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Abstract

Wind turbines structures are exposed to inclement loading conditions varying from the
turbulent wind field to fluctuations in the electric grid. The variation of these conditions,
in addition to special events such as emergency stops, has a great impact of the life time
of the components. In multi-MW wind turbines, it is common to find a geared drivetrain,
which is the interface between the mechanical and electrical domain. Due to the varying
conditions, the drivetrain can suffer accelerated damage reducing the target 20 years life
of the turbine.

This Ph.D. thesis focuses on the implementation of advanced models that consider
the electromechanical interaction of the wind turbine structure, namely the main shaft
and tower top, along with the gearbox and the generator. This is done with the purpose
to advance the integrated analysis of wind turbines; something that is not common until
recently. The state-of-the-art in wind turbine simulation is to consider the wind turbine
structure with a simplified model of the drivetrain. Therefore, the main purpose of this
Ph.D. is to develop a simulation tool capable of estimate the loading in the drivetrain
internal components, with special attention to the planet bearings in the planetary stage.
In brief, the tool is used for the dynamic analysis of the drive-train components under
different loading conditions following certification guidelines.

Several numerical simulations demonstrate the capabilities of the tool, and new results
show how the lifetime of the bearings are affected by different load cases. The fatigue
damage experienced by the planet bearings in the planetary stage is assessed for the
normal operation of the wind turbine, by computing the damage equivalent loads for
a 20 years period. Several operational modes are identified as the main contributors
to the fatigue of the bearings. Second, the ultimate design loads obtained by extreme
events such as Low-Voltage Ride through (LVRT), emergency stop and normal stop due
to grid loss are investigated. A method to simulate the LVRT based on the grid code
requirements from different countries is presented, along with results that highlight the
importance of the voltage recovery and its relation to the effect on the bearing loads.
Several recommendations are made for the three extreme events in terms of possible load
reduction in the bearings. The main goal is to minimize the long-term damage that can be
induced by the extreme cases. And finally, reliability analysis using FORM is performed
based on two different types of bearing configurations. For this purpose, a bearing
stiffness matrix corresponding to each configuration is used in the electromechanical
drivetrain simulation tool. Thus, using a parametric study with different dynamic rating
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values, it is found that this parameter has an important influence in the reliability, and
hence, in the preliminary design of the components. Furthermore, the difference between
the damage equivalent loads of both types of bearings is minimal. Therefore, the dynamic
rating parameter is found to have higher influence on the bearings reliability.

The methods presented in this dissertation can be used to model different drivetrain
configurations for preliminary design, based on standard load cases used in wind turbine
certification. In addition, it is possible to carry out reliability analysis, which ultimately,
is one of the main focus areas when analyzing and designing such complex and cost-
sensitive systems.
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Resumé

Vindmøllers strukturelle komponenter udsættes for barske belastningsforhold hidrørende
fra turbulens i vindfeltet og fluktuationer i el-nettet. Variationen i disse belastningsfor-
hold, ud over særlige hændelser såsom nødstop, har en stor indflydelse på levetiden af
komponenterne. I multi-MW-vindmøller, er det almindeligt at finde et gearet drivtog.
Gearkassen er i grænsefladen mellem det mekaniske og elektriske domæne, og komponen-
terne kan opleve hurtig udvikling af skader, hvilket reducerer levetiden for vindmøllen til
under de normalt forventede 20 år. Denne ph.d. afhandling fokuserer på udviklingen af
avancerede modeller for den elektromekaniske vekselvirkning mellem vindmøllens struk-
tur, nemlig hovedakse og tårn top samt gearkasse og generator. Dette gøres med det
formål at fremme den integrerede analyse af vindmøller; noget der ikke har været almin-
delig indtil for nyligt. State-of-the-art i vindmølle simulering er at modellere vindmøllens
struktur med en simpel model af drivtoget. Derfor er det vigtigste formål med denne
ph.d. at udvikle et værktøj, der kan estimere belastninger for drivtogets interne kompo-
nenter, med særlig vægt på lejerne omkring planet gear. Kort fortalt anvendes værktøjet
til dynamisk analyse af drivtog komponenter under forskellige last situationer specificeret
i certificerings guidelines. Flere numeriske simuleringer viser mulighederne for værktøjet
og nye resultater for effekten af forskellige last situationer på lejernes levetid er opnået.
Først er udmattelse af planet gear lejer vurderet for den normale drift af vindmøllen
ved at bruge ækvivalente laster for en 20 årig periode. Flere bidragsydere til udmattelse
af lejerne er identificeret ud fra resultaterne. Dernæst er ultimative design belastninger
fundet ved at analyserer ekstreme hændelser så som Low-Voltage Ride Through (LVRT),
nødstop og normal stop ved tab af nettet. En metode til at simulere LVRT baseret på
net-kode krav fra forskellige lande præsenteres sammen med resultater, som understre-
ger betydningen af spændings stabilisering efter net-fejl og dennes relation til lejernes
levetid. Flere anbefalinger beskrives i relation til de tre typer af hændelser, der muliggør
reduktion af belastningerne på lejerne. Målet er at minimere de langsigtede skader, som
kan opstå ved ekstreme hændelser. Endelig er pålidelighedsanalyse med FORM udført
baseret på to forskellige leje design. Til dette formål beskrives hvert leje design med
en stivhedsmatrix, som input til det elektromekaniske drivtog simulerings værktøj. Ved
hjælp af et parameter studie med forskellige dynamisk rating værdier er det fundet at
denne parameter har stor indflydelse på pålideligheden og dermed vigtig ved præliminær
leje design. Forskellen mellem ækvivalente laster for de to leje design er minimal, så det
er den dynamiske rating værdi der har størst indflydelse på lejernes pålidelighed. De
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metoder der præsenteres i denne afhandling, kan udvides til forskellige drivtog konfigu-
rationer i den indledende designfase, som baseres på de standard lasttilfælde der bruges
i vindmølle-certificering. Desuden er det muligt at foretage pålidelighedsanalyse, som i
sidste ende er et af de vigtigste fokusområder, når komplicerede og omkostningsfølsomme
systemer analyseres.
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1

Introduction

“Begin at the beginning,” the King said, gravely, “and go on till you come to an
end; then stop.”

– Lewis Carroll, Alice in Wonderland

1.1 Background

For the past decade, society has seen an increase on energy demand that is targeted to
be met in a considerable amount by renewable resources. Different studies have investi-
gated the advantages of using wind energy specially focusing on the cost to generate and
transmit power [13], which indicates the large potential of wind energy within a context
of clean energy supply. In addition, as society’s energy demand increase, there is a need
for more efficient, reliable and clean sources of energy. This means that, in the context
of wind energy, the wind turbine industry and research institutions need to improve the
designs of wind turbines for a more efficient and cost-effective capture of energy. To
achieve such a goal, through out the last two decades society has witnessed an increase
in size of the wind turbines (Figure 1-1), and bigger technical challenges that need to be
addressed.

One of the biggest challenges today is to design reliable wind turbines, specially with
the expansion on offshore wind farm development, where the repair and maintenance of
a wind turbine is very costly due to the logistical constraints. Thus, the cost of energy
tends to be increased due to turbine downtime, unplanned maintenance, replacement of
equipment, etc.. Today, most of the downtime of wind turbines are accredited to the
drivetrain (gearbox and generator), which is considered the most critical sub-system in
terms of reliability [1, 14]. This is no surprise given the complexity of the system: in a
multi-stage gearbox, a number of bearings support the operation of the torque and speed
transfer to the generator, in addition to the mating gear teeth that are directly exposed
to torque variations. A damaged component can generate an array of failures inside the
drivetrain with costly and inconvenient consequences. Therefore, special attention must
be given to the estimation of the internal loads in the gearbox and their interaction to
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Figure 1-1: Wind turbine sizes throughout the years by Rated power and rotor diam-
eter. It is clear that the trend on the construction of wind turbine is to
increase the rotor size and capacity to meet the demand of energy with a
larger participation of wind energy (reproduced from [1]).

the rest of the wind turbine under different loading conditions such as: wind turbulence,
aerodynamics, controls, grid events and emergency stops. From this, it is clear that the
drivetrain dynamics must be analysed in a context where all the components of the wind
turbine are taken into account, to develop a framework for reliability focused on the wind
turbine drivetrain.

1.2 Literature review

1.2.1 Existing software

There are several codes in the market, which main purpose is to be used for wind tur-
bine design and certification. The majority of the codes are used mostly for commercial
purposes, with the exception of a couple which are used in research as well. This section
focuses on describing the type of models used to describe the drivetrain dynamics on rele-
vant existing software, with a general explanation of the wind turbine model formulation.
Firstly, let us defined the types of formulation [15]:

• Modal – It is based on the mode shapes of beams that represent the blades and
tower. It requires isotropic materials and is fast to solve given the low amount of
Degrees of Freedom (DOF).

• Multi-body – Each main body can be described by several elements. This add
complexity to the model, thus increases computational time. However, it is possible
to include anisotropic materials, which gives a more realistic description of the
components in the wind turbine.
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When comparing the performance of different codes based on the previous formula-
tions [16], it was observed that those based on modal formulation predict different results
concerning the higher order modes than the codes with higher fidelity. In addition, the
modal damping was shown to be one of the factors that drove the difference of the codes.
In multibody it is an issue since the reduction of the damping by tunning of Rayleigh
parameters can lead to numerical instabilities.

Next, the wind turbine simulation codes are presented:

• HAWC2 – The Horizontal axis Wind turbine simulation Code 2nd generation
(HAWC2) is currently developed at DTU Wind Energy [17]. In here, the structure
of the wind turbine is described using a multibody formulation, where each body is
described by an assembly of Timoshenko beam elements. In order to construct the
wind turbine, each body is interconnected by mathematical constraints that repre-
sent mechanical joints. The code finds the time-domain solution to the Equations
of Motion (EOM) using the Newmark-beta method for numerical integration. Like
in most of the aerolastic codes, the drivetrain is treated as an ideal component, and
thus its internal dynamics are not included in the simulation. From the aerolastic
point of view, it is seen as a component with much higher dynamics than those
of interest in these types of simulation. Thus, it is formulated as a concentrated
inertia attached to the main shaft with a value equivalent to the generator inertia
times the gear ratio squared (Equation (1.1)). This corresponds to the generator
seen from the LSS.

𝐽𝑑𝑟𝑖𝑣𝑒𝑡𝑟𝑎𝑖𝑛 = 𝑛2𝐽𝑔𝑒𝑛 (1.1)

In addition, it is possible to define external systems, such as the gearbox, and to
couple it to the wind turbine for a full-system simulation. This is possible in two
ways: first, with an integrated interface [18] in where HAWC2 exchanges states
with MATLAB/Simulink in co-simulation interface (more details on this in Section
3.5); and second, an external systems interface in where the EOM of the external
system are combined with those from HAWC2 at every time step. A comprehensive
description of the details of the later, along with examples, is presented in Appendix
A.

• FAST – The Fatigue, Aerodynamics, Structures and turbulence code (FAST) is
developed at the National Wind Technology Center (NWTC) from the NREL.
Uses a modal/multibody formulation to describe 2- and 3-bladed horizontal-axis
wind turbines. The advantages of this code is that it is possible to interface it
with Simulink, and can be used as a pre-processor for ADAMS. The drivetrain
is described as shaft in between the rotor hub and the generator. The restoring
moment due to the presence of a gearbox is given by Equation (1.2):

𝑇𝐹𝐴𝑆𝑇𝑟 = 𝐾𝑠ℎ𝑎𝑓𝑡 (𝜃𝑟 − 𝜃𝑔𝑏) + 𝐶𝑠ℎ𝑎𝑓𝑡

(︁
𝜃𝑟 − ˙𝜃𝑔𝑏

)︁
(1.2)
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where 𝐾𝑠ℎ𝑎𝑓𝑡, 𝐶𝑠ℎ𝑎𝑓𝑡, 𝜃𝑟, 𝜃𝑔𝑏, 𝜃𝑟, and ˙𝜃𝑔𝑏 are the low-speed shaft torsional stiffness
and damping, rotor position, rotor angular speed, gearbox position and gearbox
angular speed, respectively. In addition, the gearbox efficiency can be specified
so the losses are accounted for. This value will be included in the final power
calculations [19].

• FLEX5 – Developed at DTU, it is one of the most popular wind turbine certifi-
cation modes given that its simplicity and fast simulation time. Moreover, it is an
open source code, which makes it attractive to companies for further development
and coupling with their in-house software (this is the same case for FAST). It uses
a modal formulation and the solution to the EOM is found using a Runge-Kutta
solver [20, 16].

• BLADED – This is an industry standard software package for the design and
certification of onshore and offshore wind turbines. Like other codes, BLADED
formulates the wind turbine structure by using a multibody dynamics approach.
In addition, it contains special modules for applications such as interaction with the
electric network and model linearization for control design. As in HAWC2, there
is the possibility to define an external gearbox and couple it directly to BLADED
for a full-system simulation [21].

• AdWiMo – The Advanced Wind turbine Modeling tool is multibody code that
uses the capabilities of the general purpose multibody software MSC ADAMS [22].
It has been coupled with NREL tools such as a FAST pre-processor and AeroDyn
for aerodynamic analysis of horizontal axis wind turbines. One of the advantages
of AdWiMo is that it is a module in the ADAMS software, and therefore, it is
possible to develop further the model in different levels of details. For instance,
it is possible to use ADAMS Machinery to build a detailed gearbox with different
levels of complexity such as: analytical and 3D-contact based gear teeth forces; and
different bearing types modeled as kinematic joints, linear/non-linear forces, solid
contact or analytical formulas.

• SIMPACK – It is a general purpose multibody code that has developed a module
focused on the wind energy industry [23]. Like AdWiMo, it is scalable in its com-
plexity given the general purpose multibody code it is built-on. It is also possible
to define only the drivetrain model for stand-alone simulation and analysis with
high complexity formulations such as FEM [24].

• SAMCEF – The software provides a fully coupled simulation environment. It
includes aerodynamics, hydrodynamics and hydrostatic loads; finite element com-
ponents; multibody elements; and controller. Because of its flexibility, the user can
modify the model to add different levels of complexity [25].
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1.2.2 Drive-train modeling

When turbines became bigger, and costly, special attention was given to the gearbox
given it is the system that is responsible for the most downtime. Several major studies
over the last decade have been dedicated to investigate the gearbox dynamics and its
subcomponents within the wind turbine context [3, 2, 26, 27, 28, 29].

The major contributions from these studies are:

1. Gearbox dynamics had been studied for over 20 years and the literature is extensive,
in where researchers such as Lin and Parker [30, 31] and Kahraman, A. [32, 33, 34]
(these previous studies are discussed later in detail) developed linear and non-linear
lumped-parameters models for the helicopter and automotive industry. From this
extensive knowledge, Peeters [3] applied different types of modeling techniques in
increasing complexity, focusing on Linear Time Invariant (LTI) and extended the
models to helical gears, thus he presented a study in a complete gearbox of a wind
turbine. First, he verified the different vibration modes present on a planetary
gearbox such as rotational, translational and planetary. Secondly, he extended the
current modeling techniques to the use of flexible multibody models, which included
additional DOF; this could be seen as a mix between rigid body and finite element
modeling, since it is possible to represent the elastic deformation of some of the
components of the body, while maintaining the rigid body characteristics. Finally,
there was a small study involving a grid disturbance present in a start-up situation
by using a sinusoidal excitation, where different values of stiffness for the coupling
in the high speed pinion were used. This showed the effects of the grid disturbance
mainly in the bearings of the pinion: a high peak torque, high levels of acceleration
for the bearings and an axial displacement of the pinion in its bearings.

2. Since 2007, NREL started the GRC project. In this project, the general objective
read as: "...developing integrated gearbox analytical tools that will bridge the gap
between gearing/bearing designers and wind turbine designers." The major con-
tributions from their research is a combination of different modeling techniques
of increasing complexity: torsional, multibody and finite element [2]; and a solid
experimental research facility, along with the collaboration of different industrial
partners that provide their insight on the real operation issues of the gearboxes in
the field. In addition, a failure database has been made available in where several
wind farm operators and gearbox re-builders can document the observed failures
and categorize them into bearing or gear failures [27]. The failure database is an
important contribution given that it identifies the root causes of the failures and
analyses the bearing failure mechanisms, in order to propose methods for improve-
ment of the gearbox design. Consequently, the data included in this database can
be used to increase the reliability of the overall wind turbine.

The GRC project has focused entirely in testing the gearbox under different condi-
tions in their 2.5 MW dynamometer, very detailed modeling and field data. Their
most relevant contributions to the problem of gearbox failure are:
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(a) The studies presented in [35, 36] are a comprehensive investigation of the ef-
fects of non-torque loads, gravity, bearing clearance, fluctuating mesh stiffness,
nonlinear tooth contact and input torque in the planetary gear loads. It was
demonstrated by simulation, and experimental verification, that the bending
moments caused by non-torque loads such as tower shadow, rotor weight, wind
induced moments, thrust and the tilting of the nacelle, can produce external
excitations in the carrier frame leading to an increment in the gearbox internal
loads and uneven distribution of the load shared among the planets. These
loads have negative effects, such as tooth wedging, in the gear teeth and planet
bearings reducing the gearbox service life. Another conclusion of their study,
is that with carrier bearing clearance the bending moments have a disruptive
effect in the gear meshes and planet bearings. In addition, the planet bearing
clearance affects the symmetry of the planets, creating asymmetric bearing
loads.

(b) Another major contribution by NREL is their failure findings presented in
[27]. The test gearbox was disassembled and several damages were identified:
scuffing and fretting corrosion; poor load distribution among the teeth of
the sun spline with 50% of the teeth carrying the load; overheating of the
high-speed stage (HSS) bearing due to lubricant starvation, among others.
The common phenomenon that causes these effects was found to be lubricant
starvation, which makes the condition monitoring of operational wind turbines
very attractive as a way to identify these failures at an early stage1.

3. The literature on modeling gearbox dynamics is extensive with models developed
in the 90s and early 2000 by Kahraman [33, 32, 34] and Lin [30, 31]. In these
studies the authors developed different models for the dynamic analysis of planetary
gears and two-stage gear systems. The models can be used in the LTI case to
find the global dynamics to identify the natural frequencies and natural modes of
the system, while the Linear Time Variant (LTV) models were used to study the
parametric instabilities caused by varying mesh stiffness. The previous models were
used mostly in the automotive and helicopter industry. Later, Guo and Parker [26]
proposed additions to the existing model targeted to the wind energy industry. In
their work, they analysed a spur planetary gear stage using a 2D lumped-parameter
model, with two translations and one rotation, including non-linearities such as
tooth wedging (simultaneous contact in a gear tooth on the drive-side and back-
side) and bearing clearance (space between the inner race and the rolling element).
With their work, it was identified that tooth wedging resulted in elevated planet
bearing forces due to the translational vibrations of the planets caused by gravity
and bearing clearance. The later model as been given continuity by the work of
Guo with NREL explained in item 2(a).

4. Helsen [37, 38] continued Peeters work by analysing the dynamics of a full wind
1Condition monitoring is not considered in this dissertation, given that the main purpose is the

modeling and simulation of a wind turbine drivetrain, along with experimental validation of the models.
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turbine gearbox in different levels of complexity: torsional models, 6 DOF rigid
body models with discrete flexibility and full flexible models. Although the more
detailed models at the global level provide a good insight in the load dynamics
experienced by the drivetrain, the author calls for the need of models that describe
the dynamics at the component level. These internal flexibilities, in the gears
and bearings, have a major influence in the global dynamics of the turbine. As
expected, the flexible multibody technique is the most suited for gearbox dynam-
ics simulation. The major disadvantage with this technique is the computational
cost. In addition to the detailed modeling, the author validates the models with
experimental data obtained by Hansen Transmissions 13.2 MW test-rig. In this
validation, it is demonstrated that including the off-diagonal terms in the bearing
stiffness matrix has a significant effect in the gearbox global behavior. Moreover,
through the calculation of the modal participation factors, it was identified that it
is necessary to include the varying gear-mesh stiffness in the modeling process.

The previous summary of contributions by other authors highlights the state-of-the-
art in gearbox modeling and simulation related to wind energy. The previous studies
focused heavily in finding the possible causes for gearbox failure through modeling, ex-
periments and field data; the models analysed the dynamics of the gearbox in a stand-
alone configuration. Now that it seems that the answers about the level of complexity
of models and the possible causes of failure have been solved, it is necessary to broaden
the scope. In this case, it is important to include additional dynamic systems such as
the generator, to study the impact of the internal loads of the gearbox. This introduces
the need for an approach that accounts for the overall electromechanical interaction be-
tween the mechanical systems such as the gearbox (including its internal components),
the tower structure, and the wind turbine rotor.

Next, some recent work is presented in where the electromechanical component of the
whole drivetrain is considered. The most recent studies had different objectives, but the
common denominator was the use of torsional models to represent the gearbox. In [39],
the authors present a control strategy to reduce the torsional oscillations in the High-
Speed Shaft (HSS) of the gearbox. The gearbox is represented by a torsional model that
considers each stage of the gearbox as an inertia and with connecting torsional springs
between stage, representing the shafts torsional flexibility. This model was validated
measurements from the GRC 750 kW test gearbox. The contribution was a reduction
in the torque oscillations, which can help to reduce the fatigue in the gears used in the
HSS. In [40], the authors present a strategy to study and simulate the electrical grid
aspects with a coupled simulation between Simulink and the aeroelastic code FAST. The
contribution is the possibility of using these two tools to study the impact of the electric
grid in the wind turbine. Similar work has been done before in this area in order to
study the impact of the grid dynamics in the wind turbine structure, where HAWC2 has
been used as the aeroelastic tool and Simulink is used for controls and power system
simulation [18, 41]. In another study, more relevant to this dissertation, is the work by
Girsang et. al [42] where a gearbox was implemented in Simulink’s SIMSCAPE toolbox.
The mesh stiffness of the planetary gears and the parallel stage was included, along with
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the torsional stiffness of the intermediate shafts. This model is coupled with FAST and
with SimPower Systems in Simulink, to simulate the entire system and get the response
of the gears inside the gearbox. The modeling approach is different than the rest, since
it is done by the pre-defined gear train modules that SIMSCAPE contains, however, it
is possible to find the system natural frequencies, which are validates against the model
presented by Lin and Parker in 1999. The most relevant contribution is the effects of
the variations of the electromagnetic torque in a voltage dip. As it is known, this drastic
oscillations can have a negative effect in the fatigue of the HSS gears. The main goal of
this work was to present a framework to study the electromechanical interaction in the
drivetrain. One disadvantage is that since it was modeled using the block diagrams from
SIMSCAPE, there is no EOM available and it is a black box, which limits the model
scalability in terms of expansion of DOF, non-linearities, or further development.

From the previous literature review, further considerations are needed in order to
advance the research on reliability of wind turbine gearboxes:

1. Computer simulation cost (time) is a big issue in system simulation. Specifically in
the wind energy sector, where large quantities of load cases need to be simulated
for certification of wind turbines. One of the conclusions of the previous survey, is
that fully flexible models are needed to gather an important amount of information
about the internal gearbox dynamics and loading. However, it is known that these
type of simulations have a high computational cost, even when the gearbox is
considered as a stand-alone system, with certain torque patterns as input to the
system. If it is required to carry out DLC simulations using the entire wind turbine,
including the drivetrain as a flexible component, the computational cost would be
very high. This is why there is the need for a good compromise between detailed
models and the information they can provide in order to make decisions about
the gearbox reliability, given different load cases when the entire wind turbine is
considered. This requires a framework in where the electromechanical interaction
in the drivetrain is implemented, along with the turbine and grid dynamics. Such
a method can provide a tool for large amounts of DLC simulation for fatigue and
extreme load studies of the drivetrain loads.

2. It has been shown that torque oscillations in the HSS have a negative impact on
the fatigue of the gears, and therefore better controllers need to be implemented
in order to reduce such oscillations. The source of this oscillations is related to the
grid dynamics, where grid faults create different scenarios in the excitation voltage
of the generator, which in turn, cause oscillations in the electromagnetic torque.
One load case that needs more studies with respect to gearbox reliability, is the
LVRT capability of the wind turbine and its effects on the gearbox components.
This characteristic is required by modern grid codes (it varies per country), which
is the ability of a wind turbine to remain connected (or ride through) during a
voltage sag [43]. The specifications of how much time the turbine must remain
connected varies depending on the grid code requirements.

3. Since the gearbox modeling techniques have already been defined extensively, it is
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necessary to perform parametric studies in the type of internal components used
currently in the gearbox. For instance, instead of spherical roller bearings, which
are commonly used in the planet gears, it would also be relevant to perform the
standard dynamic analysis using another type of bearings, e.g. cylindrical or ta-
pered roller bearings.

Based on the previous information, the next section provides the research objectives
of this dissertation and presents the framework in which it takes place.

1.3 Research objectives

The principal objective of the project is to study the electromechanical interactions be-
tween the rotor and the drivetrain loads. In this context, the drivetrain is defined from
the main bearing to the terminals of the generator. Thus, these models should include
the effect of aerodynamics, controls and the dynamics in the electrical grid. Moreover,
the models developed in this project include the gearbox and the dynamics of the gen-
erator. The latter is the interface from the electrical grid dynamics to the mechanical
loading of the gearbox in the HSS via the electromagnetic torque variations. From this, it
is clear that the drivetrain is exposed to changes in the conditions from both dimensions,
mechanical and electrical, and therefore, the gearbox is highly affected by this complex
dynamic behavior, making it the center of this study. The diagram in Figure 1-2 depicts
the framework in which the project takes place.

Generator

Structural Loads

Grid Faults

Power Balance

Fault ride-through
Operation

Torque Control
Electromechanical Drive

Train Simulation

Gearbox Dynamics

Pitch Control

Wind Turbine

Wind and
Aerodynamics

Figure 1-2: Framework of the project. Most of the components and external forces
used in wind turbine simulation are interconnected through the electrome-
chanical drivetrain simulation implementation.
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From the diagram in Figure 1-2 it is possible to get a global perspective of the project.
On the left side, the wind, aerodynamics and structural loads affect the gearbox directly
given the physical connection among the components. On the right side, the generator
dynamics are affected by a set of grid dynamics (FRT, power balance and grid faults),
which in consequence, create additional dynamics given by the torque control. These
dynamics in the "electrical domain" have effects on the gearbox and structural dynamics
of the turbine.

Given the framework of the project, it is possible to describe a set of general objec-
tives; in addition, a set of specific objectives are laid out in order to fulfill the higher
level objectives.

1.3.1 Specific Objectives

The specific objectives described in this section are used as milestones in order to tackle
the general objectives. These milestones are related to the implementation of the neces-
sary models needed to study the electromechanical drivetrain loads.

1. To define a method (such as in [44]) which can be used to model a gearbox given
the specifications of the wind turbine. This method should contain modules that
make it easy to define different configurations of the gearbox, i.e high speed and
medium-speed, by implementing multiple stages, and combining planetary and
parallel gearboxes. These models should include bearing and gear teeth flexibilities.

2. To define two generator models: a DFIG and a PMSG. These models need to be
consistent with the requirements of the wind turbine such as variable-speed and
torque control. Therefore, the models should be accompanied by a control strategy
for the generator torque, in order to comply with the torque balance requirements
of the wind turbine model.

3. To define a reference wind turbine to be used as "working turbine". In addition to
the structural parameters, it is necessary to define suitable, and realistic, gearbox
and generator models using the previous objectives.

4. To validate the dynamic models of the gearbox and generator with experimental
testing.

1.3.2 General Objectives

The general objectives described in this section are directly related to the contributions of
the dissertation. These objectives stem mainly from the problem introduced previously
in Section 1.1 and the state-of-the-art described later. In addition, the deliverables of
this dissertation are aligned to those belonging to WP-5 from the project REWIND2. It
is expected that the results from this PhD will be used along the results from other work
packages for the benefit of REWIND project.

2Knowledge based engineering for improved reliability of critical wind turbine components
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1. To develop a tool for electromechanical drivetrain simulation in the context of wind
energy. This method should account for each subsystem described in Figure 1-2.
Not only the dynamic behavior of the whole wind turbine as a system will be
studied, but also the performance of the simulation when all the components are
considered (computational time).

2. To study the fatigue of bearing loads under normal operation as specified in the
IEC standard 61400-4 [44].

3. An insight of extreme loads of the components is to be presented from relevant
load cases. For instance, a LVRT, DLC 2.3 (extreme operational wind gust plus
the occurrence of a fault) and DLC 5.1 (emergency stop). There is no formal
LVRT load case, so an electric fault will be simulated under normal turbulence
wind conditions (DLC 1.1) to show the FRT effects.

4. To implement a suitable method that quantifies the reliability of the drivetrain
throughout its life time using time domain simulations, where the wind turbine
structure is coupled with the gearbox and generator dynamics.

5. Given the new generation of wind turbines, onshore and offshore, with increasing
size and different configurations, the last objective focuses on finding the best
solution between medium-speed and high-speed drivetrains. This is done from the
context of reliability and system simulation.

1.4 Overview of the thesis

In the first chapter, the thesis is formulated by describing the current problem and
laying out the contributions from past researchers to present the state-of-the-art. From
the definition of the problem, several research objectives are presented to define the
expected contributions from the dissertation.

Chapter 2 is dedicated to describe the necessary concepts used in this dissertation.
It is not the intention to repeat existing knowledge, but to present the definitions of the
components used here. It also serves as an explanation of terminologies for the subsequent
chapters. A description of the different subsystems and components of the drivetrain is
presented, along with the different configurations available. Later, the two generator
systems used in the dissertation are briefly described. Since the concept of fatigue is
used in the results part of the dissertation, a fatigue analysis section has been included
in order to describe the main topics used for the analysis. Last, the wind turbine model
used for the simulations is briefly described, given that it is a popular research turbine
model that has been widely used.

The different models and methods used in this thesis are described in Chapter
3. The basis of these models have been presented by previous studies, therefore, the
information in the chapter serves as a description of the general concepts, how are they
used in this dissertation and their validation. First, a gearbox model is described from the
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formulation of its constraints using the multi-body dynamics code implemented during
the first year of the Ph.D. The limitations of this formulation are highlighted in relation
to the research objectives from Section 1.3. Later, the gearbox models based on lumped-
parameters used for the core of this dissertation are described, from the choice of reference
frames, coordinate transformation, component forces to the solution to the EOM. The
control system for a PMSG that is coupled with the gearbox is presented, along with
the results showing its response. From here, the electromechanical simulation interface
and the methodology for coupling with the wind turbine is presented. This sets the core
of the dissertation by establishing the connection between the mechanical and electrical
domain. And last, the system’s model is validated using experimental data from the GRC
project. The results show that the formulation chosen here is a good approximation of
the test system used at NREL. The bearing forces and response of the overall system are
validated at different power levels. Moreover, the electromechanical coupling between
the different components is presented. Furthermore, the modeling and control strategy
of two generator configurations is explained. The lumped-parameter models and the
electromechanical drivetrain interface presented in this chapter are used to obtain the
results in the subsequent chapters. In addition, they make part of the publications [45, 46]

In Chapter 4 the wind turbine structure is coupled with the developed simulation
tool to compute the drivetrain loads a normal operation load case (DLC 1.1). This
load case requires a minimum number of simulations in order to be in line with the IEC
standard recommendations. The entire system, i.e. wind turbine, gearbox and generator,
are simulated in the validated co-simulation interface. Simulations over the entire wind
speed range of the turbine provide with sufficient data to analyze the fatigue of the
components, and different modes that contribute to the damage of the planet bearings
are identified. In addition, a study of the wind turbine loads show that its dynamics
are not affected by the introduction of an externally defined drivetrain. Hence, the
co-simulation approach including the detailed gearbox is proven adequate. The results
presented in this chapter correspond to work given in [46].

Different extreme load cases are simulated in Chapter 5, i.e. DLC 1.1/LVRT, DLC
2.3 and DLC 5.1. For the sake of clarity, there is no specific LVRT case defined in
the IEC standard, therefore, a normal operation case (DLC 1.1) is simulated with a
voltage fault occurring at different points in time. The LVRT is carried out following
the recommendations form four different grid codes, in terms of considering the worst
case scenario where the wind turbine must stay connected to the grid. A DFIG is used
given its direct connection to the grid, which makes it more vulnerable to events in the
grid voltage. The simulation time-series of the three load cases are used to compute
the extreme loads and maximum contact stresses experienced by the planet bearings.
Result show that the emergency brake is the case with the most negative impact on the
bearings, followed by the LVRT for a specific grid code. Several recommendations to
reduce the impact on the bearings are given based on analysis of the results, and the
difference among the cases.

In Chapter 6, two types of bearings are modeled using the bearing model pre-
processor described in Chapter 3. The purpose of the two representation is to obtain
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two different bearing stiffness matrix and to compare the associated reliability (using
the First-Order Reliability Method (FORM)) with respect to the expected life of each
bearing. The results are obtained using the electromechanical interface and two different
drivetrains are simulated. The results given insight in the different damage achieve by
each type of bearing and the importance of the dynamic rating parameter as far of the
probability of failure of each type of bearing. The work in this chapter is part of [47].

The summary of the contributions from the thesis, the limitations of the models and
recommendations for future work are given in Chapter 7.
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2

Theoretical Background

2.1 Introduction

This chapter presents the necessary background to analyze the components in the elec-
tromechanical drivetrain. The starting point is a definition of the different drivetrain
constituents, along with their advantages and disadvantages. Then, the most important
drivetrain constituents such as bearings, gears and generators are explained in detail.
There is extensive literature about these concepts, but special attention is given to the
relevant information related to the wind energy context. Furthermore, the fatigue of
components is studied and foundations are given for the analysis of the bearing loads in
the later chapters. Finally, a brief description of the wind turbine model used in this
dissertation is presented.

2.2 Drive Train Subsystems and Configurations

The drivetrain of a wind turbine is defined from the main bearing to the generator, which
in simple terms is usually represented as an equivalent inertia or shaft in conventional
aeroelastic codes [17, 19, 21]. However, in this dissertation the drivetrain is defined
externally and it includes the dynamics of the gearbox and generator. That is, the
drivetrain system studied here, ends at the excitation terminals of the generator in order
to account for the effects of the electrical system in the generator dynamics.

The drawing in Figure 2-1 shows the main parts of the drivetrain: main bearing, main
shaft or LSS, gearbox, brake, HSS and generator. The different drivetrain configurations
are defined based on the dimension and layout of the entire system. It is related to the
number of suspension points, size of the gearbox and generator, or as in the case of a
direct drive, without a gearbox.

The drivetrain configuration can be divided into three main categories: high-speed,
medium-speed and direct drives. These types of drivetrains will be discussed in this
section from a qualitative approach and to introduce the reader the different options
available in wind energy industry. It is out of the scope of this dissertation to analyze
in detail every possible configuration. Instead, the main topic of the dissertation is to
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Figure 2-1: Drawing of the components inside a nacelle. In here, the most relevant
parts of the drivetrain are depicted (reproduced from [2]).

study those configurations that contain a gearbox, whether is part of a high-speed or a
medium-speed drivetrain.

In here, the configuration refers mainly to the operational speed of the generator.
This rating depends on the type of turbine. Some operate at a higher speed, such as the
case of the NREL 5MW reference turbine and therefore their rated torque is considerably
low. In other cases, as medium-speed or direct-drives, permanent magnets synchronous
generators are used and they operates at a much lower speed than the induction option.
However, the rated torque is higher, and in the case of direct-drives, it is equal to the
main shaft torque.

The definitions in this section have been denominated subsystems since they contain
more elements that play a role in the wind turbine operation. It is the intention of the
author to present the main concepts and characteristics of these subsystems, in order to
navigate the reader from the big picture into the smaller elements of the system.

2.2.1 Main bearing and shaft

The low-speed section of the wind turbine’s drivetrain is composed by the main bearing
and shaft, whose main purpose is to the transfer the rotor torque to the gearbox. The
main bearing, specially, is subject to the high bending moments in the different directions
due to the wind fluctuations and to the blades loads transferred through the hub. In
addition to transferring the drive torque through the gearbox, the main shaft and bearing,
need to transfer the additional loading to the nacelle structure via their support points
[48].

2.2.2 Gearbox

The main purpose of the gearbox is to increase the speed from the low speed in the
rotor, to a higher speed for the generator operation. The rate of change depends on the
gear ratio which is defined based on the type of turbine and generator. For instance,
the NREL 5MW reference wind turbine [49] has a gear ratio of 1:97 but it is possible
to find turbines with gear ratios of 1:37 [50], or in the case of direct-drive turbines [51]
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the gearbox is non-existent. Another purpose of the gearbox is to decrease the driving
torque also by a factor equal to the gear ratio. In this dissertation, the gearbox is given
special attention in the modeling process in order to capture the internal dynamics of its
components. The design of different sizes of gearbox is a trade-off between the reliability
of its components and the cost. The gearbox will be discussed in more detail in the later
sections.

