual variables
from this solution are then used to guide the generation of promising columns in the subproblems,
which are added to the master problem, whereafter a new iteration begins. This process continues
until no further promising columns can be generated. At that point, the current solution to the
RMP is optimal for the linear relaxation of the original master problem with all feasible schedules
in the column set.

Generating the Columns

The purpose of the subproblems is to generate ship specific schedules that can potentially improve
the current solution to the RMP. This in turn corresponds to finding feasible schedules with positive
reduced costs in the current RMP solution. Since only feasible schedules should be generated, the
subproblem must contain all relevant constraints for the corresponding ship, e.g. time windows
and capacity constraints.

To illustrate the structure of these subproblems, we let σi be the dual variables for constraints
(4.2) and (4.3). The variables corresponding to (4.2) are free of sign while the variables correspond-
ing to (4.3) must be nonnegative. Furthermore, we let ωv be the dual for constraint (4.4) which is
also free of sign. Finally, we define πi = σi for all i ∈ N and πo(v) = ωv corresponding to the origin
node. If we restrict our attention to the simple TSRSP formulation presented in Section 2.2, the

25 4.1. Column Generation

corresponding subproblem for ship v is given by:

max
∑

(i,j)∈Av

(
P v
ij − πi

)
xvij (4.7)

s.t.

(2.4)− (2.9). (4.8)

The objective function (4.7) maximises the reduced cost with respect to the current dual variables,
and the constraints (2.4)-(2.9) ensure that only feasible schedules are considered. If the optimal
schedule has a positive reduced cost, it has the potential to improve the current RMP; hence, it
will be represented by a new column in the RMP.

Each subproblem can be modelled as an elementary shortest path problem with time win-
dows (ESPPTW). The ESPPTW has been proven NP-hard in the strong sense by Dror (1994);
hence, no pseudo-polynomial algorithms are likely to exist for this problem. When more complex
TSRSPs are considered, the subproblems are most often more general elementary shortest path
problems with resource constraints (ESPPRC) which are also NP-hard in the strong sense since
they generalise the ESPPTW. This is for instance the situation for the multiple cargo case, where,
in addition to time, ship capacity is also a constraining resource. The ESPPRC, and thereby also
the ESPPTW, entails finding an elementary shortest path between two nodes while satisfying the
resource constraints, e.g. time windows and capacity constraints.

In maritime transportation, and in particular within deep sea shipping, voyages travel times
are often so long that few, if any, time feasible cycles can be expected in the subproblem networks.
Therefore, it is quite common to relax the subproblem to allow non elementary paths, since the
regular shortest path problem with resource constraints (SPPRC) can be solved in pseudo poly-
nomial time (see e.g. Desrochers and Soumis (1988); Irnich and Desaulniers (2005)). We use this
relaxation in the work presented in Chapters 7 and 9. Note though that if time-feasible cycles do
in fact exist, we can generate schedules where the same cargo is transported more than once. In
such cases, the solution method must be modified to handle these cycles.

The SPPRC is typically solved by dynamic programming algorithms on the underlying ship
specific networks, and we have used this approach in the scientific papers of Chapters 7 and 9.
We also see this approach used in e.g. Brønmo et al. (2010) and refer the reader to Desaulniers
et al. (1998), Irnich and Desaulniers (2005) and Irnich (2008) for a thorough introduction to the
SPPRC, the related dynamic programming algorithms, and several associated concepts.

4.1.4 Full Column Generation Scheme

When a priori column generation has been applied, the number of columns in the master problem is
often sufficiently small to allow us to solve the master problem by commercial optimisation software
for mixed integer programs and thereby obtain an optimal integral solution. This approach is used
in e.g. Fagerholt and Christiansen (2000b) and Fagerholt (2001). When the column count becomes
too large for this approach, we must instead solve the linear relaxation of the master problem, and
then apply a Branch-and-Bound procedure if the optimal solution if fractional.

When columns have been generated dynamically, once the column generation phase is com-
pleted, we have an optimal solution to the linear relaxation of the original master problem in (4.1)-
(4.5). If this solution is fractional, the column generation procedure must be embedded in a
Branch-and-Bound framework where new columns are generated in each node of the search tree.
In this case, the entire procedure is called a Branch-and-Price procedure, since new columns are
priced out in each node of the tree.

The strong integer property of the constraint matrix means that the linear relaxation of the
master problem will provide very tight upper bounds. When solving the master problem in a
Branch-and-Bound framework, we can therefore expect to reach integral solutions after only a
few iterations of branching. We verify this property in the scientific paper in Chapter 7, where
we incorporate bunker planning in the TSRSP. There, we experience relatively few fractional
solutions, and for those fractional solutions we do encounter, the IP gap is very small. Because
of these findings, in that paper we do not embed the column generation scheme in a Branch-and-
Bound procedure, but simply use commercial optimisation software to solve the integer version

Chapter 4. Methods and Tools 26

of the final RMP after column generation has been completed. Though this naturally sacrifices
optimality, the small IP gaps tells us that this sacrifice is acceptable.

On the other hand, in the scientific paper presented in Chapter 9, where temporal dependencies
are added to the master problem, we do embed the column generation scheme in a Branch-and-
Bound framework. Due to a relaxation of the temporal dependencies, the upper bound obtained
at the root node relates both to the relaxation of binary requirements and to the relaxation of
temporal dependencies; hence, the strong integer property of the constraint matrix can no longer
guarantee a tight upper bound. Likewise, the added relaxation of the temporal dependencies means
that we can no longer count on obtaining a feasible solution after just a few iterations of branching.
In fact, we experience extensive branching and must use two different branching schemes to reach
feasible solutions: time window branching complemented by constraint branching.

Time window branching was originally presented by Gélinas et al. (1995) as a branching scheme
to restore integrality. In Chapter 9, we mainly apply time window branching to deal with relaxed
voyage separation requirements and therefore extend the original method to handle these require-
ments. The basic concept in time window branching is to split a given time window into two
smaller time windows that each correspond to a new problem, i.e. to a new branch in the branch-
and-bound search tree. The key to success with this branching scheme is to select a good time
window to split on, and furthermore to select a good split time for this specific time window. This
split time must be chosen in such a way that the current solution becomes infeasible in each of
the two new problems, i.e. in a way that makes at least one currently chosen schedule infeasible
in each new branch. We note that time window branching is also used in Brønmo et al. (2010).

We illustrate this process in Figure 4.2 for the time window [ai, bi] corresponding to a cargo
i which is currently transported by two schedules, or twice in a cycle by the same schedule. The
start times of these two visits are denoted T 1

i and T 2
i , respectively. The grey boxes in Figure 4.2

correspond to the so called feasibility interval of each of these two visits. These intervals, [T 1
i , u1]

and [T 2
i , u2], contain all the start times that will allow the corresponding schedule to still remain

feasible. This will most often correspond to redistributing waiting time; hence, we have depicted
these feasibility intervals as extensions of the current visit times. Since these two intervals are
disjoint, we can choose a split time within (u1, T

2
i], say ts, and create one branch where the time

window for cargo i is [ai, ts − ε] and the second visit is infeasible, and one branch where the time
window is [ts, bi] where the first visit is infeasible. Here, ε > 0 is a very small tolerance.

Figure 4.2: Time window branching due to fractionality

Note that split times within one of the feasibility intervals would also render one visit infeasible
in each branch. However, during the next iteration of schedule generation, the visit, for which we
selected a split time within its feasibility interval, could be regenerated though only a little later
in time. After branching, all previously generated schedules violating these new time windows,
are removed from the master problem in each new branch and the corresponding subproblems are
updated to reflect the new time windows.

Constraint branching was introduced by Ryan and Foster (1981), and is an efficient branching
scheme developed for solving set partitioning and set packing problems. This branching approach
exploits the underlying structure of the constraint matrix by noting that within any optimal frac-
tional solution, there must be at least one pair of constraints that are covered at fractional values.
The basic idea is then to enforce that this constraint pair is either covered by different variables,

27 4.2. Heuristic Solution Approaches

or covered by the same variable. To give a more formal definition, we denote the two constraints
in the fractionally covered constraint pair by c1 and c2, and denote the subset of variables that
cover both constraints c1 and c2 in the constraint matrix by J(c1, c2). Reusing our notation from
above, we must have

0 <
∑

j∈J(c1,c2)

λj < 1.

In the 0-branch, where we enforce the two constraints to be covered by different variables, we then
have ∑

j∈J(c1,c2)

λj = 0.

On the other hand, in the 1-branch, where we force the two constraints to be covered by the same
variable, we have ∑

j∈J(c1,c2)

λj = 1.

In the 0-branch, all variables in J(c1, c2) are removed from the problem, either explicitly or implic-
itly by simply setting their upper bounds equal to zero. On the other hand, in the 1-branch, all
variables covering either constraint c1 or c2 but not both, i.e. not in J(c1, c2), are removed from
the problem.

4.2 Heuristic Solution Approaches

Column generation, as described above, is an exact method. However, as already mentioned, it
can easily be modified in a heuristic direction to allow reasonable running times for more difficult
problems. This, naturally, leads back to the discussion in Section 3.2 on whether to optimally
solve simplified problems or allow the incorporation of additional complexities at the sacrifice of
optimality.

In Chapter 7 we integrate bunker planning in the TSRSP, and in this work we follow a heuristic
approach by discretising the otherwise continuous bunker purchase variables. It can easily be
argued, that at the tactical level, where we are planning months ahead and using simple bunker
price forecasts, there is no need to determine the exact amount of bunker to purchase with decimal
accuracy. Rather, the main objective is to use the price forecasts to guide the selection of cargoes
when we plan routes and schedules, and perhaps to simultaneously negotiate bunker purchases
along these routes. The above justifies the discretisation, and we note that this approach of
discretising complicating variables is also used in Brønmo et al. (2010), where the continuous
cargo quantities are discretised.

The above references are for applications with dynamic column generation, and it is of course
also possible to heuristically modify the a priori approach. An example of this can be found in
Fagerholt (2001), where the possible times for start of service are discretised, and in Fagerholt and
Christiansen (2000a), where the number of a priori generated schedules is reduced by introducing
heuristic rules regarding the capacity utilisation of the ships.

In Chapter 8 we explore the tank allocation aspect, and in this work we take an entirely different
approach. Whether the overall setup is to use a priori or dynamic column generation or even some
sort of local search based method, the generation of new schedules should incorporate the tank
allocation aspect to ensure feasibility with respect to stowage. However, at the tactical level,
the costs related to tank allocations are insignificant compared to the costs and revenues from
carrying cargoes. Therefore, we ignore the cost aspect of the tank allocations and simply focus on
feasibility of the allocations. By ignoring the cost aspect, the entire solution method is already
of a heuristic nature, though the sacrifice must be considered insignificant. However, we proceed
in this direction by splitting the schedule generation phase into two parts: One that ignores the
tank allocation aspect and simply generates “standard” schedules, and one that verifies feasibility
with respect to stowage for these new schedules. To verify feasibility with respect to stowage,
we develop a randomised construction heuristic, modify an earlier optimality-based method, and
finally combine these two methods into a hybrid method. This approach can further sacrifice
optimality of the entire solution method in two ways:

Chapter 4. Methods and Tools 28

1. If the hybrid method is unable to find a feasible allocation for a schedule which does, however,
have a feasible allocation, this schedule is implicitly ignored, even though it could actually
be part of the optimal solution.

2. Depending on the procedure for generating columns, splitting the schedule generation into two
separate phases can become problematic. Assume, for instance, that columns are generated
dynamically using a dynamic programming algorithm where paths are compared iteratively
and some are discarded along the way due to domination from other paths. In such a case
we can end up with non-dominated paths for which no feasible tank allocation exists, but
without having any way of retrieving the otherwise feasible paths that where discarded along
the way. This aspect is factored into the solution method in Fagerholt and Christiansen
(2000b), where they consider flexible cargo holds. However, this method on the other hand
does not incorporate all the operational constraints considered in the work of Chapter 8 such
as, for instance, ship stability and regulations for hazard materials.

Chapter 5

Thesis Contribution

The contribution of this thesis is twofold: First, Chapters 2 and 3 contain a thorough introduction
to the general area of tramp ship routing and scheduling. They provide the reader with a general
understanding of the problem, as well as modeling approaches for it. These chapters also contain
review of literature and solution methods within tramp ship routing and scheduling, and, com-
plemented by Chapter 4, provide the reader with a general knowledge on solution approaches for
tramp ship routing and scheduling problems. In these chapters we also provide an analysis of both
the current status and the future direction of research within the area. Thereby, this part of the
thesis can be used to provide researchers, new to the field, with a comprehensive understanding of
this research topic.

In Chapter 3 we argue that the current and future direction of research should be within ex-
tending the basic TSRSP to incorporate additional complexities. Such extensions will enable more
tramp operators to benefit from the solution methods, while simultaneously creating new opportu-
nities for operators already benefitting from existing methods. The second, and main contribution
of this thesis, is therefore the exploration of three distinct extensions of the basic TSRSP. The
detailed research on these three extensions is provided in three separate scientific papers in Part II
of this thesis. We note that one paper considers a novel problem, while the two other papers con-
sider already researched problems, though one paper approaches the known problem from a new
perspective. Furthermore, one paper uses an optimality-based solution method, one paper uses
both heuristic and optimality-based methods, while one paper explores an exact method. Thereby,
these three papers represent a diverse collection of problems and solution methods within tramp
ship routing and scheduling. Below we give a short description of the work contained in each of
these three papers.

5.1 Incorporating Bunker Planning

Chapter 7, Tramp Ship Routing and Scheduling With Integrated Bunker Optimization, contains
work on the incorporation of bunker planning into the basic TSRSP. This problem has not previ-
ously been considered in the literature.

Most operators manually plan bunkering for their ships. However, considering the significant
price variations across bunker ports, and the fact that fuel costs constitute a huge part of daily
operating costs, it seems obvious to use optimisation-based tools to plan bunkering. Furthermore,
the continuous operation of ships means that they must refuel during their planned schedules;
hence, the bunker planning will be affected by the routing and scheduling decisions. Noting that
current practice is to separate the two problems by first constructing fleet schedules and then
plan bunkering for these fixed schedules, motivates the incorporation of an optimisation-based
bunker planning approach into the routing and scheduling phase. The aim of this work is therefore
twofold: 1. Provide planners with an optimisation-based planning approach for bunkering, and 2.
Incorporate this bunker planning approach into the routing and scheduling phase.

We provide a description as well as a novel mixed integer programming formulation for this
new extension of the TSRSP. This model extends standard tramp formulations by incorporating
variations in bunker prices, port costs incurred when bunkering, as well as time consumption of

29

Chapter 5. Thesis Contribution 30

bunkering. For each ship we therefore introduce a number of distinct bunkering options, each
corresponding to a specific geographical location with a predefined port cost, bunker price, and
time window in which this price is assumed to remain valid. This work has been conducted in
collaboration with the Danish shipping company Maersk Tankers A/S and, based on their situation,
focuses on full shiploads. This assumption also allows a simple extension of the basic TSRSP to
include load dependency on cost, bunker consumption, as well as speed.

We devise a solution method, which simultaneously determines ship routes and schedules,
and decides when, where and how much each ship should bunker during its schedule, depending
on forward curves for bunker prices. The method relies on column generation with dynamic
programming to solve the subproblems. Depending on bunker inventory on arrival at a port, the
dynamic programming algorithm dynamically calculates the bunker purchase quantities as partial
schedules are extended. The subproblems are solved heuristically by discretising the continuous
bunker purchase variables. Results from tuning the devised algorithm indicate that increased
refinement of the discretisation resulted in only small increases in the objective function value.
Therefore, it seems that solving the continuous version of the problem can at best yield very small
improvements in the solutions.

In order to both tune and test the devised algorithm thoroughly, we have also developed instance
generators that independently generate cargoes and bunker prices. These instance generators are
based on industry data from the collaborating tramp operator and use probability distributions
for cargo demand. For our computational study, we generated 150 test instances all with 7 ships
and 38 ports. The number of cargoes ranged from 30 to 60 on these instances while the planning
horizon ranged from 30 days to 60 days.

Finally, we provide a computational study in which the effect of integrating bunker planning
in the routing and scheduling phase is explored through a comparison of the devised solution
method with the standard sequential approach, where routes and schedules are planned with no
consideration to bunkering. Computational results show that the integrated planning approach
can increase profits, and that the decision of which cargoes to carry, and on which ships, is affected
by the bunker integration and by changes in the bunker prices.

The main contribution of this work is the exploration of a new version of the tramp ship routing
and scheduling problem in which bunker planning is incorporated. This exploration includes a
novel mathematical formulation, an efficient solution method, as well as a computational study
to evaluate both the performance of the devised method and the effect of incorporating bunker
planning. Furthermore, instance generators have been developed for both cargoes and bunker
prices, and the generated data as well as the generators can, upon request, be made publicly
available.

The work on this project has been presented as follows:

• A paper has been published in EURO Journal on Transportation and Logistics (Vilhelmsen
et al., 2013b)

• Presentation at the International Conference on Operations Research (OR2013), Rotterdam,
The Netherlands, 2013 (presenter: Charlotte Vilhelmsen)

• A technical report containing the initial work is published at DTU Management Engineering
(Vilhelmsen et al., 2013a)

5.2 Determining Tank Allocations

In Chapter 8, A Heuristic and Hybrid Method for the Tank Allocation Problem in Maritime Bulk
Shipping, we explore the Tank Allocation Problem (TAP) from a tactical perspective. The aim
of this work is to develop a new solution method for the TAP, efficient enough to be used as a
subproblem solver in an extension of the TSRSP that incorporates the tank allocation aspect.

A major challenge, when operating ships with multiple tanks carrying multiple inhomogeneous
products at a time, is how to best allocate cargoes to available tanks. The tank allocations must
take into account tank capacity, safety restrictions for onboard cargoes, ship stability and strength,
as well as other operational constraints. The allocation problem can be significantly complicated
by regulations on hazardous materials, e.g. products in neighboring tanks must be non-reactive

31 5.2. Determining Tank Allocations

and incompatible products must not succeed each other in a tank unless it is cleaned. Often it
is not allowed to move a cargo once it has been allocated and this creates an interdependency
between voyage legs. Taking stability, safety restrictions and other operational constraints into
consideration it can therefore be extremely difficult, if not impossible, to find a feasible tank
allocation for a given set of cargoes. In fact, Hvattum et al. (2009) show that the problem of
finding a feasible solution is NP-Complete.

The TAP as described above is normally solved at the operational planning level, i.e. after
fleet schedules have been created. However, separating these two planning problems creates the
obvious concern that schedules could potentially be created for which no feasible tank allocation
exists. Ideally, the tank allocation aspect should therefore be integrated into the TSRSP for bulk
fleets. Since profits from carrying cargoes far outweigh the allocation costs, such as tank cleaning
costs, at the tactical planning level we can simplify the tank allocation aspect by ignoring these
costs and instead focus on finding a feasible allocation.

The TSRSP is often solved in a way that requires assessment of numerous routes, as for instance
in column generation and local search based methods, and for each considered route, the TAP must
be solved to assess route feasibility with respect to stowage. Thereby, the TAP must be solved
repeatedly; hence, the solution time for the entire procedure will only be acceptable if the TAP
can be solved efficiently. This is even more relevant when remembering that, due to uncertainty,
routes and schedules are often replanned continuously.

Large and even medium-sized operators can easily have more than 25 ships in their fleets. With
multiple cargoes onboard simultaneously, the combinatorial puzzle of assigning cargoes to ships
becomes much larger than in the full shipload case and so, 200 routes to evaluate for each ship
can easily be a conservative estimate. This yields a total of at least 25 · 200 = 5000 routes to
assess feasibility for. Allowing a run time of up to just 0.25 second means that assessing feasibility
with respect to stowage can alone take 0.25 · 5000 = 1250 seconds, i.e. 21 minutes. Therefore, the
requirements for computation are quite strict if we want the method to be applicable to operators
of all sizes.

Hvattum et al. (2009) attempt to solve the TAP using constraint programming but find that
it fails, primarily due to the stability constraints. They also present a mixed integer formulation
for the problem and solve it with a commercial solver. They report running times that are far
beyond acceptable in a tactical setting, and they specifically advocate for development of a heuristic
method for determining feasibility of the TAP. We have updated and modified their method, which
significantly improves their results. Even so, running times are still a bit too long. Neo et al. (2006)
present an integer programming model for routing a fleet of multi-compartment tankers with tank
allocation incorporated. They solve it using a commercial solver, but even for a single ship with
10 tanks and 10 potential cargoes, running times are above 18,000 seconds. Therefore, in order
to facilitate the incorporation of the tank allocation aspect in the TSRSP, the aim of this work
has been the development of a heuristic method for efficiently finding feasible cargo allocations for
given ship routes.

Our heuristic iteratively allocates the cargoes one by one based on a priority ordering, which is
derived from the ratio of the volume of each cargo and the amount of available tank capacity for
this cargo. After allocating a cargo, tank availability is updated for all affected cargoes whereby
their priority measure is updated and a new iteration can start. We initially only reserve sufficient
tank capacity for one cargo at a time, and if we manage to find sufficient capacity for all cargoes, we
check if there exists a combination of cargo amounts to tanks that can secure ship stability during
the entire route. This is done by solving a simple linear program where each cargo is predefined
to be allocated to a given set of tanks.

We allocate each cargo as stable as possible by iteratively choosing tanks that have moment
arms in the opposite direction of the ships current stability and strength estimates. Note however,
that since cargoes can outbalance each other, we do not require each cargo to be allocated in a
stable manner on its own but simply seek to find a stable allocation for each cargo.

If a cargo in conflict with other cargoes is scattered all over the ship, a lot of neighboring tank
capacity becomes unavailable for cargoes in conflict with this cargo. Therefore, we use a crude
estimate of tank groupings in order to try to confine conflict cargoes to smaller groups of tanks.

We introduce randomness by allowing the procedure for selecting the next cargo to allocate,
and the procedure for selecting tanks for the selected cargo, to sometimes discard the otherwise

Chapter 5. Thesis Contribution 32

deterministically chosen cargo or tank. Each time we allocate a cargo, we iteratively reallocate it
until the capacity utilisation is sufficiently high, or until we reach the number of allowed realloca-
tions. In the latter case, we use the best allocation found so far. Within a given time limit, we
also allow the heuristic to completely restart each time it fails to find a feasible allocation.

Our computational study is based on 486 instances from an instance generator developed in
Hvattum et al. (2009). These instances are based on two real tank ships with, respectively, 24 tanks
and 38 tanks. The generated instances have between 20 and 40 cargoes from three different cargo
types. Computational results show that our heuristic can solve 99% of the considered instances
within 0.4 seconds and all of them if allowed more time. The heuristic does however struggle
on two instances causing an overall longer average running time than found with the updated
optimality-based method from Hvattum et al. (2009). However, on the remaining 484 instances
our heuristic is much faster than both the updated and modified version of the optimality-based
method from Hvattum et al. (2009).

The two instances that cause the heuristic trouble are actually solved relatively quickly by the
modified version of the optimality-based method while this method instead struggles with other
instances. Therefore, we have combined the two methods to obtain an even faster hybrid method
that first runs the heuristic for 0.2 seconds and if no feasible solution is found, then runs the
modified optimality-based method on the parts of the instance that the heuristic has not solved.
The results from running this hybrid method shows that it cuts between 90% and 94% of average
running times compared to the three other presented algorithms. In fact, no matter the allowed
time limit, no other method solves more instances than the hybrid method, and the average running
time for the hybrid method is just 0.027 second. Thereby, we have developed a method that is
efficient enough to facilitate the incorporation of the tank allocation aspect in the TSRSP.

The main contribution of this work is a new and heuristic solution method for the TAP. This
heuristic creates robust solutions and is flexible enough to incorporate operational considerations
such as ballast tanks and moving cargoes between tanks after allocation. It is very fast and clearly
outperforms previous methods on 484 of the 486 considered instances. A further contribution
of this work is the construction of a hybrid method that combines our heuristic with an earlier
optimality-based method, which we have modified to improve efficiency. This hybrid method
clearly outperforms all other methods proposed, and solves all problem instances with an average
running time of just 0.027 second. Thereby, we have a solution method efficient enough to allow
the incorporation of tank allocations into the basic TSRSP.

The work on this project has been presented as follows:

• A paper has been submitted for publication in a relevant international journal (Vilhelmsen
et al., 2014a)

• Presentation at the 4th International Conference on Computational Logistics (ICCL’13),
Copenhagen, Denmark, 2013 (presenter: Charlotte Vilhelmsen)

• Presentation at the 3rd International Symposium on Combinatorial Optimization (ISCO2014),
Lisbon, Portugal, 2014 (presenter: Charlotte Vilhelmsen)

• A technical report containing this work is published at DTU Management Engineering (Vil-
helmsen et al., 2014b)

5.3 Incorporating Voyage Separation Requirements

In Chapter 9, Tramp Ship Routing and Scheduling with Voyage Separation Requirements, we con-
sider the TSRSP with voyage separation requirements (VSRs), and devise a new, exact solution
method for this problem.

In this work, the basic TSRSP is extended to incorporate VSRs that enforce minimum time
spreads between specific voyages. This is one way of balancing the conflicting objectives of max-
imising profits for the tramp operator and minimising inventory costs for the charterer, since
these costs increase if consecutive voyages are not performed with some separation in time. In
this respect, the incorporation of VSRs correspond to a crude way of viewing the TSRSP in the
broader context of the supply chain. Norstad et al. (2013) show that the incorporation of VSRs

33 5.3. Incorporating Voyage Separation Requirements

can significantly improve the spread of the voyages at only marginal profit reductions. Thereby,
the tramp operator can at very little cost improve customer service for the charterer, and in a
market where competition is tough and freight rates are already low, this customer satisfaction
aspect is interesting.

Computational results from Norstad et al. (2013) show that their two methods are not applicable
for larger and more complex problem instances. The aim here is, therefore, to develop a more
efficient solution method.

We present a new mixed integer programming formulation for this problem and develop a new,
exact solution method for it. This method is a Branch-and-Price procedure based on a Dantzig-
Wolfe decomposition of the original formulation. In the master problem, the VSRs are relaxed
along with the binary variable restrictions. We present a new time window branching scheme
that can restore feasibility with respect to the VSRs, and to some extent also restore integrality.
Since this branching scheme is not complete with respect to integrality, we complement it by
constraint branching, which utilises the strong integer properties of the master problem constraint
matrix, to efficiently eliminate fractionality. We use a dynamic programming algorithm to solve
the subproblems and thereby generate the master problem columns.

We provide a computational study based on 16 data instances of varying complexity and size.
These data instances have been generated by the test instance generator described in Norstad et al.
(2013), which is based on industry data. On these instances, the fleet size ranges from 10 to 32
ships, the number of voyages ranges from 10 to 64, while the planning horizon is between 90 and
150 days. Computational results show that our algorithm finds very good if not optimal solutions
extremely fast, although one instance requires longer time. To properly evaluate the performance
of our algorithm, we compare it to an earlier a priori path generation (APPG) method, which
is the most efficient method from Norstad et al. (2013). This method first a priori generates
feasible paths and then uses a commercial solver to solve the path flow formulation containing
these generated paths. We show that, due to a domination test in the path generation phase, this
APPG method is not exact. Computational results confirm this, since our algorithm consistently
finds solutions that are equally good or better than those from the APPG method. In fact, the
profit increase from using our algorithm compared to the APPG method is as high as 6% for one
instance. Furthermore, for all but one instance, our solutions are obtained in the same or shorter
time than what the APPG method uses.

The main contribution from this work is the development of a new, exact method for the TSRSP
with voyage separation requirements, which relies on a tailor made time window branching scheme.
This method is able to find very good if not optimal solutions extremely fast. A further contribution
of this work is the comparison with the APPG method, which we show is not an exact method.
Our computational study confirm this as our method consistently finds equal or better solutions
than this other method. Furthermore, on all but one instance, our solution is found in equal or
shorter time than that of the APPG method.

The work on this project has been presented as follows:

• A technical report containing this work is published at DTU Management Engineering (Vil-
helmsen and Lusby, 2014)

• A paper will be submitted for publication in a relevant international journal after approval
from collaborating partners (Vilhelmsen and Lusby, 2015)

Chapter 5. Thesis Contribution 34

Chapter 6

Conclusion

Aside from acquiring and promoting general knowledge of tramp ship routing and scheduling, the
main aim of this PhD project was to develop new mathematical models and solution methods for
problems within this area. We have done so through three distinct research projects each described
in details in Chapters 7-9.

In Chapter 7 we consider a problem new to the research field and propose a novel mixed
integer programming formulation as well as an optimality-based solution method based on column
generation. We show that the incorporation of bunker planning into the routing and scheduling
phase can increase profits for tramp operators. For the considered problem instances, the profit
increase is moderate. However, we suspect that this is due to the geographical setup of these
instances as well as the relatively low magnitude of fluctuations in bunker prices on these instances.
It could therefore be very interesting to extend this project by exploring other data instances.
Furthermore, it could be interesting to extend the model to allow price uncertainty and apply
stochastic programming to solve it.

In Chapter 8 we explore an operational planning problem already known from the literature,
though on a tactical level. We develop a new heuristic method for the Tank Allocation Problem
and also create a hybrid method from the combination of this heuristic and a previously presented
optimality-based method, which we have modified to improve efficiency. This hybrid method
outperforms all previous methods and is efficient enough to facilitate the incorporation of tank
allocations into the routing and scheduling phase. It would, however, be very interesting to improve
this method to allow flexible cargo sizes, since most operators involved in liquid bulk shipping face
this situation.

In Chapter 9 we consider a problem previously presented in literature and present a new, exact
method for it. This problem incorporates voyage separation requirements in order to balance
the conflicting objectives of profit maximisation for the tramp operator and cost minimisation for
the charterer, whose inventory costs increase if consecutive voyages are not performed with some
separation in time. This problem therefore acts as an initial attempt of viewing the TSRSP in the
broader context of a supply chain. Our solution method is a Branch-and-Price procedure, which is
able to find very good if not optimal solutions extremely fast. A comparison with an earlier method
from the literature, which we show is not an exact method, shows that our algorithm consistently
finds equal or better solutions than this earlier method. Furthermore, on all but one instance,
our solution is found in equal or shorter time than that of the earlier method. On four instances,
our algorithm is unable to prove optimality within the time limit. Although the integrality gap is
small for all four instances, it would still be interesting to explore different modifications to the
branching procedure.

6.1 Main Contributions

Overall, we have explored three distinct extensions of the basic TSRSP, and through this work
developed both new models and methods for tramp ship routing and scheduling. This thesis makes
the following contributions to tramp ship routing and scheduling research:

35

Chapter 6. Conclusion 36

• A description and mathematical formulation for the TSRSP with integrated bunker optimi-
sation, a problem not previously considered in tramp shipping literature.

• An optimality-based solution method for the above problem.

• Test instance generators for both cargoes and bunker prices, which can be made publicly
available upon request.

• A heuristic method for finding feasible tank allocations.

• A hybrid method that combines the above heuristic with an earlier optimality-based method,
which we have modified to improve efficiency. This hybrid is very fast and facilitates the
incorporation of tank allocations into the basic TSRSP.

• An analysis of an earlier method for the TSRSP with voyage separation requirements. This
analysis shows that this earlier method is not an exact method as otherwise stated in the
literature.

• A new, exact, and more efficient method for the TSRSP with voyage separation requirements.

6.2 Future research directions

Through this PhD study we have gained a general knowledge of existing research within tramp
ship routing and scheduling. From this knowledge it is obvious that one of the main directions of
future research lies in the development of models and methods for extensions of the basic TSRSP
rather than in the development of new methods for the basic problem. Although some extensions,
such as variable speed, are quite generic, a lot of extensions will be operator specific. Therefore, it
is hard to point in any one direction for future research.

With this being said, we do however want to mention three interesting research topics that, in
our opinion, deserve great attention in future research within tramp shipping:

• We find that the static and deterministic approach in most work on tramp shipping con-
stitutes a huge simplification for most operators. Naturally, one must walk before one can
run, but now that the basic TSRSP can be solved efficiently, it seems obvious to expand the
research to include both dynamic and stochastic models. In fact, reality for most operators
is that new spot cargoes are continuously revealed, and in many cases the exact information
on these cargoes is not known in advance. E.g. the destination port can be unknown. The
ongoing optimisation means that the solution methods should either be embedded in a rolling
horizon approach or incorporate a value of time to account for schedules that occupy ships
well into the next planning period. Both these approaches should then utilise information
on future cargoes in a stochastic manner.

• As already mentioned, the work in Chapter 9 in some sense relates the TSRSP to the broader
context of a supply chain. In industrial shipping, where the ship operator is also the cargo
owner, the supply chain aspect seems obvious and much literature in this area also includes
this aspect, see (Christiansen et al., 2013). Even though this aspect seems less obvious in a
tramp shipping setting, it is still a very interesting topic for further research, and we see two
main reasons for this. First, in a market with tough competition and freight rates already
critically low, it seems obvious for tramp operators to instead improve their customer service
to attract more business. Second, optimising over the entire supply chain, or at least parts
of it, rather than just the isolated TSRSP, will no doubt enable overall cost reductions.
With the right collaboration setup, some part of these cost reductions will reflect back on
the tramp operator and allow an increase in profit. Furthermore, we note that including
information from the supply chain will also give a better understanding of future demand and
thereby assist in resolving the issue from above regarding dynamic and stochastic modelling
approaches.

37 6.2. Future research directions

• Finally, during this PhD study, a considerable amount of time has been devoted to both gath-
ering and generating data that accurately reflects the situation in industry. This time could
obviously have been devoted to other research topics if data had been readily available. This
strongly motivates the development of benchmark data for the tramp shipping community
just as we see it for vehicle routing and as has recently been developed for the liner shipping
community (Brouer et al., 2014). Aside from enabling more research within the area, such
benchmark instances would also facilitate easy comparison of solution methods developed
for similar problems. We note that, upon request, the instance generators developed for the
bunker project and presented in details in Chapter 7 can be made publicly available.

Bibliography 38

Bibliography

H. Andersson, M. Christiansen, and K. Fagerholt. The maritime pickup and delivery problem with
time windows and split loads. INFOR, 49(2):79–91, 2011a.

H. Andersson, J.M. Duesund, and K. Fagerholt. Ship routing and scheduling with cargo coupling
and synchronization constraints. Computers and Industrial Engineering, 61(4):1107–1116, 2011b.

L.H. Appelgren. A column generation algorithm for a ship scheduling problem. Transportation
Science, 3:53–68, 1969.

L.H. Appelgren. Integer programming methods for a vessel scheduling problem. Transportation
Science, 5:64–78, 1971.

G. Brønmo, M. Christiansen, K. Fagerholt, and B. Nygreen. A multi-start local search heuristic for
ship scheduling - a computational study. Computers & Operations Research, 34:900–917, 2007a.

G. Brønmo, M. Christiansen, and B. Nygreen. Ship routing and scheduling with flexible cargo
sizes. Journal of the Operational Research Society, 58(9):1167–1177, 2007b.

G. Brønmo, B. Nygreen, and J. Lysgaard. Column generation approaches to ship scheduling with
flexible cargo sizes. European Journal of Operational Research, 200(1):139–150, 2010.

B.D. Brouer, J.F. Alvarez, C.E.M. Plum, D. Pisinger, and M.M. Sigurd. A base integer program-
ming model and benchmark suite for liner-shipping network design. Transportation Science, 48
(2):281–312, 2014.

E.R. Butchers, P.R. Day, A.P Goldie, S. Miller, J.A. Meyer, D.M. Ryan, A.C. Scott, and C.A.
Wallace. Optimized crew scheduling at air new zealand. Interfaces, 31(1):30–56, 2001.

K.K. Castillo-Villar, R.G. González-Ramı́rez, P.M. González, and N.R. Smith. A heuristic proce-
dure for a ship routing and scheduling problem with variable speed and discretized time windows.
Mathematical Problems in Engineering, 2014. doi: http://dx.doi.org/10.1155/2014/750232.

M.E. Cóccola, R. Dondo, and C.A. Méndez. A milp-based column generation strategy for managing
large-scale maritime distribution problems. Computers & Chemical Engineering, 2014. doi:
http://dx.doi.org/10.1016/j.compchemeng.2014.04.008.

M. Christiansen and B. Nygreen. A method for solving ship routing problems with inventory
constraints. Annals of Operations Research, 81:357–378, 1998.

M. Christiansen, K. Fagerholt, and D. Ronen. Ship routing and scheduling: Status and perspectives
(review). Transportation Science, 38(1):1–18, 2004.

M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime transportation. In C. Barnhart
and G. Laporte, editors, Transport. Handbooks in Operations Research and Management Science,
vol. 14, chapter 4, pages 189–284. Elsevier, North-Holland, Amsterdam, 2007.

M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Ship routing and scheduling in the new
millennium (review). European Journal of Operational Research, 228(3):467–483, 2013.

M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Perfect, ideal and balanced matrices.
European Journal of Operational Research, 133(3):455–461, 2001.

G. Desaulniers, J. Desrosiers, I. Ioachim, M.M. Solomon, F. Soumis, and D. Villeneuve. A unified
framework for deterministic time constrained vehicle routing and crew scheduling problems. In
T. Crainic and G. Laporte, editors, Fleet Management and Logistics, chapter 3, pages 57 – 94.
Kluwer Academic Publishers, 1998.

G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors. Column Generation. Springer, New
York, 2005.

