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Summary

1 Predicting and explaining the distribution and density of species is one of the oldest concerns in ecology. Spe-

cies distributions can be estimated using geostatistical methods, which estimate a latent spatial variable explain-

ing observed variation in densities, but geostatistical methods may be imprecise for species with low densities or

few observations. Additionally, simple geostatistical methods fail to account for correlations in distribution

among species and generally estimate such cross-correlations as a post hoc exercise.

2 We therefore present spatial factor analysis (SFA), a spatial model for estimating a low-rank approximation

to multivariate data, and use it to jointly estimate the distribution of multiple species simultaneously. We also

derive an analytic estimate of cross-correlations among species from SFAparameters.

3 As a first example, we show that distributions for 10 bird species in the breeding bird survey in 2012 can be par-

simoniously represented using only five spatial factors. As a second case study, we show that forward prediction

of catches for 20 rockfishes (Sebastes spp.) off the U.S. West Coast is more accurate using SFA than analysing

each species individually. Finally, we show that single-species models give a different picture of cross-correlations

than joint estimation using SFA.

4 Spatial factor analysis complements a growing list of tools for jointly modelling the distribution of multiple

species and provides a parsimonious summary of cross-correlationwithout requiring explicit declaration of habi-

tat variables. We conclude by proposing future research that would model species cross-correlations using dis-

similarity of species’ traits, and the development of spatial dynamic factor analysis for a low-rank approximation

to spatial time-series data.

Key-words: factor analysis, Gaussian process, Gaussian random field, geostatistics, habitat enve-

lope model, hierarchical model, joint species distribution models, mixed-effects model, spatial factor

analysis

Introduction

The spatial distribution of organisms is one of the basic charac-

teristics of populations and communities (Elton 1927). Species

distributions are studied in invasion biology to explore the

causes and consequences of non-native species, in spatial ecol-

ogy as indicative of colonization and extinction processes

(Hanski 1998), and in macroecology as an impetus for explor-

ing general life-history patterns and principles (Brown 1999).

The well-documented relationship between occupancy and

abundance across species implies that monitoring occupancy is

a useful proxy for detecting changes in population abundance

and viability (Gaston et al. 2000), and co-occurrence of species

is frequently used to screen for facultative and obligatory mu-

tualisms. Species distributions are also interpreted to plan con-

servation actions (Johnson, Seip & Boyce 2004) or infer

ecological dynamics (e.g. community assembly, Gotelli &

McCabe 2002), and parsimonious estimates of species distribu-

tions (and their correlations among species) is an ongoing

research topic (Gaston & Rodrigues 2003; Kissling et al.

2012).

There exists a well-developed literature regarding the estima-

tion of species distribution and range using detection/non-

detection and count data. Methods for estimating species dis-

tribution include ‘hierarchical’ models that explicitly separate

measurement and biological process models (MacKenzie et al.

2005; Royle & Wikle 2005), regression-based methods

that correlate detection and count data to measured variables*Correspondence author. E-mail: James.Thorson@noaa.gov
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(Goetz et al. 2014) and sample-based methods that often will

not propagate uncertainty explicitly (Gaston 1991). There is

also recent interest in methods that use data from multiple

species simultaneously within ‘joint species distribution

models’, JSDM (Clark et al. 2013; Pollock et al. 2014). As one

example, Latimer et al. (2009) estimated an unmeasured

(latent) variable representing unmeasured spatial variation for

each of four invasive species, while estimating cross-correla-

tions representing the impact of one species on the probability

of encountering the other. However, methods such as this

require estimating as many latent variables as there are species,

and will likely not be parsimonious (or even computationally

possible) for large numbers of species. Other JDSMs also

include measured habitat variables and include pairwise

correlations among residuals for all species at a given location.

Species will have a nonzero cross-correlation whenever the

occurrence of one implies an increased (positive cross-correla-

tion) or decreased (negative cross-correlation) probability that

the other will occur at the same location. Positive cross-correla-

tions can arise whenever species have similar environmental,

dispersal or biotic requirements, or when there is some direct

or indirect positive interaction between these species (Ovaskai-

nen, Hottola & Siitonen 2010; Kissling et al. 2012). Given that

two species have ranges that are not statistically independent

(i.e. have some positive or negative cross-correlation), the spa-

tial distribution of one will be informative about the distribu-

tion of the other (Harris 2015). This implies that multispecies

information can be a useful way to leverage limited sampling

information for low-density and difficult-to-detect species

(Ovaskainen & Soininen 2011). Additionally, most communi-

ties are composed of a few species with high densities andmany

species with low densities. Given this, we may have sparse data

regarding species occupancy and range for the majority of spe-

cies in a community. Finally, many species will have ranges

that fluctuate over short- and long-term cycles, and quantify-

ing range shifts over time requires that ecologists be capable of

accurately estimating species ranges using limited data from

short time-intervals.