Bearings

In wind energy, bearings play an important role in the operation of the turbine due to the
constant operation and the different loading of its rotating parts. Specially, because wind
turbine manufactures design for a 20 years lifetime of the entire wind turbine. However,
the gearbox is the subsystem in the wind turbine with the most recorded downtime [2],
furthermore, the bearings were identified as the component with the most failures [14].
Therefore, it is important to understand the different failure modes and to implement
appropriate models to describe their behavior within wind turbine DLC simulations. This
section provides conceptual information on the type of bearings used in wind turbines.

Bearings in general can be divided in three major categories: roller bearings, fluid
film bearings and magnetic bearings. In drivetrains, the roller bearings are the most
popular, and therefore, the present work only focuses on this type. This category can be
further divided into different types of bearings: spherical, cylindrical, and tapered roller
bearings. Figure 2-2 shows the types of roller bearings discussed here. As it is shown,
roller bearings consist of two different size rings, with rolling elements in between them.
The type of rolling elements dictate the shape of the rings and consequently the type of
bearing [52].

1. Cylindrical Roller Bearings
Mostly used in applications related to power transmission due to their low friction,
this type of bearings are suitable for high operational speeds. It is common to
find the rollers linked by a cage as shown in Figure 2-2. The main purpose of the
cage is to make the bearing more suitable to withstand high radial loads and fast
accelerations. These type of roller bearings are commonly used in planetary stage
gearboxes, to support the planets and allow their rotation [11].

2. Spherical Roller Bearings
In a spherical roller bearing, the roller components have their outer raceway with
an spherical shape. Also, each bearing contains two rows of rollers whose axis are
inclined to the axis of rotation of the bearing. This is a main advantage in case of
shaft misalignment or deflection, the rollers are capable to adjust the outer raceway
[52]. In addition, of all the roller bearing types, spherical roller bearings show the
highest load capacity. Therefore, their location on a wind turbine is usually at the
main shaft acting as the main bearing and gearbox support bearing (on a three
support points drivetrain), in order to sustain the changing loading conditions on
the rotor side.
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Figure 2-2: Types of roller bearings used in wind turbines drivetrain. The major parts
are displayed (from left to right): outer ring, inner ring, roller component
and roller cage (reproduced and modified from [3]).

3. Tapered Roller Bearings
As seen in Figure 2-2, the rollers have a shape of truncated cones. Because of
the position of the raceways, the tapered roller can take axial and radial loads in
a single direction. However, it is very common to find a combination of two or
four tapered roller bearings in back-to-back configuration, in order to support axial
loads in either direction, and to take advantage of their high load carrying capacity.

Gears

The main objective of the gears is to transfer the load from the input to the output. In
terms of kinematics, this is done by transferring the rotational motion using the contact
in the gear teeth. This section introduces relevant concepts of gear transmission in wind
energy. A detailed list of gear terminology is given in Appendix B.

Kinematics

The most basic expression that describes a gear pair operation is the gear ratio and is
given as:

𝜔𝑜𝑢𝑡
𝜔𝑖𝑛

=
𝑟𝑏𝑜𝑢𝑡
𝑟𝑏𝑖𝑛

=
𝑁𝑜𝑢𝑡

𝑁𝑖𝑛
(2.1)
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Figure 2-3: Planetary gearbox example (reproduced from [4]).

Equation (2.1) shows that the rotational motion of the gear pair will result in a change
on speed in the output that depends on the geometry of the gears.

However, in geared wind turbine drivetrains, different gearbox configurations are used
for either high or medium-speed operation. In both cases, it is common to find at least
one planetary stage gearbox. The advantage of this type of gearbox stage is the high gear
ratio achieved in a compact system. A planetary stage consists of a ring gear, a carrier
and a set of planets. An example of a generic planetary stage gearbox is presented in
Figure 2-3. In wind turbine drivetrains, the input torque is applied to the carrier, which
produces a rotation of the planets around the sun gear. The ring gear is fixed, while the
output is in the sun gear. In addition, the planets rotate around their rotational axis
which is placed in the pins attached to the carrier.

The total gear ratio in a planetary gearbox is defined as the ratio of the sun speed to
the speed of the carrier:

𝜔𝑠
𝜔𝑐

= 1 +
𝑍𝑟
𝑍𝑠

(2.2)

where 𝑍𝑟 and 𝑍𝑠 are the number of teeth of the ring and sun gear, respectively.
This is a positive gear ratio given that the sun and carrier rotate in the same direction.
Similarly, the ratio of the planet to the carrier is given by:

𝜔𝑝
𝜔𝑐

= 1− 𝑍𝑟
𝑍𝑝

(2.3)

where 𝑍𝑝 is the number of teeth in one planet gear. This is a negative gear ratio
because the planets rotate in opposite direction of the carrier. Finally, the ratio of the

19



sun to planet is given by:

𝜔𝑠
𝜔𝑝

=
1 + 𝑍𝑟

𝑍𝑠

1− 𝑍𝑟
𝑍𝑝

(2.4)

This is also a negative gear ratio because of the opposite direction of rotation of the
planets with respect to the sun.

Notice that the total gear ratio does not depend directly on the number of planets
used. Instead, the major drivers are the number of teeth in the ring and sun gear.
Moreover, the choice of the number of planets is rooted in the design loads at which the
planetary stage is subject to. The choice of the design is related to cost savings because
more planets mean a higher distribution of the load, which results in lower loading on
the components, but also higher costs given the increase in number of components used.
In contrast, the choice of a reduced number of planets means that more material needs
to be used in order to maintain the gear ratio requirements.

The use of a gearbox is not only related to a change of speed. In larger turbines,
the rotor speed tends to be in the order of 1-2 rad/s, while the induction generators, for
example, operate at above 100 rad/s. Moreover, the input torque from the rotor is very
high in comparison to the one needed in the generator. Therefore, the gearbox reduces
the torque by a factor equal to the gear ration. As in any system, the energy transferred
by a gear pair must be conserved as shown by:

𝑇𝑖𝑛𝜔𝑖𝑛 = 𝑇𝑜𝑢𝑡𝜔𝑜𝑢𝑡𝜂𝑔𝑏 (2.5)

where 𝜂𝑔𝑏 denotes the gearbox efficiency. In reality, some of the energy is loss in the
load transfer due to friction losses in the transmission.

2.2.3 Generators

It is the case for most wind turbines, that the generator is located at the rear end of
the drivetrain and it is coupled to the gearbox via the HSS. There are different types of
generators used in the wind energy industry today. The most popular are the induction
and synchronous generators. Their main purpose is to transform the mechanical power
produced by the wind turbine’s rotor into electric power. Nowadays, the generators
reach efficiencies with values ranging from 94 % to 99%, thanks to advances in electrical
machine design. For instance, thanks to progress in ferromagnetic materials, high tem-
perature superconductors, high temperature insulation materials, and power electronics
control techniques, to name a few [53]. This section is intended to highlight the advan-
tages of the types of generators used within wind energy, and the main concepts related
to their operation. Considering the advances in generator technology, the main focus of
the concepts presented here are related to variable-speed configurations only. A compre-
hensive description of the advantages of variable-speed operation wind turbines and the
type of generators used is given by [54].

20



The concept of variable-speed wind turbines

The main purpose of using variable-speed turbines is to increase the power capture by
operating the wind turbine over a wide range of speeds. This means that the wind turbine
needs to operate at the maximum aerodynamic efficiency over the range of speeds. To do
so, the machine controller, governing the power electronics, must control the generator
speed to adjust to the fluctuations in the wind field in the variable speed domain. This
controller must operate in conjunction with the wind turbine controller governor so after
the turbine reaches rated speed, the power production is maintained at the rated power
level. Another advantage of variable-speed operation is the optimal power production
that can be achieved at lower than rated wind speeds. As it is well known, the mechanical
power a wind turbine can extract from the wind is proportional to the cube of the rotor
speed:

𝑃𝑚𝑎𝑥𝑚 = 𝐾𝑜𝑝𝑡𝜔
3
𝑟 (2.6)

where

𝐾𝑜𝑝𝑡 =
1

2
𝜌𝜋𝑅5

𝐶𝑚𝑎𝑥𝑝

𝜆3𝑜𝑝𝑡
(2.7)

where 𝜌 is the air density, 𝑅 is the rotor radius, 𝐶𝑝 is the power coefficient and 𝜆 is
the tip-speed ratio. The latter depends on the rotational speed 𝜔𝑟, 𝑅 and mean wind
speed 𝑢 as shown:

𝜆 =
𝜔𝑟𝑅

𝑢
(2.8)

Therefore, the maximum power produced by a given wind speed is achieved when
the optimal 𝜆 is maintained. In addition, the variable-speed operation also reduces the
mechanical stresses in the gearbox and shafts since the large rotor inertia absorbs the
power fluctuations [54].

Doubly-Fed Induction Generator

A DFIG is wound rotor induction generator and the term "Doubly-Fed" reefers to the
configuration of the connection to the grid. The power production of the wind turbine is
provided to the grid through both, the stator and the rotor of the machine. Hence, the
stator is directly connected to the grid, while the rotor voltage is controlled by a partial
power converter. Unlike in the PMSG system, where the converter is fully-scaled, in a
DFIG, the converter handles part of the power produced. This is an advantage over the
PMSG configuration because of the reduction on the size of the power system, which
translates into cost savings. The configuration of a DFIG and its power electronics is
presented in Figure 2-4.

A detail description of the model, along with the controls implemented was previously
presented by [18].
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Figure 2-4: Diagram of the DFIG power system.

Permanent Magnet Synchronous Generator

The main advantage of using PMSG over DFIG, is the type of configuration used to
connect the turbine to the grid. With a PMSG, the power system uses a full back-to-
back converter. A full converter decouples the generator from the grid because it uses
to independents converters connected by a DC link. The DC link consists of a capacitor
in parallel to a chopper resistor. During short grid faults, a power unbalanced is created
in the power system because of the difference in potential in the two converters. In such
situation, the unbalance is handled by a chopper resistance. That said, for longer faults
such a grid loss, this system will have to respond by shutting down the generator. The
diagram in Figure 2-5 shows the configuration of the system. The control system is not
included in this diagram because it will be explained later in Section 3.4.

PMSG
AC

DC

DC

AC
Grid

Figure 2-5: Diagram of the PMSG power system.

A description of the dynamic model of the PMSG implemented in this dissertation
is included in the Appendix E.

2.3 Bearing life

This section is intended to summarize the important concepts related to bearing life
analysis. It is not possible herein to delve into the analysis of bearing life from material
fatigue theory. Instead, the concepts of bearing life, cycle counting techniques and ma-
terial fatigue are used to analyze the resulting loads from the time domain simulation of
the models presented in Chapter 3. The main concepts presented next, are based on the
widely known theory of rolling bearings analysis [55, 56, 52, 57], mechanical components
design [58] and its application in the wind energy industry [59, 11].
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2.3.1 The S-N curve

Material fatigue is an effect of cycling loading situations where the component is subject
to different levels of loading during a certain number of cycles. For this reason, the
structural performance is assessed in fatigue tests and a characteristic curve is obtained
for the magnitude of stress cycles to failure at different load levels. The test is carried
out by applying a sinusoidal stress to a test specimen of the material, while counting the
number of cycles to failure. A rough example of the S-N curve is presented in Figure 2-6.
The equation that approximates the middle region in Figure 2-6 is given as:

𝑁 = 𝐾𝑆−𝑚 (2.9)

where 𝑆 is the load level that leads to failure during 𝑁 cycles. The constant 𝐾 is a
material constant that varies from specimen to specimen, and 𝑚 is a deterministic value
that depends on the material under test [7]. The slope in the middle section of the plots
of Figure 2-6 corresponds to 𝑚, and it is known as the Wḧoler exponent.

Cycles of stress, (log N)

St
re

ss
,S Fatigue limit

𝑚2

𝑚1

Figure 2-6: Example of S-N curve.

Several concepts that are important to understand the basis of the fatigue of materials
can be derived from a qualitative analysis of figure 2-6. The two plot represent the results
of fatigue testing of two materials. These could be the same kind of material, e. g. steel,
but with different properties or environmental conditions that modify its fatigue limit.
Thus, the fatigue limit (or endurance limit) is defined as the stress level at which the
material can "last" indefinitely without experiencing fatigue damage. During the first
section of the line, the material is subject to high level of stress, resulting in failure at
a low number of cycles. This region is commonly known as Low Cycle Fatigue (LCF)
and it is usual to be in the range 1 ≤ 𝑁 ≤ 100 [7]. In contrast, in the second region the
material is subject lower levels of stress, but with a higher number of cycles until failure.
This region is known as the High Cycle Fatigue (HCF) region with common values of
𝑁 > 100.

The previous theory served as an introduction to the concept of fatigue analysis
using the results of fatigue testing and the corresponding S-N curve. Next, this concept
is extended to the analysis of the strength of the materials used in bearing manufacture.

Part of the focus of the analysis of the strength of the materials, used in the manufac-

23



Figure 2-7: The plot shows an example of the effect that different inclusions size have in
the fatigue limit of bearing steel 100Cr6 martensite. The results correspond
to a prediction of surface failure using the model given in [5]. This plot is
a reproduction from [5].

ture of bearings, is to identify the possible failure modes that a bearing might experience
throughout its lifetime. For example, it has been identified that the failure of high
strength steels in the HCF regime starts from the interior inclusions in the specimen.
This is a source of crack initiation and growth, which is refereed to as "fish-eye", due to
its shape, with fatigue strength at 107 cycles [5]. In addition to the classical regimens
of fatigue testing, i.e. LCF and HCF, advances on high frequency fatigue testing equip-
ment have allowed testing of specimens in the Very High Cyclic Fatigue (VHCF) regime
beyond 107 cycles. For instance, the work by [60] carried out tests of bearing steels SUJ2
using Bending Rotating Fatigue (BRF) techniques. In their research, they found that
different size of inclusions in the material will produce "duplex" S-N data. One set of
the data corresponds to surface initiated failure at cycles < 105, while the second set of
data corresponds to subsurface initiated failure in the high cyclic region above 107 cycles.
The authors in [5] developed a model capable of estimating the fatigue crack growth from
imperfections in the material, namely the inclusions. An example of their results is given
in Figure 2-7. The results pertaining the surface initiated fatigue (red line) show that
the fatigue limit is at a higher stress level, and lower cycles, than the second-step S-N
curve corresponding to the subsurface initiated failure. Different sizes of inclusions were
used in the model predictions, starting at a diameter of 10𝜇m. Even though there is a
"two-step" process for the material failure, the subsurface initiated fatigue is irrelevant
due to the failure dictated by the lower stress cycles corresponding to the surface failure
S-N data. This is specially true for larger sizes of inclusions, e. g. 50𝜇m in Figure 2-7.

The preceding paragraphs attempted to illustrate a portion of the study of the fatigue
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failure of materials used in the bearing manufacturing industry. Though these concepts
are not explored in detail in the results section, it is relevant to include them, since ulti-
mately, the external loading in the drivetrain components could lead to such phenomena.
The next sections explore the methods used to analyze the impact of the external loading
on the components from a higher level than the one presented previously.

2.3.2 Implications of fluctuating loads

The fatigue testing is done by applying constant loading, i. e. same stress levels, for a
number of cycles to failure. However, in reality, the components in the systems studied
in this dissertation are subject to time-varying loading. An example is given in Figure
2-8.

Time [s]

Lo
ad

[N
]

Mean

Figure 2-8: A time-varying load with different load cycles.

In the case of wind turbines, the loading in the components experience different levels
of stress cycles due to fluctuations in the wind field, therefore, the stress distribution
cannot be obtained directly and it is necessary to use cycle counting methods. There
are several cycle counting methods such as level crossing, range-mean, range-counting
and rainflow counting. For detailed descriptions on the first three methods, the reader is
referred to [61, 7]. The rainflow counting algorithm is one of the most popular since it
has proven to show accurate results when compared to experimental data. For instance,
the range-mean method defines half cycles based on the adjacent peaks and valleys used
as boundaries. This results on a series of half cycle values, with out information on the
number of cycles associated to those ranges. In contrast, the rainflow counting method
divides the time history of the load in a set number of bins 𝑘 depending on the varying
levels. Then, it counts the number of cycles of each load level. The result, is a set of
𝑁𝑖 and 𝑆𝑖 pairs that represent each range of loading at a determined number of cycles.
This poses an advantage when analysing loads in wind turbine components, due to the
many different cycle level produced by turbulent wind. The rainflow counting method
is used in this dissertation in Chapter 4. For details on the complete procedure for the
implementation, one can refer to [7].

The set of 𝑁𝑖 and 𝑆𝑖 pairs given by the rainflow counting method is used to determine
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the accumulated damage 𝐷:

𝐷 =
𝑛1
𝑁1

+
𝑛2
𝑁2

+ · · ·+ 𝑛𝑘
𝑁𝑘

=

𝑘∑︁
𝑖

𝑛𝑖
𝑁𝑖

(2.10)

where 𝑘 is the number of bins, 𝑛𝑖 is the number of cycles at the stress range 𝑆𝑖, and
𝑁𝑖 is the average number of cycles to failure at the 𝑖th stress obtained from the S-N curve
of the material. The accumulated damage 𝐷 denotes a percentage of life consumed by
the component due to the exposure at the different stress levels. When 𝐷 reaches 1, it
means that failure has occurred. This relationship is commonly known as Miner’s rule
and it was introduced by M. A. Miner in 1945 [62].

2.3.3 Assessing bearing life

Different types of bearing failure modes common to the wind energy industry are pre-
sented in detail in [14]. Most of the failures are due to lubricant starvation, which in turn
produces wear, abrasion, scuffing and cracks in the bearing rollers and rings. A starting
point to analyze bearing life is to use known empirical equations which provide informa-
tion on the dynamic loading and maximum contact stresses that the bearing experience,
based on time domain simulations. The bearing life is related to the fatigue experienced
by the components due to external loading and number of cycles. Therefore, the period
of time required to observe the first signs of fatigue depends on the load magnitude and
the number of revolutions experienced by the bearing. Thus, the life of a rolling bearing
can be defined by the time in hours the bearing operates or the number of revolutions,
before sings of flanking are detected in its races or rolling elements.

The main method to calculate the bearing rating life is the 𝐿ℎ10 and is an fatigue
life indicator of which 10% of the bearings would not survive. There are several versions
of this formula, since it was first introduced by Lundberg and Palmgren [56]. Note that
this measure is used for preliminary bearing selection according to the IEC standard for
design requirements in wind turbine gearboxes [44] and it is given as:

𝐿ℎ10 =
106

60𝑛

(︂
𝐶

𝑃

)︂𝑝
(2.11)

where 𝑛 corresponds to the rotational speed, 𝐶 is the dynamic bearing rating, 𝑃 is an
equivalent load and 𝑝 is the life exponent: 3 for ball bearings and 10/3 for roller bearings.

2.4 Wind Turbine Model

The wind turbine used throughout the dissertation is the NREL Reference 5MW wind
turbine [49]. This is a variable-speed wind turbine with a rotor diameter of 126 m. The
details of the wind turbine are presented in the previous reference. Table 2.1 shows the
system parameters used in the dissertation.
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Table 2.1: Summary of relevant parameters of the 5 MW reference wind turbine from
NREL.

Parameter Value

Rated Power 5 MW
Control Collective pitch
Drive-train High-speed, multi-stage gearbox
Hub height 90 m
Cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s
Cut-in, rated 6.9 rpm, 12.1 rpm

The wind turbine has been implemented in HAWC2 in the past, and this model is
used to obtain the results presented in Chapters 4, 5 and 6.
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3

Drivetrain Dynamics

“The art of simplicity is a puzzle of complexity.”
– Douglas Horton

3.1 Introduction

The drivetrain of a wind turbine is composed of two major subsystems: the mechanical
and the electrical. The generator is seen as an electrical component. Given the charac-
teristics of the generator, it is the bridge between the mechanical and electrical domains
via the electromagnetic torque. The main objective of this chapter is to present the
different techniques available to model the drivetrain dynamics, along with the advan-
tages and disadvantages of each formulation. First, a general purpose implementation of
a multibody dynamics code using the Newton-Euler formulation, with Lagrange multi-
pliers and constraint equations (see the detailed formulation in Appendix C) is used to
model a planetary gearbox. Thanks to the general purpose of the implementation, it is
possible to describe different mechanisms composed by kinematic joints such as revolute,
translational, fixed and gear constraints. With this formulation, results concerning the
planetary gearbox kinematics are presented, along with an analysis on the performance
of the implementation. It was observed that given the limited performance in terms
of computational time and numerical stability, this approach was not appropriate for
fulfilling the objectives of the thesis. The description of the constraint equations and
the derivation of the EOM, along with results showing the performance, is presented in
Section 3.2. Based on the initial analysis, a more efficient modeling technique known
as lumped-parameter models was used as the main modeling approach to describe the
gearbox. Two types of models, in increasing complexity in terms of the DOF involved are
given. Moreover, the technique is used to derive the generic EOM of the planetary and
parallel stages of a conventional wind turbine gearbox. Since the main focus of the thesis
is on the planet bearings, the loading of this component is validated with experimental
data provided by the GRC project. In addition, the response of the electromechanical
interface is validated with a transient case, also with data provided by the GRC project.
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The generator model is complete by the appropriate controls in order to ensure the torque
balance in the drivetrain.

3.2 The spatial dynamics of a planetary gearbox

In the spatial multibody dynamics approach, the bodies are considered rigid and the
interaction in between each body is by means of constraint equations. This section ex-
plains the theoretical basis to formulate a gearbox using multibody dynamics and the
numerical approach to solve its EOMs with the multibody dynamics code implemented
in this dissertation. The theory is based on the formulations presented by Nikravesh
[63]. The details concerning the general theory, coordinate selection, basic constraint
equations, numerical integration, examples and implementation are presented in the Ap-
pendix C. The information contained in this section relates to the formulation used to
model gearboxes using this approach. Furthermore, the limitations are exposed based
on the experiences of this thesis, but also with respect to findings from other authors.

The system of EOM of a constrained system of bodies for this formulation is defined
in eq. (C.37). Two essential components of the EOM are the Jacobian Φ𝑞 and the matrix
𝛾, which represent the velocity and acceleration components of the constraint equations.
In this section, the content presented in Appendix C is expanded to include the gear
constraints necessary to formulate a planetary gearbox.

3.2.1 Planetary gear kinematic formulation

A common wind turbine planetary stage gearbox is composed by 𝑁 + 3 bodies. Where,
𝑁 is the number of planets. In the following sections, a value of 𝑁 = 3 is used as an
example since it is the most common configuration.

3.2.2 Constraint equations

First, let us consider the most general form of the unconstrained EOM of a system 𝑆:

M(q, 𝑡)q̈(𝑡) = Q(q, q̇, 𝑡) (3.1)

where q = [𝑞1, 𝑞2, ..., 𝑞𝑛]
𝑇 is a 𝑛−vector of generalized coordinates, M is the semi-

positive definite mass matrix, and Q is the vector of total generalized forces exerted in
the system. What if the unconstrained system is subject to a constraint in one or more
of its generalized coordinates? It will result in a set of 𝑚 holonomic constraint equations
given by:

Φ(q, 𝑡) = 0 (3.2)

Note that the holonomic constraints depend only in the position coordinates of a
particle or body. In simple terms, the effect that this constraints have in the system 𝑆
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is described by:

M(𝑞, 𝑡)q̈(𝑡) = Q+Q𝑐(q, q̇, 𝑡) (3.3)

where Q𝑐 is the constraint force, which is the additional force needed to satisfy the
imposed constraints. Therefore, an interpretation of the constraint conditions is that
the system is forced to maintain certain position, velocity and acceleration, in order to
satisfy the 2nd law of motion.

The previous description was given with the purpose of introducing the concept of
constrained motion of a system of particles. This concept can be extended to a system
of bodies, as it is the case in the formulations presented next.

In the case of a gearbox, the gear constraints are defined by kinematic joints that
impose conditions in the relative motion between the two gears. An advantage of this,
is that the constraint formulation can be used for different types of configuration as long
as the gear teeth interaction is consistent with the formulation. Hence, two types of
kinematic joints are used to define the interaction of a gear pair. These are denominated
spur gear joint and concave-convex gear joint. The first kind is used for modeling parallel
stages, and the sun-planet interaction in the case of a planetary stage gearbox. The
latter, is used for modeling the ring-planet interaction. The formulation presented here
corresponds to the spatial kinematics of gears in absolute coordinates presented by [64].
Moreover, the Jacobian components to these gear constraints are presented. As described
before, it is necessary to consider the effects of the acceleration of the bodies in the
constrained motion. In mathematical terms, it is essential to include the second derivative
of the constraint equations with respect to the generalized coordinates, in order to account
for the acceleration. In this dissertation, this components is denoted as 𝛾. For the case
of the gear constraints, this component is derived in the following sections. The same
notation as the reference [64] is used here and it is intended to show the most relevant
equations for the implementation of this formulation in the multi-body code presented
in Appendix C.

Spur gear joint

The diagram representing a spur gear joint is presented in Figure 3-1. The main as-
sumption is that the gears are constrained in all the DOF except for the rotational one.
Therefore, they are only allowed to rotate. Point 𝑝 represents the point of contact where
the teeth mate, and points 𝑝𝑖0 and 𝑝𝑗0 be the initial points of contact in gears 𝑖 and 𝑗. In
addition, 𝜑𝑖 and 𝜑𝑗 represent the angles between point 𝑝 and 𝑝𝑖0 of gear 𝑖, and 𝑝 and 𝑝𝑗0
of gear 𝑗. Since the gears rotate relative to each other and without slip, the constraint
is formulated in terms of the arc length formed by the distances 𝑝𝑝𝑖0 and 𝑝𝑝𝑗0:

Φ(𝑠𝑔) ≡ 𝜑𝑗𝑟𝑗 + 𝜑𝑖𝑟𝑖 = 0 (3.4)

where 𝑟𝑖 and 𝑟𝑗 represent the radii of gears 𝑖 and 𝑗, respectively. The challenge in
this formulation is to represent the values of the components of eq. (3.4) in terms of
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Figure 3-1: The kinematic joint of a spur gear. Vectors ã𝑖 and ã𝑗 are pointing out of
the plane.

body coordinates. The values of 𝑟𝑖 and 𝑟𝑗 are computed as:

𝑟𝑖 = ‖p̃𝑖0‖ = 1
1+𝑘‖l‖

𝑟𝑗 = ‖p̃𝑗0‖ = 1
1+𝑘‖l‖

(3.5)

where 𝑘 = 𝑟𝑗/𝑟𝑖 is the gear ratio and ‖l‖ is the magnitude of vector l with constant
length between 𝐶𝑖 and 𝐶𝑗 (the center of the gears 𝑖 and 𝑗). In addition, the angles 𝜑𝑖

and 𝜑𝑗 are computed as:

𝜑𝑙 = arcsin
[︁
a𝑙

′ ·
(︁
e𝑙0 × e𝑙

)︁]︁
(3.6)

where the superscript 𝑙 represents either 𝑖 or 𝑗, and the vectors e𝑙0 and e𝑙 are unit
vectors along p̃𝑙0 and p̃𝑙.

Concave-convex gear joint

The concave-convex gear joint allows the inner gear 𝑗 to roll without losing contact with
the bigger gear 𝑖. A diagram showing the coordinates is shown in Figure 3-2.

The formulation is similar to the spur gear joint since the purpose is the same.
The main difference is the change in direction of the vectors on which the constraint
is dependent on. The constraint equation is defined as:

Φ(𝑐𝑐) ≡ 𝜑𝑗𝑟𝑗 − 𝜑𝑖𝑟𝑖 = 0 (3.7)

Since the direction of vectors p̃𝑖 and p̃𝑗 is the same, vectors e𝑖 and e𝑗 are equivalent
(following the definition given in the spur gear joint).
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Velocity and acceleration of the constraint equations

This section presents the velocity and acceleration components of the constraint equations
in (3.4) and (3.7). The velocity component is found by differentiating the constraint
equations with respect to time and the result is:

˙
Φ(𝑠𝑔) ≡ 𝜑𝑗𝑟𝑗 + �̇�𝑖𝑟𝑖 = 0
˙

Φ(𝑐𝑐) ≡ 𝜑𝑗𝑟𝑗 − �̇�𝑖𝑟𝑖 = 0
(3.8)

For the purpose of brevity the entire derivation of the Jacobian components are not
shown here since the details are presented in [64], instead the result is given in Table 3.1:

Table 3.1: Jacobian matrix for the gear constraints

Φ Φri Φ𝜔𝑖 Φrj Φ𝜔𝑗

Φ
(𝑠𝑔,1)
q s −s× (c𝑖 + p𝑖) −s s× (c𝑗 + p𝑗)

Φ
(𝑐𝑐,1)
q −s s× (c𝑖 + p𝑖) s −s× (c𝑗 + p𝑗)

where c𝑖 and c𝑗 are vectors from the fixed reference frame to the centers of gears
𝑖 and 𝑗, respectively; s = a𝑖 × e𝑖 is perpendicular to the axis of rotation 𝑎 of gear 𝑖.
Physically, the terms of the Jacobian can be used to find information about the position,
velocity and acceleration the generalized coordinates.

Let the second derivative with respect to time of the Jacobian matrix Φ𝑞 be:

Φqq̈ = 𝛾 (3.9)

where 𝛾 is commonly referred to as the right-hand side of the kinematic acceleration
equations. The use of 𝛾 becomes evident when looking at the overall system of equations
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of a constraint system in eq. (C.34):[︂
M Φq

𝑇

Φq
𝑇 0

]︂ [︂
q̈
−𝜆

]︂
=

[︂
g
𝛾

]︂
(3.10)

where M is a 6𝑥6 matrix, 𝜆 are the Lagrange multipliers and g is a vector of external
forces. The mass matrix is defined herein:

M = 𝑑𝑖𝑎𝑔 (𝑚𝑖,𝑚𝑖,𝑚𝑖, 𝐽𝑥, 𝐽𝑦, 𝐽𝑧) (3.11)

where 𝑚𝑖 is the mass of body 𝑖 and 𝐽𝑥, 𝐽𝑦 and 𝐽𝑧 are the moments of inertia in the
𝑥, 𝑦 and 𝑧 directions. The details of the procedure to define the system of equations in
eq. (C.34) are presented in Appendix C.

Now, to find the corresponding 𝛾 of the gear constraints, the Jacobians in Table 3.1
is differentiated with respect to time as shown in eq. 3.9. The process is similar for
both constraint equations since their components are the same but with differences in
the signs, as shown in Table 3.1. Therefore, the following derivation is shown for one of
the constraints only. A cautionary note: in the following derivation the terms (in bold)
r𝑖 and r𝑗 correspond to the position coordinates of gears 𝑖 and 𝑗. These are not to be
confused with 𝑟𝑖 and 𝑟𝑗 , which correspond to the radii of gears.

For the sake of simplicity and organization in the following derivation, let us define
the vector:

v𝑙 = s× (c𝑙 + p𝑙) (3.12)

where 𝑙 refers to either gear 𝑖 or 𝑗. Using the definition in (3.12) into the spur gear
Jacobian from Table 3.1:

Φ
(𝑠𝑔,1)
q ≡ sṙ𝑖 − v𝑖𝜔𝑖 − sṙ𝑗 + v𝑗𝜔𝑗 = 0 (3.13)

The differentiation with respect to time of eq. (3.13) gives:

s𝑇 r̈𝑖 − v𝑇𝑖 �̇�𝑖 − s𝑇 r̈𝑗 + v𝑗�̇�𝑗 + ṡr̈𝑖 − v̇𝑗𝜔𝑖 − ṡ𝑇 r̈𝑗 + v̇𝑇𝑗 𝜔𝑗 = 0 (3.14)

where

ṡ = ȧ𝑖 × e𝑖 + a𝑗 × ė𝑗

v̇𝑙 = s× (�̃�c𝑙 + ṗ𝑙) + ṡ× (c𝑙 + ṗ𝑙)
(3.15)

and the definition of �̃� is presented in Section C.2. Re-arranging eq. (3.14):

s𝑇 r̈𝑖 − v𝑇𝑖 �̇�𝑖 − s𝑇 r̈𝑗 + v𝑗�̇�𝑗 = −ṡr̈𝑖 + v̇𝑗𝜔𝑖 + ṡ𝑇 r̈𝑗 − v̇𝑇𝑗 𝜔𝑗 (3.16)

and the resulting 𝛾 is:

𝛾 = −ṡr̈𝑖 + v̇𝑗𝜔𝑖 + ṡ𝑇 r̈𝑗 − v̇𝑇𝑗 𝜔𝑗 (3.17)

The information on Table 3.2 shows the right hand side of the acceleration equation
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of the kinematic constraints (𝛾).

Table 3.2: Gamma (right-hand side of the acceleration equations) entries for the gear
constraints

Φ 𝛾

Φ
(𝑠𝑔,1)
q −ṡr̈𝑖 + v̇𝑗𝜔𝑖 + ṡ𝑇 r̈𝑗 − v̇𝑇𝑗 𝜔𝑗

Φ
(𝑐𝑐,1)
q ṡr̈𝑖 − v̇𝑗𝜔𝑖 − ṡ𝑇 r̈𝑗 + v̇𝑇𝑗 𝜔𝑗

The previous derivation is implemented in the Multibody Dynamics Code presented
in Appendix C. The results of the simulation of a planetary stage gearbox are presented
in the following section.

3.2.3 Planetary gearbox example

The previous two types of gear constraints are used in conjunction with revolute con-
straints defined in Appendix C to build the planetary gearbox model shown in Figure
3-3.

Concave-convex gear (1)
Kinematic joints

Revolute (5)
Spur gear (3)

Number of bodies: 6
Ground (6)

Global coordinate
system:

𝑧

𝑦

𝑥

Figure 3-3: Planetary gearbox model using multi-body constraints and rigid bodies.

As seen in the figure, there is only one concave-convex joint being used, while three
spur joints are used. In reality, all the movement of all the planets is constraint to the
ring gear and sun to transfer the load torque. Though the approach presented here is not
realistic, it is necessary to be implemented this way since using additional concave-convex
joints will lead to redundant constraints. A small check on the number of coordinates and
the number of independent constraints equations explains the reasoning behind limiting
the use of concave-convex to just one. In the mechanical system of Figure 3-3 there are
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6 moving bodies (𝑏 = 6), each with six coordinates defining its location and orientation.
Therefore, the total number of coordinates in the system is 𝑛 = 6×6 = 36. Also, there are
constraint equations that restrict the system to operate only in one rotational coordinate.
The information in Table 3.3 shows the summary of the constraint equations, along with
the coordinates that are restricted. For instance, a revolute joint constraints the three
position and two rotation coordinates in order to ensure rotation in one direction only.
Hence, it requires five constraint equations. Similarly, a ground constraint restricts the
motion of a body by fixing its six coordinates. Therefore, six constraint equations are
required to describe this kinematic joint.

Table 3.3: Total number of constrained coordinates in the planetary gearbox of Figure
3-3.

Type of joint No. of constraint equations Total coordinates

Revolute 5 25
Ground 6 6

Spur gear 1 3
Concave-convex gear 1 1

Total 35

Let 𝑚 = 35 be the number of position coordinates on the mechanical system that are
constrained due to the kinematic joints. Then, 𝑘 = 𝑛 −𝑚 = 1, where 𝑘 is the number
of DOF of the system. This means that the motion of the planetary gearbox can be
described only by one coordinate and it corresponds to the rotation around the axis of
the plane.

The unforced response of the system is simulated using as initial conditions the po-
sition due to the physical dimensions of the rigid bodies and an initial angular velocity
around the axis of rotation 𝑥. The initial angular velocities where obtained from the
kinematic analysis of a planetary stage presented previously in Chapter 2. For the ex-
ample presented here, the initial angular velocities of the carrier, planets, sun and ring
are as follow: 𝜔𝑐 = 1.2 rad/s, 𝜔𝑝 = −1.429 rad/s, 𝜔𝑠 = 6.217 rad/s, and 𝜔𝑟 = 0 rad/s.
The planetary gearbox has a total gear ratio equal to 5.18.

The results in Figure 3-4 show the rotation of the bodies due to the initial conditions.
Notice that the carrier rotates in the same direction as the sun, as it is expected, while
the planet rotates in the opposite direction. Moreover, the sun displays more cycles of
rotation, which is consistent with the concept of the speed multiplication from carrier to
sun.

A critical component in the implementation of the gear constraints is to make sure
the angles 𝜑𝑖 and 𝜑𝑗 do not grow out of control. This is a possibility given that their
value is associated with the location of points p̃𝑙0, which are attached to the gear bodies,
and as the gears rotate, the points move away from the contact point p̃. Accordingly,
lets analyze the expression in eq. (3.6). The value of the angles 𝜑𝑖 and 𝜑𝑗 is dependent
on the result of (3.6). Since the inverse trigonometric function arcsin is restricted for
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Figure 3-4: The rotation angle of the carrier, one of the planets and the sun. The
saw-tooth like look is due the variation between −𝜋 to 𝜋.

the interval −𝜋/2 ≤ 𝜑 ≤ 𝜋/2, a special condition in the implementation is needed. The
previous restriction is achieved by moving the points p̃𝑙0 to a predetermined location
once they cross a threshold. In the case of Figure 3-5, the threshold for both constraints
implementation was set to 0.005. The word critical was used previously because if this
consideration is not accounted for, there is a risk of reaching convergence problems in the
gear constraints. Thus, even with this consideration in place, it was observed that the
tendency of the simulation is to lose consistency in the result of the constraint equations,
i.e. diverging from zero. This effect is shown in figures 3-6 where the result of the gear
constraint tends to "drift" away from zero as the simulation time goes by.

