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There is a growing consciousness that exposure studies need to
better cover near-field exposure associated with products use.
To consistently and quantitatively compare human exposure to
chemicals in consumer products, we introduce the concept of
product intake f raction, as the fraction of a chemical within a
product that is eventually taken in by the human population.
This metric enables consistent comparison of exposures during
consumer product use for different product-chemical combi-
nations, exposure duration, exposure routes and pathways and
for other life cycle stages. We present example applications of
the product intake f raction concept, for two chemicals in two
personal care products and two chemicals encapsulated in two
articles, showing how intakes of these chemicals can primarily
occur during product use. We demonstrate the utility of the
product intake f raction and its application modalities within life
cycle assessment and risk assessment contexts. The product
intake f raction helps to provide a clear interface between the life
cycle inventory and impact assessment phases, to identify best
suited sentinel products and to calculate overall exposure to
chemicals in consumer products, or back-calculate maximum
allowable concentrations of substances inside products.

■ INTRODUCTION

Every consumer product has the potential to expose humans to
its chemical content during use and via subsequent environ-
mental emissions. There is a growing consciousness that
exposure studies used either in risk assessment (RA) or in life
cycle assessment (LCA) need to cover both exposure to far-
field1 environmentally mediated emissions and near-field1

direct dermal or indoor exposure during product use.2−5

Studies carried out on specific product-chemical combinations
(e.g., phthalates in plastics,6 flame retardants in household
products7) and indoor air exposures8−10 demonstrate that use-
stage exposure may exceed environmentally mediated ex-
posures and is therefore essential to consider when assessing
exposure to chemicals in products.11 It has been qualitatively

understood for decades that the magnitude of near-field
exposures is highly dependent on chemical properties, product
characteristics, usage conditions, and user behavior. There is,
hence, a need for a quantitative and comparative framework
characterizing how specific product-chemical combinations
differ in their potential for both near-field and environmentally
mediated exposures. Several databases have recently become
available for a first identification of such product-chemical
combinations in terms of chemical occurrence and concen-
trations in products.12,13 The availability of these data needs to
be complemented by a metric that enables comparison and
ranking of the exposure magnitude across a wide range of
product-chemical combinations. This metric should be
applicable both in RA and LCA contexts to (a) compare
orders of magnitude between different chemicals used in a
given product and different product usages for a given chemical,
(b) identify the key parameters influencing exposure and
characterize its dependency on, for example, the product mass
used or the exposure duration, (c) identify and compare
predominant exposure pathways, (d) compare exposures
occurring at different life cycle stages,14 while consistently
differentiating near-field exposure from environmentally
mediated exposures, and (e) facilitate the connection between
the emission inventory and the impact assessment phase of an
LCA.
In this paper, we aim to establish such a consistent

comparative framework and metric characterizing how specific
products differ in their chemical exposure potential. We provide
a common basis to compare exposures to chemicals found in
consumer products by (a) identifying an adequate point of
departure, that is the best suited quantitative descriptor of
chemical mass as a starting point for a product-oriented
exposure assessment, (b) defining a new comparative exposure
metric, the product intake f raction (PiF), that is the chemical
mass within a product eventually taken in by humans, (c)
providing quantitative examples and demonstrating how PiF
integrates into overall exposure frameworks, and (d) discussing
the utility and limitations of PiF and its applicability for
comparing exposures in LCA and RA contexts.

■ POINTS OF DEPARTURE FOR COMPARING
EXPOSURES TO CHEMICALS IN PRODUCTS

Production volumes are available for various chemicals and have
been proposed as a point of departure to determine product
exposure.11 Nazaroff et al.15 defined the intake to production
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ratio as an economy-wide quantitative indicator to assess the
extent to which manufactured chemical production results in
human exposure (Table 1a). While this metric is useful, it does
not facilitate estimates of intake directly related to product use
as production volumes do not easily allow differentiation
between chemicals used as intermediary reactants in
manufacturing from those used within objects and formula-
tions. Additionally, the fractions of production volume used in
each product type and population using these products are
necessary to assess the intake to production ratio and are
difficult to determine.
At the other end of the spectrum, chemical emissions can also

constitute the point of departure for assessing exposure.
Emissions are usually well-defined for exposure to substances
released during the upstream production stages of a product life
cycle (material extraction, chemical manufacturing, and product
formulation) and related population-scale intakes are generally
quantified by multiplying media-specific emissions by their
respective intake f ractions. Bennett et al.16 defined the intake
f raction (iF) as the cumulated mass of a substance eventually
taken in by a population divided by the mass emitted to the
environment (Table 1b). This concept marked a shift in
exposure assessment by introducing a consistent and trans-
parent metric to assess intakes from environmental emissions.
Recently, the iF concept has been extended to assess inhalation
exposure to various substances emitted within indoor house-
hold2,8,9 and workplace environments,17,18 and for assessing
ingestion exposure to pesticides via food consumption.19−21