For these reasons, it is important to develop tools for esti-

mating species ranges that utilize information in multispecies

data sets when this can improve predictive performance for

low-density and otherwise data-poor species. Previous analysis

of multispecies data has generated an extensive literature of

multivariate statistical techniques (see, e.g. McCune, Grace &

Urban 2002). One such technique is factor analysis, which

decomposes the variance in a multivariate data set into mea-

surement variance (which is independent for each variable)

and variation explained by a reduced set of unobserved (latent)

‘factors’ (Rencher 2002). Eachmeasured variable has a loading

onto each factor, and this loading represents the degree to

which a measured variable can be explained by a given factor.

Multiple variables have loadings onto each factor, such that

correlations among measured variables are explained by these

estimated factors (where two correlated variables will have

similar loadings onto at least one factor). Factor analysis has

subsequently been expanded to time-series analysis of ecologi-

cal communities (i.e. dynamic factor analysis, Zuur, Tuck &

Bailey 2003), but we know of no previous ecological studies

that have modified factor analysis for use with spatial data, for

example estimating distribution models for multiple species

simultaneously.

We therefore demonstrate spatial factor analysis (SFA) as a

new tool for joint species distribution modelling. Spatial factor

analysis has previously been discussed in biomedical, environ-

mental monitoring and statistical contexts (Wang & Wall

2003; Hogan & Tchernis 2004), but has not previously been

used for modelling species distributions. Spatial factor analysis

uses a reduced number of unobserved spatial factors to repre-

sent unobserved environmental or biological variables in a

large number of species. Similar to geostatistical methods, each

factor is estimated as a random field such that nearby locations

are, on average, more similar than geographically distant loca-

tions. We use SFA to illustrate how relatively few spatial fac-

tors can describe the distributions of 10 bird species from the

westernUSA, despite very different nesting habitats and forag-

ing behaviours.We then apply SFA to data for 10 years for an

assemblage of demersal fish species off the U.S. West Coast

and show that SFA has greater predictive accuracy than a sin-

gle-species geostatistical approach without the need to account

for unmeasured covariates.We conclude by deriving an analyt-

ical formof spatial correlation and demonstrate its equivalence

to Pearson’s sample-based approach.

Materials andmethods

OVERVIEW

We seek to characterize the co-occurrence of multiple species simulta-

neously using count dataC from spatially referenced sampling in a way

that (i) is parsimonious and (ii) allows inference about species cross-cor-

relations. Measured environmental variables are typically used when

explaining species distribution and often include correlations in model

residuals among species estimated either explicitly (Clark et al. 2013;

Pollock et al. 2014) or implicitly (Dunstan, Foster & Darnell 2011;

Ovaskainen & Soininen 2011). As an alternative to using measured

environmental variables, we define a SFA model, which estimates a

low-rank approximation to the spatial distribution of multiple species

simultaneously. Instead of using measured environmental variables,

SFA estimates one or more latent variables that vary over space (each

representing unobserved environmental and biotic effects), without

requiring specification of environmental variables a priori. Latent spa-

tial variables have been used previously in a several species distribution

models (Latimer et al. 2006), sometimes in conjunction with measured

environmental variables (Latimer et al. 2009; Shelton et al. 2014; Har-

ris 2015) or phylogenetic relationships (Kaldhusdal et al. 2015), and

are estimated here as a Gaussian random field (GRF) (Thorson et al.

In press).

Spatial factor analysis estimates K GRFs to approximate the distri-

bution of J species, where the number of random fields used in this

approximation can range between 1 (a single distribution for all species)

and J (a different distribution for each species, and estimating all cross-

correlations among species). Parameters representing the value of

GRFs at sampled locations are estimated as random effects usingmaxi-

mum likelihood, where integration across random effects is approxi-

mated using the Laplace approximation (Skaug & Fournier 2006) via

Template Model Builder (Kristensen 2014). Model selection tools can

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 627–637
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then be used to select the most parsimonious number of GRFs for a

given application. Spatial factor analysis estimates the distribution for

each species as a linear function of these GRFs, and the matrix of coef-

ficients for these linear functions is called the loadingmatrix (in analogy

to conventional factor analysis).We also estimate residual variability in

survey data for each species and observation. In this way, SFA sepa-

rately estimates the effect of process error (i.e. spatial variation in spe-

cies densities, including their correlations among species) and

measurement error (residual variability caused by the sampling pro-

cess).