One solution to the violation of the constraint equations, is the implementation of
the Constraint Violation Stabilization Method [63]. In here, feedback control theory is
used in order to minimize the inherit error produced by the numerical integration. For
example, consider the system

𝑦 = 0 (3.18)

where 𝑦 is a 2nd order differential equation of the state 𝑦. A system as this is unstable
when is subject to disturbances or noise. However, when it is placed in a closed loop
system, the equation describing the complete system is:

𝑦 + 2𝜁�̇� + 𝛽2𝑦 = 0 (3.19)

For 3.19 to be stable, the terms 2𝜁 and 𝛽2 must be positive. As a note of caution,
the term 𝜁 is not necessarily the damping ratio present in engineering systems. Now, lets
defined the violation of the constraints as:

Φ ≡ Φ(q*) = 𝜀 (3.20)
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Figure 3-5: The angles 𝜑𝑖 and 𝜑𝑗 during the simulation for the spur (left) and concave-
convex (right) gear constraints.

and it’s first derivative with respect to time:

Φ̇ ≡ Φq(q̇
*) = 𝜎 (3.21)

where q* and q̇* are the computed values of q and q̈. From eq. (C.34) and the known
values q* and q̇*, it is possible to compute the acceleration vector:

Φ̈ ≡ Φq(q̈
*)− 𝛾* = 0 (3.22)

The error in the vectors are defined as:

q* − q = Δq
q̇* − q̇ = Δq̇
q̈* − q̈ = Δq̈

(3.23)

Since q̇* is obtained from integration of q̈*, it is necessary to guarantee that Δq̈ = 0.
This will ensure that any errors in Δq̈ = 0 will not be carried forward during the
integration process. For integration purposes, the open-loop Φ𝑞(q̈) − 𝛾 = 0 is replaced
by the closed-loop in (3.24):

Δq̈+ 2𝜁Δq̇+ 𝛽2Δq = 0 (3.24)

Equations 3.20 and 3.21 are expanded about the generalized coordinates q to find:

Φ𝑞Δq = 𝜀 (3.25)

Φ𝑞Δq̇ = 𝜎 (3.26)
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Figure 3-6: The magnitude of the gear constraint across the simulation time for the
spur gear joint of planet 1 and the sun (left), and the concave-convex joint
(right) between planet 1 and the ring. The Y-axis corresponds to the value
of the constraint equations in (3.4) and (3.7).

Including eq. (3.25) and (3.25) in (3.24), and pre-multiplying by Φ𝑞 yields:

Φ𝑞(q̈
* − q̈) + +2𝜁Φ𝑞Δq̇+ 𝛽2ΔΦ𝑞q = 0 (3.27)

From the definition in (3.9), and the relations in (3.20) and (3.21):

Φ𝑞q̈
* − 𝛾 + 2𝜁𝜀+ 𝛽2𝜎 = 0 (3.28)

and from the equivalences in eq. (3.20), (3.21) and (3.22):

𝛾* = 𝛾 − 2𝜁𝜀− 𝛽2𝜎 = 0 (3.29)

The result in eq. (3.29) is included in the equivalence of eq. (3.22) and appended to
the system of equations in (C.34) in order to achieve stabilization.[︂

M Φq
𝑇

Φq
𝑇 0

]︂ [︂
q̈
−𝜆

]︂
=

[︂
g

𝛾 − 2𝜁Φ̇− 𝛽2Φq

]︂
(3.30)

The stabilization method is implemented in the code presented in Appendix C. There
is no real "recipe" to find the values of 𝜁 and 𝛽, and there is no physical meaning behind
them. They are merely an addition to the EOM in order to ensure stability in the numer-
ical integration. Different tests showed that there is a compromise between computation
time and the values of these parameters, along with stability in the simulation. This was
specially true for the gear constraints, since a violation meant to lose contact between
the two bodies. The results showing the behavior in time of both constraints for different
values of 𝜁 and 𝛽 is shown in Figure 3-7.
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Notice that from the beginning of the simulation, without using stabilization (𝜁, 𝛽 =
0), results in a immediate violation of the constraints. An example is shown in Figure
3-8 where the violation of the constraint causes the gear bodies to stop rotating, hence
the tendency to zero in the angular speed. This is consistent with the results in Figure
3-7 where there is a peak around 2 s, which causes loss of contact in the gears. Thus,
without contact there is no load transfer, and hence, the gears will slow down. Certainly,
this is not the case when a large value of 𝜁 is used, as the constraint result is very close to
zero in the order of 10−5. It was observed that the value of 𝜁 is more dominant, therefore
the examples were using the same value of 𝛽. A summary of the implications as far of
computational time are presented in Table 3.4.
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Figure 3-8: The angular speed in the 𝑥 direction for the case when no stabilization is
used (𝜁, 𝛽 = 0).
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Table 3.4: Impact of the stabilization implementation in the computational expense of
the planetary gearbox simulation.

𝜁 𝛽 Com. Time [min] Sim. Time [s]

0 0 0.5155 10
1 1 5.2688 10
10 1 14.6400 10
100 1 284.9525 100

In addition to the convergence issues with the gear constraints, the revolute joints
presented more the same kind of issues in the results of its constraint equations. The
definition of the revolute constraint in Appendix C indicates that there is only one relative
DOF between the two bodies connected by the joint, in this case, the planet and the
carrier. This means that there are five constraint equations associated to the revolute
joint formulation. Three of these equations are associated with the position coordinates
𝑥, 𝑦 and 𝑧 of both bodies, imposing a fixed point defined by these three coordinates (see
eq. C.21). Therefore, the result of the constraint equation associated to this condition
must be equal to zero. This is not the case in the results shown in Figures 3-9 and 3-10.
Even though the variation is small, there is an obvious growing tendency for the result
of the constraints in the 𝑥 and 𝑧 coordinates. For longer simulation times, the system
tended to violate the restrictions imposed by the constraints. This was also the case when
higher speeds were reached under forced conditions. In addition to the convergence issues,
the computational time is high with times of up to 20 min with a sampling frequency
of 10 Hz. Similar issues were identify by [65]. In their study, the authors used a more
advanced version of the implementation presented here. The main difference is that
the varying gear teeth stiffness was included in the simulations. Also, the input torque
contained turbulent wind obtained form the code FLEX5. Consequently, they report
that a simulation with 30 s of simulation time takes between 10-15 hours.

In conclusion, given the issues associated with the example presented in this section,
this approach is not convenient for the ultimate purpose of simulating the entire wind
turbine system. Moreover, this example showed that to obtain an accurate and stable
solution, it was required to include additional computations, which increase the com-
putational expense dramatically. It might not be evident in the simple example, but
when dealing with a co-simulation approach it is necessary to guarantee stability in the
numerical integration. This is specially true for demanding simulations, as it is the case
for wind turbines, where large amounts of load cases with significant simulation times
(at least 600 s) are needed in order to comply with the certification standards.

41



x

y

z

n1

n2

PSfrag replaements

Time [s℄

P

l

a

n

e

t

1

0 5 10

×10
−6

−8

−6

−4

−2

0

2

x

y

z

n1

n2

PSfrag replaements

Time [s℄

C

a

r

r

i

e

r

0 5 10

×10
−6

0

2

4

6

8

10

Figure 3-9: The magnitude of the revolute constraint coordinates across the simulation
time for the carrier and 1st planet.
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3.3 Lumped-parameter models

The main characteristic of a lumped-parameter model over a multi-body model is the
simplification of the physical system into a topology consisting of rigid bodies, and their
interaction takes place in the form of springs and dampers. This technique simplifies
the system of equations, but it poses higher computational advantages. With respect
to gearboxes, the lumped-parameter models have been developed over the last 20 years
by researchers in different applications such as automotive and helicopter industry. The
models presented in this section have been derived mainly using the concepts presented
by [66, 67, 68].

3.3.1 Rotational - 1D

The first step was to develop a simple model that can transfer the main torque from the
wind turbine rotor to the generator. Therefore, a rotational model with only one DOF
in the torsional direction was implemented. In this model, the load transfer between the
gears is achieved by the gear mesh forces. The transmission between each stage is done
through torsional springs representing the shafts. Each gear wheel is represented by a
lumped-inertia and the interaction between bodies is represented by linear springs.

Parallel Stage

A representation of the parallel stage is shown in Figure 3-11. The vector e1 is an unit
vector along the line of action and the subscripts 𝑔 and 𝑝 refer to the gear and pinion
respectively. The dashed circle enclosing each gear wheel corresponds to the pitch circle
and the intersection denotes the point of contact of the gear teeth in the real physical
system. The linear spring that represents the gear mesh (not shown) lays along the line
of action from point 𝐴 to 𝐵. The distances 𝑟𝑔 and 𝑟𝑝 denote the base radii of the gears.
The rotation coordinate for body are 𝜃𝑔 and 𝜃𝑝. The subscripts 𝑔 and 𝑝 denote the gear
and pinion, respectively.

At standstill, the uncompressed spring is positioned between the points 𝐴 and 𝐵.
When rotating, the mesh spring compresses and the new position is between points 𝐴1

and 𝐵1. In order to find the gear mesh force upon compression, one must find the gear
mesh deflection defined by:

𝛿𝑔𝑝 = 𝐴𝐵 −𝐴2𝐵2 (3.31)

where 𝐴2𝐵2 is the projection of line 𝐴1𝐵1 into the line of action. As it is shown,
there is a displacement of points 𝐴 and 𝐵 due to the compression of the gear mesh
spring. Thus, these displacements can be defined in terms of the unit vector e1. Then,
𝐴𝐴2 = 𝛿𝐴e1 and 𝐵𝐵2 = −𝛿𝐵e1. In general, the magnitude of the vibration modes of
the gears (excluding the rigid body) is very small which means that the lines 𝐴1𝐴2 and
𝐵1𝐵2 can be approximated by the arc displacement in each gear wheel as 𝛿𝑔𝑝 = 𝛿𝐴−𝛿𝐵.
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𝐵
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𝑟𝑝

Figure 3-11: Torsional model of a gear pair. The direction of rotation is to establish
rotational coordinate system.

Therefore, the gear mesh displacement in terms of the gear coordinates is:

𝛿𝑔𝑝 = 𝑟𝑔𝜃𝑔 + 𝑟𝑝𝜃𝑝 (3.32)

Using eq. (3.32) and Hooke’s law, the gear mesh force of the gear pair is defined as:

𝐹𝑔𝑝 = 𝐾𝑔𝛿𝑔𝑝 cos𝜑 (3.33)

where 𝐾𝑔 represents the gear mesh stiffness in the gear pair and 𝜑 is the pressure
angle. This angle is the resulting angle between the pitch point and the point where the
line of action is tangent to the gear’s pitch circle. The pressure angle also characterizes
the direction of the normal force 𝐹𝑛 between the conjugated teeth as shown in Figure
3-12. The normal force generated at the contact point has a radial (𝐹𝑟) and a tangential
component (𝐹𝑡). A force decomposition exercise of the normal force 𝐹𝑛 yields:

𝜑

𝐹𝑛

𝜑

𝐹𝑟

𝐹𝑡

Figure 3-12: Force component in a gear mesh interaction for a gear pair.
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𝐹𝑡 = 𝐹𝑛 cos𝜑
𝐹𝑟 = 𝐹𝑛 sin𝜑

(3.34)

The value of 𝜑 is usually small, therefore, the tangential component is of greater
magnitude in the overall normal force. Hence, the cos𝜑 term in eq. (3.33). From here,
the EOM represented in matrix form are found to be:

Jgp =

[︂
𝐽𝑔 0
0 𝐽𝑝𝑖

]︂
(3.35)

Kgp =

[︂
𝐾𝑔𝑟

2
𝑔 cos𝜑 𝐾𝑔𝑟𝑔𝑟𝑝 cos𝜑

𝐾𝑔𝑟𝑔𝑟𝑝 cos𝜑 𝐾𝑔𝑟
2
𝑝 cos𝜑

]︂
(3.36)

where 𝐽𝑔 and 𝐽𝑝 are the inertias of the gear and pinion, respectively.

Planetary Stage

This section presents generic inertia and stiffness matrices that describe a torsional plan-
etary stage gearbox. The model has 6 torsional DOF: carrier, ring, 3 planets and the
sun; moreover, it accounts for the gear mesh stiffness of the planet-ring and planet-sun
interaction. The diagram of the system is shown in Figure 3-13.

𝜃𝑔

𝜃𝑛

e1

𝐴

𝐴1 𝐴2

𝐵

𝐵1

𝐵2

𝜃𝑠

𝜃𝑛

𝑟𝑔

𝑟𝑛

𝜃𝑐

𝐶
𝐶2

𝐶1

𝐷2

𝐷1

𝐷e2

Figure 3-13: Torsional model of a planetary stage. The direction of rotation is to
establish rotational coordinate system.

where the subscripts 𝑐, 𝑛, 𝑠 and 𝑟 denote the carrier, planet, sun and ring respectively.
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The gear mesh displacements are derived using the same method presented previously
in the parallel stage. In the planetary stage gearbox used in wind turbines, the carrier
is used as the input and the sun is the output. This is done with the purpose of step-up
the angular speed, while stepping-down the torque; in other applications the direction of
the load transfer is the opposite. The planet is attached to the carrier planet pins, and
rotates along with it in two ways: the body moves along with the carrier and it rotates
in its own axis. Therefore, the absolute rotation of the coordinate 𝜃𝑛 is affected by the
relative carrier rotation. Let us define the sun-planet gear mesh displacement as:

𝛿𝑠𝑛 = 𝛿𝐴− 𝛿𝐵 (3.37)

where 𝛿𝐴 ≈ 𝑟𝑠𝜃𝑠 and denotes the displacement of point 𝐴; and, 𝛿𝐵 ≈ 𝑟𝑐𝜃𝑐 − 𝑟𝑛𝜃𝑛
denotes the displacement of point 𝐵. Using the definition in eq. (3.37), the sun-planet
gear mesh displacement found to be:

𝛿𝑠𝑛 = 𝑟𝑠𝜃𝑠 − 𝑟𝑐𝜃𝑐 + 𝑟𝑛𝜃𝑛 (3.38)

Notice that the carrier rotation is accounted for in the overall displacement due to
the planet’s relative rotation with respect to 𝜃𝑐. Similarly, the ring-planet gear mesh
displacement is defined as:

𝛿𝑟𝑛 = 𝛿𝐶 − 𝛿𝐷 (3.39)

where 𝛿𝐶 ≈ 𝑟𝑐𝜃𝑐 + 𝑟𝑛𝜃𝑛 and denotes the displacement of point 𝐶; in wind energy
applications, the ring gear is fixed so 𝜃𝑟 = 0 and 𝛿𝐷 = 𝑟𝑟𝜃𝑟 (because 𝐷𝐷2 = 0) and it
denotes the displacement of point 𝐷.

𝛿𝑟𝑛 = 𝑟𝑐𝜃𝑐 + 𝑟𝑛𝜃𝑛 − 𝑟𝑟𝜃𝑟 (3.40)

This stiffness matrix was derived using the displacements eq. (3.38) and (3.40). The
energy method using the Lagrange equation is used to derive the EOM [69]. The system
matrices for a three planet stage (𝑛 = 3) are:

Jpl = 𝑑𝑖𝑎𝑔([𝐽𝑐 + 3𝑚𝑛𝑟
2
𝑐 𝐽𝑟 𝐽𝑛 𝐽𝑛 𝐽𝑛 𝐽𝑠]) (3.41)

Kpl =

⎡⎢⎢⎣
3(𝐾𝑟𝑛 +𝐾𝑠𝑛)(𝑟𝑐𝑐𝑠)2

−3𝐾𝑟𝑛𝑟𝑟𝑟𝑐𝑐𝑠 (𝐾ℎ +𝐾𝑟𝑛)𝑟2𝑟 symmetric
(𝐾𝑟𝑛 −𝐾𝑠𝑛)𝑟𝑛𝑟𝑐𝑐𝑠 −𝐾𝑟𝑛𝑟𝑟𝑟𝑛 (𝐾𝑟𝑛 +𝐾𝑠𝑛)𝑟2𝑛
(𝐾𝑟𝑛 −𝐾𝑠𝑛)𝑟𝑛𝑟𝑐𝑐𝑠 −𝐾𝑟𝑛𝑟𝑟𝑟𝑛 0 (𝐾𝑟𝑛 +𝐾𝑠𝑛)𝑟2𝑛
(𝐾𝑟𝑛 −𝐾𝑠𝑛)𝑟𝑛𝑟𝑐𝑐𝑠 −𝐾𝑟𝑛𝑟𝑟𝑟𝑛 0 0 (𝐾𝑟𝑛 +𝐾𝑠𝑛)𝑟2𝑛

−3𝐾𝑠𝑛𝑟𝑐𝑟𝑠𝑐𝑠 𝐾𝑠𝑛𝑟𝑛𝑟𝑠 𝐾𝑠𝑛𝑟𝑛𝑟𝑠 𝐾𝑠𝑛𝑟𝑛𝑟𝑠 0 3𝐾𝑠𝑛𝑟2𝑠

⎤⎥⎥⎦
(3.42)

where 𝑚 and 𝐽 denote the mass and inertia of the associated body; 𝐾𝑠𝑛 and 𝐾𝑟𝑛 are
the sun-planet and ring-planet gear mesh stiffness; 𝑎𝑙𝑝ℎ𝑎 is the pressure angle; and 𝑐𝑠 is
used as an abbreviation for cos𝛼.

For purposes of verification, the model is subject to an eigenvalue analysis to find the
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Table 3.5: Validation of the eigenvalues of the planetary gearbox torsional model. The
units of the results are in Hz

Mode DTU Peeters Dev[%]

1 0 0 0
2 2399 2217 8.23
3 5683 6159 7.72
4 6459 6444 0.24
5 6459 6444 0.24
6 11241.8 11205 0.33

natural frequencies of the system and it is compared to the results of a model proposed
by Peeters in [3]. In this verification, the parameters provided in the reference are used
to compute the natural frequencies with the model proposed here. The results are shown
in Table 3.5. Notice that for higher modes, the accuracy of the results is very high with
less than 0.5% difference. However, in modes two and three, there is low accuracy but
the differences are still below 10%. The first mode corresponds to the rigid body mode,
which is a nature of the free-free configuration of the system.

3.3.2 Translational/Rotational - 2D

The model presented here is based on the previous work by [70] where a translational
and rotational model has been developed. In previous publications [30], the modeling
of a planetary stage was presented along with an analytical modal analysis in where the
different modes were described. Based on this work, the authors in [71] expanded the
model to include additional stages (planetary and parallel) to model a complete wind
turbine gearbox. A dynamic analysis showing the natural frequencies was presented, but
no discussion was done regarding the loading on the internal components of the gearbox
due to external excitations such as changing wind field, and generator torque dynamics.
Later, [26] improved the lumped-parameter model by defining a detailed model with
clearance non-linearity in the planet and carrier bearings. In addition, it was considered
the effect of tooth wedging which is an effect of gravity and bearing clearance. The
consequence is a change in the loading of the teeth in the sun-planet and ring-planet
mesh.

In this thesis, the model is expanded to include additional stages and the interaction
with the generator and wind turbine. The following considerations explain the model
assumptions and the factors that need to be addressed in order to properly extend the
model:

• The original model was defined with respect to a fixed coordinate system. The
main difference with this formulation and the one presented in [30] is that the
carrier rotational coordinate is coupled with those from the planets and sun. This
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is particularly useful when going from the 2D to the 1D model by removing the
translational DOF.

• Since the stages are connected with shafts, the coupling is made through the rota-
tional DOF, similar to the approach used with the 1D model.

• The drivetrain is coupled with the wind turbine through the rotation DOF of the
carrier. Therefore, this DOF is the only one considered for the carrier body.

• The gear mesh is assumed to be linear. It is well known that the non-linear nature
of the gear mesh stiffness variation affects the dynamic response of the system,
but no method is available to estimate the variations in this application using the
lumped-parameter model under variable speed and without predetermined speed
signals. It is possible to use large FEM formulations, but it defeats the purpose of
having an implementation which is computationally simple, yet complex enough to
capture the loading of internal components of the gearbox.

• The bearings are represented by linear supports and are modeled as a diagonal
matrix using the common approach presented by previous authors. However, the
bearing stiffness matrix is not limited to this. It is possible, as it will be shown
later, to include the off-diagonal terms if desired.

• The gears are considered rigid bodies, hence the flexibilities in the overall system
correspond to the gear mesh stiffness, bearings and shafts connecting the stages.

• The EOM are obtained using Lagrange’s equation and are arranged in a LTI state
space formulation (3.43), where the states correspond to the displacements and
velocities of each DOF in the system (the coordinates that describe the translational
motion and the rotation). The numerical solution is found by using the ode23tb
solver from Matlab/Simulink.

• The inputs to the model are the LSS and HSS torques. One of the requirements to
reach equilibrium is to provide the system with the exact torque values. Therefore,
it is recommended to use a dynamic coupling between the wind turbine rotor and
the low-speed stage of the gearbox, in order to adjust the inputs to the changes on
speed. This concept is expanded in Section 3.5.

ẋ = Ax + Bu

y = Cx + Eu
(3.43)

The displacement coordinates for a parallel and planetary gearbox, respectively, are:
𝑞𝑝𝑎 = {𝑥𝑔, 𝑦𝑔, 𝜃𝑔, 𝑥𝑝, 𝑦𝑝, 𝜃𝑝} and 𝑞𝑝𝑙 = {𝑥𝑐, 𝑦𝑐, 𝜃𝑐, 𝑥𝑖, 𝑦𝑖, 𝜃𝑖, ..., 𝑥𝑁 , 𝑦𝑁 , 𝜃𝑁 , 𝑥𝑠, 𝑦𝑠, 𝜃𝑠}. The
subscripts 𝑔, 𝑝, 𝑐, 𝑖, 𝑠 denote the gear, pinion, carrier, planets and sun respectively (𝑁 is
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Figure 3-14: Model of planetary and parallel stages. The figure shows the coordinates
used for the formulation. Each gear is represented by a rigid body with
its own set of coordinates. In the formulation, the displacements of each
gear due to the vibrations are projected into the line of action in order to
obtain the gear mesh displacements of equation (3.44).

equal to the total of planets). Both stages are depicted in Figure 3-14. From here, the
formulation for the gear mesh displacements are defined as:

𝛿𝑠𝑖 = −𝑦𝑠 sin𝜓𝑠𝑖 − 𝑦𝑖 sin𝜓𝑠𝑖 + 𝑧𝑠 cos𝜓𝑠𝑖 − 𝑧𝑖 cos𝜓𝑠𝑖 + 𝑟𝑠𝜃𝑠 + 𝑟𝑖𝜃𝑖 − 𝑟𝑐𝜃𝑐 cos𝛼𝑠,

𝛿𝑟𝑖 = 𝑦𝑖 sin𝜓𝑟𝑖 − 𝑧𝑖 cos𝜓𝑟𝑖 + 𝑟𝑟𝜃𝑟 − 𝑟𝑖𝜃𝑖 − 𝑟𝑐𝜃𝑐 cos𝛼𝑟,

𝛿𝑔𝑝 = 𝑦𝑔 sin𝛼𝑔 − 𝑦𝑝 sin𝛼𝑔 + 𝑧𝑔 sin𝛼𝑔 − 𝑧𝑝 sin𝛼𝑔 + 𝑟𝑔𝜃𝑔 + 𝑟𝑝𝜃𝑝

(3.44)

where 𝜓𝑠𝑖 = 𝜓𝑖 − 𝛼𝑠, 𝜓𝑟𝑖 = 𝜓𝑖 − 𝛼𝑟, 𝜓𝑖 is the location angle of the planet with
respect to the 𝑦 coordinate in the fixed reference system, which is concentric with the
sun and carrier frames; 𝛼𝑠, 𝛼𝑟 and 𝛼𝑔 are the pressure angles of the sun, ring and gear,
respectively. The expressions from equation (3.44) correspond to the gear mesh deflection
of the sun-planet, ring-planet and gear-pinion pairs, respectively. The components of the
gear mesh deflections in eq 3.44 have a physical meaning. They represent the projections
of the displacements of each coordinate into the line of action between two given gear
bodies. For example, the component 𝑦𝑠 sin𝜓𝑠𝑖 in 𝛿𝑠𝑖, is the contribution of the sun gear
displacement in the 𝑦 direction. Likewise, the term 𝑟𝑐𝜃𝑐 cos𝛼𝑠 is the contribution of
the relative rotation of the carrier as a part of the mesh deflection. This is a recurrent
component if compared with the formulation presented in the previous section for the
1D case.

The energy methods are used to derive the EOM. Let us define the potential energy
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based on the gear mesh displacements for the planetary and parallel stage:

𝑈𝑝𝑙𝑔𝑚 =
1

2

𝑁∑︁
𝑖=1

𝐾𝑟𝑖𝛿
2
𝑠𝑖 +

1

2

𝑁∑︁
𝑖=1

𝐾𝑠𝑖𝛿
2
𝑟𝑖 (3.45)

𝑈𝑝𝑎𝑔𝑚 =
1

2
𝐾𝑔𝑝𝛿

2
𝑔𝑝 (3.46)

and the generalized contribution from the bearings:

𝑈𝐵 =
1

2

𝑁𝑏∑︁
𝑖=1

𝐾ℎ
𝑏 (𝑦

2
𝑛 + 𝑧2𝑛) (3.47)

where 𝑁 is equal to the total number of planets, 𝑁𝑏 is equal to the total number of
bearings and 𝐾ℎ

𝑏 is the bearing stiffness supporting gear ℎ.

Assuming that 𝛼𝑠 = 𝛼𝑟 = 𝛼, and using the definitions in eq. 3.44 and 3.45, the
stiffness matrix for a planetary stage gearbox with three planets is derived and presented
in eq. 3.56. The sub-matrices that compose K𝑚 are presented in eq. 3.48 to 3.55.

K𝑖
𝑐 = 𝑟𝑐 cos𝛼

2

⎡⎣0 0 0
0 0 0
0 0 𝐾𝑟𝑖 +𝐾𝑠𝑖

⎤⎦ (3.48)

K𝑖
𝑐𝑝 = 𝑟𝑐 cos𝛼

⎡⎣ 0 0 0
0 0 0

𝐾𝑠𝑖 sin𝜓𝑠𝑖 −𝐾𝑟𝑖 sin𝜓𝑟𝑖 𝐾𝑠𝑖 cos𝜓𝑠𝑖 +𝐾𝑟𝑖 cos𝜓𝑟𝑖 (𝐾𝑟𝑖 −𝐾𝑠𝑖)𝑟𝑖

⎤⎦
(3.49)

K𝑖
𝑐𝑠 = 𝐾𝑠𝑖𝑟𝑐 cos𝛼

⎡⎣ 0 0 0
0 0 0

sin𝜓𝑠𝑖 − cos𝜓𝑠𝑖 −𝑟𝑠

⎤⎦ (3.50)

K𝑖
𝑠 = 𝐾𝑠𝑖

⎡⎣ sin𝜓2
𝑠1 − sin𝜓𝑠1 cos𝜓𝑠1 −𝑟𝑠 sin𝜓𝑠1

− sin𝜓𝑠1 cos𝜓𝑠1 cos𝜓2
𝑠1 𝑟𝑠 cos𝜓𝑠1

−𝑟𝑠 sin𝜓𝑠1 𝑟𝑠 cos𝜓𝑠1 𝑟2𝑠

⎤⎦ (3.51)

K𝑖
𝑠𝑝 = 𝐾𝑠𝑖

⎡⎣ sin𝜓2
𝑠1 − sin𝜓𝑠1 cos𝜓𝑠1 𝑟𝑠 sin𝜓𝑠1

sin𝜓𝑠1 cos𝜓𝑠1 − cos𝜓2
𝑠1 𝑟𝑠 cos𝜓𝑠1

−𝑟𝑖 sin𝜓𝑠1 𝑟𝑖 cos𝜓𝑠1 𝑟𝑖𝑟𝑠];

⎤⎦ (3.52)

K𝑖
𝑝𝑠 = 𝐾𝑠𝑖

⎡⎣ sin𝜓2
𝑠𝑖 sin𝜓𝑠𝑖 cos𝜓𝑠𝑖 −𝑟𝑖 sin𝜓𝑠𝑖

sin𝜓𝑠𝑖 cos𝜓𝑠𝑖 cos𝜓2
𝑠𝑖 −𝑟𝑖 cos𝜓𝑠𝑖

−𝑟𝑖 sin𝜓𝑠𝑖 −𝑟𝑖 cos𝜓𝑠𝑖 𝑟2𝑖

⎤⎦ (3.53)
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K𝑖
𝑝𝑟 = 𝐾𝑟𝑖

⎡⎣ sin𝜓2
𝑟𝑖 − sin𝜓𝑟𝑖 cos𝜓𝑟𝑖 −𝑟𝑖 sin𝜓𝑟𝑖

− sin𝜓𝑟𝑖 cos𝜓𝑟𝑖 cos𝜓2
𝑟𝑖 𝑟𝑖 cos𝜓𝑟𝑖

−𝑟𝑖 sin𝜓𝑟𝑖 𝑟𝑖 cos𝜓𝑟𝑖 𝑟2𝑖

⎤⎦ (3.54)

K𝑖
𝑝 = K𝑖

𝑝𝑠 +K𝑖
𝑝𝑟 (3.55)

K𝑝𝑙
𝑚 =

⎡⎢⎢⎢⎢⎣
∑︀

K𝑖
𝑐 K1

𝑐𝑝 K2
𝑐𝑝 K3

𝑐𝑝

∑︀
K𝑖
𝑐𝑠

K1
𝑝 0 0 K1

𝑠𝑝

K2
𝑝 0 K2

𝑠𝑝

K3
𝑝 K3

𝑠𝑝∑︀
K𝑖
𝑠

⎤⎥⎥⎥⎥⎦ (3.56)

Similarly, the mesh stiffness matrix for a 2D parallel stage is derived and presented
in eq. 3.61. The sub-matrices that lead to the result are presented in eq. 3.57 to 3.60.

K𝑔 = 𝐾𝑔𝑝

⎡⎣ sin𝛼2 sin𝛼 cos𝛼 𝑟𝑔 sin𝛼
sin𝛼 cos𝛼 cos𝛼2 𝑟𝑔 cos𝛼
𝑟𝑔 sin𝛼 𝑟𝑔 cos𝛼 𝑟2𝑔

⎤⎦ (3.57)

K𝑔𝑝 = 𝐾𝑔𝑝

⎡⎣ − sin𝛼2 − sin𝛼 cos𝛼 𝑟𝑝 sin𝛼
− sin𝛼 cos𝛼 − cos𝛼2 𝑟𝑝 cos𝛼
−𝑟𝑔 sin𝛼 −𝑟𝑔 cos𝛼 𝑟𝑔𝑟𝑝

⎤⎦ (3.58)

K𝑝𝑔 = 𝐾𝑔𝑝

⎡⎣ − sin𝛼2 − sin𝛼 cos𝛼 −𝑟𝑔 sin𝛼
− sin𝛼 cos𝛼 − cos𝛼2 −𝑟𝑔 cos𝛼
𝑟𝑝 sin𝛼 𝑟𝑝 cos𝛼 𝑟𝑔𝑟𝑝

⎤⎦ (3.59)

K𝑝 = 𝐾𝑔𝑝

⎡⎣ sin𝛼2 sin𝛼 cos𝛼 −𝑟𝑝 sin𝛼
sin𝛼 cos𝛼 cos𝛼2 −𝑟𝑝 cos𝛼
−𝑟𝑝 sin𝛼 −𝑟𝑝 cos𝛼 𝑟2𝑝

⎤⎦ (3.60)

K𝑝𝑎
𝑚 = 𝐾𝑔𝑝

[︂
K𝑔 K𝑔𝑝

K𝑝𝑔 K𝑝

]︂
(3.61)

Moreover, the bearing stiffness matrix in the planetary and parallel stages are defined
as:

K𝑝𝑙
𝑏 = 𝑑𝑖𝑎𝑔(0,Kb

i ,K
b
i ,K

b
i ,K

b
s ) (3.62)

note that the first term in equation 3.62 is 0, i.e. the only DOF of the carrier that
is considered in the formulation is the torsion. Likewise, the bearing stiffness matrix for
the parallel stage is found to be:

K𝑝𝑎
𝑏 = 𝑑𝑖𝑎𝑔(Kb

g ,K
b
p) (3.63)

where the matrices Kb
c , Kb

i , Kb
s , Kb

g and Kb
p are 3 × 3 matrices of the form 𝐾ℎ

𝑏 =
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𝑑𝑖𝑎𝑔(𝑘𝑏, 𝑘𝑏, 0). Then, the final stiffness matrix of the planetary stage gearbox is given as:

K𝑝𝑙 = K𝑝𝑙
𝑚 +K𝑝𝑙

𝑏 (3.64)

Likewise, the total stiffness matrix of a parallel stage is composed of the mesh and bearing
stiffness matrices:

K𝑝𝑎 = K𝑝𝑎
𝑚 +K𝑝𝑎

𝑏 (3.65)

Furthermore, the mass matrices for both stages are defined as:

M𝑝𝑙 = 𝑑𝑖𝑎𝑔(M𝑐,M𝑖,M𝑖,M𝑖,M𝑠) (3.66)

and

M𝑝𝑎 = 𝑑𝑖𝑎𝑔(M𝑔,M𝑝) (3.67)

where

Mℎ = 𝑑𝑖𝑎𝑔(𝑚ℎ,𝑚ℎ, 𝐽ℎ) (3.68)

where 𝑚ℎ and 𝐽ℎ are the mass and moment of inertia of gear ℎ in the coordinates 𝑥,
𝑦 and 𝜃.

With the definitions in place for each gearbox type system matrix, let us define the
torsional coupling between stages. For instance, the coupling of a planetary and a parallel
stage, in matrix form, can be defined as:

K𝑔𝑙 =

⎡⎢⎢⎢⎢⎣
[︃
. . .

...
· · · 𝐾𝑠𝑖𝑟

2
𝑠 +𝐾𝑐

]︃
. . .

...
· · · −𝐾𝑐

. . .
...

· · · −𝐾𝑐

[︃
. . .

...
· · · 𝐾𝑔𝑝 sin𝛼

2 +𝐾𝑐

]︃
⎤⎥⎥⎥⎥⎦

where K𝑔𝑙 represents the global stiffness matrix of the planetary+parallel gearbox,
and 𝐾𝑐 is the shaft coupling torsional stiffness in Nm/rad.

The formulations presented in the previous paragraphs are used to implement a mod-
ular simulation code in order to combine freely different gearbox stages with the ultimate
purpose to model an entire gearbox. More technical details on the implementation of the
code are presented in Appendix D.

3.3.3 Bearing models

In the previous section, the gearbox models were presented. Special attention was given
to the formulation in 2D since with this approach, it is possible to obtain the bearing
loads from different excitations. In the formulation, the bearing matrices associated
to each gear were defined as 𝐾ℎ

𝑏 = 𝑑𝑖𝑎𝑔(𝑘𝑏, 𝑘𝑏, 0). This representation is useful for
general analysis of the dynamics of the system [72, 73] and to study the lateral vibrations
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of a rotor system. According to the findings of [38], this representation is no longer
valid when a more accurate study of the internal dynamics of a wind turbine gearbox is
desired. The theory of bearing design [52], and dynamic modelling of bearing elements
is well documented in literature, where several authors propose different methods to find
the stiffness matrices and the bearing loads. These models are function of the bearing
geometry, contact deformation, and the effective axial and radial displacements of the
bearing’s center of gravity, according to Hertzian contact theory. In [74], the authors
present a method computational efficient to calculate the stiffness matrix of a spherical
roller bearing and it is validated using commercial software. In [75], the authors present
the models for ball and cylindrical roller bearings with special attention to the bearing
stiffness matrix which shows the effects of the cross-coupling components in the overall
dynamic response. Their main contribution is a model that can be used to study the
vibration transmission through rolling element bearings in rotor dynamics.

This section presents the method implemented in order to find the cross-terms of the
bearing stiffness matrices and the bearing forces acting on the shaft and gear bodies. The
main objective is to study the impact on the bearing loads under different conditions of
wind turbine operation. The method is the same as presented by [75] but it is documented
in this section as background information to illustrate the effect on the bearing loads given
the mean bearing displacements and radial clearance for a roller bearing. Notice that
the nomenclature is maintained with that of the references, in order to keep consistency
with the literature.