There are, however, difficulties and inconsistencies when
applying the emission-based iF to evaluate exposure to
products, as some studies normalize human intake to the
overall mass of product applied,2 while others normalize to the
chemical mass volatilized and emitted from the product into the
indoor environment.22,23 This inconsistency becomes problem-
atic when studying chemicals that may lead to both dermal and
inhalation exposures, such as fragrances in cosmetics or flame
retardants in furniture. The resulting inhalation related iF for
such scenarios is not directly comparable to the iF taken in via
the skin, which should be normalized to the mass of product
applied, not emitted. Therefore, the emission-based iF must be
adapted to a consistent metric applicable for comparing
exposures to chemicals in products.
During product use and disposal stages (Figure 1, orange

boxes), chemicals in products are taken in via several use-stage

pathways depending on the product application mode and
chemical properties, for example via direct dermal contact or
indoor inhalation. Chemicals can also be taken in via
subsequent environmentally mediated pathways associated
with waste treatment and product disposal.
Additionally, the chemical mass in the product is a more

appropriate point of departure than emissions or production
volume to perform product-related exposure assessments. It is a
stable, measurable quantity and only accounts for the fraction
of the production volume that reaches the consumer and will
eventually be disposed of with the product (Table 1c). It can
also represent the quantity applied, for example for cosmetics
and pesticides.

■ DEFINING PRODUCT INTAKE FRACTION
To quantify all the chemical intakes associated with the product
use-stage and subsequent exposure pathways, we adapt the
emission-based iF and define a new product-based metric
termed product-chemical intake fraction, shortened here as the
product intake fraction. PiF is defined as the chemical mass
within a product eventually taken in by humans via all possible
exposure pathways per unit of chemical mass within that
product (mc,p, kgin product) at the end of the manufacturing
process, that is, starting at exposure time t = 0 (Table 1c):

∫
= =

∂ ∂
∞

PiF
c p x

c p

I t t t

m
cumulative mass of chemical in product taken in by population via exposure pathway

initial mass of chemical in product

( )/ d [kg ]

[kg ]c p x
c p x

c p
, ,

0 , , intake

, in product (1)

By default, PiF refers to a long-term, time-integrated
exposure pathway-specific mass of a chemical in product

taken in (Ic,p,x, kgintake); it includes the entire exposed
population and must be calculated for all relevant exposure

Table 1. Comparison of Points of Departure and Metrics to Characterize Exposure to Chemicals

point of departure metric name metricb main assessment purpose and limitations

(a) total chemical
production volume15

intake to
production ratio

(mass taken in)/
(mass produced)

chemical delivery efficiency, difficult to characterize multiple product usages with widely
differing exposure pathways

(b) chemical mass
emitted to environment16

intake fraction
(iF)

(mass taken in)/
(mass emitted)

population-scale intakes due to environmental emissions, limited to emission-based
exposures

(c) chemical mass within
producta

product intake
fraction (PiF)

(mass taken in)/
(mass in product)

comparison of consumer intake of chemicals in products during use with population intake
resulting from product disposal, does not cover pre-use product life cycle stages (raw
material extraction, manufacturing)

aThis study. b“Mass taken in” is the same descriptor of “chemical mass taken in” in each of these metrics, but may correspond to different quantities
depending on the considered point of departure.

Figure 1. Exposure pathways for chemicals in products. Exposure to
chemicals in products during product use and subsequent stages are
shown in orange and exposure during upstream production stages in
blue. Percentage orange or blue does not reflect actual percentage of
exposure.
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pathways. It encompasses exposures associated with the use-
stage over the usable product lifetime and with waste treatment
during or after product disposal.