SPATIAL FACTOR ANALYSIS MODEL

The number of individuals observed for species j of J total species and

each location i of I total locations is assumed to follow a Poisson distri-

butionwith log-normal overdispersion ei, j:

Ci; j �PoissonðexpfKi; j þ ei; jgÞ eqn 1

where Λi, j is the log-expected count of species j in sample i, and ei, j
accounts for sampling variation in excess of a Poisson distribution (e.g.

as caused by variation in densities at a fine spatial scale), where

ei; j �Norm 0;r2
j

� �
andr2

j is the variance of overdispersion for species

j. We use a lognormal-Poisson mixture distribution for samples, rather

than the more common negative-binomial distribution (Lind�en &

M€antyniemi 2011), so that the magnitude of overdispersion r2
j is

directly comparable with the magnitude of variation explained by

spatial variables (discussed below).

We observe counts, Ci, j = ci, j, for each sampling location i and

species j. The vector of log-expected values Λi,• for all J species at the

i-th sampling location depends upon theK latent spatial fields:

Ki;� ¼ aþ LXT
i;� eqn 2

such that

Ki; j ¼ aj þ
X
k

ljkXi; k eqn 3

where aj is the average log-count for species j, Ωi,• is the value ofΩ for

allK latent spatial fields at location i, andΩ is a matrix where each col-

umn represents one of the latent spatial fields:

X ¼ ðx1;x2; . . .;xkÞ eqn 4

The loading matrix L is a J 9 K matrix representing the linear rela-

tionship between spatial fieldsΩ and the logarithm of expected counts

Λ for each species:

L ¼

l1;1 0 . . . 0
l2;1 l2;2 . . . 0
l3;1 l3;2 . . . 0
. . . . . . . . . . . .
lJ;1 lJ;2 . . . lJ;K

2
66664

3
77775 eqn 5

Each factor xk is estimated as a GRF that has marginal variance of

one:

xk �MNð0;RÞ eqn 6

where MN is a multivariate normal distribution over the I locations

with mean 0 and covariance matrix Σ. Covariance is in turn derived

from a stationary and isotropic correlation function with a Mat�ern

covariance functionwith smoothness m = 1:

rðx; x0Þ ¼ Mat�ernðjx; x0jÞ eqn 7

where x and x0 are two locations and |x,x0| is the distance between these
two points.

The loadingmatrixL, the range of theMat�ern covariance function j
and the variance of the log-normal overdispersion r2

i are estimated as

fixed effects, while the spatial fields Ω and log-normal overdispersion

parameters ei,j are estimated as random effects. Additionally, we imple-

ment restricted maximum-likelihood (REML) estimation by treating

the mean for each species a as a random effect with a ‘flat’ prior (Har-

ville 1974). We use R-INLA (Lindgren & Rue 2015) to compute the

three components of the precision matrix necessary for the stochastic

partial differential equation approximation toGRFs (Lindgren, Rue &

Lindstr€om 2011). We then pass these matrices to Template Model

Builder, which computes the marginal likelihood of fixed effects using

the Laplace approximation (Skaug & Fournier 2006) to integrate

across GRFs, overdispersion parameters and the intercept vector a
given the joint distribution of fixed and random effects. Template

Model Builder computes both the marginal likelihood and its first

derivatives with respect to fixed effects, and these are then used by a

conventional nonlinear optimizer in the R statistical environment (R

Core Development Team 2013) to maximize the marginal likelihood

(see Thorson et al. (In press) for details). All code for estimating the

SFAmodel is distributed as anR package SpatialFA and is available at

the first author’s GitHub repository (https://github.com/James-Thor-

son/spatial_factor_analysis).

Interpretation of the estimated spatial factors Ω is complicated

because the loading matrix L has a particular structure pre-specified to

ensure identifiability. Specifically, the condition that the upper-right

corner of the loading matrix is 0 is analogous to a similar condition in

dynamic factor analysis (Zuur, Tuck & Bailey 2003). However, inter-

pretation can be simplified by rotating the loading matrix and spatial

factors. This rotation is also advocated for conventional factor analysis

(Rencher 2002) and dynamic factor analysis (Holmes,Ward & Scheue-

rell 2014).We have chosen to use varimax rotation:

X0 ¼ HX

L0 ¼ LH�1
eqn 8

where H is the varimax rotation matrix, and Ω0 and L0 are easier to

interpret because L0 will tend to be more ‘sparse’ (have many small val-

ues and a few big values) thanL.