39 Bibliography

M. Desrochers and F. Soumis. A reoptimization algorithm for the shortest path problem with time
windows. European Journal of Operational Research, 35:242 – 254, 1988.

J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time constrained routing and scheduling.
In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network Routing.
Handbooks in Operations Research and Management Science, vol. 8, chapter 2, pages 35–139.
North-Holland, Amsterdam, 1995.

M. Dror. Note on the complexity of the shortest path models for column generation in vrptw.
Operations Research, 42(5):977–978, 1994.

K. Fagerholt. Ship scheduling with soft time windows: An optimisation based approach. European
Journal of Operational Research, 131(3):559–571, 2001.

K. Fagerholt. A computer-based decision support system for vessel fleet scheduling - experience
and future research. Decision Support Systems, 37(1):35–47, 2004.

K. Fagerholt and M. Christiansen. A combined ship scheduling and allocation problem. Journal
of the Operational Research Society, 51:834 – 842, 2000a.

K. Fagerholt and M. Christiansen. A travelling salesman problem with allocation, time window
and precedence constraints - an application to ship scheduling. International Transactions in
Operational Research, 7(3):231 – 244, 2000b.

K. Fagerholt and D. Ronen. Bulk ship routing and scheduling: Solving practical problems may
provide better results. Maritime Policy and Management, 40(1):48–64, 2013.

K. Fagerholt, L.M. Hvattum, T.A.V. Johnsen, and J.E. Korsvik. Routing and scheduling in project
shipping. Annals of Operations Research, pages 1–15, 2011.

R.A. Gatica and P.A. Miranda. Special issue on latin-american research: A time based discretiza-
tion approach for ship routing and scheduling with variable speed. Networks and Spatial Eco-
nomics, 11(3):465–485, 2011.

S. Gélinas, M. Desrochers, J. Desrosiers, and M.M. Solomon. A new branching strategy for time
constrained routing problems with application to backhauling. Annals of Operations Research,
61:91–109, 1995.

L.M. Hvattum, K. Fagerholt, and V.A. Armentano. Tank allocation problems in maritime bulk
shipping. Computers & Operations Research, 36(11):3051–3060, 2009.

S. Irnich. Resource extension functions: properties, inversion, and generalization to segments. OR
Spectrum, 30(1):113–148, 2008.

S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In G. Desaulniers,
J. Desrosiers, and M.M. Solomon, editors, Column Generation, chapter 2, pages 33 – 66. Springer,
2005.

J.N. Jung, M.N. Kang, H.R. Choi, H.S. Kim, B.J. Park, and C.H. Park. Development of a genetic
algorithm for the maritime transportation planning of car carriers. Dynamics in logistics, 6:
481–488, 2011.

K. Kang, W.-C. Zhang, L.-Y. Guo, and T. Ma. Research on ship routing and deployment mode for
a bulk. International Conference on Management Science and Engineering - Annual Conference
Proceedings, pages 1832–1837, 2012a.

M.H. Kang, H.R. Choi, H.S. Kim, and B.J. Park. Development of a maritime transportation
planning support system for car carriers based on genetic algorithm. Applied Intelligence, 36(3):
585–604, 2012b.

S.-H. Kim and K.-K. Lee. An optimization-based decision support system for ship scheduling.
Computers and Industrial Engineering, 33(3-4):689–692, 1997.

Bibliography 40

K. Kobayashi and M. Kubo. Optimization of oil tanker schedules by decomposition, column gener-
ation, and time-space network techniques. Japan Journal of Industrial and Applied Mathematics,
27(1):161–173, 2010.

J.E. Korsvik and K. Fagerholt. A tabu search heuristic for ship routing and scheduling with flexible
cargo quantities. Journal of Heuristics, 16(2):117–137, 2010.

J.E. Korsvik, K. Fagerholt, and G. Laporte. A tabu search heuristic for ship routing and scheduling.
Journal of the Operational Research Society, 61(4):594–603, 2010.

J.E. Korsvik, K. Fagerholt, and G. Laporte. A large neighbourhood search heuristic for ship routing
and scheduling with split loads. Computers and Operations Research, 38(2):474–483, 2011.

S.A. Lawrence. International Sea Transport: The Years Ahead, pages 1–316. Lexington Books,
Lexington, MA., 1972.

D.-Y. Lin and H.-Y. Liu. Combined ship allocation, routing and freight assignment in tramp
shipping. Transportation Research Part E: Logistics and Transportation Review, 47(4):414–431,
2011.

F. Malliappi, J. A. Bennell, and C. N. Potts. A variable neighborhood search heuristic for tramp
ship scheduling. Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 6971 LNCS:273–285, 2011.

C. Michelsen. Emissions trading scheme for the shipping industry? http://s.tt/15q5B, January
2012.

I.K. Moon, Z.B. Qiu, and J.H. Wang. A combined tramp ship routing, fleet deploy-
ment, and network design problem. Maritime Policy and Management, 2014. URL
http://www.scopus.com/inward/record.url?eid=2-s2.0-84891807001&partnerID=

40&md5=46e36df2bcec237075f164ea3de0b21b.

K.-H. Neo, H.-C. Oh, and L.A. Karimi. Routing and cargo allocation planning of a parcel tanker.
In 16th European Symposium on Computer Aided Process Engineering and 9th International
Symposium on Process Systems Engineering, pages 1985 – 1990, 2006.

I. Norstad, K. Fagerholt, and G. Laporte. Tramp ship routing and scheduling with speed opti-
mization. Transportation Research Part C: Emerging Technologies, 19(5):853–865, 2011.

I. Norstad, K. Fagerholt, L.M. Hvattum, H.S. Arnulf, and A. Bjørkli. Maritime fleet deployment
with voyage separation requirements. Flexible Services and Manufacturing Journal, 2013. doi:
10.1007/s10696-013-9174-7.

H.-C. Oh and I.A. Karimi. Routing and scheduling of parcel tankers: a novel solution approach.
In A. Bruzzone, F. Longo, Y. Merkuriev, G. Mirabello, and M.A. Piera, editors, The 11th
International Workshop on Harbor Maritime Multimodal Logistics Modeling and Simulation,
pages 98 – 103, September 2008.

M. Padberg. On the facial structure of set packing polyhedra. Mathematical Programming, 5(1):
199–215, 1973.

C.E.M. Plum, D. Pisinger, and P.N. Jensen. Bunker purchasing in liner shipping. 2014, forthcom-
ing.

D. Ronen. Cargo ships routing and scheduling: Survey of models and problems. European Journal
of Operational Research, 12(2):119–126, 1983.

D. Ronen. Ship scheduling: The last decade. European Journal of Operational Research, 71(3):
325–333, 1993.

D. Ronen. Marine inventory routing: Shipments planning. Journal of the Operational Research
Society, 53(1):108–114, 2002.

41 Bibliography

D.M. Ryan and B. Foster. An integer programming approach to scheduling. Computer Scheduling of
Public Transport. Urban Passenger Vehicle and Crew Scheduling. Proceedings of an International
Workshop, pages 269–280, 1981.

J. Schönberger, H. Kopfer, and D.C. Mattfeld. A combined approach to solve the pickup and
delivery selection problem. In U. Leopold-Wildburger, F. Rendl, and G. Wäscher, editors,
Operations Research Proceedings 2002, pages 150–155. Springer, 2003. Selected Papers of the
International Conference on Operations Research (SOR 2002), Klagenfurt, September 2-5, 2002.

M. St̊alhane, H. Andersson, M. Christiansen, J.-F. Cordeau, and G. Desaulniers. A branch-price-
and-cut method for a ship routing and scheduling problem with split loads. Computers and
Operations Research, 39(12):3361–3375, 2012.

M. St̊alhane, H. Andersson, M. Christiansen, and K. Fagerholt. Vendor managed inventory in
tramp shipping. Omega (United Kingdom), 47:60–72, 2014.

P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002.

UNCTAD. Review of maritime transport 2013. http://unctad.org/en/PublicationsLibrary/
rmt2013_en.pdf, 2013.

C. Vilhelmsen and R.M. Lusby. Tramp ship routing and scheduling with voyage separation re-
quirements. Technical Report, Department of Management Engineering, Technical University of
Denmark, 2014.

C. Vilhelmsen and R.M. Lusby. Tramp ship routing and scheduling with voyage separation re-
quirements. To be submitted to relevant international journal, 2015.

C. Vilhelmsen, R.M. Lusby, and J. Larsen. Routing and scheduling in tramp shipping - integrat-
ing bunker optimization. Technical Report, Department of Management Engineering, Technical
University of Denmark, 2013a.

C. Vilhelmsen, R.M. Lusby, and J. Larsen. Tramp ship routing and scheduling with integrated
bunker optimization. EURO Journal on Transportation and Logistics, 2013b. doi: 10.1007/
s13676-013-0039-8.

C. Vilhelmsen, J. Larsen, and R.M. Lusby. A heuristic and hybrid method for the tank allocation
problem in maritime bulk shipping. Submitted to relevant international journal, 2014a.

C. Vilhelmsen, J. Larsen, and R.M. Lusby. A heuristic and hybrid method for the tank allocation
problem in maritime bulk shipping. Technical Report, Department of Management Engineering,
Technical University of Denmark, 2014b.

Bibliography 42

Part II

Scientific Papers

43

Chapter 7

Tramp Ship Routing and
Scheduling with Integrated
Bunker Optimization

Charlotte Vilhelmsen Richard M. Lusby Jesper Larsen

Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

chaan@dtu.dk, rmlu@dtu.dk, jesla@dtu.dk

Abstract A tramp ship operator often has contracted cargoes that must be carried and seeks to
maximize profit by carrying optional cargoes. Hence, tramp ships operate much like taxies following
available cargo and not according to fixed route networks and itineraries as liner ships. Marine fuel
is referred to as bunker and bunker costs constitute a significant part of daily operating costs. There
can be great variations in bunker prices across ports so it is important to carefully plan bunkering
for each ship. As ships operate 24 hours a day, they must refuel during operations. Therefore,
route and schedule decisions affect the options for bunkering. Current practice is, however, to
separate the two planning problems by first constructing fleet schedules and then plan bunkering
for these fixed schedules. In this paper we explore the effects of integrating bunker planning in
the routing and scheduling phase for a tramp operator sailing full shiploads, i.e. carrying at most
one cargo onboard each ship at a time. We present a mixed integer programming formulation
for the integrated problem of optimally routing, scheduling and bunkering a tramp fleet carrying
full shiploads. Aside from bunker integration, this model also extends standard formulations by
using load dependent costs, speed and bunker consumption. We devise a solution method based
on column generation with a dynamic programming algorithm to generate columns. The method
is heuristic mainly due to discretization of the continuous bunker purchase variables. We show
that the integrated planning approach can increase profits and that the decision of which cargoes
to carry and on which ships is affected by the bunker integration and by changes in bunker prices.

7.1 Introduction

It is estimated that over 80% of world trade is carried by the international shipping industry
(UNCTAD, 2011) and world trade therefore depends on the industry’s efficiency and competitive
freight rates. Hence, research to increase efficiency within maritime transportation is important,
and, taking the mere size of this huge industry into consideration, even small improvements can
have great impact.

An important part of utilizing the existing fleet efficiently is routing and scheduling the ships,
i.e. assigning cargoes to ships while simultaneously finding the sequence and timing of port calls
for all ships. Many ship operators use experienced planners to manually route and schedule the

45

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 46

fleet. However, increased competition and recent trends of mergers among, and pooling of, ship-
ping companies have increased the pressure as well as the difficulty of devising efficient schedules
manually due to the increased fleet sizes (Christiansen et al., 2004). Therefore, there is a need for
an automated approach to the planning that can both aid the construction of efficient schedules
and enable fast changes to existing schedules in case of new opportunities or changed demand.

In this paper we focus on tramp shipping where ships operate much like taxies following the
available cargoes and not according to a fixed route network and itinerary as in liner shipping.
Routing and scheduling within tramp shipping is therefore a more dynamic and ongoing process
compared to that of liner shipping. A tramp operator often has some contracted cargoes that must
be carried and seeks to maximize profit by carrying optional cargoes found in the spot market.

Tramp ship routing and scheduling is very closely related to the well researched Vehicle Routing
Problem (VRP) and its variants but there are, however, important differences that facilitate the
development of industry specific methods. To mention a few, we note that optional cargoes are
not considered in the standard VRP and that ships pay port fees and operate around the clock.

Marine fuel is also referred to as bunker fuel or simply bunker while refueling is called bunkering.
Fuel costs constitute a significant part of daily operating costs and since bunker prices can vary
significantly across ports, it is important to carefully plan the bunkering of each ship. The recent
increase in oil prices adds further motivation for operators to plan bunkering optimally, yet many
still use manual planning. Ships operate 24 hours a day so they must refuel during operations.
Hence, route and schedule decisions will affect the options for bunkering. Consequently, it seems
natural to integrate bunker planning in the routing and scheduling phase and consider the combined
routing, scheduling and bunkering problem. Current practice is, however, to separate the two
problems by first constructing fleet schedules and then plan bunkering for these fixed schedules.

In this paper we explore the effects of integrating bunker planning in the routing and scheduling
phase for a tramp operator sailing full shiploads, i.e. carrying at most one cargo onboard each
ship at a time. We present a mixed integer programming formulation for the integrated problem
of optimally routing, scheduling and bunkering a tramp fleet carrying full shiploads. This model
extends standard tramp formulations by accounting for bunkering time, variations in bunker prices
and bunker ports costs and further by using load dependent costs as well as speed and bunker
consumption. We devise a heuristic solution method that can simultaneously select which optional
cargoes to carry, how cargoes should be allocated to ships, determine ship routes and schedules,
and decide when, where and how much each ship should bunker during its schedule depending
on forward curves for bunker prices. The method relies on column generation with a dynamic
programming algorithm to generate columns. Computational results show that this integrated
planning approach can increase profits, and that the decision of which cargoes to carry and on
which ships is affected by the bunker integration and by changes in the bunker prices.

The remainder of the paper is organized as follows. In Section 7.2 relevant literature is pre-
sented. Section 7.3 provides a problem description as well as a mathematical model for the problem,
while the devised solution method is described in Section 7.4. Section 7.5 describes some instance
generators that we have developed to acquire necessary data on cargoes and bunker prices. In
Section 7.6 we tune the devised algorithm and in Section 7.7 we explore the effects of integrating
bunker planning in the routing and scheduling phase through a comparison of the integrated ap-
proach and the sequential approach. We also investigate the method’s sensitivity to bunker prices.
Finally, concluding remarks and suggestions for future work are discussed in Section 7.8.

7.2 Literature review

Mathematical formulations and discussions on solution methods for a wide range of maritime
problems on all planning levels can be found in Christiansen et al. (2007). Furthermore, a thorough
review of literature focused on ship routing and scheduling before 2013 can be found in the review
papers, Ronen (1983), Ronen (1993), Christiansen et al. (2004) and Christiansen et al. (2013).

Recent work on tramp ship routing and scheduling include Kang et al. (2012) who consider the
interaction between ship routing and scheduling and ship deployment, and St̊alhane et al. (2012)
who investigate split loads. Fagerholt and Ronen (2013) present and consolidate results for three
practical extensions within bulk shipping: (1) flexible cargo quantities, (2) split cargoes, and (3)

47 7.2. Literature review

sailing speed optimization, while Tang et al. (2013) consider speed optimization.

The tramp ship routing and scheduling problem is closely related to vehicle routing problems.
Most similar to our problem is the vehicle routing problem with pickup and deliveries and time
windows (VRPPDTW) for which we refer the reader to Desaulniers et al. (2002). There are,
however, important differences between the maritime version of the problem and the land based
one, creating the need for tailor made models and solution methods for each industry. Ronen (1983),
Ronen (2002) and Christiansen et al. (2004) elaborate on these differences but to mention a few,
we note that ships pay port fees and operate continuously. Hence, ships have different starting
positions and starting times, as some ships can be occupied with prior tasks when planning begins.
Even in multi-depot versions of the VRPPDTW vehicles must return to their home depot whereas
ships do not have to return to their starting point. Finally, the distinction between contract cargoes
and optional cargoes leads to a priority on cargoes not used in VRPPDTW where all customers
must be serviced at minimum cost. In contrast, the tramp objective is to maximize profit as in
the less known Pickup and Deliver Selection Problem, see Schönberger et al. (2003).

Column generation has received much attention and achieved great success for vehicle routing
but is not as frequently used within maritime transportation. This is partly because the large
number of constraints reduce the solution space to such an extent that - combined with the major
uncertainty within maritime transportation - feasible schedules only consist of a few voyages.
Hence, all feasible combinations can be enumerated and, so, it is often sufficient to apply a priori
column generation. However, within tramp ship scheduling both Appelgren (1969) and Brønmo
et al. (2010) have found dynamic column generation more efficient than a priori generation. Brønmo
et al. (2010) report that in their experiments, the dynamic approach is both faster and enables them
to deal with larger or more loosely constrained instances than a priori generation. In line with that,
recent years have shown an increase in maritime papers that explore dynamic column generation,
see e.g. Kobayashi and Kubo (2010), Hennig et al. (2012) and St̊alhane et al. (2012). Furthermore,
Desaulniers et al. (2005) devoted two whole chapters to column generation in maritime problems.

Within vehicle routing research on refueling policies can be found in Lin et al. (2007) and
Lin (2008). Software products for refueling, called fuel optimizers, have also been developed for
the trucking industry. Suzuki (2008) gives a description of such systems and a literature review
while Suzuki and Dai (2012) discuss solution methods. These systems use the latest price data to
calculate which truck stops to use and how much to purchase at each stop to minimize refueling
costs. The above work on refueling policies are for single vehicles traveling on fixed routes. Hence,
there is no integration of refueling with routing and scheduling. Also, since customers have already
been assigned to vehicles, the interdependency of vehicle routes is ignored and the problem is
decomposed into independent one-vehicle problems while we must consider the entire fleet.

Within air transportation work on refueling policies can be found in Darnell and Loflin (1977),
Stroup and Wollmer (1992), Abdelghany et al. (2005) and Zouein et al. (2002). However, they also
consider refueling policies for fixed routes and do not allow aircraft to divert from their routes for
refueling. In fact, since routes are fixed, the refueling policy problem relates more to liner shipping
where the combinatorial aspect, i.e. the route selection, from tramp shipping is not present.

Within liner shipping Yao et al. (2012) explore refueling policies where sailing speed is a decision
variable. As they consider a liner service, they too assume a fixed route and do not allow diversions
from routes to refuel. Similarly, Besbes and Savin (2009) also explore refueling policies for liner
ships for fixed routes. In contrast, Notteboom and Vernimmen (2009) consider the impact of
increasing bunker prices on the actual design of liner services. For a single liner vessel on a fixed
route Kim et al. (2012) seek to minimize the bunker related costs together with the cost of the
ship’s time and environmental costs. They determine the optimal ship speed, bunkering ports,
and amounts of bunker fuel. Finally, Wang et al. (2013) present a review on solution methods for
bunker consumption optimization problems within liner shipping and propose several new ones.

Within tramp shipping, as far as we know, only two papers address optimal refueling. Oh and
Karimi (2010) consider a multi parcel tanker and propose a mixed integer programming model to
optimize bunkering. They use speed as a decision variable and take uncertainty of fuel prices into
account but they too assume a fixed route. In contrast, Besbes and Savin (2009) simultaneously
optimize routes and bunker plans. However, their approach is much more strategic than ours.
They formulate the problem as a stochastic dynamic program. They only consider one ship and do
not consider actual cargoes. Instead they assume a stochastic revenue process that leads them to

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 48

explore optimal network cycles. In fact, they view the problem more as an inventory management
problem with no end, and, consequently, seek to maximize long term average profit. They charac-
terize the optimal refueling policy when prices are constant over time and do not differ across ports
and when prices are constant over time but differ across ports. However, they do not consider the
case where prices vary over time and at the same differ across ports as we do.

7.3 Problem Description

In this section we give a problem description starting with the pure tramp ship routing and schedul-
ing problem. We then move on to include bunkering and present a mathematical model for the
Tramp Ship Routing And Scheduling Problem with Bunker Optimization (TSRSPBO).

7.3.1 The Pure Tramp Ship Routing and Scheduling Problem

A tramp operator has long term contracts that obligates him to carry some cargoes and can choose
to carry additional cargoes, so called spot cargoes, if fleet capacity allows it and it is profitable.
The objective is to create a profit maximizing set of fleet schedules, one for each ship, where a
schedule is a sequence and timing of port calls representing cargo loading and discharging. The
optimal solution therefore combines interdependent decisions on which optional cargoes to carry,
the assignment of cargoes to ships and the optimal sequence and timing of port calls for each ship.

A cargo is mainly characterized by the quantity to be transported, the revenue obtained from
transporting it and the pickup and discharge port. There is also a service time for loading and
discharging and a time window giving the earliest and latest start for loading. In some cases there
is also a time window for discharge. A tramp fleet is usually heterogeneous, comprised of ships of
different sizes, load capacities, bunker consumptions, speeds, and other characteristics. Ships can
be occupied with prior tasks when planning starts so each ship is further characterized by the time
it is available for service and the location it is at when it becomes available. The characteristics of
a ship determine which cargoes, ports and canals it is compatible with.

As we consider a fixed fleet, we disregard fixed setup costs and focus on variable operating
costs. The main sailing cost is fuel cost and this is different for each ship and load dependent. In
traditional tramp ship routing and scheduling models, sailing cost, and in turn bunker consumption,
is assumed independent of the load of the ship. We, however, do not make this assumption. When
loading and discharging, ship dependent port costs are incurred, and ships also consume bunker
although much less than at sea. Other operator specific costs can also be relevant.

The research presented here has been conducted in collaboration with the Danish shipping com-
pany Maersk Tankers A/S involved in, among other things, transportation of refined oil products
worldwide. Based on their case we focus on full shiploads, i.e. each ship carries at most one cargo
at a time. When considering full shiploads and not including bunkering, pickup and delivery of a
cargo must be performed directly after each other and, hence, the two tasks can be aggregated.
This yields a simple model and we refer the reader to Christiansen et al. (2007) for a mathematical
arc flow formulation for the pure tramp ship routing and scheduling problem with full shiploads.

7.3.2 Incorporating Bunker

The model presented in Christiansen et al. (2007) for the pure routing and scheduling problem,
just as most other tramp ship routing and scheduling models, assumes fixed sailing costs with no
consideration to the great variations in bunker prices, the port costs incurred when bunkering, or
the time consumption of bunkering. In our work, we integrate considerations for bunker price vari-
ations, bunker port costs as well as the time aspect of bunkering and extend the pure routing and
scheduling formulation to include variables for bunker purchases, new constraints to incorporate
these variables and, finally, an extended objective function that reflects this new way of calculating
bunker costs, and in turn sailing costs. We also incorporate load dependent bunker consumption.
Bunker consumption also depends on the ship’s speed. However, in reality speed is not necessarily
fixed but instead allowed to vary with the load of the ship. E.g. if a ship sails at ’full speed’, the
actual speed depends on the ship’s load. Likewise, a speed setting often used is ’ECO speed’, i.e.
most economical speed, and this speed also depends on the ship’s load. We assume each ship sails

49 7.3. Problem Description

at ’ECO speed’ and so, the actual speed and bunker consumption depend on the load of the ship.
Likewise, we allow costs to be load dependent which is often the case for port and canal costs.

Bunkering can take place at a bunker port where ships enter port just to refuel or at a pickup or
discharge port since almost all ports involved in shipping also sell bunker. Bunkering at a pickup or
discharge port has the obvious benefit of avoiding detours just for bunker, only incurring port costs
once and even saving time if concurrent bunkering is allowed. However, price variations between
ports can easily be large enough to compensate for the extra cost of a detour, the extra port costs,
and also the extra time consumption. In fact, a few ports seem to dominate bunker sales because
of their strategic location along major trade routes thereby limiting the detours necessary for ships
to refuel there. Two examples of such ports are Malta and Singapore (Oh and Karimi, 2010).

A bunker option is mainly characterized by its geographical location, port costs, bunker price
and time window in which this price is assumed to remain valid. Several bunker options can
represent the same physical bunker port but at different times and, hence, with different prices.
Time dependent port costs or port opening hours can also cause a separation of one bunker port
into many bunker options with different prices and associated time windows. Due to high volatility
in bunker prices these time windows are bound to be narrow and without loss of generality we
assume they are so narrow that no ship will use the same bunker option twice. If time windows
are not narrow enough for such an assumption, each time window can simply be split into several
smaller time windows each with an associated bunker option until the assumption is valid.

Data from the collaborating tramp operator on distances, port costs, fleet bunker consumption
and fleet bunker tank capacity shows that it is very reasonable to assume that each ship makes
at most one bunker stop in between cargo stops. This assumption is also used by Oh and Karimi
(2010) and helps reduce the problem size. However, our solution method also works without this
assumption although longer running times must be expected due to the increase in problem size.

Ships operate 24 hours a day so there is no natural end to the optimization problem. Hence, the
condition of the fleet at the end of the planning period affects optimization in the next period. With
bunker included in the process, the initial bunker inventory for each ship is therefore an important
part of fleet data. Likewise, any remaining bunker onboard ships at the end of their schedules must
be considered a valuable resource for the next planning period independent of future demand. To
account for this resource, we put a premium on any quantity above the initial bunker level for each
ship and call this quantity bonus bunker. Similarly, ships that end their schedule with less bunker
than the initial level must pay for using this resource. As we discuss later, it is in fact vital for our
solution method to account for this bonus bunker. However, the actual value of it is difficult to
price. Using the price of the last visited bunker port is not possible for ships that due to high initial
bunker inventory or idleness did not refuel during their schedule. It also leads to arbitrage since
visiting an expensive bunker port last to purchase a small amount will drive up the resell price
even though the bonus bunker might have been bought at a cheap bunker port. Likewise, there is
no incentive to fill up if a ship passes a cheap bunker port last. Allowing bonus bunker to be resold
at an average price of the region that the ship ends its schedule in motivates repositioning ships
to regions with high bunker prices with no consideration for future cargo demand. Therefore, we
calculate premiums for bonus bunker at an average price of all bunker options with time windows
containing the end of the planning horizon, i.e. a geographically independent forecast of the average
bunker price at the end of the planning horizon. Ship data will now also include a minimum and
maximum bunker level corresponding to a required safety level and tank capacity, respectively.

Concurrent bunkering and loading/discharging can easily be added to the model. If i and j
correspond to the same physical port which allows concurrent bunkering and i correspond to a
bunker option while j correspond to a cargo node, then T v

ij and T v
ji will not contain time for

bunkering (assuming bunkering time is less than loading/discharging time). We have chosen not
to include it in our analysis and further assume that all bunker options have the same pumping
rate for bunkering. The reason is that data from the collaborating tramp operator indicates that
the majority of their bunker ports do not allow concurrent bunkering, and that we want to be able
to differentiate bunker options on price and geographic location rather than ’timing’. This allows
us to explore the solution’s sensitivity to changes in bunker prices. Furthermore, when taking the
time for port clearance, berthing etc. into account, the time spent pumping bunker onboard the
ships can be considered negligible. Considering the trade off between solution time and complexity,
we therefore assume a fixed time for bunkering at all options regardless of the amount purchased.

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 50

7.3.3 Mathematical model

When including bunkering in the problem, bunker stops can be made in between pickup and
delivery of a cargo so the two tasks can no longer be aggregated into one. Instead the problem
must be modeled similar to a multiple cargo problem. A mathematical arc flow formulation for the
pure routing and scheduling problem for multiple cargoes can be found in Christiansen et al. (2007).
It is formulated as a pickup and delivery problem with time windows and capacity constraints.

Let V be the set of ships and index it by v, and let B denote the set of bunker options indexed by
k. Since not all ships are compatible with all ports, we get ship specific bunker sets denoted Bv ⊆ B.
Furthermore, we assume that there are N cargoes and index them by i. Let NP = {1, · · · , N} and
ND = {N + 1, · · · , 2N} denote the set of pickup and discharge nodes, respectively. We represent
each cargo i by a pickup node i ∈ NP and a discharge node N + i ∈ ND. We define N = NP ∪ND

as the set of all cargo related nodes and partition NP into NP = NC ∪ NO, where NC and NO

contain pickup nodes for contract cargoes and optional cargoes, respectively. Associated with each
ship v is now a standard network (N v,Av) not including bunker options. The standard network
nodes, N v ⊆ NP ∪ ND ∪ {o(v), d(v)}, correspond to cargoes that ship v is able to carry and two
ship specific nodes representing, respectively, the origin and an artificial destination for ship v.
Ship v is able to carry a cargo i if it has sufficient capacity, is compatible with the specific load
and discharge ports and is in general compatible with cargo i on all accounts. The ship specific
cargo nodes are given by N v

P = NP ∩ N v for pickups and N v
D = ND ∩ N v for discharges. The

set of standard network arcs, Av, is a subset of {(i, j)|i ∈ N v, j ∈ N v} and contains all the arcs
traversable by ship v, e.g. with respect to time and bunker consumption.

For each ship v we extend the standard node set, N v, by adding a node for each element in
Bv and index the full set by i. Likewise, we extend the standard arc set, Av, by adding all arcs
connecting nodes in N v \d(v) with nodes in Bv and traversable by ship v with respect to time and
bunker. We do not connect the destination node, d(v), with bunker nodes, as we do not want idle
ships to bunker since this could send them in the exact opposite direction of their next (unplanned)
port stop and since their unplanned voyages could involve port stops with very attractive prices. For
each ship v we thereby obtain an extended cargo-bunker network (N̂ v, Âv) = (N v ∪Bv,Av ∪Av

B)
where Av

B denotes arcs connecting bunker nodes to nodes in N v \ d(v).

For v ∈ V and i ∈ N̂ v we let lvi denote the load onboard ship v just after completing service
at node i. In case of full shiploads it is common industry practice to simply distinguish between
a laden and a ballast ship, i.e. loaded or empty, rather than calculating the actual load. We will
adopt this practice and thereby use binary load variables, lvi , equal to 1 if the ship is laden and 0 if

the ship is ballast. With (i, j) ∈ Âv we associate a load dependent time consumption T v
ij(l

v
i) when

traversed by ship v calculated from the arrival at the port of node i until the arrival at the port
of node j. It accounts for service time at the port of node i whether it is a loading, discharging
or bunkering node, and the sailing time from the port of node i to the port of node j. We also
associate a load dependent bunker consumption Bv

ij(l
v
i) that accounts for bunker consumption

while traveling from node i to node j but not including bunker consumption while in port at
node i. This port consumption is instead accounted for by Bv

i . Finally, we have the variable cost
function Cv

ij(l
v
i). Like time consumption, this accounts for costs related to visiting the port of node

i and sailing costs from the port of node i to the port of node j. Note however, that the cost of
purchasing bunker is not included, as it is a dynamic node cost dependent on the amount of bunker
purchased at the node. Instead, this cost will be added separately and accounted at a bunker unit
price of Pk for k ∈ B while bonus bunker is ’resold’ at a unit price P . Also note that if nodes i and
j correspond to the same physical port, Cv

ij(l
v
i) does not include port costs, T v

ij(l
v
i) does not include

travel time and Bv
ij(l

v
i) = 0. We also have a revenue Ri for all cargoes i ∈ NP and we denote the

bunker capacity of ship v by Bv
Max. The safety level for bunker inventory is denoted Bv

Min while
the initial bunker level onboard the ship is denoted Bv

0 . Finally, we denote by [T v
MNi, T

v
MXi] the

time window associated with node i ∈ N̂ v. For o(v) this window is collapsed into the time ship v
is available for service. For the mathematical formulation we need the following variables:

xvij , v ∈ V, (i, j) ∈ Âv. Binary variable that is equal to 1, if ship v visits node i just before node
j, and 0 otherwise

tvi , v ∈ V, i ∈ N̂ v. Denotes the time ship v begins service at node i

51 7.3. Problem Description

lvBi, v ∈ V. Denotes the bunker load onboard ship v just after completing service at node i

lvi , v ∈ V. Binary variable that is equal to 1, if ship v is laden when leaving node i , and 0
otherwise

yvk , v ∈ V, k ∈ Bv. Gives the bunker purchased by ship v at option k ∈ Bv

We can now give an arc flow formulation of the TSRSPBO:

max
∑
v∈V

∑
i∈Nv

P

Ri

(∑
j∈N̂v

xvij
)
−
∑
v∈V

∑
(i,j)∈Âv

Cv
ij(l

v
i)xvij

−
∑
v∈V

∑
k∈Bv

yvkPk +
∑
v∈V

P · (lvBd(v) −B
v
0) (7.1)

s.t.∑
v∈V

∑
j∈N̂v

xvij = 1, ∀i ∈ NC , (7.2)

∑
v∈V

∑
j∈N̂v

xvij ≤ 1, ∀i ∈ NO, (7.3)

∑
j∈Nv

P∪Bv∪{d(v)}

xvo(v)j = 1, ∀v ∈ V, (7.4)

∑
i∈N̂v

xvij −
∑
i∈N̂v

xvji = 0, ∀v ∈ V, j ∈ N̂ v \ {o(v), d(v)}, (7.5)

∑
i∈Nv

D∪Bv∪{o(v)}

xvid(v) = 1, ∀v ∈ V, (7.6)

∑
j∈Bv

xvij = 0, ∀v ∈ V, i ∈ Bv, (7.7)

xvij(t
v
i + T v

ij(l
v
i) − tvj) ≤ 0, ∀v ∈ V, (i, j) ∈ Âv, (7.8)

T v
MNi ≤ tvi ≤ T v

MXi, ∀v ∈ V, i ∈ N̂ v, (7.9)

xvij(l
v
i + 1 − lvj) = 0, ∀v ∈ V, (i, j) ∈ Âv|j ∈ N v

P , (7.10)

xvi,N+j(l
v
i − 1 − lvN+j) = 0, ∀v ∈ V, (i,N + j) ∈ Âv|j ∈ N v

P , (7.11)

xvij(l
v
i − lvj) = 0, ∀v ∈ V, (i, j) ∈ Âv|j ∈ Bv, (7.12)

lvo(v) = 0, ∀v ∈ V, (7.13)

lvi = 1, ∀v ∈ V, i ∈ N v
P , (7.14)

lvN+i = 0, ∀v ∈ V, i ∈ N v
P , (7.15)

xvij(l
v
Bi − Bv

ij(l
v
i) −Bv

j + yvj − lvBj) = 0, ∀v ∈ V, (i, j) ∈ Âv|j ∈ Bv, (7.16)

xvij(l
v
Bi − Bv

ij(l
v
i) −Bv

j − lvBj) = 0, ∀v ∈ V, (i, j) ∈ Âv|j ∈ N v, (7.17)

lvBo(v) = Bv
0 , ∀v ∈ V, (7.18)

Bv
Min +

∑
j∈N̂v

Bv
ij(l

v
i)xvij ≤ lvBi ≤

∑
j∈N̂v

Bv
Maxx

v
ij , ∀v ∈ V, i ∈ Bv ∪N v (7.19)

0 ≤ yvi ≤ (Bv
Max − Bv

Min)
∑
j∈N̂v

xvij , ∀v ∈ V, i ∈ Bv (7.20)

tvi + T v
i,N+i(l

v
i) − tvN+i ≤ 0, ∀v ∈ V, i ∈ N v

P , (7.21)∑
j∈N̂v

xvij −
∑
j∈N̂v

xvj,N+i = 0, ∀v ∈ V, i ∈ N v
P , (7.22)

lvi ∈ {0, 1}, ∀v ∈ V, i ∈ N̂ v, (7.23)

xvij ∈ {0, 1}, ∀v ∈ V, (i, j) ∈ Âv. (7.24)

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 52

The objective function (7.1) maximizes profit by subtracting all costs from revenues for serviced
cargoes and adding the value of bonus bunker. Note that B0 is a constant that could be removed.
However, we leave it in the objective function to emphasize that only bunker levels above the
initial level incurs a premium. The premium for bonus bunker is negative if the bunker level at the
destination node is less than at the origin node. Constraints (7.2) and (7.3) ensure that all contract
cargoes are carried by exactly one ship and that all spot cargoes are carried by at most one ship.
Constraints (7.4) and (7.6) together with the flow conservation constraints in (7.5) ensure that
each ship is assigned a schedule starting at the origin node and ending at the destination node.
If a ship is idle for the entire planning period, the assigned schedule is simply represented by the
arc (o(v), d(v)). Our assumption of at most one bunker stop in between cargo stops is enforced in
constraints (7.7). In situations where this assumption is not reasonable, the right hand side of the
constraints can be increased or they can just be removed from the model. Constraints (7.8) ensure
that if the route for a ship v visits node i directly before node j, the service at node j cannot begin
before service time at node i plus the service time at node i and travel time from node i to node j
with ship v. Waiting time is allowed and, hence, the constraints have an inequality sign. Together
with the time window constraints (7.9) they take care of the temporal aspect of the problem. If
ship v does not visit node i, the service time tvi is artificial. Constraints (7.10), (7.11) and (7.12)
ensure that the cargo load variables are correctly updated along the chosen route, increasing the
load variable by 1 if visiting a loading node, similarly decreasing the load variable if visiting a
discharge node and simply maintaining the previous load variable value if visiting a bunker node.
In (7.13) the initial load condition for each ship is given since we assume that the ship is empty at
the time it is available for service. Constraints (7.14) and (7.15) determine the value of the load
variables for loading and discharging nodes, respectively. For completeness constraints (7.15) have
been added to the model though they could be omitted. Constraints (7.16)-(7.19) place similar
restrictions on the bunker load variables: Constraints (7.16) and (7.17) ensure that the bunker load
variables are updated correctly, constraints (7.18) give the initial bunker level for each ship while
(7.19) give lower and upper bounds for the variables ensuring that a ship will never arrive at a port
with less bunker than the safety level and will never carry more bunker than its bunker capacity
allows. Constraints (7.20) restrict the bunker purchase amounts for each ship. Constraints (7.21)
are precedence constraints ensuring that a cargo cannot be discharged before it has been picked
up, i.e. node i must be visited before node N + i. Constraints (7.22) couple pickup and discharge
nodes for each cargo together to ensure that the same ship will service both nodes. Finally, the
load variables and the flow variables are restricted to be binary in (7.23) and (7.24), respectively.