■ CALCULATION EXAMPLES AND INTEGRATION
INTO EXPOSURE FRAMEWORKS

Similar to the intake fraction, PiF does not replace an exposure
assessment, but PiF enables us to characterize and compare the
results of exposure assessments across a wide variety of
product-chemical combinations, implying that either empirical
data or near- and far-field exposure models are needed. Table 2
presents specific examples of PiFs calculated for two chemicals
in two personal care products (PCPs: shampoo and body
lotion), and two chemicals encapsulated in two articles
(pacifier, flooring).
For chemicals in PCPs, PiF due to product use (PiFuse, kgintake/

kgin PCP) can be calculated using a dermal exposure model24 as a
function of the chemical-specific skin permeation coefficient,
the applied product layer thickness and exposure duration. This
model takes into account dermal aqueous and gaseous uptake

and inhalation exposure after volatilization. We adapted
calculations originally applied to hair shampoo24 to body
lotion, a commonly used leave-on product. For the surfactant
sodium laurel ether sulfate (SLES, CAS-RN 9004-82-4), the
PiFs in Table 2 vary substantially depending on exposure
duration and product type from 6 × 10−4 to 0.96. In contrast,
PiF is nearly constant for D-limonene (CAS-RN 138-86-3),
since it is volatilized (81%) and transferred dermally (19%)
within minutes. To include the contribution of product
disposal, we estimated the PiF due to product waste disposal
and treatment (PiFdisposal, kgintake/kgin PCP) assuming that the
fraction of chemical not absorbed dermally nor volatilized was
washed down the drain, transferred to a wastewater treatment
plant (WWTP), and emitted to freshwater and soil from
application of biosolids,25 from which environmentally mediated
(emission-based) intake f ractions were estimated with USEtox.26

For D-limonene, the resulting PiFdisposal of 10−5 is dominated by
drinking water ingestion and is close to 4 orders of magnitude
lower than the PiFuse of 0.19. To evaluate the applied dermal
exposure model, Csiszar et al.27 compared the PiF-based

Table 2. Examples of Product Intake Fractions and Related Intakes Determined for Sodium Lauryl Ether Sulfate (SLES, CAS-
RN 9004-82-4) and D-limonene (CAS-RN 138-86-3) in Two Personal Care Products, As Well As Diisononyl Phthalate (DINP,
CAS-RN 28553-12-0) and Phenol (CAS-RN 108-95-2) in Two Consumer Articles, for Different Amounts Applied, Exposure
Durations and Dominant Exposure Pathways

chemical
product-use
scenario

amount of product used; %
chemical content

exposure
duration

dominant exposure
pathway

PiFuse

kgintake /kgin product

PiFdisposal

kgintake/ kgin product

chemical intake
mgintake

Chemicals in Personal Care Productsa

SLES shampoo
average use

5.05 gproduct; 20% 0.065 h ingestion and
dermala

4.5 × 10−4 1.3 × 10−4 0.6

body lotion
average use

8.7 gproduct; 20% 12 h dermal 0.96 5.6 × 10−6 1700

body lotion
high-end use

27.9 gproduct; 20% 12 h dermal 0.62 4.8 × 10−5 3400

D-
limonene

shampoo
average use

5.05 gproduct ; 0.5% 0.065 h dermal 0.19 1.2 × 10−5 4.8

body lotion
average use

8.7 gproduct; 0.5% 12 h dermal 0.19 1.2 × 10−5 8.2

body lotion
high-end use

27.9 gproduct; 0.5% 12 h dermal 0.19 1.2 × 10−5 26.5

Chemicals Encapsulated in Articles
DINP bpacifier

low-end use
1.5 gpacifier; 40% 45 hb mouthing 0.009 1 × 10−5 5.4

pacifier
high-end use

1.5 gpacifier; 40% 450 hb ingestion 0.09 1 × 10−5 54

DINP 1 m2
flooring

thick 5 mm
7500 gflooring; 20% 15 a inhalationc 5.8 × 10−8 1 × 10−5 0.05

1 m2
flooring

thin 1.5 mm
2250 gflooring; 20% 15 a inhalation 1.9 × 10−7 1 × 10−5 0.05

Phenol 1 m2
flooring

thin 1.5 mm
2250 gflooring; 0.013% 10 d inhalation 1.1 × 10−3 <1 × 10−10 320

100 d inhalation 3.5 × 10−3 <1 × 10−10 1030
15 a inhalation 4.9 × 10−3 <1 × 10−10 1470

