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Evaluation of Yogurt Microstructure Using
Confocal Laser Scanning Microscopy and Image
Analysis
Jacob L. Skytte, Ovidiu Ghita, Paul F. Whelan, Ulf Andersen, Flemming Møller, Anders B. Dahl, and Rasmus Larsen

Abstract: The microstructure of protein networks in yogurts defines important physical properties of the yogurt and
hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown
good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such
networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in
statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been
used with success. However, a range of other image texture characterization methods exists. These methods describe an
image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation
of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture
description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including
fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through
nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based
descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal
analysis, while still being as applicable and in some cases as easy to tune.

Keywords: image processing, microstructure, quantification, statistics, yogurt

Practical Application: Confocal laser scanning microscopy images can be used to provide information on the protein
microstructure in yogurt products. For large numbers of microscopy images, subjective evaluation becomes a difficult or
even impossible approach, if the images should be incorporated in any form of statistical analysis alongside other measuring
modalities or sensory data. Instead, automated image texture analysis can be used to provide objective descriptions of the
images, and we provide a comparative study for a broad range of the many image texture analysis available. All of the
investigated techniques should be applicable for any type of pseudo homogeneous image structures.

Introduction
When considering fermented milk products, their microstruc-

ture is of great importance for the consumer experience (Muir
and Hunter 1992). During milk fermentation, the milk protein
(mainly casein) milk aggregates and forms a gel network in which
water and fat are embedded. The microstructure of this network
affects the general functionality of the gel as well as the textural
properties (Lee and Lucey 2010).

Several process parameters, such as temperatures and ingredient
composition, can significantly affect the microstructure of the final
milk gel. Such effects can be observed as changes in appearance in
microscopy images, which are often characterized by the amount
of protein interconnectivity, pore size distribution, and tortuosity
(Lucey and others 1998a).
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Confocal scanning laser microscopy (CSLM) has become pop-
ular in the field of dairy science within the last 2 decades. It has
been used for studying milk gels made from bacteria culture as well
as glucono-δ-lactone (Lucey and Singh 1997; Lucey and others
1998a, 1998b). CSLM is well suited for studying the microstruc-
ture of milk gels because little sample preparation is needed, and
using fluorescent probes, specific compounds, such as the protein
gel network, can be targeted.

CSLM images of the protein gel network are often used to verify
or interpret results from other measuring techniques such as rhe-
ology or sensory panels (Ozer and others 1999; Pereira and others
2003; Lee and Lucey 2004; Pereira and others 2006; Guggisberg
and others 2007). Commonly, the appearance of the micrographs is
analyzed subjectively, which becomes difficult or even impossible
when large amounts of images are considered. However, combined
with image analysis, CSLM images can be objectively quantified,
and potentially used in statistical analysis on equal footing as other
measuring techniques.

CSLM images of protein networks typically resemble image
textures, which can be described as images containing periodic
subpatterns and further appears homogenous at certain scales.
It is therefore natural to choose image texture description tech-
niques for characterizing the protein microstructure. It should be
stated that image texture and the texture of a yogurt are 2 distinct
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concepts. The image texture can be considered a way of interpret-
ing the micrographs depicting the microstructure of the protein
network, whereas the texture of a yogurt is related to the physical
properties of the yogurt, and defined by the microstructure of the
protein network (Lee and Lucey 2010).

A common image texture descriptor is the fractal dimension,
which describes complexity of irregular objects as a ratio of the
change in detail by the change in scale (Mandelbrot 1983). Previ-
ously, there has been much emphasis on fractal analysis in regard
to food structure (Barrett and Peleg 1995). This also applies to
milk gels, where fractal models have been suggested to mathe-
matically model the kinetic behavior of the gel formation (Horne
1999). Fractal analysis has successfully been used to study the
properties of range of different protein gels (Hagiwara and others
1998; Pugnaloni and others 2005; Dàvila and others 2007; Dàvila
and Parés 2007; Kuhn and others 2010; Torres and others 2012).
Nonetheless, Pugnaloni et al. (2005) recognized that although the
fractal dimension can be a sensitive descriptor, it is not unique.
Consequently, significant different structures can have same fractal
dimension, making the validity of fractal analysis problem depen-
dent. Thus, Pugnaloni et al. (2005), Dàvila et al. (2007), and
Dàvila and Parés (2007) apply fractal analysis in conjunction with
other morphological measures such as pore size distribution and
lacunarity.

Varma and Garg (2007) state that although both fractal and
multifractal analysis have been investigated for texture classifica-
tion, they are often lagging behind the state-of-the-art descriptors
primarily for 2 reasons. First to the nonuniqueness of the fractal
dimension, and second that fractal dimension is often computed
globally for an image. Multiple studies in material classification
(Leung and Malik 2001; Hayman and others 2004; Varma and
Zisserman 2005; Caputo and others 2005) suggest that such im-
age textures are best described using statistical distributions of the
so-called textons, which can be considered prototypical image
features. For an image, all specific interest points, or features, are
individually assigned to the most similar texton, and the final im-
age descriptor is defined by the frequency distribution of texton
occurrences.

With the aim of objectively quantifying the microstructure of
milk gels, we compare a range of texton-based image descrip-
tors relying on different design principles. These descriptors are
compared to both common fractal analysis, a state-of-the-art frac-
tal based image descriptor, and another widely applied technique,
gray level co-occurrence matrix, which is commonly used for tex-
ture characterization in many different application areas including
food science (Zheng and others 2006).