7.4 Solution Method

The mixed integer programming model (7.1)-(7.24) could in theory be solved by commercial opti-
mization software for non-linear problems. In practice, however, problem instances will be too large
to achieve solutions in a reasonable amount of time. This section therefore describes a solution
method tailored for the TSRSPBO.

In the mathematical programming model (7.1)-(7.24), constraints (7.4)-(7.24) are ship specific
with no interaction between ships. They constitute a routing and scheduling problem for each ship
where time windows, cargo and bunker capacity as well as bunker purchases are considered. We
denote these ship specific constraints ship routing constraints and further notice that the objective
function also splits into separate terms for each ship. The only constraints linking the ships
together are the so called common constraints in (7.2) and (7.3) which ensure that each contract
cargo is carried by exactly one ship and that each spot cargo is carried by at most one ship. This
suggests use of decomposition and column generation since it allows the complex and ship specific
constraints, concerning the routing and scheduling, to be handled separately in subproblems, one
for each ship. Only the common constraints remain in the master problem in which feasible
ship schedules constitute the columns. This way the original problem is transformed into a master
problem with a reduced number of constraints but with a potentially very large number of columns.

Often ship scheduling problems are so tightly constrained that it is possible to a priori generate
all master problem columns. This is done by generating the optimal schedule for each feasible
cargo set for each ship. Such an approach has been attempted in Brønmo et al. (2007). However,

53 7.4. Solution Method

as already mentioned, Brønmo et al. (2010) find it computationally advantageous to apply dynamic
column generation even though a priori generation can be applied. The inclusion of bunker decisions
in the scheduling process will further complicate the determination of an optimal schedule for a
given cargo set and can, hence, make a priori generation very time consuming. In line with this,
we apply dynamic column generation to solve the problem (see e.g. Desaulniers et al. (2005) for
a general description or Christiansen et al. (2007) for a maritime version). Therefore, we initially
consider only a subset of the master problem columns and iteratively add new columns that have
the potential to improve the current solution. We find these columns by iteratively solving the
subproblems, also called pricing problems.

7.4.1 The Master Problem

The common constraints (7.2) and (7.3) in combination with the objective function (7.1) constitute
the master problem. They must, however, be expressed by new path flow variables corresponding
to feasible ship schedules and constraints must be added to ensure that each ship is assigned exactly
one schedule. We let Rv denote the set of all feasible schedules for ship v. Each cargo set can
correspond to several feasible schedules as the order of cargoes in the schedule will correspond to
different geographical routes. Schedules can also differ in bunker port calls, the amounts purchased
at each bunker port and even in the timing of port calls. For a given set of cargoes there will be
at least one profit maximizing schedule corresponding to the optimal bunkering strategy and the
optimal timing of port calls. However, due to the subproblem solution method we might generate
several different schedules for the same cargo set. We denote the profit of a schedule by pvr for
r ∈ Rv and define a binary schedule variable λvr that is equal to 1 if ship v is chosen to sail schedule
r, and 0 otherwise. The profit pvr is calculated based on information from the underlying schedule,
which holds all necessary information, i.e. the ship it is constructed for, the cargoes carried, the
bunker ports visited as well as the bunker quantities purchased, and the timing of port calls during
the schedule. Finally, we let avir be equal to 1 if ship v carries cargo i in schedule r, and 0 otherwise.

The master problem is now given by the following path flow reformulation of the original arc
flow model:

max
∑
v∈V

∑
r∈Rv

pvrλ
v
r (7.25)

s.t.∑
v∈V

∑
r∈Rv

avirλ
v
r = 1, ∀i ∈ NC , (7.26)∑

v∈V

∑
r∈Rv

avirλ
v
r ≤ 1, ∀i ∈ NO, (7.27)∑

r∈Rv

λvr = 1, ∀v ∈ V, (7.28)

λvr ∈ {0, 1}, ∀v ∈ V, r ∈ Rv. (7.29)

The above model is based on all feasible schedules but it is not necessary to include all of them.
Instead, column generation is applied to dynamically generate them as needed. This process begins
with the solution of the restricted master problem (RMP) which is the linear relaxation of the
original master problem (7.25)-(7.29) but with only a subset of the columns included. Iteratively
we then generate new promising columns by solving the subproblems.

7.4.2 The Subproblem - Generation of promising schedules

Constraints (7.4)-(7.24) split into one independent subproblem for each ship. Since these are all
essentially the same problem, we simply consider the generic subproblem for ship v and refer to
’the subproblem’. Note though the interdependence between the subproblems due to the common
constraints. The ship routing constraints in the subproblem ensure that any solution is a feasible
schedule for ship v and the objective ensures that only schedules with the potential to improve the
current solution of the RMP are generated. This, in turn, means finding schedules with positive

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 54

reduced costs in the current solution of the RMP, i.e. finding columns r with pr − σTar, where σ
is the dual vector of the current solution of the RMP. Let ui be the dual variables for constraints
(7.26) and (7.27) where the variables corresponding to (7.26) are free of sign while the variables
corresponding to (7.27) must be nonnegative. Next, let wv be the dual for constraint (7.28) which is
also free of sign. Finally, define σi = ui for all i ∈ NP , σo(v) = wv corresponding to the origin node
and σi = 0 for all other i. Since we consider the generic subproblem we can drop the superscript
v and the subproblem is then given by:

max
∑
i∈NP

Ri

(∑
j∈N̂

xij

)
−

∑
(i,j)∈Â

(
Cij(li) + σi

)
xij −

∑
k∈B

ykPk + P (lBd − B0) (7.30)

s.t.

(7.4)− (7.24). (7.31)

The subproblem finds the maximum reduced cost feasible schedule with respect to the current
dual values. If this schedule has a positive reduced cost it will be represented by a new column in
the RMP. The subproblem can be modeled as a resource constrained shortest path problem and
is NP-hard since it is a generalization of the shortest path problem with time windows which is
itself NP-hard (see e.g. Desrosiers et al. (1995)). We therefore devote Section 7.4.4 to an efficient
solution method for the subproblem.

7.4.3 Full Column Generation Scheme

The full column generation scheme is an iterative process starting from the RMP with only a small
initial column set. To ensure feasibility of the initial problem, we include a dummy column for
each contract cargo. Each dummy column corresponds to an artificial ship carrying exactly one
contract cargo. The revenue from each dummy schedule is −M , where M is a large constant.
Feasibility with respect to the generalized upper bound constraints (7.28) must also be ensured,
i.e. each ship must be assigned a schedule. Therefore, we include an empty schedule with 0 profit
for each ship corresponding to the ship being idle for the entire planning horizon, and leave the
corresponding (o(v), d(v)) out of the subproblem networks.

Once the RMP has been solved, the optimal dual solution values are transferred to each of
the subproblems which are then solved to obtain new schedules. The subproblem solution method
presented in the next section allows us to speed up the solution process considerably by generating
several columns for each ship in each iteration. This is done by transforming all new schedules with
positive reduced cost into columns rather than just transforming the schedule with the maximum
reduced cost. All these new columns are then added to the RMP which is resolved to obtain new
dual values that can again be transferred to the subproblems. This process of iterating between
the master problem and the subproblems continues until no promising columns can be found, i.e.
until no schedules have positive reduced costs.

Since all the intricate and nonlinear constraints and costs are transferred to the subproblems,
the master problem can most often be solved by commercial linear programming software. As each
subproblem must be solved a potentially great number of times to obtain all necessary columns,
a fast solution method for the subproblem is vital for the effectiveness of the column generation
scheme. Since the subproblem considered here is NP-hard, solving it can be very time consuming
and a choice between heuristics and optimization must be made depending on the desired solution
quality and computation time.

Once the column generation process terminates, an optimal solution to the linear relaxation of
the full master problem is obtained. In order to ensure an optimal integral solution, the column
generation scheme must be embedded in a Branch & Bound search, resulting in a Branch & Price
algorithm. In our computational studies we have, however, encountered relatively few fractional
solutions and for these fractional solutions, the integrality gap was acceptable. Therefore, we
have not implemented a Branch & Bound algorithm. Instead, integrality has been enforced by
the simple, but non-optimal, approach of solving the integer version of the RMP once column
generation terminated. In Section 7.7 we verify the quality of these forced integer solutions by
comparing them to their corresponding upper bounds obtained from the fractional solutions.

55 7.4. Solution Method

7.4.4 Solving the subproblem

Shortest path problems with resource constraints (SPPRC) are often encountered in both land and
air based transportation, e.g. as a subproblem in column generation frameworks for solving vehicle
routing and crew rostering problems. The problem entails finding a shortest path between two
nodes, while satisfying several resource constraints. For vehicle routing problems typical resources
include, among others, time windows and vehicle capacity, and we observe similar requirements
here. The SPPRC is typically solved by dynamic programming algorithms on the underlying
networks, and we will also use this approach here. The reader is referred to Desaulniers et al.
(1998), Irnich and Desaulniers (2005) and Irnich (2008) for a thorough introduction to the SPPRC,
the related dynamic programming algorithms, and several associated concepts. In what follows
we provide more specific details on the SPPRC at hand. In particular, we discuss in detail the
nature of the underlying network, preprocessing techniques, and the actual dynamic programming
algorithm we implement.

The Underlying Ship Network

Before providing a detailed description of the underlying network for the subproblem, we state an
assumption which impacts the modelling approach chosen. As the research in this paper is more
on a tactical level than an operational one, we are looking for a guide line on where to bunker
and roughly how much to bunker at each bunker stop. The operational planning problem of
exactly how many tons of bunker to purchase with decimal accuracy is not relevant in our setting
where decisions are based on bunker price forecasts rather than actual prices. If decimal precision
is desired for the bunker levels, one could adopt similar procedures from Ioachim et al. (1998)
and Christiansen and Nygreen (2005) to handle the linear node costs. Instead, we assume that we
can discretize the bunker purchase variables; this allows us to avoid the difficulties associated with
linear node costs.

When discretizing the bunker purchase variables an obvious concern is how to do this in a
manner that does not sacrifice optimality too much. We therefore note that logically the optimal
decision at each bunker stop is to either fill up the tank or to purchase just enough bunker to allow
the ship to sail to the next bunker stop; we cannot know in advance how much bunker is required
to get to the next bunker stop, but we can obviously fill up the tank. When tuning and testing
the devised solution method in Section 7.6 and Section 7.7 we see that when constructing bunker
schedules, the majority of bunker stops actually correspond to filling up the tank to its capacity.
As we want to retain this optimal decision amongst the possible purchase quantities, we let each
bunker node correspond to the situation of filling up the tank to a certain inventory level rather
than purchasing a specific amount of bunker. Note that using a mix of these two types of bunker
purchases can almost aggregate some bunker nodes, e.g. if the ’fill up tank’ node corresponds to
bunkering 833 tons and the fixed amount node is 800 tons. Therefore, we only use ’fill up to’ nodes
so that the purchase quantities span the feasible interval of possible purchase quantities as much
as possible. That is each bunker node of the network corresponds to a different ’fill up to’ level
for a particular bunker purchase option. Each ship has its own bunker tank capacity and safety
level and these, in turn, describe the ship specific interval of feasible bunker purchase quantities.
This interval is divided in to L discrete bunker purchase quantities, where L is a parameter of the
algorithm that we tune in Section 7.6. Note that this parameter could be different for each ship
but as the tank capacities do not vary too much in size for the fleet we consider, we have chosen to
use the same parameter for all ships. Dividing (BMax − BMin) into L intervals and rounding the
result down to the nearest 25 tons yields the refinement level q. That is each bunker option i ∈ Bv
is replaced by the L discrete purchase quantity levels: BMax, BMax − q . . . , BMax − (L − 1)q.
If L = 1, the only option is to fill up the tank to its maximum capacity. Note that with the
discretization of bunker purchases, the notion of bonus bunker becomes a vital part of the solution
procedure. If this premium for unused bunker is not included in the model, it becomes more
important to find combinations of bunker purchase quantities that let ships finish their schedules
with empty tanks than to find cheap bunker options. In other words, the effect of price changes
on the optimal bunker plan is almost non existent.

The SPPRC for ship v ∈ V can now be stated on a network in which the node set is comprised
of N v and an extended set of bunker nodes based on the bunker set Bv. This extended set of

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 56

bunker nodes is obtained by discretizing the bunker purchase variables in to the L discrete bunker
purchase options. Arcs are introduced to govern the transitions between the cargo nodes and the
bunkering possibilities. More specifically, the arc set contains all arcs inAv (i.e. the cargo network),
and additional arcs which connect cargo nodes to each bunkering possibility. Figures 7.1(a) and
7.1(b) illustrate the resulting network for a small example with 2 cargoes and only one bunker
option that has been discretized into just one node, i.e. L = 1. Note the double headed arrows in
Figure 7.1(b) which have just been aggregated for the sake of simplicity in this figure. Nodes Li

and Di correspond, respectively, to pickup and discharge of cargo i while node B corresponds to
the bunker node.

(a) Standard cargo network (b) Normal cargo-bunker network

Figure 7.1: Extending a standard cargo network to include bunker nodes

While Figure 7.1(b) can be used to model the SPPRC for ship v ∈ V, we prefer to modify it
in the following way. We duplicate the extended set of bunker nodes, a set with cardinality K · L
(with K = |Bv|), as many times as there are potential time feasible arcs in the standard network,
(N v,Av), excluding arcs leading to the destination node. Note that ’potential time feasible’ means
that any arc connecting nodes in N v \d(v), and which is feasible with respect to time, is considered
here. A ’potential time feasible’ arc does not have to belong to Av as it can be infeasible with
respect to bunker constraints. Each new node is inserted on to the edge it is associated with. If
any arcs connecting bunker nodes to the rest of the network are infeasible with respect to bunker
consumption and safety levels, they can be removed. Essentially, we construct multiple nodes in
the network for each i ∈ Bv, where each node is associated with a specific, discrete bunker amount
and indicates whether the respective bunkering occurs between a specific origin destination pair.
The resulting, extended network can be seen in Figure 7.2(a).

(a) Extended cargo-bunker network (b) Reduced network

Figure 7.2: The extended bunker network and the reduced extended cargo bunker-network

Constructing such networks means that all paths in the networks respect the cargo capacity
and precedence constraints as they are implicitly considered in the network setup. Furthermore,
each arc in the network now corresponds to either a laden or a ballast ship and, hence, the load
dependent time and bunker consumption as well as costs can now be considered fixed and calculated
in advance. As a result, in total, this network setup allows us to disregard the onboard cargo as a
resource, and this simplifies the dynamic programming algorithm for finding the shortest path.

57 7.4. Solution Method

All these advantages do, however, come at the expense of an increase in the potential node and
arc count of (N2 + N − 1)K · L and (2N2 − 2N − 1)K · L, respectively, compared to the normal
cargo-bunker network illustrated in Figure 7.1(b). A significant number of these extra nodes and
arcs can, however, be removed by preprocessing, especially with respect to time windows. A further
reduction in the node and arc count can be achieved by noting that some of these new bunker nodes
can be aggregated into one without sacrificing the reduction in resources. First, all bunker nodes
that are successors to the origin node and correspond to the same bunker option and purchase
level can be aggregated. Secondly, all bunker nodes that are successors to a single discharge node
and predecessors to other pickup nodes and correspond to the same bunker option and purchase
level can be aggregated. This reduces the potential size of the network by (N2 − N − 1)K · L
nodes and also (N2−N − 1)K ·L arcs compared to the extended cargo-bunker network illustrated
in Figure 7.2(a). This gives a potential network size of 2N + 2 + (2N + 1)K · L nodes and
N2 + 2N + (N2 + 3N + 1)K · L arcs. Figure 7.2(b) illustrates the final network for the same
example above.

Time windows on bunker nodes are, as mentioned, so narrow that a ship can never visit the
same bunker node twice. In our data sets, the time windows for cargo loading are also tight enough
that, in combination with the long voyage lengths, there do not exist any time feasible cycles in the
networks. Hence, the resulting network is acyclic. If cycles do exist, nodes with wide time windows
must be split in to several duplicate nodes with smaller time windows. This produces an acyclic
network; however, it does not ensure that cargoes are not lifted several times in one schedule as
this simply corresponds to visiting several of the duplicate nodes for the same cargo. To prevent
this, the dynamic programming algorithm needs to remember all previously visited nodes. This
is cumbersome and we refrain from doing so. We describe how this is handled in the following
section.

During network construction, standard preprocessing techniques are applied to tighten time
windows and, in turn, reduce the number of arcs, see e.g. Desrosiers et al. (1995). Each node
has an associated time window, an associated port and for bunker nodes also a bunker price.
Furthermore, each node also has a bunker window holding the minimum and maximum level of
bunker allowed onboard a ship on arrival. For cargo nodes and the destination node this window
is [Bv

Min, B
v
Max] and for the origin node it is [Bv

0 , B
v
0]. For the bunker nodes, the window becomes

[Bv
Min, F], where F is the ’fill up to’ level at the corresponding bunker node. Each arc in the

network now has a constant time and bunker consumption as well as cost and we denote these
by Tij , Bij and Cij , respectively. We abuse notation slightly by now letting Bij denote bunker
consumption corresponding to both traveling from i to j as well as the consumption from port
operations at node i (as opposed to Bv

ij(l
v
i) that did not include port operations at node i). Note

that Cij still does not include bunker purchases or the bonus bunker premium as these will be
dynamically added.

Dynamic Programming Algorithm

Given a dual solution to an optimized restricted master problem, the role of the subproblem is
to identify whether or not a positive reduced cost schedule exists for any of the ships. This
entails solving the SPPRC over the networks described above once the respective arc costs have
been updated to reflect the dual solution. Updating the cost on arc (i, j) entails assigning it the
negative of the fixed cost part of the reduced cost. We denote this cost as Ĉij . That is,

Ĉij = Cij + σi − Ri ∀(i, j) ∈ Â, (7.32)

where Ri = 0 for i /∈ NP . The remaining part of the reduced cost expression in (7.30), i.e. the
node costs for bunker purchases and node premiums for bonus bunker, must be added dynamically
as partial schedules are extended and bunker purchase amounts are determined.

As mentioned above, we solve the SPPRC using a dynamic programming algorithm. Such
algorithms for this particular problem build new schedules for ship v ∈ V by starting with the
trivial, partial schedule s = {o(v)}. Schedules are then built incrementally by extending partial
schedules in all feasible ways. Partial schedules are represented by so-called labels. That is, for each
partial schedule si ending in node i we associate a label L(si) = (C̄(si), T (si), B(si)). Here C̄(si) is
the negative of the reduced cost for the schedule, i.e. the sum of the arc and node costs where the

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 58

arc costs are
∑

(i,j)∈si Ĉij . T (si) and B(si) denote, respectively, the arrival time at node i and the
bunker inventory level on arrival at node i on schedule si. Note that we relax the subproblem to
allow non elementary paths and refrain from keeping track of the nodes previously visited. Hence,
routes can be produced where a cargo is picked up more than once, i.e. have air > 1 for some i.
Such a schedule is not added to the master problem.

Two partial schedules generated at the same node can be compared by defining a partial order
relation between the respective labels. This partial order allows us to determine if one label
dominates another that can, hence, be discarded. This dominance concept ensures that only the
best schedules, i.e. Pareto optimal, are kept during the iterative process of the algorithm as only
they can contribute to the optimal schedule. The success of the algorithm relies on an efficient
domination procedure for the labels to eliminate non-useful partial schedules. In our case we note
that a schedule si ending at node i dominates another schedule s′i also ending at node i if and only if
L(si) 6= L(s′i), C̄(si) ≤ C̄(s′i), T (si) ≤ T (s′i) (since there is no cost for waiting) and B(si) ≥ B(s′i).

In order to augment a partial path, label extension is necessary. Label extension is associated
with a particular arc in the underlying network and utilizes specific resource extension functions
that dictate how each resource level will change when traversing the arc. For the case at hand, the
time resource is extended using T (sj) = max{TMNj , T (si) + Tij}, and this extension is deemed
feasible if T (si) + Tij ≤ TMxj . When extending to bunker nodes, the bunker resource is updated
using B(sj) = BMXj with an associated dynamically calculated purchase quantity yj = BMXj −
(B(si) − Bij). Note that this updates the bunker inventory immediately on arrival at the node
and remember that BMXj is defined as the ’fill up to’ level for bunker nodes. I.e. a ship filling up
its bunker tank to e.g. 1200 tons might actually leave the node with 1199 tons as a small amount
of bunker is consumed while bunkering. If j is a cargo related node, we have B(sj) = B(si)−Bij .
For the destination node, d, we get B(sd) = B0, with an associated dynamically calculated bonus
bunker amount, yd, given by B(si)−Bid−B0. With this setup, si can only be extended to node j
if B(si)−Bij ≥ BMNj and B(si)−Bij ≤ BMXj . The latter requirement ensures that a schedule
with arrival bunker inventory higher than the ’fill up to’ level at a bunker node will not visit such
a node. Finally, the negative of the reduced costs are updated as follows:

C̄(sj) = C̄(si) + Ĉij + yjPj , ∀j ∈ B, (7.33)

C̄(sj) = C̄(si) + Ĉij , ∀j ∈ N , (7.34)

C̄(sd) = C̄(si) + Ĉid − yd · P, (7.35)

The dynamic programming algorithm we implement is hence a standard label setting algorithm,
which begins at o(v) with an initial label. Nodes are considered in topological order, and processed
in turn. In processing a node, all non-dominated labels for the current node are extended, using the
resource extension functions defined above and consider the node’s set of outgoing arcs. When the
algorithm terminates, several resource feasible and Pareto optimal schedules might exist. We add
all schedules with positive reduced cost, i.e. C̄(p) < 0, to the master problem. See Algorithm 1
for a general overview of our label setting algorithm. Due to the reselling of bonus bunker, all
schedules will have the same amount of bunker at the end, namely the initial inventory level of
the ship. Schedules can, however, differ in both reduced costs and time. Therefore, we can have
multiple columns corresponding to the same cargo set in the master problem if they correspond to
different end times, e.g. due to differences in bunker plans.

Finally, it should be noted that due to the discretization of bunker purchases and the assumption
of at most one bunkering in between cargo stops, the subproblem solution method described above
is heuristic. To ensure an optimal solution to the master problem, the subproblems should be
solved to optimality once the heuristic approach fails to find schedules with positive reduced costs.
As previously discussed, the planning problem considered here is of a more tactical nature and,
hence, an optimal continuous solution is beyond the scope of this research. We do, however, rerun
the dynamic programming algorithm with an increased number of possible purchase quantities, i.e.
an increased value of L, for the fixed cargo routes found by the initial optimization of the master
problem. We discuss this further when tuning the algorithm in Section 7.6.

59 7.5. Problem Instance Generators

Algorithm 1: Label Setting Algorithm

Input: Directed, Acyclic Graph G = (V,A), two nodes o, d ∈ V
Output: Set of Pareto Optimal Schedules S

1 Sorted Node List V̂ ← topologicalSort(G);
2 CreateInitialLabel(o);

3 for u ∈ V̂ and u 6= d do
4 Lu ← getLabels(u);
5 for l ∈ Lu do
6 if l is not dominated then
7 for a ∈ outgoingArcs(u) do
8 if extension(l, a) is feasible then
9 v ← headNode(a);

10 createLabel(l, a, v);
11 Lv ← getLabels(v);
12 dominanceCheck(Lv);

13 Ld ← getLabels(d);
14 S ← constructSchedules(Ld);
15 return S;

7.5 Problem Instance Generators

In order to both tune and test the devised algorithm thoroughly, we have developed instance
generators that independently generates cargoes and bunker prices. These instance generators are
based on industry data from the collaborating tramp operator. Although this operator operates
world wide, the cargoes naturally divide into two groups traveling within two separate parts of the
world with only 5% of cargoes traveling between them. We therefore limit our analysis to one of
these cargo groups, namely the one responsible for almost 70% of the overall cargoes. We have
excluded some remote regions that generate very little, if any, demand. This leaves us with a cargo
area covering the Mediterranean, the North-West part of Europe, the East Coast of Canada and the
US, the Mexican Gulf and the Caribbean Sea. We have selected 38 ports that are representative
for the ports in this area. Both generators therefore assume 38 ports and each port has some
associated ship dependent port costs. For all problem instances the fleet is the same and consists
of 7 ships of varying size and other characteristics, e.g. speed, bunker consumption etc.

For each cargo, the cargo generator randomly selects a pickup port from a probability distribu-
tion of cargo pickup ports. Once the pickup port is known, there is a specific discharge distribution
related to this pickup port from which a discharge port is randomly drawn. A cargo quantity is
randomly selected in a user defined interval. For our analysis, the quantities are randomly chosen
between 60-90% of ship sizes. Based on this quantity as well as the distance between pickup port
and discharge port and their costs, a reasonable revenue for transporting the cargo is randomly
calculated. Also based on user defined intervals, time windows for both pickup and discharge as
well as the service time for loading and unloading are randomly calculated. We have used time win-
dows with a length of minimum 72 hours and maximum 120 hours. Finally, the cargo is randomly
selected to be either a spot cargo or a contract cargo depending on user input.

The bunker price generator randomly generates a price quote for each of the 38 ports for a
number of consecutive time periods determined by the user. E.g. if a period is determined to be 3
days and the user asks for 20 bunker options, 20 price quotes will be generated for each of the 38
ports and each of these prices are given a time window of 3 days. For the 38 prices of the last time
period in the planning period, an average is calculated to use for bonus bunker. To generate the
actual prices, the 38 ports are divided into regions and each port is randomly selected to belong
to one of the price classes cheap, average and expensive. For each region, reasonable bunker price
intervals corresponding to a cheap port, an average port and an expensive port at the beginning of
the planning period are given as parameters to the generator. Each port is assigned a start price,
e.g. a price for the first 3 days, by randomly picking a price in the interval that corresponds to

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 60

the specific region and price class of the port. In order to generate prices for the remaining time
periods a world trend is randomly generated that is valid for all regions and ports. This world
trend simply defines whether the price goes up or down from one time period to the next. For
each port the remaining bunker prices are now determined by using the start price of the port
and then raising or lowering the price from time period to time period following the world trend.
The actual amount it is raised or lowered with is determined randomly for each port for each time
period from an interval defined by user input. In our analysis we have used an interval of 0-5%.

7.6 Parameter Tuning

The number of possible purchase levels, i.e. the parameter L, must be tuned before running the
algorithm. Obviously, the more levels we allow the more of the underlying feasible bunker interval
we span, however at a cost of computation time.

We have generated 18 problem instances for tuning using the instance generators described
in Section 7.5. All problem instances have the same fleet of 7 ships and use 38 ports worldwide.
Three cargo instances have been generated containing 30 cargoes with their loading time windows
distributed over a time horizon of 30 days. Note that the planning period continues after these 30
days as cargoes must of course also be discharged. Three bunker price instances have been generated
with 14 weekly bunker options for each port corresponding to a time horizon that just contains
the latest possible discharge time plus the time to discharge. Combining each cargo instance with
each of the corresponding bunker instances yields nine instances with this combination of data and
we denote them C30/PH30/B14 instances. Another three cargo instances have been generated
with 50 cargoes over a 60 days pickup planning horizon. Three bunker price instances have been
generated for these cargo sets but now with 19 bunker options for each port. Again, we get nine
instances by combining each cargo instance with each of the bunker instances. We denote these
bigger instances by C50/PH60/B19.

The integrated planning approach will be more advantageous the fewer contract cargoes there
are. We want to explore what effect the integrated planning approach can at best have and
therefore we have predefined all cargoes to be spot cargoes. However, when testing the algorithm
in Section 7.7 we also consider data sets with contract cargoes.

On each of the problem instances we have run the algorithm with varying number of purchase
levels, namely L varying from one to ten, and report the key values in Table 7.1. Each entry
corresponds to the average over the nine problem instances of the specific instance type for the
stated setting of L. The key values reported are: the percentage increase in the objective function
value compared to the L = 1 case (Obj.), the total running time in CPU seconds (CPUTotal), the
CPU seconds for solving the subproblems (CPUSub), and, finally, the percentage of all bunker stops
that filled up the ship’s bunker tank to its maximum capacity (Filled). This number is interesting
as it shows that relatively few bunker stops use ’fill up to’ levels lower than tank capacity and,
hence, the actual discretization of this interval is less important.
We see from Table 7.1 that increasing L yields an objective function value increase of only 0.53-
1.4% and that the increase is largest when going from L = 1 to L = 2. Note also that the
objective function value does in one case drop when increasing L. This demonstrates the heuristic
nature of the algorithm due to the discretization. Furthermore, the increase in computation time
is considerable as L is increased and this is almost only due to the increase in solution time for the
subproblems. Running the algorithm with high L values is therefore computationally undesirable.
Increasing L gradually during the algorithm as the optimum is approached will also be very time
consuming. Even resolving the subproblems in each iteration with an increased value of L for
each fixed cargo route found by the shortest path solver, i.e. each Pareto optimal schedule (or
the best of them), will be computationally expensive. Instead we have chosen to investigate the
effect of simply increasing L for the fixed cargo sets found for each ship in the final solution to
the master problem. We rerun the algorithm with L = 17 as this is the lowest value that yields a
refinement of 25-50 mts between purchase quantities for all ships. For our tactical approach this
level of refinement is sufficient and mimics a continuous solve.

Table 7.2 shows the key values for rerunning the algorithm on all 18 instances again for increas-
ing values of L but this time finishing the algorithm by solving the bunker optimization problem

61 7.6. Parameter Tuning

Table 7.1: Tuning results for increasing L values

C30/PH30/B14 C50/PH60/B19

L Obj. CPUTotal CPUSub Filled Obj. CPUTotal CPUSub Filled

1 - 5.8 5.5 100.0 - 31.6 30.9 100.0
2 0.91 14.0 13.6 78.6 0.53 77.2 76.1 77.3
3 1.08 23.9 23.4 74.4 0.58 116.5 115.1 78.8
4 1.18 35.2 34.6 73.1 0.69 186.9 185.2 72.4
5 1.25 48.5 47.8 75.2 0.74 276.9 274.7 70.2
6 1.32 71.7 70.9 74.4 0.81 360.6 358.0 67.9
7 1.34 86.7 85.7 73.1 0.86 495.5 492.5 67.3
8 1.35 111.1 110.0 72.5 0.88 540.9 537.7 64.6
9 1.37 144.4 143.2 72.5 0.86 755.0 751.4 64.9
10 1.40 157.2 155.9 73.1 0.89 861.5 857.6 64.3

with L = 17 for the fixed cargo sets determined by the final solution to the master problem. If
the original solution from using the low L-value is better than when rerunning the algorithm with
L = 17 for fixed routes, we naturally use the original solution rather than the solution from rerun-
ning with L = 17. Note that the objective column (Obj.) again contains the percentage increase
in profit compared to the L = 1 case for the unrefined algorithm, i.e. the one used in Table 7.1.

Table 7.2: Tuning results for algorithm that reoptimizes with L = 17 for increasing L values

9 instances: C30/PH30/B14 9 instances: C50/PH60/B19

L Obj. CPUTotal Filled Obj. CPUTotal Filled

1 1.33 14.6 76.6 0.70 61.5 66.0
2 1.46 21.3 73.8 0.95 108.7 65.5
3 1.45 31.7 73.5 0.94 145.8 65.2
4 1.44 42.8 73.6 0.97 218.6 64.4
5 1.43 56.2 74.4 0.93 307.3 65.7
6 1.46 79.3 72.5 0.97 390.2 63.5
7 1.46 94.0 75.0 0.96 526.0 64.5
8 1.47 118.7 73.8 0.97 572.8 64.3
9 1.47 151.9 73.3 0.94 785.3 63.6
10 1.47 164.8 73.8 0.97 892.1 64.1

As before, we see that increasing the value of L yields almost no, if any, increase in profit and yet
the computation time increases rapidly.

In Figure 7.3(a) and Figure 7.3(b) we illustrate these findings for the C30/PH30/B14 and the
C50/PH60/B19 instances, respectively. Each figure shows a plot of the percentage increase in
objective function value and the CPU seconds both as functions of L for the standard version of
the algorithm and for the refined version using a resolve on fixed cargo sets with L = 17. As can be
seen from the above figures, the refined algorithm with L = 2 afterwards increased to L = 17 yields
almost the best objective function values of all settings and at almost no increase in computation
time. Increasing the initial L-value above 2 achieves at best an insignificant objective improvement
of only 0.01% and this is at great computational expense. We therefore use the refined algorithm
with an initial value of L = 2 when testing the algorithm in the next section.

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 62

(a) Tuning for small instances (b) Tuning for large instances

Figure 7.3: Tuning the algorithm on data sets of two different sizes

7.7 Computational Results

In order to explore the benefits of integrating bunker planning in the routing and scheduling phase,
we compare the devised solution method with the standard sequential approach where routes and
schedules are planned with no consideration to actual bunkering. When planning routes and
schedules in this standard approach, bunker consumption is accounted at the average of all bunker
prices valid at the time of planning and no actual bunker stops are planned, meaning that no time
is scheduled for bunkering and no bunker port costs are incurred. Each optimal schedule from
this process now assigns a given cargo set to each ship and a bunker plan must be created that
respects this cargo assignment to ships. We find the optimal bunker plan by fixing cargoes to ships
according to this cargo assignment, and then run the bunker algorithm with L = 17.

When testing the devised solution method, we consider the same fixed fleet of 7 ships as when
tuning in Section 7.6 and also use the same 38 ports for all test instances. We have used the
instance generator described in Section 7.5 to generate 25 cargo instances. With a pickup time
horizon of 30 days we have five sets with 30 cargoes, five sets with 40 cargoes and five sets with 50
cargoes. For the 60 days horizon we have five sets with 50 cargoes and five sets with 60 cargoes.
We have constructed two versions of each of these 25 cargo instances: one where all cargoes are
spot cargoes and one where 15% of the cargoes are randomly chosen to be contract cargoes. The
sets without contract cargoes allow us to explore how much the integrated planning approach can
at best increase profits while the other sets can help estimate the expected decrease in profit gain
when incorporating contract cargoes. We also generated problem instances with a planning horizon
of 90 days but when testing on these instances we found that the sequential approach in 2 out of
3 cases produced a solution that was infeasible with respect to bunkering. By construction, the
integrated approach found feasible solutions for all instances. Therefore, we could not compare
the two methods on these cases and do not report them here. It should be noted that bunkering
becomes more relevant the longer the planning horizon we consider as ships must travel more, but
at the same time the assumption of valid price forecasts becomes more unrealistic.

The bunker price generator has been used to generate six bunker instances: Three price in-
stances for the 30 days planning horizon with 14 weekly bunker options per port, i.e. a total of 532
bunker options, and three price sets for the 60 days horizon with 19 bunker options per port, i.e.
722 bunker options. Across all six price instances and across all time periods the prices range from
$494 per tonne to $705 with an average price of $608. The maximum recorded price spread within
a time period is $183 while the average and minimal spread is, respectively, $148 and $119. Within
the individual regions the maximum and minimum recorded spread is $120 and $21, respectively.
On average the spread for a given time period constitutes 22% of the maximum price for the time
period and 24% of the average price of the time period.

These cargo and price instances can be combined to a total of 2 × 75 problem instances.
Table 7.3 gives an overview of these problem instances of varying size and complexity. We use the
same notation as in Section 7.6 and denote a problem instance with e.g. 40 cargoes over a pickup
horizon of 30 days with 14 bunker options per port by C40/PH30/B14.

63 7.7. Computational Results

Table 7.3: Problem instance overview

Ships 7 7 7 7 7
Ports 38 38 38 38 38
Cargoes 30 40 50 50 60
Pickup Time Horizon (days) 30 30 30 60 60
Bunker options per port 14 14 14 19 19
Bunker options in total 532 532 532 722 722

Number of instances 2× 15 2× 15 2× 15 2× 15 2× 15

On each of these 150 problem instances we have run both the standard sequential approach
described above and the integrated approach defined by the refined bunker algorithm described
in Section 7.4 and Section 7.6 with L = 2 afterwards increased to L = 17. All computational
experiments were performed on a PC with 4.0 GB RAM and an Intel(R) Core(TM)2 Duo CPU
P8600, 2.4 GHz processor under a 64 bit Windows 7. Both algorithms were entirely developed in
C++ using Cplex 12.4 with default settings to solve the master problem.