The elastic deformation of a roller bearing is determined by

𝛿𝑅(𝜓𝑗) =

{︂
(𝛿)𝑟𝑗 cos𝛼0 + (𝛿)𝑧𝑗 sin𝛼0, 𝛿𝑅 > 0
0, 𝛿𝑅 ≤ 0

(3.69)

where (𝛿)𝑟𝑗 and (𝛿)𝑧𝑗 correspond to the effective radial and axial displacements of
the 𝑗th rolling element, respectively and are defined in equations (3.70) and (3.71); and
𝛼0 is the unloaded contact angle. For the rolling bearing type 𝛼0 is constant because it
is not affected by the loading and the elastic deformation of the rolling elements. In this
paper, cylindrical roller bearings are treated with 𝛼0 = 00 and tapered roller bearings
𝛼0 = 140.

(𝛿)𝑟𝑗 = 𝛿𝑥 cos𝜓𝑗 + 𝛿𝑦 sin𝜓𝑗 − 𝑟𝐿 (3.70)

(𝛿)𝑧𝑗 = 𝛿𝑧 + 𝑟𝑗 [𝛽𝑥 sin𝜓𝑗 − 𝛽𝑦 cos𝜓𝑗 ] (3.71)

where 𝛿𝑥, 𝛿𝑦, 𝛿𝑧, 𝛽𝑥, 𝛽𝑦 are the inner raceway displacements in the 𝑥, 𝑦 and 𝑧
directions, and the tilting motion in the 𝑥 and 𝑦 directions, respectively as seen in Figure
3-15; and 𝜓𝑗 is the 𝑗th rolling element position.

The elastic deformations for each roller are used to calculate the bearing stiffness
terms [75], and consequently the bearing matrix (equation 3.72) for specific displace-
ments and tilting in the 𝑥, 𝑦 and 𝑧 directions. These deflections correspond to the lateral
vibrations of the shaft in the inner raceway of the bearing. Notice that the terms cor-
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𝜓𝑗

𝑦

𝑥

(𝛿)𝑟𝑗

𝛿𝑥

(𝛿)𝑧𝑗

𝛿𝑦𝐹𝑏𝑦

𝐹𝑏𝑥

𝑀𝑏𝑦 𝛽𝑦

𝑀𝑏𝑥

𝛽𝑥

𝑗𝑡ℎ roller

Figure 3-15: Roller bearing (cylindrical or tapered) coordinate system and kinematics.
The forces and moments are included for illustration purposes and to
define their direction. The 𝑧 direction goes out of the plane.

responding to the torsion in the 𝛽𝑧 direction are zero because the bearing allows free
rotation around this direction, i.e. is the rotational degree of freedom of the shaft.

Kb =

⎡⎢⎢⎢⎢⎢⎢⎣

𝐾𝑥𝑥 𝐾𝑥𝑦 𝐾𝑥𝑧 𝐾𝑥𝜃𝑥 𝐾𝑥𝜃𝑦 0
𝐾𝑥𝑦 𝐾𝑦𝑦 𝐾𝑦𝑧 𝐾𝑦𝜃𝑥 𝐾𝑦𝜃𝑦 0
𝐾𝑥𝑧 𝐾𝑦𝑧 𝐾𝑧𝑧 𝐾𝑧𝜃𝑥 𝐾𝑧𝜃𝑦 0
𝐾𝑥𝜃𝑥 𝐾𝑦𝜃𝑥 𝐾𝑧𝜃𝑥 𝐾𝜃𝑥𝜃𝑥 𝐾𝜃𝑥𝜃𝑦 0
𝐾𝑥𝜃𝑦 𝐾𝑦𝜃𝑦 𝐾𝑧𝜃𝑦 𝐾𝜃𝑥𝜃𝑦 𝐾𝜃𝑦𝜃𝑦 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (3.72)

In addition to compute the bearing matrix for dynamic analysis, it is possible to
compute the bearing loads using the following expressions:

⎧⎨⎩
𝑀𝑏𝑥

𝑀𝑏𝑦

𝑀𝑏𝑧

⎫⎬⎭ = 𝐾𝑛 sin𝛼0

𝑍∑︁
𝑗=1

𝑟𝑗 {(𝛿)𝑟𝑗 cos𝛼0 + (𝛿)𝑧𝑗 sin𝛼0}𝑛
⎧⎨⎩

sin𝜓𝑗
− cos𝜓𝑗

0

⎫⎬⎭ (3.73)

⎧⎨⎩
𝐹𝑏𝑥
𝐹𝑏𝑦
𝐹𝑏𝑧

⎫⎬⎭ = 𝐾𝑛 sin𝛼0

𝑍∑︁
𝑗=1

𝑟𝑗 {(𝛿)𝑟𝑗 cos𝛼0 + (𝛿)𝑧𝑗 sin𝛼0}𝑛
⎧⎨⎩

cos𝛼0 cos𝜓𝑗
cos𝛼0 sin𝜓𝑗

sin𝛼0

⎫⎬⎭ (3.74)

where 𝐾𝑛 is the rolling element load-deflection constant. It is know from literature
[52] that cylindrical roller bearings can take only radial loads and tapered roller bearings
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Figure 3-16: Bearing stiffness matrix terms with variation of contact angle: 𝐾𝑥𝑥 (-),
𝐾𝑦𝑦 (-), 𝐾𝑧𝑧 (-) and 𝐾𝑥𝑧 (-).

can take radial and some axial loads. This is demonstrated with the model described
earlier. It was observed that for a contact angle of zero (cylindrical rollers), the affected
stiffness terms correspond to those in the radial directions, i.e. 𝐾𝑥𝑥, 𝐾𝑥𝑦, 𝐾𝑦𝑥 and 𝐾𝑦𝑦.
In addition, when higher values of contact angle were used (tapered rollers), not only the
radial components were affected but also the axial components, along with those matrix
components corresponding to the rotational degrees-of-freedom. Figures 3-16 to 3-18
show the effect of the change in contact angle on the most dominant components of the
bearing stiffness matrix. These results were computed with initial bearing displacements
of 0.025 mm in the 𝑥, 𝑦 and 𝑧 directions; 𝐾𝑛 = 300 MN/m𝑛, where 𝑛 is the load-deflection
exponent and it is equal to 10/9 for roller bearings; radial clearance 𝑟𝐿 = 0.00175mm.

Currently, is common to find planetary stage gearboxes with cylindrical roller bearings
in their planets [76]. However, the rotor of the turbine is exposed to a thrust force, which
results in non-torque loads that are propagated into the gearbox and have a negative effect
on the components, such as the bearings [35]. From this premise, it is seen as feasible to
study the bearing loading using the tapered roller bearing model given its capability to
take axial loading.

3.4 Generator control

When the reference wind turbine controller is used (in aeroelastic) simulations, the ref-
erence generator torque computed by this controller is used as an input to a 2nd order
system that represents the generator. Hence, its response is a torque that is used to
maintain a torque balance in the drivetrain. This is possible because the drivetrain is
considered as ideal. However, when the drivetrain dynamics are accounted in a fully-
coupled simulation, it is necessary to provide the turbine with the appropriate torque to
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Figure 3-17: Bearing stiffness matrix terms with variation of contact angle: 𝐾𝜃𝑦𝜃𝑦 (-)
and 𝐾𝜃𝑥𝜃𝑥 (-).
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Figure 3-18: Bearing stiffness matrix terms with variation of contact angle: 𝐾𝑧𝜃𝑦 (-),
𝐾𝑥𝜃𝑦 (-) and 𝐾𝑦𝜃𝑥 (-).
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ensure stability. That is, it is necessary to include a controller for the generator torque
given the torque demand from the reference controller. In this section, the controller de-
sign is described and results are shown to verify its operation. The controller described
in this section is meant to be used with the PMSG described in the Appendix E. There
has been different studies in the control of PMSG for wind turbine’s operation such as
[77, 54, 78, 79]. In all of these, the power electronics are included in the control algo-
rithm and different coordinates transformation have to take place such as 𝑑𝑞 to 𝑎𝑏𝑐 [77],
𝑑𝑞 to 𝛼𝛽 and 𝛼𝛽 to 𝑎𝑏𝑐 [78]. However, the scope of this implementation is limited to the
dynamic models of the gearbox and generator, therefore, the power electronics are not
included in the models and the control algorithm. The reason for this is that with the
approach taken here, it is possible to define a set of voltage profiles for studies related to
the performance of the turbine under different conditions on the grid. In addition, for
the studies intended here which are related to the estimation of loads and reliability of
the gearbox, this is unnecessary.

The controller was designed using a linear state-space model version of the model
presented previously in Equations (E.1, E.2, E.3). It was linearized at the machine’s
operating point, i.e. the rated values found from the results of the dynamic models after
the transient period: 𝑢0𝑠𝑑, 𝑢

0
𝑠𝑞, 𝑖0𝑠𝑑, 𝑖

0
𝑠𝑞 and 𝑃 0

𝑚.[︂
˙𝜓𝑠𝑑
˙𝜓𝑠𝑞

]︂
=

[︃
−𝑅𝑠
𝐿𝑑

𝜔𝑒
−𝜔𝑒 𝑅𝑠

𝐿𝑞

]︃ [︂
𝜓𝑠𝑑
𝜓𝑠𝑞

]︂
+

[︂
1 0
0 1

]︂ [︂
Δ𝑢𝑠𝑑
Δ𝑢𝑠𝑞

]︂
(3.75)

⎡⎣Δ𝑖𝑠𝑑Δ𝑖𝑠𝑞
Δ𝑃𝑚

⎤⎦ =

⎡⎢⎣
1
𝐿𝑑

0

0 1
𝐿𝑞

0 3
2𝜔𝑟𝑝𝜓𝑝𝑚𝐿

−1
𝑞

⎤⎥⎦[︂𝜓𝑠𝑑
𝜓𝑠𝑞

]︂
(3.76)

where the variables preceded by a Δ correspond to the changes around the operating
setpoint. Therefore, it is possible to operate the machine at different points that are
close to those defined earlier from the steady-state results.

The linear model was validated by applying a step input to the to voltage in the in
the q-axis of the machine. The results shown in Figure 3-19 demonstrate the response of
the linear and non-linear models. In these results is possible to see that the linear model
is a good approximation and therefore can be used for the design of the controller.

The controller implemented here follows a similar structure than the one presented
in [77] with the following assumptions and characteristics:

1. The power electronics are not included. Instead, it is assumed that the controller’s
control signals 𝑢𝑠𝑑 and 𝑢𝑠𝑞 are the output from the power electronics. That is, the
controller electronics are bypassed in this study.

2. The reference variable is the torque demand from the reference controller, which
is at a higher level of hierarchy in the wind turbine system. Unlike aeroelastic
simulations with HAWC2, where the input to the reference controller is the low-
speed shaft speed, the input here is the actual speed of the generator. It was
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Figure 3-19: Validation of the linear model of the PMSG with respect to the dynamic
model presented in Appendix E.

observed that using the conventional approach, would induce a phase-lag between
the reference torque and the machine torque.

3. The different levels of the controller (Figure 3-20) are needed in order to obtain
the correct reference values for the stator currents 𝑖𝑠𝑑 and 𝑖𝑠𝑞, which are used to
control the stator voltages 𝑢𝑠𝑑 and 𝑢𝑠𝑞. These reference values must be obtained
from the reference torque demand from the reference controller.

The controller levels work on hierarchy where the higher level provides the reference
values for the current level:

• Level 1: It is the lower level in the hierarchy and it works as a damper of the
current 𝑖𝑠𝑞. The control signal is Δ𝑢𝑠𝑞, which is a variation required in the
voltage in the q-axis.

• Level 2: Controls the voltage in the q-axis using the 𝑖𝑅𝑒𝑓𝑠𝑞 value.
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Level 1

PMSG
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−

+
−

Δ𝑢𝑠𝑞

Figure 3-20: PMSG system block diagram. The controller is set-up as a hierarchy
with the outer loop corresponding to the reference power. This value
is obtained from the torque demand of the reference controller and the
high-speed stage rotational speed.

• Level 3: Controls the voltage in the d-axis using the 𝑖𝑅𝑒𝑓𝑠𝑑 value.

• Level 4: It is meant to generate the correct 𝑖𝑅𝑒𝑓𝑠𝑞 signal, from the 𝑃𝑅𝑒𝑓𝑒 value
computed from the torque demand coming from the reference controller.

• Level 5: From the dynamic equations of the PMSG (E.3,E.4) it is possible
to identify that the real power and torque of the machine are directly related
to changes in the current 𝑖𝑠𝑞. Therefore, the entire control strategy revolves
around controlling this current. Moreover, the controller in Level 5 is designed
to keep the 𝑖𝑠𝑑 current at a low value of 0.1.

The controller gains for each level in the hierarchy are presented in Table 3.6.

The controller is validated by applying a step equal to 80% of the rated torque.
The response of the machine torque is seen in Figure 3-21, along with the resulting
mechanical power. From the results, the operation of the controller is appropriate given
that there is no overshoot and the settling time continues to be of around 1 s. The low
overshoot characteristic is important because high variations of the machine torque could
have negative effects in the loads of the gearbox, specially on realistic conditions where
there are high dynamic events such as turbulent wind, wind gusts, and possible electric
faults. Moreover, it has been observed that large overshoots in the dynamic system might
compromise the stability of the time domain simulations in the co-simulation environment
used here.
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Table 3.6: Controller gains for each level in the hierarchy

Level 𝐾𝑝 𝐾𝑖

1 0.22400 0
2 0.02500 7.2765
3 0.04044 11.844
4 0.00043181 0.026125
5 0.15309 19.596
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Figure 3-21: Validation of the torque controller

3.5 Electromechanical simulation interface

HAWC2 is an aeroelastic simulation and load calculation code for wind turbines. The
code is based on a multi-body dynamics formulation to model the structure of the wind
turbine and includes the effects of wind and waves (in the case of offshore wind turbines)
on the structure. The controls are defined externally throughout dynamic-linked libraries
(DLL) and it is possible to connect the model to externally defined systems, or forces,
by means of DLL.

The interface between HAWC2 and MATLAB/Simulink allows for an integrated de-
sign where the generator dynamics, and/or controller can be included in the simulations.
This work extends the previous approach by including a more detailed gearbox model
and by using the standard wind turbine controllers.

The block diagram shown in Figure 3-22 represents the structure of the overall co-
simulation system and the interaction between the tools. The wind turbine structure
and wind field conditions are modeled in HAWC2, whereas the gearbox, generator and
machine control are defined in MATLAB/Simulink. As shown in the diagram, there is
a bidirectional communication between the two tools: a) HAWC2 sends to MATLAB
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𝜔𝑔
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Figure 3-22: Co-simulation interface for the electromechanical models.

the rotor speed which is used by the coupler to calculate the rotor torsion at the input
of the drivetrain; b) the calculated torsion is the input to the gearbox, but is also the
reaction force seen in the shaft of the wind turbine and tower-top (Figure 2); and, c) the
entire system is simulated using a co-simulation approach. That is, each tool models
and simulates a different subsystem by defining the EOM and finding their solution
independently so that their boundary constraints are satisfied. In HAWC2, the EOM
are arranged in the form of Newton-Euler equations and are solved using the Newmark-
beta method. The time-step is usually in the order of 0.02 s since the dynamic range
of interest is usually within 0-10 Hz. In contrast, the EOMs in MATLAB/Simulink are
solved using an implicit Runge-Kutta variable-step solver, which is part of the standard
solver suit from MATLAB. This value is usually small in the range of 0.1 - 0.5 ms .
The coupler equation (3.77) estimates the torsion at the carrier side. It is derived from
the simplified version of a drivetrain, where the rotor and gearbox inertia interact via a
torsional spring, e.g. a two mass model in free-free condition, where the reaction forces
on each mass are equivalent in magnitude but opposite directions.

𝐽𝑟 𝐽𝑔𝑏

𝐾𝑠

𝑇𝑎𝑒𝑟𝑜

𝑇𝑟

𝑇𝑔𝐶𝑠

𝑇𝑟 = 𝐾𝑠

∫︁
(𝜔𝑟 − 𝜔𝑐) 𝑑𝑡+ 𝐶𝑠 (𝜔𝑟 − 𝜔𝑐) (3.77)

where 𝑇𝑟 is the reaction moment; 𝐾𝑠 is the main shaft stiffness; 𝜔𝑟 and 𝜔𝑐 are the
rotor and carrier speed, respectively; and 𝐶𝑠 is the main shaft damping coefficient.

When using the aeroelastic tool alone, the torque balance is achieved through the
wind turbine controller which produces a torque demand that is applied to the rotor
as a reaction moment. In this context, where an actual drivetrain is implemented, it
is paramount to keep the torque balance in order to maintain the proper wind turbine
dynamics and power production. The block control.dll in Figure 3-22 corresponds
to a generic wind turbine controller with two main functions: a) to control the rotor
speed with a pitch controller, and b) to compute the torque demand which is to be
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Figure 3-23: Interaction of reaction moments between the wind turbine and the exter-
nally defined drivetrain.

applied to the main shaft and tower-top as a reaction moment. When interacting with
the externally defined drivetrain, the torque demand computed by the control.dll is
used as a reference for the machine controller, and therefore, the torque balance in the
wind turbine is maintained through the reaction moment computed by the coupler in
(3.77) and through the gearbox.

An important aspect of the dynamic system simulation is the damping. It is known
that the gearbox has very low damping in reality and due to it’s free-free configuration
in a wind turbine drivetrain it is prone to instability. The pole-zero map in Figure 3-24
shows the location of the poles of the state-space model for an example gearbox. The
system has 52 poles in total, and several of them are located on the right-hand side,
which leads to instability (Figure 3-25). Note that there is a low-frequency component
that corresponds to the rotor torsion mode (free-free), along with higher harmonics due
to the gearbox flexibilities. From this, some artificial damping is necessary in order to
avoid numerical instabilities in the simulations. In this work, this is achieved using three
different damping sources in the overall drive-train: a) the main shaft, in HAWC2,
is damped using al Rayleigh damping 𝛽𝑠𝐾𝑠; b) the gearbox is damped as well using a
Rayleigh 𝛽 parameter, and therefore, the damping matrix is proportional to the stiffness
matrix by a factor of 𝛽𝑔𝑏; and, c) the machine controller adds additional damping and
it was designed taking into account a known structure for generator control in wind
turbines presented in [77].

The main shaft in HAWC2 is tuned to 5% of critical damping as per the NREL refer-
ence wind turbine [49]. This value is tuned to the original drivetrain free-free frequency
of 2.19 Hz. Thus, the same values for the shaft stiffness is used in the coupler equation.
In addition, an eigenvalue analysis of the complete drivetrain, including the rotor inertia
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Figure 3-24: Pole-zero map for the drivetrain dynamic system before applying artificial
damping.

and gearbox, results in a low-shaft mode equal to 2.48 Hz. This mode is damped in the
gearbox in DUDE with 𝛽𝑔𝑏 = 6.41× 10−3 in order to maintain the 5% critical damping
ratio in the entire drivetrain.
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Figure 3-25: Time response of the low-speed shaft torque with zero damping.

𝑓𝑓𝑟𝑒𝑒−𝑓𝑟𝑒𝑒 =
1

2𝜋

√︃
𝐾𝑠

(︂
1

𝐽𝑟𝑜𝑡𝑜𝑟
+

1

𝑛2𝐽𝑔𝑒𝑛

)︂
(3.78)
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3.6 Model validation

3.6.1 Test article

The model validation (details in Section 3.6) was done using the available data from the
GRC project [76]. The testing is carried on a 750 kW drivetrain (test article) with a
multiple stage gearbox and an asynchronous generator. The gearbox layout is shown
in Figure 3-26, where the arrangement of the gears and bearings presented here is an
approximation of the configuration of the real system. There are three stages in total
and are arranged in the following order: a) planetary stage with three equally spaced
planets supported by two CRB on each planet, and with the carrier supported by two
Full-Complement Cylindrical Roller Bearings (fnCRB); b) a parallel stage with its gear
and pinion supported by two TRB on each component; and, c) a final parallel stage
supported in the upwind side by two CRB and two TRB supporting the HSS in the
downwind side.

Sun

Ring

Planet

fcCRB
CRB CRB

fcCRB
Gear

Pinion
Gear

Pinion

fcCRB fcCRB

TRB

TRB
CRB

CRB

Low-speed stage (LSS)

Intermediate-speed stage (ISS)

High-speed stage (HSS)

1
2

3 4

5
6 7

8

13

9 10

1211

Figure 3-26: GRC gearbox configuration.

Table 3.7: Planetary stage physical parameters - GRC gearbox

Parameter Planet Sun Carrier Ring

Inertia [kg·m2] 0.4 1.02 116.72 891
Number of teeth 39 21 - 99
Base diameter [mm] 369.46 198.83 - 937.36
Pressure angle [Deg] 20 20 - 20
Helix angle [Deg] 7.49 7.49 - 7.49
Gear ratio 5.143
Mesh stiffness [kNm/m] 𝑘𝑠𝑝 = 3.5× 109, 𝑘𝑠𝑝 = 4.55× 109
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Table 3.8: Parallel stages physical parameters - GRC gearbox

Parameter Gear 1 Pinion 1 Gear 2 Pinion 2

Inertia [kg·m2] 31.72 0.4 3.42 0.08
Number of teeth 82 23 88 22
Base diameter [mm] 652.79 183.10 424.58 106.14
Pressure angle [Deg] 20 20 20 20
Helix angle [Deg] 14 14 14 14
Gear ratio -3.5652 -4
Mesh stiffness [kNm/m] 𝑘𝑝𝑔1 = 2.69× 109 𝑘𝑝𝑔2 = 1.89× 109

The generator is a fixed-speed induction machine with two synchronous speeds: 1200
rpm and 1800 rpm, which correspond to 200 kW and 750 kW power production, respec-
tively. The machine operates at a 5% slip, which translates into operating speeds of 1206
rpm and 1809 rpm.

3.6.2 Emergency stop

The overall system is validated using the GRC 750 kW test setup during a shut-down
at 25% of rated power. This process is necessary when problems arise during operation,
such a grid loss or storm conditions. The process starts by disconnecting the generator
from the grid. At the same time, the speed of the rotor is reduced in a controlled manner
in order to reduce the impact on the structural loads. With the experimental data as
an input to the drivetrain model, the shut-down case is recreated. The purpose with the
next validation is to show the approach with the coupler is a valid approximation when
considering torsional loading in the drivetrain.

First, from the experimental torque signal, it is identified that there is approximately
6% damping ratio in the shaft. This value includes the material damping along with
the controls in the drive-system of the test rig. From the frequency domain, two main
frequencies are identified (Figure 3-27). The first frequency is used as a reference for
finding the damping value in the coupler equation, using Rayleigh damping as explained
in the previous section.

The results shown in Figures 3-28 and 3-29 exhibit several important aspects regard-
ing the functionality of the tool:

1. The LSS speed follows correctly the reference. This is due to the coupler equation
that estimates the required torque so that the carrier in the gearbox can achieve
the reference speed, and therefore, produce an adequate load transfer across the
gearbox connected to the generator. It is important to highlight that the carrier
speed shown in Figure 3-28 corresponds to the solution of the state assigned to the
carrier after the EOMs are solved at each time-step (i.e. it is the dynamic response
of the carrier).

2. The machine controller used for this test follows the reference and compensates
accordingly to the step change in power.
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Figure 3-27: Frequency domain of the LSS torque signal in the shut-down.

3. Damping in the overall system plays an important role during transient events.
Although the steady state value in the speed agree, it is observed that the steady
state of the torque is not as accurate. This is due to the difference in the control pa-
rameters from the simulation and the real system. In addition, the torque displays
a peak around 110 s, which corresponds to a small change in the speed (Figure
3-28). This reaction is due to a change in the error value between the reference
and the carrier speed in the coupler equation. However, it is concluded that the
assumed damping in these simulations is appropriate given the level of agreement
between the experimental data and the simulations.

It is shown then, that the methods used to simulate the drivetrain are an appropri-
ate approximation of the general dynamic behavior of the drivetrain test setup. With
reasonable accuracy in the load transfer throughout the drivetrain, it is possible to say
that this model is suitable to represent the physics of wind turbine drivetrain dynamics
without incurring into expensive computations. It is also possible to extend the model
to the complete test-rig, considering the external loading in the wind turbine structure,
which can be improved further for testing using hardware in the loop techniques.

3.6.3 Normal operation

In addition, the validation of the calculated planet bearing loads by the tool is presented.
In this test, the dynamo-meter is ran at steady conditions under three power levels: 25,
50 and 100% of rated power. No non-torque loads or steps in torque, or speed, are
applied. The results are presented in Figure 3-30.

The results show a good agreement between the two models and the experiment. The
variation of low-frequency vibrations in both, corresponds to the mode associated with
the shaft torsion. The simulation is carried out by using the speed signal as reference.
The speed data from the experiments is used as a reference and the machine controller
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Figure 3-28: Validation of the dynamic response of the drivetrain model. The figure
shows the generator electric power and speed in the low-speed shaft.
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reference is set to each power level.
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3.7 Conclusions

This chapter presented a series of models developed throughout the length of this dis-
sertation. First, a multibody dynamics implementation was done in order to model the
gearbox using the gear constraints and the Newton-Euler formulation. The model of the
planetary gearbox was used as an example to show the capabilities of the tool and its
limitations. It was concluded, that the high computational time needed to perform a
simulation that complies with the certification load cases in the IEC standard for wind
turbine design, is a major drawback. The result was consistent to those found by other
researches and the limitations in computational time were identified, along with issues
in the constraint violation, unless stabilization techniques were used. It was shown that
for a simple planetary gearbox example, with a small simulation time (10 s), the perfor-
mance of the code won’t be successful for a load case simulation (600 s, plus additional
100 s to pass the transient phase) given the high computational time and issues found
with the gear constraints.

From this, it was decided to seek other alternatives to model the gearbox. A simple,
yet accurate model was implemented based on the theory of lumped-parameters. In this
approach, the topology of the gearbox is simplified and the load transfer between gears
and gearbox stages was achieved through linear flexible components defined as springs.
It is important to highlight that the models needed for the success of this thesis not only
rely on a gearbox model, but also to the coupling with an electrical component as the
generator. This adds states into the solution of the overall EOM, along with the necessary
controls that maintain the system in equilibrium. Hence, the electromechanical interface
presented here showed a method where the gearbox is coupled to a generator model and
an aeroelastic tool, i. e. HAWC2. With this approach, the wind turbine reference model
and controller are used in full in order to maintain the fundamental dynamics specified
in the wind turbine design.

The gearbox model, it’s coupling with the generator and the overall response of the
system was validated using experimental data from the GRC project at NREL. The
validation case was a shutdown exercise where the transient behavior of the drivetrain
test-rig was matched by the model. It was shown that the system stabilizes at the refer-
ence points dictated by the nature of the system. That is, being in a free-free condition
in which the input torque and generator torque based on the power requirements are
highly important for the stable operation of the entire drivetrain. Moreover, the bearing
radial loads obtained by the model were validated under normal operation conditions at
three different power levels.

Using the results from this chapter as a basis to gain confidence in the functionality
of the tools developed here, the studies presented in the rest of the dissertation use the
same approach with variations in the drivetrain configuration, i.e. using either a PMSG
or a DFIG. With this, it is possible to run different types of load cases following the
guidelines in the IEC standard 61400-1 [10], and assess their impact in the drivetrain
bearings.
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4

Loading under normal operation

This chapter establishes validated models that can accurately account for the dynamics of
the gearbox, along with the external dynamics that excite the system. A drivetrain model
implementation is used where the gearbox and generator are coupled to the wind turbine
structure in the dynamic simulation environment presented in Section 3.5. The wind
turbine is modeled using HAWC2 and the gearbox is described using lumped parameters
in MATLAB/Simulink. Each component in the gearbox model includes rotational and
translational DOFs, which allows the computation of the bearing and gear-mesh loads.
However, emphasis is made to the planet bearings. The drivetrain model is configured
for a 5 MW power capacity and coupled to the corresponding wind turbine and load
simulations are carried out under turbulent wind following the guidelines from the IEC
61400-1 standard [10]. Fatigue analysis shows the effect in the bearing damage equivalent
loads, when including a detailed drivetrain model in the overall wind turbine simulation
for a 20 year period. Results show a higher level of damage (up to 180%) when the
detailed model is used in comparison to a simplified approach for load calculation. It
is found that some of the wind turbine modes can have negative consequences on the
life-time of the planetary bearings.

4.1 Introduction

One of the biggest challenges today is to design reliable wind turbines, especially with
the expansion of offshore wind farms, where repair and maintenance can be very costly.
Today, most of the downtime of wind turbines are accredited to the gearbox [14], along
with the generator, making the drivetrain one of the most critical sub-systems in terms of
reliability. Several major studies over the last decade have been dedicated to investigate
the gearbox dynamics and its subcomponents within the wind turbine context [3, 80, 26,
28].

Gearbox dynamics have been studied for several years and the literature is exten-
sive. Lin and Parker [30] and Kahraman [32] developed linear and non-linear lumped-
parameters models for the helicopter and automotive industry. However, these investi-
gations were made from a generic point of view, i.e. on the generic model of planetary
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gears. From here, Peeters [3] applied different types of modeling techniques in increasing
complexity, focusing on linear time invariant (LTI) systems and extended the models
to helical gears. He also presented a study on a complete gearbox from a wind turbine.
First, he verified the different vibration modes present on a planetary gearbox such as ro-
tational, translational and planet. Second, he extended the current modeling techniques
to the use of flexible multibody models, where additional DOF are included to represent
the body deformation. Helsen [38] continued Peeters work by analysing the dynamics of
a full wind turbine gearbox in different levels of complexity. Although the more detailed
models provide a good insight regarding the loads experienced by the drive train, the
author calls for models that describe the dynamics at the component level using flexible
multibody dynamics. The major disadvantage with theses modeling techniques is the
computational cost, and the lack of publicly available models tailored to the prediction
of fatigue design loads on wind turbine gearbox bearings. While the models need to be
simple enough for fast computation, they should adequately represent the system such
as possess off-diagonal terms in the bearing stiffness matrix, which can have a significant
effect in the gearbox global behavior. The studies presented in [81, 36] are a comprehen-
sive investigation of the effects of non-torque loads, gravity, bearing clearance, nonlinear
mesh stiffness, and input torque in the planetary gear loads. It was demonstrated by sim-
ulation, and experimental verification, that the bending moments caused by non-torque
loads such as tower shadow, rotor weight, wind induced moments, thrust and the tilting
of the nacelle, can produce external excitations in the carrier frame leading to an incre-
ment in the gearbox internal loads and the uneven distribution of the load share among
the planets. Further, several variations of lumped-parameter models are available in the
literature within the context of wind energy. For instance, the work in [71] implemented
a multi-stage gearbox model based on the work of [30] and investigated the torsional and
radial vibrations of the gears, specially in the planetary stage. Similarly, the work in
[82] implemented a variation of the existing lumped-parameters model and used a torque
signal caused by random wind speed to study the dynamic behavior of the gears inside a
planetary stage. The work on [83] coupled a planetary stage gearbox with an aeroelastic
wind turbine model implemented in HAWC2 [17]. The results showed the effect of the
gear teeth loads when including double-contact in the gear model, and considering the
dynamics of the complete wind turbine. However, the bearings are considered rigid, the
gearbox was represented by a planetary stage only, the gears where allowed only to rotate
and the generator was modeled ideally.

Some other studies have implemented the drivetrain dynamics, along with an aero-
lastic model of the wind turbine, but they use very high fidelity models (FEM), followed
by a condensation of the DOF using super-elements. Even though the super-element
approach reduces computational time, it can be quite demanding to run a full load case
simulation for certification and fatigue studies. As pointed out by [84], during the design
of wind turbine components it is paramount to test the model through several load cases.
In addition, it is recommended to include the drivetrain dynamics in order to simulate
LVRT of wind turbines, since this allows simulation conforming to national grid codes
[6]. These requirements call for an approach which provides accurate loading time-series
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at the internal components of the drivetrain within a stipulated computation time. In
this chapter, an integrated approach [18] is extended to include a detailed model of the
drivetrain (gearbox and generator), along with the wind turbine structure. The code de-
veloped here focuses on the bearings loads, which are obtained by a dynamic model that
accounts for the translational and torsional degrees-of-freedom. Compared to a HAWC2
simulation without drivetrain dynamics, the proposed tool takes approximately 1.6 times
more to solve the EOM, depending on the platform used.

4.2 Wind turbine loads validation

4.2.1 Methods

First, let me describe the simulation setup used. The wind turbine corresponds to the
5MW NREL Reference Wind Turbine [49] and it is simulated in HAWC2. It is a variable-
speed, collective pitch turbine. For the coupled simulation using the Wind Turbine and
Drivetrain Under Dynamic Excitation code (WTDUDE), the configuration shown in
Figure 3-22 is used with the Risø controller [85]. The controller used here is a reference
controller that ensures the wind turbine dynamics of the baseline system are not changed.

The drivetrain is composed of a multi-stage gearbox (same configuration as the one
presented in Section 3.6.1) and a PMSG (see Appendix E). The purpose of these studies
is not to design a gearbox, and therefore, the geometric parameters are not conforming
to a manufacturer’s design. The physical parameters available from the previous design
of the 5MW PMSG presented in [12] and the gearbox presented in [71], it is possible to
obtain a complete drivetrain by scaling the parameters to meet the gear ratio and inertia
requirements. The mass and inertia properties were scaled using the power scaling laws:

𝑘𝑢𝑝𝑚 =

(︂
𝑃2

𝑃1

)︂3/2

(4.1)

𝑘𝑢𝑝𝑖 =

(︂
𝑃2

𝑃1

)︂
(4.2)

where 𝑘𝑢𝑝𝑚 and 𝑘𝑢𝑝𝑖 are the upscaling factors of the mass and inertia, respectively. The
values used here are: 𝑃2 = 5 MW and 𝑃1 = 1.5 MW, for the planetary stage; and 𝑃2 = 5
MW and 𝑃1 = 750 kW for the parallel stages. The physical parameters of the gearbox
stages are presented in Tables 4.1 and 4.2.

The content of the rest of the section is meant to serve two purposes:

• basic validation of the wind turbine loads from WTDUDE using HAWC2 as a
reference, and

• long-term fatigue analysis of the loads in the planetary stage bearings.
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Table 4.1: Planetary stage physical parameters - 5MW gearbox

Parameter Planet Sun Carrier Ring

Inertia [kg·m2] 120 23.33 1960 2970
Number of teeth 45 30 - 117
Base radii [mm] 630 430.4 - 1638
Pressure angle [Deg] 22.5 22.5 - 22.5
Gear ratio 4.90
Mesh stiffness [kNm/m] 𝑘𝑠𝑝 = 2.3× 109, 𝑘𝑠𝑝 = 1× 109

Table 4.2: Parallel stages physical parameters - 5MW gearbox

Parameter Gear 1 Pinion 1 Gear 2 Pinion 2

Inertia [kg·m2] 220 1.3 140.04 15.446
Number of teeth 94 22 64 22
Base radii [mm] 752 180 600 199.3
Pressure angle [Deg] 20 20 20 20
Gear ratio -4.17 -3.04
Mesh stiffness [kNm/m] 𝑘𝑝𝑔1 = 3.20× 109 𝑘𝑝𝑔2 = 3.20× 109

4.2.2 Validation of the coupled analysis

The main purpose of this section is to study the effect in the wind turbine response of
including an external drivetrain using the method presented here. As shown previously
in Figure 3-23, the components that are more affected by the drivetrain are the main
shaft and tower of the wind turbine. Therefore, the results presented here focus on the
loading of these components.

The wind turbine is simulated using the guidelines for the power production Design
Load Case 1.2 from the IEC 61400-1 standard [10]. This corresponds to the operation
of the wind turbine across a range of wind speeds 5 m/s-25 m/s under NTM (Normal
Turbulence wind Model) with 10 min duration, for each simulation. The simulations are
performed on increments of 2 m/s bins and 6 random turbulence seeds are used for each
wind speed. The purpose of these simulations is to validate the performance of the wind
turbine when using the detailed drivetrain proposed in this work (WTDUDE), and to
estimate the fatigue damage equivalent loads on the internal components of the gearbox.
The results of the detailed wind turbine model results are compared to those from a
simulation using an ideal drivetrain (HAWC2). (Note: even though 6 seeds were used
for the simulation, only one representative seed is shown in the validation results).

First, the time series of the rotor speed and torsion in the main shaft for a wind speed
of 7 m/s are presented in Figure 4-1. It correspond to the wind turbine’s operation below
rated wind speed. Due to the higher wind turbulence intensity and no control action in
the pitch, it is more valuable to show the operation of the wind turbine with WTDUDE
in order to show the capabilities of the coupling and the controls. From the results it is
observed that in the time domain the simulation with WTDUDE performs as expected.
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Figure 4-1: Time series of rotor speed and main shaft torsion for seed No. 1 at 7 m/s.

In addition, the frequency domain analysis (Figure 4-2) shows that the differences
in the loads are not significant. There is, however, a small difference in the frequency
concerning the drivetrain torsion mode. In HAWC2, this frequency corresponds to the
free-free drivetrain mode with the turbine under normal operation. The value of this
mode depends on the torsional stiffness of the main shaft and the drivetrain and effective
rotor inertia. When using WTDUDE, the effective torsional stiffness is slightly different
since the internal flexibilities of the detailed drivetrain come into the picture. This results
in a frequency shift of the drivetrain torsion. The difference is small in the range of 4%.
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Figure 4-2: Torsional loads of the shaft in the frequency domain.