Our investigation is based on the microstructure of different
yogurts made by different fat and protein content as well as differ-
ent heat treatments and incubation temperatures—factors that are
expected to influence the formation of the protein network. Our
expectation is that a well-behaved image descriptor will enable a
classification of the micrographs to the categories defined by our
experiment.

We also aim at using the image descriptors to determine the
significance of the experimental factors. Stand-alone fractal analy-
sis can easily be carried over to an analysis of variance framework,
as it outputs a single numerical value. However, this is not usually
the case for the other investigated image descriptors, where the
output is often high dimensional. If the number of observations
is small compared to the vector dimensionality, it can potentially
lead to a lack of degrees of freedom in a multivariate analysis of
variance framework. Instead, we represent the image descriptors

Table 1–The 24 experimental design.

Subset 1 Subset 2 Subset 3 Subset 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fat content
[1.5/3.5 g/100 g]

− − − − − − − − + + + + + + + +

Protein content
[3.4/4.4 g/100 g]

− − − − + + + + − − − − + + + +

Pre-heat treat.
[75/90°C/15 min]

− − + + − − + + − − + + − − + +

Incubation temp.
[39/43°C]

− + − + − + − + − + − + − + − +

Minus and plus denote low and high factor levels, respectively. The actual factor level
values are given in the left-most column. The entire design is replicated across 3 d. The
subsets will be referred to in the section “Nearest Neighbor Classification.”

by their mutual distances. Thus, we can transfer the image de-
scriptors to a similar, albeit nonparametric framework (Anderson
2001). Also, high-dimensional data can be difficult to interpret
in its original form, thus we utilize the distance representation to
form a hierarchical clustering of the data, which is well suited for
visual interpretation.

Materials and Methods

Experimental design
A triple replicated 24 experimental design was used to create the

different milk gel formulas. The 4 factors spanned fat and protein
content, and preheat treatment and incubation temperature. An
overview of the experimental design and the factor levels is shown
in Table 1. All formulas were prepared in 1-L batches, and the 3
replicates were created on 3 consecutive days. Systematic day-to-
day variation was treated as a nuisance factor and was eliminated
by incorporating the days as a block in the experimental design
(Montgomery 2005).

The fat content was varied using homogenized ultra-heat treated
(UHT) semi-skimmed and whole milk for the low-level and
high-level, respectively. Protein content was changed by adding
3% (w/w) skimmed-milk powder (Lactalis Ingredients, Bourg-
barré, France) in the high factor level. Preheat treatment was
performed using an autoclave (Systec V-Series, Holm & Halby,
Brøndby, Denmark). Immediately after preheat treatment the sam-
ples were put into a cold-water bath. The following day the samples
were heated to their target incubation temperature in water baths
(Lauda Ecoline E100, Lauda Dr. R. Wobser Gmbh & Co. Kg,
Lauda-Königshofen, Germany), and hereafter inoculated with a
yogurt bacterial culture (YO-MIX 863, DuPont Danisco Range,
Copenhagen, Denmark). The pH development was measured ev-
ery 5 min (CINAC pH Controller, Ysebaert Dairy Div., Frepillon,
France). When a sample reached pH 4.6 it was stirred and stored
at 5 °C in a plastic container for a week.

Confocal laser scanning microscopy
All micrographs were captured using a Leica DM IRE2 con-

focal scanning laser microscope (Leica Microsystems, Heidelberg,
Germany). Before microscopy the yogurts were stirred gently. Pro-
tein was stained using a fluorescein-5-isothiocyanate (FITC) solu-
tion (2 g/L) in acetone, which was applied to a microscope slide.
The slide rested until the acetone had evaporated, and yogurt was
applied to the slide, and rested for 15 min at room temperature.
Sample micrographs were captured using a 40× oil immersion
objective (40× HCX PL Apo 1.25 Oil), FITC was excited at 488
nm using an Ar/Kr laser, and the emitted signal was collected
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from 503 to 533 nm at a depth of 7 μm into the sample. To elimi-
nate bias in the data acquisition, the CSLM images were randomly
sampled; however, major artifacts such as air pockets were avoided.
The grayscale images were captured at a resolution of 1024× 1024
pixels, and each image covered an area of 375 × 375 μm. During
recording each image line was captured 4 times and averaged to
reduce noise. Ten images were recorded for each yogurt sample,
making a total of 480 micrographs.

Examples of micrographs from each of the samples in Table 1
can be seen in Figure 1. These examples were chosen as the me-
dian image, from each sample, as determined by the best overall
performing method in the section “Nearest Neighbor Classifica-
tion.” Light or gray pixels depict the protein network, whereas the
dark pixels depict the pores. In general, the density and intercon-
nectivity of the protein network reflects the strength of the formed
gel network (Lee and Lucey 2004). Thus, sample 1 is expected to
have a weaker network than sample 16, however for other samples
it can be difficult to determine by the eye.

Image preprocessing
Image normalization. The pixel intensities in the micro-

graphs correspond to the combined response from the local
protein content, dye concentration, and focus. Thus, compar-
isons between pixel intensities across the entire data set may not

be meaningful unless we apply image normalization. We normal-
ized the pixel intensities of each image to have zero mean and unit
variance—a process also known as whitening, which ensures invari-
ance toward fluctuations in the mean intensity level and contrast
of the image (Prince 2012).