Table 7.4 summarizes some key values for the refined bunker algorithm on the problem instances
containing only spot cargoes while Table 7.5 does the same for the instances with a mix of spot and
contract cargoes. Each line corresponds to the average key values over the 15 problem instances
of the corresponding problem type given by the entry in the left most column. We do not report
the objective function value but return to that when comparing with the sequential approach. The
key values reported are, respectively, the percentage gap from the forced integer solution to the LP
solution (Gap), CPU seconds for the whole algorithm (CPUTotal), CPU seconds for reoptimizing
bunker with L = 17 for fixed routes (CPU17), CPU seconds for solving all subproblems in the
column generation phase with L = 2 (CPUSub), the number of columns generated (Cols.) and the
number of calls to the subproblems (Subs) (i.e. number of iterations) in the column generation
procedure with L = 2, the percentage of all bunker stops that corresponded to filling up to tank
capacity (Filled), the number of cargoes carried in the final solution (Cargoes) and finally, some
statistics on price sensitivity (PS(Av,Max)). As each cargo instance is run with three different
price instances we can get an idea of how sensitive the method is to changes in prices. For this
we consider the differences in carried cargoes between two solutions derived from the same cargo
instance but from different price instances. If one solution carries x more cargoes than the other
solution, we define the cargo difference to be equal to x. Two solutions carrying the same number
of cargoes do not necessarily carry the same cargoes and we increase the cargo difference count by
one for each difference in carried cargoes when comparing the two solutions. As a small example,
imagine that one solution carries cargoes 1, 2 and 3 while another solution carries cargoes 1, 3, 4
and 5. Such a solution would correspond to one extra cargo and one different cargo and we would
therefore define the cargo difference between these two solution to be equal to two. In the price
sensitivity column (denoted PS) we report the average and the maximum cargo difference when
comparing solutions derived from the same cargo instance.

Table 7.4: Key values for the refined bunker algorithm on spot cargo sets

Gap CPUTotal CPUL17 CPUSub Cols Subs Filled Cargoes PS(Av,Max)

C30/PH30/B14 0.00 17.1 6.8 9.9 205 6 70.0 16.5 (1.2 , 2)
C40/PH30/B14 - 27.3 10.5 16.3 248 6 75.6 18.3 (0.9 , 2)
C50/PH30/B14 0.22 44.8 14.0 30.1 287 7 71.8 20.9 (2.2 , 5)
C50/PH60/B19 0.26 123.9 33.9 88.8 453 11 65.3 29.0 (3.8 , 8)
C60/PH60/B19 0.07 167.4 37.9 128.1 513 11 64.5 30.0 (3.9 , 8)

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 64

Table 7.5: Key values for the refined bunker algorithm on mixed cargo sets

Gap CPUTotal CPUL17 CPUSub Cols Subs Filled Cargoes PS(Av,Max)

C30/PH30/B14 0.02 21.8 8.4 13.0 250 8 72.7 16.3 (0.5 , 3)
C40/PH30/B14 - 32.4 11.7 20.2 356 8 74.1 18.3 (0.5 , 2)
C50/PH30/B14 0.07 53.8 14.2 38.8 430 9 73.9 20.5 (1.1 , 4)
C50/PH60/B19 0.38 152.0 36.5 114.2 728 15 66.6 29.6 (1.3 , 4)
C60/PH60/B19 0.21 222.7 44.1 177.1 733 15 65.0 30.8 (1.6 , 6)

Out of the 75 spot cargo instances, we obtained fractional solutions from only 19 instances while
there were 28 fractional solutions for the 75 mixed cargo instances. However, from Table 7.4 and 7.5
we note that the integrality gap is relatively small. Aside from justifying our non optimal integer
approach this also suggests that the ships are not competing for the cargoes. This is probably
because the fleet operates in a very large part of the world, and, hence, ports are spread over vast
distances. For a given cargo, chances are that only one available ship is close enough for it to be
profitable to carry the cargo. Vice versa, for a given ship, there are only a few cargoes that are both
reachable with respect to time but also profitable. The addition of contract cargoes introduces
a form of dependency between the ships because they must share these cargoes somehow. This
dependency explains the increase in fractional solutions and also the added problem complexity
reflected by the extra running time of the algorithm on instances with mixed cargoes.

From Table 7.4 and 7.5 we also see that the majority of bunker stops correspond to filling up
to tank capacity and that this number seems to be unaffected by the addition of contract cargoes.
Finally, from the price sensitivity column we see that the optimal solution is indeed affected by
changes in prices though the effect is, as could be expected, smaller when contract cargoes are
introduced. For the larger instances, two solutions from the same spot cargo instance can differ
by as much as 8 cargoes making an accurate price forecast very important.

Before considering the sequential approach we first present some network statistics in Table 7.6
for the bunker optimization with L = 17. The numbers are unaffected by the introduction of
contract cargoes so we only present one table. In the first part of the table we report statistics on
the actual network sizes: The number of nodes in the average subproblem network (Nodes), the
number of these that were bunker nodes (bNodes), the arcs in the average network (Arcs) and,
finally, the number of these that where bunker arcs (bArcs). In the second part of the table we
report the potential network sizes of, respectively, the aggregated (agNodes and agArcs) and the
extended (extNodes and extArcs) cargo-bunker networks as stated in Section 7.4.4.

Table 7.6: Network statistics for the refined bunker algorithm

Actual Network Size Potential Network Size

Nodes bNodes Arcs bArcs agNodes agArcs extNodes extArcs

C30/PH30/B14 19,362 19,303 39,423 39,252 64,966 1,055,384 989,582 1,980,000
C40/PH30/B14 27,612 27,534 56,974 56,688 86,266 1,832,824 1,745,042 3,491,600
C50/PH30/B14 35,833 35,736 77,165 76,735 107,566 2,823,264 2,713,302 5,429,000
C50/PH60/B14 49,899 49,802 150,177 149,482 145,946 3,830,644 3,682,302 7,367,000
C60/PH60/B14 57,588 57,474 209,821 208,849 174,846 5,463,484 5,285,162 10,573,800

We first note from Table 7.6 that bunker nodes constitute over 99.7% of the total nodes in the
networks while the corresponding number for the arcs is 99.5%. Next, we see that preprocessing
has allowed a network node reduction of 66-70% compared to the potential network size stated in

65 7.7. Computational Results

Section 7.4.4. Similarly, preprocessing has removed 96-97% of the arcs. When comparing with the
extended cargo-bunker network illustrated in Figure 7.2(a), we see that the potential node count
of the aggregated networks that we use, is 93-97% lower than that of the corresponding extended
networks while the arc count is 47-48% lower.

The key values for the standard sequential approach on the 2 × 75 instances are reported in
Table 7.7 and 7.8. They are almost the same as for the refined bunker algorithm but the CPU
time for solving subproblems now corresponds to the column generation phase of finding routes and
schedules without optimizing bunker simultaneously. Likewise, the number of generated columns
and the number of calls to the subproblems are derived from the pure routing and scheduling phase.
Finally, we do not report any values on price sensitivity as the bunker prices are not considered
while constructing the routes and schedules when using the sequential approach.

Table 7.7: Key values for sequential algorithm on spot cargo sets

Gap CPUTotal CPUL17 CPUSub Cols Subs Filled Cargoes

C30/PH30/B14 - 7.9 7.8 0.0 88 6 69.7 16.8
C40/PH30/B14 - 10.4 10.3 0.0 94 5 76.0 18.4
C50/PH30/B14 0.25 13.7 13.5 0.0 121 6 69.5 20.8
C50/PH60/B19 0.22 30.3 30.1 0.0 196 10 65.6 28.8
C60/PH60/B19 0.12 44.4 44.1 0.0 219 9 65.2 30.4

Table 7.8: Key values for sequential algorithm on mixed cargo sets

Gap CPUTotal CPUL17 CPUSub Cols Subs Filled Cargoes

C30/PH30/B14 - 8.3 8.2 0.0 95 7 72.0 16.2
C40/PH30/B14 - 11.3 11.2 0.0 144 7 73.7 18.2
C50/PH30/B14 0.25 13.8 13.7 0.0 180 8 73.6 20.4
C50/PH60/B19 0.36 35.8 35.6 0.0 304 14 65.3 29.6
C60/PH60/B19 0.28 45.0 44.7 0.1 319 14 64.2 31.0

On 2 out of the 25 mixed cargo instances the sequential approach produced a solution that was
infeasible with respect to bunkering. The infeasibility is of course independent of bunker prices
and therefore 6 bunker infeasible solutions were produced.

For the sequential approach, 24 out of the 75 spot cargo instances resulted in a fractional
solution while for the mixed cargo instances the same number was 18. However, as can be seen in
Table 7.7 and 7.8 the integrality gap is again relatively small. Furthermore, we see that bunker
optimization, i.e. rerunning with bunkering included and L = 17, is accountable for almost all the
CPU time and that the introduction of contract cargoes slightly increases the running time.

Finally, in Table 7.9 we compare the two approaches to see the effect of integrating bunker. Each
entry in the table corresponds to the average over the 15 problem instances generated for the given
problem category. For the columns marked with an * we only report the average over 12 instances
as the remaining 3 instances resulted in a bunker infeasible solution when using the sequential
approach. The objective function value for the sequential approach serves as a base at which we
compare the objective value from the integrated approach. Therefore, the objective values for the
sequential approach (Obj) are not reported, and the objective values for the integrated approach
(Obj%) are given as the percentage increase from the corresponding sequential objective function
values. We do not report the actual objective function values since these are to some extent artificial
due to the inclusion of bonus bunker. Both algorithms, however, include this and therefore we can
still compare their objective function values. For both algorithms we report the CPU seconds for
running the entire algorithm (CPU), the number of cargoes carried in the final solution (Cargoes),

Chapter 7. Tramp Ship Routing and Scheduling with Integrated Bunker Optimization 66

and the number of bunker stops in the final solution (Bunker). In the lower part of the table we
report the average (Av. Cargo Diff.) and maximum (Max Cargo Diff.) cargo difference when
comparing the solutions found by the integrated approach with those of the sequential approach.

Table 7.9: Comparing the two planning approaches

Spot cargo sets Mixed cargo sets

PH30/B14 PH60/B19 PH30/B14 PH60/B19

C30 C40 C50 C50 C60 C30* C40 C50 C50 C60*

Sequential
Obj - - - - - - - - - -
CPU 7.9 10.4 13.7 30.3 44.4 8.4 11.3 13.8 35.8 49.8
Cargoes 16.8 18.4 20.8 28.8 30.4 16.3 18.2 20.4 29.6 31.8
Bunker 13.2 14.7 14.7 21.3 21.5 12.5 14.2 15.1 20.9 21.2

Integrated
Obj% 0.4 0.3 0.7 0.5 0.6 0.1 0.1 0.2 0.5 0.4
CPU 17.1 27.3 44.8 123.9 167.4 22.2 32.4 53.8 152.0 240.2
Cargoes 16.5 18.3 20.9 29.0 30.0 16.3 18.3 20.5 29.6 31.5
Bunker 13.3 14.7 16.1 21.3 21.6 12.7 14.1 14.8 21.3 21.0

Av. Cargo Diff. 0.8 0.9 2.7 3.7 3.7 0.3 0.3 1.1 2.0 1.9
Max Cargo Diff. 2 3 5 6 8 3 2 4 3 7

When comparing the two planning approaches, we see that the percentage increase in profit is
relatively small and that the increase is smaller when contract cargoes are introduced. It is however,
important to remember that fixed costs have not been subtracted; hence, we are actually comparing
marginal contributions rather than profits. The actual profits will therefore be much lower and
any difference in profits will correspond to a larger percentage. We, however, do not have data
on fixed costs and so, we use the marginal contributions as above. We also note that the profits
obtained from the sequential approach are expected to be an optimistic estimate of the standard
sequential approach where current practice is to use manual planning in both phases. Furthermore,
we note that we are dealing with an industry where numbers are huge. This means that even small
percentage increases can lead to huge increases in profit. Finally, we note that including more ports
can help increase the bunker effect as distances between ports will become smaller. As already
mentioned, with our setup the distances between ports, and in turn between cargoes, are often so
large, that for a given ship, only very few cargoes are actually eligible for transportation.

From Table 7.9 we also note that the integrated approach does not in general produce solutions
that carry more cargoes than the sequential approach. The method is not designed to increase fleet
utilization in the sense of carrying extra cargoes. Rather it is designed to increase fleet utilization
by carrying the right cargoes and we see that the cargo difference can be as high as 8 cargoes for the
spot cargo instances and 7 for the mixed cargo instances. Aside from the reported cargo differences,
we very often found that cargoes carried in both the sequential solution and the integrated solution
where carried by different ships in the two solutions.

Table 7.9 also shows that the two solution approaches generally produce solutions that have
the same number of bunker stops. However, we note that the solutions produced by the sequential
approach generally rely on more pure bunker stops (i.e. ports where the ships only bunker) than
the integrated approach. This is to be expected as the sequential approach does not factor in
bunker prices when selecting the cargoes to carry.

Overall, we note that a small profit increase can be obtained at little computation time by
integrating bunkering in the routing and scheduling planning phase. It should also be noted that
such an integration will prevent the construction of bunker infeasible schedules as we saw for many
of the larger instances.

67 7.8. Concluding Remarks

7.8 Concluding Remarks

In this paper we have considered the tramp ship routing and scheduling problem with simultaneous
bunker optimization for full shiploads. We have presented a mixed integer programming formula-
tion that extends the standard tramp formulation by accounting for bunkering time, variations in
bunker prices and bunker port costs. We have also extended standard formulations by using load
dependent cost, speed and bunker consumption. We have developed a solution method that uti-
lizes column generation with a dynamic programming algorithm to generate columns. The devised
method is heuristic and this is mainly due to the discretization of the continuous bunker purchase
variables. Results from tuning in Section 7.6 show that there is very little gain from refining this
discretization and therefore it seems that solving the continuous version of the problem can at best
yield very small improvements in the solutions. Likewise, our computational results show that for
most instances we obtain integral solutions and that the integrality gap is small for the fractional
solutions. Therefore, embedding the column generation scheme in a Branch & Bound framework
is not expected to change results much. Generally, the method is very flexible and can be extended
to incorporate various operator specific characteristics such as e.g. multiple product types, tank
cleaning and restrictions on product successions, by simply changing the subproblem networks and
the corresponding labels and resource extension functions.

We have compared the method with a standard sequential approach where routes and schedules
are planned without considerations for bunkering. Computational results on 150 generated test
instances show that the integrated approach can increase profits slightly. They also show that the
decision of which cargoes to carry and on which ships is affected by the bunker integration and
by changes in the bunker prices. Consequently, we recommend combining the decisions on fleet
scheduling and bunker optimization rather than separating the two planning problems as is current
practice.

We also want to mention that the work presented here assumes only one type of bunker even
though several exist in practice. It would therefore be very interesting to extent this work to
consider multiple types of bunker. Finally, we have solved the problem using a forward curve for
the bunker price at each bunker port. If in fact several price scenarios exist, it would be interesting
to apply stochastic programming to cope with this price uncertainty.

Acknowledgements

The research presented in this paper has been partly funded by The Danish Maritime Fund and
we gratefully acknowledge their financial support. The authors also wish to thank the experi-
enced staff at Maersk Tankers A/S for fruitful discussions and for helping us gain insight into the
tramp shipping industry. In particular we would like to thank Jakob Tørring for helpful advice,
constructive critique and general support during the project.

Bibliography

K. Abdelghany, A. Abdelghany, and S. Raina. A model for the airlines’ fuel management strategies.
Journal of Air Transport Management, 11(4):199–206, 2005.

L.H. Appelgren. A column generation algorithm for a ship scheduling problem. Transportation
Science, 3:53–68, 1969.

O. Besbes and S. Savin. Going bunkers: The joint route selection and refueling problem. Manu-
facturing and Service Operations Management, 11(4):694–711, 2009.

G. Brønmo, M. Christiansen, and B. Nygreen. Ship routing and scheduling with flexible cargo
sizes. Journal of the Operational Research Society, 58(9):1167–1177, 2007.

G. Brønmo, B. Nygreen, and J. Lysgaard. Column generation approaches to ship scheduling with
flexible cargo sizes. European Journal of Operational Research, 200(1):139–150, 2010.

Bibliography 68

M. Christiansen and B. Nygreen. Robust inventory ship routing by column generation. In G. De-
saulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation, chapter 7, pages 197–
224. Springer, New York, 2005.

M. Christiansen, K. Fagerholt, and D. Ronen. Ship routing and scheduling: Status and perspectives
(review). Transportation Science, 38(1):1–18, 2004.

M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime transportation. In C. Barnhart
and G. Laporte, editors, Transport. Handbooks in Operations Research and Management Science,
vol. 14, chapter 4, pages 189–284. Elsevier, North-Holland, Amsterdam, 2007.

M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Ship routing and scheduling in the new
millennium (review). European Journal of Operational Research, 228(3):467–483, 2013.

D.W. Darnell and C. Loflin. National airlines fuel management and allocation model. Interfaces,
7(2):1–16, 1977.

G. Desaulniers, J. Desrosiers, I. Ioachim, M.M. Solomon, F. Soumis, and D. Villeneuve. A unified
framework for deterministic time constrained vehicle routing and crew scheduling problems. In
T. Crainic and G. Laporte, editors, Fleet Management and Logistics, chapter 3, pages 57 – 94.
Kluwer Academic Publishers, 1998.

G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon, and F. Soumis. Vrp with pickup
and delivery. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, chapter 9, pages
225–242. Society for Industrial and Applied Mathematics, 2002.

G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors. Column Generation. Springer, New
York, 2005.

J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time constrained routing and scheduling.
In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network Routing.
Handbooks in Operations Research and Management Science, vol. 8, chapter 2, pages 35–139.
North-Holland, Amsterdam, 1995.

K. Fagerholt and D. Ronen. Bulk ship routing and scheduling: Solving practical problems may
provide better results. Maritime Policy and Management, 40(1):48–64, 2013.

F. Hennig, B. Nygreen, and M.E. Lübbecke. Nested column generation applied to the crude oil
tanker routing and scheduling problem with split pickup and split delivery. Naval Research
Logistics, 59(3-4):298–310, 2012.

I. Ioachim, S. Gélinas, F. Soumis, and J. Desrosiers. A dynamic programming algorithm for the
shortest path problem with time windows and linear node costs. Networks, 31(3):193–204, 1998.

S. Irnich. Resource extension functions: properties, inversion, and generalization to segments. OR
Spectrum, 30(1):113–148, 2008.

S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In G. Desaulniers,
J. Desrosiers, and M.M. Solomon, editors, Column Generation, chapter 2, pages 33 – 66. Springer,
2005.

K. Kang, W.-C. Zhang, L.-Y. Guo, and T. Ma. Research on ship routing and deployment mode for
a bulk. International Conference on Management Science and Engineering - Annual Conference
Proceedings, pages 1832–1837, 2012.

H.-J. Kim, Y.-T. Chang, K.-T. Kim, and H.-J. Kim. An epsilon-optimal algorithm considering
greenhouse gas emissions for the management of a ship’s bunker fuel. Transportation Research
Part D: Transport and Environment, 17(2):97–103, 2012.

K. Kobayashi and M. Kubo. Optimization of oil tanker schedules by decomposition, column gener-
ation, and time-space network techniques. Japan Journal of Industrial and Applied Mathematics,
27(1):161–173, 2010.

69 Bibliography

S.-H. Lin. Finding optimal refueling policies in transportation networks. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 5034 LNCS:280–291, 2008.

S.H. Lin, N. Gertsch, and J.R. Russell. A linear-time algorithm for finding optimal vehicle refueling
policies. Operations Research Letters, 35(3):290–296, 2007.

T. E. Notteboom and B. Vernimmen. The effect of high fuel costs on liner service configuration in
container shipping. Journal of Transport Geography, 17(5):325–337, 2009.

H.C. Oh and I.A. Karimi. Operation planning of multiparcel tankers under fuel price uncertainty.
Industrial and Engineering Chemistry Research, 49(13):6104–6114, 2010.

D. Ronen. Cargo ships routing and scheduling: Survey of models and problems. European Journal
of Operational Research, 12(2):119–126, 1983.

D. Ronen. Ship scheduling: The last decade. European Journal of Operational Research, 71(3):
325–333, 1993.

D. Ronen. Marine inventory routing: Shipments planning. Journal of the Operational Research
Society, 53(1):108–114, 2002.

J. Schönberger, H. Kopfer, and D.C. Mattfeld. A combined approach to solve the pickup and
delivery selection problem. In U. Leopold-Wildburger, F. Rendl, and G. Wäscher, editors,
Operations Research Proceedings 2002, pages 150–155. Springer, 2003. Selected Papers of the
International Conference on Operations Research (SOR 2002), Klagenfurt, September 2-5, 2002.

M. St̊alhane, H. Andersson, M. Christiansen, J.-F. Cordeau, and G. Desaulniers. A branch-price-
and-cut method for a ship routing and scheduling problem with split loads. Computers and
Operations Research, 39(12):3361–3375, 2012.

J.S. Stroup and R.D. Wollmer. Fuel management model for the airline industry. Operations
Research, 40(2):229–237, 1992.

Y. Suzuki. A generic model of motor-carrier fuel optimization. Naval Research Logistics, 55(8):
737–746, 2008.

Y. Suzuki and J. Dai. Reducing the fuel cost of motor carriers by using optimal routing and
refueling policies. Transportation Journal, 51(2):145–163, 2012.

L. Tang, X.-L. Xie, and C.-W. Wang. Model of tramp ship scheduling with variable speed based
on set partition approach. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong
University, 47(6):909–915, 2013.

UNCTAD. Review of maritime transport 2011. http://unctad.org/en/Pages/

PublicationArchive.aspx?publicationid=1734, November 2011.

S. Wang, Q. Meng, and Z. Liu. Bunker consumption optimization methods in shipping: A critical
review and extensions. Transportation Research Part E: Logistics and Transportation Review,
53(1):49–62, 2013.

Z. Yao, S.H. Ng, and L.H. Lee. A study on bunker fuel management for the shipping liner services.
Computers and Operations Research, 39(5):1160–1172, 2012.

P.P. Zouein, W.R. Abillama, and E. Tohme. A multiple period capacitated inventory model for
airline fuel management: a case study. Journal of the Operational Research Society, 53:379–386,
2002.

Bibliography 70

Chapter 8

A Heuristic and Hybrid Method
for the Tank Allocation Problem
in Maritime Bulk Shipping

Charlotte Vilhelmsen Jesper Larsen Richard M. Lusby

Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

chaan@dtu.dk, jesla@dtu.dk, rmlu@dtu.dk

Abstract In bulk shipping, ships often have multiple tanks and carry multiple inhomogeneous
products at a time. When operating such ships it is therefore a major challenge to decide how to
best allocate cargoes to available tanks while taking into account tank capacity, safety restrictions,
ship stability and strength as well as other operational constraints. The problem of finding a
feasible solution to this tank allocation problem has been shown to be NP-Complete. We approach
the problem on a tactical level where requirements for computation time are strict while solution
quality is less important than simply finding a feasible solution. We have developed a heuristic
that can efficiently find feasible cargo allocations. Computational results show that it can solve
99% of the considered instances within 0.4 seconds and all of them if allowed longer time. We
have also modified an optimality based method from the literature. The heuristic is much faster
than this modified method on the vast majority of considered instances. However, the heuristic
struggles on two instances which are relatively quickly solved by the modified optimality based
method. These two methods therefore complement each other nicely and so, we have created a
hybrid method that first runs the heuristic and if the heuristic fails to solve the problem, then
runs the modified optimality based method on the parts of the problem that the heuristic did not
solve. This hybrid method cuts between 90% and 94% of the average running times compared to
the other methods and consistently solves more instances than the other methods within any given
time limit. In fact, this hybrid method is fast enough to be used in a tactical setting.

8.1 Introduction

Every year 8.7 billion tons of goods or equivalently 80% of world trade by volume is carried by
ships (UNCTAD, 2012). This translates into well over a tonne of cargo for every single individual
on the planet, every single year, and the global economy therefore depends on the international
shipping industry’s efficiency and competitive freight rates. Hence, research to increase efficiency
within maritime transportation is important, and, taking the mere size of this huge industry into
consideration, even small improvements can have great impact.

71

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 72

In this paper we consider maritime bulk shipping, both wet and dry. Many bulk ships have
multiple tanks and can thereby carry multiple inhomogeneous products at a time. Two examples
of such ships are oil product tankers and chemical tankers. A major challenge when operating
such ships is how to best allocate cargoes to available tanks while taking tank capacity, safety
restrictions for onboard cargoes, ship stability and strength, as well as other operational constraints
into account.

The complexity of the allocation problem varies with the number of tanks and the number
and type of different products transported simultaneously. A chemical tanker can for instance
have as many as 50 different tanks and hazmat (hazardous materials) regulations play a major
role when allocating the products to the different tanks. E.g. products in neighboring tanks must
be non-reactive and incompatible products must not succeed each other in a tank unless it is
cleaned (this can be costly). The regulations on product succession mean that we need to keep
track of previous tank allocations and that decisions at any voyage leg affect decisions at future
voyage legs complicating the problem even further. Often it is not allowed to move a cargo once
it has been allocated to tanks and then this interdependency between voyage legs becomes even
stronger. Taking stability, safety restrictions and other operational constraints into consideration
it can therefore be extremely difficult, if not impossible, to find a feasible allocation for a given set
of cargoes. In fact, Hvattum et al. (2009) show that the problem of finding a feasible solution is
NP-Complete.

The Tank Allocation Problem (TAP) as described above is an operational planning problem,
which is normally solved for a given route, i.e. after the fleet routes and schedules have been
constructed at the tactical planning level. However, separating these two planning problems means
that we can potentially create routes and schedules for which no feasible tank allocation exists.
Therefore, for bulk ship fleets the tank allocation aspect should be included in the routing and
scheduling phase of planning. Tank cleaning costs and other costs related to tank allocations
are, however, insignificant compared to the profits from carrying cargoes. Hence, at the tactical
planning level where routes and schedules are determined, we can simplify the tank allocation
aspect by ignoring the allocations costs and simply focus on finding a feasible allocation. Note
that this also means that we can refrain from keeping track of past cargo allocations since we can
just assume that all tanks are cleaned whenever needed.

Within shipping and many other areas, routing and scheduling problems are often solved in
a way that requires assessment of numerous routes, as for instance in column generation and
local search based methods. For each considered route, the TAP must be solved to assess route
feasibility with respect to stowage. The solution time for the entire procedure will therefore only
be acceptable if the TAP can be solved efficiently. Furthermore, uncertainty plays a big part in
maritime optimization where planners face a constantly changing environment with large daily
variations in demand and many unforeseen events and so, it is often necessary to re-plan routes
and schedules continuously to accommodate new cargoes and changes to existing plans. In effect,
this means that the TAP must be solved repeatedly and that the requirements for computation
time are strict.

Bulk ship operators of large and even medium size can easily have fleets with more than 25
ships. Since these ships can carry multiple cargoes onboard simultaneously, the combinatorial
puzzle associated with routing the ships is much larger than for ships sailing full shiploads, i.e.
having just one cargo onboard at a time. Thereby, there can be easily be more than 200 routes
to evaluate for each ship and so, it is necessary to assess feasibility with respect to stowage for at
least 25 · 200 = 5000 routes. If we allow a run time of up to just 0.25 seconds, assessing feasibility
for these routes can alone take 0.25 · 5000 = 1250 seconds, i.e. 21 minutes. Hence, if we want
to develop a method that is applicable to bulk ship operators of all sizes, the requirements for
computation are quite strict.

Hvattum et al. (2009) find that constraint programming fails to solve the TAP mainly because
of the stability constraints. Instead they provide a a mixed integer formulation for the problem
and use a commercial solver to solve it. However, their running times are much too long to allow
this method to be used in a tactical setting and they specifically advocate for development of
a heuristic method for determining feasibility of the TAP. In this paper, we update and modify
their method and this yields a significant improvement on running times. However, even with this
improvement running times are still a bit too long.

73 8.2. Problem description

Neo et al. (2006) solves the integrated problem of routing a fleet of multi-compartment tankers
with the tank allocation aspect included. They present an integer programming model for this
problem and use a commercial solver to solve it. However, even for a small instance with just a
single ship and only 10 potential cargoes, they report running times above 18,000 seconds. The
aim of our work is therefore to develop a heuristic method that can facilitate the incorporation
of the tank allocation aspect into the routing and scheduling planning phase by efficiently finding
feasible cargo allocations for given ship routes.

In this paper we explore the TAP from a tactical perspective where the main objective is to
quickly assess feasibility of a given ship route rather than finding an optimal tank allocation. Our
main contribution is a heuristic solution method for efficiently finding feasible cargo allocations.
Computational results show that it can solve 99% of the considered instances within 0.4 seconds
and all of them if allowed longer running time. The heuristic does however struggle on two instances
causing an overall longer average running time than found with an optimality based method from
the literature. However, when running time is below 10 seconds, our heuristic clearly outperforms
the optimality based method by consistently solving more instances. Two further contributions of
this work are therefore the modification of this optimality based method and a hybrid method that
combines the developed heuristic with this modified method. Computational results show that on
the considered instances this hybrid method cuts between 90% and 94% of average running times
compared to the other methods and consistently solves more instances than the other methods
within any given time limit. The average running time for the hybrid method is just 0.027 seconds.
Hence, we have developed a solution method that is efficient enough to allow the inclusion of the
tank allocation aspect into the routing and scheduling phase.

The remainder of the paper is organized as follows. Section 8.2 provides a problem description
as well as a mathematical model for the problem and gives an overview of the existing literature
related to the TAP. The devised heuristic is described in Section 8.3, while section 8.4 describes
the data used to evaluate its performance. In Section 8.5 we tune the heuristic and in Section 8.6
we compare it to an optimality based method and a modified version of this method. Furthermore,
we explore the effect of combining our heuristic with the modified version of the optimality based
method into a hybrid solution method. Finally, concluding remarks and suggestions for future
work are discussed in Section 8.7.

8.2 Problem description

In this paper we consider the TAP as it is described and modelled in Hvattum et al. (2009).
However, we approach the problem on a tactical level, where the focus is on feasibility rather than
optimality.

For each instance, a fixed route is given for a specific ship with a number of tanks (or com-
partments). Besides the capacity of a tank, also the material and the coating can have an impact
on how it can be used. A ship route is a collection of voyage legs and each voyage leg has a
departure port where one cargo is picked up and a destination port where one cargo is discharged,
though not necessarily the same cargo as the one that was picked up. The destination port of one
voyage leg is the departure port of the next voyage leg. Note that both the heuristic and hybrid
method described in Section 8.3 also work in situations where multiple cargoes can be picked up
and discharged in each port.

In addition to the fixed ship route, a set of cargoes that must be carried is also given. For each
cargo, the volume and the density of it is given, and in addition also the ports where it is picked
up and discharged, respectively. If it is allowed to move cargoes between tanks after they have
been loaded onboard the ship, the full route problem can be reduced to multiple instances of the
Single Instance Tank Allocation Problem (SITAP). In the SITAP the allocation problem is solved
for a set of cargoes on a single voyage leg. However, normally it is not allowed to move cargoes
once they have been allocated and certainly, it will always be undesirable to so, due to both time
consumption and possibly additional tank cleaning costs. Therefore, here we assume that it is not
allowed to move cargoes once they have been allocated to the ship. When we define a problem
instance, some cargoes may already be onboard the ship at the beginning of the planning period
and thereby occupy some of the tanks.

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 74

The tactical version of the TAP can now formally be defined: Given a specific ship, a fixed ship
route, and a set of cargoes, find a feasible allocation of cargoes to tanks on the ship. A feasible
tank allocation is constrained by a number of operational factors that can be divided into three
main groups:

• Tank usage: Each cargo must be allocated to one or several tanks and the cargo volume
cannot exceed the total capacity of the allocated tank(s). A cargo can only go into a tank
if it is compatible with the coating. It is not allowed to mix different products in the same
tanks. Even if multiple cargoes consists of the same material, they cannot be mixed but
must remain in separate tanks. For liquid products, a minimum volume must be allocated
to used tanks in order to avoid excessive sloshing at sea.

• Ship stability: Ship stability and strength in all dimensions must be maintained throughout
the ship’s route.

• Hazmat rules: Due to hazmat rules, certain materials cannot be allocated to neighboring
tanks and certain materials cannot follow each other in a tank unless it is cleaned.

For completeness we here present the model derived and thoroughly described in Hvattum et al.
(2009), though with slightly modified notation. We have the following sets:

C Set of cargoes

T Set of tanks

CC
c Set of cargoes in conflict with cargo c

CT
t Set of cargoes compatible with tank t

TC
c Set of tanks compatible with cargo c

Tckt Set of tanks which cannot be used for cargo k if cargo
c is in tank t

Nc Set of cargoes on board the ship immediately after
adding cargo c

Pc Set of all cargoes that have been present on the ship
before adding cargo c

Q Set of subsets; each set corresponds to the cargoes
present on the ship at a time when the stability and
strength restrictions apply.

S Set of stability and strength dimensions, e.g. trim
and roll

For each cargo c, the cargo volume vc and the cargo density dc is given. The capacity of tank
t is denoted κt while the minimum volume in the tank when used is denoted bt. Furthermore, ms

t

denotes the moment arm for tank t with respect to stability or strength dimension s ∈ S while ms+

and ms− denote, respectively, the upper and lower limit on total moment for stability or strength
dimension s ∈ S. Finally, hckt denotes the minimum number of compatible cargoes that must be
allocated to tank t before cargo c can be allocated to tank t if a cargo k ∈ CC

c that is incompatible
with cargo c has previously been allocated to tank t.

We have three sets of decision variables. The first, xct, is a binary decision variable equal to 1
if cargo c is allocated to tank t. The second, yct, is a continuous variable indicating the volume of
cargo c in tank t. Finally, zct is a binary decision variable which is equal to 1 if tank t is cleaned
just before adding cargo c.

75 8.2. Problem description

A feasible solution can now be defined by the following constraints:

yct ≤ κtxct, ∀c ∈ C, t ∈ TC
c , (8.1)

btxct ≤ yct, ∀c ∈ C, t ∈ TC
c , (8.2)∑

t∈TC
c

yct = vc, ∀c ∈ C, (8.3)

∑
k∈CT

t ∩Nc

xkt ≤ 1, ∀c ∈ C, t ∈ T, (8.4)

∑
k∈CC

c ∩Nc

∑
u∈Tckt

xku ≤ Mct(1 − xct), ∀c ∈ C, t ∈ TC
c , (8.5)

ms− ≤
∑
c∈R

∑
t∈TC

c

ms
tdcyct ≤ ms+, ∀R ∈ Q, s ∈ S, (8.6)

hckt(xct − zct)−
∑
j∈R

(xjt + hcktzjt)

≤ hckt(1− xkt), ∀c ∈ C, t ∈ TC
c , k ∈ Pc ∩ CC

c , R = Pc \ Pk \ {k}, (8.7)

xct ∈ {0, 1}, ∀c ∈ C, t ∈ TC
c , (8.8)

yct ≥ 0, ∀c ∈ C, t ∈ TC
c , (8.9)

zct ∈ {0, 1}, ∀c ∈ C, t ∈ TC
c . (8.10)

Due to our focus on feasibility, we have not presented an objective function. However, a possible
objective function could be the minimisation of tank cleaning or the maximisation of vacant tank
capacity in order to preserve flexibility to accommodate future cargoes or cargo changes.

Constraints (8.1) ensure that the capacity of each tank is not exceeded, and that only cargoes
allocated to a given tank can be put into that tank. Constraints (8.2) ensure that an occupied tank
is allotted a minimum content to avoid sloshing. In addition, constraints (8.3) and (8.4) make sure
that the entire cargo is placed on the ship and prohibit more than one cargo per tank at a time.
Constraints (8.5) make sure that the hazmat rules regarding what chemicals can be put next to each
other is maintained. Here, Mct is a large constant which can be set as maxk{Tckt}, c ∈ C, t ∈ TC

c .
Constraints (8.6) ensure that the ship remains sufficiently balanced with regards to roll, trim and
strength on all legs of the route. Note that these constraints are simplified versions of the actual
non-linear expressions. Hvattum et al. (2009) use this same simplification and argue that the loss
from it is small. Constraints (8.7) restrict a cargo c from going into a tank t if the previous cargo k
is incompatible with c. Exceptions to this can be allowed if the tank is cleaned or hlkt other cargoes
occupy the tank in between k and c. Note that by ignoring the tank cleaning costs, we can actually
ignore these constraints and simply assume that all tanks are cleaned. However, we have included
them here for the sake of completeness. Finally, constraints (8.8), (8.9), and (8.10) formally define
the variables of the problem. In (Hvattum et al., 2009) a complexity analysis concludes that the
TAP is NP-Complete by showing that it is a generalisation of the segregated storage problem that
has been shown to be NP-Complete.

A more simple variant of the problem was already introduced in (Vouros et al., 1996). Here
an expert system is presented for the task of allocating cargoes to a ship for one port. So, given
the current configuration how does one load a cargo on board the ship in the best possible way
adhering to ship stability constraints and hazmat rules. The paper only describes the approach,
neither testing nor implementation details are presented.