An additional verification is done by comparing the mean and standard deviation at
every wind speed for one of the seeds with the purpose of verifying the mean loads and
variations for both methods. The standard deviation corresponds to the variation of the
load, with respect to the mean level,and it is due mainly to the wind turbulence intensity.
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The mean value is achieved by means of controller action after rated wind speed. The
sensors studied are the rotor speed, electric power, the tower-top moments, torsion in the
shaft, and side-to-side tower base moments. The results show a good agreement across
the wind speed spectrum. However, it is observed that the torsional moment in the shaft
(Mz shaft) has small differences in the standard deviation for wind speeds higher than
rated in HAWC2 simulations. The reason behind the difference is explained in the next
section.
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Figure 4-3: Mean and standard deviation of the rotor speed and power produced by
the generator model.
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Figure 4-4: Mean and standard deviation of the tower-top fore-aft (left) and side-to-
side (right) moments.
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Figure 4-5: Mean and standard deviation of the tower-base side-to-side and shaft tor-
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4.3 Fatigue analysis

The previous results show the capabilities of the tool to estimate the loads in the drive-
train internal components and in the wind turbine. This section is intended to show the
impact of including a detailed drivetrain in wind turbine DLC simulations by presenting
results concerning the Damage Equivalent Load (DEL) for the radial loads in the planet
bearings; the turbine’s main shaft torsion and bending; tower top side-to-side moment;
and tower base side-to-side moment. These elements from the wind turbine structure
are chosen for the study since they are directly directly connected to the gearbox, and
therefore, it is expected to be affected by the introduced model.

The fatigue DEL (𝑆𝑒𝑞) corresponds to a constant load amplitude value that represents
the loading the component will experience during its lifetime (reference load cycles, 𝑁𝑒𝑞),
with respect to a load level (𝑆𝑖) at a number of cycles (𝑛𝑖). In addition to the load range
and cycles, this value depends on the material, which it is specified using the Wohler
exponent 𝑚. DEL is calculated using equation (4.3):

𝑆𝑒𝑞 =

(︃
1

𝑁𝑒𝑞

𝑛𝑏∑︁
𝑖=1

𝑛𝑖𝑆
𝑚
𝑖

)︃ 1
𝑚

(4.3)

The values of 𝑛𝑖 and 𝑆𝑖 are obtained using the Rainflow counting algorithm, and
𝑁𝑒𝑞 is related to the expected lifetime of the component. In this work, 6 seeds where
used and each seed corresponds to 10 min operation of the wind turbine. It is expected
the wind turbine lifetime to be 20 years, therefore, the sample simulation results for one
hour are scaled to 20 years. In addition, a more realistic approach would include the
annual mean wind speed distribution. For the 5MW NREL Reference Turbine, a class
II wind turbine, the wind distribution is assumed to follow a Weibull distribution with
and exponent equal to 2. The results for the DEL computation for a 20 year period are
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obtained using equation (4.3) and the Cumulative Density Function (CDF) of the wind
distribution.

Planet Bearings Long-term Damage Assessment

The bearing loads are analysed using two approaches. First, with the detailed gearbox
model the bearing loads are calculated using the translational displacement of the planet
bodies and bearing stiffness. Since it is a dynamic simulation, the displacement time-
series is a result of the reactions from the gear body in the bearings due to the interaction
through the gear mesh forces in the teeth. Changes in the velocity and torque coming
from the wind turbine, and generator, affect the overall dynamic response of the bearings.
For comparison purposes, the second approach is to estimate the bearing loads with a
kinematic formulation based on the input torque of the gearbox and the planet carrier
dimensions. This approach is similar to the one presented in [86], where it was used to
find the gear teeth forces. This relation is defined as:

𝑆𝑏 =
1

𝑁

𝑇𝑖𝑛
𝑟𝑐

(4.4)

The ratio 1/𝑁 relates to the load distribution from the carrier to the planets, where
𝑁 is the number of planets. The time-series of the bearing loads using both approaches
are used to calculate the DEL for the life-time of the wind turbine. The results are
presented in Figure 4-6.
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Notice the large difference in the damage equivalent load results between HAWC2
and WTDUDE. This is due to a number of reasons:
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• When using the kinematic approach using the input torque to the ideal drivetrain,
the higher dynamic content that appears due to the gearbox internal flexibilities
in the bearings, gear mesh and connecting shafts, along with the interaction with
the generator dynamics, is omitted as in the original HAWC2 simulation.

• WTDUDE calculates the bearing loads for every time step of the simulation in
MATLAB. Hence, any reaction due to changes in the wind conditions and gearbox
dynamics are accounted in the bearing loads. This is an appropriate approach since
the bearings experience many dynamic events such as changes in torque directions,
acceleration and deceleration, in addition to possible emergency stops.

• From the computational dynamics point of view, when using WTDUDE, MAT-
LAB/Simulink solves the EOMs at a smaller time-step which translates into a
higher content of dynamics in the bearing loads. Incidentally, there are more load
cycles present in the final time-series and this produces a higher fidelity result in
the damage load calculation.

The frequency analysis of the radial bearing loads show the presence of modes with
higher energy content when computed with WTDUDE, which explains the higher long-
term damage results. In contrast, these modes have very low energy content in the
computation of the loads using as in traditional aeroelastic software (4.4). The following
list provides a description of these modes:

1. Frequency ≈ 1.6 – Drive-train torsion. It was explained, and justified, before the
frequency shift on this mode when using WTDUDE. In contrast with the previous
results, it is seen that this mode has more energy content in WTDUDE when
compared to HAWC2.

2. Frequency ≈ 1.8 – 2nd symmetric rotor edge.

3. Frequency ≈ 2.67 – 2nd symmetric rotor flap.

4. Frequency ≈ 3.8 – From a modal analysis of the entire system, which includes the
rotor inertia, gearbox and generator it is found that this mode is a combination of
the torsion in the intermediate and high speed gear stages, and the generator.

The previous analysis shows the benefits of including the wind turbine structure in
the analysis of the internal components of the drivetrain.

Long-term Damage of Wind Turbine Structure

In addition, it has been observed that the wind turbine loads that are more affected when
WTDUDE is used are the tower top and tower base side-to-side moments (Figure 4-7).
The fatigue results indicate that the presence of a gearbox model in the overall system
simulation has an effect in the long-term damage of the tower components studied here.
This is especially true for the tower base side-to-side moment. Furthermore, the results
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for the main shaft torsion are nearly the same using both software (Figure 4-8). This
is due to the presence of additional controls, mitigating the dynamics of the drivetrain.
Moreover, there is active damping associated with the generator control system that
causes a reduction on the damage loads. The main shaft bending is not affected by the
introduction of a detailed drivetrain because the coupling in the co-simulation approach
is done only in the torsional DOF.

 

 

PSfrag replaements

WT-DUDE

HAWC2

D

E

L

-

T

o

w

e

r

b

a

s

e

s

i

d

e

-

t

o

-

s

i

d

e

[

k

N

m

℄

Wind Speed [m/s℄

0 10 20 30

×108

0

0.5

1

1.5

2

2.5

 

 

PSfrag replaements

WT-DUDE

HAWC2

D

E

L

-

T

o

w

e

r

t

o

p

s

i

d

e

-

t

o

-

s

i

d

e

[

k

N

m

℄

Wind Speed [m/s℄

0 10 20 30

×106

0

2

4

6

8

10

Figure 4-7: Damage equivalent loads results of the wind turbine structure in the tower
components.
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Figure 4-8: Damage equivalent loads results of the wind turbine structure in the main
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4.4 Conclusions

This chapter describes the implementation of a computationally fast simulation tool
that can be used to study the loading of the internal components of a drivetrain while
dynamically coupled by torsion to a wind turbine structure. The assumptions for the
gearbox model do not disregard the non-linearities that are inherent in the torsional
dynamics. This setup was shown to perform complex studies for the bearing displacement
and gear mesh interaction. In addition, when comparing wind turbine loads, the use of
the tool together with HAWC2 showed that the dynamics of the wind turbine are not
drastically affected, which provides confidence in the overall system simulation. The shift
in the drivetrain torsion mode is interesting from the controller design point of view, since
the results presented here allow for speculations in the wind turbine controller design with
a detailed drivetrain model. The benefits are not constrained only to the purpose of a
more robust controller, since the detailed approach can contribute to the drivetrain load
reduction through controller design.

Here, it was chosen to present fatigue studies using the design load case 1.2, power
production, of the IEC 61400-1 standard. It is important to highlight that the tool’s com-
putational time is very appropriate to such studies, given that it takes in average 30 min
to obtain 10 min (600 s) simulation time. This is substantially an advantage compared
to FEM models where the computation time can be hours for the same purposes.

Fatigue analysis showed the effects of including a dynamic model in the wind turbine
simulation, especially for the long term damage load computation of the bearings in
the planetary stage. The results showed that above rated wind speeds the difference in
damage is up to 180% higher when the detailed model is used. This shows that there
might be an underestimation of the fatigue in the planetary stage bearings when using
simplified models, or even with de-coupled approaches. The higher damage found by
WTDUDE is due to the presence of wind turbine modes in the bearing loads computation.
This could be an explanation on the failure of these bearings and it justifies why it is
important to consider the entire wind turbine system during the design stage. It was
also shown how the addition of a drivetrain model affects the results in the wind turbine
loads fatigue analysis in the tower top, tower base and main shaft.
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5

Extreme loads in wind turbine
drivetrain components

5.1 Introduction

It is common that every year, different regions set new goals for reducing the carbon
emissions by minimizing the usage of fossil fuels in energy production. To accomplish
these goals, it is necessary to increase the installation of renewable energy facilities. In
Europe, wind energy plays a significant role with a goal of increasing energy production
from renewable resources up to 27% by 2030. In Denmark, renewable energy accounts
for up to 40% of the energy production in the country. With more installations of wind
turbines and wind farms to come, it is necessary to assure a stable operation by increasing
the reliability of the components in the system and by developing control strategies that
ensure stability. These two premises apply to the operation of the turbine when wind
conditions are appropriate, but there are certain events that may have an impact on the
operation and life-time of the components. One example, is an electric fault in which the
grid is disturbed with a short circuit or a voltage sage affecting the turbine operation. In
the past, when the number of wind turbines connected to the power system was rather
low, they were not required to contribute to the voltage recovery during and after a fault,
hence disconnecting.

This chapter investigates the impact of different load cases that drive the damage of
wind turbine components due to extreme loading. Along with the established cases in
the IEC standard 61400-1 [10] such asDLC 2.3 and 5.1, the grid code requirements are
considered by including a LVRT in the DLC 1.1 simulation. The study is carried out using
an electromechanical approach where a detailed wind turbine structure (modeled with
HAWC2), and a detailed drivetrain that includes the gearbox and the generator dynamics
(modeled in Matlab/Simulink), are coupled in a co-simulation environment (see Section
3.5). The effect of the extreme events is quantified in the gearbox bearings in terms of
their maximum loads under different wind conditions. Results show the impact of the
different extreme cases and the LVRT requirements in the gearbox bearings.
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5.2 Extreme events strategies

The load cases simulation strategies in this approach are carried out by combining actions
in both tools: HAWC2 and Matlab/Simulink. The investigation presented here is done
in the context of co-simulation where the different models are dynamically coupled, i.e.
wind turbine structure, gearbox, generator, controls and power system (see Section 3.5).
Therefore, there is a coordination between the wind turbine controller and the external
drivetrain. This section presents in detail the interaction of the two tools for each extreme
case, their implication in terms of the response of the drivetrain, and the simulation setup
for each event.

5.2.1 Low-voltage ride through

The FRT requirements (also refereed to as LVRT in case of voltage sags) for wind turbines
are common in almost every country’s grid code. Nowadays, a considerable portion of the
overall power production comes from wind energy, so it is considered mandatory to avoid
the disconnection of the turbines from the grid during electric faults to ensure stability
in the power system [87]. In addition, the wind turbines are required to provide reactive
current to the grid during a FRT operation in order to support the grid voltage level
recovery [6, 88] (summary in Table 5.1). Earlier studies have focused on the operation
and control of different wind turbine generator systems during grid faults [89, 54, 77, 90].
These studies described different strategies to control the response and mitigate the
impact on the power system and torsional vibrations of the main shaft, as a result of
the FRT capability. However, it has been shown by [91] that considering a reduced
two-mass model to represent the wind turbine rotor dynamics it is not necessary to
asses the impact of a grid fault on fixed and variable speed wind turbines. From this,
an offline complementary approach was implemented in [92] where the power system
simulation tool PowerFactory [93] was coupled with the detailed aeroelastic code HAWC2
to study the dynamic response of the wind turbine to a grid fault, with and without FRT
control. In here, the impact was quantified by computing 1 Hz damage eq. loads in the
tower structure and blades. The conclusion was that the loads are not affected by the
FRT requirement when compared to the turbine being disconnected from the grid. This
approach was extended by [94] with an online co-simulation approach using HAWC2 and
MATLAB/Simulink, while using a detailed DFIG model which provided realistic torque
response. The effect on the structural loads was again studied with the 1 Hz damage
eq. loads. In the study it was shown that it is possible to reduce the impact in some of
the structural loads, in the case of asymmetric fault, by damping the 100 Hz frequency
(twice the supply voltage frequency) by means of a resonant damp controller.

Some studies [42, 95, 96] present models that are capable of capturing the dynamic
response of the gearbox to events in the electric grid, while being coupled to the wind
turbine. Yet, some of these models account only for the gear mesh interactions computed
by models with 1 DOF per body, and do not quantify in detail the impact on the gearbox
loads. Therefore, there is a need for a more detailed insight on how the FRT response
of the whole turbine, including the structure and power system, affects the internal
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components in the gearbox. The importance of these studies can provide additional
answers on how to mitigate the loads inside the gearbox and to extend the life-time of
the components. Consequently, this investigation aims to provide the necessary methods
to assess the impact on the internal drivetrain components, namely the bearings in the
planetary stage planets and high-speed stage, when the wind turbine is simulated during
a FRT requirement.

Table 5.1: Summary of FRT requirements for the countries of Denmark, Ireland, USA
and the province of Quebec, CA.

Country Voltage loss [%] Fault duration [s] Recovery time [s]

Quebec 100 0.15 0.18
Ireland 85 0.625 3
USA 85 0.625 2.3

Denmark 75 0.1 1

The normal operation case is simulated as it is specified for the DLC 1.1 in the IEC
61400-1 standard [10]. Thus, a symmetric fault initiated in the stator terminals of the
generator is included, in order to simulate the ride-through capability of the system.
In this case, the wind turbine controller is the main governor of the system. Even
though there is a fault, the controller will continue to operate the wind turbine under
the premise that the fault is short enough to ride-through. Moreover, the dynamics of
the wind turbine are slower (∼5 Hz) compared to the duration of the fault (∼100-300
ms). Different grid codes define different requirements, which the wind turbines have
to comply, for the worst case scenario during an electric fault. These requirements put
constraints in the operation and control of the system, by defining voltage levels for
which the turbine must be kept connected to the grid. Thus, the grid codes have been
implemented taking into consideration the stable operation of the entire power system.
On that account, this investigation also takes into consideration three different grid-
codes to put through the wind turbine system. This is done under the premise that
the torque oscillations in the generator caused by grid faults have a negative impact in
the drivetrain. Moreover, the grid codes suggest different levels of voltage drop, fault
duration and recovery to rated values. These aspects are considered here for four grid
codes: Denmark, Ireland, United States and Quebec. The choice of the countries is done
on the basis of different voltage levels, fault duration and recovery type. The voltage
profiles used for the studies here are shown in Figure 5-1 in per. unit (p.u.). The base
values for the conversion from the physical quantities to p.u. correspond to the rated
value of the line-to-line voltage (Table 5.4).

Consequently, when the drivetrain is exposed to a voltage sag in the stator terminals,
the generator will react by dropping the active power due to the loss of magnetization in
its windings. This also causes a drop in the electromagnetic torque. Because of the free-
free condition of the drivetrain, the loss on one of the input torques creates an unbalance
in the system, and therefore, the gear bodies accelerate (and decelerate) as the system
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Figure 5-1: The voltage profiles of three national grid codes chosen for the study (the
data was obtained from [6]).

oscillates and comes back to a balanced state after the fault is cleared.

Generator system

Generator
model

𝑇𝑟𝑒𝑓
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𝜔𝑔

Rotor voltage
control
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𝑣𝑑𝑠
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𝑑𝑞0

𝑃𝑔𝑣𝑎𝑏𝑐Grid

Figure 5-2: Generator system when using a DFIG, voltage rotor controller and simpli-
fied grid.

The generator model used in the studies is a typical 3rd order DFIG model. The
block diagram of the system is depicted in Figure 5-2, with a gray arrow over the 𝑣𝑎𝑏𝑐
voltages that signifies the possible occurrence of a grid fault. The reference torque 𝑇𝑟𝑒𝑓
is obtained from the wind turbine controller. The full mathematical description is out
of the scope of this investigation and it has been presented before by many researchers.
However, the main concepts of the model are outlined here so it is easier to understand
what happens when there is a change in the excitation voltage. The 3rd order model is a
reduced version of the complete dynamic model with the assumption that only the rotor
flux linkages vary with time. Hence, these are the states of the model, while the stator
fluxes and the generator torque are computed with algebraic equations. A rough matrix
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representation of the model in the dq-frame is presented in (5.1):[︂
0
˙𝜆𝑑𝑞𝑟

]︂
= ℳ

[︂
𝜆𝑑𝑞𝑠
𝜆𝑑𝑞𝑟

]︂
+

[︂
𝑣𝑑𝑞𝑠
𝑣𝑑𝑞𝑟

]︂
(5.1)

where ℳ is a matrix that depends on the windings’ resistance and inductance defined
in the dq-frame so it is time-invariant, and the input variables of the state-space system
are the stator and rotor voltage in the dq-frame. Moreover, the generator torque is found
by:

𝑇𝑒𝑚 =
3

2

𝑝𝑓
2

𝐿𝑚
𝐷

(𝜆𝑞𝑠𝜆
′
𝑑𝑟 − 𝜆𝑑𝑠𝜆

′
𝑞𝑟) (5.2)

For a detailed derivation of the complete dynamic model and control strategies of a
DFIG, see [97, 98, 99, 100, 18]. The examples shown in Figure 5-3 show the response
of the main shaft torsion during the imbalance in the grid, with the addition of the
controller effort to overcome the drop in active power.
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Figure 5-3: Drivetrain torques during the LVRT cases treated here. Notice the impact
of the FRT requirements of each country in the transient period. The
base values used for the conversion to p.u. are: 𝑇 𝑏𝑎𝑠𝑒𝑙𝑠𝑠 = 4.180 MNm and
𝑇 𝑏𝑎𝑠𝑒ℎ𝑠𝑠 = 51.292 kNm.

From Eq. (5.1) it is clear that a change in the stator voltages will disturb the steady-
state conditions of the flux linkages. The response of the torques to the unbalance
is highly affected by the percentage of voltage loss, fault duration and recovery time
specified in the FRT requirements in Table 5.1. For instance, from Figure 5-1 it is seen
that the requirements for Quebec are more demanding given the torque oscillations that
result from the voltage drop (Figure 5-3). Even though the low-speed side transient
period is similar for all the cases, the low-speed shaft torsion increases more than three
times the rated value, compared to almost two times in the rest of the cases. Not only,
does the torsion increases significantly, but a reversal is also seen in the initial part of
the transient. In contrast, the effect is not as significant on the generator side, but this
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is due to the controller action to maintain the reference power at rated conditions. For
that reason, after the fault occurs, an effort is seen in the torque signal to recover from
the fault. This control effort is changed when the fault is cleared and the recovery starts.
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Figure 5-4: Drivetrain rotational speed at the input of the gearbox (left) and generator
side (right). The base values used for the conversion to p.u. are: 𝜔𝑏𝑎𝑠𝑒𝑙𝑠𝑠 =
1.2671 rad/s and 𝜔𝑏𝑎𝑠𝑒ℎ𝑠𝑠 = 122.9 rad/s.

The LVRT requirements also have an impact on the rotational speed of the system
as seen in Figure 5-4.

The examples on this section were obtained with a simple simulation case using
only the drivetrain defined in MATLAB/Simulink with the purpose to illustrate the
consequences of the FRT requirements. Later, these requirements will be used to simulate
a normal production load case, where the drivetrain is coupled with the wind turbine.
To that end, the entire system will be subject to turbulent wind, which will add more
dynamic and stochastic content to the simulation. The system will endure the wind
conditions, in addition to a LVRT for the cases in Table 5.1. It is expected that the
chain of events will produce extreme loads in the drivetrain components which might
affect the expected 20 year life-time.

5.2.2 Power production plus occurrence of fault

The purpose of the power production plus occurrence of a fault load case, or DLC 2.3,
is to expose the turbine to a wind gust, with the occurrence of a grid fault during the
gust. A previous study [101] investigated optimal control strategies to mitigate the tower-
base and blade-root loads for different DLCs, including DLC 2.3. Even though no results
regarding the gearbox where presented, it is of interest since it presents a control strategy
that can ultimately have positive consequences on the gearbox loads. In the study, a load
reduction in the tower base was presented and given the nature of the reaction forces due
to the drivetrain, it could benefit the drivetrain response. Another study [102] showed
the damage in the bearings induced by normal and emergency stops. His conclusion
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was that the emergency stop produces more severe damage at the planet bearings from
the low-speed planetary stage. This is due to the presence of higher loading in the low-
speed shaft as a consequence of the emergency stop. The author uses a sophisticated
commercial model that includes the 6 DOF in the drivetrain components. However, the
study was carried out by an uncoupled approach.

In the present study, an electromechanical simulation tool is used to asses the extreme
loads caused by an Extreme Operating Gust (EOG) as specified by the IEC 61400-1
standard [10]. A loss of the network is simulated at different points in time during the
gust by disconnecting the generator terminals, in addition to a shut-down command from
the wind turbine governor. These points are chosen so they occur at zero acceleration
and low wind; highest acceleration; and, zero acceleration at the peak wind speed. An
example of the EOG is shown in Figure 5-5, along with the time of occurrence of the
fault.
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Figure 5-5: Wind speed for the DLC 2.3. The loss of electrical network occurs at the
points with x.

Following the guidelines of the IEC standard, the event is simulated at 11.4 m/s
(rated wind speed), 9.4 m/s, 13.4 m/s and 25 m/s (cut-out). In addition, the starting
azimuth of the wind turbine rotor is changed for each set of simulations. That is, the
initial orientation of the blades is changed by 60 degrees. This is done so at the gust
occurrence, several states of the rotor position are considered adding randomness to the
process. The rotor positions considered here are presented in Figure 5-6 and the numeric
data specifying the detail positions are presented in Table 5.2. In summary, a total of 48
simulations will be used to study the extreme loads in the gearbox bearings.

5.2.3 Emergency shut-down: DLC 5.1

Certain situations such as, excessive tower-top vibrations or when human safety is at
jeopardy, require the stop of the wind turbine abruptly using an emergency stop proce-
dure. In this case, it is a decision taken by the turbine operator or a pre-defined safety
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Position 1 Position 2 Position 3 Position 4

Figure 5-6: The four rotor positions that represent each set of DLC 2.3 simulations.
The dotted figure represents a reference position and it is plotted for illus-
tration purposes only. The gray blade is to ease the visualization of the
rotation.

Table 5.2: Angles (in Deg.) of the blades in the different rotor positions, where 𝜃2 is the
gray shadowed blade in Figure 5-6. The phase angle between each position
is 300.

Case 𝜃1 𝜃2 𝜃3

Position 1 180 60 -60
Position 2 210 90 -30
Position 3 240 120 360
Position 4 270 150 30

feature of the wind turbine controller. With the push of a button, the following sequence
takes place:

1. A mechanical brake is applied to a disk placed either at the low-speed or high-speed
shaft of the turbine. The position of the brake disc depends on the turbine’s design.
In the example presented here, the NREL 5MW reference turbine has the brake in
the HSS [49]. There are advantages and disadvantages associated to the location
of the brake. A high-speed brake is more likely to have negative impacts in the
gearbox loading, whereas a low-speed shaft brake will cost more given the need for
higher braking torque.

2. Once the brake is activated, the controller starts pitching the blades at the maxi-
mum rate (Example: 9 Deg/s). This is to bring near zero the aerodynamic torque.

3. Coincident with the brake application, the generator is shut-down so the electro-
magnetic torque is equal to zero.

The system implemented to simulate an emergency shut-down is presented in Figure
5-7. The general idea is the same as the electromechanical simulation tool explained
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before, but the diagram in Figure 5-7 shows in detail the interaction of the relevant
signals during the shut-down. The brake is defined as a DLL and it is synchronized with
the wind turbine’s controller. To start the stop sequence, it is necessary to specify the
cut-out time. At the time of the stop, the controller triggers the brake flag 𝑓𝑏 to indicate
the beginning of the braking sequence. The brake DLL will compute the braking torque
𝑇𝑏 using Eq. (5.3). At the same time, the torque demand 𝑇𝑟𝑒𝑓 will be set to zero
and the resulting torque applied into the HSS of the gearbox will be equivalent to 𝑇𝑏.
Furthermore, the controller sends a pitch angle demand 𝛽𝑑 to the servo DLL. The slope
demand signal corresponds to the maximum allowed pitch rate, which is defined in the
controller parameters.

𝑇𝑏 = 𝑇𝑏𝑚𝑎𝑥 tanh(𝛼𝜔𝑟) (5.3)

In Eq. (5.3) 𝑇𝑏𝑚𝑎𝑥 is the maximum brake torque; depending on the type of turbine,
this value could be equivalent to the rated torque or it could be up to two times rated
torque. Moreover, 𝛼 is the "reaction slope" of the brake torque. A higher value will
produce a more sensitive brake torque response to the changes in the rotor speed (𝜔𝑟).
The fundamental requirement of the emergency stop sequence is to halt the turbine’s
operation within 5-10 sec, therefore, the torque required should be at least equivalent to
rated torque. A similar approach was taken by [102]. In this case 𝑇𝑏𝑚𝑎𝑥 = 8.6 MNm and
𝛼 = 10.

HAWC2

brake

control
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𝜔𝑟

𝑢𝑦, 𝜔𝑟, 𝛽

𝛽

Coupler Gearbox
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Matlab/Simulink
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DLLs

Generator
system
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𝑇𝑏

𝑇𝑟𝑒𝑓

𝑇𝑔

𝜔𝑔
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𝑓𝑏
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Figure 5-7: The system’s block diagram used for the emergency brake load case.

As an example, the illustrative plots in Figure 5-8 show the response of the turbine
during an emergency brake sequence. The brake is engaged at 𝑡 = 50𝑠 and the wind
turbine is exposed to a turbulent wind, with mean wind speed equal to 25 m/s.

The results show that the big impact on the LSS with up to three times the rated
values. The sequence, however, operates as expected since the turbine stops after 10 s.
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Figure 5-8: Left: Brake torque and the torsion seen at the input of the gearbox. Right:
The rotor’s angular speed.

Notice the comparison of the brake and aerodynamic torque. After the turbine stops,
there is still torque present in turbine rotor, which means that the turbine will idle very
slowly (the rotor speed is in the order of 10−1). Thus, the reaction of the brake torque
to this low speed is seen.

5.3 Simulation setup

A summary of the load cases used to obtain the results in Section 5.4 are presented in
Table 5.3. The "Special" column specifies the cases considered here, as an addition to the
traditional load cases. For example, the special cases concerning DLC 2.3 are denoted 𝑅𝑖
and 𝑡𝑗 , which corresponds to the possible combinations of rotor positions (𝑖 = 1, 2, 3, 4)
and time of occurrence of the fault (𝑡1, 𝑡2, 𝑡3). The "Total" column corresponds to the
total number of simulations that are carried out for each case. A total of 10 seeds are
used for the cases LVRT and DLC 5.1, that combined with four wind speeds (9.4, 11.4,
13.4 and 25 m/s), it leads to 40 simulations per case. In the case of DLC 2.3, we have
four wind speeds, three times of occurrence of the fault and four rotor positions, which
leads to a total of 48 simulations.

For the current investigation, the reference NREL 5MW Wind Turbine [49] is used in
HAWC2. A recently developed 5MW gearbox presented by [103] is used with some minor
modifications. The reference gearbox was upscaled from a 750 kW gearbox presented pre-
viously by NREL. Therefore, the gear ratio is equal to 81. The DFIG generator used here
is a 5MW that operates at 1200 rpm synchronous speed, with the parameters presented
in Table 5.4, previously used in different variable-speed wind turbine operation studies
presented in [104, 40, 90]. Hence, a gear ratio of 97 is needed for the gearbox, which
was obtained by modifying the last parallel stage from 4 to 4.7618. The modifications
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Table 5.3: Summary of the load cases used to calculate the extreme loads of the drive-
train [10].

Design Situation DLC Wind Condition Special Total

Power production/LVRT NA NTM 𝑉ℎ𝑢𝑏 = 𝑉𝑟 ± 2 and 𝑉𝑜𝑢𝑡

QB 40
IR 40
US 40
DK 40

Power production plus fault 2.3 EOG 𝑉ℎ𝑢𝑏 = 𝑉𝑟 ± 2 and 𝑉𝑜𝑢𝑡 𝑅𝑖,𝑡𝑗 48
Emergency stop 5.1 NTM 𝑉ℎ𝑢𝑏 = 𝑉𝑟 ± 2 and 𝑉𝑜𝑢𝑡 NA 40

were made to the pinion base radii, since in the lumped-parameter model this parameter
drives the load transmission, and therefore, the gear ratio.

Table 5.4: 5MW DFIG parameters

Parameter Value

Rated Output Power 5 MW
Line-to-line voltage 480 Vrms
Line frequency 60 Hz
Stator resistance, 𝑅𝑠 2.55× 10−4Ω
Rotor resistance, 𝑅𝑟 4.35× 10−4Ω
Stator reactance, 𝑋𝑠 4.5× 10−3Ω
Rotor reactance, 𝑋𝑟 6× 10−3Ω
Synchronous Speed 1200 rpm
Number of poles 6
Efficiency 94%

The machine controller topology used here is the same as the one presented in [94],
but different gain parameters were tuned in order to meet the 5MW power requirements
and to follow the reference torque from the wind turbine controller with an acceptable
time constant and stabilization time. These are important requirements since under
turbulent wind operation, the speed of the turbine changes constantly, and hence, the
torque, in order to maintain constant power production.

5.4 Results

The effect of the extreme events are assessed based on their impact in the planet and
pinion bearings of the low-speed planetary and high-speed parallel stages, respectively.
The analysis of the former components is important because, overall, they present the
most damage during the life-time of the wind turbine. The latter is accounted because
it is close to the generator and due to the low value in terms of reliability (see [105]).

The general expression to compute the radial bearing loads in any given gear is given
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as:

𝐹𝑏 =
√︁
𝐹 2
𝑥 + 𝐹 2

𝑦 (5.4)

where 𝐹𝑥 and 𝐹𝑦 are the bearing force components in the 𝑥 and 𝑦 directions respec-
tively and are computed as: [︂

𝐹𝑥
𝐹𝑦

]︂
=

[︂
𝐾𝑏
𝑥𝑥 𝐾𝑏

𝑥𝑦

𝐾𝑏
𝑦𝑥 𝐾𝑏

𝑦𝑦

]︂ [︂
𝑥
𝑦

]︂
(5.5)

where 𝐾𝑏
𝑖𝑗 are the bearing stiffness components. This representation is generalized in

case the cross-diagonal terms are available. In this study, these components are assumed
to be equal to zero and only the main diagonal is considered, as it was presented previ-
ously in Section 3.3. The force components will be analysed with respect to the planetary
bearings that, as the planets vibrate and rotate with the carrier, the local value of these
components change. However, the total radial force is stationary around a value that
makes sense kinematically. Perhaps, at this point, it is not of too much relevance to know
the value of each individual component, but it helps to understand how the load on the
bearings is developed in time with the addition of transient events such as those studied
here.

An example of the variation of both force components for one of the planets in the
planetary stage is presented in Figure 5-9. The radii of the circle created by the variation
of the force components corresponds to the magnitude of the force given in eq. (5.4). In
addition, a second example in the same figure shows what happens when a fault occurs.
It is shown how the progression of the components is affected. Moreover, the location of
the planet and the magnitude of each component is related. However, in terms of the
magnitude of the radial load experience by the bearing, this is not too relevant since it
will have the same value regardless of the location. This might change when gravity is
included, but that is not the case in this model.

The rest of the section is focused on presenting the simulation results of the cases
in Table 5.3. Since we are dealing with extreme events, the results will focus on finding
the maximum loads achieved by each of these cases. The recommendations given in [10]
for ultimate limit state analysis are used to find the worst case scenario loads, which are
computed from the time-series and with the safety factors as:

𝐹𝑑 = 𝛾𝑓𝐹𝑘 (5.6)

where 𝐹𝑑 is the design load, 𝛾𝑓 is the safety factor and 𝐹𝑘 is the characteristic value
of the load. The latter is computed differently depending on the case, which will be
explained in detail in each subsection concerning the results for each load case. The
safety factors are included so the uncertainties that are inherent in the analysis and
methods used in wind turbine certification, are accounted for in the calculation of design
loads. Furthermore, there are safety factors concerning the "importance of structural
components with respect to the consequence of failure", but those are not included here
since the current study focuses only in finding the ultimate loads.
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Figure 5-9: The force components of the planet bearing at 9.4 m/s (blue –) and 25 m/s
(red :).

5.4.1 LVRT

In the normal operation DLC 1.1 the turbine operates with turbulent wind defined by
the NTM at different intensities, which depend on the mean wind speed. Here, the
impact on the planet bearings of the planetary stage and the pinion of the parallel stage
is assessed by means of the maximum load achieved. This is done for the four grid codes
treated here. But first, let us present an example of the time history for both bearings
in Figures 5-10 and 5-11. The time history of one of the seeds is plotted to visualize
the effect of the LVRT. Qualitatively, both bearings, in the planetary stage and HSS
stage, experience the same impact in terms of load amplification with respect to their
mean, and recovery time. This is consistent to the concept of a gearbox, where the load
path is transferred between the input and the output in order to maintain equilibrium.
Therefore, the foregoing analysis is done on the impact of the LVRT in general for both
components.

As it was expected from the torque signals in Figure 5-3, the case of Quebec seems
to be worst. In contrast, the short recovery period of Quebec’s grid code does not have
a positive effect since the generator controller will generate a control effort by increasing
the reactive current in order to support the fault. This produces the high spikes in the
torque signal (as it was shown in 5-3). Consequently, higher oscillations translate into
longer recovery time, as it is the case for 𝑈𝑦 = 25 m/s. But, why is it higher at this mean
wind speed? A detailed observation into the wind speed time series, and in comparison
to another seed, shows that during the fault, the wind speed of seed 4 was 14% lower
than the mean of 𝑈𝑦 = 25 m/s. In contrast, the wind speed on seed 7 at the time of
the fault was only 6%. This produces difference in the main shaft rotational speed. For
instance, at the moment of the fault, the speed corresponding to seed 4 was 1.5% higher
than rated. On the contrary, the rotational speed that corresponds to seed 7 was 2%
higher than rated. That is to say, that at higher speed the lower is the torsional moment
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Figure 5-10: Sample result of the LVRT under the NTM for one of the planets in the
low-speed planetary stage. The four wind speeds are shown for one of the
seeds.

in the main shaft, which transfers the loading into the gearbox. A comparison of the
two loads is presented in Figure 5-12, along with the rotor speed, where the difference in
mean rotational speed is obvious at the moment of the fault. To ease the visualization,
the results from seed 7 were shifted -150 s so the fault seems to "occur" at the same time.
In reality, in this seed the fault was scheduled at 550 s.

An extreme value analysis of the entire set of simulations (160 in total) shows that
the effects are worst for the cut-out speed (25 m/s) and for the Quebec grid code. The
numerical results that represent the mean value of the maximum loads for each wind
speed are presented in Table 5.5 and a graphical representation is shown in Figure 5-
13. Observe that the Quebec case is consistent throughout the wind speed range by
causing maximum loads, compared to the other cases. In contrast, the cases of Ireland
and United States are similar, as it is for their recovery strategy. The grid code that
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Figure 5-11: Sample result of the LVRT under the NTM for the pinion in the high-
speed stage. The four wind speeds are shown for one of the seeds.

produces less impact on the bearing loads is Ireland, which consequently has a longer
recovery time. Moreover, it’s requirement for percentage of voltage loss is the same as
the US, but nevertheless, the recovery time seems to be the driver for reduced bearings
loads.