Gel segmentation. A typical preprocessing step when assess-
ing protein gel micrographs is to segment out the gel structures.
In this paper the gel segmentation is used for the box counting
method in the section “Fractal Dimension.” However, the seg-
mentation could also be used to extract morphological descriptors.
We will not consider such descriptors in this paper.

As seen in Figure 1, the CSLM images contain 2 major region
types: the protein gel network and the pores. Commonly, gel
network and pores are segmented by thresholding the grayscale
values. However, the grayscale values in CSLM images of protein
gels are typically not of bimodal type (Mellema and others 2000;
Pugnaloni and others 2005), which complicates the identification
of a suitable threshold.

Looking at Figure 1, 3 major regions can be identified in the
images: the internal pore structure, the protein gel, and the transi-
tions between the 2 regions. We propose to use 3 convolutions that
capture the uniqueness of the 3 different regions. A mean filter and
a local entropy estimate were used to distinguishing between the
intensity and uniformity of the gel and pore regions respectively,

Figure 1–Examples of the 16 different yogurt samples from a single replicate. The numbering corresponds to that used in Table 1.
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and a local skewness estimate was used to detect region transi-
tions. To segment out the different regions, the 3-dimensional
image representation was used as input for a Gaussian Mixture
Model (Hastie and others 2009) with 3 clusters (one for each
image region).

Image descriptors
A broad range of image descriptors are presented later. In sec-

tions “Intensity Histogram,” “Fractal Dimension,” and “Gray-
Level Co-occurrence Matrices,” we consider some classical image
descriptors, and in sections “Local Binary Patterns,” “Basic Image
Features,” “Image Patches,” and “Local Fractal Features,” we con-
sider the image descriptors based on the texton approach, which is
well suited for classifying image textures (Leung and Malik 2001;
Hayman and others 2004; Varma and Zisserman 2005; Caputo
and others 2005). Julesz (1981) initially proposed the texton ap-
proach, in which the main idea is to extract local descriptors at
each pixel position in the image, and assign each descriptor into
a set of predetermined descriptors (denoted textons). The final
image descriptor is a normalized frequency histogram of the tex-
tons present in the image. In summary, textons can be seen as a
dictionary of reoccurring image structures. Assigning each local
descriptor to a texton can also be seen as a way of suppressing
potential noise in the local descriptors.

For the methods in sections “Local Binary Patterns” and “Basic
Image Features,” the textons were defined a priori by the method,
but for the methods in sections “Image Patches” and “Local Fractal
Features,” the textons had to be learned from the data set. This was
carried out by randomly sampling local descriptors from the entire
data set (denoted training data), followed by a k-means clustering
on the training data. The k cluster centers hereafter comprised the
textons. The texton pipeline is illustrated in Figure 2.

Looking at the microstructure in Figure 1, no distinct orien-
tation of the structures can be seen. Thus, the image descriptor
should preferably not be dependent on the direction of a given
feature; that is, it should be rotational invariant. Furthermore, as
suggested by Møller et al. (2013), the protein gels should also
be considered at different scales for a more complete description.
Table 2 gives an overview of the investigated image descriptors
and their general features.

All methods mentioned in this section have one or more free
parameters that can be chosen by the user. In most cases, these
parameters significantly affects the performance of the method
and must be chosen carefully. Specifically for the methods fol-
lowing the texton approach (without prior textons), the number

of textons, found through k-means clustering, should be decided.
Throughout the experiments we found that the performance of
these methods was not overly sensitive to the number of textons.

Intensity histogram. This image descriptor is a histogram
where each bin corresponds to a gray level in the image. The
number of histogram bins can be varied by uniformly, downsam-
pling the dynamic range of the gray levels.

Fractal dimension. Although there are many approaches to
fractal analysis, most methods follows the same basic steps (Lopes
and Betrouni 2009). First some image quantity, N(r ), is measured
at different scales or step sizes, r . For true fractal scaling, these
quantities can be related by a power law behavior:

N(r ) ∝ c · r D (1)

where D is the fractal dimension and c is a constant. This expres-
sion is then linearized through a log-transformation:

log(N(r )) = D log(r )+ log(c ) (2)

and the fractal dimension can be estimated by the slope. For real
world data, the log-transformed response may not show perfect
fractal scaling (linear behavior) across all values of r . Thus, it is im-
portant to select the appropriate fractal range of r for estimating
D. The intercept of Eq (2) is commonly referred to as topothesy,
and describes the absolute magnitude of the pixel intensities (Russ
1994). Varma and Garg (2007) suggest including the intercept to
alleviate the problem of the nonuniqueness of the fractal dimen-
sion. They denote it the fractal length, and we adopt this term
for the rest of the paper. We will present results for the fractal
dimension alone as well as with the fractal length included.

In this paper, we apply 2 different approaches to fractal analysis.
First is the box counting method, which is the most popular
and frequently used type of fractal analysis (Lopes and Betrouni
2009). Following the notations in Eq (1) and (2), boxes with side
length r are placed on a binary image, and N(r ) corresponds to
the number of boxes that sample the gel structure. In the 2nd
approach, we look at the spatial autocorrelation modeled through
semivariograms. For an image the semivariogram is estimated by

γ (h ) = 1
2

E
[
(I (x)− I (x+ h ))2

]
(3)

where I (x) is the pixel intensity at pixel coordinate x and h is a
displacement. Again, we can relate back to power law behavior of
Eq (1), such that γ (h ) and h correspond to N(r ) and r , respectively.