As we have already mentioned a number of times, Hvattum et al. (2009) first formally describe
the variant of the TAP that we base our work upon. They solve their mixed integer formulation
with a commercial solver but report running times that are far beyond what would be acceptable
in a tactical setting. They also try to solve the problem using constraint programming. However,
their constraint solver failed to find a feasible solution to even one of the instances. Therefore, they
note in their conclusion that a heuristic method for this problem is of interest. The first description
of the routing problem for multi-compartment tankers is given in Jetlund and Karimi (2004). This
paper presents the problem of optimising the route of a single multi-compartment tanker as well as

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 76

a fleet of ships. Although the paper presents the routing problem for a multi-compartment tanker,
the tank allocation component is omitted according to the authors because it is not important when
looking at the problem from a strategic setting. An integer programming model for both a single
ship and for a whole fleet is proposed and solved using a commercial solver. Important problem
characteristics such as cargo compatibility and ship stability are not mentioned in this paper but
are part of Neo et al. (2006). Here an integer programming model is also the main contribution.
Now the model includes the aforementioned constraints on cargo compatibility and ship stability.
It is solved using a commercial solver and exhibits very large running times. For a single ship, 10
compartments and 10 potential cargoes, running times are above 18,000 seconds. In the same line
of research, Coccola and Mendez (2013) consider basically the same integer programming model
as in the previous papers. This approach does not take ship stability and hazmat constraints
into consideration. The paper contains the description of an iterative heuristic aimed at situations
where excessive running times prohibit optimisation for an entire fleet. The problem is decomposed
into single ship problems and cargo conflicts are resolved solving a 2-ship problem in an iterative
manner. Authors report a 40% improvement in profit over the manual plan on a single instance
and a “significant” improvement over “other” approaches.

Kobayashi and Kubo (2010) consider a tanker problem, though without hazmat and stability
constraints. They decompose the problem into a tank allocation problem and a routing problem.
Both problems are modeled and solved as set partitioning problems, but for the routing problem
the number of columns necessitates column generation. Using column generation to solve the
LP relaxation, an integer solution is afterwards found by branch-and-bound on the generated
columns. In addition, Wu et al. (2011) describe a decision support system (DSS) that includes
the relevant real life constraints and a graphical user interface to deliver a real-life applicable
DSS. The optimization is based on a relatively simple heuristic but includes routing and allocation
constraints in an integrated fashion. The inclusion of hazmat constraints is, however, not obvious
and the method only works by inserting new cargoes to an already existing schedule. Oh and
Karimi (2008) describe another DSS. They assume that ship stability can always be achieved by
using ballast tanks. They optimise for a fleet of multi-compartment tankers by decomposing the
problem into a tank allocation problem and a routing problem. Instead of using column generation
as in (Kobayashi and Kubo, 2010) this paper only contains a simple enumerative approach for
generating the routes for the set partitioning problem. Cargo allocation is done using a heuristic
which is not described in any detail.

In contrast to (Hvattum et al., 2009), the papers mentioned above allow cargoes to be picked
up or rejected, which most often implies profit maximisation instead of a feasibility focus. As in
(Hvattum et al., 2009), Schaus et al. (2012) assume a fixed route and also focus on feasibility. The
paper considers a set of cargoes to be placed on a multi-compartment tanker without any notion of
route and therefore loading and unloading of cargoes along the route. The paper does not look at
ship stability but does incorporate hazmat constraints, compatibility with previous cargoes, and
the sealing on the tanker walls in a constraint programming approach.

Fagerholt and Christiansen (2000) consider a tramp ship problem with adjustable compart-
ments. Here the cargo hold can be partitioned into smaller holds by inserting bulkheads at a
discrete number of positions. The problem is a combined routing and allocation problem for a
fleet of ships but ship stability and hazmat constraints are not considered. The solution approach
is based on an iterative heuristic using a priori generation and dynamic programming to deter-
mine the optimal schedules. Each iteration constructs ship routes using a variant of the Traveling
Salesman Problem with incorporated allocation, time windows and precedence constraints.

Another important maritime stowage problem is the container stowage problem found in liner
shipping. The two problems share some of the same components such as ship stability and spatial
separation requirements for dangerous goods. Also, finding a feasible stowage plan is often more
important than finding an optimal one. However, there are important operational differences that
call for tailor made methods for each of these segments. To mention a few, we note that container
stacking calls for efficient cargo handling to minimize container shifting when loading and unloading
and this is of course not an aspect in bulk shipping. On the other hand, in the container stowage
problem there is no need to consider individual tank constraints, such as e.g. tank capacity and
tank coating. For further information on the container stowage problem and solution approaches
see e.g. (Martin et al., 1988; Wilson and Roach, 2000).

77 8.3. Solution Method

Transportation in compartments also exists in road transport. Most applications come from dis-
tribution of petroleum products; other examples are waste collection and food. In road transport,
compartments can be fixed in size or flexible. In (Derigs et al., 2011) a survey and computational
comparison of current literature within road transport is presented. Interestingly, road transport
always assumes integrated optimization of routing and cargo allocation, and, in addition, the ma-
jority of developed approaches are based on heuristics or metaheuristics. Quite often when multiple
compartments are considered in the literature, the objective is to just deliver from a central depot
to e.g. petrol stations (Cornillier et al., 2009) and not to combine both pickup and delivery as we
do here. Furthermore, in these problems bulk ship constraints such as stability are not considered.

The segregated storage problem is another related compartment oriented storage optimization
problem. In this problem a silo with a number of compartments has to be filled with grain
and only one type of grain can go into each compartment. However, contrary to our problem,
identical “cargoes” can be mixed into the same compartment. In (Barbucha and Filipowicz, 1997)
the segregated storage problem and some variants of the basic problem are compared to storage
problems in transport in general but also in particular to maritime transportation. The complexity
of the different variants is described and a few numerical examples are given.

8.3 Solution Method

The aim of our work here is to develop an efficient solution method for finding feasible tank
allocations in a very short amount of time. Finding a good allocation is left for operational
planning where the solution method proposed by Hvattum et al. (2009) is sufficient with respect
to time. Our search for a feasible tank allocation assumes that initial crude feasibility tests have
been performed, e.g. verifying that the total cargo volume during each voyage leg does not exceed
total ship capacity.

Because we focus on feasibility, we can disregard tank cleaning costs. This means that any
two cargoes can potentially follow each other in a tank as we can just pay the cost of cleaning.
Thereby, we no longer have to keep track of previous tank allocations. Furthermore, if the ship is
at some point empty during its route, we can split the full problem into smaller subproblems or
subinstances since any voyage leg prior to the ballast leg will be independent of any voyage leg
after the ballast leg.

Even though we disregard cleaning costs, the decisions at any voyage leg still affect decisions
at future voyage legs since we are not allowed to move a cargo once it has been allocated. Conse-
quently, allocating cargoes one by one as they are picked up along the route will be a bad idea. We
can easily end up allocating a cargo to tanks that are required for a feasible allocation of another
cargo picked up later. Our heuristic is therefore based on a priority ordering of cargoes that defines
the order in which they will be allocated one by one. The function selectCargo() returns the next
cargo to allocate. Each time a cargo has been allocated, the chosen tanks are made unavailable
for all cargoes onboard with the considered cargo as well as neighboring tanks if there are any
conflicting cargoes. The priority ordering for all cargoes affected by the chosen allocation is then
updated before selecting the next cargo to allocate.

Ship stability at a voyage leg cannot be calculated before all cargoes onboard during that
particular voyage leg have been allocated. Therefore, when allocating cargoes one by one, we
initially only use an estimate of ship stability based on allocated capacity rather than on the
actual cargo amount allocated to each tank. This means that we initially only reserve sufficient
tank capacity for one cargo at a time using a function called selectTanks() which takes a specific
cargo as its parameter. If we manage to find sufficient capacity for all cargoes, we check if there
exists a combination of cargo amounts to tanks, which can secure ship stability during the entire
route. This is done by solving a simple linear program (LP) where each cargo is predefined to be
allocated to specific tanks, i.e. solving (8.1), (8.2), (8.3), (8.6) and (8.9) with all x variables fixed.
The function solveLP() performs this task. Note that ballast tanks can easily be incorporated by
including them in these LPs.

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 78

8.3.1 Diversification

The quality of the heuristic will naturally depend on the quality of the two procedures for selecting
the next cargo to allocate and for selecting tanks when reserving capacity for the selected cargo.
We have chosen to keep these two selection procedures simple and instead introduce randomness
in each of them to produce diverse results with each call to the heuristic. In Section 8.3.2 we
describe how randomness is introduced into the cargo selection procedure while in Section 8.3.3
we describe how it is introduced into the tank selection procedure. Within a given time limit,
we then allow the heuristic to restart each time it fails to find a feasible allocation for a given
subinstance, whether the infeasibility comes from some cargoes not being fully allocated or from
instability when determining cargo amounts. Restarting simply means that all cargoes that have
already been allocated, are removed from the ship again. The basic outline of the heuristic can be
seen in Algorithm 2.

Algorithm 2: Basic heuristic outline

1 determine initial cargo priority ordering;
2 split problem to create list, Subs, of smaller subinstances;
3 while Subs 6= ∅ AND time limit not exceeded do
4 Sub← first subinstance in list Subs;
5 while no stable allocation found for Sub AND time limit not exceeded do
6 while cargoes in Sub remain to be allocated AND time limit not exceeded do
7 cargo i ← selectCargo();
8 if not enough available tank capacity to allocate cargo i then
9 if time limit not exceeded then

10 restart Sub;

11 else
12 stop;

13 else
14 selectTanks(cargo i);
15 update available tank capacity for affected cargoes;
16 update priority ordering of unallocated cargoes;

17 if all cargoes in Sub fully allocated then
18 solveLP();
19 if allocation is unstable then
20 if time limit not exceeded then
21 restart Sub;

22 else
23 stop;

24 else
25 remove Sub from Subs;

8.3.2 Cargo priority - function selectCargo()

We prioritise cargoes based on the ratio of the volume of each cargo and the amount of available
tank capacity for this cargo. A tank is available if it is both compatible and vacant, also with
respect to neighbor cargoes. Obviously, the closer to one this ratio gets, the more important it
is to allocate the cargo, since only few of the available tanks can be occupied by other cargoes
before it becomes impossible to allocate the given cargo. For a cargo i we denote this estimate of
importance by Ii. The basic idea of the cargo selection procedure is then to iteratively select the
cargo with the highest value of Ii. Note that if Ii > 1, it means that, due to already allocated

79 8.3. Solution Method

cargoes, there is no longer enough available tank capacity left to allocate cargo i. In such situations,
we restart the heuristic.

In order to diversify the results of the heuristic, we add some randomness to this otherwise
deterministic selection procedure. We do this by allowing the procedure to sometimes discard the
most important cargo and instead select a less important cargo. However, if the most important
cargo, cargo i, has Ii above a threshold value that we denote I, we always select this cargo. The
reason for this threshold approach is that a cargo i with high Ii will only be able to spare few of
its available tanks to other cargoes before it becomes impossible to allocate cargo i. Therefore, it
will most often be best to allocate cargo i first. The most important cargo, cargo i, with Ii < I
will now be selected with a probability of P . We tune the parameters I and P in Section 8.5.
Preliminary tests show that the deterministic cargo selection procedure performs best and so, we
want to ensure that this approach is followed before adding randomness. Therefore, the first run
of the heuristic will use the deterministic selection procedure while the randomised approach will
be used after restarting. The basic outline of the cargo selection procedure is then as presented
in Algorithm 3 where C[0] denotes the first element in the list C and rand(0, 1) denotes a random
number between 0 and 1.

Algorithm 3: Outline of cargo selection procedure, i.e. function selectCargo()

1 C ← list of all unallocated cargoes sorted in order of decreasing importance;
2 cargo i ← C[0];
3 if Ii > I or we did not restart then
4 return cargo i;

5 else
6 while C contains at least 2 cargoes and rand(0, 1) > P do
7 erase C[0] from C;
8 return C[0];

8.3.3 Reserving sufficient capacity - function selectTanks()

We allocate each cargo as stable as possible by iteratively choosing tanks that have moment
arms in the opposite direction of the ships current stability and strength estimates. Assume for
example that the current condition of the ship is that its stability and strength measures are
positive for roll, negative for trim and negative for strength. Then we only consider available
tanks with negative moment arm for roll and positive moment arm for both trim and strength.
Naturally, if no such tanks remain, we look for tanks that fulfill two out of these three moment
characteristics and we continue this process of lowering our requirements until we find available
tanks. During preprocessing, we therefore group the tanks according to their moment arms for the
various stability and strength dimensions. E.g. considering roll, trim and strength, we obtain 27
such stability dimension groups (SDG) since a moment arm can also be neutral, i.e. equal to zero.
To determine the correct SDG to consider, we have a function called selectSDG() that, given the
current condition of the ship, tells us which SDG to consider. Notice that multiple SDGs can be
eligible if one of the stability and strength measures is currently neutral or if a preferred SDG does
not currently contain any available tanks. In such cases we break ties arbitrarily. Once a tank has
been selected, we can determine if further capacity is required to fully allocate the cargo, and if
there is, we update the stability and strength measures to determine a new SDG of eligible tanks
to choose from.

In principle each cargo does not by itself have to be allocated in a stable manner since cargoes
can outbalance each other. However, many cargoes are at some point onboard the ship alone
(“alone-cargoes”) and must therefore be allocated in a stable manner. Thereby, any cargo that is
at some point onboard the ship with only an alone-cargo, must also be allocated in a somewhat
stable manner. This reasoning can continue, thus motivating the search for stable allocations for
each individual cargo. Furthermore, allocating each cargo in a stable manner yields robust plans
since the stability of the ship does not rely on cargoes to outbalance each other. Hence, any cargo
can in principle be removed from the route without causing instability. Note however, that we do

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 80

not require each cargo to be allocated in a stable manner on its own but simply seek to find a
stable allocation for each cargo. Often it is not possible to find stable allocations for the individual
cargoes and furthermore, the added randomness in the tank selection procedure can easily cause
us to reject them if they exist.

Finding a feasible allocation for all cargoes relies on a clever allocation of each individual cargo
as the cargoes are in effect competing for the same tanks. For cargoes that are not in conflict
with any other cargoes, a clever allocation mainly relates to the capacity utilisation of the chosen
tanks. For cargoes in conflict with other cargoes, it is however equally important to try to confine
the cargo to smaller groups of tanks as opposed to scattered all over the ship whereby a lot of
neighboring tank capacity would be unavailable for cargoes in conflict with this cargo. Therefore,
we distinguish between two types of cargoes:

A cargo i is a conflict cargo if there is at least one other cargo j that is in conflict with cargo
i and where cargo j has not yet been allocated.

A cargo i is a non-conflict cargo if it is not in conflict with any other cargoes or if all conflicting
cargoes have already been allocated.

When allocating a non-conflict cargo, we then focus on capacity utilisation and simply sort the
compatible and vacant tanks within each SDG by size in decreasing order. When allocating a
conflict cargo we instead sort the compatible and vacant tanks within each SDG by decreasing
ID, which reflects their location on the ship. This way we will choose tanks grouped together
although we might use several groups of tanks in different locations of the ship to secure stability
and strength of the ship.

In Figure 8.1 we give a very small example of how the ID’s reflect the location of the tanks
onboard the ship. Note that with this very crude estimate of neighboring tanks and groupings,
our heuristic will correctly assume that tanks 1 and 3 are both neighbors to tank 2 but it will have
no idea that tank 5 is also a neighbor to tank 2. Furthermore, it will assume that tanks 3 and 4
are neighbors, which clearly they are not. This sort of ship specific information could obviously
be used to improve the tank sorting function. However, since the tanks are sorted within each
specific SDG, the tank sorting function does not reflect neighboring tanks across different SDGs.
Thereby, the effect of improving the tank sorting function might be limited and furthermore it
would sacrifice simplicity and make the heuristic much less generic than when we do not use the
actual layout of the considered ship. Therefore, we have chosen to use this very crude estimate of
neighboring tanks.

Figure 8.1: Example of tank IDs to reflect ship layout

For all cargoes we use a capacity utilisation threshold so that no tank can be selected if the
resulting allocation has a capacity utilisation less than this threshold. However, we allow this
threshold to vary with the cargo since cargoes onboard during crowded voyage legs must utilise
capacity better than cargoes only onboard during less crowded voyage legs. We therefore determine
the minimal capacity utilisation of each voyage leg by dividing the total onboard cargo volume by
ship capacity. For each cargo, we then consider all the voyage legs that the cargo is onboard the
ship during, and the maximal of the minimal capacity utilisations corresponding to these specific
voyage legs, is then the capacity utilisation threshold for this particular cargo. We denote the
capacity utilisation threshold for cargo i by Ui.

If we want to generate solutions with high capacity utilisation, we can simply exchange this
cargo specific threshold by a sufficiently high uniform threshold used for all cargoes. This approach
will utilise ship capacity much better than when using cargo specific thresholds and thereby also

81 8.3. Solution Method

better preserve flexibility to accommodate future cargoes. However, it will increase the running
time of the heuristic and since our main concern is feasibility, we use the cargo specific thresholds.

Naturally, we might have to lower the capacity utilisation threshold gradually if no tanks remain
that fulfill the utilisation requirement. In cases where multiple SDGs are applicable, we only lower
the utilisation threshold if none of the applicable SDGs contain an eligible tank. For conflict
cargoes, choosing groups of tanks is very important and as soon as we start discarding tanks in
the otherwise location based ordered tank list, we are in effect choosing tanks that are scattered
all over the ship. Therefore, gradually decreasing the capacity utilisation requirement with only
small decrements does not seem a good idea for conflict cargoes. As soon as we discard a tank
due to capacity utilisation, to avoid discarding many tanks, we should instead lower the utilisation
requirement almost to a point that it becomes obsolete. For non-conflict cargoes this, however, is
not necessary. Therefore, we use separate parameters for the two cargo groups for the incremental
lowering of the capacity utilisation threshold when we run out of tanks. For non-conflict cargoes
and conflict cargoes we respectively denote these parameters ∆UNC and ∆UC and tune them in
Section 8.5.

To ensure diversification we add elements of randomness to the otherwise deterministic tank
selection procedure. Similar to the cargo selection procedure, we do this by only accepting a given
tank with a certain probability. To keep the parameter list as short as possible, we reuse the
probability parameter P from the cargo selection procedure. For the conflict cargoes, we again
need to ensure that we choose tanks in small groups rather than tanks scattered all over the ship.
Therefore, for conflict cargoes we use an additional parameter, ∆P , that is used to iteratively
increment the tank acceptance probability each time a tank has been discarded. Thereby, when a
tank is discarded, we lower the probability of discarding the next tank in the list. All discarded
tanks are stored in case we run out of available tanks and must return to these. The discarded
tanks are also grouped according to their stability and strength dimensions and further sorted
within these groups according to either size or ID, depending on the cargo type. We tune the
parameter ∆P in Section 8.5.

Preliminary tests show that for conflict cargoes it is best to use the deterministic tank selection
procedure prior to restarting and the randomised selection approach afterwards and so, we use
this approach. This confirms that the deterministic selection approach best enforces the group
wise selection criteria. However, for non-conflict cargoes preliminary tests do not indicate any
benefits from using the deterministic procedure. For non-conflict cargoes, we therefore always use
the randomised approach.

Each restart requires all allocated cargoes to be reallocated and this is obviously much more
time consuming than just restarting for a single cargo, i.e. removing this one cargo from the ship
and reallocating it. Therefore, iteratively allocating the cargoes and then restarting the whole
process in case of infeasibility is not an attractive approach. Instead, each time we allocate a
cargo, we iteratively reallocate it until the quality of the allocation is sufficiently high. Keeping
the strict computation times in mind, we use a very crude estimate of quality by simply requiring
the capacity utilisation of an allocation for cargo i to be at least as high as the capacity utilisation
of the most crowded voyage leg, that cargo i is onboard during, i.e. at least as high as Ui. We
use the parameter L to limit the number of allowed reallocations of each cargo. If we reallocate
as many times as allowed without finding a good enough allocation, we use the best one found so
far. The parameter L is also tuned in Section 8.5.

Since the tank selection procedure for conflict cargoes is deterministic before restarting, there
will be no point in reallocating conflict cargoes before restarting. After restarting, conflict cargoes
are reallocated, just as non-conflict cargoes always are. However, preliminary tests also show
that after restarting it can be beneficial to allow the first iteration of the reallocation procedure
for conflict cargoes to follow the deterministic tank selection procedure. Reusing the probability
parameter P , we then only perform the first iteration of the reallocation procedure for conflict
cargoes, i.e. the deterministic one, if a randomly generated number between 0 and 1, rand(0, 1),
is less than P .

Algorithm 4 shows the basic outline of the tank selection procedure for a generic cargo i. Here,
∆Ui is equal to ∆UC if cargo i is a conflict cargo, and equal to ∆UNC if cargo i is a non-conflict
cargo.

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 82

Algorithm 4: Algorithm for selecting tanks for cargo i, i.e. function selectTanks(cargo i)

1 if cargo i is non-conflict OR we have restarted then
2 if cargo i is non-conflict OR rand(0, 1) < P then
3 count← 0;

4 else
5 count← 1 (i.e. skip deterministic iteration);

6 else
7 count← L (i.e. don’t reallocate);

8 while count ≤ L do
9 create size/ID sorted list of compatible and vacant tanks for each SDG;

10 u← Ui;
11 stability estimate e← 0;
12 clear allocation and discarded tank list from last iteration;
13 p← P ;
14 while further capacity required do
15 G← selectSDG(e);
16 tank t ← first tank in sorted tank list of G;
17 while tank t 6= NULL, i.e. tanks remain do
18 if capacity utilisation ≥ u then
19 remove tank t from list of tanks from G;
20 if not using discarded tanks AND (cargo i is non-conflict OR (using

reallocation AND count > 0)) then
21 num← rand(0, 1);

22 else
23 num← 0 (i.e. no tanks are discarded);

24 if num < p then
25 allocate cargo i to tank t;
26 update e using capacity of tank t;
27 tank t ← NULL, i.e. end loop to allow switching to new SDG;

28 else
29 add tank t to size/ID sorted list of discarded tanks for G;
30 tank t ← next tank in sorted tank list of G;
31 if cargo i is conflict cargo then
32 p← p+ ∆P ;

33 else
34 tank t ← next tank in sorted tank list of G;

35 if no tank was found AND no other SDGs are applicable then
36 if tanks remain that are not discarded then
37 u← u−∆Ui;

38 else
39 from discarded tanks, create size/ID sorted tank list for each SDG;
40 u← Ui;

41 if using reallocation then
42 if capacity utilisation ≥ Ui then
43 count← L, i.e. exit reallocation loop;

44 else
45 update best allocation found so far;

46 count+ +;

47 if using reallocation AND reallocated as many times as allowed then
48 use best allocation found;

83 8.4. Data

8.4 Data

In (Hvattum et al., 2009), an instance generator is developed to create a varied set of realistic and
feasible TAP instances based on two real tank ships. The instance generator is used to generate 720
data instances and we base our computational study on these instances. Here, we briefly describe
the main features of the data instances, while a thorough description of the instance generator can
be found in (Hvattum et al., 2009).

There are two tank ships of different size and configuration. The smaller ship has 24 tanks and
can carry up to 10,000m3 while the larger ship has 38 tanks and a capacity of 45,000m3. There are
two types of tanks, namely stainless steel tanks and tanks with a zinc silicate coating. The data
instances only contain data for stability and strength restrictions with respect to roll. This means
that, although our heuristic is generic enough to handle several stability and strength dimensions,
we will here only consider the roll dimension and therefore only have three stability and strength
dimension groups, containing, respectively, tanks with negative, neutral and positive moment arm
for roll. There are three categories for cargoes:

1. cargoes that can go into any tank and do not conflict with any other cargoes

2. cargoes that can go into any tank but which conflict with all category 3 cargoes

3. cargoes that can only go into tanks with zinc silicate coating and which conflict with all other
cargoes in category 2 and 3

Cargoes that are in conflict with each other cannot simultaneously occupy tanks that share a side,
i.e tanks that are neighbors.

In each data instance the first ten generated cargoes are defined to be locked, i.e. they are
already allocated and cannot be moved. They simply act as the history of the ship and cause
some tanks to be occupied when planning starts. Hvattum et al. (2009) generate instances with,
respectively, 20, 30 and 40 cargoes where the first ten are locked cargoes. To create a varied set of
instances, they use three additional parameters:

D denoting the probability distributions for the category of each load. They allow four settings
for this parameter and label them D1(0.6, 0.4, 0.0), D2(0.5, 0.4, 0.1), D3(0.4, 0.4, 0.2) and
D4(0.3, 0.4, 0.3). Here D1 refers to the case where 60% of the cargoes are expected to come
from category 1, 40% from category 2 while no cargoes are expected from category 3.

F denoting the minimum/maximum capacity utilisation of the ship before loading/unloading.
This parameter is allowed three settings which are labeled F1(0.65, 0.35), F2(0.75, 0.25) and
F3(0.85, 0.15). Here F1 refers to the case where the ship will visit pickup locations until the
the total load exceeds 65% of ship capacity and then start to visit discharge locations until
the total load becomes less than 35% whereafter the ship will again visit pickup locations.

V denoting the distribution of load volumes. This parameter is allowed three settings labeled
V 3(1000− 5000m3), V 6(3000− 9000m3) and V 12(8000− 16, 000m3). Here V 1 denotes the
case where cargo sizes follow a uniform distribution over the interval 1000 to 5000m3.

Combining ship type, number of cargoes and the above three parameters while ruling out
unrealistic combinations, Hvattum et al. (2009) obtain 144 parameter setting groups. For each of
these 144 groups, they randomly generate five feasible instances yielding a total of 720 instances
for which the existence of feasible solutions is verified. We let TAP T24C20D3F1V3 01 denote the
first generated instance for the 24 tanks ship with 20 cargoes (including ten locked cargoes) and
with parameters D, F and V set to, respectively, 3, 1 and 3.

8.4.1 Instability for locked cargoes

Since solving any one of the above 720 TAP instances only entails finding a feasible allocation for
the unlocked cargoes, the feature in the instance generator that verifies the existence of a feasible
solution, does not check the allocation of the locked part of the instance. This unfortunately means
that for quite a few of the 720 instances, the ship is at some point unstable during the locked part

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 84

of the ship route. Solving the problem with a mixed integer formulation and CPLEX, as done in
(Hvattum et al., 2009), this instability is not a problem since the entire solution space is explored,
including solutions where one cargo can be allocated solely to one end of the ship in order to
outbalance a locked cargo placed in the opposite end of the ship. However, since our heuristic tries
to allocate each individual cargo in a stable manner, it will not perform well on instances with
built-in instabilities, i.e. instances where the locked part contains cargoes or groups of cargoes that
are placed in an unstable manner. Note that even though the heuristic seeks stable allocations for
each cargo, it can allocate cargoes in an unstable manner and thereby explore the entire solution
space. However, the chances of the heuristic finding extreme solutions are slim and thereby we are
penalised for an instability created before the ship was even handed over to us. If our heuristic were
used continuously, then all cargoes previously allocated, i.e. locked cargoes, would also be allocated
in a somewhat stable manner and then this would not be a problem. Therefore, a computational
study using these instances can, in this respect, be expected to yield a conservative estimate of
the success rate of our heuristic. In order to get a feel for the effect of excluding such built-in
instabilities, we consider three distinct sets of data instances during our computational study:

Set720 Contains all 720 instances

Set648 Contains the 648 instances that are stable when the ship is “handed over” to us, i.e. just
before picking up cargo number 11

Set486 Contains the 486 instances that are stable during the entire locked part of the last subin-
stance before the ship is “handed over” to us, i.e. during the first subinstance that we have
to solve. Note that we do not require the ship to be stable during the entire locked part of
the route as we do not care about what happens before the first subinstance that we have
to solve. I.e. if the ship is unstable and then becomes empty before allocating other locked
cargoes that we have to take into account, then we do not care about the instability

To properly understand the reason for including Set486, consider the example illustrated in Ta-
ble 8.1. Here, ‘Action’ refers to the port action taken at a particular point in time and time
progresses as we move to the right in Table 8.1. ‘Onboard’ refers to the cargoes onboard imme-
diately after this action while ‘Roll’ refers to the roll measure of the ship immediately after the
action. We let −K and K denote, respectively, the lower and upper threshold for stability in
the roll dimension. For port actions, ‘9+’ and ‘9-’ refer to the actions of respectively loading and
discharging cargo number 9, and similarly for higher numbers. We assume that the ship becomes
empty just before loading cargo 9 whereafter cargo 9, 10, 11, and 12 are all picked up and then
again discharged in the same order as they were picked up. This means that the first subinstance
that we have to solve, contains the locked cargoes, cargoes 9 and 10, and the two unlocked cargoes,
cargoes 11 and 12, whereby we can confine our example to include just the small part of the ship
route given in Table 8.1. Now assume that cargo 9 is allocated in an unstable manner and that
cargo 10 is allocated in a similarly unstable manner but that these two cargoes outbalance each
other so that the ship is stable when it is handed over to us, i.e. just before picking up cargo 11.
So, assume that the allocation of cargo 9 creates a roll measure of −K − 1 and that the allocation
of cargo 10 creates a roll measure of K+1. The roll measure will then be 0 when the ship is handed
over to us. Then our heuristic will try to allocate cargoes 11 and 12 in a stable manner and we
can, for argument’s sake, assume that the effect of their allocations on the roll measure is zero.
After the pickup of cargoes 11 and 12, we will discharge cargo 9 and thereby obtain a roll measure
of K + 1 > K. This means that even though the ship was stable when handed over to us, and we

Table 8.1: Small example to illustrate reason for considering Set486

Action 9+ 10+ 11+ 12+ 9- 10- 11- 12-

Onboard 9 9,10 9,10,11 9,10,11,12 10,11,12 11,12 12 -

Roll −K − 1 0 0 0 K + 1 0 0 0

85 8.5. Tuning

managed to allocate both cargo 11 and 12 in a fully stable manner, we ended up with an unstable
ship. Theoretically, the heuristic could find a feasible solution to this problem. However, since
the heuristic seeks to allocate each individual cargo in as stable a manner as possible, chances are
that it will not find a feasible solution. Thereby, we are penalised for an instability created before
the ship was even handed over to us. Assuming that the heuristic was used continuously, such
instabilities would never occur and generally, we do not anticipate such instabilities in real life.
Therefore, we find it reasonable to include Set486 in our computational study. Note however that
even when confining our computational study to the 486 instances, there can still be instances that
will affect the success rate of our heuristic in a negative manner compared to if our heuristic had
been used continuously. Assume for example that we extend the subinstance in the example from
above to include the locked cargo 8 and that cargo 8 and 9 are now both allocated in a manner
that affects the roll measure with − 1

2K, i.e. after picking up cargo 9, the ship will have a roll
measure of −K which just leaves the ship stable. Adding cargo 10 we obtain a roll measure of 1
which is again stable. Adding cargoes 11 and 12 maintains the roll measure at 1. However, once
we discharge cargoes 8 and 9, we obtain a roll measure of K+ 1 and thereby an unstable ship even
though the locked part contained no instabilities and we managed to allocate the unlocked cargoes
in a fully stable manner. However, since such instances are per definition feasible and we do not
want to exclude too many instances, we limit our computational study to the three sets above and
simply note that the success rate of our heuristic on these sets can be expected to be a conservative
estimate of the success rate that could be achieved if the heuristic was used continuously.

8.5 Tuning

Our heuristic has the following parameters, that must be tuned:

• P : probability of accepting a chosen cargo or tank or using the deterministic tank allocation
for conflict cargoes

• I: threshold value for cargo importance that eliminates randomness in the cargo selection
procedure

• ∆UNC and ∆UC : reduction parameter for non-conflict and conflict cargoes respectively.
Used to iteratively lower the capacity utilisation threshold

• ∆P : increment parameter used to iteratively increase the probability of accepting a chosen
tank for conflict cargoes

• L: number of times the heuristic is allowed to randomly reallocate a cargo

As discussed in Section 8.4, results from running our heuristic on the reduced data set Set486
yields the most realistic estimate of its performance compared to data sets Set720 and Set648
containing built-in instabilities. Therefore, during tuning we only consider the instances in Set486.
For the larger ship with 38 tanks, this set only contains 134 instances and these are again spread
over a wide variety of instance types with varying cargo count, cargo sizes etc. As mentioned in
Section 8.4, only five instances of each type are generated and with the removal of instances with
built-in instabilities, this number is significantly lower for most instance types. Thereby, it will
be difficult to extract only a subset of instances for tuning while at the same time retaining a
diverse and representative sample of instances. Therefore, we have chosen to tune on all instances
in Set486; however, this will bias our conclusions slightly when performing the computational study
on this data set in Section 8.6.

We tune two versions of the heuristic: One for the smaller ship with 24 tanks (denoted T24)
and one for the larger ship with 38 tanks (denoted T38). During development of the heuristic and
preliminary testing, we obtained qualified estimates for the initial parameter test value ranges.
Within the initial interval for each parameter we chose three test values. With six parameters, each
allowed three different values, we obtained 36 = 729 parameter scenarios. Due to the randomness
of the heuristic, we ran each scenario five times on each data instance in Set486 and evaluated
the average performance of each parameter scenario. This resulted in a total of 5 · 729 = 3645
scenarios to be run on 486 instances. Since the heuristic is developed to efficiently solve numerous

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 86

subproblems in a tactical setting, we allowed a maximum run time of 0.2 seconds. On average, each
scenario runs through all 352 data instances for T24 in 3.3 seconds and 1.5 seconds for all 134 data
instances for T38. Therefore, choosing the parameter setting with the best average performance
from each of the six initial lists of test values for each ship took a total of (3.3+1.5) ·3645 = 17, 496
seconds, i.e. under 5 hours. The best choice of each parameter value allowed us to further reduce
the initial test value ranges and repeat the process iteratively until the optimal parameter values
were determined after three iterations. I.e. assuming that the initial test values for a parameter
were {0.4, 0.6, 0.8} and we concluded that 0.6 was the best of these, then in the next iteration we
narrowed the range and instead tested {0.5, 0.6, 0.7}. A few times the parameter setting with best
average performance was on the boundary of the test value range and so we re-expanded before
again zooming in on the optimal parameter setting.

We encountered ties between multiple parameter scenarios several times during the tuning pro-
cess. Since the average running time did not vary much between the different parameter scenarios,
we broke ties by selecting the scenario with the most stable performance using the standard devi-
ation of the solve count for the five sample runs as a measure of stability. The initial test values
as well as the final chosen parameter settings are shown in Table 8.2 for both T24 and T38.

Table 8.2: Tuning results

T24 T38
Initial test values Optimal value Optimal value

P {0.4, 0.6, 0.8} 0.50 0.60
I {0.4, 0.6, 0.8} 0.70 0.60
∆UNC {0.05, 0.25, 0.45} 0.10 0.60
∆UC {0.3, 0.5, 0.7} 0.45 0.45
∆P {0.05, 0.25, 0.45} 0.05 0.15
L {20, 40, 60} 50 35

From the optimal parameter settings in Table 8.2, we note that P is between 50% and 60% meaning
that the heuristic relies on a great deal of randomisation. Finally, we note that using the worst
setting from the above test ranges resulted in a success rate that was only 1% lower than when
using the optimal parameter setting. Therefore, the heuristic is quite robust to parameter changes.

8.6 Computational Results

In this section we evaluate the performance of our heuristic. We compare our results to the ones
obtained in (Hvattum et al., 2009) from using an optimal method and to results from both updating
and modifying their method. We also combine our heuristic with the both updated and modified
version of the optimal method and evaluate the performance of this hybrid method.

8.6.1 Results from optimal method

First, we briefly summarise the findings Hvattum et al. (2009) obtained solving their mixed integer
program directly with CPLEX v.11 on an Intel 2.66GHz processor. In Table 8.3 we summarise their
results for three different objective functions. The first objective function is to simply minimize 0,
i.e. focus on feasibility, the second seeks to minimise tank cleaning while the last one maximises
average capacity of vacant tanks during the ship’s route. They allowed a maximum run time of 600
seconds to solve each instance in Set720. To capture the variance in running times, Table 8.3 shows
the number of instances for which a feasible solution is found within a given time limit stated in
the top row as well as the average running time given in the last column.

On average, the method that focuses on feasibility, i.e. objective (1), is fastest. However,
allowing running times of 10 seconds or more, the two other objective functions result in a greater
number of feasible solutions. For all three methods, the average running time is too long for a

87 8.6. Computational Results

Table 8.3: Results from Hvattum et al. (2009)

Objective Data set ≤ 1 ≤ 10 ≤ 100 ≤ 600 Av. secs

(1) feasibility Set720 609 662 680 683 2.5
(2) min tank cleaning Set720 555 677 707 716 4.1
(3) max av. vacant cap. Set720 546 672 711 717 5.1

method that is to be used to solve a subproblem numerous times in e.g. column generation or local
search.

In order to enable a fair comparison with the results from our heuristic, we ran their algorithm
with the three different objectives on the same machine used for our heuristic results and also used
the newer version 12.4 of CPLEX, that we use for solving the small LPs when determining the
cargo amount to put into each tank. Table 8.4 therefore gives the same numbers as Table 8.3,
however, for a 4.0GB RAM PC with Intel Core2 Duo, 2.4 GHz processor. Since this updated
version is faster than the original version, we have added a column with the smaller time limit of
0.1 second and a column with time limit 250 seconds.