aFor shampoo, calculated using the model from Ernstoff et al.24 with application to head and hands surface area of 1598 cm2, dilution factor of 6 and
skin permeation coefficient from Ten Berge.31 Body lotion calculation adapted from Ernstoff et al.,24 with application to body area of 17 000 cm2,
dilution factor of 1. bPiF is calculated by multiplying the measured leaching rate of DINP out of plastic ((1 × 10−5 g/cm2/h),32−34 the mouthing
contact area (10 cm2)35 and the contact duration over pacifier lifetime (0.6 and 6 h/d35 for 75 days yielding 45 and 450 h, for low-end and high-end
use, respectively). At the end of its use lifetime, the pacifier is disposed of in a landfill assuming 70%36 leaching of the disposed DINP, multiplied by
the population-scale USEtox26 outdoor air intake fraction. cFlooring DINP and phenol releases calculated using Deng et al.,28 respectively using
diffusion coefficients of 1.33 × 10−14 and 1.2 × 10−13 m2/s as well as material-air partition coefficients of 1.9 × 1012 and 1.2 × 105. Releases are
combined with the indoor air intake fraction of 0.0049 calculated from Wenger et al.7 for a ventilation rate of 0.7 h−1 and a volume of 85 m3/person,
without indoor degradation. Abrasion and exposure from dust are not considered in this calculated PiF. At the end of its use lifetime, the pacifier is
disposed of in a landfill assuming 70%36 leaching of the disposed DINP. Phenol is nearly entirely volatilized after 15 years.
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cumulative intake for several PCPs to biomarker data and found
good agreement for parabens between modeled calculations
and biomarker data.
For chemicals encapsulated in articles (e.g., toys, furniture,

building materials), diisononyl phthalate (DINP, CAS-RN
28553-12-0) in pacif iers has sufficient empirical information to
provide an example of measurement-based PiF for exposure via
mouthing. PiFuse (kgintake/kgin pacifier) is the total mass of DINP
that is ingested by the mouthing child during the overall
mouthing time divided by the original DINP mass within the
pacifier nipple. The ingested mass was estimated based on a
measured DINP leaching rate out of plastic26−28 with the
resulting PiFuse directly proportional to exposure duration and
in the relatively high range of 0.01−0.1. In comparison, the
population-scale PiFdisposal is close to 10−5, 4 orders of
magnitude lower than the PiFuse of the individual child using
the pacifier.
Chemicals encapsulated in f looring exemplify a less direct

exposure pathway. We applied the Deng diffusion model28 to
determine chemical releases from flooring and multiplied these
by the indoor intake fraction7 to determine the PiF for a volatile
organic compound (VOC, phenol) and a semivolatile organic
compound (SVOC, DINP). The DINP releases from flooring
lead to a PiF more than 6 orders of magnitude lower than from
the pacifier, as SVOC releases from material are limited by the
high material surface−air partitioning coefficient. The low PiF
for SVOC volatilization implies for such small releases that
abrasion of the material over the flooring lifetime may lead to
substantially higher PiF than volatilization and deserves further
attention.29 Compared to SVOCs, fractions volatilized from
flooring are much higher for a VOC like phenol, as the VOC
PiF approaches or equals the indoor inhalation intake fraction
of 4.9 × 10−3.7

PiF Integration into Exposure Frameworks. The
corresponding exposure pathway-specific intake, Ic, p, x (kgintake),
can be calculated in a straightforward manner by multiplying
the associated PiF (kgintake/kgin product) by the mass of product
applied, Mp(kgproduct), and the chemical fraction in product, fc, p
(kgin product/kgproduct): Ic, p, x = PiFc, p, x × Mp × fc, p. Depending on
the product-chemical combination, the resulting intake may be
directly proportional to the mass of chemical applied (e.g., D-
limonene in PCPs, where PiF is fixed for most relevant
application scenarios) and independent of exposure duration.
PiF and intakes can also be proportional to exposure duration,
for example for DINP in pacifiers and flooring, or a more
complex function of exposure duration and mass applied with
PiF saturation effects in the case of SLES in PCPs.
While the absolute chemical intake cannot be directly

compared across various categories of products, PiF provides
a directly comparable product usage perspective and
population-based measure of the ability of product-chemical
combinations to cause large intake doses in users per unit mass
of chemical in product.
Identifying Factors of Influence and Plausible PiF