Figure 2–The applied pipeline for the texton approach. Local descriptors are extracted from the original images, and each descriptor is assigned a
texton from a prior or a learned set of textons. The texton-coded image is made using 8 textons.
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Table 2–Overview of the investigated image texture descriptors.

Descriptor name Texton approach Rotational invariant Multiple scales

Intensity histograms Yes (w. prior set) Yes No
Fractal (box count) No Yes No
Fractal (variogram) No Yes No
GLCM No Yes Gaussian pyramid
LBP Yes (w. prior set) Yes Gaussian pyramid
BIF Yes (w. prior set) Yes Gaussian derivative filters
Image patches Yes (w. training) No No
Local fractal features Yes (w. training) Yes MR8 filter bank

GLCM, gray-level co-occurrence matrices; LBP, local binary pattern; BIF, basic image features.

A similar approach is used by Pugnaloni and others (2005). It
should be clarified that we are estimating a fractal parameter for
the image and not the actual fractal dimension of the protein gel
itself.

Gray-level co-occurrence matrices. Gray-level co-
occurrence matrix (GLCM) is a well-established method
introduced by Haralick and others (1973). The GLCM expresses
the probability of a given pixel intensity change between 2
pixels distanced by a displacement, h , and an angle, ϕ. Let (i, j)
denote the 2 pixel intensities (or gray levels), then a GLCM, C is
defined by C = P ((i, j ) |h, ϕ). An example is given in Figure 3.
Thereby, the number of gray-level intensities in the image
defines the dimensionality of a GLCM. Typically, the number of
grayscale intensities is downsampled. As in the section “Intensity
Histogram,” we used a uniform downsampling of the grayscale
intensities, however other schemes can also be considered (Soh
and Tsatsoulis 1999). The properties of the GLCM are commonly
quantified by statistical measures, and Haralick and others (1973)
proposes 14 different measures, which we also apply.

When creating the GLCM, multiple angles and displacements
can be considered. Because of the lack of direction of the protein
structures, we pooled the directional information by averaging
the GLCM over multiple angles (0°, 45°, 90°, and 135°) as done
in reference Soh and Tsatsoulis (1999). In terms of selecting ap-
propriate displacements, Roberti de Siqueira and others (2013)
shows it is viable to consider a single displacement at different
scale representations of the image. One way to generate differ-

Figure 3–The gray-level co-occurrence matrix (GLCM) calculated for a 5 ×
5 pixel image with 4 gray-level intensities. h = 1 and θ = 0°.

ent scale representations are Gaussian pyramids. Here, the original
image is sequentially smoothed and downsampled (by a factor 2),
which creates a series of different scales representations (or levels;
Lindeberg 1994). Level 0 in the pyramid corresponds to the orig-
inal image. Thus, the GLCM image descriptor was created using
a single displacement at different levels in the Gaussian pyramid,
and the final image descriptor was created as the joint distribution
of the quantified GLCM across multiple scales.

Local binary patterns. Ojala et al. (2002) introduce the local
binary patterns (LBP) for texture analysis. Here a circular neigh-
borhood of radius, R, and P pixels is investigated for each pixel
in the image. A local descriptor is defined by measuring the in-
tensity difference between a pixel and its neighborhood. Negative
differences are assigned 0, and positive differences are assigned
1. This results in a binary string (or pattern) of length equal to
the amount of pixels in the neighborhood. Rotational invariance
is obtained by shifting each binary pattern to get the minimum
value. An example of the LBP descriptor is shown in Figure 4.
Ojala and others (2002) notes that some pattern occurrences are
generally more discriminative and they propose only considering
a subset of so-called uniform patterns. The LBP image descriptor
is a histogram over the occurrences of all binary patterns in the
image. As for GLCM in “Gray-Level Co-occurrence Matrices,” a
similar multiscale approach using Gaussian pyramids was adopted
(Qian and others 2011). Thus, the final image descriptor is the
joint distribution of LBP histograms across multiple scales.

Basic image features. Crosier and Griffin (2008) introduce
the basic image features (BIF) descriptor. This descriptor detects
how local image structures change across scales. At first, 6 Gaussian
derivative filters (from zero-order to 2nd-order) are applied to
the image. From the filter responses each pixel is assigned 1 of
6 BIFs corresponding to bright/dark blobs, slopes, bright/dark
lines, and saddle points. The BIFs are then assigned across multiple
scales defined by the width of the Gaussian derivative filters. An
example is shown in Figure 5. Crosier and Griffin (2008) find that
4 logarithmic distributed scales are appropriate. That is σ , 2σ , 4σ ,
and 8σ , where σ is the standard deviation of the Gaussian filters.
The final image descriptor is constructed by considering how the

Figure 4–Local binary pattern (LBP) calculated for 3 × 3 pixel neighborhood (R = 1, P = 8). First the neighborhood is thresholded according to the center
value, and hereafter the thresholded neighborhood is converted to a binary string. To obtain a rotation invariant description of the neighborhood, the
binary string is shifted to obtain the smallest possible decimal value. (A) Original image (B) BIF (σ ) (C) BIF (2σ ) (D) BIF (4σ ) (E) BIF (8σ ).
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BIF of each pixel changes across the 4 scales. This results in a
frequency histogram with 64 = 1296 bins.

