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Abstract. This study presents an vibration-based system designed for structural health
monitoring of wind turbine blades. Mechanical energy is introduced by means of an
electromechanical actuator mounted inside the blade. The actuator’s plunger periodically hits
the blade structure; the induced vibrations propagate along the blade and are measured by an
array of accelerometers. Unsupervised learning is applied to the data: the vibration patterns
corresponding to the undamaged blade are used to create a statistical model of the reference
state. During the detection stage, the current vibration pattern is compared with the reference
state, and the novelties can be associated with damage. The vibration pattern is described by
the covariance matrix between the accelerometer signals. The mid-range frequencies are used:
this range is above the frequencies excited by blade-wind interaction, thus ensuring a good
signal-to-noise ratio. Simultaneously, the frequencies are low enough to be able to propagate the
entire blade length, so good results can be obtained even using only one actuator. The system
is demonstrated on a real 34m blade mounted on a test rig. Using the suggested approach,
the system enables detection of, e.g., a 20cm long trailing edge opening under realistic noise
conditions. It is also demonstrated that the system provides rough information about damage
location. Progression of damage, if any, can also be detected.

1. Introduction
Wind turbine blades today are extremely complex and expensive structures; from the cost
perspective, they constitute a significant asset for wind turbine owners. Therefore, monitoring
of their structural health becomes economically rational, especially for big, remote (offshore)
turbines.

There are many different approaches to SHM of wind turbine blades, varying by utilizing
different physical phenomena, sensor types and signal processing; a detailed review can be found,
for example, in [1]. The present study introduces a vibration-based, active system. Vibration-
based means that changes in mechanical vibrations of the blade serve as a feature indicating
blade damage. Active means that the vibrations are introduced artificially, by using a dedicated
actuator mounted inside the blade; this contrasts with other vibration-based approaches which
rely on ambient vibration of the blades due to wind. In authors knowledge, so far there is no
evidence that the latter can provide damage detection resolution satisfying industry’s demand.
The suggested technique differs from another well-known active approach, guided waves, in the
frequency range used. If, in the guided waves case, the tens of kHz range is typical, the vibration
frequencies excited by the suggested electromechanical actuator are normally below 1 kHz.
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The vibrations induced by the actuator are picked by a number of accelerometers distributed
over the monitored structure. The recorded signals are processed by the set of algorithms that
determine whether or not the blade is damaged and find the location of the damage. A video
demonstrating the SHM in action can be found in [2].

The medium frequency range which utilizes the proposed SHM is a compromise between
the propagation range and detection resolution. Low-frequency vibrations can propagate long
distances but are very insensitive to small areas of damage. It is well documented, see, for
example, [3], that the modal parameters of the lowest blade modes are quite insensitive to blade
damage, thus SHM systems utilizing changes in the modal parameters can only detect very
significant damages. Ultrasonic range frequencies employed in the guided waves approach have
good damage-detection resolution but the vibrations at such high frequencies quickly decay
and cannot propagate long distances. This means the monitored blade has to be equipped
with a large number of actuators and sensors, making such a system economically infeasible.
The proposed approach utilizes the medium frequency range. Being well above the very low
frequencies, where the blade is mainly excited by the wind, ensures satisfactory signal-to-noise
ratio of the acceleration signals picked up by the accelerometers. At the same time, the frequency
range is low enough for the vibrations to propagate long distances, and the experiments showed
that a single actuator is sufficient to excite even a long modern blade. This also provides a
good signal-to-noise ratio of the measured acceleration signals. On the other hand, the utilized
frequency is high enough to ensure that the level of detection resolution is satisfactory for wind
turbine owners; as it will be shown later, e.g., the system can detect a 20cm long trailing edge
opening of a 34m blade.

Data-driven models for damage detection have been employed in numerous studies, for
example, [4], with positive results. The experiments presented are often performed in laboratory
conditions with models trained in a supervised setting where measurements from undamaged
and damaged structures were available for the fitting. In contrast, the approach presented here is
based on unsupervised anomaly detection, and thus does not require the learning of the damaged
states. The SHM system is to be installed on an operational wind turbine continually monitoring
the state so the algorithm must be robust to changing conditions such as wind, precipitation,
and the operational modes such as changing rotational speeds and blade orientation. These
phenomena may result in false alarms and the influence must therefore be investigated to
implement a practical SHM system.

2. SHM system implementation on an SSP34m blade
Instead of making a general description of the proposed SHM system, this section uses one
example of its implementation (namely, in application to an SSP34m blade). It is thought,
however, that it should be easy to get a general idea about the concept of the proposed system
and its usage. Before installing the SHM system on an operating wind turbine, its concept was

Figure 1. SSP34m blade mounted
on the test rig

validated in laboratory conditions. An SSP34m blade, mounted on a test rig at DTU Wind
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Figure 2. Design of electro-
mechanical actuator.