Table 8.4: Results from updated version of optimal method from Hvattum et al. (2009)

Objective Data set ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 ≤ 600 Av. secs

(1) feasibility Set720 298 659 715 719 720 720 0.767
(2) min tank cleaning Set720 205 557 694 719 720 720 1.822
(3) max av. vacant cap. Set720 23 525 690 715 717 717 4.912

From Table 8.4 we see that the updated version of the algorithm is both faster and better
than the old one, as it is now able to solve all instances when using objective (1) or (2). These
two methods actually solve all instances within 250 seconds while using objective (3) fails to solve
all instances within the time limit of 600 seconds. On average, the no objective method is still
fastest. However, now the two other objective functions do not yield better results after 10 seconds
as they did before. Instead, using no objective is now best on all accounts regardless of the time
limit. Therefore, when comparing with our heuristic, we use the no objective method and denote
this updated optimality-based method by ‘UpdOpt’. We also run this version of the algorithm on
the two sets Set648 and Set486 to enable comparison with our heuristic on these sets. The results
from these runs are presented in Table 8.5 where the time limit has been reduced from 600 to 250
seconds due to the speed up of the algorithm.

Table 8.5: Results from UpdOpt method

Objective Data Set ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

(1) feasibility Set648 240 598 644 648 648 0.463
(1) feasibility Set486 196 463 483 486 486 0.374

From Tables 8.4 and 8.5 we note that removing instances with built-in instabilities significantly
reduces problem complexity and thereby running times. However, if our method is to apply to
bulk operators of all sizes, the running time of the algorithm is still too long for the method to be
applicable as a subproblem solver in a column generation or local search based framework.

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 88

8.6.2 Modifying the optimality-based method

As already mentioned, when the focus is as here on feasibility rather than optimality, there is no
longer any need to include the cost of tank cleaning nor the constraints for cleaning as we can
simply assume that tanks are cleaned if necessary, regardless of cost. Removing the cleaning con-
straints (8.7) from the model (8.1)-(8.10) means that we can further remove the binary cleaning
variables, zct, to further reduce the model size and thereby also the running times. However, for
some reason this observation is neither mentioned nor explored by Hvattum et al. (2009). Instead,
we have modified their algorithm by removing all cleaning variables and constraints and denote
this updated and modified optimality-based method by ‘ModOpt’. Table 8.6 shows the improved
results from running this version of the algorithm on the three data sets.

Table 8.6: Results from ModOpt method

Objective Data Set ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

(1) feasibility Set720 310 665 716 719 720 0.726
(1) feasibility Set648 293 605 645 648 648 0.402
(1) feasibility Set486 263 467 483 486 486 0.282

From Table 8.6 we see that removing all variables and constraints related to cleaning, reduced
the running times by 5-25%. Even so, these running times are still a bit too long for our purpose.

8.6.3 Results from the developed heuristic

Now we are ready to present the results from the heuristic described in Section 8.3. As mentioned
in Section 8.6.1, all heuristic tests have been run on a 4.0GB RAM PC with Intel Core2 Duo, 2.4
GHz processor. In Table 8.7 we show the summarised results from running the heuristic once on
each of the three different data sets using the optimal parameter setting derived in Section 8.5.
Note that for completeness we here include tests on the data sets Set720 and Set648 even though
we know that the heuristic will not perform well on these due to the built-in instabilities in these
data instances. Even though the heuristic is developed to quickly assess feasibility and that it
has therefore been tuned with a time limit of only 0.2 seconds, we here allow a time usage of 250
seconds to be able to compare with the results from Hvattum et al. (2009). Later, we will lower
this time limit and run multiple tests to investigate the stability of the heuristic.

Table 8.7: Results from a single run of the heuristic

Data Set ≤ 0.01 ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

Set720 289 671 702 712 715 715 1.889
Set648 366 623 637 641 644 644 1.776
Set486 290 475 482 484 485 486 0.426

From Table 8.7 we see that the heuristic is able to solve all instances in Set486 and solves 99% of
the instances within 1 second. In fact, 99% of the instances are solved already within 0.4 seconds.
As expected, the heuristic performs worse on Set648 and Set720. The average running time on
these sets are relatively high and the instances with built-in instabilities obviously play a major
role here as any unsolved instance causes a time usage of 250 seconds whereby the average solve
time is significantly higher than without these instances. Comparing our results with the ones
in Tables 8.4 and 8.5, we see that our average running times are longer than the ones from the

89 8.6. Computational Results

UpdOpt and ModOpt methods. However, these averages are, as just mentioned, highly affected
by just a few difficult instances. Looking instead at the distribution of time usage, we see that
our heuristic performs much better than both the UpdOpt method and the ModOpt method when
running time is limited. In fact, the time limit has to be at least 10 seconds for the UpdOpt
method and the ModOpt method to match or outperform our heuristic.

To get an idea of which instance groups are complicated, Table 8.8 shows more detailed in-
formation on the heuristic results for Set486. Looking just at the average running time can be
very misleading since a single instance with a long running time will have a huge impact on the
average running time. Therefore, when determining which instance groups are complicated it is
more accurate to consider the distribution of running times and consider for which groups the
majority of the instances are solved quickly. To assist in the understanding of Table 8.8, for each
instance group we put a ‘-’ in entries where all instances in the group have already been solved
at a lower time limit. Thereby, an easy rule of thumb becomes: the more ‘-’ entries in a row, the
easier the instance group corresponding to this row was to solve.

Table 8.8: Detailed results from heuristic on Set486

Subset #INST ≤ 0.01 ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

TAP 486 290 475 482 484 485 486 0.426
C20 161 153 160 161 - - - 0.012
C30 168 95 164 165 166 167 168 1.191
C40 157 42 151 156 157 - - 0.031
D1 114 64 113 114 - - - 0.011
D2 116 74 115 116 - - - 0.013
D3 124 76 119 123 124 - - 0.060
D4 132 76 128 129 130 131 132 1.490
F1 136 79 132 135 136 - - 0.050
F2 165 94 160 163 164 164 165 1.005
F3 185 117 183 184 184 185 - 0.185

T24/V3 172 149 169 171 172 - - 0.024
T24/V6 180 63 180 - - - - 0.012
T38/V6 41 24 33 38 39 40 41 4.867
T38/V12 93 54 93 - - - - 0.012

From Table 8.8 we first note that, rather surprisingly, the cargo count does not give any
indication of problem complexity for our heuristic. Instead, we can use the probability distribution
for the cargo categories as a clear guide to problem complexity. This makes sense, since the higher
the value of D, the more category 3 cargoes there are, and hence, the more conflicts there are,
resulting in unutilised neighboring capacity. With regards to the minimum/maximum capacity
utilisation, i.e. the F parameter, we see no pattern with respect to complexity. This actually
makes sense, since a lower value for F means that the ship is not very crowded, i.e. requirements
for capacity utilisation are low, but on the other hand the ship is rarely emptied completely and so
we cannot decompose into smaller and easier subproblems. There is a weak trend suggesting that
instances for the T38 ship are more difficult than instances for the T24 ship. However, a much
more important factor is the cargo sizes. The smaller they are, the more cargoes will be on board
simultaneously, and hence, the more complex the combinatorial puzzle will be.

We also note from analysing the unsolved instances, that the majority of these derive from an
inability to reserve sufficient capacity for each cargo as opposed to ensuring ship stability. In fact,
instability issues account for less than 1% of the unsolved instances, suggesting that the procedure
for creating stable allocations when selecting tanks, works very well. Since this method is generic
enough to handle instances with more than one stability dimension, i.e. consider other dimensions
than roll, this also suggests that the heuristic will work well on instances with other stability
dimensions included.

Chapter 8. A Heuristic and Hybrid Method for the Tank Allocation Problem
in Maritime Bulk Shipping 90

Allowing long enough running times, the heuristic can solve all instances in Set486. However,
the heuristic is neither developed for nor tuned to long running times. Therefore, we want to get
an idea of the randomness of the heuristic performance with smaller time limits. To explore this,
we have run the heuristic five times on Set486 with a time limit of 0.2 seconds. In Table 8.9 we
report the minimum, average and maximum number of solved instances over the five runs. We
also state the standard deviation of the number of solved instances. Note though, that without
knowing the true probability distribution, this is a sample deviation assuming equal probability
for all outcomes. Therefore, this number is most likely higher than the actual standard deviation
where outliers would contribute with less weight. Even so, we note from Table 8.9 that overall
performance of the heuristic is quite stable.

Table 8.9: Analysis of heuristic performance over five runs with time limit 0.2 seconds

Data Set Minimum Average Maximum Std.Dev.

Set486 478 480 481 1.1

8.6.4 Devising a hybrid solution method

So far we have improved the method from Hvattum et al. (2009) and created a heuristic solution
method and presented results for both these methods. When comparing these results we see that
the heuristic is much faster than the ModOpt method on the majority of instances. However,
the heuristic struggles with just a few instances which results in an overall average running time
slightly higher than that of the ModOpt method. In Table 8.10 we compare these two methods
for running times below 5 seconds.

Table 8.10: Comparing the ModOpt method with the heuristic on Set486 with time limit 5 seconds

Algorithm ≤ 0.01 ≤ 0.025 ≤ 0.05 ≤ 0.1 ≤ 0.5 ≤ 1 ≤ 5 Av. secs

ModOpt 0 0 107 263 447 467 482 0.229
Heuristic 290 463 471 475 481 482 484 0.048

From Table 8.10 it is clear that the heuristic is much faster than the ModOpt method on the
vast majority of instances. A thorough analysis of the results from these two methods shows that
they complement each other quite nicely as the two instances that cause the heuristic trouble are
relatively easily solved by the ModOpt method while this instead struggles on lots of instances
that are easily solved by the heuristic. This suggests combining the two methods to obtain an even
faster method. Since the heuristic is much faster than the ModOpt method on most instances, we
combine the two methods by first running the heuristic for a short amount of time and if no feasible
solution is found, we run the ModOpt method. However, as described in Section 8.3, the heuristic
splits each problem into smaller subinstances and iteratively tries to solve each of these. This means
that even if the heuristic failed to find a feasible solution for a given problem instance, it can easily
be the case that it managed to find feasible solutions to one or more of the smaller subinstances.
We can utilise this fact to enhance the hybrid method even further. Therefore, we combine the
two methods by first running the heuristic for a short amount of time and if no feasible solution is
found, we run the ModOpt method, however, only on those subinstances that the heuristic failed
to solve. Since we only apply the ModOpt method to smaller subinstances, the computation times
will obviously be much shorter than what we saw for the full instances. Table 8.11 shows the
results from running this hybrid method on the three data sets with a heuristic time limit of 0.2
seconds as the heuristic is tuned for.

91 8.6. Computational Results

Table 8.11: Results from hybrid method

Data Set ≤ 0.01 ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

Set720 376 671 701 718 719 720 0.367
Set648 283 616 633 647 648 648 0.123
Set486 295 479 483 486 486 486 0.027

Just as we found from the heuristic test results, Table 8.11 confirms that the removal of instances
with built-in instabilities significantly reduces average running time. In fact, going from Set720 to
Set648 causes a 66% reduction in average running time, while going from Set648 to Set486 yields
a 78% reduction. Furthermore, we note from Table 8.11 that Set720 requires a time limit of 250
seconds to solve all instances while Set648 requires 100 seconds, and finally, all instances in Set486
can be solved within only 10 seconds. A closer look at our results shows that these numbers are
in fact 185 seconds, 21 seconds and 3 seconds, respectively. We note that with an average running
time of just 0.027, this hybrid method is certainly efficient enough to be used as a subproblem
solver. In the next section we compare this hybrid method to the previously presented solution
methods.

8.6.5 Comparing algorithms

In order to ease comparison between the different methods, we have gathered the summarised
results for Set486 in Table 8.12.

Table 8.12: Comparing the different algorithms on Set486 with time limit 250 seconds

Algorithm ≤ 0.01 ≤ 0.05 ≤ 0.1 ≤ 1 ≤ 5 ≤ 10 ≤ 100 ≤ 250 Av. secs

UpdOpt 0 87 196 463 481 483 486 486 0.374
ModOpt 0 107 263 467 482 483 486 486 0.282
Heuristic 290 471 475 482 484 484 485 486 0.426
Hybrid 295 475 479 483 486 486 486 486 0.027

By construction, the heuristic and the hybrid method will perform similarly for the first 0.2
seconds. Thereafter, the hybrid method will utilise CPLEX to solve the remaining instances
causing a 94% reduction in average running time compared to the heuristic that struggles with
two instances which have a huge impact on the average running time. Note that if the heuristic
had been used continuously so that all locked loads were also placed in a stable manner, the
heuristic performance would most likely improve. Even so, the heuristic clearly outperforms the
two optimality based methods as long as running time is below 10 seconds. After 10 seconds the
two optimality based methods are better at solving the last two instances that cause the heuristic
trouble. Thereby, their average running times are better than that for the heuristic. Since the
hybrid method combines the best of the heuristic and the optimality based methods, it outperforms
them all. In fact, no matter the allowed time limit, no other method solves more instances than
the hybrid method and its average running time is as much as 93% lower than the updated version
of the method originally presented by Hvattum et al. (2009) and 90% lower than our modified
version of this method.

Bibliography 92

8.7 Concluding Remarks

In this paper we have considered the Tank Allocation Problem in bulk shipping from a tactical
perspective where the main objective is to quickly assess feasibility of a given ship route rather
than finding an optimal tank allocation. We have developed a heuristic for efficiently solving this
problem and computational results show that it can solve 99% of the considered feasible instances
within 0.4 seconds and all of them if allowed longer time. We have also modified an optimality
based method presented in Hvattum et al. (2009) and thereby improved their results. The heuristic
struggles on two instances causing an overall longer average running time than found with this
modified optimality based method. Looking instead at the distribution of time usage, we see that
when running time is below 10 seconds, our heuristic clearly outperforms the modified optimality
based method by consistently solving more instances. This observation motivated the construction
of a hybrid method that first runs the heuristic for 0.2 seconds and if no feasible solution is found,
then runs the modified optimality based method on the parts of the instance that the heuristic
has not solved. Computational results shows that on the considered instances the hybrid method
cuts between 90% and 94% of average running times compared to the three other methods and
consistently solves more instances than the other methods within any given time limit. In fact, the
average running time for the hybrid method is just 0.027 seconds which is fast enough to facilitate
the inclusion of the tank allocation aspect into the routing and scheduling phase.

Since the shipping industry operates in a both dynamic and stochastic environment, it is also
worth mentioning that, as discussed in Section 8.3.3, our heuristic can be expected to generate
solutions that are generally more robust to changes than solutions from the method by Hvattum
et al. (2009). This robustness is derived from the fact that the heuristic seeks to allocate each
individual cargo in a stable manner whereby the stability of the ship does not rely on cargoes to
outbalance each other and hence any cargo can in principle be removed from the route without
causing instability for the remaining route.

It should also be mentioned that the heuristic described here is flexible enough to incorporate
operational considerations such as ballast tanks and moving cargoes between tanks after allocation
(i.e. solving the allocation problem for a single set of cargoes on a leg). Finally, it would be
interesting to extend our heuristic to allow flexible cargo sizes since this is often used when shipping
liquid products. Likewise, it would be interesting to explore the effect of integrating our hybrid
method as a subproblem solution method in a procedure for solving the full routing and scheduling
problem with the tank allocation aspect included. Both these extensions are left as promising ideas
for further research.

Acknowledgements

The research presented in this paper has been partly funded by The Danish Maritime Fund and
we gratefully acknowledge their financial support. This research has also been partially supported
by the European Union Seventh Framework Programme (FP7-PEOPLE-2009-IRSES) under grant
agreement n◦ 246647 and from the New Zealand Government as part of the OptALI project.

Bibliography

D. Barbucha and W. Filipowicz. Segregated storage problem in maritime transportation. In IFAC
Transportation Systems, pages 557 – 561, 1997.

M.E. Coccola and C.A. Mendez. Logistics management in maritime transporation systems. Chem-
ical Engineering Transactions, 32:1291 – 1296, 2013.

F. Cornillier, G. Laporte, F.F. Boctor, and J. Renaud. The petrol station replenishment problem
with time windows. Computers & Operations Research, 36:919 – 935, 2009.

U. Derigs, J. Gottlieb, J. Kalkoff, M. Piesche, F. Rothlauf, and U. Vogel. Vehicle routing with
compartments: applications, modelling and heuristics. OR Spectrum, 33:885 – 914, 2011.

93 Bibliography

K. Fagerholt and M. Christiansen. A combined ship scheduling and allocation problem. Journal
of the Operational Research Society, 51:834 – 842, 2000.

L.M. Hvattum, K. Fagerholt, and V.A. Armentano. Tank allocation problems in maritime bulk
shipping. Computers & Operations Research, 36(11):3051–3060, 2009.

A.S. Jetlund and I.A. Karimi. Improving the logistics of multi-compartment chemical tankers.
Computers and Chemical Engineering, 28:1267 – 1283, 2004.

K. Kobayashi and M. Kubo. Optimization of oil tanker schedules by decomposition, column gener-
ation, and time-space network techniques. Japan Journal of Industrial and Applied Mathematics,
27(1):161–173, 2010.

G.L. Martin, S.U. Randhawa, and E.D. McDowell. Computerized container-ship load planning: A
methodology and evaluation. Computers & Industrial Engineering, 14(4):429–440, 1988.

K.-H. Neo, H.-C. Oh, and I.A. Karimi. Routing and cargo allocation planning of a parcel tanker.
In 16th European Symposium on Computer Aided Process Engineering and 9th International
Symposium on Process Systems Engineering, pages 1985 – 1990, 2006.

H.-C. Oh and I.A. Karimi. Routing and scheduling of parcel tankers: a novel solution approach.
In A. Bruzzone, F. Longo, Y. Merkuriev, G. Mirabello, and M.A. Piera, editors, The 11th
International Workshop on Harbor Maritime Multimodal Logistics Modeling and Simulation,
pages 98 – 103, September 2008.

P. Schaus, J.-C. Regin, R. Van Schaeren, W. Dullaert, and B. Raa. Cardinality reasoning for
bin-packing constraint: Application to a tank allocation problem. In M. Milano, editor, Con-
straint Programming 2012, volume 7514 of Lecture Notes in Computer Science, pages 815 – 822.
Springer, 2012.

UNCTAD. Review of maritime transport 2012. http://unctad.org/en/PublicationsLibrary/
rmt2012_en.pdf, November 2012.

G.A. Vouros, T. Panayiotopoulos, and C.D. Spyropoulos. A framework for developing expert
loading system for product carriers. Expert Systems With Applications, 10(1):113 – 126, 1996.

I.D Wilson and P.A Roach. Container stowage planning: a methodology for generating comput-
erised solutions. Journal of the Operational Research Society, 51(11):1248–1255, 2000.

X. Wu, H.-C. Oh, I.A. Karimi, M. Goh, and R. de Souza. Tops: Advanced decision support system
for port and maritime chemical logistics. The Asian Journal of Shipping and Logistics, 27(1):
143 – 156, 2011.

Bibliography 94

Chapter 9

Tramp Ship Routing and
Scheduling with Voyage
Separation Requirements

Charlotte Vilhelmsen Richard M. Lusby

Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

chaan@dtu.dk, rmlu@dtu.dk

Abstract In this paper we explore tramp ship routing and scheduling. Tramp ships operate much
like taxies following the available demand as opposed to liner ships that operate more like busses
on a fixed route network according to a published timetable. Tramp operators can determine some
of their demand in advance by entering into long term contracts and then try to maximise profits
from optional voyages found in the spot market. Routing and scheduling a tramp fleet to best
utilise fleet capacity according to current demand is therefore an ongoing and complicated problem.
Here we add further complexity to the routing and scheduling problem by incorporating voyage
separation requirements that enforce a minimum time spread between some voyages. The incor-
poration of these separation requirements helps balance the conflicting objectives of maximising
profit for the tramp operator and minimising inventory costs for the charterer, since these costs
increase if similar voyages are not performed with some separation in time. We have developed
a new and exact Branch-and-Price procedure for this problem. We use a dynamic programming
algorithm to generate columns and use a modified time window branching scheme to enforce the
voyage separation requirements which we relax in the master problem. Computational results show
that our algorithm finds very good if not optimal solutions extremely fast though one instance re-
quires longer time. We also compare our method to an earlier a priori path generation method
which we show is not optimal. Computational results confirm this as our algorithm consistently
finds solutions that are equally good or better than those from the a priori generation method.
Furthermore, for all but one instance, our solutions are found in the same or shorter time than
those from the a priori generation method.

9.1 Introduction

With over 9 billion tons of cargo transported by the international shipping industry every year
(UNCTAD, 2013) there is no doubt that the maritime sector plays a vital role in world trade.
Maritime transportation therefore constitutes an important research area and in this paper we
explore tramp shipping where ships sail much like taxies following the available demand. This is in
contrast to liner shipping where ships operate more like busses following a fixed route network and

95

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 96

a published timetable. Tramp operators do however know some of their demand in advance since
they can enter into long term contracts and then seek to maximise profit from optional cargoes
found in the spot market.

For tramp operators a very important an ongoing problem is how to most efficiently route
and schedule their fleets according to current demand. This is precisely the problem we consider
here. However, we add further complexity to the problem by incorporating voyage separation
requirements which enforce a minimum time spread between some voyages. This is done in order to
find a balance between maximising profit for the ship operator and increasing customer satisfaction
for the charterer who faces increased inventory costs if similar voyages are not performed with some
separation in time. Thereby, this incorporation of voyage separation requirements correspond to
a crude way of viewing the tramp ship routing and scheduling problem in the broader context of
the supply chain. Furthermore, with already low freight rates and increased competition amongst
operators, the customer satisfaction perspective is interesting and Norstad et al. (2013) show that
it can be incorporated with only a small decrease in profit. Results from Norstad et al. (2013)
show that their methods struggle on larger and more complex problem instances and so, the aim
here is to develop a more efficient solution method.

In this paper we therefore consider the tramp ship routing and scheduling problem with voyage
separation requirements. We present a mixed integer programming formulation for this problem
and devise a new, exact solution method for it. This solution method is a Branch-and-Price
procedure with a dynamic programming algorithm to generate the columns. A modified time
window branching scheme is used to enforce the voyage separation requirements, which are relaxed
in the master problem. Computational results on 16 instances show that this method finds very
good if not optimal solutions extremely fast although one instance requires longer time. We also
compare our algorithm to an a priori path generation method from Norstad et al. (2013). We
argue that their method is not optimal and computational results verify this. In fact, the profits
from our solutions are consistently equal to or better than theirs and are as much as 6% higher on
one instance. Furthermore, on all but one instance our solution is obtained in the same or shorter
time than that of the a priori path generation method.

The remainder of the paper is organized as follows. In Section 9.2 relevant literature is presented
while Section 9.3 provides a problem description as well as a non-linear mathematical model for
the problem. Section 9.4 describes the decomposition of the problem and the dynamic column
generation procedure, i.e. the pricing part of the proposed algorithm. Section 9.5 describes the
branching part of the algorithm, namely time window branching and constraint branching. In
Section 9.6, we describe the data instances used to evaluate the performance of our algorithm as
well as the results obtained with our algorithm on these instances. We also compare these results
to results obtained from running the a priori path generation method from Norstad et al. (2013)
on these same instances. Finally, concluding remarks and suggestions for future work are discussed
in Section 9.7.

9.2 Literature Review

Mathematical formulations and discussions on solution methods for a wide range of maritime
problems on all planning levels can be found in Christiansen et al. (2007). Furthermore, a thorough
review of literature focused on ship routing and scheduling before 2013 can be found in the four
review papers, Ronen (1983), Ronen (1993), Christiansen et al. (2004) and Christiansen et al.
(2013). The tramp ship routing and scheduling problem considered here is also closely related to
the vehicle routing problem with time windows, for which we refer the reader to Cordeau et al.
(2002).

Recent work on tramp ship routing and scheduling include Cóccola et al. (2014) who present a
novel column generation approach in which the conventional dynamic programming route-generator
is replaced by a continuous time MILP slave problem. Their computational results show that
their method outperforms both a pure exact optimisation model and a heuristic solution method
previously reported in the literature. Castillo-Villar et al. (2014) present a Variable Neighborhood
Search based heuristic procedure for solving the tramp ship routing and scheduling problem with
discretised time windows. They ignore optional cargoes and therefore seek to minimise cost rather

97 9.3. Problem Description

than to maximise profit. However, the discretisation approach allows them to incorporate several
practical extensions and they specifically investigate the inclusion of variable speed. St̊alhane
et al. (2014) combine traditional tramp shipping with a vendor managed inventory service in an
attempt to challenge the traditional Contract of Affreightment which is the standard agreement
between a tramp ship company and a charterer. They present an exact solution method as well
as a heuristic for solving larger instances. St̊alhane et al. (2012) and Vilhelmsen et al. (2013) both
extend the basic problem by investigating, respectively, split loads and the integration of bunker
planning. As further extensions to the basic problem, Fagerholt and Ronen (2013) present and
consolidate results for three practical extensions within bulk shipping: (1) flexible cargo quantities,
(2) split cargoes, and (3) sailing speed optimization. Kang et al. (2012) consider the interaction
between ship routing and scheduling and ship deployment, though in a context quite different from
ours. Somewhere between tramp shipping and liner shipping, Moon et al. (2014) also investigate
a combined ship routing and fleet deployment problem.

In this paper we extend the basic tramp ship routing and scheduling problem by including
voyage separation requirements. Such requirements are also considered in Norstad et al. (2013)
in a context similar to ours. Their computational results show that the introduction of voyage
separation requirements only leads to a marginal reduction in profit. They present both an arc
flow formulation and a path flow formulation solved using a priori path generation. They conclude
that both models work well on small problem instances and that the path flow model is also
capable of solving real life size instances within an acceptable time. However, for larger instances,
or situations with further complexity, neither of the two solution methods are applicable. We
investigate the path flow approach further in Section 9.6 where we compare it to our solution
method.

Within liner shipping, another example of time separation constraints can be found in Sigurd
et al. (2005). They consider a variant of the general pickup and delivery problem with multiple
time windows and the addition of requirements for recurring visits, separation between visits and
limits on transport lead-time. They use a heuristic branch-and-price algorithm to obtain a fixed
visit schedule with a recurring route for each ship.

Within other transportation modes, we can find numerous examples of time separation require-
ments. Especially synchronisation constraints are often encountered in vehicle routing, see e.g.
Reinhardt et al. (2013) who consider synchronized dial-a-ride transportation for airport passengers
with reduced mobility or Drexl (2013) who extend the vehicle routing problem to include trailers
and transshipments and describe how to model several important problems within this context.
More general temporal dependencies are handled in Dohn et al. (2011) for the vehicle routing
problem with time windows. They present a comprehensive description of literature dealing with
both synchronisation constraints and more general temporal dependencies within various transport
modes, crew scheduling and even machine scheduling. They present two compact formulations and
the Dantzig-Wolfe decompositions of these formulations. Four different master problem formula-
tions are proposed along with a time window branching scheme used to enforce feasibility on the
relaxed master problems. Their computational study shows that, depending on the problem at
hand, the best performance is achieved either by relaxing the temporal dependency constraints in
the master problem, or by using a time-indexed model, where generalized precedence constraints
are added as cuts when they become severely violated.

9.3 Problem Description

In this section we first give a problem description and then present a mathematical arc flow formu-
lation for the Tramp Ship Routing And Scheduling Problem with Voyage Separation Requirements
(TSRSPVSR).

A tramp operator typically has long term contracts that obligate him to perform some voyages;
however, he/she can choose to perform additional voyages, so called spot voyages, if fleet capacity
allows it and it is profitable. The objective is to create a profit maximizing set of fleet schedules,
one for each ship in the fleet, where a schedule is a sequence and timing of port calls representing
the voyages. The optimal solution therefore combines interdependent decisions on which optional
voyages to perform, the assignment of voyages to ships and the optimal sequence and timing of

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 98

port calls for each ship. If capacity is insufficient to perform all mandatory contract voyages, it is
possible to charter in spot vessels to perform some of these.

A voyage is mainly characterized by the quantity to be transported, the revenue obtained from
transporting it and the pickup and discharge ports. There is also a ship specific service time in
ports and a time window giving the earliest and latest start for each voyage. We assume that a
ship can only perform one voyage at a time corresponding to the case of full shiploads.

Several voyages can be identical except for their time windows for start of service. In fact,
contract cargoes stem from contracts of affreightment and these often state that the operator must
perform a specific voyage a given number of times during a predefined time interval, e.g. three times
during a month. Since such voyages correspond to the same geographical route, we group them
according to these trade routes. Thereby, the tramp operator has contract trade routes on which
a specific number of identical voyages must be performed and can choose to perform additional
spot voyages. Spot voyages can also be grouped according to trade routes. However, any number
of voyages on such spot trade routes can be performed as opposed to contract trade routes where
all voyages must be performed.

Contracts of affreightment often contain a contract clause stating that voyages must be per-
formed ’fairly evenly spread’ in time without specifically defining what this means. In practice it
means that, following the previous example with a contract trade requiring three voyages during
a month, the tramp operator should not perform all three voyages within the first week and then
do nothing for the remaining three weeks. As discussed in Norstad et al. (2013), these contract
clauses can be handled either by imposing additional time windows on voyage start times or by
imposing restrictions on the minimum time spread between the start of consecutive voyages on the
same trade. Obviously, there is a trade off between the quality of service provided to the charterer
and the flexibility of the tramp operator. Using restrictions on the minimum time spread seems to
provide the best balance between these two conflicting objectives, and so we adhere to this option
here, just as in Norstad et al. (2013). Note that this time spread must be adhered to even if spot
vessels are involved.

A tramp fleet is usually heterogeneous, comprised of ships of different sizes, load capacities,
fuel consumptions, speeds, and other characteristics. Ships can be occupied with prior tasks when
planning starts so each ship is further characterized by the time it is available for service and the
location it is at when it becomes available. There are also maintenance requirements for some ships
and these must be respected in the scheduling process. The characteristics of a ship determine
which voyages it is compatible with.

As we consider a fixed fleet, we can disregard the fixed setup costs and focus on the variable
operating costs. The main sailing cost is fuel cost and this is different for each ship and depends
on both the speed and the load of the ship. Since we assume full shiploads, we can factor in load
dependency by simply using two fuel consumption functions: One for ballast legs and one for laden
legs. Each ship is assumed to sail at two predefined speed settings: one for ballast legs and one for
laden legs: therefore, the two fuel consumption functions are in effect two constants used for the
two types of sailing legs. When loading and discharging, ship dependent port costs are incurred.
Finally, there is a cost associated with chartering in spot vessels to perform uncovered contract
voyages.

9.3.1 Mathematical model

Let V be the set of ships. Furthermore, let R denote the set of trade routes and associate with
each trade route r ∈ R the set of voyages Ir = {1, 2, . . . , nr} on trade route r during the planning
horizon. A specific voyage i ∈ Ir for r ∈ R can be denoted by the pair (r, i). Thereby, the two
pairs (r, i) and (r, i + 1) denote two consecutive voyages on trade r. Spot voyages and mainte-
nance requirements are also modeled using this trade route notation though nr is equal to 1 for
maintenance trades.

Due to port and cargo compatibility, capacity requirements and other restrictions, not all ships
can sail all trade routes. Therefore, we further define Rk and Vr as, respectively, the set of trade
routes compatible with ship k ∈ V and the set of ships compatible with trade route r. We let NC ,
NO and N k

M denote, respectively, the set of contract voyages, the set of optional voyages and the
set of maintenance requirements for ship k.

99 9.3. Problem Description

In order to define the problem on a graph, we define an origin and a destination node for each
ship k ∈ V and denote these o(k) and d(k) respectively. The origin node corresponds to the location
of the ship when planning starts while the destination node is artificial and simply corresponds to
the geographical location of ship k at the end of the planning horizon. The problem can then be
defined on the graph G = (N ,A) where N = NC ∪NO ∪k∈V N k

M ∪k∈V {o(k), d(k)}. If a voyage or
maintenance, (r, i), can be performed directly before another voyage or maintenance, (q, j), then A
contains the arc ((r, i), (q, j)). A also contains the arcs (o(k), (r, i)) and ((r, i), d(k)) for each ship
k that can perform voyage i on trade route r. Finally, for each ship k ∈ V without maintenance
requirements, the set also contains the arc (o(k), d(k)) corresponding to an idle ship. For each ship
k ∈ V we further define the set Ak as the set of arcs in A that are traversable by ship k, e.g. with
respect to time.

For each node (r, i) ∈ N we have a time window [ari, bri] describing the earliest and latest time
to start service for this voyage or maintenance. For o(k) this window is collapsed into the time
ship k is available for service, ao(k). We let Br denote the minimum acceptable time between the
start of service on two consecutive voyages on trade route r ∈ R.

The fixed time for performing voyage/maintenance (r, i) and sailing ballast to the first pickup
port of voyage/maintenance (q, j) with ship k, is denoted T k

riqj and includes service time in ports
for voyage (r, i), laden travel time for voyage legs and ballast travel time from the final discharge
port of voyage (r, i) to the first pickup port of voyage (q, j). Similarly, we let T k

o(k)ri denote the

time for traveling ballast with ship k from its origin to the first port of voyage (r, i).

For the ballast legs, Ck
riqj and Ck

o(k)ri denote, respectively, the cost of traveling ballast with

ship k from the last discharge port of voyage/maintenance (r, i) to the first pickup port of voy-
age/maintenance (q, j), and from the origin node to the first pickup port of voyage/maintenance
(r, i). We also have ship specific profits for the laden voyage legs. These profits, P k

ri, take into
account the revenue incurred from performing voyage (r, i), the cost of sailing laden with ship k
from the first pickup port of the voyage to the final discharge port of the voyage, and finally, the
port costs incurred during the voyage or maintenance period when performed by ship k. If a voyage
(r, i) is instead performed by a spot vessel, the cost incurred is CS

ri.

For the mathematical formulation we need several variables. First, we define binary flow vari-
ables xkriqj for k ∈ V, ((r, i)(q, j)) ∈ Ak that are equal to 1, if ship k performs voyage (r, i) just

before voyage (q, j), and 0 otherwise. Likewise, we define binary flow variables xko(k)ri, x
k
rid(k) and

xko(k)d(k) for the arcs connecting the origin and destination nodes with other nodes and with each

other. The start time for service at each node is also variable and so we define time variables tko(k)
and tkri for each k ∈ V, r ∈ Rk and i ∈ Ir. If a spot vessel is hired to service a contract voyage
(r, i) ∈ NC , we denote the start time by tSri and let the binary variable yri be equal to 1.

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 100

We can now give an arc flow formulation of the TSRSPVSR:

max
∑
k∈V

∑
r∈Rk

∑
i∈Ir

∑
q∈Rk

∑
j∈Iq

(
P k
ri − Ck

riqj

)
xkriqj

+
∑
k∈V

∑
r∈Rk

∑
i∈Ir

P k
rix

k
rid(k)

−
∑
k∈V

∑
r∈Rk

∑
i∈Ir

Ck
o(k)rix

k
o(k)ri −

∑
(r,i)∈NC

CS
riyri (9.1)

s.t. ∑
k∈Vr

(∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k)

)
+ yri = 1, ∀(r, i) ∈ NC , (9.2)

∑
k∈Vr

(∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k)

)
≤ 1, ∀(r, i) ∈ NO, (9.3)

∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k) = 1, ∀k ∈ V, (r, i) ∈ N k
M , (9.4)

∑
r∈Rk

∑
i∈Ir

xko(k)ri + xko(k)d(k) = 1, ∀k ∈ V, (9.5)

xko(k)ri +
∑
q∈Rk

∑
j∈Iq

xkqjri −
∑
q∈Rk

∑
j∈Iq

xkriqj − xkrid(k) = 0, ∀k ∈ V, r ∈ Rk, i ∈ Ir, (9.6)

∑
r∈Rk

∑
i∈Ir

xkrid(k) + xko(k)d(k) = 1, ∀k ∈ V, (9.7)

xko(k)qj(t
k
o(k) + T k

o(k)qj − tkqj) ≤ 0, ∀k ∈ V, q ∈ Rk, j ∈ Iq, (9.8)

xkriqj(t
k
ri + T k

riqj − tkqj) ≤ 0, ∀k ∈ V, ((r, i), (q, j)) ∈ Ak, (9.9)

ari
(∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k)
)
≤ tkri

≤ bri
(∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k)
)
, ∀k ∈ V, r ∈ Rk, i ∈ Ir, (9.10)

∑
k∈Vr

tkri + tSriyri + Br ≤
∑
k∈Vr

tkr,i+1 + tSr,i+1yr,i+1, ∀(r, i) ∈ NC , i ∈ Ir \ {nr}, (9.11)

ari ≤ tSri ≤ bri, ∀(r, i) ∈ NC , (9.12)

tko(k) ≥ ao(k), ∀k ∈ V, (9.13)

xko(k)ri ∈ {0, 1}, ∀k ∈ V, r ∈ Rk, i ∈ Ir, (9.14)

xko(k)d(k) ∈ {0, 1}, ∀k ∈ V : N k
M = ∅, (9.15)

xkriqj ∈ {0, 1}, ∀k ∈ V, ((r, i), (q, j)) ∈ Ak, (9.16)

xkrid(k) ∈ {0, 1}, ∀k ∈ V, r ∈ Rk, i ∈ Ir, (9.17)

yri ∈ {0, 1}, ∀(r, i) ∈ NC . (9.18)

The objective function (9.1) maximises profit by subtracting all spot vessel costs and ballast leg
costs from profits obtained on laden voyage legs performed by ships in the fleet. Constraints (9.2)
and (9.3) ensure that all contract voyages are performed by exactly one ship, possibly a spot
vessel, and that all spot voyages are performed by at most one ship. For ships with maintenance
requirements, constraints (9.4) ensure that these requirements are adhered to. Constraints (9.5)
and (9.7) together with the flow conservation constraints in (9.6) ensure that each ship is assigned
a schedule starting at the origin node and ending at the destination node. Constraints (9.8) ensure
that if the schedule for ship k visits node o(k) directly before node (q, j), the service at node (q, j)
cannot begin before service time at node o(k) plus travel time from node o(k) to node (q, j) with
ship k. Since waiting time is allowed, the constraints have an inequality sign. Constraints (9.9)
impose similar restrictions when the starting node is a voyage or maintenance node (r, i). In such

101 9.4. Decomposition

cases, port time at node (r, i) plus travel time for performing voyage (r, i) must also be accounted
for before service at node (q, j) can start. In the time window constraints (9.10), the service time
for ship k at node (r, i), tkri, is forced to zero if ship k does not visit node (r, i). For all consecutive
voyage pairs, (r, i) and (r, i + 1), constraints (9.11) ensure that the time spread between start of
service for the two voyages is at least as large as the required time spread, Br, on trade route r.
Note that in order to also enforce the time spread when voyages are performed by spot vessels, we
must ensure that spot vessel visits also adhere to the time windows and this is taken care of in
constraints (9.12).