Image Patches. Varma and Zisserman (2009) shows that the
use of image patches as local features for the texton approach can
be an efficient way of discriminating different materials. Image
patches are extracted at each pixel location. From a patch of size
n × n pixels, an n2-dimensional local descriptor is defined as the
joint distribution of pixels intensities. Each descriptor is contrast
normalized by: p ← p

[
log(1+ L(p )/0.03)

]
/L(p ), where p is

the local descriptor and L(p ) = ||p ||2 is the Euclidean norm of
p, which has empirically been determined to give better discrim-
ination. The texton approach with training is used to create the
final image descriptor. An example of a texton dictionary based
on image patches is shown in Figure 6.

Local fractal features. Rather than estimating the fractal di-
mension for the entire image, Varma and Garg (2007) propose
to estimate the fractal dimension locally. Let N(x, r ) =∑I (x, r ),
where I (x, r ) are the pixel intensities within a closed disc of ra-
dius, r, at pixel coordinate, x. Varma and Garg (2007) hypothesize
that N(x, r ) follows the power behavior of Eq (1), from which
the fractal dimension can be estimated from the slope in Eq (2).
Furthermore, they also use the fractal length (see section “Frac-
tal Dimension”) for the image descriptor. Also, as discussed in the
section “Fractal Dimension,” the fractal range, in which the fractal
parameters are estimated, has to be determined. To accommodate
rotation invariance and a multiscale representation, the MR8 filter
bank (Varma and Zisserman 2005) is applied to the image. This
results in 8 representations of the original image. For each rep-
resentation, the fractal dimension and fractal length are estimated
at each pixel location, thus a 16-dimensional local descriptor is
obtained. As in the section “Image Patches,” each descriptor was
contrast normalized. The texton approach with training was used
to create the final image descriptor.

Method evaluation
This section describes 3 ways of evaluating and interpreting

the image descriptors presented in the section “Image Descrip-
tors.” The dimensionality of the image descriptor for each method

and details about each descriptor will be provided in the section
“Parameter Selection.” A fair way of comparing descriptors of
different dimensionality is to make comparisons based on the dis-
tances between image descriptors. When comparing histograms,
a suitable distance measure is the χ2 distance (Flannery and others
1992; Malik and others 1999):

χ2 (
H1, H2) =

∑

i

(
H1

i − H2
i

)2

(
H1

i + H2
i

) (4)

where H denotes the histograms and i denotes the bin. Thus,
it is a bin-to-bin comparison of the histograms, where pairwise
difference between each bin is weighed by the numerical size of
the bins. As a result, large and small bins are treated more equally.
This distance measure is commonly used for texton frequency
histograms (Malik and others 1999; Leung and Malik 2001; Varma
and Zisserman 2005). We also found this distance measure suitable
for the nonhistogram image descriptors used by fractal analysis and
GLCM. Thus, all methods in this section evaluate and compare
the image descriptors based on the χ2 distance.

Nearest neighbor classification. The nearest neighborhood
classifier is a popular evaluation method within the field of tex-
ture classification (Leung and Malik 2001; Cula and Dana 2004;
Varma and Zisserman 2005, 2009). First the data are randomly
split into training and test data equally for each class, and hereafter
each observation in the test data is classified as the distance-wise
closest observation in the training data. Multiple random splits of
the data set are performed to give a statistical distribution of the
classification rates.

Nonparametric multivariate analysis of variance. Within
the analysis of variance (ANOVA) framework, multidimensional
response vectors (image descriptors in this case) are typically han-
dled using multivariate analysis of variance (MANOVA). As will
be seen in the section “Parameter Selection,” the dimensionality
of the image descriptors will be as large as 1296. Considering
the data set presented in the section ”Experimental Design,” this
means that there are too few observations in order for the co-
variance matrices to be estimated in a feasible manner and an

B   BIF (σ) A   Original image C   BIF (2σ) D   BIF (4σ) E   BIF (8σ) 

Figure 5–The basic image features (BIF) extracted at 4 different scales. The BIFs extracted from the original image are slopes (gray), bright blobs
(white), bright lines (yellow), and saddle points (green). σ = 1 was used for the width of the Gaussian derivative filters.

Figure 6–An example of texton diction-
ary for 7 × 7 pixel image patches. The
64 textons are learned from the entire
data set where 1000 random descriptors
were extracted from each image. Note
how certain patches appear as
rotated/reflected version of each other,
which is due to the lack of rotation
invariance of the image patch method.
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alternative approach is needed. Such an alternative is proposed by
Anderson (2001), and denoted nonparametric multivariate analysis
of variance (NPMANOVA).

Here, the high dimensionality is handled by representing the
multidimensional response vectors as a N × N distance matrix
containing the pairwise mutual distances between observations.
As a trade-off, this distance representation discards any informa-
tion regarding the covariant structures in the data. From the dis-
tance matrix, the total variability can be partitioned by considering
the mutual distances between observations rather than using the
traditional sum of squares. A pseudo F-statistic can hereafter be
calculated through permutation tests.

Contrary to ANOVA, NPMANOVA does not assume normal-
ity and is not necessarily based on Euclidean distances. However,
similar to ANOVA, a major assumption for the NPMANOVA
is equal variance across groups in the experimental design. This
can be validated through a generalized version of Levene’s test
(Anderson 2006).

Hierarchical clustering. Hierarchical clustering is an unsu-
pervised clustering method, which uses the interpoint distances
to define a hierarchical ordering of the data. The clustering is
typically done in a bottom-up fashion, meaning that each data
point initially comprises a cluster and hereafter most similar clus-
ters are greedily merged. Similarity is defined in terms of a link
function (Hastie and others 2009). We used the group average link
function in which similarity is determined by the average simi-
larity between all members in the considered clusters. The final
hierarchical structure can be presented as dendrograms.