Figure 3. Mounting inside an
SSP34m blade

Figure 4. Test setup. Location of the actuator (•), accelerometers (•) and the damage ( ).

Energy facilities in Roskilde, Denmark (figure 1), was instrumented, and a series of experiments
were conducted on the blade in undamaged and damaged states.

2.1. SHM system hardware
The hardware of the SHM system consists of an electromechanical actuator and array of
accelerometers.

The actuator is an electromechanical device consisting of two main parts (figure 2): a steel
plunger and a coil. Driven by an electrical pulse, the coil ‘shoots’ the plunger towards the
structure; after the hit, the plunger returns to its initial position by spring. Though, there is an
advantage of measuring the injected force, the practical implementation of such sensors would
be quite difficult and thus omitted in this study.

The actuator is meant to be mounted inside the blade, on the shear web or the spar cap
(figure 3), in the root section of the blade, i.e., at the first third of the blade length. This area is
typically easily accessible in most modern blades. From a few pretests, it became obvious that
even one actuator can excite the entire blade. The chosen location of the actuator is shown in
figure 4.

The blade was also instrumented with 20 Brüel & Kjær accelerometers Type 4524-B, ten on
the leading edge (LE) and ten on the trailing edge (TE) (figure 4). The same accelerometer
setup was used for modal analysis, therefore triaxial accelerometers were used [3]. However, in
the experiment described, only the data from one axis, perpendicular to the blade surface, was
used.We acknowledge that mounting sensors on wind turbine blades is a difficult task, especially
in a retrofitting scenario. However, the last years advances in sensing technology, e.g. the fiber
optic sensing, can make blade instrumentation feasible in the nearest future.

It should be mentioned that we did not use any systematic approach for selecting the number
of accelerometers, their placement and the placement of the actuator. As mentioned before,
the accelerometers were reused from another modal analysis experiment, and the placement of
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the actuator was mainly driven by ease of access and a few pretests. A systematic approach to
sensor/actuator placement may significantly improve the effectiveness of the SHM system and
contribute to its cost reduction by reducing the number of sensors (and hence, data acquisition
channels) by placing them at most optimal points. The first steps in this direction were taken by
Parker, who used a genetic algorithm [5], and Lagerbon, who utilized a topology optimization
approach [6].

A Brüel & Kjær data acquisition unit (see [3] for more details) was used for collecting
the acceleration data. The unit also contains a signal generator, which was set to generate
a rectangular pulse, which, after amplification, was fed to the actuator, resulting in an actuator
hit. The data acquisition was triggered by this pulse, set to collect vibration data for a few
milliseconds before and a few seconds after the pulse. Using the trigger significantly reduces the
amount of data collected for the analysis.

The damage-detection algorithms are based on statistics to make detection more robust.
In order to collect the necessary statistics, the blade in undamaged and damaged states was
subjected to about fifty hits at each state. To speed up the experiment, the time between the
successive hits were selected quite small, varying from one to five minutes. In real life application,
the time between hits could be, for example, an hour or more.

2.2. Artificial damage
Only one type of damage was tested in the presented study: a trailing edge opening (figure 5).
This damage is typical for many types of wind turbine blades, caused by de-bounding of the
shells forming the pressure and suction sides of the blade. The damage was introduced into the
blade gradually; we started with a 20cm trailing edge opening, drilling a series of holes through
the glue between the pressure and suction sections of the blade. Then, using a saw, the holes
were merged into one opening. After that, using a chisel and saw, the crack was gradually
extended to 120cm; thus we had four damaged states: 20cm, 60cm, 90cm and 120cm. The data
acquisition were conducted for each state, including the initial undamaged state, using about
fifty actuator hits for each state.

Figure 5. Blade damage in the trailing
edge, with the chisel used to introduce the
damage

Figure 6. Bolts and metal plates used
to change damage size in the second
experiment.

When the damage was introduced, it was realized that operating with a heavy hammer and
chisel can introduce some other unwanted changes into the blade, which can be erroneously
associated with the effect of the damage. To avoid this, the experiment was repeated: the de-
bounded parts of the blades were connected by bolts, placed 10cm from each other. The glue
removed between the pressure and suction parts was replaced by thin metal plates (figure 6).
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Figure 7. Power Spectral
Densities (PSD) of the accel-
eration measured at the blade
tip. V27 wind turbine:
—— idle condition, moderate
wind;
—— operating at 32RPM,
moderate wind;
—— operating at 43RPM,
strong wind,
· · · · · · response from actuator
measured on SSP34m.

By tightening and loosening the bolts, it was easy to control the size and location of the opening
without using the chisel.