Constraints (9.13) ensure that no ship can start its schedule before it is available for service.
The flow variables are restricted to be binary in (9.14)-(9.17) while constraints (9.18) impose similar
restrictions on the spot vessel decision variables. Note that due to constraints (9.2) and the binary
restrictions on the flow variables, we do not actually need the binary restrictions on the spot vessel
variables. However, we include them for completeness sake and also to exploit their binary nature
in the branch-and-bound scheme later.

9.4 Decomposition

The nonlinear mixed integer programming model (9.1)-(9.18) could in theory be solved by commer-
cial optimization software for linear problems after linearising constraints (9.8), (9.9), and (9.11).
However, as pointed out in Norstad et al. (2013), where they use a similar arc flow model, most
real life problem instances will be too large to achieve solutions in a reasonable amount of time.
This section therefore describes a solution method tailored for the TSRSPVSR.

In the mathematical programming model (9.1)-(9.18), constraints (9.4)-(9.10) and (9.13)-(9.17)
are ship specific with no interaction between ships. They constitute a routing and scheduling
problem for each ship where maintenance and time windows are considered. The objective function
also splits into separate terms for each ship, aside from the last part corresponding to the cost
of using spot vessels. The only constraints linking the ships together are the common constraints
(9.2), (9.3) and (9.11) which ensure that each contract cargo is carried by exactly one ship, that
each spot cargo is carried by at most one ship, and that the voyage separation requirements (VSR)
are fulfilled. This suggests use of decomposition and column generation since it allows the complex
and ship specific constraints, concerning the routing and scheduling, to be handled separately in
subproblems, one for each ship. Only the common constraints and the spot vessel constraints (9.12)
and (9.18) remain in the master problem in which feasible ship schedules constitute the columns.
This way the original problem is transformed into a master problem with a reduced number of
constraints but with a potentially very large number of columns.

If a schedule contains waiting time, we can redistribute the waiting time and thereby obtain
a different schedule corresponding to the same ship and geographical route. Thereby, each geo-
graphical route can correspond to numerous different feasible schedules all with the same profit.
Without the VSR constraints, it would only be necessary to include one of these schedules in the
master problem while the rest could be discarded. Furthermore, for each ship, if the same voyage
and maintenance stops could be ordered into numerous different geographical routes and hence,
even further different schedules, only the schedule with the highest profit would have to be included
in the master problem. However, due to the VSR constraints, the actual timing of port calls in
a schedule for one ship can affect the timing of port calls for schedules of other ships. Therefore,
any feasible schedule for a ship must be considered a valuable contribution to the master problem
and so, the master problem column set can contain several schedules all corresponding to the same
set of voyage and maintenance stops and even to the same geographical route. Thereby, a priori
generating all columns will obviously be very time consuming and also result in very large master
problems. Therefore, we turn to dynamic column generation (see e.g. Desaulniers et al. (2005) for
a general description or Christiansen et al. (2007) for a maritime version) where new master prob-
lem columns that have the potential to improve the current solution are iteratively generated by
the subproblems. With a relaxation of the master problem the entire solution process is therefore
a Branch-and-Price procedure where new columns are iteratively priced out at each node of the
search tree guided by dual variables from the current solution to the master problem.

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 102

9.4.1 Master Problem

The common constraints (9.2), (9.3) and (9.11) in combination with the spot vessel constraints
(9.12) and (9.18) and the objective function (9.1) constitute the master problem. They must,
however, be expressed by new path flow variables corresponding to feasible ship schedules and
constraints must be added to ensure that each ship is assigned exactly one schedule. We let Sk
denote the set of all feasible schedules for ship k.

Note that rather than selecting exactly one distinct schedule for each ship, we can also allow
convex combinations of different schedules for each ship, as long as the chosen schedules correspond
to the same geographical route. We therefore denote the set of geographical routes for ship k by
Gk. Furthermore, we expand notation on the schedule sets so that now Skg denotes the set of all

feasible schedules for ship k ∈ V on geographical route g ∈ Gk.
We denote the profit of a schedule by pks for k ∈ V, g ∈ Gk, s ∈ Skg , and define a binary

schedule variable λks that is equal to 1 if ship k is chosen to sail schedule s, and 0 otherwise. The
profit pks is calculated based on information from the underlying schedule, which holds all necessary
information, i.e. the ship it is constructed for, the voyages conducted, and the timing of port calls
during the schedule. We reuse the definition of yri from the arc flow formulation and let Ak

ris be
equal to 1 if ship k performs voyage (r, i) in schedule s, and 0 otherwise. Finally, we denote the
start time for voyage (r, i) in schedule s with ship k by T k

ris. Note that these are determined in
the subproblems and are therefore constants in the master problem.

The master problem can now be stated as the following path flow reformulation of the original
arc flow model:

max
∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

pksλ
k
s −

∑
(r,i)∈NC

CS
riyri (9.19)

s.t.∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

Ak
risλ

k
s + yri = 1, ∀(r, i) ∈ NC , (9.20)

∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

Ak
risλ

k
s ≤ 1, ∀(r, i) ∈ NO, (9.21)

∑
g∈Gk

∑
s∈Sk

g

λks = 1, ∀k ∈ V, (9.22)

∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

T k
risλ

k
s + tSriyri +Br

≤
∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

T k
r,i+1,sλ

k
s + tSr,i+1yr,i+1, ∀(r, i) ∈ NC , i ∈ Ir \ {nr}, (9.23)

ari ≤ tSri ≤ bri, ∀(r, i) ∈ NC , (9.24)∑
s∈Sk

g

λks ∈ {0, 1}, ∀k ∈ V, g ∈ Gk, (9.25)

yri ∈ {0, 1}, ∀(r, i) ∈ NC . (9.26)

To solve the problem in an LP based branch-and-price framework, we first relax the binary con-
straints on the decision variables. The VSR constraints (9.23) will complicate the subproblems as
the dual variables of these constraints will create linear node costs in the subproblems. Further-
more, as T k

ris is a non-binary parameter, the presence of the VSR constraints in the master problem
will most likely lead to more fractional solutions as it compromises the strong integer properties
of the constraint matrix (we return to this matter in Section 9.5.2). Therefore, we also relax the
VSR constraints (9.23) and will instead handle these when branching. Due to this relaxation of the
VSR constraints, we no longer need the time window restrictions on the spot vessel time variables
in (9.24) and so we also relax these.

As already mentioned, we use dynamic column generation to solve the problem. Therefore,
we initially consider only a subset of the master problem columns, i.e. a subset of the feasible

103 9.4. Decomposition

schedules for each ship, and iteratively generate new columns that have the potential to improve
the current solution. The entire branch-and-price process therefore begins with the solution of the
restricted master problem (RMP) which is the linear relaxation of the problem (9.19)-(9.22) but
with only a subset of the columns included. The dual variables from this solution are then used in
the subproblems, also called pricing problems, to generate new promising columns that are added
to the RMP. This iterative process continues until no further columns can improve the current
master problem solution. If the current solution to the RMP is infeasible with respect to either
or both the relaxed integrality and VSR constraints, we branch and continue this entire process
by pricing out new columns at each node of the search tree until a feasible, optimal solution is
obtained, or a specified time limit elapses.

Initially we only include a small number of feasible schedules in the RMP. To ensure that each
contract cargo can actually be carried, we include a spot vessel schedule for each of the contract
cargoes. For each ship in the fleet we include a schedule containing only required maintenance
stops corresponding to the ship not performing any voyages for the entire planning horizon.

9.4.2 Subproblems - Pricing out new schedules

Constraints (9.4)-(9.10) and (9.13)-(9.17) split into one independent subproblem for each ship.
Since these are all essentially the same problem, we simply consider the generic subproblem for
ship k and refer to ’the subproblem’. Note that there is interdependence between the subproblems
due to the common constraints. The ship routing constraints in the subproblem ensure that any
solution is a feasible schedule for ship k and the objective must ensure that only schedules with the
potential to improve the current solution of the RMP are generated. This means finding schedules
with positive reduced costs in the current solution of the RMP.

Let πri be the dual variables for constraints (9.20) and (9.21) where the variables corresponding
to (9.20) are free of sign while the variables corresponding to (9.21) must be nonnegative. Next,
define πri = 0 for all (r, i) ∈ N k

M and let ωk be the dual for constraint (9.22) which is also free of
sign. Since we consider the generic subproblem we can drop the superscript k on the variables and
the subproblem is then given by:

max
∑
r∈Rk

∑
i∈Ir

∑
q∈Rk

∑
j∈Iq

(
P k
ri − Ck

riqj − πri
)
xriqj

+
∑
r∈Rk

∑
i∈Ir

(
P k
ri − πri

)
xrid(k)

−
∑
r∈Rk

∑
i∈Ir

Ck
o(k)rixo(k)ri − ωk (9.27)

s.t.

(9.4)− (9.10) and (9.13)− (9.17). (9.28)

The subproblem finds the maximum reduced cost feasible schedule with respect to the current dual
values. If this schedule has a positive reduced cost, it has the potential to improve the current
solution to the RMP. The subproblem can be modeled as an elementary shortest path problem
with resource constraints (ESPPRC) which is NP-hard in the strong sense (see Dror (1994)).

The collaborating tramp operator is involved in deep sea shipping, where voyage travel times
are long. Although voyage time windows can span several days, the long voyage travel times
mean that we can expect few if any time feasible cycles involving voyages in the data instances.
Similarly for maintenance requirements, we find that, although the time windows for these nodes
are very wide, the required time for maintenance is long enough that time feasible cycles are
unlikely. Therefore, we relax the subproblem to instead consider the regular shortest path problem
with resource constraints (SPPRC), as this variant of the shortest path problem can be solved in
pseudo polynomial time (see e.g. Desrochers and Soumis (1988); Irnich and Desaulniers (2005)).
When describing the subproblem networks below, we also discuss the possible existence of cycles
and how to handle these. We solve the subproblems with a dynamic label setting algorithm on the
underlying networks and refer the reader to Desaulniers et al. (1998), Irnich and Desaulniers (2005)
and Irnich (2008) for a thorough introduction to the SPPRC, the related dynamic programming
algorithms, and several associated concepts.

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 104

Subproblem networks

During construction of the subproblem networks, standard preprocessing techniques are applied
to tighten the time windows. The VSR constraints are especially useful in this process since two
consecutive voyages on a contract trade, r, must be separated in time by at least Br and so, their
individual time windows must reflect this. We describe this time window reduction technique in
further details in Section 9.5.1.

The network node set for ship k includes the origin node, o(k), and the destination, d(k). For
each contract or spot trade r that ship k is compatible with, the node set also includes a voyage
node (r, i) for each voyage i that ship k is able to perform with respect to the voyage time window.
Finally, if N k

M 6= ∅, then the node set also includes the maintenance node (r, i) ∈ N k
M .

For the origin node the time window is simply the open time for ship k, since there is no point
in delaying departure. For each voyage and maintenance node, we calculate the earliest arrival at
this node with ship k and in conjunction with the preprocessed time window for this voyage or
maintenance, we can determine a ship specific time window for this voyage or maintenance node.

If N k
M 6= ∅, then ship k must undergo maintenance sometime during its schedule. Since there is

no profit from visiting a maintenance node, we must force ship k to visit this node. Therefore, we
introduce a binary maintenance resource that is equal to 1 once maintenance has been performed
and 0 otherwise. This means, that the maintenance resource window at the destination node must
be [1, 1] while for the origin and maintenance node, it is [0, 0]. For voyage nodes, the maintenance
resource window is [0, 1].

Arcs are introduced to govern the transitions between the nodes. More specifically, the arc set
contains all arcs that are time feasible for ship k and respect the internal order of voyages on the
same trade. The latter means that, regardless of time feasibility, there can never be an arc from
node (r, i+ 1) to node (r, i).

For two nodes, n1 and n2, connected by an arc in the network, this arc has a constant cost and
time consumption and a well defined maintenance function and we denote these by Tn1n2

, Cn1n2

and Mn1n2
, respectively. If n1 is the origin node, then n2 is a voyage or maintenance node and

the arc cost and time consumption correspond to sailing ballast from the port of the origin node
to the first port associated with the voyage or maintenance node. If n1 is a voyage node and n2
is the destination node, then the cost corresponds to the negative of the profit from performing
the voyage corresponding to n1. The time consumption corresponds to the ship specific port time
on this voyage plus the time to travel the voyage distance. If instead n2 is another voyage or
maintenance node, the cost must also include the additional cost of sailing ballast from the last
port of the voyage corresponding to n1 to the first port of the voyage or maintenance corresponding
to n2. Likewise, the time consumption must now include the time to travel from the last port of
the voyage corresponding to n1 to the first port of the voyage or maintenance corresponding to
n2. Finally, if n1 is a maintenance node and n2 is the destination node, then the cost is 0 while
the time consumption is equal to the port time used during maintenance. If instead n2 is a voyage
node, then the cost and time consumption must, similar to before, also include the cost and time
of traveling ballast from the maintenance port corresponding to n1 to the first port of the voyage
corresponding to n2. Finally, Mn1n2 is equal to one on all arcs where n1 is a maintenance node
and equal to zero otherwise.

As already mentioned, we expect few if any time feasible cycles in our data instances. To detect
the presence of potential cycles in a given subproblem network, a topological sort is performed on
the node set. If a cycle is detected, the involved nodes are split into several duplicate ones, each
with a smaller time window, until the cycle no longer exists; this process creates an acyclic network.
It should be noted that with such a network we can generate schedules that visit multiple of these
duplicate nodes, whereby the cycle in effect still exists. For maintenance nodes, there is however
no profit. Therefore, we will never want to visit such nodes in the first place, and the maintenance
resource ensures that we will visit exactly one of these. Note that if such cyclic schedules are
added to the master problem, we can have Aris > 1 in the formulation of the master problem
(9.19)-(9.26).

105 9.4. Decomposition

Dynamic Programming Algorithm

Given a dual solution to an optimized restricted master problem, the role of the subproblems is to
identify whether or not a positive reduced cost schedule exists for any of the ships. This entails
solving the SPPRC over the networks described above once the respective arc costs have been
updated to reflect the dual solution. Updating the cost on arc (n1, n2) entails assigning it the
negative of the reduced cost and we denote this cost as Ĉn1,n2

. Thereby,

Ĉo(k),(r,i) = Ck
o(k)ri + ωk ∀ (o(k), (r, i)) ∈ Ak, (9.29)

Ĉ(r,i),(q,j) = Ck
riqj − P k

ri + πri ∀ ((r, i), (q, j)) ∈ Ak, (9.30)

Ĉ(r,i),d(k) = −P k
ri + πri ∀ ((r, i), d(k)) ∈ Ak. (9.31)

As mentioned above, we solve the SPPRC using a dynamic programming algorithm. Such
algorithms for this particular problem build new schedules for ship k ∈ V by starting with the
trivial, partial schedule s = {o(k)}. Schedules are then built incrementally by extending partial
schedules in all feasible ways. Partial schedules are represented by so-called labels. That is, for
each partial schedule sn ending in node n we associate a label L(sn) = (C̄(sn), T (sn),M(sn)).
Here C̄(sn) is the negative of the reduced cost for the schedule, i.e. the sum of the arc costs Ĉn1,n2

for all (n1, n2) ∈ sn. T (sn) and M(sn) denote, respectively, the arrival time at node n and the
maintenance indicator on arrival at node n on schedule sn.

Two partial schedules generated at the same node can be compared by defining a partial order
relation between the respective labels. This partial order allows us to determine if one label
dominates another that can, hence, be discarded. This dominance concept ensures that only the
best schedules, i.e. Pareto optimal, are kept during the iterative process of the algorithm as only
they can contribute to the optimal schedule. It is important to note that here “optimal” refers to
the LP relaxed master problem, without constraints (9.23). The success of the algorithm relies on
an efficient domination procedure for the labels to eliminate non-useful partial schedules. In our
case we note that a schedule sn ending at node n dominates another schedule s′n also ending at
node n if and only if L(sn) 6= L(s′n), C̄(sn) ≤ C̄(s′n), T (sn) ≤ T (s′n) (since there is no cost for
waiting) and M(sn) ≥M(s′n).

In order to augment a partial path, label extension is necessary. Label extension is associated
with a particular arc in the underlying network and utilizes specific resource extension functions
that dictate how each resource level will change when traversing the arc. For the case at hand,
the reduced cost resource is extended using simply C̄(sn2) = C̄(sn1) + Ĉn1,n2 . The time resource
is extended using T (sn2

) = max{an2
, T (sn1

) + Tn1n2
}, where an2

is the start of the time window
on node n2. This extension is deemed feasible if T (sn1

) + Tn1n2
≤ bn2

, where bn2
is the end of the

time window on node n2. The maintenance resource is updated using M(sn2
) = M(sn1

) +Mn1n2

which is deemed feasible if M(sn2) ∈ [Mmin
n2

,Mmax
n2

], where Mmin
n2

and Mmax
n2

are, respectively, the
lower and upper limit of the maintenance window for node n2.

The dynamic programming algorithm we implement is hence a standard label setting algorithm,
which begins at o(k) with an initial label. Nodes are considered in topological order, and processed
in turn. In processing a node, all non-dominated labels for the current node are extended, using the
resource extension functions defined above and consider the node’s set of outgoing arcs. When the
algorithm terminates, several resource feasible and Pareto optimal schedules might exist differing
in both reduced cost and time. In Section 9.4.3 we discuss what to do with these schedules. See
Algorithm 5 for a general overview of our label setting algorithm.

9.4.3 Pricing Strategy

As already discussed, because of the VSR constraints we must consider any feasible schedule for a
ship a valuable contribution to the master problem. This suggests that the shortest path solvers
in the subproblems should return all resource feasible and Pareto optimal schedules with positive
reduced costs, i.e. C̄(s) < 0, to the RMP rather than just the best one or best ones. Preliminary
tests verify this assumption and so, in each iteration we allow the subproblems to convert all
resource feasible and Pareto optimal schedules with positive reduced costs to master problem
columns.

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 106

Algorithm 5: Label Setting Algorithm

Input: Directed, Acyclic Graph G = (N ,A), two nodes o, d ∈ N
Output: Set of Pareto Optimal Schedules S

1 Sorted Node List N̂ ← topologicalSort(G);
2 CreateInitialLabel(o);

3 for u ∈ N̂ and u 6= d do
4 Lu ← getLabels(u);
5 for l ∈ Lu do
6 if l is not dominated then
7 for a ∈ outgoingArcs(u) do
8 if extension(l, a) is feasible then
9 v ← headNode(a);

10 createLabel(l, a, v);
11 Lv ← getLabels(v);
12 dominanceCheck(Lv);

13 Ld ← getLabels(d);
14 S ← constructSchedules(Ld);
15 return S;

Preliminary tests also indicate that for this problem it is most efficient to solve all subproblems
in each iteration, i.e. using the same dual values, as opposed to solving one subproblem in each
iteration and then solving the master problem to obtain new dual values before solving the next
subproblem. This makes sense since we can expect the master problem to grow rather quickly and
therefore become quite time consuming to solve. Hence, it will be inefficient to solve it repeatedly
just to obtain slightly better dual values from the columns generated by one single subproblem.

So, our pricing strategy is to solve all subproblems in each iteration and for each of these, we
return all columns with positive reduced costs.

9.5 Branching

If the optimal solution to the restricted master problem is both integer (λ does not have to be
integer as long as all positive λ’s for each ship correspond to the same geographical route) and
fulfills all the VSR constraints (9.23) and time window restrictions for spot vessels (9.24), the
solution is also optimal for the full master problem (9.19)-(9.26) and thereby also for the original
problem (9.1)-(9.18). However, if this is not the case, we must apply a branching scheme to restore
feasibility. The VSR constraints and spot vessel time window constraints fit naturally into a time
window branching scheme as presented by Gélinas et al. (1995). Furthermore, Gélinas et al. (1995)
show that this branching procedure can also help enforce integrality, though only to a certain point.
Therefore, we will apply time window branching and complement this with constraint branching
(see Ryan and Foster (1981)) which is an effective branching strategy for restoring integrality on
problems with similar structure to that of model (9.19)-(9.26).

9.5.1 Time Window Branching

The overall idea in time window branching is to split a given time window into two smaller time
windows that each correspond to a new problem, i.e. to a new branch in the branch-and-bound
tree. The trick is to select the time window and the split time in such a way that the current
solution becomes infeasible in each of the two new problems, i.e. in a way that makes at least
one chosen schedule infeasible in each branch. Gélinas et al. (1995) note that their method works
best on problems with small time windows and few cycles in the linear relaxation solution. As
already mentioned, we expect few if any cycles in our data instances. However, time windows are
relatively wide and so, it remains to be investigated if time window branching can work well for

107 9.5. Branching

our problem. The method described by Gélinas et al. (1995) was developed to restore integrality
and does not factor in VSR constraints. Therefore, we extend their method to incorporate such
constraints just as e.g. Dohn et al. (2011) and Rasmussen et al. (2012) have done it to accom-
modate temporal dependencies for, respectively, vehicle routing and home care crew scheduling.
Furthermore, we extend their methods to also account for the spot vessel time window constraints
(9.24) and use a slightly modified approach that will improve efficiency of the branching scheme.
Note that without the VSR constraints (9.23), the spot vessel time window constraints can never
give rise to infeasibility. Therefore, the spot vessel time windows are only relevant when we con-
sider violations of VSR constraints. Time window branching is not a complete branching strategy;
i.e. fractionality can remain despite the fact that there are no time windows to branch on. That
is why we complement this strategy with constraint branching.

Time Window Reduction

In order for the time window branching scheme to effectively restore feasibility with respect to the
VSR constraints, we need to simultaneously apply a time window reduction rule based on these
constraints. Table 9.1 therefore states the possible time window reductions for two consecutive
nodes (r, i) and (r, i+ 1) on trade r. The reduction process is illustrated in Figure 9.1.

Table 9.1: Time window reduction rule

Node (r, i) Node (r, i+ 1)

Old time window [ari, bri] [ar,i+1, br,i+1]

New time window [ari,min{bri, br,i+1 −Br}] [max{ar,i+1, ari +Br}, br,i+1]

(a) Before reduction (b) After reduction

Figure 9.1: Time window reduction process for two consecutive nodes on a trade

We use the reduction rule not only for preprocessing but also in each branch-and-bound node
where time window branching is applied. In fact, the time window branching scheme used for VSR
violations can only work properly if we combine it with the reduction rule. In each new branch
after time window branching on a node (r, i), we therefore apply the reduction rule not only to
nodes (r, i− 1) and (r, i+ 1) but iteratively to all nodes affected directly or indirectly by the time
window changes for node (r, i) until no further reductions are possible. Note that if we did not
require the VSR constraints to also hold for spot vessel voyages, then when a voyage (r, i) was
assigned to a spot vessel, we would have to undo all previous time window reductions on trade r
based on the time window of voyage (r, i)

Candidate time windows

Any node with a time window that can be split in a way that renders at least one currently chosen
schedule infeasible in each of the two new branches, is a candidate for branching. If the current
master problem solution is fractional, then to fulfill constraints (9.20) or (9.21) there must be a
node i (omitting the trade index r for now) that is visited by more than one schedule, one of them
possibly a spot vessel schedule, or several times in a cycle by the same schedule. Hence, we must
split the time window at this node so that there is only a single visit to the node. For each fractional

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 108

schedule that visits node i, it might be possible to change the start time at node i slightly without
rendering the schedule infeasible. For each visit to node i, we determine a feasibility interval
defined by the earliest and latest possible start time at this node that will allow the corresponding
schedule to remain feasible. For spot vessel schedules the feasibility interval simply corresponds
to the (possibly reduced) time window at the node. The label setting algorithm used to generate
schedules for fleet vessels, schedules each node visit as early as possible. This means that the
feasibility interval at each node for regular schedules will simply correspond to allowing the ship to
wait at long as possible. Assume now that node i is visited twice by two different schedules or twice
by the same schedule. It does not matter if the two visits correspond to the same ship or to different
ships, and so we can omit the k index here. Therefore, we abuse notation slightly by letting T 1

i

and T 2
i denote the visit time for these two visits respectively. Now let [T 1

i , u1] and [T 2
i , u2] be the

corresponding feasibility intervals and let ε > 0 be a very small tolerance. If these two intervals are
disjoint as shown in Figure 9.2, we can choose a split time for node i in (u1, T

2
i], say ts, and create

one branch where the time window for node i is [ari, ts − ε] and the second visit is infeasible, and
one branch where the time window is [ts, bri] where the first visit is infeasible. We can generalise
this to state that any node for which two visits to the node have disjoint feasibility intervals, is a
candidate for branching. A formal description and a proof for this, can be found in Gélinas et al.
(1995). Note that split times within one of the feasibility intervals would also render one visit
infeasible in each branch. However, during the next iteration of schedule generation, the visit, for
which we selected a split time within its feasibility interval, could be regenerated though only a
little later in time. This means that in one branch we will actually regenerate a fractional solution
similar to the one from the parent node. Hence, it will be ineffective to use time window branching
when the feasibility intervals are not disjoint. Note that in both Dohn et al. (2011) and Rasmussen
et al. (2012) feasibility intervals are ignored whereby their branching scheme potentially becomes
ineffective, both due to regeneration of fractionality but also because this approach causes them to
consider more nodes as candidates for branching than if they had included the feasibility intervals.
Since each candidate node must be further investigated to determine both the best split time for
each node and in turn select the best node, this makes their approach more time consuming.

Figure 9.2: Time window branching due to fractionality

As already mentioned, the feasibility interval for a spot vessel visit will always correspond to
the entire time window. Hence, such visits can never lead to disjoint feasibility intervals and so,
time window branching will be ineffective. Therefore, when fractionality occurs partly due to a
spot vessel visit, we will instead resort to constraint branching to restore feasibility.

When branching, we check if node i is on a trade r where VSRs exist. If it is, we can use the
new time windows at node i to reduce the time windows of other nodes on trade r. Afterwards,
all previously generated schedules violating these new time windows, are removed from the master
problem in each new branch and the corresponding subproblems and spot vessel time windows are
updated to reflect the new time windows.

Extending this concept to include VSR constraints and spot vessel time windows, further can-
didate time windows arise. Assume now that the VSR constraint for two consecutive voyages, i
and i + 1, on trade r is violated and that yri = yr,i+1 = 0, i.e. no spot vessels are involved. If
the current solution is integral, there is only one visit to each of these two nodes and these two
visits per assumption violate the VSR constraint. If the current solution is fractional, there can

109 9.5. Branching

be multiple visits to each of nodes (r, i) and (r, i + 1). For the VSR constraint to be violated,
there must however be at least one pair of visits that on their own violate the VSR constraint.
Whether the solution is integral or fractional, this means that there must exist positive λk1

s1 and

λk2
s2 in the current RMP solution such that T k1

ris1
+ Br > T k2

r,i+1,s2
. Note that it is possible that

s1 = s2 and k1 = k2. For the branching we generally do not need to know the specific schedule or
ship index but simply that two visits for consecutive voyages on the same trade are violating the
VSR. Therefore, we continue to abuse notation by letting Ti and Ti+1 denote the visit times at
these two nodes. To restore feasibility of the VSR constraint, we can force the start time of node
(r, i) to be scheduled earlier, namely no later than Ti+1 − Br, we can postpone the start time of
node (r, i+ 1) so that it occurs at the earliest at Ti +Br or we can use a combination of these two
time window alterations. In essence, the above corresponds to splitting the time window for node
(r, i) and then reducing the time window of node (r, i+ 1) accordingly so that the minimum time
spread, Br, is adhered to. Therefore, we use a split time, ts, in the interval [Ti+1 −Br + ε, Ti] and
create a left branch where the time window of node (r, i) is restricted to [ari, ts − ε] whereby the
schedule visiting node i becomes infeasible, and a right branch where the time window for node i
is restricted to [ts, bri]. In the left branch the time window for node (r, i + 1) remains unchanged
while in the right branch we use the reduction rule from Section 9.5.1 to reduce it to [ts +Br, bri+1]
whereby the schedule visiting node i+ 1 becomes infeasible. Figure 9.3 demonstrates this process.
Note that the process can be reversed to similarly enable a split of the time window at node (r, i)
if instead the VSR violation stems from the node pair (r, i− 1) and (r, i).

Figure 9.3: Time window branching due to VSR violation

In Dohn et al. (2011) they consider any node i a candidate node for branching if they can find
s1, s2, k1, k2 with λk1

s1 > 0 and λk2
s2 > 0 such that (using our notation) T k1

r,i−1,s1 + Br > T k2
ris2

. In
Rasmussen et al. (2012) they reverse the search to consider any node i a candidate for branching
if they can find s1, s2, k1, k2 with λk1

s1 > 0 and λk2
s2 > 0 such that (again using our notation)

T k1
ris1

+ Br > T k2
r,i+1,s2

. However, it is important to understand that finding such a pair of visit
times that on their own violate the corresponding VSR constraint, does not mean that the full
VSR constraint is also violated, since this includes the weighted sum of all visit times currently in
the solution. Obviously, if the current solution is integral, finding a pair of visit times that violate
the VSR constraint, means that the full VSR constraint is also violated. However, when we factor
in fractionality, this is not necessarily true. Therefore, the approach from both Dohn et al. (2011)
and Rasmussen et al. (2012) means that the candidate list of nodes to branch on also includes
nodes involved in VSR constraints that are not actually violated by the current solution. Two
direct implications of this strategy are:

1. Branching on non-violated VSR constraints could lead to an ineffective branching scheme

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 110

2. Also considering nodes involved in non-violated VSR constraints to be branching candidates,
could give rise to excessively long candidate lists. The selection of the best node for branching
involves further investigation of each of the node candidates to determine the best split time
as well as the flow elimination from this best split time. Therefore, having a long candidate
list will be time consuming.

Due to the above arguments, we refrain from using this process of running through all nodes and
searching for pairs of visit times that on their own violate the corresponding VSR constraints.
Instead, we will run through the VSR constraints and from each violated constraint for a node
pair ((r, i), (r, i+ 1)), we will consider both node (r, i) and (r, i+ 1) a candidate for branching.

Now we extend further to include spot vessel schedules in the current (possibly fractional)
solution. Therefore, we now assume that yri > 0 while yr,i+1 = 0 as previously and again consider
the VSR constraint for (r, i) and (r, i + 1). To know whether or not this constraint is violated,
we need to check whether or not a solution exists to the following small linear program (LP). To
ease notation we have omitted the geographical route concept and simply sum over all schedules
for each ship: ∑

k∈V

∑
s∈Sk

T k
risλ

k
s + tSriyri +Br ≤

∑
k∈V

∑
s∈Sk

T k
r,i+1,sλ

k
s , (9.32)

ari ≤ tSri ≤ bri. (9.33)

We might find that tSri = ari is a feasible solution and therefore conclude that the VSR constraint
is not violated. However, assume now that yr,i−1 = 0 and consider the similar LP for voyage pair
((r, i− 1), (r, i)): ∑

k∈V

∑
s∈Sk

T k
r,i−1,sλ

k
s +Br ≤

∑
k∈V

∑
s∈Sk

T k
risλ

k
s + tSriyri, (9.34)

ari ≤ tSri ≤ bri. (9.35)

If we insert tSri = ari in (9.34), we might find that the constraint is violated and thereby conclude
that the VSR constraint for voyage pair ((r, i − 1), (r, i)) is violated even though the constraint
need not be if we just select a different value for tSri. Therefore, these two VSR constraints must
be considered simultaneously. If yr,i−1 is also positive, we must also include the VSR constraint
for voyage pair ((r, i − 2), (r, i − 1)) along with the spot vessel time window for tSr,i−1 and so it
continues until we reach a voyage (r, i−m) for which yr,i−m = 0, or until we reach the first voyage
on this particular trade. All of these VSR constraints and their corresponding spot vessel time
windows form an LP for this particular VSR group:∑

k∈V

∑
s∈Sk

T k
r,i−m,sλ

k
s +Br ≤

∑
k∈V

∑
s∈Sk

T k
r,i−m+1,sλ

k
s + tSr,i−m+1yr,i−m+1,

(9.36)∑
k∈V

∑
s∈Sk

T k
r,i−m+1,sλ

k
s + tSr,i−m+1yr,i−m+1 +Br ≤

∑
k∈V

∑
s∈Sk

T k
r,i−m+2,sλ

k
s + tSr,i−m+2yr,i−m+2,

(9.37)

...
...

...∑
k∈V

∑
s∈Sk

T k
r,i−1,sλ

k
s + tSr,i−1yr,i−1 +Br ≤

∑
k∈V

∑
s∈Sk

T k
risλ

k
s + tSriyri, (9.38)

∑
k∈V

∑
s∈Sk

T k
risλ

k
s + tSriyri +Br ≤

∑
k∈V

∑
s∈Sk

T k
r,i+1,sλ

k
s , (9.39)

ar,i−m+1 ≤ tSr,i−m+1 ≤ br,i−m+1, (9.40)

ar,i−m+2 ≤ tSr,i−m+2 ≤ br,i−m+2, (9.41)

...
...

... (9.42)

ar,i−1 ≤ tSr,i−1 ≤ br,i−1, (9.43)

ari ≤ tSri ≤ bri. (9.44)

111 9.5. Branching

If a feasible solution exists to the LP (9.36)-(9.44), the VSR group is not violated. If on the other
hand no solution exists, at least one of the following statements must be true:

∃g ∈ {0, 1, . . . ,m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1 +Br > T k2

r,i−g+1,s2
, (9.45)

∃g ∈ {1, 2, . . . ,m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1 + 2Br > T k2

r,i−g+2,s2
, (9.46)

∃g ∈ {2, 3, . . . ,m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1 + 3Br > T k2

r,i−g+3,s2
, (9.47)

...
...

...

∃g ∈ {m− 1,m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1 +mBr > T k2

r,i−g+m,s2
, (9.48)

∃s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−m,s1

+ (m+ 1)Br > T k2
r,i+1,s2

. (9.49)

To exemplify, assume that the current solution has yr,i−1 and yri positive while yr,i−2 = yr,i+1 =
0. Thereby, we have a VSR group consisting of the constraints for voyage pairs ((r, i−2), (r, i−1)),
((r, i− 1), (r, i)) and ((r, i), (r, i+ 1)). If the LP for this VSR group does not have a solution, there

must exist s1, s2, k1, k2 with λk1
s1 > 0 and λk

2

s2 > 0 such that at least one of the following is true:

T k1
r,i−2,s1 +Br > T k2

r,i−1,s2 (9.50)

T k1
r,i−1,s1 +Br > T k2

ris2
(9.51)

T k1
ris1

+Br > T k2
r,i+1,s2

(9.52)

T k1
r,i−2,s1 + 2Br > T k2

ris2
(9.53)

T k1
r,i−1,s1 + 2Br > T k2

r,i+1,s2
(9.54)

T k1
r,i−2,s1 + 3Br > T k2

r,i+1,s2
(9.55)

Constraint (9.52) corresponds to the illustration in Figure 9.3 and this figure must now be extended
to include the time windows and visit times corresponding to constraints (9.51) and (9.53). The
remaining violations will be handled when branching on nodes (r, i− 2), (r, i− 1) and (r, i+ 1).

Spot vessels act as a shipping specific version of uncovered tasks, and these are not considered
in Dohn et al. (2011), and in Rasmussen et al. (2012) they do not require uncovered tasks to be
within the time windows. With our inclusion of spot vessels and time window restrictions it would
be extremely time consuming to use the approach of Dohn et al. (2011) and Rasmussen et al.
(2012) to run through all nodes and search for individual visit times that violate the constraints
corresponding to the VSR group, i.e. constraints (9.45)-(9.49). Instead we run through each VSR
group and only for the violated ones, we search for visit times that fulfill constraints (9.45)-(9.49),
starting from (9.45). If we find one or several pairs of visit times that fulfill constraints (9.45), we
have one or several pairs of candidate nodes for branching. In that case we do not check constraints
(9.46)-(9.49) since these can be implicitly handled by branching to fulfill constraints (9.45) and
using the time window reduction rule. However, if we do not find a pair of visit times that fulfill
constraints (9.45), then we move on to check constraints (9.46) and so the process continues until
we find branching candidates.