Results and Discussion

Confocal scanning laser microscopy
Looking at the micrographs of the different samples in Figure 1

and the experimental factors in Table 1, several observations can
be made. An increase in either protein or fat content generally
increases the coverage of the protein network. The influence from
fat is because of the homogenized fat globules being covered by a
layer of protein (Yildiz 2010). This way they become an integral
part of protein network. The influence of changing the protein
content is straightforward.

Changes to preheat treatment and incubation temperature result
in more subtle changes to the images. Higher preheat treatment
temperatures result in more willing protein fusions, leading to
more interconnected and dense gel networks (Lucey and others
1999). Incubation temperature affects the speed of the gel for-
mation. Lower temperatures result in lower gel formation speeds,
which again produce more interconnected and dense gels (Lee
and Lucey 2004).

Gel segmentation
For the gel segmentation, we found filter sizes of 5× 5 pixels to

be appropriate, for the mean, skewness, and entropy filters. Seg-
mentation results for 2 of the samples are shown in Figure 7. These
segmentations successfully identify the protein, the pores, and the
transitions between the 2 regions. In addition, the segmentations
are found to be smooth. However, there seems to be a tendency of
overestimating the transitions between pore and protein regions,
resulting in transitions being favored more than the pores. This is
most likely related to the depth of the pores. Some pores are deep
and thereby represented by out-of-focus light, whereas some pores
are less deep and creates light that is more in focus, thus creating
structures similar to transitions. However, we found this to be of
little importance, as we are only concerned with the segmentation
of the protein, which was used for the box counting method in
the section “Fractal Dimension.”

Parameter selection
The free parameters for the methods in the section “Image

Descriptors” were chosen such that each method achieved the
highest correct classification rates, considering the entire data set,
using the nearest neighbor classifier. However, tuning parameters
using only certain parts of the data set could also be considered. To
limit the parameter space substantially, the parameter search was
sometimes limited to [2u , 2v], where u, v ∈. Table 3 summarizes
the chosen parameters.

From Table 3, some interesting observations can be made. In
general, most methods favor low spatial support, for example the
optimal displacement for the semivariogram in fractal analysis was
6 pixels and the optimal patch size for image patch exemplars was
7 × 7 pixels. However, both LBP and GLCM successfully utilize
multiple levels in the Gaussian pyramid, which can be seen as a
way of increasing the spatial support. LBP consistently favored
one or more levels in the Gaussian pyramid in addition to the
original image. Also, although the chosen standard deviation for
the basic image features seems small, the largest scale at 8σ cor-
responds to Gaussian filters with relative large support (�40 ×
40 pixels). Thereby, GLCM, LBP, basic image features, and local
fractal features successfully exploit the greater spatial support when
describing the micrographs.

Looking at the texton-based methods, where the textons are
learned through training, only a limited amount of textons are
needed to provide a feasible description. This might be explained
when considering the great similarity between the different pro-
tein gels. However, using the image patch textons requires twice
as many textons compared to the local fractal features. This may be
explained by the lack of rotation invariance of the image patches,

C   SegmentaƟon of
Sample 3  

B   Sample 12  A   Sample 3 D   SegmentaƟon of
Sample 12  

Figure 7–Segmentation examples. White denotes pores, gray denotes protein, and black denotes transitions between pores and protein. These examples
correspond to close-up views of sample 3 and 12 from Figure 1.
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Table 3–Summary of the major free parameters associated with each image descriptors.

Descriptor name Parameter descriptions Parameter values Dimensionality

Intensity histograms Number of greyscale intensitiesa 16 16
Fractal (box count)b Fractal range, box side length (r)a [1, 16] pixels 1
Fractal (box count)c Fractal range, box side length (r)a [1, 4] pixels 2
Fractal (variogram)b Fractal range, variogram displacement (h) [1, 4] pixels 1
Fractal (variogram)c Fractal range, variogram displacement (h) [1, 6] pixels 2
GLCM Levels in the Gaussian pyramid [0, 6] 154

Number of greyscale intensitiesa 32
Displacement (h) 1 pixel

LBP Levels in the Gaussian pyramid [0, 3] 144
Binary pattern type rotation invariant
Radius (R) 2 pixels
Number of sample points (P) 8

BIF Gaussian filter standard deviation (σ ) 0.8 1296
Image patches Patch size 7 × 7 pixels 128

Number of textonsa 128
Local fractal features Fractal range, disc radius (r) [1, 5] pixels 64

Number of textonsa 64

GLCM , gray-level co-occurrence matrices; LBP, local binary pattern; BIF, basic image features.
The rightmost column refers to the dimensionality of the final image descriptor.
aDenotes that the parameter search has been performed in a limited interval.
bOnly the estimate of the fractal dimension is considered.
cBoth estimates of fractal dimension and fractal length are considered.

Table 4–The average correct classification rates plus/minus one standard deviation for the different image descriptors.