Ranges Per Product Class. The examples in Table 2 show
that the product-chemical specific PiF helps characterize the
influence of the mode of entry in the near- or far-field
environments. PiF will vary based on whether a chemical is
directly embedded inside a product (e.g., furniture and
clothing), released into the air (e.g., sprays and aerosols),
applied on surfaces (e.g., cleaning products), or directly applied
on the skin or ingested (e.g., cosmetics or food additives). For a
given class of product, PiF-based sensitivity studies can identify

the key parameters influencing exposure, be it the chemical
properties, the location of use or the exposed population (e.g.,
density and proximity of room occupants). Throughout the
past 15 years of research quantifying intake fractions (iF),
ranges have been defined for specific exposure pathways (e.g.,
food chain ingestion due to emission to freshwater) and related
to physicochemical properties (e.g., octanol−water and air−
water partition coefficients Kow and Kaw), giving practitioners a
developed intuition about plausible iF ranges. We anticipate a
similarly useful outcome of using PiF in product-related
exposure studies. As a first example, Ernstoff et al.24

investigated several possible chemicals in shampoo and found
a generally restricted range of PiF due to use-stage dermal
intake from 10−4 to 10−1, a much wider range of PiF due to use-
stage inhalation from <10−10 to 10−1, and a restricted range of
total intake due to environmentally mediated PiF around 10−4

to 10−5 dominated by various ingestion pathways.
Depending on study goals, PiF can also be used to compare

exposure pathways and routes. For a given exposure route, PiF
can be directly compared or added across various pathways, for
example direct dermal application and subsequent dermal
gaseous exchange of the volatilized fraction.30 Since subsequent
exposure-responses may differ depending on route of exposure,
it is useful to differentiate the PiF for each route.

Complementing Other Metrics. These examples also
enable us to understand how the PiF relates and compares to
the intake to production ratio and to the intake fraction metrics.
Taking sodium lauryl ether sulfate (SLES) and diisononyl
phthalate (DINP) as examples: these chemicals have very
different physicochemical properties and are used in a wide
variety of products, ranging from categories like personal care
products (soap, body wash, shampoo) to laundry detergents for
SLES and from floorings to electric wires for DINP. For such
chemical-product combinations, the PiF can help support
decision making on a per-product and per-chemical basis. In
contrast, the overall intake to production ratio aggregates
intakes over all products such that it is more difficult to
disaggregate the individual source contributions for chemicals.
To note, the PiF could be applied to calculate product-specific
intake to production ratios in the rare instances data are
available on the fraction of production volume used in every
product type.
The intake fraction concept only applies to exposure

pathways involving emissions to environmental compartments
and is thereby not suited to estimate intakes occurring
following direct application. The role of the PiF is to enable
us to consistently combine various iFs (e.g., the inhalation iF
for indoor releases from flooring or cosmetics, with the
environmental iF from WWTP or landfill releases), with
exposures occurring during product use not accounted for by
iF, such as direct dermal contact exposures.
We further discuss the utility and applicability of the PiF in

the context of LCA as a functional product-oriented approach,
and in the context of risk assessment as a receptor-oriented
approach.

■ UTILITY AND MODALITY OF APPLYING THE
PRODUCT INTAKE FRACTION IN LIFE CYCLE
ASSESSMENT AND RISK ASSESSMENT CONTEXTS

Application in a Life Cycle Assessment Context, As a
Product-Oriented Approach. To assess human health
impacts, LCA first calculates life cycle inventory (LCI) flows
usually reflecting resource extractions and environmental
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emissions per a defined unit of product function, the
“functional unit” (FU). For example, in the case of flooring
the functional unit may be 1 m2 of standardized performance
flooring used over 15 years, as a basis to compare different
flooring materials. Though being product focused, most LCA
studies have paradoxically neglected chemical intake during the
product use-stage and primarily focused on exposure to
chemicals emitted into environmental media (air, soil, water,
etc.) during product manufacturing and disposal.26,37−41 To
facilitate and extend LCA practices with an improved focus on
chemical exposure during product use, in addition to the
chemical emissions to the environment during raw material
extraction and manufacturing stages, we suggest reporting an
additional required LCI flow, that is, the mass of chemical in
product per functional unit (e.g., 2.25 kgflooring/m