As can be understood from the above, there can be numerous candidate time windows for
branching in each iteration and we must decide on a selection strategy. However, the specific split
time chosen within each candidate time window can be used in the selection procedure and so we
postpone the discussion on how to select which time window to branch on, until after we have
described how to choose the exact split time. For now, we therefore assume that we have chosen
to split the time window for voyage i (ignoring again the trade index r).

Selecting the best split time within a time window

Assume for now that the current solution is fractional but fulfills all VSR constraints and spot vessel
time restrictions. In this case, the window branching scheme simply aims at restoring integrality.
A formal description of the split time selection procedure for this situation can be found in Gélinas
et al. (1995); accordingly, we here give a more informal description.

Earlier we stated that any node, for which at least two non-spot vessel visits to the node have
disjoint feasibility intervals, is a candidate for branching. When deciding on the best split time

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 112

for a given node, we consider the feasibility intervals of all visits to the node, again excluding
visits from spot vessels. We illustrate the process in Figure 9.4 for a situation where node i is
visited by four schedules included in the current solution with fractional values. We denote the
four visit times at node i, respectively, T 1

i , T 2
i , T 3

i and T 4
i . In Figure 9.4 the grey boxes represent

the feasibility intervals for each of the four fractional visits to node i.

Figure 9.4: Choosing a split time to restore integrality

In order to render the current solution infeasible in both new branches, at least one of the four
schedules must become infeasible in each of these branches. Therefore, the split time must be
chosen somewhere in the interval between two disjoint feasibility intervals; hence, as depicted by
the line marked ’Feas. splits’ in Figure 9.4. Note that split times in this interval lie outside the
feasibility interval corresponding to visit time T 1

i . Thereby, we can never regenerate a similar visit
in the right branch, where visit time T 1

i becomes infeasible. Comparing the intervals (t∗2, t
∗
3], (t∗3, t

∗
4]

and (t∗4, t
∗
5] we see that split times within these three intervals have the same affect with respect to

immediate flow elimination. However, if we select a split time in (t∗2, t
∗
3] we risk regenerating the

schedules corresponding to both T 2
i and T 3

i by redistributing waiting time. However, if instead we
select a split time in (t∗3, t

∗
4], we cannot regenerate the schedule corresponding to T 2

i and selecting
a split time in (t∗4, t

∗
5] we cannot regenerate either of the schedules corresponding to T 2

i and T 3
i .

In order to avoid regenerating schedules that lead to fractionality, we will therefore never consider
selecting a split time within (t∗2, t

∗
4]. More generally, the open ended candidate intervals for split

time should not include starting or end points of feasibility intervals and we should seek split times
on the boundaries of the feasibility intervals. Thereby, we generally seek split times that lie outside
the feasibility intervals. Hence, we can reduce the set of candidate split times to the two smaller
intervals shown in Figure 9.4 as ’Cand. splits’. Within each of these two intervals the amount of
flow eliminated is independent of the chosen split time. However, as already discussed, the label
setting algorithm used to generate the schedules, ensures that each visit is scheduled as early as
possible. Thereby, no visit can be regenerated at an earlier point in time but it can however be
postponed. Selecting the split time as late as possible within a given candidate interval therefore
generally minimises the risk that an eliminated visit will be regenerated. In Figure 9.4 this means
that in the interval (t∗1, t

∗
2] we select t∗2 as the split time while in (t∗4, t

∗
5] we select t∗5. Note that t∗2

and t∗5 both correspond to visit times. We generalise this to say that each currently selected visit
time, Ti, after the feasibility interval of the earliest selected visit at the node, is a candidate split
time. By using this approach, we only need to calculate the feasibility interval of the first visit to
the node.

Now we extend to include VSR violations and we assume that nodes (r, i−1), (r, i) and (r, i+1)
together form a VSR group. Figure 9.5 therefore extends the example from Figure 9.4 to include
VSR violations for node pair (r, i− 1) and (r, i) as well as for node pair (r, i) and (r, i+ 1). Here
T 1
i−1 and T 1

i+1 denote, respectively, the visit time of a visit to node i−1 and i+1 for two schedules
included in the current solution. Note that for VSR violations we do not care about feasibility
intervals since it is the exact visit time at the node that impacts the VSR constraint. Therefore,
the feasibility intervals are not included in Figure 9.5. There are four VSR violations and each of
these leads to an interval of feasible split times. These are marked ’Feasible split intervals’ in the
bottom of the figure. The start and end points of these four intervals are marked as t∗6 to t∗11 and
together they define five intervals, i.e. (t∗6, t

∗
7] to (t∗10, t

∗
11], which each have a distinct elimination

of flow. Using the same reasoning as above, within each of these five intervals we prefer to select

113 9.5. Branching

the latest time. This means that in Figure 9.5, t∗7 to t∗11 are all candidates for split times. We
note that t∗7, t∗10 and t∗11 all correspond to visit times at the node while t∗8 and t∗9 correspond to,
respectively, T 1

i+1 − Br and T 1
i−1 + Br. We can generalise this to say that, limiting the search to

schedules included in the current master problem solution with a positive value, the start time of
every visit to the node except the first is a candidate split time. Furthermore, for any visit at node
i− 1 for which the visit time Ti−1 causes a violation of the VSR for nodes i− 1 and i, T 1

i−1 +Br is
also a candidate split time. Similarly, any visit at node i+ 1 for which the visit time Ti+1 causes
a violation of the VSR for nodes i and i + 1, Ti+1 − Br is a candidate split time. Furthermore,
for various integer values of m, depending on the size of the VSR group that node i belongs to,
Ti±m ±mBr can also be candidate split times. Note that this extends the candidate split times
derived from fractionality since all start times at the node except the first one is now a candidate
split time.

Figure 9.5: Choosing a split time to restore VSR

Assume now that the schedules corresponding to T 1
i , T 2

i , T 3
i and T 4

i are in the current solution
with values 0.1, 0.1, 0.4 and 0.4, respectively. Furthermore, assume that the two visits at nodes
i − 1 and i + 1 are the only visits to these nodes, i.e. that the schedules corresponding to these
visits are both in the solution with a value of 1. Table 9.2 then shows the infeasible visits and
the corresponding eliminated flow in, respectively, the left and right branch when choosing one of
the candidate split times derived from Figure 9.5 (which also covers the candidate split times from
Figure 9.4).

Note that since the branching applied to restore feasibility with respect to VSRs only factors
in the exact visit times and ignores the feasibility intervals, this type of branching allows us to
regenerate similar schedules with visit times just slightly postponed. This is sufficient for the
VSR constraints, however it might not be sufficient to rule out regeneration of fractionality. As
an example, consider the split time candidate t∗7 = T 2

i where the right branch will exclude visit
time T 1

i . According to Figure 9.4, T 2
i is within the feasibility interval of the schedule, say s1,

corresponding to visit time T 1
i . Therefore, we can easily generate a new schedule similar to s1

with the visit at node i postponed slightly. Thereby, the exact same fractionality will occur again.
Therefore, when branching on a node where there is no VSR violations, we reinclude the feasibility
interval aspect to more effectively eliminate fractionality.

To motivate flow elimination while maintaining a balanced search tree, we prefer the candidate
that eliminates the most flow in the worst of the branches, i.e. the candidate with the highest
value of flow elimination in the branch where it eliminates the least flow. This number is given
in Table 9.2 in column ’Minimum’ for each candidate, and we see that the best worst case flow
elimination is achieved for t∗9.

Note that Table 9.2 only includes immediate flow elimination and not the implicit flow elimi-
nated from further time window reductions. Since each trade can consist of many voyages, calcu-
lating the full flow elimination for each candidate split time for each candidate node, can be very
time consuming. Therefore, we refrain from such extensive calculations and simply consider the
direct flow elimination. This is another reason to use the best worst case flow elimination as a
selection criteria, since we know that regardless of the implicit flow elimination, we can never do
worse than this.

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 114

Table 9.2: Flow elimination from candidate split times

Infeasible visits Eliminated flow

Left Right Left Right
Candidate branch branch branch branch Minimum

t∗7 T 2
i , T

3
i , T

4
i , T

1
i−1 T 1

i 1.9 0.1 0.1

t∗8 T 3
i , T

4
i , T

1
i−1 T 1

i , T
2
i 1.8 0.2 0.2

t∗9 T 3
i , T

4
i , T

1
i−1 T 1

i , T
2
i , T

1
i+1 1.8 1.2 1.2

t∗10 T 3
i , T

4
i T 1

i , T
2
i , T

1
i+1 0.8 1.2 0.8

t∗11 T 4
i T 1

i , T
2
i , T

3
i , T

1
i+1 0.4 1.6 0.4

Selecting the best time window for branching

Now that we know how to find candidate time windows for branching and also how to actually split
the chosen time window, we are ready to choose which time window to branch on. Again, aiming
at eliminating as much flow as possible while maintaining a well balanced search tree, we select the
time window that has the best worse case flow elimination. I.e. the approach from Table 9.2 for
selecting the best split time for a given time window, is also used to select the best time window
to split.

9.5.2 Constraint Branching

For now, ignore the possible existence of cyclic master problem schedules, i.e. columns with
Aris > 1 in (9.19)-(9.26). If slack variables, yri, are inserted into constraints (9.21), the RMP is
modelled as a set partitioning problem with generalised upper bound constraints (9.22). Due to
the generalised upper bound constraints (9.22), the submatrix for each ship is perfect. Thereby,
fractional solutions can only appear across submatrices for different ships and never within one of
the individual ship submatrices. This means that the LP solution can only be fractional if two
or more ships are competing for the same voyage. Note the word ’voyage’ since ships can never
compete for the individual maintenance requirements. We refer the reader to Padberg (1973)
and Conforti et al. (2001) for a discussion on perfect matrices and their properties. This strong
integer property of the RMP constraint matrix means that the upper bounds in the branch-and-
bound algorithm are very tight and that we can expect to reach integral solutions after only a
few iterations of branching. We exploit this underlying structure of the constraint matrix in the
branching scheme to apply so called constraint branching, see Ryan and Foster (1981). Note that
this strong integer property also means that we can refrain from checking for ’equal geographical
routes’ for each ship.

Candidate voyage-ship pairs

If the current solution is fractional, there must be a voyage (r, i) ∈ NC ∪ NO that is performed
by several ships. Since, by definition, each spot vessel (we can also view slack variables as a form
of spot vessel schedules) can only perform one voyage, the spot vessels cannot compete with each
other for voyages. Therefore, at least one of the ships currently competing for voyage (r, i) must
be a non-spot vessel and we denote this ship k. In an integral solution, the voyage can only be
performed by one ship and therefore ship k can either perform or not perform voyage (r, i). For
each ship k ∈ V and voyage (r, i) ∈ NC ∪NO we introduce the sum

Sk
ri =

∑
s∈Sk′

Ak
risλ

k
s .

If the current solution is fractional, there must exist a voyage (r, i) and a ship k for which 0 <
Sk
ri < 1. The branching strategy is then to construct a left branch where ship k is forced to

115 9.5. Branching

perform voyage (r, i) and a right branch where ship k is not allowed to perform voyage (r, i). In
the left branch this means that Aris = 1 for all s ∈ Sk. Thereby, we can remove all schedules for
k that do not include voyage (r, i) and all columns for other ships that do include voyage (r, i).
This also means removing the spot vessel schedule for voyage (r, i) or equivalently setting yri = 0.
Furthermore, we remove voyage (r, i) in all subproblems networks not corresponding to ship k.
We rely on the dual variables to eventually enforce the construction of schedules for ship k that
include voyage (r, i). In the right branch, we instead have Aris = 0 for all s ∈ Sk. This is the
opposite process of the left branch, and so we instead remove all schedules for k that do include
voyage (r, i). Furthermore, we remove voyage (r, i) in the subproblem network corresponding to
ship k while we cannot make any changes in the networks corresponding to other ships.

To ease notation, we let SS
ri denote the similar sum for spot vessels (including slack variables)

even though this simply correspond to yri. When 0 < SS
ri < 1, we can then use the same branching

approach as just described for regular ships though the corresponding updates of the RMP and
subproblems must of course be modified accordingly. Also note that since spot vessels cannot
compete for the same voyages, we can never have fractional y-variables without also having at
least one fractional λ-variable. Therefore, in a fractional solution we can always find at least one
voyage (r, i) and one regular ship k ∈ V for which 0 < Sk

ri < 1.

Selecting the voyage-ship pair for branching

Competition for a voyage (r, i) requires at least two different ships. Thereby, in a fractional solution
there must be at least two distinct ships (one of them possibly a spot vessel), k1 and k2, for which
Sk1
ri and Sk2

ri are fractional. Therefore, in any fractional solution we have at least two candidate
voyage-ship pairs for branching and we must select one of these.

If Sk
ri is close to 1, the solution favours ship k for performing voyage (r, i); hence, forcing ship

k to perform the voyage, as we do in the left branch, will probably not change the solution much
and thereby not the upper bound either. In the right branch, where we force ship k not to perform
the voyage, we can on the other hand expect to see a greater impact on the upper bound. This
could potentially create an unbalanced search tree. The situation is similar, though reversed, if
Sk
ri is close to 0. To maintain a balanced search tree we therefore prefer branching on candidates

that are as fractional as possible, i.e. as close to 1/2. We denote the list of candidate pairs by C,
i.e

C = {((r, i), k) ∈ NC ∪NO × V ∪ {S} : 0 < Sk
ri < 1}.

We then select the candidate pair that leads to the most balanced search tree, i.e. select

((r, i), k)∗ = arg min
((r,i),k)∈C

{∣∣Sk
ri −

1

2

∣∣}.
Returning to the possible existence of cyclic master problem schedules, we note that their pres-
ence in the master problem constraint matrix will compromise the perfectness of the submatrices
containing such schedules. Thereby, fractionality can occur without competition between different
ships, i.e. we can have a fractional solution while C = ∅ so that no branching candidates exist.
Hence, the above constraint branching scheme cannot completely eliminate fractionality derived
from cyclic schedules and we must instead rely on time window branching to eliminate fractionality
derived from such schedules.

9.5.3 Branching Strategy

We use depth-first search and consider three different branching strategies with different priorities
to the different branching schemes:

1. Constraint branching first, time window branching second.

2. Time window branching first, constraint branching second.

3. VSR related time window branching first, constraint branching second.

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 116

The first strategy initially uses constraint branching to eliminate fractionality and then turns to
time window branching to handle violations of VSR constraints. Note that in this case, assuming
that no cyclic schedules are used, the time window branching scheme will be simplified since only
one visit to each node exists and we do not have to consider feasibility intervals. The second
strategy uses time window branching to handle both VSR violations and fractionality and only
turns to constraint branching if we run out of time windows to branch on. The third strategy
starts by handling all violations of VSR constraints while ignoring fractionality, i.e. disregarding
feasibility intervals and in general nodes that are not involved in VSR violations. Afterwards,
all fractionality is eliminated through constraint branching. Note though that the VSR related
time window branching will simultaneously help to eliminate fractionality and that time window
branching must be used if fractionality occurs due to cyclic schedules.

Preliminary tests show that the strategy that first performs VSR related time window branching
and then constraint branching, consistently outperforms the other strategies, and so we use this
strategy for our computational study.

9.6 Computational Study

In this section, we describe data and results from our computational study to evaluate the per-
formance of the developed algorithm. As a reference point for this evaluation, we compare our
method with the a priori path generation method from Norstad et al. (2013).

9.6.1 Data instances

To properly evaluate the performance of the devised algorithm, we test it on 16 problem instances
of varying complexity and size. These instances have been generated by the test instance generator
described in Norstad et al. (2013) which is based on industry data. Table 9.3 presents the main
characteristics of the 16 data instances. The column labels are almost self explanatory but for
completeness sake we note that from left to right they give the instance number, the number of
ships, the number of trades, the number of voyages where the number in parenthesis gives the
number of spot voyages and finally, the length of the planning horizon in days. Note that this
horizon is defined as the length of the period that contains the earliest allowed starting time
for each voyage. Thereby, planning will continue well beyond this horizon since voyages can be
performed later than the earliest allowed time and must also be completed.

Table 9.3: Data instance characteristics

No. Ships Trades Voyages Horizon

1 10 4 21(5) 90
2 10 7 32(9) 90
3 10 4 19(0) 90
4 10 4 25(0) 120
5 10 5 34(9) 120
6 10 5 36(5) 120
7 10 5 42(11) 150
8 10 6 52(13) 150
9 10 6 47(8) 150
10 25 8 49(10) 90
11 25 8 44(11) 90
12 25 8 53(11) 90
13 25 8 57(10) 105
14 25 8 55(5) 105
15 25 8 64(12) 120
16 32 13 55(12) 90

117 9.6. Computational Study

9.6.2 Computational Results

In order to evaluate the performance of the devised algorithm, we run it on all 16 data instances,
and compare the results obtained from these tests with results from using the path generation
method from Norstad et al. (2013).

Results from devised Branch-and-Price method

The results from our developed Branch-and-Price method are obtained using a PC with 4.0 GB
RAM and an Intel(R) Core(TM)2 Duo CPU P8600, 2.4 GHz processor under a 64 bit Windows
7. The algorithm is implemented in C++ using Cplex 12.4 with default settings to solve the
master problem and the time window branching parameter ε set to 0.001, which corresponds to
1.44 minutes on our data instances. Table 9.4 shows the results from running our algorithm on
the 16 data instances. The column ‘Inst’ gives the instance number while columns ‘Objective’ and
‘Gap’ contains, respectively, the objective value of the best solution found and the integrality gap
in percentage for this solution. In column ‘Time’ we list the time used to solve the problem. We
allow a maximum running time of 3600 seconds and if the algorithm runs out of time before closing
the integrality gap, we list the time it took to find the best solution and put a ‘*’ to indicate that
we ran out of time. Column ‘Vars’ lists the number of variables in the final master problem, i.e. the
number of columns generated. Column ‘Nodes’ gives the number of explored Branch-and-Bound
nodes and, finally, in columns ‘TimeLP’ and ‘TimeSub’ we have the time spent solving, respectively,
the master problem and the subproblems.

Table 9.4: Results from Branch-and-Price method

Inst Objective Gap Time Vars Nodes TimeLP TimeSub

1 12 423 322 - 0 377 153 0 0
2 17 769 109 - 0 401 33 0 0
3 12 993 990 - 0 231 9 0 0
4 15 817 224 - 1 1512 311 0 0
5 15 422 210 - 1 887 139 0 0
6 21 555 416 - 0 660 29 0 0
7 20 252 953 - 0 476 5 0 0
8 21 026 411 - 0 330 1 0 0
9 23 201 012 - 2 1415 275 0 1
10 36 703 643 0.79 0* 27821 75780 2243 283
11 28 988 536 - 0 780 4 0 0
12 38 871 251 - 7 2464 967 1 4
13 37 650 390 - 0 1393 3 0 0
14 37 505 930 0.23 0* 4510 175184 1088 931
15 43 260 992 0.07 1* 4326 167019 979 1096
16 40 909 308 0.23 1046* 73059 15441 2131 149

From Table 9.4 we first see that on four instances the algorithm is unable to close the integrality
gap after 3600 seconds. However, all four integrality gaps are well below 1% and hence very small.
Next, we see that, aside from instance 16, the algorithm very quickly finds a good if not optimal
solution. On instance 16, the time to find the best solution is however 1046 seconds. Looking at
the number of generated variables, we see that it ranges from as low as just 231 variables up to
73,059. The number of Branch-and-Bound nodes shows a similar diversity of the test instances as
this number ranges from just 1 node, i.e. problem solved at root node, up to as many as 175,184
nodes. Combining the number of variables and the number of nodes with the time usage for master
problem and subproblems, we note that the four occasions where the algorithm runs out of time
can be divided into two different categories. For problem instances 10 and 16, so many variables
are generated that the master problem becomes so large, that the computation time to solve it

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 118

repeatedly dominates the procedure. For these instances, it would probably help to use a higher
value for the time window branching parameter ε. This will in general speed up the algorithm;
however, it can sacrifice optimality. On the other hand, for instances 14 and 15, the number of
generated variables is not very high. Instead, the number of explored nodes is huge and suggests
that for these instances it would help to implement a different search strategy for the branch-
and-bound tree, e.g. Best-First-Search. It could also help to use different selection rules for time
windows and split times in the time window branching scheme, or for ship-voyage pairs in the
constraint branching scheme. More generally, the branching scheme might be improved by using
strong branching (see Achterberg et al. (2005)). Overall we note that our algorithm is able to find
very good if not optimal solutions extremely fast, though one instance requires longer time.

As already mentioned, Norstad et al. (2013) find that voyage separation requirements can
significantly improve the spread of the voyages and at only marginal profit reductions. Although
we do not wish to repeat their analysis here, we note that we arrive at similar findings after running
the 16 instances again without voyage separation requirements. In fact, the profit reduction is below
1% on all 16 instances. The complexity added from the voyage separation requirements is however
not insignificant and this is most notable for instance 10 where we ran out of time when voyage
separation requirements were included in the problem. Running instance 10 again, though this
time without these separation requirements, we are able to solve the instance to optimality using
just 0.12 seconds and exploring just 7 nodes. On instance 16 we still run out of time but now
the best solution is found after just 535 seconds, where it was 1046 seconds with the separation
requirements included.

Results from A Priori Path Generation method

To properly evaluate the efficiency of our Branch-and-Price algorithm we want to compare our
results with results obtained from using the A Priori Path Generation (APPG) method described
in Norstad et al. (2013). This method first a priori generates feasible paths and then uses a
commercial solver to solve the path flow formulation containing these generated paths. We use
the next subsection to compare the results from the two methods while in this subsection we focus
solely on the APPG method and the results obtained from it.

The authors from (Norstad et al., 2013) have provided us with results from running their
APPG method on the same 16 data instances that we use here. Their results are obtained using
a comparable DELL Latitude Laptop with Intel Core i5 CPU (4x2.40 GHz), 4GB DDR2 RM
running on Windows 7. Their path generator is implemented in C# while the path flow model is
solved with Xpress MP 7.0 64 bit. Results from running their method also with a time limit of
3600 seconds on the 16 data instances considered here are given in Table 9.5. The column headers
are the same as in Table 9.4 though we have added a column denoted ‘Constrs’ which lists the
number of constraints in the path flow model.

Ignoring the objective function values for now, we first note from the ‘Time’ column in Table 9.5
that the time usage from this method is generally a lot longer than from our algorithm. However,
this method never runs out of time and therefore never exhibits any integrality gaps. It would
therefore be natural to conclude that the APPG method is slower but more stable than our method.
However, although Norstad et al. (2013) present their APPG method as an exact one, we claim
that this is not the case. We discuss this further in the next section when comparing results from
the APPG method and our Branch-and-Price method. For now we focus on the APPG method
itself and further investigate the actual implementation of it. From Norstad et al. (2013) we have
the following quote describing the details of their implementation:

”In order to generate the parameters for the path flow model a path generator program has been
implemented. All feasible paths for each ship are generated a priori to the optimization. Since the

required maintenance operations and also some the voyages can have quite wide time windows,
there may be several feasible sequences or paths a ship can follow while performing the same set of

voyages. A simple dominance test is therefore performed to make sure that only the most
profitable one is passed on to the optimization model.”

As discussed in Section 9.4, without the voyage separation requirements it is sufficient to
include the profit maximising schedule for each ship and cargo set. However, with the separation

119 9.6. Computational Study

Table 9.5: Results from A Priori Path Generation method

Inst Objective Time Vars Constrs

1 12 423 322 0 946 4866
2 17 638 764 1 2897 10936
3 12 993 990 0 1150 4035
4 15 817 224 15 3139 6820
5 15 422 210 1 6050 12302
6 21 555 416 2 12285 13768
7 20 252 953 2 14344 18567
8 20 062 828 4 14781 28194
9 22 916 245 44 15554 23138
10 34 894 744 4 9461 62462
11 28 906 248 3 7175 50569
12 38 871 251 19 11291 72853
13 37 626 000 13 32346 84093
14 37 465 639 678 26344 78412
15 40 822 868 119 52625 105636
16 40 883 752 13 8314 103590

requirements included in the problem this is no longer true since the actual timing of port calls in
a schedule for one ship can affect the timing of port calls for schedules of other ships. Instead, any
feasible schedule for a ship can potentially be part of the optimal solution and the master problem,
or in their case the path flow formulation, can contain several schedules all corresponding to the
same set of voyage and maintenance stops. Therefore, the ‘simple dominance test’ mentioned in
the quote above actually sacrifices optimality of the APPG method as implemented by Norstad
et al. (2013). With the voyage separation requirements included the a priori generation approach
should be quite time consuming which is why we turned to dynamic column generation. However,
because of this dominance test the APPG method becomes manageable even with these separation
requirements included. So, this dominance test makes their APPG implementation extremely
efficient, though it does sacrifice optimality.

Comparing the two methods

To properly evaluate our devised Branch-and-Price method we use this section to compare it with
the APPG method from Norstad et al. (2013). Table 9.6 therefore summarises the key values from
Tables 9.4 and 9.5 from running each of these two methods on the considered 16 data instances.
For the APPG method we have added a column denoted ‘Gap’ which contains the integrality gap
in percentage from comparing the APPG solution with the bound obtained from our Branch-and-
Price method. Furthermore, the last column denoted ‘Obj. Incr.’ lists the percentage increase in
objective function value from using our algorithm compared to the APPG algorithm.

From Table 9.6 we first note that, compared to the bound obtained from our algorithm, the
APPG method now experiences integrality gaps for 9 out of the 16 instances. We also note that
these gaps are consistently larger than our gaps which is consistent with the fact that our solutions
are consistently equal to or better than the ones obtained from the APPG method. In fact, the
profit increase from using our algorithm compared to the APPG method is as high as 6% for one
instance. Focusing instead on the time usage of the two algorithms, we see that on the instances
where our algorithm does not run out of time, the APPG method consistently uses the same or
longer time. On the four instances where our algorithm runs out time, we manage to find a better
solution than the APPG method and for three out of these four instances this better solution is
found much faster than the solution from the APPG method. However, for instance 16 this is not
true. Finally, we turn to the variable count for each algorithm and note that, aside from instances
10 and 16 where our algorithm runs out time due to an extensive generation of variables, the APPG

Chapter 9. Tramp Ship Routing and Scheduling with Voyage Separation Requirements 120

Table 9.6: Comparing solution methods

A Priori Path Generation Branch-and-Price

Inst Obj Gap Time Vars Obj Gap Time Vars Obj. Incr.

1 12 423 322 - 0 946 12 423 322 - 0 377 -
2 17 638 764 0.7 1 2897 17 769 109 - 0 401 0.7
3 12 993 990 - 0 1150 12 993 990 - 0 231 -
4 15 817 224 - 15 3139 15 817 224 - 1 1512 -
5 15 422 210 - 1 6050 15 422 210 - 1 887 -
6 21 555 416 - 2 12285 21 555 416 - 0 660 -
7 20 252 953 - 2 14344 20 252 953 - 0 476 -
8 20 062 828 4.6 4 14781 21 026 411 - 0 330 4.8
9 22 916 245 1.2 44 15554 23 201 012 - 2 1415 1.2
10 34 894 744 5.7 4 9461 36 703 643 0.8 0* 27821 5.2
11 28 906 248 0.3 3 7175 28 988 536 - 0 780 0.3
12 38 871 251 - 19 11291 38 871 251 - 7 2464 -
13 37 626 000 0.1 13 32346 37 650 390 - 0 1393 0.1
14 37 465 639 0.3 678 26344 37 505 930 0.2 0* 4510 0.1
15 40 822 868 5.7 119 52625 43 260 992 0.1 1* 4326 6.0
16 40 883 752 0.3 13 8314 40 909 308 0.2 1046* 73059 0.1

method consistently includes much more variables than our method. This is consistent with our
dynamic column generation approach which only generates columns as needed.

Overall we find that our devised Branch-and-Price algorithm provides very good if not optimal
solutions extremely fast. In fact, it consistently finds equal or better solutions than the APPG
method and for all but one instance the solution is found in the same or a shorter time than the
APPG method uses.

9.7 Concluding Remarks

In this paper we have considered the tramp ship routing and scheduling problem with voyage
separation requirements. These separation requirements enforce a minimum time spread between
voyages on the same trade. This is done in an attempt to improve the situation for the charterer
who faces increased inventory costs if voyages are not performed ’fairly evenly spread’ in time. In
this respect, the separation requirements correspond to a crude way of viewing the tramp ship
routing and scheduling problem in the broader context of the supply chain.

We have developed a new and exact method for this problem. It is a Branch-and-Price procedure
with a dynamic programming algorithm to dynamically generate columns and with the voyage
separation requirements relaxed in the master problem and instead enforced through a modified
time window branching scheme. Computational results from 16 data instances show that our
algorithm finds very good if not optimal solutions extremely fast though one instance requires
longer time. On four instances our algorithm is unable to prove optimality within 3600 seconds
and, although the integrality gap is small for all four instances, it would still be interesting to
explore different search strategies for the branch-and-bound procedure and different modifications
to the branching schemes.

Running our algorithm on all 16 instances without the voyage separation requirements showed
that the profit reduction from including the separation requirements is below 1% on all instances.
This is consistent with the findings in Norstad et al. (2013) who conclude that voyage separa-
tion requirements can significantly improve the spread of the voyages and at only marginal profit
reductions. There is however a significant increase in problem complexity from these additional

121 Bibliography

requirements and for one instance this increase caused the algorithm to require more than 3600 sec-
onds to solve a problem that was otherwise solvable within just 0.12 seconds without the additional
requirements.

We compared our Branch-and-Price method to the APPG method from Norstad et al. (2013)
that we have shown is not optimal. Results from comparing the two methods on the 16 data
instances confirm this. In fact, our solutions are consistently equal to or better than the ones
obtained from the APPG method and the profit increase from using our algorithm compared to
the APPG method is as high as 6% for one instance. Furthermore, on all but one instance, our
solution is found in equal or shorter time than what the APPG method uses.

Overall we have developed a new, exact method for the tramp ship routing and scheduling
problem with voyage separation requirements. This method is extremely fast at finding very good
if not optimal solutions, although one instance requires longer time. An interesting extension of
this work would be to explore different branch-and-bound search procedures as well as different
modifications to the branching schemes. Finally, it would also be interesting to investigate the
effect of modifying the APPG method to obtain optimal solutions, i.e. removing the dominance
test discussed in Section 9.6.2.

Acknowledgements

The research presented in this paper has been partly funded by The Danish Maritime Fund and we
gratefully acknowledge their financial support. We also want to acknowledge Professor Kjetil Fager-
holt and Inge Norstad, both from the Norwegian University of Science and Technology (NTNU),
for all their help on this project. They have provided advice, insight as well as data, and we are
thankful for all the time they set aside for us, especially during our visits to NTNU.

Bibliography

T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters,
33(1):42–54, 2005.

K.K. Castillo-Villar, R.G. González-Ramı́rez, P.M. González, and N.R. Smith. A heuristic proce-
dure for a ship routing and scheduling problem with variable speed and discretized time windows.
Mathematical Problems in Engineering, 2014. doi: http://dx.doi.org/10.1155/2014/750232.

M.E. Cóccola, R. Dondo, and C.A. Méndez. A milp-based column generation strategy for managing
large-scale maritime distribution problems. Computers & Chemical Engineering, 2014. doi:
http://dx.doi.org/10.1016/j.compchemeng.2014.04.008.

M. Christiansen, K. Fagerholt, and D. Ronen. Ship routing and scheduling: Status and perspectives
(review). Transportation Science, 38(1):1–18, 2004.

M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime transportation. In C. Barnhart
and G. Laporte, editors, Transport. Handbooks in Operations Research and Management Science,
vol. 14, chapter 4, pages 189–284. Elsevier, North-Holland, Amsterdam, 2007.

M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Ship routing and scheduling in the new
millennium (review). European Journal of Operational Research, 228(3):467–483, 2013.

M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Perfect, ideal and balanced matrices.
European Journal of Operational Research, 133(3):455–461, 2001.

J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M.M. Solomon, and F. Soumis. Vrp with time
windows. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, chapter 7, pages
157–194. Society for Industrial and Applied Mathematics, 2002.

G. Desaulniers, J. Desrosiers, I. Ioachim, M.M. Solomon, F. Soumis, and D. Villeneuve. A unified
framework for deterministic time constrained vehicle routing and crew scheduling problems. In
T. Crainic and G. Laporte, editors, Fleet Management and Logistics, chapter 3, pages 57 – 94.
Kluwer Academic Publishers, 1998.

Bibliography 122

G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors. Column Generation. Springer, New
York, 2005.

M. Desrochers and F. Soumis. A reoptimization algorithm for the shortest path problem with time
windows. European Journal of Operational Research, 35:242 – 254, 1988.

A. Dohn, M.S. Rasmussen, and J. Larsen. The vehicle routing problem with time windows and
temporal dependencies. Networks, 58(4):273–289, 2011.

M. Drexl. Applications of the vehicle routing problem with trailers and transshipments. European
Journal of Operational Research, 227(2):275–283, 2013.

M. Dror. Note on the complexity of the shortest path models for column generation in vrptw.
Operations Research, 42(5):977–978, 1994.

K. Fagerholt and D. Ronen. Bulk ship routing and scheduling: Solving practical problems may
provide better results. Maritime Policy and Management, 40(1):48–64, 2013.

S. Gélinas, M. Desrochers, J. Desrosiers, and M.M. Solomon. A new branching strategy for time
constrained routing problems with application to backhauling. Annals of Operations Research,
61:91–109, 1995.

S. Irnich. Resource extension functions: properties, inversion, and generalization to segments. OR
Spectrum, 30(1):113–148, 2008.

S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In G. Desaulniers,
J. Desrosiers, and M.M. Solomon, editors, Column Generation, chapter 2, pages 33 – 66. Springer,
2005.

K. Kang, W.-C. Zhang, L.-Y. Guo, and T. Ma. Research on ship routing and deployment mode
for a bulk. pages 1832–1837, 2012. Int. Conf. Manage. Sci. Eng. - Annu. Conf. Proc., Dallas,
TX.

I.K. Moon, Z.B. Qiu, and J.H. Wang. A combined tramp ship routing, fleet deployment, and
network design problem. Maritime Policy and Management, 2014. doi: 10.1080/03088839.2013.
865847.

I. Norstad, K. Fagerholt, L.M. Hvattum, H.S. Arnulf, and A. Bjørkli. Maritime fleet deployment
with voyage separation requirements. Flexible Services and Manufacturing Journal, 2013. doi:
10.1007/s10696-013-9174-7.

M. Padberg. On the facial structure of set packing polyhedra. Mathematical Programming, 5(1):
199–215, 1973.

M.S Rasmussen, T. Justesen, A. Dohn, and J. Larsen. The home care crew scheduling problem:
Preference-based visit clustering and temporal dependencies. European Journal of Operational
Research, 219:598–610, 2012.

L.B. Reinhardt, T. Clausen, and D. Pisinger. Synchronized dial-a-ride transportation of disabled
passengers at airports. European Journal of Operational Research, 225(1):106–117, 2013.

D. Ronen. Cargo ships routing and scheduling: Survey of models and problems. European Journal
of Operational Research, 12(2):119–126, 1983.

D. Ronen. Ship scheduling: The last decade. European Journal of Operational Research, 71(3):
325–333, 1993.

D.M. Ryan and B. Foster. An integer programming approach to scheduling. Computer Scheduling of
Public Transport. Urban Passenger Vehicle and Crew Scheduling. Proceedings of an International
Workshop, pages 269–280, 1981.

123 Bibliography

M.M. Sigurd, N.L. Ulstein, B. Nygreen, and D.M. Ryan. Ship scheduling with recurring visits
and visit separation requirements. In G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors,
Column Generation, pages 225–245. Springer US, 2005.

M. St̊alhane, H. Andersson, M. Christiansen, J.-F. Cordeau, and G. Desaulniers. A branch-price-
and-cut method for a ship routing and scheduling problem with split loads. Computers and
Operations Research, 39(12):3361–3375, 2012.

M. St̊alhane, H. Andersson, M. Christiansen, and K. Fagerholt. Vendor managed inventory in
tramp shipping. Omega (United Kingdom), 47:60–72, 2014.

UNCTAD. Review of maritime transport 2013. http://unctad.org/en/PublicationsLibrary/
rmt2013_en.pdf, 2013.

C. Vilhelmsen, R. Lusby, and J. Larsen. Tramp ship routing and scheduling with integrated
bunker optimization. EURO Journal on Transportation and Logistics, 2013. doi: 10.1007/
s13676-013-0039-8.

In tramp shipping, ships operate much like taxies, following the available demand. For tramp
operators, a main concern is efficient and continuous planning of routes and schedules for individual
ships. This thesis therefore aims at developing new mathematical models and solution methods for
tramp ship routing and scheduling problems. This is done in the context of Operations Research.
The first part of the thesis contains a comprehensive introduction to tramp ship routing and
scheduling including an analysis of the current status and future direction of research within tramp
ship routing and scheduling. We argue that rather than developing new solution methods for the
basic routing and scheduling problem, focus should now be on extending this basic problem to
include additional complexities and develop suitable solution methods for those extensions. The
second part of the thesis therefore explores three distinct ways of extending the basic tramp ship
routing and scheduling problem to include additional complexities. First, we explore the integration
of bunker planning, then we discuss a possible method for incorporating tank allocations and
finally, we consider the inclusion of voyage separation requirements.

DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

DK-2800 Kongens Lyngby

Denmark

Tel. +45 45 25 48 00

Fax +45 45 93 34 35

www.man.dtu.dk