Descriptor name Entire data set
Subset 1

sample 1–4
Subset 2

sample 5–8
Subset 3

sample 9–12
Subset 4

sample 13–16
Superset

subset 1–4

Intensity histogram 39.0 ± 10.8 44.3 ± 22.7 51.8 ± 22.4 50.6 ± 21.0 59.0 ± 22.1 74.5 ± 20.7
Fractal (box count)a 22.1 ± 09.2 28.5 ± 18.4 43.9 ± 23.1 50.5 ± 22.5 55.7 ± 21.6 54.0 ± 22.8
Fractal (box count)b 35.9 ± 10.4 38.0 ± 21.1 56.0 ± 22.6 51.5 ± 21.4 66.5 ± 20.8 68.8 ± 21.9
Fractal (variogram)a 36.4 ± 10.4 53.6 ± 20.6 76.5 ± 17.4 56.5 ± 20.0 73.1 ± 19.2 50.7 ± 24.6
Fractal (variogram)b 44.2 ± 10.7 57.5 ± 20.9 69.3 ± 20.4 65.5 ± 20.3 78.6 ± 18.2 62.5 ± 22.5
GLCM 48.8 ± 11.0 50.1 ± 22.4 58.4 ± 22.1 64.2 ± 21.1 76.6 ± 19.1 76.1 ± 19.8
LBP 58.1 ± 10.4 50.0 ± 21.5 71.5 ± 20.2 74.1 ± 20.2 89.8 ± 13.4 80.3 ± 18.6
BIF 69.5 ± 10.4 61.6 ± 22.3 73.3 ± 19.9 72.8 ± 20.1 90.2 ± 14.4 92.0 ± 12.9
Image patches 71.7 ± 10.3 60.9 ± 22.3 76.7 ± 19.4 82.5 ± 18.4 94.0 ± 10.8 90.8 ± 13.9
Local fractal features 65.3 ± 10.6 60.4 ± 21.9 73.4 ± 20.1 76.9 ± 17.8 81.4 ± 18.2 88.5 ± 14.8

GLCM, gray-level co-occurrence matrices; LBP, local binary pattern; BIF, basic image features.
Classification rates are given for the entire data set, for subsets, and for a superset in which the subsets have been grouped. Values marked in bold indicate the highest average
classification rate in each of the data sets.
aOnly the estimate of the fractal dimension is considered.
bBoth estimates of fractal dimension and fractal length are considered.

that is multiple patches are needed to describe multiple rotations
of the same structure. The limited amount of unique image struc-
tures is further emphasized when looking at the methods covering
intensity histograms or GLCM, which favors using only a few
grayscale intensities.

Although we have considered and covered a broad range of
these free parameters, it is by no means an exhaustive study of
each method. For methods like GLCM and LBP, multiple ex-
tensions exist (Roberti de Siqueira and others 2013; Huang and
others 2011). We have only considered a single extension of each
method; the multiscale representation using Gaussian pyramids.
However, several other multi scale or filter bank representations
can be considered (Lindeberg 1994; Varma and Zisserman 2005).

Nearest neighbor classification
The results for the nearest neighbor classification are presented

in Table 4. They were calculated based on 1000 random splits
of the data, and averaged over the 3 blocks in the experimental
design. The overall correct classification rates using all 16 samples
are presented as well as smaller experiments using only subsets
of the data set. Finally, classification rates are also given for an
experiment where we created supersets of the previous subsets,
that is sample 1 to 4 comprises a single class and so on. The subsets

were used to closely investigate the discrimination of the subtle
changes made by preheat treatment and incubation temperature.
The supersets were used to investigate discrimination between
different fat and protein compositions.

Looking at the overall classification rates, the image patch
method appears to be the best performer closely followed by
the basic image features. In general, the texton methods appear
to perform best. An important issue to note is the high stan-
dard deviations, immediately suggesting that the methods are not
performing significantly different. However, the standard devia-
tions are often comparable in size across the methods hinting that
the variation, at least to some degree, can be explained by data
variation. Referring to Figure 1, this can be further emphasized
because of the potential overlap in appearance in the data set.
The standard deviations are even higher when considering the
subsets or grouped subsets, likely because of misclassifications hav-
ing higher impact on each random split, when fewer groups are
considered.

Looking at the performance on the subsets, it can be seen that
the subtle changes to the gel, from the effects incubation tem-
perature and preheat treatment, are easier to detect when the gel
structure is dense. Subset 1 has the lowest correct classification
rates, whereas subsets 2 and 3 have higher classification rates and
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Table 5–The P-values for the NPMANOVA, the blocking of the 3 replicates is included as the factor Day.

Equal variance

Descriptor name Day Fat content
Protein
content

Pre-heat
treatment

Incubation
temperature Day 1 Day 2 Day 3

Intensity histogram 0.016∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.137 0.078 0.08
Fractal (box count)1 0.513 <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.349 0.021∗ <0.001∗
Fractal (box count)2 0.735 <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.255 0.115 <0.001∗
Fractal (variogram)1 <0.001∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.484 0.266 0.029∗
Fractal (variogram)2 0.005 <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.381 0.233 0.009∗
GLCM 0.010∗ <0.001∗ <0.001∗ <0.001∗ 0.002∗ 0.359 0.249 0.16
LBP 0.044∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.194 0.002∗ 0.161
BIF 0.040∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.204 0.008∗ 0.054
Image patches 0.011∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.18 0.114 0.071
Local fractal features 0.005∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.146 0.144 0.089

GLCM, gray-level co-occurrence matrices; LBP, local binary pattern; BIF, basic image features.
The table also includes the tests for equal variance within each replicate.
∗Denotes a significance on a 0.05 level.
aOnly the estimate of the fractal dimension is considered.
bBoth estimates of fractal dimension and fractal length are considered.

are generally comparable. The highest classification rates are found
at subset 4 where the gel is most dense. Also, the superiority of
the texton methods becomes more pronounced as the gel density
increases.