2 × 0.013% =
0.029 kgphenol in flooring/m

2 according to Table 2). This LCI flow
constitutes an intuitive point of departure to determine
product-related exposures. It can directly be multiplied by the
PiF yielding the exposure to a chemical in a product per
functional unit. Like iF, PiF is compatible with the traditional
LCIA (life cycle impact assessment) framework and can be
multiplied by effect factors relating potential human health
impacts to chemical exposure (e.g., in incidence risk/kgintake) to
determine characterization factors, i.e. human health impacts
per mass of a chemical within a product (e.g., in incidence risk/
kgin product) used per FU. In this way, PiF facilitates a fair and
consistent comparison of exposures to chemicals within or
across a variety of products.
PiF also Enables Comparison between Different Life

Cycle Stages. The use-stage PiF is directly comparable to the
environmentally mediated PiF due to product disposal as both
are calculated per unit chemical mass in product. Results for the
various product-chemical combinations in Table 2 suggest that
environmentally mediated exposures due to disposal are often
orders of magnitude lower than the near-field use-stage
exposures, but these exposures may also be of similar
magnitude for bioaccumulative substances when the use-stage
PiF is relatively low, for example SLES in shampoo.24 The
comparison between life cycle stages could be extended to
chemical emissions associated with upstream processes, for
example, raw material extraction and product manufacturing,
once LCI flows are combined with LCIA characterization,
relating exposures and impacts across all life cycle stages to the
same product FU.
Application in a Risk Assessment Context, As a

Receptor-Oriented Approach. In RA, once a given

chemical−product combination has been identified, for
example, using one of the recently available chemical-product
databases,12,13 exposure is characterized by assessing the daily
chemical intake by the product user. To estimate daily
exposures of consumers to chemicals in PCPs, we multiply
PiFuse by the mass of PCP applied per person per day, the
fraction of the chemical in the product, and normalize to the
user’s body weight, yielding for example a daily SLES intake of
1.7 gSLES intake/70 kgBW = 24 mg/kgBW/d for an average body
lotion application (Table 2). Such doses can be compared to
reference doses (RfD, mg/kgBW/d), acceptable daily intakes
(ADI, mg/kgBW/d), or to the minimum oral equivalency doses
(OED, mg/kgBW/d) as back-calculated from the U.S. Environ-
mental Protection Agency’s (EPA) ToxCast minimum
bioactivity concentrations, AC50.

42 Taking flooring as another
example for chemicals encapsulated in articles, the average
flooring area per person can be used to relate the product to the
user’s exposure dose, but the relationship between product and
exposed users is less direct to establish for such products. By
default, the overall PiF has been defined as the intake integrated
over the entire population. However, in a receptor-oriented
approach like RA, it is necessary to differentiate the fractions
taken in by various individuals; for example in the case of a
PCP, the user is directly exposed, household members may be
exposed through indoor air, and the general population is
exposed via the fraction of chemicals washed out, transferred to
wastewater treatment and subsequently emitted to the outdoor
environment.
The average proportion between PiFuse and PiFdisposal remains

valid when considering the aggregate cumulative exposure from
an individual receptor perspective. The PiFdisposal associated
with a single use is a sum of very small individual exposures
distributed over the entire population, Npop. When considering
the PiF disposal for aggregate cumulative exposure from an
individual receptor perspective (PiFindividual cumulated

disposal ) and assum-
ing the entire population uses this same product, this small
individual exposure is remultiplied by the entire population
(PiFindividual cumulated

disposal = Npop·PiF
disposal/Npop = PiFdisposal) and on

average each individual therefore receives the PiFdisposal in
addition to their own PiFuse.
In cases where the exact chemical content is unknown, a

range of plausible concentrations may be provided based on the
function of the chemical inside a product using databases like
the European Commission’s CosIng database, in conjunction
with typical functional ranges from Frame formulations.43 Thus,
there is a high need to establish typical functional ranges and to

Table 3. Utility of the Product Intake Fraction for Comparing Various Exposure Dimensions

main utility-exposure
comparison key elements application modalities

comparison of product-chemical
combinations

mode of chemical entry into the near-field (e.g., encapsulated,
sprayed, applied to surfaces or skin)

definition of plausible PiF ranges per product class

identification of key parameters
influencing exposure

roles of product mass applied, exposure duration, chemical
properties

contour plots, as a function of product and chemical properties

comparison of exposure routes
and pathways

inhalation (near person, indoor, outdoor), ingestion (hand to
mouth, drinking, food), dermal (aqueous, gaseous)

by default, inhalation, ingestion, and dermal PiF are kept
separate for subsequent combination with toxicity data

comparison of product life cycle
stages

use-stage, disposal-stage and upstream life cycle stages complementary role of PiF and of iF for upstream and
downstream impacts

connection point to life cycle
inventory analysis results

mass of chemical in product per functional unit × PiF × effect
factor

PiF as a product-oriented metric characterizes exposure to in-
product chemicals in LCA

identification of best suited
sentinel products

representative of a high-end exposure situation sentinel products are used in large quantities, while maintaining
a high PiF