2.3. Modelling of noise
Noise in the data is known to be a factor that can significantly reduce the robustness of damage-
detection algorithms. In the case of operating wind turbines, the acceleration responses due
to the actuator hits will overlap with the vibrations due to blade-wind interaction, and the
vibrations due to the numerous mechanisms of the wind turbine, such as gearbox, generator,
yaw and pitch mechanisms, cooling system, etc. To mimic such noise, vibration data measured
on the blades of an operating Vestas V27 was used. This data was obtained during another
measurement campaign, which is described in detail in [7]. Though the V27 and SSP34m blades
are quite different (for example, the first one is 13m long, while the second is 34m), using this
noise data was considered the best among other alternatives. Figure 7 shows the PSD of the
acceleration measured at the tip of an operating V27 wind turbine under the different operating
conditions. It should be mentioned that the presented study did not model the possible effects
of varying weather conditions, such as temperature, wind speed and direction, etc. We also did
not model the effects of different rotor speed and blade orientation (azimuth and pitch angles),
which may strongly affect the robustness of the damage-detection algorithms.

3. Damage-detection method
The proposed damage-detection algorithm is based on an unsupervised anomaly detection
method [8]. The method is based solely on modelling data obtained from the blade in a healthy
state. This is in contrast to many earlier data-driven approaches that use supervised methods
to detect a limited number of areas of damages introduced in experiments [4]. The supervised
approach is consequently too restrictive for an operational system such as a wind turbine where
it is impossible to perform experiments for all imaginable damage scenarios.

The damage-detection method is therefore based on a training phase, where we establish a
model of the normal state exclusively from healthy state data, and subsequently a detection phase
where a new sample is compared to the normal-state model. The modelling of the normal state
takes as input the multivariate accelerometer signal recorded from the sensors. The processing
for the model can be split into three parts; preprocessing, feature extraction and statistical
modelling.

The set of accelerometer signals for each hit requires some preprocessing steps to enhance
the damage detection. The first step is windowing, in which the signal is truncated to start at
the actuator trigger signal and end when the impulse from the strike has died out, i.e., after 1s.
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Figure 7 compares the spectra of the blade tip response due to wind and due to the actuator
hit. As mentioned before, the wind mainly excites low-frequency vibrations, while the actuator
excites a wider range. If at low frequencies, the signal due to the actuator is buried in the noise
due to wind, at higher frequencies the situation is the opposite, and one can expect a good
signal-to-noise ratio if the low frequencies are filtered out. This observation helps select the
cut-off frequencies of the applied high-pass or bandpass filter that is applied in the filtering step
of the preprocessing.

3.1. Damage indicator
The data-driven modelling approach employed in this study requires the definition of a
compressed representation of the state of the structure. A damage metric based on the covariance
matrix between the time histories, similar to the one introduced in [5], is employed. Structural
damage will change the energy propagation paths from the actuator to the accelerometers, and
the vibration pattern due to actuator hit. Since the cross-covariance function is a measure of the
similarity between two signals, the change in vibration pattern can be very well characterized by
the change of the covariance matrix. The cross-covariance between signals x1 and x2 of length
N is calculated as:

cx1x2(m) =

{∑N−m−1
n

(
x1(n + m) − 1

N

∑N−1
i=0 x1(i)

)(
x2(n) − 1

N

∑N−1
i=0 x2(i)

)
,m ≥ 0

c(−m) ,m < 0
. (1)

In this application, only the cross-covariance for lag 0, m = 0, is used for the damage indicator.
Calculating the covariance for a set of M sensors, produces M(M − 1)/2 distinct values for
each hit that constitutes the damage indicator. Figure 8a and 8b show the covariance features
for the SSP34m blade in an undamaged state and with an opening at 120cm. It is seen that
the feature values change for the covariance between sensor cx2x10 , cx4,x10 , and cx5,x10 , depicted
in the lower left corner of the plots. Inspection of the covariance-feature vectors reveal that

a) b) c)
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Figure 8. Covariance-based damage indicator using the 10 trailing edge accelerometers for the
undamaged blade and the blade with 1.2m opening in trailing edge. The third panel shows the
3rd and 4th principal component dimensions for undamaged and two damage sizes

many of the dimensions are correlated, and in addition the dimensionality of the feature vectors
grows quadratically with the number of sensors which could impede a statistical model of
the samples. The dimensionality of the covariance-feature vectors is reduced using principal
component analysis (PCA) [9]. The PCA is estimated using the samples from the undamaged
case which produces a principal component space, that all samples are projected into. This
projection is seen to separate damaged and undamaged samples quite well as illustrated in figure
8c.The dimensionality, i.e., the number of principal components, used for the PCA was chosen
using a heuristic method. The method chooses the minimal number of principal components
such that 99% of the variance in the data is accounted for.
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3.2. Damage-detection metric
To evaluate whether a sample vector in the PCA-space, y, is normal or damaged we use the
Mahalanobis distance. The Mahalanobis distance is calculated as the distance between the
normal-state samples Xn, summarised by the mean µXn

and the covariance matrix Σ, and the
new sample:

d(y,Xn) =
√

(y − µXn
)>Σ−1(y − µXn

). (2)