The decrease in performance for sparser gels, as well as the
large standard deviations, can also be explained by the fact that
the textures in these gel structures are more inhomogeneous than
the textures in denser gels (see images in Figure 1). This can
be a problem as a single image may not contain a representative
view of the actual sample, and 2 images of the same sample can
potentially be very different. This could be mitigated using lower
magnification during image acquisition or concatenation of several
images.

Finally, when considering the superset, where each sample was
classified into subset 1 through 4, we see large performance
increases for all methods. This is especially noticeable in the
classification results for intensity histograms, which see a large
performance increase, as the amount of visible protein is the
main changing factor across the subsets, which directly affects
the grayscale intensity distribution.

In summary, the texton approaches seem to be well suited for
discriminating between the microstructure of the different sam-
ples. However, because of the large standard deviations in clas-
sification rates, it is hard to determine the best texton method.
Although the fractal analysis is outperformed by the texton

methods, it is still a strong competitor to the more complex GLCM
approach, which additionally utilizes the multiple scales. Also, it
can be seen that applying the fractal length in the fractal analysis
increases the discriminative power for both fractal methods.

Nonparametric multivariate analysis of variance
Table 5 presents the results for the NPMANOVA. The blocking

of the replicates was also included in the analysis as the factor
Day. The test for equal variance among samples within each of
the 3 replicates is also included. For both analyses, a square root
transformation of the data was used to suppress some of the data
variation.

Most image descriptors found that all factors in the experi-
mental design were significantly changing the appearance of the
protein network in the micrographs. Also, most image descrip-
tors found significant day-to-day variation between the replicates,
which can be expected when working with bacteria cultures.
Looking at the test for equal variances, most methods showed sig-
nificant differences in variance across factor groups within 1 or 2
of the replicates. This can be a problem as a difference in-group
variance can lead to falsely detecting significant changes in-group
means (Anderson 2001). Thus, the results from the NPMANOVA
should be treated with some degree of caution, when considering
the methods that show significant differences in variance between
factor groups.

Figure 8–Hierarchical clusterings presented using dendrograms. The colors correspond to the sample colors in Figure 1, and each colored bar represents
a sample image. In (a), the hierarchical clustering is performed on all data in a single replicate. In (b), the clustering is performed using only 3 selected
observations from each class in a single replicate.
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Hierarchical clustering
Hierarchical clustering is commonly presented using dendro-

grams. Figure 8 presents dendrograms from 2 different cluster-
ings using the image patch descriptor from the section “Image
Patches.” For comparison, the clustering is based on the same
replicate from which the example images in Figure 1 were ex-
tracted.

In Figure 8A, the hierarchical clustering is based on all data in
this replicate. It can be seen that there is a lot of overlap between
the different samples, which can be attributed to the potential
overlap of sample appearance and within sample variation. It can
be seen that subset 1 (red) is rather isolated from the other samples.
There is a large overlap between subset 2 and subset 4 (yellow).
This can be expected as both subset 2 and 4 had high protein
content, which visually contributes most to the changes in the
images in Figure 1. High fat content also changed the appearance
but to a less degree than protein. This leads to subset 2 slightly
overlapping with subset 3. By analyzing Figure 8 in greater detail,
it can be seen that the densest sample in subset 2 (sample 6) favors
subset 3, and the least dense sample in subset 3 (sample 11) favors
subset 3.

Although Figure 8A gives an overview of the major changes in
the data, the more subtle changes from different preheat treatments
and incubation temperatures can be difficult to assess. To get a
clearer view, some of image descriptors points can be filtered out.
We did this by only selecting the median image descriptor and its
2 closest neighbors for each of the samples. The sample median
was found as the image descriptor that was closest, in terms of Eq
(4), to all other image descriptors within the same sample. The
result is shown in Figure 8B, and comparing directly to Figure 1
there is a good visual correspondence between the images and the
hierarchical representation.

Conclusion
When considering automated objective description of yogurt

microstructure creating using different milk compositions and pro-
cessing temperatures, the results of this paper suggest that it can be
beneficial to consider texton-based image descriptors over con-
ventional descriptors, such as fractal analysis and GLCM. Also, it
was noted that although the conventional approaches performed
similarly on the entire data set, the texton methods performed
better when denser protein gel networks were considered. How-
ever, because of large within sample variation and overlap between
samples, the best texton method could not be determined.

All of the applied image descriptors should be applicable for
any type of microstructures, which resembles image texture, that is
consists of pseudo homogeneous image structures when observed
on a certain scale. When tuning the free parameters of the image
descriptors, the majority of descriptors favored considering the
protein microstructure on a small scale. However, certain methods
also benefitted from observing the microstructure at coarser scales
in addition to the small scale. Selecting optimal combinations of
scale could potentially be investigated further.

We also showed 3 different ways of employing the high-
dimensional image descriptor for classification. Nearest neighbor
classification was used to evaluate the discriminative properties of
the image descriptors and hierarchical clustering was used to give
an interpretable view of the descriptors, which corresponded well
to the visual impression of the micrographs. Finally, NPMANOVA
was applied as a way of using the image descriptors in context of
variance analysis. Here, most image descriptors agreed on the sig-
nificant levels of the factors in the applied experimental design.

Although these methods rely on converting the high-
dimensional image descriptors to distance-based representations,
other approaches can be considered if the descriptors should be
used in other forms of statistical analysis. Here, for example prin-
cipal component analysis or multidimensional scaling could be
employed to create low-dimensional representations of the image
descriptors.
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