Forward and backward
comparisons with ADI and
OED

key to define chemical usage and ranges of product chemical
content

back-calculate maximum acceptable concentrations of
substances inside products.
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compose a list of appropriate sentinel products for various use
classes,44 such as PCPs or cleaning agents. For an initial
exposure risk screening of a given product class, the
comparative capabilities of the PiF will support the
identification of best suitable sentinel products,44 which are
representative of a high-end exposure situation. Sentinel
products can be identified as products which are used in
large quantities while maintaining a high PiF. For example, for
PCPs body lotion is suggested as a sentinel product due to long
exposure durations and large quantities used.
In the absence of reliable concentration data, PiF may also be

used to back-calculate a maximum acceptable f raction of a
chemical within a product, fc, p max, from the RfD, ADI, or from
the minimum OED, such that fc,p max = RfDc × BW/(PiFc,p ×
Mp) where BW is body weight (kgBW) and Mp is the daily mass
of product applied (kgproduct/d). This maximum acceptable
fraction can then be compared to plausible ranges of chemical
concentrations in products. Applying this equation to D-
limonene for high-end body lotion users (reference dose of 5.5
mg/kgBW/d),

45 the back-calculated maximum concentration in
body lotion amounts to 3.3%, which is larger than the 0.5%
indicated in Table 2, but still close to current maximum
concentrations reported for D-limonene in a product ingredient
database (0.1−2.5%).12
Table 3 summarizes the main utility of the PiF metric

indicating its key application modalities in different contexts.

■ FINAL DISCUSSION AND OUTLOOK
The product intake fraction is an important step in consistently
analyzing consumer and population-scale exposure to chemicals
in products. It uses the quantity of chemical inside a product as
a point of departure, a readily measured or estimated parameter
based on product composition. The presented examples
illustrate how the PiF can be used for comparing chemical
exposures in LCA and in RA contexts, to either determine
intakes or to back-calculate maximum acceptable chemical
content in products. Determining PiF will be a key element in
characterizing and comparing consumer product exposure and
making LCA fully suited for comparing the impacts of products
on human health and for studying chemical substitution.
Exposure estimates made in this manner also constitute
important data which are complementary to high-throughput
toxicology risk screening, such as the ToxCast data from the
U.S. EPA.46 The PiF metric is especially well adapted for
comparing direct or near-field applications, while allowing for a
consistent usage of the intake fraction in case of environ-
mentally mediated exposures.
When estimating PiF it is important to transparently provide

assumptions and methods which are applicable to the product
in question. For example, determining whether steady-state
(e.g., SVOC releases from flooring or furniture)47 or dynamic
modeling (e.g., pulse application of cosmetics) is best
applicable.
The PiF depends on the reliability of the input data and near-

and far-field models. Hence, there is a need for both more
reliable exposure data and improved modeling of consumer product
exposure pathways. Models are becoming increasingly available
for indoor air environments and dermal application of
cosmetics.8,48 Specific data and models need to be provided
or refined to quantify the PiF for a larger number of product-
chemical combinations, for example for chemicals embedded in
products like clothing and furniture, and for products used in
enclosed environments like washing machines and dishwashers.

Further empirical data and research are especially needed to
better understand poorly characterized exposure pathways, for
example, material abrasion, food contact of packaging, and
gaseous exchange between air and skin.49 For these challenging
purposes, it is key to intensify knowledge sharing between
industry, academia, and government agencies, building on the
increasing amount of data made available via public disclosure
of ingredients and product use assumptions. In this context, PiF
as a comparative metric will help focusing data collection efforts
on the most important parameters and product-chemical
combinations.
Obtaining reliable data on plausible ranges in chemical content

will be crucial and is under development for categories, such as
PCPs and detergents, but will require substantial effort for the
wider variety of products presently in use. For these, the use of
the PiF to back-calculate maximum chemical content may be a
very useful alternative to calculating exposure doses.
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