If we compute the area "over" the curve of the voltage profile during the fault times,
and normalize the loads from Table 5.5 with respect to the mean value of the load during
the fault, we obtain the results shown in Figure 5-14. Each data point corresponds
to each country in the following order from the highest to the lowest load: Quebec,
Denmark, United States and Ireland. This result is very important since it accounts
for the parameters that drive the type of voltage profile and it compares them with a
"perceived" impact in terms of average maximum loads in the bearings. From this, it can
be concluded that there is a compromise in the voltage profile in terms of the percentage
loss, fault duration and recovery time, that could potentially reduce the impact in the
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Figure 5-12: Sample result of the LVRT for seeds 4 and 7 at 25 m/s. The vertical
dotted line in the left plot indicates the occurrence of a fault.

Table 5.5: DLC 1.1 with LVRT results: the mean maximum values of the bearing radial
loads (in MN) for each wind speed (in m/s), grid code case and gearbox stage.

Stage Wind Speed QB US IR DK

Planetary

9.4 3.2822 2.3449 2.3558 2.5684
11.4 4.0890 2.7888 2.6959 3.2368
13.4 4.6231 2.9957 2.9268 3.6251
25 4.6640 3.0899 2.9928 3.5525

Parallel

9.4 0.3072 0.2251 0.2259 0.2438
11.4 0.3830 0.2671 0.2581 0.3067
13.4 0.4329 0.2866 0.2797 0.3429
25 0.4369 0.2954 0.2859 0.3365

bearing loading.
So far, it was observed that two parameters might be driving the high loads due

to an LVRT. The first, and obvious one, is the FRT requirement that the grid code
of each country recommends. Another possibility is a stochastic event such as a gust
within the simulation seed, which either accelerates or decelerates the turbine, producing
a different mean rotational speed before, and during the fault. In reality, the loads at a
given component whether in a wind turbine or an engineer structure, are driven by the
contribution of the vibration modes of such a structure. For rotating machinery, it is
the first rotational frequency that appears as a source of excitation. In 3-bladed wind
turbines, one of the excitation modes comes from the rotational speed and it is known
as 1P (1×the rotational speed). In addition, the rotor passing frequency also excites the
system with a frequency equal to 3P [106]. Consequently, the studies in this section deal
with the occurrence of a short transient event within a long simulation time. From this,
a waterfall plot was obtained for the ongoing example of seed 4 at a mean wind speed
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Figure 5-13: The mean of the maximum radial loads (among all seeds) in the bearings
of one of the planets in the planetary stage (left) and the high-speed
pinion bearing (right).
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Figure 5-14: The area "over" the curve used for the analysis is shaded with checkers
(left). A graphical representation of the impact on the bearing maximum
loads due to FRT requirements (right). An area equal to zero means that
no fault occurs.

of 25 m/s. This result sheds some light in what could be driving the maximum loads
during this event. The result is shown in Figure 5-15. The square box corresponds to the
highest amplitude in the frequency domain, which occurs in the bin around 200 s. From
intuition, one might think that the drivetrain torsional mode is contributing to the high
load, which is accurate (and is consistent with the findings on Chapter 4). However, the
mode that contributes the most is 3P and is the frequency of the peak marked with the
red box.

In the wind turbine model used here, a 3P frequency corresponds to roughly 0.6 Hz.
A closer look into the generator torque response due to the Quebec type fault, shows
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Figure 5-15: The waterfall spectrum of the planet bearing load for seed 4 at 25 m/s
(see Figure 5-10). The square box denotes the maximum point in the
spectrum.

that the total recovery time, including the transients after the fault is cleared, is roughly
1.6 s. This period corresponds to ≈ 0.6 Hz, which is believed to excite the system at
this frequency, which causes 3P to have a higher contribution to the loads during the
transient period.

5.4.2 Power production plus fault

In a DLC 2.3 with failure of the electrical network, the generator torque is set to zero
at different points during a wind gust, as it was shown previously in Figure 5-5. From a
total of 48 simulations, four sets of results are categorized depending on the wind speed.
Each set contains 12 seeds, which is the result of a combination of three rotor positions 𝑅𝑖
and time of occurrence of the fault 𝑡𝑖. The different rotor position cases add randomness
to the simulations, but it was observed that the rotor position has little effect on the
bearing loads. However, the time of the fault has a big impact as seen in Figure 5-16
and in the results in Table 5.6.

The results are consistent with the previous results for the LVRT cases, where the
maximum loads were achieved at the cut-out wind speed. In the case of DLC 2.3, this
makes sense since the wind gust magnitude is computed as a function of the mean wind
speed, among other parameters [10].
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Table 5.6: DLC 2.3 Results: the mean maximum values of the bearing radial loads (in
MN) for each wind speed (in m/s), time of occurrence of a case fault and
gearbox stage.

Stage Wind Speed 𝑡1 𝑡2 𝑡3

Planetary

9.4 1.5355 1.5997 1.7084
11.4 2.1436 2.1878 2.1891
13.4 2.2417 2.2852 2.2841
25 2.4154 2.4772 2.4802

Parallel

9.4 0.1473 0.1532 0.1639
11.4 0.2056 0.2096 0.2097
13.4 0.2147 0.2186 0.2185
25 0.2303 0.2359 0.2362
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Figure 5-16: Planetary bearing loads due to a normal stop. All seeds are shown.
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5.4.3 Emergency stop

An emergency brake was represented by a higher than rated torque in the high-speed
shaft, as shown in diagram 5-7. There is no real directive that recommends a specific
value for the brake torque, so a value of two times rated torque was used. Examples of
the bearing loads in the planetary stage is shown in Figure 5-17. All the seeds are shown
and the brake was activated at the same time, i.e. 150 s.

A glance at the time-series shows that the loads reach around three times their rated
value, with the maximum point being two times the overall torque reached while the
brake is activated.

Table 5.7: DLC 5.1 results: the mean maximum values of the bearing radial loads (in
MN) for all the seeds at each wind speed (in m/s).

Wind Speed Parallel Planetary

9.4 0.6103 6.4523
11.4 0.6187 6.5335
13.4 0.6196 6.5404
25 0.6194 6.5952
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Figure 5-17: Planetary bearing loads due to a emergency stop. All seeds are shown.
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5.5 Maximum contact stress

The contact stresses computation is important for the design of bearings since it gives
an idea of the possible impact, due to extreme loads, that the bearing will experience.
Even though the bearings are designed for moderate loading, the rollers can experience
high stresses due to the small surface in contact with the race. This contact surface is
usually modeled as a point contact for ball bearings and a line contact for roller bearings
[57]. In the investigation presented in this chapter, it is assumed the bearings are of the
roller bearing type, therefore the following calculation is based on line contact.

The IEC 61400-4 standard for wind turbine gearbox design [44] recommends different
methods to compute the maximum roller contact stresses. It is not an intention to repeat
step by step the method in the standard, but to highlight the most relevant concepts and
to present the results based on the load computation in the preceding section.

The starting point is to calculate the equivalent bearing load by:

𝑃0 = 𝑋0𝐹𝑟 + 𝑌0𝐹𝑎 (5.7)

where 𝑋0 and 𝑌0 are static radial and axial load factors, respectively; 𝐹𝑟 is the
maximum radial load in N; and 𝐹𝑎 is the maximum axial load in N. In the models used
here, only the translation in the 𝑥 and 𝑦 direction are considered. Therefore, only the
radial loads are calculated and 𝐹𝑎 = 0 N. According to the standard, 𝑋0 = 0.5 for
double-row bearings, which is the case in the model used here. Then, 𝑃0 will be equal
to the values found in the previous section. In reality, this load is distributed among the
rolling elements. The load distribution can be estimated based on the number of rollers
and the load sharing factor 𝑘, which depends on the initial bearing clearance.

𝑄 =
𝑃0

𝑍 cos𝛼0
𝑘 (5.8)

where 𝑄 represents the single roller maximum load, 𝑍 is the total number of rolling
elements in a bearing row and 𝛼0 is the nominal contact angle (in this case is equal to
zero). The maximum contact pressure 𝑝𝑙𝑖𝑛𝑒 is calculated by:

𝑝𝑙𝑖𝑛𝑒 = 270

√︂
1

2

𝑄

𝐿𝑤𝑒

∑︁
𝜌𝑙𝑖𝑛𝑒 (5.9)

where 𝐿𝑤𝑒 denotes the effective roller length in mm, and
∑︀
𝜌𝑙𝑖𝑛𝑒 is the contact pres-

sure factor for a line contact and it is an indicator of the curvature and it is used to
"describe the contact between two mating surfaces in revolution" [57]. The contact pres-
sure factor is computed by:

∑︁
𝜌𝑙𝑖𝑛𝑒 =

2

𝐷𝑤
+

2
𝐷𝑝𝑤

cos𝛼0
−𝐷𝑤

(5.10)
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Table 5.8: The parameters used to represent one set of planet bearings in the low-speed
planetary stage [11]. A cylindrical roller bearing type was chosen.

Parameter Value

Inner diameter, 𝑏 [mm] 200
Outer diameter, 𝐷 [mm] 420
Basic dynamic load, 𝐶 [kN] 1980
Pressure angle, 𝛼0 [Deg] 0
Roller length, 𝐿𝑤𝑒 [mm] 138
Roller diameter, 𝐷𝑤 [mm] 37.5
Bearing pitch diameter, 𝐷𝑝𝑤 [mm] 310

Moreover, the maximum contact stress is given as:

𝑝𝑚𝑎𝑥 = 𝐾𝑙𝑐𝐾𝑚𝑝𝑙𝑖𝑛𝑒 (5.11)

where 𝐾𝑚 and 𝐾𝑙𝑐 are the misalignment and the ratio to maximum nominal line
contact pressure factors, respectively.

Next, the preceding method is used to compute the maximum contact stresses of the
planet bearings with the results from the previous section in Tables 5.5, 5.6 and 5.7. The
bearing parameters in Table were used for the computation
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Figure 5-18: The maximum contact stresses from the bearing radial loads in one of the
low-speed planetary stage planets. According to the IEC 61400 standard,
there is risk of damage above 2000 MPa.

Without doubt, the emergency brake is the event that imposes the highest stresses in
the bearing components, followed by the LVRT events. As seen before, the strategy for
recovery affects the severity of the impact, now in terms of contact stresses. Moreover,
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the normal stop operation is the most benign case in terms of bearings stresses. However,
for wind speeds below rated, there is no major effect in the bearing contact stresses.

5.6 Conclusions

It was the purpose of this chapter to document the capabilities of the methods developed
here in terms of transient events that affect the wind turbine such as LVRT, normal and
emergency stop. Moreover, the effect on the bearing loads of these transient events was
investigated, putting emphasis in the planet bearings in the low-speed planetary gearbox.
That being said, three major conclusions can be deducted:

LVRT In the event of an electric fault at the DFIG’s excitation voltage, the fault does
not greatly affect the turbine, hence, it is possible to ensure the continuous oper-
ation, in addition to following the grid codes. However, with the voltage profiles
treated here it was shown that the amount of excitation lost, the duration of the
fault and the recovery time have an important effect on the bearing loads. The
cases chosen for the study, i.e. Quebec, Ireland, USA and Denmark, were care-
fully considered in order to have different levels in the parameters that define the
voltage profile, so the impact on the loads was easily assessed. A major finding
from the LVRT simulations is that if we considered the area "over" the curve of
the voltage profiles, it is easy to realize the maximum loads that can be obtained
in the bearings, mostly due to the percentage of voltage loss and the recovery time
of the fault. This opens the door for future research on the importance of con-
sidering an integrated design. There is no data available, to the knowledge of the
author, that shows a higher percentage of failure of the bearings in wind turbines
located in Quebec, for instance. But regardless of this, the findings show that by
re-considering the worst case in where a turbine must stay connected it is possible
to mitigate the negative effects on the drivetrain components, when an electric fault
occurs. Moreover, the frequency around 3P was identified to be the most excited
during a LVRT event.

DLC 2.3 The normal stop operation was the event that with the least negative effect on
the bearing loads. Accordingly, there is no major event driving the bearing loads to
a maximum point out of the ordinary. The maximum values obtained were due to
the wind gust at 25 m/s where the peak wind speed reach 32 m/s, and the turbine
was stopped. However, the load magnitude is due merely to the response of the
turbine and not the stop. The modification in the rotor position showed no effect
on the loads. The major driver was the time of occurrence of the fault, in this case,
at 𝑡3 which corresponds to the highest wind speed during the gust.

DLC 5.1 From the overall results, it was observed that the emergency stop case pre-
sented the highest impact on the bearings for all wind speeds. With almost twice
the allowed maximum contact stress, this case is the one that seems more likely to
accelerate damage in the bearings. However, the high load produced at the time
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of breaking is directly proportional to the brake torque. In the case treated here,
the brake torque was equivalent to two times rated torque, hence, the maximum
load reached approximately three times its value before the brake was activated.
Although the loads were very high compared to the other cases, it is possible to
reduce them by implementing better braking techniques that use a lower brake
torque and bring the turbine to stop within a reasonable amount of time (<10 s).
It is out of the scope of this thesis to explore braking methods, but it is believed
that this is a relevant topic for future research.

Previous research has shown that the bearing failure starts with cracks under the
surface, due to normal fatigue. However, the extreme events studied here can accelerate
this process due to the special cases where the load is doubled or tripled. Consequently,
cases like this will most likely result in premature failure of the bearings, as it is the case
nowadays. Therefore, the methods presented here showed the impact on the bearings
maximum loading, which can be accounted for in the early stages of design. In order to
reduce the effects, it is important to include this type of simulations in the design stage
so methods to mitigate the high loads can be investigated. In addition, the rating of the
bearings can be adjusted to the findings so a compromise is reached in terms of reliability
and cost reduction.
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6

Reliability of wind turbine
drivetrains

6.1 Introduction

One of the main focuses of the wind energy research community is to design systems
based, not only on dynamical models representing the behavior of the system, but also,
on models that include additional stochastic information. The latter approach allows
an estimation of the expected lifetime (or expected failure frequency) of the components
based on previous knowledge of the wind conditions, strength of the material and un-
certainties, just to name a few. An important element of this approach, is to make
reliability based decisions in order to minimize costs in repair and maintenance of wind
turbine components. In the context of wind turbine drivetrains, it is of high relevance
to study the planetary stage bearings due to the recurrent failures that reduce the life-
time of the components. Therefore, it is important to consider different configurations
in the design stage of the gearbox. For instance, different types of bearings are de-
signed to withstand different loading distributions among the rollers. In this chapter,
the bearing models presented in Section 3.3.3 are included into the electromechanical
simulation model of the drivetrain (Section 3.5). The bearing model pre-processor is
used to estimate the bearing stiffness matrix components in the radial directions, based
on the bearing physical parameters such as race dimensions, number of rollers and roller
contact angle. In the past, other studies have focused on the fatigue of the planetary
bearings. For example, Nejad et al. [105] presented results for the entire gearbox com-
ponents in terms of the cumulative damage and produced a “vulnerability map” where
it is possible to identify the components more prone to failure. Another study found,
from field data, that failure due to bearing fatigue is feasible even at rated conditions
given their observations of the bearing loads in the planetary stage [81]. According to
the study, some events that produce torques above 150% of rated could induce higher
damage in the components. This is the case in extreme events such as emergency brakes
or electric faults. However, these are cases that do not occur that often, and are related
to the ultimate load analysis presented in Chapter 5. Therefore, when the focus is on
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fatigue and reliability, it is necessary to analyze the response of the components under
normal operation conditions. The chapter is structured as: first, the theory of reliability
analysis and the method implemented for the investigation is presented. Second, the
method used to obtain the simulation results is given. It includes the bearing models,
CRB and TRB, and a description of the system. The difference in the model lies in
the contact angle of the rollers and the effect it has on the stiffness matrix. Later, the
reliability analysis is done in conjunction to the bearing life and the requirements of the
IEC 61400-1 standard for wind turbine design [44]. Finally, the results are explained and
conclusions are drawn from the difference in terms of reliability found between the two
bearing models.

6.2 First-order reliability method

Structural integrity is perhaps one of the major focus during the lifetime of a component.
In theory, there are multiple modes of failure which the structure is vulnerable to. How-
ever, it is impossible to analyze all the possible failure modes due to the complexity of
certain structures. Therefore, attention is given to a subset of relevant failure modes [7].
In the early stages of the design, the structure’s response to external loading is analysed
using models that intend to describe its behavior. Without doubt, uncertainty in the
models contribute to differences in the response, specially when considering degradation
in the material properties over time. This is one of the factors that contribute to a small
probability that the system under study will not perform as desired in terms of longevity
[107]. No system can perform as designed forever, meaning unlimited life. Therefor,
there is always a probability of failure associated to the system, and it is influenced by
the design of the components, material properties, loading, extreme events, etc.

The main purpose of reliability analysis is to find the probability of failure of a given
structure, or system, subjected to external loading. For the computation of reliability
it is necessary to specify the resistance of the structure, along with different uncertain-
ties related to the models and the assumptions during the design. The basic problem
formulation in reliability analysis is to define the so-called limit state equation, which
describes the state of the structure by a quantitative index [7]. Let 𝑔 (x) be defined as
the limit state function, which describes the state of the structure for a given set of x.
The failure domain is defined for the condition 𝑔 (x) ≤ 0 and 𝑔 (x) = 0 is the failure
surface. Calculating the probability of failure amounts to evaluating the integral of the
joint distribution of the set of random variables over the failure domain:

𝑝𝑓 =

∫︁
𝑔(x)≤0

𝑓x (x) 𝑑x (6.1)

where is the joint probability density function of the random variables x. These vari-
ables are representative of the loading in the structure, the resistance and the associated
uncertainties, and 𝑔 (x) ≤ 0 is a zero-one indicator function which equals 1 when failure
occurs.
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A straightforward interpretation of the limit state equation is to define it as a com-
bination of the capacity of the structure and the demand which it is subject to. For
example:

𝑔 (x) = 𝑅 (x)− 𝑆 (x) (6.2)

It is clear from eq. 6.2 that if the demand 𝑆 (x) is equal to the resistance 𝑅 (x), the
structure will fail. Later in the chapter, this concept will be used to derive a limit state
equation that relates the required bearing life in hours, to the failure of the bearings.

There is no trivial solution to the integral in eq. 6.1 and a numerical solution is time
consuming [7], specially for larger dimensions of the vector x. However, for the case of
normal distributed variables and a linear limit state function, the probability of failure
found by:

𝑝𝑓 = Φ(−𝛽) (6.3)

where 𝛽 is the reliability index and it is defined as:

𝛽 =
𝜇𝑔
𝜎𝑔

(6.4)

where 𝜇𝑔 and 𝜎𝑔 are the mean and standard deviation of 𝑔 (x), respectively.

However, in the reliability analysis of complex structures, the limit state equation
is generally a non-linear function of the random variables related to the structure, in
addition, to the associated uncertainties. In such cases, the vector of random variables
x and the uncertainties are defined in terms of probability distributions. This type of
analysis falls into the category of Level III reliability methods [107, 7]. Hence, the
reliability index is to be defined as the first-order reliability index and it is found by
applying FORM.

In FORM, the variables in vector x are assumed to be correlated and normally dis-
tributed. Therefore, the initial step is to transform the variables from the 𝑥−space to
the normal space (𝑢−space), so they become statistically independent and identically
distributed. This transformation is made by:

𝑢𝑖 = Φ−1 (𝐹 (𝑥𝑖)) (6.5)

where 𝐹 (𝑥𝑖) is the cumulative distribution of the random variable 𝑥𝑖. With this, it
is possible to compute the value of the limit state function 𝑔(u) in the normal space.

From the transformation to the normal space it is possible to define the Hasofer-Lind
reliability index, 𝛽, as the minimum distance between the origin and the failure surface.
Since in general the limit state equation is of non-linear nature, it is necessary to find
the design point, and hence the reliability index, by solving the optimization problem in
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eq. 6.6. The iteration procedure is given in Algorithm 1.

𝛽 = min
𝑔(u)=0

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝑢2𝑖 = u*𝑇u* (6.6)

where u* is denoted as the design point and is located on the failure surface at a
location with the smallest distance to the origin.

Figure 6-1 shows the geometrical interpretation of 𝛽 for an example of a reliability
problem with two random variables. The vector 𝛼 is an unit vector normal to the design
point and is commonly known as the important factor defined as:

𝛼 = − ∇𝑔(u*

|∇𝑔(u*)| (6.7)

From eq. 6.7 it is seen that this vector represents the sensitivities of the inaccuracies
in the random variables used for the reliability index calculation. Later, in the results
section, it will be seen that importance factor is associated to the uncertainties that are
included in the definition of the limit state equation. This is an important relationship,
since the uncertainties are a measure of the accuracy of the statistical data and the
models used to obtain the bearing loads.

𝑢2

𝑢1

𝛽

Limit state surface
Safe set

Failure set

𝑔(u) = 0

u*

𝛼

Figure 6-1: Illustration of the probability of failure in the normal space for two random
variables (inspired from [7, 8]).

This concludes the description of the FORM implemented in this chapter to analyze
the impact that different bearing configurations have in the overall drivetrain reliabil-
ity. The next section describes the methods used to model the bearing types for the
calculation of the loads in the planet bearings of the planetary stage.

112



Algorithm 1: Iterative procedure to find 𝛽 and u* [8]
Data: Mean and standard deviation of the random variables in the limit state

function
Result: Reliability index 𝛽

1 Define the initial point u0, and set the iteration 𝑖 = 0;
2 Compute the value of 𝑔(ui);
3 Compute the gradient ∇𝑔(u𝑖);
4 Estimate an updated value of u𝑖+1:
5

u𝑖+1 =
∇𝑔(u𝑖)𝑇u𝑖 − 𝑔(u𝑖)

∇𝑔(u𝑖)𝑇∇𝑔(u𝑖)
∇𝑔(u𝑖)

6 Update the reliability index: 𝛽𝑖+1 =
√︀
(u𝑖+1)𝑇u𝑖+1;

7 Stop if |𝛽𝑖+1 − 𝛽𝑖| < 𝜀;

6.3 Methods

The models discussed in Section 3.3 are used to describe a multi-stage gearbox for the
investigation in this chapter. Initially, the bearing matrix was given as a main diagonal
equal to the bearing stiffness values, and with zero value cross-diagonal components. The
detailed bearing models presented in Section 3.3.3 are used here in order to find all the
bearing matrix components based on the hypothesis that a contact angle equal to zero will
produce a CRB, while a value lager than zero produces a TRB. The main difference will
be the overall bearing stiffness matrix of the planet bearings in the low-speed planetary
stage gearbox.

Let us define the bearing matrix corresponding to the flexible supports a transla-
tional/rotational gear model as:

𝐾𝑏 =

⎡⎣𝐾𝑥𝑥 𝐾𝑥𝑦 0
𝐾𝑦𝑥 𝐾𝑦𝑦 0
0 0 0

⎤⎦ (6.8)

where 𝐾𝑥𝑥 = 𝐾𝑦𝑦 and 𝐾𝑥𝑦 = 𝐾𝑦𝑥. The zero entries correspond to the rotational
DOF. The non-zero entries are found with the bearing model discussed before for different
contact angles and a pre-defined displacement in the 𝑥 and 𝑦 direction. Form previous
simulations, an average of this values was found and it was used to compute the final
bearing cross-diagonal components. A variation of the stiffness given different contact
angles and displacements is shown in Figure 6-2.

From the figure it is seen that the major drivers of the variation in the stiffness is the
contact angle of the roller and the initial displacement in one of the radial directions, in
this case, in 𝑥. The stiffness values used in the simulations are presented in Table 6.1.

Since grid events are not considered in this investigation and a normal operation load
case is considered, the electromechanical model used here is the same as the one used
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Figure 6-2: Bearing stiffness component variation due to different values of displace-
ment in the x direction and contact angle.

Table 6.1: Bearing stiffness parameters for the CRB and TRB.

Type of Bearing 𝐾𝑥𝑥 [N/m] 𝐾𝑥𝑦 [N/m]

Cylindrical Roller Bearing 5.2× 108 4.969× 106

Tapered Roller Bearing 6.907× 108 1.346× 107

in Chapter 4. That is, a multi-stage gearbox composed of a low-speed planetary stage,
followed by two parallel stages. The generator is a PMSG and its model is given in
Appendix E. The overall system follows the block diagram in Figure 3-22.

6.4 Results

The entire wind turbine system is simulated using the co-simulation approach presented
in the previous section. Two sets of simulations are done, each with a different bearing
stiffness matrix representing the difference in bearing configuration. The DLC 1.1 normal
operation case from the IEC 61400-1 ed. 3 standard [4] is chosen in order to perform
fatigue computations and reliability analysis from both configurations. In total, six
random turbulence seeds using the Normal Turbulence Model (NTM) are simulated at
mean wind speeds ranging from 5 m/s to 25 m/s in increments of 2 m/s bins.

6.4.1 Bearing life

The time-series is analysed to compute the bearing fatigue damage resulting from varia-
tions in the torsional loads due to turbulent wind. Furthermore, the reactions due to the
gear mesh forces also have an effect in the bearing response. The analysis in this section
uses the loads in units of Newton opposed to stresses which are commonly used in this
type of analysis. The damage equivalent load due to the bearing radial forces is found
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by eq. 4.3. From here, the results are fitted to a normal distribution and it is shown in
Figure 6-3. As expected, the mean value of the TRB is higher than the CRB.
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Figure 6-3: Fit to a normal distribution of the damage equivalent loads for both types
of bearings.

The results in Figure 6-4 shows the damage equivalent load computed from one of
the seeds and for each wind speed from the bulk of simulations (consistent to the results
shown in Figure 6-3). Before reaching rated speed the difference on the equivalent loads
between the two sets is small. However, as the wind turbine reaches rated-speed (9 and
11 m/s), and after (>11 m/s), the damage equivalent load in both sets increase with a
similar trend with the TRB having higher damage than the CRB. The higher load is due
to a higher stiffness component in the stiffness matrix (see Table 1).
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Figure 6-4: 1-h Damage equivalent load of one of the seeds for both sets of simulation.

The main focus is to determine whether a CRB or a TRB configuration is more
beneficial for the planetary gearbox reliability. Hence, the minimum requirements for a
wind turbine bearing life given by [19] are used for the analysis of these configurations.
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Table 6.2: Bearing parameters [11]

Parameter CRB TRB

Inner diameter, 𝑏 [mm] 200 200
Outer diameter, 𝐷 [mm] 400 360
Basic dynamic load, 𝐶 [kN] 1980 2090

The basic rating life can be computed using:

𝐿ℎ10 =
106

60𝑛

(︂
𝐶

𝑃

)︂𝑝
(6.9)

where 𝑛 is the operational speed, 𝐶 is the bearing dynamic load rating (given by
the manufacturer), 𝑃 is the equivalent load and 𝑝 is the life exponent (10/3 for roller
bearings). According to the IEC 61400-4 standard [44], the recommended basic rating
life for a bearing in the low-speed planetary stage should be of 105 hours for a 20 year
design life.

6.4.2 Reliability

Because the analysis of the bearing life is of interest in this study, the limit state function
is formulated as:

𝑔(x) =
106

60𝑛

(︂
𝐶

𝑃 (x𝑟)𝜒𝑠𝜒𝑎𝑒𝑟𝑜𝜒𝑑𝑦𝑛𝜒𝑠𝑡𝑎𝑡

)︂𝑝
− 105 (6.10)

where 𝜒𝑎𝑒𝑟𝑜, 𝜒𝑑𝑦𝑛, and 𝜒𝑠𝑡𝑎𝑡 are stochastic variables representing the uncertainties
in: aerodynamic load calculation, dynamic response of the turbine, and statistical un-
certainty due to the reduced number of simulations. The uncertainty models presented
in [105] are used since the approach is similar. Last, x𝑟 denotes the random variable
related to the radial load in the bearing which has a stochastic effect in the equivalent
load calculation. In equation (6.10), the value of 105 hours is the condition for a bearing
to survive the 20 year requirement. The results presented in Figure 6-5 show the values
for the reliability index and the probability of failure for different values of C. It is seen
that the CRB configuration more reliable than TRB when the reliability analysis is done
for the same value of dynamic rating. However, the zoomed section shows that for the
corresponding dynamic rating of the bearing parameters used in the simulations (see Ta-
ble 6.2) the TRB is slightly more reliable than the CRB. According to the results, there
seems to be a relation between the dynamic rating, the damage equivalent load and the
stiffness of the bearing.

For instance, even though a higher damage equivalent load is observed for the TRB
throughout the wind speeds, it is still more reliable than the CRB when considering a
5% higher dynamic rating. This therefore portrays the significance in ascertaining an
accurate dynamic rating of the bearing from the manufacturer. A summary of the results
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Figure 6-5: Effect of the dynamic load rating (𝐶) in the reliability index (left) and the
probability of failure right.

Table 6.3: Reliability analysis results

Bearing type 𝛽 𝑝𝑓
Importance factors, 𝛼

𝜒𝑠 𝜒𝑎𝑒𝑟𝑜 𝜒𝑑𝑦𝑛 𝜒𝑠𝑡𝑎𝑡

Cylindrical Roller bearing 3.83 9.0× 10−5 0.121 0.809 0.405 0.405
Tapered Roller bearing 3.97 6.0× 10−5 0.121 0.809 0.405 0.405

including the reliability index, probability of failure and importance factors is presented in
Table 6.3. Note the high impact of the uncertainty related to the aerodynamic calculation.
This is consistent with the findings from previous work [105] where this value was also
higher than other factors. The higher stiffness associated with a higher contact angle
than zero will result in higher stresses in the bearing rollers. Even though the stresses are
not calculated explicitly, the theory behind the bearing life in equation (6.9) is based on
Hertzian stress contact theory for line contacts, as proposed by Lundberg and Palmgren
in [56]. Therefore, it is expected that a higher probability of failure is to be observed for
same values of dynamic rating. These values have been computed with an implementation
of FORM [7].

Note the high impact of the uncertainty related to the aerodynamic calculation. This
is consistent with the findings from previous work [105] where this value was also higher
than other factors. The higher stiffness associated with a higher contact angle than zero
will result in higher stresses in the bearing rollers. Even though the stresses are not
calculated explicitly, the theory behind the bearing life in equation (6.9) is based on
Hertzian stress contact theory for line contacts, as proposed by Lundberg and Palmgren
in [56]. Therefore, it is expected that a higher probability of failure is to be observed for
same values of dynamic rating.
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6.5 Conclusions

This chapter presented a method that can be used in bearing selection stages during the
preliminary design of a planetary gearbox for use in wind turbines. First, an approach
for a dynamic coupling between two tools, based on previous work, is extended to include
a detailed gearbox model based on lumped-parameters. The coupled analysis allows for
complete system simulation of the electromechanical and structural components of the
wind turbine. A model of this kind provides added information in early design stages
since it is relatively fast to run, compared to high-fidelity FEM models, in addition to
the possibility of defining different gearbox and generator combinations. From this, a
simulation of normal power production is carried out in order to perform fatigue analysis
in the bearings. The results showed the differences in bearing fatigue and it was found
that the TRB accumulates more damage across the wind speed range due to the higher
stiffness in the model. However, there is no big difference between the two models in
terms of reliability due to the significant effect of the dynamic bearing capacities. This
chapter demonstrates the capabilities of the simulation tool and the potential results in
terms of bearing reliability when a parametric analysis is made. Additional work, in the
future, should include the axial loads generated by non-torque loads in the wind turbine
rotor such thrust and bending moments.
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7

Conclusions

“In soloing - as in other activities - it is far easier to start something than it is
to finish it.”

– Amelia Earhart

This dissertation has shown progress in the methods for integrated analysis of wind
turbines. Special attention was given to the gearbox, where a translational/rotational
model was included in the dynamic simulations. The translational degrees-of-freedom
are relevant for the analysis of the bearing loads. The method used for the modeling of
the gearbox was the lumped-parameter method, a simplification of the topology of the
system, yet accurate enough as it was shown by the experimental validation. Further-
more, the model is more efficient in terms of computational time when compared to an
early implementation of a multi-body dynamics code that showed to be slow and unsta-
ble, given the chosen constraint formulations. The turning point, meaning the change
of modeling approach, was backed up by the results from other researchers, where com-
plex gear mesh stiffness models were implemented, along with very long computational
times (14 h - 15 h) to obtain 30 s of simulation time. Consequently, the low amount of
data obtained with results of this kind, will reduce the confidence for future probabilistic
analysis, where large amount of data is needed in order to reduce uncertainties in the
results. The method presented here is capable to provide the requirements to carry out
future probabilistic analysis of the response of the drivetrain components, in terms of
probability of failure, fatigue, extreme value analysis and reliability.

The main focus of the analysis in this dissertation was to quantify the impact that
certain events have on the planetary bearings. Hence, most of the results from the
preceding chapters make emphasis on this component. Accordingly, several studies were
carried out where the bearing loads were analysed in terms of fatigue, maximum contact
stresses and reliability.

First, the electromechanical drivetrain simulation tool was tested with DLC 1.1 simu-
lations, while dynamically coupled by torsion to HAWC2. An additional validation of the
tool was made in order to confirm the correct operation in the co-simulation mode. That
is, the wind turbine dynamics were not affected by the addition of an external system
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and reaction forces. The most critical mode that must be considered in this approach
is the drivetrain torsion, which depends heavily on the equivalent inertia and stiffness
of the drivetrain components when referred to the low-speed shaft. The inertias were
matched but it was found that the mode was shifted due to the added flexibilities of
the internal components. This finding sheds light into the importance of an integrated
analysis. In addition, the fatigue analysis of the planet bearings showed that the contri-
bution to the damage source is a combination of some wind turbine modes and the 2nd
drivetrain mode, which is a combination of the high-speed stage and generator. Thus,
this a conclusion that cannot be reached when using only an aeroelastic code.

An additional study looked into the effects of extreme loads have on the bearings.
The major contribution was to carry out LVRT simulations where the bearing response
is considered and quantified. Personally, one of the most important conclusions from
this dissertation comes from the analysis of different grid codes requirements in the
system simulation. It was found that the FRT requirements are relevant in terms of the
maximum loads the bearings experience when subject to a low voltage grid event. In
addition, the requirements for the wind turbine operation during such events contribute
to the negative impact on the components. The emergency brake situation was shown to
be the one with the highest impact on the bearing loads. However, the impact of these
cases can be mitigated by making modifications on the way the turbine handles such
events.

A reliability method was used to assess the probability of failure of two different kind
of bearings under normal operation. The importance of the dynamic rating factor was
studied for the two kinds of bearings. The method used to define the types of bearings is a
pre-processor where the stiffness matrix is estimated depending on geometry parameters
and operational speed. The results showed that different equivalent loads are achieved
when using a different kind of bearing, which is consistent with the different reliability
indexes found by the FORM analysis.

7.1 Limitations

As it is with any simulation tool, the models presented here have certain limitations,
that may or may not, affect the results greatly.

1. The coupling with HAWC2 is done by torsion only. It has been shown by different
researchers that the non-torque loads contribute negatively to the loading in the
planetary stage bearings.

2. The nature of a translational/rotational model neglects the axial component of
the gear bodies. However, since only torsion was being considered, it was not
paramount to include the axial component in the model.

3. The bedplate of the nacelle is not included in the drivetrain model. This component
is relevant, because in reality, the combined load with the tower-top is transferred
through the couplings of the gearbox. The effects become more clear when more
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detail studies in the tower-top loads are carried out. It is believed, however, that
this limitation would not affect the results of the bearing loads found with the
proposed models.

7.2 Future work

Perhaps, the element that was over-looked in the implementation of the electromechanical
drivetrain simulation tool was the generator. Mainly because of existing models that
provide an accurate representation of the electromagnetic torque due to changes in the
load, operational speed or excitation voltage. Moreover, the coupling with HAWC2 was
done through torsion only, as well as the coupling of the generator with the HSS of
the gearbox. However, it is known that misalignment in the high-speed stage can lead
to early failure of the bearings and gear teeth. Therefore, the model development of
generators should be targeted to be able to re-produce the misalignment together with
the high-speed stage of the gearbox. A possibility is to represent the magnetic forces
in the air gap of the generator as flexible elements, and hence, obtain the forces acting
on the high-speed shaft. This is a simplification of complex FEM models in order to
maintain the low-computational times as a requirement, in addition to considering the
co-simulation with an aeroelastic code. A model of this kind can be put through a
LVRT case, for example, and it will be possible to study the reaction of the system in
the high-speed shaft with additional degrees-of-freedom. A design consideration is that
the different high-speed bearings are put in place along the high-speed shaft in order to
absorb the off-axis loading from the generator, but what about the location? How is this
determined? These kind of questions can be answered with a model of this kind, thanks
to optimization techniques where the entire system is put through a series of numerical
tests with some constraints in order to full-fill an objective function. In this case, the
function could describe the minimization of the loading in the high-speed bearings given
their location.

The modeling environment where DUDE was developed has many advantages for
describing electrical systems, that were not completely exploited during the PhD study.
A possible future study, could be to include the power system in the simulations. Perhaps,
a more detailed control model of the power electronics can mitigate the loads in the
drivetrain? This has been investigated in the past, but not with a model that includes
the bearings, for example. Moreover, a more realistic response of the generator to grid
events can be obtained. Hence, improving the response of the internal components of
the drivetrain.