To make the decision whether a new sample y is anomalous/damaged, a threshold must be
chosen. This choice of threshold must either be based on observations of data from normal and
from damaged blades, or chosen based on the normal-state data only. The former approach of
supervised tuning of the threshold will have superior performance but requires that the system
is trained on all damages seen. The current system uses the latter approach by calculating the
distance for each normal-state sample xn,i and then choosing the threshold as the maximum
among the d(xn,i,Xn). This choice of threshold will thus classify all data in the training as
normal.

3.3. Damage localization
The proposed SHM system also provides a rough damage localization. The localization is based
on evaluation which elements of the covariance matrix are most affected. The damage is likely to
be located between the sensors whose signals cross-covariance significantly changed (cf. figure 8a
and 8b). Typically, several most affected elements of the covariance matrix indicate the damage
position with precision, sufficient for damage severity evaluation and facilitation of its particular
location for the repair.

4. Results
The damage-detection method was tested using data for the undamaged state and six different
damage sizes of 20, 40, 60, 80,100, and 120cm. The performance was evaluated using tenfold
cross-validation to get unbiased estimates of the error rates shown in table 1. The results show
a very low error rate already with the use of the 5 sensors at the trailing edge (TE) and has
approximately similar performance for all damage sizes and as we add more sensors. A realistic
instrumentation that uses both leading-edge (LE) and trailing-edge (TE) sensors also reaches
the lowest observed error rates. As mentioned earlier, the algorithm was also tested with added

Table 1. Results of damaged vs. undamaged classification with different sensor configurations. The
table shows the mean error rate (in %) from the tenfold cross-validation followed by the 95% confidence
interval of the mean in brackets.

State 20cm 40cm 60cm 80cm 100cm 120cm
No. samples 53 52 52 48 49 53
TE1-5 2.0 [0.2;7.2] 2.1 [0.3;7.3] 2.1 [0.3;7.3] 2.2 [0.3;7.6] 2.1 [0.3;7.5] 2.0 [0.2;7.2]
TE1-6 3.1 [0.6;8.7] 3.1 [0.6;8.8] 3.1 [0.6;8.8] 3.2 [0.7;9.1] 3.2 [0.7;9.0] 3.1 [0.6 8.7]
TE1-7 5.1 [1.7;11.5] 5.2 [1.7;11.6] 5.2 [1.7;11.6] 5.4 [ 1.8;12.1] 5.3 [1.7;12.0] 5.1 [1.7;11.5]
TE1-10 2.0 [0.2;7.2] 2.1 [0.3;7.3] 2.1 [0.3;7.3] 2.2 [ 0.3;7.6] 2.1 [0.3;7.5] 2.0 [0.2;7.2]
TE1-5,LE1-5 2.0 [0.2;7.2] 2.1 [0.3;7.3] 2.1 [0.3;7.3] 2.2 [ 0.3;7.6] 2.1 [0.3;7.5] 2.0 [0.2;7.2]

artificial wind noise from an operational turbine to test the robustness of the damage-detection
method in real operation. The results of these experiments are shown in figure 9. The wind
noise is measured in terms of signal-to-noise ratio (SNR) between the clean signal in trailing edge
sensor 1 from the arrival of the strike and 0.25s forward and the generated wind noise signal.
The performance is measured using the well-established Area Under the (ROC) Curve (AUC)
[10] that scores a binary classifier from perfect classification with a score of 1 to random guessing
at a score of 0.5 independently of the chosen detection threshold. It is clear that all damage can
be detected down to an SNR level of 0dB while larger areas of damage are detectable at even
lower SNR levels.
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Figure 9. AUC for experiments with added wind noise. The legend in the figure shows the
numbers of the trailing edge sensors used.

5. Conclusion
The paper presented a prototype of a vibration-based SHM system for wind turbine blades. The
proposed approach is based on active excitation of the blade by an electro-mechanical actuator
and measurements of the exited vibration by an array of accelerometers. The unsupervised
abnormality detection method is employed for the analysis of the response signals for damage
detection and localization. The method is demonstrated on a 34m wind turbine blade mounted
on a test rig. It is shown that the proposed system is able to detect a 20cm length of trailing
edge damage in presence of realistic (though artificial) noise.
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