A very relevant addition to the current implementation will be the non-torque loading
coming from the main shaft. This can be achieved by defining a coupling with HAWC2
that includes the other moments and forcing components. At the same time, this coupling
becomes more relevant when considering axial loading in the planet bearings. As seen
in Chapter 5 and 6, the axial component was ignored, therefore, the axial loading in the
bearings was not considered in the analysis. This loading becomes more interesting when
working with TRB, which can take axial loads in addition to the radial loads.
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The previous considerations are relevant because:

1. It will advance the development of DUDE so more relevant results can be used to
aid in the integrated design of wind turbine drivetrains.

2. In system simulation, it is important to consider as many parameters and subsys-
tems, as possible, without compromising accuracy and computational time. Ad-
vances in DUDE can show what is to be considered relevant depending on the type
of studies being carried. For example, is it really needed to run full FEM models
of gearboxes to estimate the fatigue of the components? Are the cycle counting
techniques going to ignore some of this frequency content, and therefore, obtain
results that could have been obtained with a simplified model?
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Appendix A

HAWC2’s external system interface

A.1 Introduction

One of the most important things in system simulation is flexibility. Thus, being able to
choose between different options in order to achieve the desired results is an important
factor of the flexibility given in a simulation software. These options could be toolboxes
within a software, or the possibility to integrate different simulations environments. Most
of the time, when using commercial software, there are certain limitations such as high
costs, or simply compatibility issues, which compromise flexibility. In the case of HAWC2,
it is possible to connect an external system and to simulate the dynamics of such coupling.
So far, this capability has been used by [83] to simulate the reaction forces in the teeth of a
planetary gearbox. The gearbox was defined as an external system DLL and constrained
to a wind turbine. Thanks to this interface, it was possible to study the dynamics
of the complete structure given variations in the wind field. However, the interface was
programmed using Fortran90. Although this language has been used for years in different
areas of research, another options for research tools have arise, such as Matlab. An
advantage with Matlab is the easy programming paradigm and ready to use mathematical
functions. Thus, later developments allow the user to generate C/C++ code directly from
Matlab algorithms. The generated code can be used as stand-alone implementation, or
as a Dynamic Link Library (DLL).

The purpose of this report is to explore the definition of external systems, to be
connected with HAWC2, and to generate a DLL interface using Matlab. In the first
section, the purpose of the interface is described in general terms. Also, the solution to
the EOM inside HAWC2 is presented in order to introduce the formulation of the external
system together with HAWC2. The formulation of the external system is explained, along
with specifics of the state vectors which are used as DOF in the solution to the EOM
together with those from HAWC2. Then, the two relevant constraints that are used
to "attach" external system to HAWC2 are explained. In the following section, the
details of the necessary subroutines are explained with specifics of the parameters that
are passed by reference by HAWC2. This explanation is used as a basis of understanding
the program flow, which is presented later on. Also, the initial limitations with Matlab

125



are discussed and a solution is presented. Finally, two simple examples are given to show
the solution of their corresponding un-constrained EOM solved with HAWC2 and using
the formulation that is discussed in section A.2.

A.2 Interface Description

In theory, it is possible to define any external system outside HAWC2 by using a DLL.
It is also possible to define multiple external systems so they interact in two ways: 1)
constraint a body in the external system with one body from HAWC2, or 2) create a
series of constraint equations that allow interaction between all the external systems and
bodies inside HAWC2. Using any of these two options depends only in the application,
where the requirements dictate the type of interaction needed for doing the simulations.
A diagram showing this generalization is presented in Figure A-1. Here, a generalized
structure is defined in HAWC2 and it interacts with two external systems, which are
connected via generalized constraints. An important feature is that the external systems
are defined with respect to the global coordinate system inside HAWC2. This means that
when the systems are defined, special considerations need to be taken so the location and
orientation of the external bodies are defined with respect to the global coordinate system.

y𝑔

z𝑔
x𝑔

HAWC2

External System 1

External System 2

Figure A-1: General representation of interaction between HAWC2 bodies with exter-
nal systems. The interaction is possible thanks to the external system
interface using constraint equations

In [83], the method for solving external systems DOF with those from HAWC2 is
presented in detail. However, it is also explained here to create a context in where
the interface can be explained clearly. First, the concept of external system and how
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it relates to HAWC2 is presented. Then, the formulation used by HAWC2 to solve
the whole system (external and the one defined by HAWC2) is explained. Later, the
formulation used to describe the external system and how it interacts with HAWC2 is
presented, along with a process description to generate the DLL.

A.2.1 How does HAWC2 solves the EOMs?

The underlying motivation of an interface that allows an external system to interact with
HAWC2 is to add flexibility in the integrated simulation process. This way, the user is
not constrained to those systems defined in HAWC2’s structure definition file (*.htc), and
to the method used inside the software to define new structures. Therefore, the user can
define any external system and connect it to HAWC2 by means of constraint equations.
This process allows to define how the external DOFs are related to those from HAWC2.

The combined solution is based on the Virtual Work Principle, more specifically,
D’Alembert’s principle that states that:

"a system of rigid bodies is in dynamic equilibrium when the virtual work of
the sum of the applied forces and the inertial forces is zero for any virtual
displacement of the system"

An important remark to the previous statement, is that the virtual displacement
𝛿𝑞𝑗 applied to the particle will lead to a virtual work of zero only if the movement is
consistent with the constraints. This is an important characteristic of the formulation
since the all the bodies within the HAWC2 environment interact with each other via
constraint equations. The D’Alambert’s principle can be state in mathematical terms as

𝛿𝑊 =

𝑛∑︁
𝑗=1

(𝐹𝑗 −𝑚𝑗𝑎𝑗) · 𝛿𝑞𝑗 = 0 (A.1)

where 𝑎𝑗 is the acceleration and 𝐹𝑗 are the forces acting on particle 𝑗. The force term
𝐹𝑗 can be generalized so it is a combination of external forces and internal forces, such
as:

𝐹𝑘𝑗 = 𝑘𝑗𝑞𝑗 , 𝐹𝑐𝑗 = 𝑐𝑗𝑞𝑗 (A.2)

where 𝑘𝑗 and 𝑐𝑗 are the stiffness and damping, respectively, associated particle 𝑗. In
a system of rigid bodies, these forces are expressed in terms of the stiffness and damping
matrices K and C in the generalized equation of motion:

M · q̈ + C · q̇+K · q = F (A.3)

where 𝐹 represents the external forces acting on the system, such as gravity for
example.

When different systems are being considered (i.e HAWC and a external system), the
total solution must contain the EOMs for both and the virtual work done must be equal
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to 0.

𝛿𝑊 = 𝛿𝑊𝑖 + 𝛿𝑊𝑒 = 𝛿qi ·Bi + qe ·Be = 0 (A.4)

where the subscripts 𝑖 and 𝑒 refer to the internal and external systems, respectively;
vectors Bi and Be represent the un-constrained EOM of the internal and external system,
respectively; and the virtual work for both, the internal and external system, is expressed
as a function of the virtual DOFs, 𝛿qi and 𝛿qi.

Be = M · q̈e +C · q̇e +K · qe − F (A.5)

The expression in equation (A.5) shows the generalized form of a system using the
mass M, damping C, stiffness K and external forces F, defined as the un-constrained
EOM. The resulting vector Be is used to calculate the virtual work done by the external
system using equation (A.4). Thus, if only (A.5) is defined HAWC2 could be used as a
solver to find the time response of the external system. However, the intention with the
interface is to solve together the EOMs for both, the internal and external system. The
way both system interact is by means of constraint equations which couple the DOFs of
both systems.

It has been shown before in [63], that each constrain in the system adds an additional
DOF to the system and it is known as the Lagrange multiplier 𝜆. This additional DOFs
represent the reaction forces created by the constraint equations and the dynamics of the
related bodies by such constraint. Since new DOFs are introduced in the system, and
new virtual energy is added, the virtual work calculation needs to be modified in order
to account for the new DOFs.

0 = 𝛿𝑊 + 𝛿(𝜆 · g)
0 = 𝛿𝑊 + 𝛿𝜆 · g + 𝛿g · 𝜆
0 = 𝛿qi(Bi + (▽𝑞𝑖gi)

𝑇 · 𝜆) + 𝛿qe(Be + (▽𝑞𝑒ge)
𝑇 · 𝜆) + 𝛿g · 𝜆

0 = 𝛿qi(Bi +Gi · 𝜆) + 𝛿qe(Be +Gi · 𝜆) + 𝛿g · 𝜆
(A.6)

where g(qi,qe) = 0 is the constraint vector and the matrices Gi and Ge represent
the gradient, or Jacobian, of the internal and external system, respectively. Since the
total virtual energy must be zero for all the virtual variations of the DOFs, the system
of equations is reduced to:

Bi +Gi · 𝜆 = 0
Be +Ge · 𝜆 = 0
g = 0

(A.7)

From (A.7), it is clear that the DLL must provide the vector Be representing the
un-constrained EOMs of the external system, the constrain vector g and the Jacobian
Ge.
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A.2.2 Defining the external system in Matlab

A Multibody Dynamics code was implemented last year using Matlab. In this code, the
formulation for constrained systems and the properties of rotation of rigid bodies, was
implemented using the information presented in [63]. The code is defined as a spatial
system of constrained bodies, which are defined in the absolute coordinates system. The
EOM are in the form of Newton-Euler equations (C.34) with three position coordinates
r = [𝑥, 𝑦, 𝑧]𝑇𝑖 and four rotational coordinates p = [𝑒0, 𝑒1, 𝑒2, 𝑒3]

𝑇
𝑖 . Therefore, the vector

qi = [𝑥, 𝑦, 𝑧, 𝑒0, 𝑒1, 𝑒2, 𝑒3]
𝑇
𝑖 represents the coordinates of body 𝑖[︂

M G𝑇

G 0

]︂ [︂
ḣ
−𝜆

]︂
=

[︂
fn− b

𝛾

]︂
(A.8)

where M is the mass and inertia matrix, G is the Jacobian matrix of the constraint
equations in terms of the angular velocity 𝜔′, ḣ𝑖 = [r̈, �̇�′]𝑇𝑖 is the body velocity vector,
fn𝑖 = [𝑓, 𝑛𝑖]

𝑇
𝑖 is the external forces and moments vector, bi = [0, �̃�′𝐽 ′𝜔′]𝑇𝑖 is the quadratic

velocity terms vector, and 𝛾 is the right-hand side of the acceleration found by calculating
the second derivative of the constraint equations. Recall the expression in equation (A.5)
using the stiffness and damping elements of the system? In the initial version of the
Matlab formulation, these elements were treated as force elements and were included in
the vector fn of equation (C.34), along with any external force affecting the system. In
the new implementation, the force elements (i.e. springs and dampers) will be included
in the stiffness and damping matrices. Any external forces (i.e gravity or moments) are
included in the vector F of equation (A.5).

Although the same implementation cannot be used to build the external system
directly, the concepts applied initially can be carried out in order to define an external
system which is to be connected to HAWC2 via constraints. First, let us define the new
vectors that describe the states of the system:

q𝑖 =

⎡⎣ r
𝜃
p

⎤⎦
𝑖

, q̇𝑖 =

⎡⎣ ṙ
𝜔′

ṗ

⎤⎦
𝑖

, q̈𝑖 =

⎡⎣ r̈
�̇�′

p̈

⎤⎦
𝑖

(A.9)

where the vectors r, 𝜔′ and p have the same definition of those used in (C.34). A new
set of DOFs are introduced by vector 𝜃, and they represent the pseudo-rotations of body
𝑖. With this new coordinate representation, it is necessary to define the first derivative
of the euler parameters, ṗ, in terms of the angular velocity and depending explicitly in
the rotational coordinates p. This is necessary because the new formulation in Matlab
needs to be compatible to the one with HAWC2 (A.5). Using the properties of the euler
parameters and angular velocity presented in [63], the relationship between the angular
velocity vector and ṗ can be defined as:

ṗ =
1

2
H(𝜔′)p (A.10)

where H(𝜔′) is a transformation matrix depending on the components of the angular
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velocity vector and it is defined as:

H(𝜔′) =

⎡⎢⎢⎣
0 −𝜔′

𝑥 −𝜔′
𝑦 −𝜔′

𝑧

𝜔′
𝑥 0 𝜔′

𝑧 −𝜔′
𝑦

𝜔′
𝑦 −𝜔′

𝑧 0 𝜔′
𝑥

𝜔′
𝑧 𝜔′

𝑦 −𝜔′
𝑥 0

⎤⎥⎥⎦ (A.11)

Equation (A.10) completes the un-constrained EOM used to calculated the resid-
ual Be needed by HAWC2. As an example, the system in (A.12) shows how the un-
constrained EOM would look like for one un-constrained body implemented in Matlab
as an external system, that will be solved later using HAWC2:

[︂
M6×6 06×4

04×6 04×4

]︂
q̈+

[︂
06×6 06×4

04×6 I4×4

]︂
q̇+

[︂
06×6 06×4

04×6 −H4×4

]︂
q−

[︂
fn6×1

04×1

]︂
= Be

or

M · q̈+C · q̇+K · q− F = Be

(A.12)

The system of equations from (A.12) can be implemented as an un-constrained ex-
ternal system and get its solution from HAWC2. This means that the interface can also
work with only un-constrained systems and HAWC2 can be used as a solver for the EOM
defined as (A.12). At the end of the report, in section A.4, two examples of the solution
for un-constrained systems are presented: (1) 1 DOF spring-mass system, and (2) a 6
DOF system, where it is shown how the body rotates given an initial angular velocity.

A.2.3 Constraint formulation

As mentioned before, the external system can be formulated by itself and solved in
HAWC2. But, what if the external system needs to interact with the system defined in
HAWC2, i.e. a wind turbine? In order to have a fully coupled system the external system
DOFs have to be related somehow to those from a body (or bodies) inside HAWC2. This
is accomplished by means of constraint equations.

Given the nature of a drive train system in a wind turbine, the two most relevant
constraints that will "attach" this system to the main shaft defined in HAWC2 are the
position and rotational constraints. A diagram of the system is shown in Figure A-2.
An ideal drive train has been defined as an external system and it is constrained to the
main shaft in HAWC2 at point 𝑃 . It is clear that the drive train needs to rotate along
the main shaft. Thus, the moments and forces acting on the shaft are transferred to the
drive train. This section details the formulation of such constraints and explains how
they are implemented in Matlab.
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𝑃

Figure A-2: A drive train defined as an external system and constrained to the main
shaft inside HAWC2.

Position constraint

A position constraint between bodies e and s it is shown in Fig. A-2. The center of the
joint is at point P, which has constant coordinates with respect to the local coordinate
systems of bodies 𝑒 and 𝑠. This constraint ensures the bodies are attached to point 𝑃
at all times. The vector s′𝑃

𝑠 it is not shown in the figure because in this case is equal to
zero, given that the coordinate system of the shaft coincides with point 𝑃 . The constraint
equation is defined as:

Φ(𝑝,3) ≡ r𝑒 + A𝑒s
′𝑃
𝑒 − r𝑠 − A𝑠s

′𝑃
𝑠 = 0 (A.13)

where vectors r𝑒 and r𝑒 correspond to the location of the local coordinate system of
the external body and the shaft, respectively; matrices A𝑒 and A𝑠 represent the rotation
matrices of external body and the shaft, respectively; and, vectors s′𝑃

𝑒 and s′𝑃
𝑠 represent

the distance from the center of each coordinate system to point 𝑃 .
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Rotational constraint

The rotational constraint is composed of three single constraint equations. These single
equations are usually referred to as perpendicular constraints 𝑛. They are formulated
by defining perpendicular vectors on each body and ensuring that they maintain their
orthogonality at all times. The purpose of this constraint is to fix the rotation of the
external system to the rotation of the body inside HAWC2. For instance, if the shaft
rotates 1 rad in the clockwise direction, then the drive train must rotate 1 rad in the
clockwise direction. This constraint, together with the position constraint, ensures that
all the DOFs from both bodies are fully coupled.

Φ(𝑛,1) ≡ u𝑇𝑒𝑧u𝑠𝑦 = 0

Φ(𝑛,1) ≡ u𝑇𝑒𝑥u𝑠𝑥 = 0

Φ(𝑛,1) ≡ u𝑇𝑒𝑦u𝑠𝑧 = 0

(A.14)

where u𝑒𝑥, u𝑒𝑦 and u𝑒𝑧 are unitary vectors along the axis 𝑥𝑒, 𝑦𝑒 and 𝑧𝑒 of the external
system; and, u𝑠𝑥, u𝑠𝑦 and u𝑠𝑧 are unitary vectors along the axis 𝑥𝑠, 𝑦𝑠 and 𝑧𝑠 of the
main shaft inside HAWC2.

A.3 Program Structure

The formulation from the previous section is implemented in Matlab in a series of sub-
routines that are necessary so HAWC2 can build the state and constraint vectors, and
seek a solution using the process described in section A.2.1. This section, explains how
these subroutines are expected from HAWC2, how they are built in Matlab, and nec-
essary considerations/limitations need it to build the interface with HAWC2 through a
Dynamic Link Library (DLL). The information of the specifics of these subroutines is
from the example DLL presented in [83].

A.3.1 Details of the subroutines

The process of defining an external system and to constrain it to HAWC2 can be visual-
ized as two major tasks:

• Definition of the un-constrained EOM, as it was shown in equation (A.12).

• Formulation of the constraint equations used to constrain the external system to a
HAWC2 body (equations (A.13) and (A.14)).

First, let us define the subroutines related to the definition of the external system.
As an example, the module name used here is called "hawc2shell" and it refers to the
module name that it is specified in the external system section of the htc file. This is
the name that HAWC2 looks for inside the DLL in order to call the subroutines. For
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example, here is a definition in the htc file of an external system named "DriveTrain"
which is located in the DLL:

begin ext_sys;
name DriveTrain;
module hawc2shell;
dll .\hawc2shell.dll;
ndata 6;
data 5025497.444 ; Generator inertia referred to the slow shaft.
data 1 ; Mass of the drivetrain [Kg]
data 0.0 0.0 -89.56256 ; Position of the drivetrain (global)
data 5.0 ; Tilt angle (around global X)
data 0.5 ; Initial shaft rotation [rad/s]
data 0.02 ; Time step

end ext_sys;

Initialize external system

The system is initialized by defining the dimensions given, preferebly, by the vector
sdata. This vector contains the information specified in the htc file for the external
system. In addition, the subroutine should specify the dimension of the time dependent
and independent matrices. This subroutine is called once. The detailed information
about each of the parameters is presented in Table A.1.

esys_init(pwrk,Nnr,Nnq,Nout,Nvis,Nheader,sdata)

Table A.1: Parameters of the initialization routine

sdate [in] Data lines from the htc file. Each data line has a fixed
length CHAR(256) so that the total length of "sdata" becomes
(CHAR256*Number of data lines).

pwrk [out] Pointer to the structure where the information of the external sys-
tem is defined.

nnr [out] Dimension (nnr*nnr) of the time dependent system matrices.
nnq [out] Dimension (nnq*nnq) of the time independent system matrices.

𝐷𝑂𝐹 = 𝑛𝑛𝑟 + 𝑛𝑛𝑞

nout [out] Number of states to be logged in the output file.
nvis [out] Number of reals used to store variables used for visualization.
nheader [out] Number of reals to store header variables for visualization.
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Initial conditions of the external system

The system’s initial conditions are specified by means of the state vectors q, qdot and
qdot2. This subroutine is called once.

esys_update(pwrk,q,qdot,qdot2)

Table A.2: Parameters of the initial conditions routine

pwrk [in] Pointer to the structure where the information of the external system
is defined.

q [in/out] Initial conditions for the states.
qdot [in/out] Initial conditions for 1st time derivative of the states.
qdot2 [in/out] Initial conditions for 2nd time derivative of the states.

Update the external system

This subroutine is called during the iterations that HAWC2 makes to update the system
matrices, such as rotation and external forces, and to return the mass, damping and
stiffness matrices. The current state vectors are received as inputs in order to do the
update.

esys_update(pwrk,time,q,qdot,qdot2,M,C,K)

Compute the residual vector

This subroutine is called at every time step to compute the residual vector Be from
equation (A.5). The current value of the states is passed so the residual is calculated.

esys_residual(pwrk,q,qdot,qdot2,be)

Table A.3: Parameters of the update routine

pwrk [in] Pointer to the structure where the information of the external system
is defined.

time [in] Current simulation time.
q [in] Current value of the states.
qdot [in] Current value of the 1st time derivative of the states.
qdot2 [in] Current value of the 2nd time derivative of the states.
M [out] Mass matrix.
C [out] Damping matrix.
K [out] Stiffness matrix.
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Table A.4: Parameters of the routine that computes the residual vector

pwrk [in] Pointer to the structure where the information of the external system
is defined.

q [in] Current value of the states.
qdot [in] Current value of the 1st time derivative of the states.
qdot2 [in] Current value of the 2nd time derivative of the states.
be [out] Residual vector

Output

This subroutine is called at the end of convergence to write the current states into the
output vector. Therefore, the subroutine is called at every time step

esys_output(pwrk,out,q,qdot,qdot2)

Table A.5: Parameters of the routine to write in the output vector

pwrk [in] Pointer to the structure where the information of the external system
is defined.

out [out] Output vector. The states must be written into this vector
q [in] Initial conditions for the states.
qdot [in] Initial conditions for 1st time derivative of the states.
qdot2 [in] Initial conditions for 2nd time derivative of the states.

Once the subroutines that define the un-constrained EOMs for the external system
are completed, it is necessary to define the constraint subroutines. For each constraint
there must be a set of two subroutines: initialization and update. For the system shown
in Figure A-2 it is necessary to define two constraints: position and rotation. Therefore,
there will be a total of 4 constraint subroutine. The parameters necessary, and the
purpose of each subroutine is explained next.

Here, an example of the definition of the position constraint in HAWC2. This
constrained as been named constraint01. Notice that the initialization constraint
is defined in the HAWC2 code as constraint01_init and the update subroutine is
constraint01_update. It is also necessary to define the number of equations in the
constraint, the number of bodies in HAWC2 and the external system involved in the
constraint. In addition, the node where the constraint occurs in HAWC2 and the exter-
nal system is defined by the commands mbdy_node and esys_node, respectively.

begin dll;
dll .\hawc2shell.dll;
init constraint01_init;

135



update constraint01_update;
neq 3;
nbodies 1;
nesys 1;
mbdy_node towertop last;
esys_node DriveTrain 0;

end dll;

Initialize constraint

This subroutine is called three times during initialization. At each call, the flag itask
is changed to indicate what parameters are passed through the variables var1, var2,
var3, var4 and var5. The value of pwrk is also changed. The details of these values are
specified in Table A.6.

constraint01_init(pwrk,itask,var1,var2,var3,var4,var5)

Table A.6: Parameters of constraint initialization routine

pwrk
itask= 0 The subroutine must return the address where the object type

constraint01 is located.
itask> 0 Not used
itask< 0 pwrk will contain the address of the location of the external system type

object (the one created in the esys_init) subroutine. It is impor-
tant to save this address in one of the fields of the object type
constraint01 because it would be used in the update routine.

var1
itask= 0 Number of equations
itask> 0 Total number of body DOFs
itask< 0 Total number of esys DOF

var2
itask= 0 Number of bodies inside HAWC2 involved in the constraint
itask> 0 Coordinates of the node in HAWC2 where the constraint takes place
itask< 0 Coordinates of the node in the external system where the constraint

takes place

var3
itask= 0 Number of bodies of the external system involved in the constraint
itask> 0 Rotation matrix of the nbody inside HAWC2
itask< 0 Index of the body involved in the external system

var4
itask= 0 Constraint vector
itask> 0 Index of the body involved in HAWC2
itask< 0 Gradient matrix of the external system

var5
itask= 0 Not used
itask> 0 Gradient matrix of the body inside HAWC2
itask< 0 Not used
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Update constraint

This subroutine is called every time step to calculate the constraint vector. The cal-
culation is stored in the field corresponding to the constraint vector inside the object
type constraint01. The external system is found by taking the address from the cor-
responding field of the constraint object (see description of pwrk in Table A.6). In this
subroutine, pwrk points to the subroutine type constraint01.

constraint01_update(pwrk,time)

This conclude the explanation of the purpose for each subroutine. Next, the previous
information is put into the context of the simulation by describing the program flow.

A.3.2 Program Flow

The way HAWC2 calls each subroutine it is shown in Figure A-3. The simulation in
HAWC2 has three major stages: initialization, run-time simulation, and closing the
simulation and writing the outputs. In the initialization task, HAWC2 makes sure to
get all the necessary information of the bodies defined in the htc file, along with those
defined in the external system. That is, initial coordinates and initial conditions of the
state vectors. In addition, it initializes the constraint equations. Then, in the run-time
simulation, every time step seeks to update the state vector and system matrices after
convergence has been achieved. After the simulation time is done, it writes the outputs
in the respective file.

Initialize ESYS

EXTERNAL SYSTEM DLL HAWC2

InitializeInitialize constraints

Initial conditions

Run time simulation

Update ESYS

Update constraints

ESYS’s residual

Closing simulation and 

write outputs

Figure A-3: Flowchart of the interface.
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A.3.3 Final remarks about the interface

In the previous sections, the subroutines used to define, and solve, the external system
together with HAWC2 were explained. Also, the flow of the program was described but
no details about the interface were mentioned so far. Initially, it was intended to generate
a DLL file directly from Matlab but it was not possible for the following reasons:

• To ensure a correct communication between HAWC2 and the DLL, it is necessary
to define the subroutines prototypes correctly. Since the subroutines need to be
defined as Matlab functions before the conversion, the variables will appear in dif-
ferent order depending if they are defined as output or input. After the conversion,
it was noticed that the variables were not in the exact order.

• On the HAWC2 side, when a subroutine in the DLL is called, the parameters are
passed by reference, i.e. pointers. However, they are not single pointers to a value
but a pointer to a pointer. Therefore, once again, the prototypes from Matlab are
defined in a way that is not compatible with what HAWC2 expects.

Given the previous reasons, it was decided to build a "shell" interface around the
subroutines created in Matlab (Figure A-4). The shell takes care of building the right
prototypes of the subroutines and to ensure that the pointers types are correct.

SHEEL (C++)

HAWC2
Wind turbine and 

wind properties

MATLAB to C++ 

code
Contains the EOM of the 

external system and the 

constraints

Initialization

Uptade

Figure A-4: Interface block diagram.

A recurring issue was to understand how were the pointers handled by HAWC2 and
how they should been treated in the shell. Since they are pointers to pointers, it means
that the value of pwrk, for example, contains the address in memory of the structure
type external system. An representation of this is shown in Figure A-5, where pESYS
represents the contents of the address at which pwrk is pointing at, and it corresponds
to the address of the working structure type external system.
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pESYSpwrk

NBodies

NDOF

K[0]

K[1]

K[2]

Somewhere in memory...

Figure A-5: Working with the pointers.

A.4 Examples

In this section, two examples of the solution to the un-constrained EOMS are presented.
First, a 1-DOF system represented as a spring-mass is presented along with the displace-
ment and velocity given the initial conditions. The second example involves all the DOF,
or the states in vector q, and it shows the rotation of a body given an initial angular
velocity. This is an important example since its simplicity helps in the validation of the
formulation presented in equation A.12.

A.4.1 Spring-mass system

Since this is a 1 DOF system, the definition of the rotational coordinates don’t apply and
it is only necessary to define one-dimensional quantities for the mass, stiffness, damping,
and state vectors. Therefore, the EOM of the system is given by

𝑚𝑞 + 𝑐𝑞 + 𝑘𝑞 = 0 (A.15)

The external system is defined in the htc file, where the mass and stiffness are speci-
fied. Notice that the definition of a system with out constraints is simple, since there is
no need to define additional bodies in the structure:

begin new_htc_structure;
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begin orientation;
;
end orientation;
;
begin ext_sys;

name mass;
dll .\hawc2shell_smm.dll;
module hawc2shell;
ndata 3;
data 2 ; mass of mass [Kg]
data 10 ; stiffness
data 2 ; time step

end ext_sys;
end new_htc_structure;

The initial conditions of the system were defined as 𝑞 = 1 and 𝑞 = 0. The results of
the simulation, displacement and velocity of mass 𝑚, are shown in Figure A-6. Based on
the input information about the parameters of the system in the htc file, the system has
the following natural frequency, which is verified by the spectrum plot in Figure A-7:

𝑓𝑛 =
1

2𝜋

√︂
𝑘

𝑚
= 0.35588Hz (A.16)
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Figure A-6: (a) Displacement 𝑥(𝑡) as function of time 𝑡. (b) Velocity �̇�(𝑡) as function
of time 𝑡.

A.4.2 Rotating body

This example explores the functionality of the formulation presented before. This is
a single body with 6 DOF, that has initial angular velocity of 𝜔′ = {−0.2, 0.5,−0.5}
(Figure A-8). There are no external forces or moments acting on it. The results in Figures
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Figure A-7: Spectrum of the displacement of 𝑚.

A-9 and A-10 show the variations of the euler parameters, the value of the components
of the vector 𝜔′ and the rotating angles. The EOMs for this body are those presented in
equation (A.12).

As specified in the initial conditions, the sign of rotation in the 𝑥 and 𝑧 components
is the same. The result, the values of the angles 𝜃𝑥 and 𝜃𝑧 have the same sign. Also,
notice the delay of 𝜃𝑥 compared to 𝜃𝑧, given that the rotations in the 𝑧 component go
at a higher angular velocity than in 𝑥. In addition, there is a variation within each
components and this is due that the body is not rotating around a fixed axis, because
the initial conditions for the three components of 𝜔′ contain non-zero values.

A.4.3 Drive train as a concentrated mass

This section presents the simulation results of a external system constrained to a body
in HAWC2. The external system represents the drive train of a wind turbine as a con-
centrated mass. This is the model of the drive train that is commonly used in Aerolastic
calculations and that HAWC2 uses in the NREL 5MW Reference Wind Turbine. The
external drive train is formulated as a rigid body with 10 DOF following the formulation
that was presented in Equation (A.12). The system is also attached to the wind tur-
bine by means of a position and rotational constraints, which make sure that the shaft
moments, forces and angular velocity are transferred into the external drive train.

The model is to be validated with the simulation results from the NREL 5MW Refer-
ence Wind Turbine using the internally defined drive train. It is expected a high degree
of correlation between the results obtained using both models. This is an important
preliminary study to validate the operation of the proposed interface, in order to move
forward to more detailed models of the drive train.

The results presented here correspond to a 500 sec simulation with ramp up, ramp
down and a wind gust. This is done with the purpose of observing the performance of
the external DLL when transients occur in the simulation. As a starting point, the wind
behaviour is presented in Figure A-11.
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Figure A-8: One body rotating given initial values for the angular velocity components.
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Figure A-9: (a) Components of vector p as function of time 𝑡. (b) Components of the
angular velocity vector 𝜔′ as function of time 𝑡.
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Figure A-10: Rotation angles.
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Figure A-11: Wind speed in 𝑦.
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Figure A-12: Towertop displacement in the 𝑥 direction.
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Figure A-13: Towertop displacement in the 𝑦 direction.
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Figure A-14: Rotor angular velocity.
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Figure A-15: Moment around the 𝑥 axis in the towertop.
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Figure A-16: Moment around the 𝑦 axis in the towertop.
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Figure A-17: Moment around the 𝑧 axis in the towertop.
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Appendix B

Definitions in gear design

This section presents a glossary of terms related to gear design and that are used in this
dissertation. To complement the glossary, Figures B-1 show the nomenclature on a pair
of mating spur gears.

Addendum: Radial distance from the pitch circle to the outside diameter.

Backlash: The amount of clearance between mating components, in this case gear
teeth. It is also defined as the lost of motion due to a clearance when movement is
reversed and contact is re-established.

Base radii: Radial distance from the gear center to the base circle.

Base circle: It is the circle from which the involute tooth are originated from.

Dedendum: Radial distance between the pitch circle and the root diameter.

Mesh stiffness: The required load over 1 mm of face width along the line of
action, to cause in line with the load a deformation of the tooth of 1𝜇m [108].

Figure B-1: Diagram showing the gear terminology [9].
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Outside diameter: Diameter of the gear measured from the top of the teeth.

Pitch circle: It is the imaginary circle that is located on the contact point between
two meshing teeth. and

Pressure angle: It is the angle at a pitch point between the line of contact which
is normal to the tooth surface and the plane tangent to the pitch surface.

Transmission error: It is defined as the difference between the actual position
of the driven gear and the theoretical angular position that the gear should occupy
while running the driving gear at constant speed.

Module: A normalization parameter that describes the tooth thickness in order
to ensure kinematic compatibility between the mating teeth of a gear pair. This
compatibility is guaranteed by the ratio:

𝑚 = 𝐷/𝑁 (B.1)

where 𝐷 is the pitch diameter and 𝑁 is the number of teeth.

Pitch radii: Distance from the gear center to the pitch point, which is the point
in the line of action at which the gear teeth mate. This is also the distance from
the center to the pitch circle.
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Appendix C

Theory of multi-body dynamics

C.1 Basic Concepts

This chapter focuses in the definition of the basic concepts and terms commonly used in
the analysis of multibody systems. Reference frames and vector coordinates are intro-
duced, along with the description of planar and spatial coordinate systems.

C.1.1 Definitions

The study of multibody systems seeks to describe the dynamics of mechanical systems
that are formed by several bodies (rigid or deformable), which are interconnected by
kinematic constraints. These kinematic constraints are the result of different types of
joints and it allows for each body to be subject to translation and rotational displace-
ments.

This document focuses in rigid bodies and introduces the concept of deformable bod-
ies. The main difference between rigid and deformable bodies is that the distance of the
particles in rigid bodies remains constant. On the contrary, the particles of a deformable
body move relative to each other.

A set of rigid bodies that are arranged to produce a specific motion is defined as
mechanism, and the individual bodies are called links. The combination of two links in
contact are defined as kinematic pair or joint. Kinematic analysis deals with the study of
the motion of rigid bodies. This includes their displacement, velocity and acceleration,
to determine the design geometry of the mechanical parts. In addition, it studies the
motion of a system of rigid bodies (i.e. mechanism), resulting from applied forces.

It is always helpful to have a visual representation of the mechanism. Schematic
diagrams are used to describe the bodies, kinematic joints and external forces acting in a
multibody system (Fig. C-1). The shape of each body is trivial, since the importance of
the schematic representation is to show the connectivity of the bodies, the type of joints
and the physical characteristics of the external forces in the system. This representation
will be use to identify the bodies and their respective coordinates in the global reference
frame and in the system.
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Figure C-1: Schematic representation of a multibody system.

C.1.2 Vector Coordinates

There are two sets of vector coordinates that can be used to describe the kinematic
behavior of rigid bodies. The type of coordinates used depends on the level of complexity
desired for the study of the mechanical system. These two modes of representation could
be used, independently, to describe the motion of a rigid body or a mechanism. In the
case of planar motion the multibody system is analysed in the xy plane. The translational
coordinates of the body 𝑖 can be represented by the vector 𝑟𝑖 = [𝑥, 𝑦]𝑇𝑖 , which are used to
locate the body in the global reference frame. In addition to the global coordinates, 𝑟𝑖,
a local or body-fixed reference frame 𝜉𝑖𝜂𝑖 is defined inside the body i ; also, the angle 𝜑𝑖
is defined as the rotational angle of the body with respect to the global reference frame,
and it is used to determine the orientation of the body in the xy plane. An example of
the planar representation is shown in Fig. C-2.

Figure C-2: Vector coordinates for planar motion.

The total number of coordinates required to describe the motion of a body in the
planar system xy is three: two translational coordinates, 𝑥𝑖 and 𝑦𝑖, and one rotational
𝜑𝑖. These coordinates are arranged in vector form as: 𝑞𝑖 = [𝑥, 𝑦, 𝜑]𝑇𝑖 .

In the case of spatial analysis, the body is placed on a 3D global reference frame
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xyz and it’s translational coordinates are defined by the vector 𝑟𝑖 = [𝑥, 𝑦, 𝑧]𝑇𝑖 . These
coordinates locate the body-fixed reference frame 𝜉𝑖𝜂𝑖𝜁 in space, and it is relative to
the global xyz axes. Unlike the planar motion representation, in spatial analysis it is
necessary to define three rotational coordinates in order to specify the orientation of
the body. Thus, the vector of coordinates of a multibody system is defined as: 𝑞𝑖 =
[𝑥, 𝑦, 𝑧, 𝜑1, 𝜑2, 𝜑3]

𝑇
𝑖 . An example of the planar representation is shown in Fig. C-3.

Figure C-3: Vector coordinates for spatial motion.

Although three rotational coordinates are defined here, the formulation presented
in this report uses four rotational coordinates. These coordinates are known as Euler
parameters and the advantage over the previous representation, is the avoidance of sin-
gularity issues in the numerical computation. In the next chapter, these concepts will be
introduced when the formulation for spatial analysis is described.

As it was shown, the number of coordinates required to describe a system depends
on the number of bodies and the type of coordinates used (planar or spatial). In gen-
eral terms, a multibody system with b bodies can be described by 𝑛 = 3 × 𝑏 for planar
systems, and 𝑛 = 6 × 𝑏 for spatial systems, only if three rotational coordinates are use.
In the formulation presented in this report, four rotational coordinates are used, and
therefore, 𝑛 = 7×𝑏 coordinates are needed. Also, the vector of coordinates of the system
is defined as 𝑞𝑖 = [𝑞𝑇1 , 𝑞

𝑇
2 , ..., 𝑞

𝑇
𝑏 ]
𝑇 .

As explained before, a mechanism is composed by links and kinematic joints, which
connect two bodies (links). From the coordinates perspective, this means that not all
the coordinates are independent because there are constraint equations that relate such
coordinates.

C.2 Spatial Analysis of Multibody Systems

In this chapter, the concepts concerning planar kinematics introduced earlier are extended
to spatial kinematics. Although the analysis is the same, the process of describing the ori-
entation of the body with respect to a global coordinate system is not as straightforward.
In the first part of this chapter, the rotational coordinates known as Euler parameters
are explained. These parameters are used to specify the orientation of a body in space
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with respect to a global coordinate system. Like it was shown before, a point can be
located in space using:

𝑠𝑃 = 𝐴𝑠
′𝑃 (C.1)

where 𝑠′𝑃 corresponds to the local coordinates of point P and A is defined as the direction
cosines matrix. This matrix depends on the Euler parameters, which will be explained
in the following section.

C.2.1 Rotational Coordinates

First, the Euler’s theorem states that:

The general displacement of a body with one point fixed is a rotation about some axis.

This means that a rotational coordinate transformation can be accomplished by only
one rotation along an "imaginary axis", which is coincident with the global axes, see
Fig. C-4. This means that the rotation of a body in space can be described with four
coordinates: the three components of the rotation axis, 𝑢1, 𝑢2, 𝑢3, and the rotation angle
Φ.

Figure C-4: Vector diagram for derivation of rotation formula.

Through geometric manipulation of the vectors in Fig. C-4, it is possible to find the
rotation formula:

�⃗� = 𝑠′𝑐𝑜𝑠𝜑+ �⃗�(�⃗� · 𝑠′)(1− 𝑐𝑜𝑠𝜑) + �⃗�× 𝑠′𝑠𝑖𝑛𝜑 (C.2)
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In addition, several trigonometric identities can be used to find the new quantities:

𝑒0 = 𝑐𝑜𝑠
𝜑

2

�⃗� = �⃗� 𝑠𝑖𝑛
𝜑

2

(C.3)

Then,

s = [(2𝑒20 − 1)I + 2ee𝑇 𝑒𝑇 + 2𝑒0ẽ]𝑠′ (C.4)

where e = [𝑒1, 𝑒2, 𝑒3]
𝑇 and ẽ is the skew-symmetric matrix of vector e. If Eq. C.4 is

compared with Eq. C.1 it becomes clear that:

𝐴 = [(2𝑒20 − 1)I + 2ee𝑇 𝑒𝑇 + 2𝑒0ẽ] (C.5)

and expanding Eq. C.5,

𝐴 = 2

⎡⎣ 𝑒20 + 𝑒21 − 1
2 𝑒1𝑒2 − 𝑒0𝑒3 𝑒1𝑒3 + 𝑒0𝑒2

𝑒1𝑒2 + 𝑒0𝑒3 𝑒20 + 𝑒22 − 1
2 𝑒2𝑒3 − 𝑒0𝑒1

𝑒1𝑒3 − 𝑒0𝑒2 𝑒2𝑒3 + 𝑒0𝑒1 𝑒20 + 𝑒22 − 1
2

⎤⎦ (C.6)

Euler parameters identities

This section introduces some important identities that are used in the numerical analysis
of multibody systems, when the Euler parameters are used to specify the orientation of
the body. First, the transformation matrices G and L are defined. These matrices are
used extensively in transformations that deal with global and local vectors, respectively.

𝐺 =

⎡⎣ −𝑒1 𝑒0 −𝑒3 𝑒2
−𝑒2 𝑒3 𝑒0 −𝑒1
−𝑒3 −𝑒2 𝑒1 𝑒0

⎤⎦ (C.7)

and

𝐿 =

⎡⎣ −𝑒1 𝑒0 𝑒3 −𝑒2
−𝑒2 −𝑒3 𝑒0 𝑒1
−𝑒3 𝑒2 −𝑒1 𝑒0

⎤⎦ (C.8)

Another important aspect of matrices G and L is that they are linear transformations
that occur before the A matrix. In other words "the quadratic transformation matrix A
can be treated as the result of two successive linear transformations" (Nikravesh, 1988).

A = GL𝑇 (C.9)
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Angular velocity

The angular position is described by Eq. C.1 and it’s derivative with respect to time is
given by

�̇�𝑃 = �̇�𝑠
′𝑃 +𝐴�̇�

′𝑃 (C.10)

Since vector �⃗�𝑃 is constant with respect to the local coordinate system, �̇�′𝑃 = 0, and
therefore

�̇�𝑃 = �̇�𝑠
′𝑃 (C.11)

The term Ȧ is the result of another transformation, e.g. (Nikravesh, 1988), given by

Ȧ = �̃�A (C.12)

where �̃� is the Skew-symmetric matrix of vector 𝜔 = [𝜔(𝑥), 𝜔(𝑦), 𝜔(𝑧)]
𝑇 . The previous

equation expresses Ȧ in terms of the global coordinates of the angular velocity. Eq. C.12
can also be written in the local coordinates and it is defined by

Ȧ = �̃�′A (C.13)

where 𝜔′ = [𝜔(𝜉), 𝜔(𝜂), 𝜔(𝜁)]
𝑇 . More identities can be formulated by means of the

previous equations. Comparing Eq. C.12 and Eq. C.13 can be demonstrated that

�̃�A = A�̃�′

�̃�AA𝑇 = A�̃�′A𝑇

�̃� = A�̃�′A𝑇

(C.14)

Also, combining Eq. C.12 and Eq. C.10 produces

ṡ = �̃�s (C.15)

Another set of useful identities has to do with the time derivatives of the Euler
parameters. These identities are used to relate the angular velocity, in global and local
components, and the derivative of the Euler parameters.

𝜔 = 2Gṗ (C.16)

ṗ =
1

2
G𝑇𝜔 (C.17)

and in the local components of 𝜔,

𝜔′ = 2Lṗ (C.18)
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Figure C-5: Spherical Joint.

ṗ =
1

2
L𝑇𝜔′ (C.19)

C.2.2 Kinematic Constraints

In this section, the constraint equations for the standard kinematic pairs(i. e. spherical,
revolute and translational) are presented. It will be shown that by means of parallel and
perpendicular vectors concepts, it is possible to derive the kinematic constraints of the
pairs. Also, the Jacobian entries for each constraint type, along with the terms of the
right hand side of the acceleration will be presented.

Spherical Joint

A spherical joint between bodies i and j is shown in Fig. C-5. The center of the joint
is at point P, which has constant coordinates with respect to 𝜉𝑖𝜂𝑖𝜁𝑖 and 𝜉𝑗𝜂𝑗𝜁𝑗 . The
constraint equation is of the type spherical, (s), defined by:

Φ(𝑠,3) ≡ r𝑖 + Ar
′𝑃
𝑖 − r𝑗 − Ar

′𝑃
𝑗 = 0 (C.20)

The spherical joint has three DOF, from which two represent the direction and the
third represents the rotation around the directional axis.

Revolute Joint

A revolute joint between bodies i and j is shown in Fig. C-6. This type of joint has
similar motion properties as the spherical joint. However, it is constrained to a one degree
of freedom because vectors 𝑠𝑖 and 𝑠𝑖 must remain parallel at all times. Therefore, two
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Figure C-6: Revolute Joint.

constraint equations can be defined, at first glance, by the following expression:

Φ(𝑠,3) = 0

Φ(𝑝1,2) ≡ 𝑠𝑖𝑠𝑗 = 0
(C.21)

The parallel constraint can be simplified by creating two additional vectors, ℎ⃗𝑖 and
𝑔𝑖 perpendicular to each other and to 𝑠𝑖. This condition will simplify the constraint
formulation of the parallel type constraint. It is clear that the parallel constraint results
in three equations, of which only two are independent. By using the two perpendicular
constraints, the process of finding the independent equations is avoided. Therefore, the
constraint equations for a revolute joint are:

Φ(𝑠,3)(𝑃𝑖, 𝑃𝑗) = 0

Φ(𝑛1,1) ≡ ℎ𝑇𝑖 𝑠𝑗 = 0

Φ(𝑛1,1) ≡ 𝑔𝑇𝑖 𝑠𝑗 = 0

(C.22)

The perpendicular constraint is defined as the scalar product between the two vectors,
which result is zero.

Translational Joint

A translational or prismatic joint is shown in Fig. C-7. In this kind of joint, no rotation
is allowed between the two bodies i and j, and there is only a translational movement
along one axis. From this two premises, the following statements can be inferred :
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Figure C-7: Translational Joint.

• Vectors 𝑠𝑖 and 𝑠𝑗 must remain parallel to ensure only one axis of translation.

• Vectors 𝑠𝑖 and 𝑑 must remain parallel to ensure the translation along one axis. In
this case, vector 𝑑 is a variable magnitude vector.

• In order to prevent the rotation between the two bodies, vectors ℎ⃗𝑖 and ℎ⃗𝑗 must
remain perpendicular.

Using the conditions above, the constraint equations are given by:

Φ(𝑝1,2) ≡ 𝑠𝑖𝑠𝑗 = 0

Φ(𝑝2,2) ≡ 𝑠𝑖𝑑𝑖𝑗 = 0

Φ(𝑛1,1) ≡ ℎ𝑇𝑖 ℎ𝑗 = 0

(C.23)

Again, the parallel constraints can be modified by adding a perpendicular vector 𝑔𝑖
to 𝑠𝑖 at point 𝑃𝑖. Now, another option for the constraint equations is given by

Φ(𝑛1,1) ≡ ℎ𝑇𝑖 ℎ𝑗 = 0

Φ(𝑛1,1) ≡ ℎ𝑇𝑖 𝑠𝑗 = 0

Φ(𝑛1,1) ≡ 𝑔𝑇𝑖 𝑠𝑗 = 0

Φ(𝑛2,1) ≡ ℎ𝑇𝑖 𝑑𝑖𝑗 = 0

Φ(𝑛2,1) ≡ 𝑔𝑇𝑖 𝑑𝑖𝑗 = 0

(C.24)

Velocity and acceleration

Through the differentiation with respect to time of the constraint equations, it is possible
to find the Jacobian matrix of a given system. Moreover, it is also possible to find the
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right hand side of the acceleration expressions. This results are used in the dynamic
analysis of a given multibody system. The results for the types of constraints used here
(normal type 1, normal type 2 and spherical) are presented in Table C.1

Φ Φ𝑟𝑖 Φ𝑤′
𝑖

Φ𝑟𝑗 Φ𝑤′
𝑗

Φ
(𝑠,3)
𝑞 I −𝑠𝑃𝑖 𝐴𝑖 -I −𝑠𝑃𝑗 𝐴𝑗

Φ
(𝑛1,1)
𝑞 0𝑇 −𝑠𝑇𝑗 𝑠𝑖𝐴𝑖 0𝑇 −𝑠𝑇𝑖 𝑠𝑗𝐴𝑗

Φ
(𝑛2,1)
𝑞 𝑠𝑇𝑖 −(𝑑𝑇𝑖𝑗 + 𝑠𝑃

𝑇

𝑖 )𝑠𝑖𝐴𝑖 𝑠𝑇𝑖 −𝑠𝑇𝑖 𝑠𝑃𝑗 𝐴𝑗

Table C.1: Jacobian matrix for the basic constraints

where I is a 3×3 identity matrix and 0 is a 3×1 vector. The entries for the right-hand
side of the acceleration equations are given in Table C.2.

Φ 𝛾

Φ
(𝑠,3)
𝑞 −�̃�𝑖�̇�𝑃𝑖 + �̃�𝑗 �̇�

𝑃
𝑗

Φ
(𝑛1,1)
𝑞 �̇�𝑇𝑖 �̃�𝑖𝑠

𝑃
𝑗 − 2�̇�𝑇𝑖 �̇�𝑗 + �̇�𝑇𝑗 �̃�𝑗𝑠

𝑃
𝑖

Φ
(𝑛2,1)
𝑞 −𝑑𝑇𝑖𝑗�̃�𝑖�̇�𝑖 − 2�̇�𝑇𝑖

˙𝑑𝑖𝑗 − 𝑠𝑇𝑖 (�̃�𝑗 �̇�
𝑃
𝑗 − �̃�𝑖�̇�

𝑃
𝑖 )

Table C.2: Gamma (right-hand side of the acceleration equations) entries for the basic
constraints

C.2.3 Newton-Euler Equations

In this section, a system of constrained EOM is presented. There are different types
of formulations, but the one used here is in terms of the Euler parameters. Also, the
angular velocity is formulated in terms of it’s local coordinates in order to maintain the
inertial tensor constant (Nikravesh, 1988). The formulation presented here provides a
conceptual basis for the numerical analysis algorithm presented in chapter 3.

Newton’s 2nd law of motion is used as starting point to express the translational part
of the EOM and it is given by

Nir̈i = fi (C.25)

where Ni = 𝑑𝑖𝑎𝑔[𝑚,𝑚,𝑚]𝑖. The rotational EOM are:

J′
i�̇�

′
i + 𝜔′

iJ
′
i𝜔

′
i = n′

i (C.26)

Equations C.25 and C.26 can be combined to form:[︂
𝑚𝑖𝐼 0
0 𝐽 ′

𝑖

]︂
𝑖

{︂
r̈

�̇�′

}︂
𝑖

=

{︂
f
𝜔′

}︂
𝑖

−
{︂

0

𝜔′𝐽 ′𝜔′

}︂
𝑖

(C.27)
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Where the subscript i means that the expressions correspond to body i. Equation
C.27 can be written as:

𝑀𝑖ℎ̇𝑖 = 𝑔𝑖 − 𝑏𝑖 (C.28)

where the mass matrix is defined as

𝑀𝑖 =

[︂
𝑚𝑖𝐼 0
0 𝐽 ′

𝑖

]︂
𝑖

(C.29)

the body velocity vector:

ḣ𝑖 =

{︂
r̈

�̇�′

}︂
𝑖

(C.30)

the external forces:

𝑔𝑖 =

{︂
f
𝜔′

}︂
𝑖

(C.31)

and the quadratic velocity terms vector

𝑏𝑖 =

{︂
0

𝜔′𝐽 ′𝜔′

}︂
𝑖

(C.32)

The previous set of equations can be used to represent the motion of an unconstrained
body. This concept can be extended to a system of constrained bodies. In the preceding
section, the entries for the Jacobian and the acceleration were defined, i.e Eq. C.33.

Φ𝑞q̈ = 𝛾 (C.33)

which is appended to the EOM, to result in the system of equations:[︂
M B𝑇

B 0

]︂
𝑖

[︂
ḣ
−𝜆

]︂
=

[︂
g − b
𝛾

]︂
(C.34)

where B = [Φ𝑟1 ,
1
2Φ𝑝1𝐿

𝑇
1 , . . .,Φ𝑟𝑏 ,

1
2Φ𝑝𝑏𝐿

𝑇
1 ] which is written in terms of the local co-

ordinates of the angular acceleration to be consistent with the formulation. The resulting
formulation is a system of differential algebraic equations that can be solved using a nu-
meric solver. In the next chapter, an algorithm to solve the system is presented, along
with simulation results for the kinematic pairs discussed in this chapter.

C.3 Numerical Analysis of Multibody Systems

At the end of chapter 2 a formulation to find the dynamics of a kinematically constraint
system was presented. In the end, the problems turns out to be an algebraic-differential
equations (DAEs) problem. In this chapter, an algorithm used to solve this set of equa-
tions is presented. In addition, a set of examples showing simulation results for the
standard kinematic pairs explained in section C.2.2 will be used to show the implemen-
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tation of the algorithm. The chapter begins by explaining some of the basic programming
concepts used for this implementation, then it moves to describe the algorithm, and last,
the simulation results are presented.

C.3.1 Data structures

A multibody system can contain as much of b bodies and m kinematic pairs. The
complexity of the program, in computational time and organization, grows proportional
to the number of b and m. A way to keep the program organized in "categories" that are
easy to understand, and to program, is by using data structures. The data structures are
organized as the data is read from the input file and are operated as global structures,
i.e. they can be modified in any part of the code. For the body type structure, the global
coordinates, translational and rotational (i.e. Euler parameters), are given in the file. As
for the kinematic pair structures, the fields contain the local and global coordinates of the
points of interest for the constraint formulation. The global coordinates are calculated
using the direction of cosines matrix at each time step.

C.3.2 Integration Array

In this section, the numerical integration process will be explained for the case of solving
the DAEs of a spatial system. The solver used is ode45 from Matlab. Now, recall from
Section C.2.3 the systems of equations given by Eq. C.34. This system is of the form:

AX = B (C.35)

of which, the solution can be found by solving the system for X. If the section
corresponding to 𝜆 is discarded, for now, it can be said that vector ḣ contains the
solution of interest which is:

ḣ𝑖 =

{︂
r̈

�̇�′

}︂
(C.36)

This solution will lead to n second-order differential EOM. Moreover, these set of
equations can be converted to a 2n first-order set of equations by defining two arrays 𝑦
and �̇�.

𝑦 =

[︂
𝑞
𝑞

]︂
�̇� =

[︂
𝑞
𝑞

]︂
The two arrays can be arranged arbitrarily but they must be consistent in their order.

For instance, if the ith element of y contains 𝑥𝑖, then the ith element of �̇� must contain 𝑥𝑖.
For the case of planar analysis, this numerical integration will be straightforward since
the vectors are in correct order and are consistent as far of their components. However,
in spatial analysis this is not the case as shown in Eq. C.36. In order to execute the
numerical integration it is necessary find �̇� from 𝜔′ using Eq. C.19. In summary, the
vector organization occurs as follows:
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𝑦 =

⎡⎢⎢⎣
r
p
ṙ
𝜔′

⎤⎥⎥⎦ → ṗ = 1
2L

𝑇𝜔′ → �̇� =

⎡⎢⎢⎣
ṙ
ṗ
r̈
p̈

⎤⎥⎥⎦

C.3.3 Algorithm

In generalized form, for planar and spatial systems, the set of equations for a kinemati-
cally constrained mechanical system is given by

Φ̈ ≡ Φqq̈− 𝛾 = 0

Mq̈−ΦT
q 𝜆 = g

(C.37)

For Φ in Eq. C.37 it is assumed that it contains both the kinematic and mathematical
constraints. Therefore, the matrix B of Eq. C.34 is already included in the formulation.
In the following algorithm, the DAEs are solved to obtain the dynamic response of a
system described by Eq. C.37. The numerical integration routine explained in the
previous section it is then implemented.

C.3.4 Simulation Results

Spherical Joint

This example describes the motion of a classical pendulum, who’s joint is made up of
a spherical joint. The joint is centered at ground and the origin of the global reference

frame. The center of gravity it is assumed to be in
𝑙

2
of the pendulum, where it’s local

reference frame is located and 𝑙 = 5. There is no friction in the joint and the pendulum is
dropped from 𝜃 = 45𝑜 with the vertical, along the z axis. The results for the displacement
and rotational coordinates are presented in Figures C-12, respectively.

The same pendulum was tested when 𝜃 = 0𝑜, i.e. dropped from the horizontal. The
results are shown in Fig. C-9. Notice how the value of Z stays constant for an instant.
This happens when the pendulum reaches it’s maximum value and the velocity is equal
to zero. Again, there is no friction in the joint and therefore the movement is constant
in time without any decay.

Revolute Joint

The revolute joint is very similar to the spherical joint, but there is a motion constraint
and there is only one relative DOF between the two bodies. The system used for the
simulation is the pendulum used in the previous section.

Notice that the parameter 𝑒0 = 0 when the pendulum reaches the other side and
it’s local reference frame as a rotation of 𝜋 rad. This is consistent with the literature
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Algorithm 2: How to find the dynamics of a multibody system through numerical
integration

Data: coordinates file
Result: Solution to the set of DAEs

1 Read data file (initial conditions) and construct data structures;
2 Initialize operation matrices;
3 Update the coordinates of the kinematic joints, and transformation matrices using

the initial conditions;
4 Construct the initial conditions vector y0 ≡ [q0

𝑇 , q̇0
𝑇 ]𝑇 ;

5 Enter the numerical integration routine;

• Update the body coordinates;

• Update the coordinates of the kinematic joints, and transformation matrices using
the previous update;

• Calculate ṗ from 𝜔′ using Eq. C.19;

• Calculate the forces present in the system;

• Calculate the Jacobian and 𝛾 entries for each constraint type;

• Build the system of equations in the form of Eq. C.34, which is of the form of Eq.
C.35;

• Solve for X;

• Construct vector ẏ ≡ [q̇𝑇 , q̈𝑇 ]𝑇 ;

• Return;
6 Plot the results;

(see Nikravesh, 1988) where is expressed that when the angle of rotation is 𝜑 = 𝑘𝜋, 𝑘 =
±1,±3, ..., then 𝑒0 = 0.

Translational Joint

This joint was simulated as a slider that moves due to the presence of gravity. The slider
is placed at 𝜃 = 45𝑜 and it is expected to fall in the 𝑦 and 𝑧 negative direction. The
result is presented in Fig. C-11.

Spring-damper mass system

This example, illustrates how the external forces, produced by a spring and a damper,
affect the dynamic behavior of the system shown in Fig. C-13. The coordinates formu-
lation was done in xy plane and the acting force of gravity produces the masses to fall
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Figure C-8: Pendulum results when it is dropped from 𝜃 = 45𝑜 - Spherical joint

Figure C-9: Pendulum results when it is dropped from 𝜃 = 0𝑜 - Spherical joint

into the negative y position.

Spatial Slider-crank

The mechanism presented in this section gathers some the basic kinematic joints ex-
plained in the previous sections (Fig. C-15). The model, composed by four bodies, is
defined as follows:

The model presented in Table C.4 is a modified version because the original model
had redundant constraints by having a revolute joint between the two cranks. Also, the
slider was defined as a translational joint but the constraint that prevents it from rotating
was already defined by the revolute joint 2. These types of issues are not explicitly iden-
tified by the program, but it was observed that the redundancy of constraints generated
singularities in the Mass/Jacobian matrix.

The model is defined by the position, velocity, angular velocity and rotational coor-
dinates of each body; and the points required to define each kinematic joint. Since the
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Figure C-10: Pendulum results when it is dropped from 𝜃 = 0𝑜 - Revolute joint

system is at rest at 𝑡 = 0, the velocity coordinates are equal to zero. The coordinates
required for the model are defined as follow:

The mechanism is simulated as it was at rest at 𝑡 = 0. No external forces, other than
gravity, are acting in the system. It is expected that the slider will move in the positive 𝑦
direction and the two cranks will fall. There is no restriction with respect to ground for
the cranks, and therefore they will fall into the negative 𝑧 direction (1). When the cranks
fall below 𝑧 = 0, the slider would have to move in the direction towards 𝑦 = 0 (2). Once
it reaches this position, the effects of inertia will generate moments in the cranks and
these will move and make the system come back into the initial position (3). The process
repeats periodically because friction is not accounted in the joints. The displacement of
the two cranks and the slider are shown in Fig. C-15. The numbers in the figure are
intended to show the positions where the previous three steps take place.

The rotational coordinates are shown in Fig. C-16. Notice the Euler parameters of
the slider: since it is moving horizontally, there is no rotation and therefore are constant.

The algorithm and results presented in this chapter show the advantages of imple-
menting a modular program to analyze Multibody Dynamics. The program was designed
so it is possible to include additional constraints formulations for other types of joints.
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Figure C-11: Translational joint simulation.

Figure C-12: Mass displacement when gravity acts in the system.

𝑚1

𝑘1𝑏1

𝑚2

𝑘2𝑏2

𝑦1

𝑦2

𝑔 = 9.8m/𝑠2

Figure C-13: Spring-damper mass system.
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Slider-crank model
Bodies
Four Bodies nc=24
Constraints
Revolute joint (ground, crank 1) 5
Spherical joint (crank 1, crank 2) 3
Revolute joint (crank 2, slider) 5
Cylindrical joint (slider, ground) 4
Ground constraint 6
DOF = 24-23 = 1 nh=23

Table C.3: Slider-crank model description

Figure C-14: Slider-crank Mechanism.

Body 𝑥 𝑦 𝑧 𝑒0 𝑒1 𝑒2 𝑒3

1 0.0 0.3182 0.3182 0.9239 0.3827 0.0000 0.0000
2 0.0 0.9192 0.3536 0.9239 -0.3827 0.0000 0.0000
3 0.0 1.2021 0.0707 1.0000 0.0000 0.0000 0.0000
4 0.0 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Table C.4: Slider-crank bodies’ coordinates

Body P Q R S
𝜉 𝜂 𝜁 𝜉 𝜂 𝜁 𝜉 𝜂 𝜁 𝜉 𝜂 𝜁

Crank 1 0.00 -0.45 0.00 0.10 -0.45 0.00 0.00 -0.50 0.10 0.00 -0.45 0.10

Ground 0.00 0.00 0.00 -0.10 0.00 0.00 NA NA NA NA NA NA
Crank 2 0.00 0.40 0.00 0.10 0.40 0.00 0.00 0.40 0.10 0.00 0.50 0.10

Slider 0.00 0.00 0.00 -0.10 0.00 0.00 NA NA NA NA NA NA

Table C.5: Revolute joints’ coordinates
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Body P
𝜉 𝜂 𝜁

Crank 1 0.00 0.45 0.00

Crank 2 0.00 -0.40 0.00

Table C.6: Spherical joint coordinates

Body P Q R S
𝜉 𝜂 𝜁 𝜉 𝜂 𝜁 𝜉 𝜂 𝜁 𝜉 𝜂 𝜁

Crank 2 0.00 0.00 -0.07071 0.00 -0.10 -0.07071 0.10 0.00 -0.07071 0.00 0.00 0.00

Slider 0.00 1.30 0.00 0.00 1.50 0.00 0.00 1.30 0.10 NA NA NA

Table C.7: Cylindrical joint coordinates

Figure C-15: Slider-crank displacement coordinates.
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Figure C-16: Slider-crank rotational coordinates.
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Appendix D

Notes on the implementation

D.1 Introduction

This appendix describes the implementation of the electrical and mechanical models
of wind turbine generators and gearboxes, respectively. Combined, they are used to
describe the electro-mechanical interaction that occurs inside a wind turbine’s drive-
train. These models are implemented in Matlab/Simulink and are coupled with the
aeroelastic tool HAWC2 (Horizontal-axis Wind turbine simulation Code 2nd generation
[17]). The literature on gearbox modeling is extensive [33, 32, 30, 109, 3, 26] and it is not
the purpose of this report to present novel modeling techniques or the models in itself.
These were presented previously in Chapter 3.

As a summary, here are the main features of the tool up-to-date:

1. Modular approach: the implementation of the tool is done is such a way that
it is possible in theory to model any configuration of the existing drive-trains.
This applies to multi-stage gearboxes consisting on a combination of planetary and
parallel gearbox stages, and the corresponding generator.

2. Complexity: as of now, it is possible to model the drive-train with two different
levels of complexity. This reefers to the number of DOF per body used to describe
the gearbox. The first level correspond to torsional models (1D) and the second
level is of translational/rotational models (2D). Depending on the desired results,
it is possible to specify which level is to be used to describe the models.

3. Generators: the tool contains generic models of the two types of generators most
used in the wind energy industry. A DFIG and a PMSG are available to be coupled
with the gearbox. The generator modules contain generic control strategies, which
parameters can be easily modified in the code.

4. Electric fault simulation: Depending on the generator system, there are two ways
to simulate a grid fault. In the case of a PMSG, the power system "de-couples" the
generator from the grid. Hence, short faults are unlikely to affect the generator since
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Figure D-1: Flow chart of the tool.

the chopper takes care of the power unbalance. Therefore, since the wind turbine
controller is used to generate the reference, it is possible to specify the electric fault
parameters such as start-time, duration and recovery type (this depends on the grid
codes) in order to change the reference to simulate an electric fault in the generator
terminals. This attempts to reproduce the change in electromagnetic torque of the
generator that occurs when the excitation voltage is modified due to a grid fault or
a voltage dip. In the case of a DFIG system, the voltage in the stator is changed
according to a specified grid code. This is done under the premise that a DFIG’s
stator is directly connected to the grid and a grid fault will affect it immediately.

5. Input: example files with the required parameters for the system is available. Notice
that this is an important part of the system simulation and all parameters must be
provided.

6. Post-processing: a post-processing tool is included in where the results can be vi-
sualized. The amount of results depends on the type of complexity chosen. The
results correspond mainly to the states of the system such as displacements, veloc-
ities, accelerations, vibration and loads.

The use of the tool follows the flow chart presented in Figure D-1. Once the input
parameters are defined, the tool creates the system matrices of the specified drive-train
configuration and runs the simulation. The flowchart sequence is true assuming that the
input file to HAWC2 is already defined.

Once the simulation is done, it is possible to analyze the results from the drive-train in
Matlab using the post-processing class that is available with the tool. This is not a strict
requirement, however, since the system variables and results are available in Matlab’s
workspace.
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D.2 Models description

This section presents the general idea behind the models used in this tool. All of the
gearbox models are based on lumped-parameter theory, in where every flexibility is rep-
resented as a linear spring. In the case of the connecting shafts in each stage, a torsional
spring is used to represent the coupling.

To model the internal flexibilities of the gearbox, different assumptions are made:

• each gear body, or a state on the system, is assumed to be rigid.

• the gear mesh due to teeth flexibility is represented by a linear spring (Figure 3-14).
In reality, this is a non-linear parameter that varies in time as there is single or
double contact in the meshing teeth. However, it is considered linear initially in
this tool. This assumption is valid for both levels of complexity on the models.

• the bearings are represented by linear springs that support the gears. The bearing
stiffness parameter needs to be provided in the input file. This assumption is only
valid for the 2D model since it models the translational DOFs of each body.

• all the shafts connecting the gearbox stages, generator and wind turbine rotor are
assumed to be torsional springs.

The interaction with between Matlab and HAWC2 is done through a DLL in charge of
the communication of the the two tools. Each software solves the EOM at the time step
set by HAWC2 and share the information of the states upon convergence. The diagram
in Figure 3-22 shows an example of the variables interacting between the two tools. The
coupler block estimates the LSS torque given changes in the rotor speed. The coupler
equation (3.77) calculates in reality the torsion at the carrier side. This is the results of
the analysis of a two mass model in free-free condition, where the reaction forces on each
mass are equivalent in magnitude. Therefore, the torsion (𝑇𝑟)seen at the carrier is of the
same value of the LSS.

where 𝐾𝑠 is the LSS stiffness, 𝐶𝑠 is the LSS damping, 𝜔𝑟 is the rotor speed,𝜔𝑐 is
the carrier speed, 𝐽𝑟 is the rotor inertia and 𝐽𝑔𝑏 is the gearbox inertia refereed to the
low-speed side. In order to keep the torque balance in the wind turbine’s rotor, the
calculated torsion is applied to the main shaft. This replaces the torque demand from
the controller (𝑇𝑟𝑒𝑓 ) which is usually applied to the main shaft to keep the equilibrium
in the rotor, when doing only aeroelastic simulations with HAWC2.

The generator model calculates the electromagnetic torque based on the speed in the
HSS. The other inputs to the model are the excitation voltages, which are controlled by
the machine controller to maintain the torque commanded by the wind turbine controller.
The resulting electromagnetic torque is the second input to the gearbox. Since it is a
free-free conditions, it is paramount to maintain a dynamic equilibrium between the two
inputs and the reaction forces generated inside the gearbox due to the flexibilities. This
is achieved by the combined work of the coupler equation and the machine controller for
the generator.
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D.3 Outputs

As mentioned before, it is possible to obtain a different set of results depending on the
level of complexity chosen in the gearbox specification. The information presented in
Table D.1 shows the results available depending on the model complexity.

Table D.1: Results available after simulation depending on the level of complexity of
the gearbox model.

Result type Torsional-1D Translational/rotational-2D

Displacements x x
Vibration x x
Velocities x x
Accelerations x x
Torsional loads x x
Gear mesh loads x x
Bearing loads x
Low-speed torque x x
High-speed torque x x
Voltages x x
Currents x x
Power production x x
Flux linkages x x
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Appendix E

Dynamic model of a permanent
magnet synchronous generator

This section presents the typical model found in literature that deals with the dynamics
of a PMSG in wind energy applications [78, 12, 110, 77, 79]. This model is defined in the
dq0 -frame for ease on the calculations, since this coordinate transformation transforms
the three phase system (abc) that varies with time in to a rotating frame of reference that
rotates along with the three-phase system, and therefore, produces three DC voltages.
This results in an elimination of the time-varying terms in inductance matrix in the (abc)
model.

The model of the PMSG uses the variations of flux linkages as states to fins the
currents in the stator, electric torque and electric power. The model is implemented in
Simulink and the corresponding equations can be expressed as follows:

˙𝜓𝑠𝑑 = −𝑅𝑠𝑖𝑠𝑑 + 𝜔𝑒𝜓𝑠𝑞 + 𝑢𝑠𝑑
˙𝜓𝑠𝑞 = −𝑅𝑠𝑖𝑠𝑞 − 𝜔𝑒𝜓𝑠𝑑 + 𝑢𝑠𝑞

(E.1)

and the stator current components as:

𝑖𝑠𝑑 =
𝜓𝑠𝑑 − 𝜓𝑝𝑚

𝐿𝑑

𝑖𝑠𝑞 =
𝜓𝑠𝑞
𝐿𝑞

(E.2)

where 𝜓𝑠𝑑 and 𝜓𝑠𝑞 as the stator flux components; 𝑢𝑠𝑑 and 𝑢𝑠𝑞 are the terminal stator
voltages; 𝑅𝑠 is the stator resistance; 𝐿𝑑 and 𝐿𝑞 are the stator inductances in the dq0 -
frame.

The electrical torque of the generator is expressed as:

𝑇𝑒 =
3

2
𝑝𝜓𝑝𝑚𝑖𝑠𝑞 (E.3)
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and the generated power is defined as:

𝑃 = 𝑇𝑒𝜔𝑟𝜂 (E.4)

where 𝜔𝑟 is the mechanical rotational speed of the machine, 𝑝 is the number of pole
pairs, 𝜓𝑝𝑚 is the permanent magnet flux linkage constant1 and 𝜂 is the efficiency of the
machine.

E.1 Physical Parameters

The design of an electrical machine is not a trivial task and it is not the purpose of
this project. However, many models and design work has been done and it is available
in the literature. For instance, Roshanfekr et. al., studied the performance of two
different types of PMSG in [12]. The two 5MW generators studied were the surface
mounted permanent magnets (SPMSG) and for the interior permanent magnet machine
(IPMSG). The parameters for this implementation are taken from the former SPMSG
and are shown in Table E.1.

Table E.1: The 5 WM PMSG parameters used in this dissertation [12].

Parameter Value

Rated Output Power 5 MW
Rated Torque on generator 64 kNm
Armature phase resistance 0.00125 Ω
D-Axis main Reactance 0.111974 Ω
Q-Axis main Reactance 0.111974 Ω
Synchronous Speed 750 rpm
Number of poles 8
Efficiency 99%
Permanent Magnet Flux Linkage (𝜓𝑝𝑚) 2.0215

E.2 Results

First, the generator was simulated at rated conditions using as an input the three-phase
voltages, with the corresponding coordinate transformation to the dq-frame. The trans-
formation from the 𝑎𝑏𝑐 frame results into two stator voltages, namely 𝑣𝑠𝑑 and 𝑣𝑠𝑞. Fur-
thermore, the model was tested at rated values to:

• verify the convergence of the simulation to a steady-state value,

1This value was estimated since the paper did not provided the value that it was used for their
computations.
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• find the operation points of torque, currents and produced power. These values are
to be validated with those found by [12].

The results are shown in Figures E-1 and E-2.
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Figure E-1: (a) Stator voltages in the dq-reference. (b) Machine current in the dq-
reference.
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Figure E-2: (a) Machine torque. (b) Generated power.

From the results in Table E.2, it is seen that the model is accurate enough given the
low percentage of error, which might be due to the estimation of the 𝜓𝑝𝑚. It is important
to highlight that the values for the flux linkages are unknown, and therefore, the initial
conditions for these states are treated as zero for this set of results. This is the reason why
there seem to be a transient behavior in the results before reaching steady-state, and it
is due to convergence. However, the steady-state condition found in these results can be
used as initial conditions in future simulations that include the entire drive-train and the
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Table E.2: Validation of results are rated conditions

Parameter Reference Implemented Error (%)
Torque [kNm] 64 65.53 2.3
Power [MW] 5 5.095 1.9

turbine. As it has been experienced before, the initial conditions are very important to
simulate larger systems in order to avoid convergence issues and faster transient period.
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