CALCULATING BETWEEN-SPECIES CORRELATIONS

We next seek to estimate the magnitude of spatial association among

all species. We calculate this as a function of elements ljk of the loading

matrix L, noting that the expected value and variance of log-catches

across the entire spatial domain are:

E½K�;j� ¼ aj

Var½K�;j� ¼
X
k

l2jkVar½X�;k� ¼
X
k

l2jk
eqn 9

while the covariance between species is (as shown in theAppendix S1):

Cov½K�;j;K�;j0 � ¼
X
k

ljklj0k eqn 10

so that

Corr½K�; j;K�; j0 � ¼ Cov½K�; j;K�; j0 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½K�; j�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½K�; j0 �

p ¼
P
k

ljklj0kffiffiffiffiffiffiffiffiffiffiP
k

l2jk

r ffiffiffiffiffiffiffiffiffiffiffiP
k

l2j0k

r eqn 11

This provides a closed-form solution to the expected correlation in

the log-expected count between species j and species j’ as estimated

from the SFA. We note that this solution is similar to Eq. 4 of Pollock

et al. (2014), given that spatial factors are defined to have variance of

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 627–637
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one and zero covariance. However, our derivation is defined via expec-

tations for random fields, while Pollock et al. (2014) derives a similar

solution via sample statistics of measured covariates (which have no

expectation). For comparison, we also calculate the sample correlation

between the log-predicted count K̂�;j for each pair of species j and j0:

Sample.CorrðK̂�; j; K̂�; j0 Þ

¼
PI
i¼1

K̂i; j � 1
I

PI
i¼1

K̂i; j

� �
K̂i; j0 � 1

I

PI
i¼1

K̂i; j0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1

K̂i; j � 1
I

PI
i¼1

K̂i; j

� �2 PI
i¼1

K̂i; j0 � 1
I

PI
i¼1

K̂i; j0

� �2
s eqn 12

while expecting that the analytic and sample correlation will be similar

for the SFA.

FIRST CASE STUDY – BIRDS IN THE WESTERN U.S .A

We first use data from the US Breeding Bird Survey (https://

www.pwrc.usgs.gov/bbs/) to demonstrate how SFA can explain

many different spatial patterns with relatively few spatial factors.

Specifically, we used data from the summer of 2012 and limit the

data to the western U.S.A. (Washington, Oregon, California, Idaho,

Nevada, Montana, Wyoming and Colorado). We choose ten fre-

quently encountered species from a variety of taxonomic families

with contrasting spatial ranges and habitat requirements, including

species commonly found in woodland, grassland, sagebrush and

coastal habitats (Table 1). These species typically occur in different

bird conservation regions, or ecoregions, across the western U.S.A.

(Fig. 1), as defined by the North American Bird Conservation Initia-

tive (NABCI), and we chose them (rather than species within a single

taxonomic or functional group) to demonstrate the application of

SFA for species with varied spatial distributions (Babcock et al.

1998). We fit the SFA model using 1 through 10 factors and use

marginal AIC (as calculated from the maximum marginal likelihood

of the SFA model) to select the most parsimonious model. We then

show the spatial factors for the AIC-selected model, as well as the

analytic and sample correlation for both the SFA and when running

each species individually. We also compare the predicted density of

each species with counts at the same set of sampling locations in the

summer of the following year (2013), as a measure of predictive

accuracy. Specifically, we compute log-expected counts Λi (using only

data from 2012) for each sample location in 2013. We then compare

these predictions with true counts ci in 2013 and calculate the rank

(Spearman) correlation between predictions (using data in year 2012)

and true counts (in year 2013).

SECOND CASE STUDY – PACIF IC ROCKFISHES

We next apply SFA to 10 years of data (2003–2012) from a multi-

species survey of marine fishes off the U.S. West Coast, and restrict

our analysis to 20 species of Pacific rockfishes (Sebastes spp.) to dem-

onstrate the application of SFA for species within a single taxonomic

group (and hence presumably with more similar spatial distributions

than in the bird case study). This survey uses a stratified random

design to allocate approximately 650 bottom trawl tows annually

along the entire coast and identifies all fishes caught to species so

that it yields a count ci for potentially hundreds of species simulta-

neously. We analyse data for each year independently, which allows

us to estimate species distributions using data from a particular year

(e.g. 2003), and predicting catches for those species in the next year

(e.g. 2004). This forward prediction is the gold standard for model

evaluation and gives us 9 years of forward prediction with which to

evaluate model performance. For each year, we only fit the model to

data for species that have at least 25 observations of the species, and

this leaves between 16 and 20 species (where the precise number var-

ies somewhat from year to year). For each year, we fit the SFA

model using from 1 to 8 spatial factors (1 ≤ K ≤ 8), and use mar-

ginal AIC to select the best-fitting number of factors. We take this

AIC-selected model, fitted to data for all 16–20 species for that year,

and again compare predictions of log-expected catch with true

catches ci to calculate the rank (Spearman) correlation between pre-

dictions (using data in year t) and true catches (in year t + 1). This

Table 1. List of species used in the two case studies

Selected birds inWesternN.America Pacific rockfishes

Scientific Common Scientific Common

Pipilo chlorurus Green-tailed Towhee Sebastes alutus Pacific ocean perch

Oreoscoptes montanus Sage Thrasher S. babcocki Redbanded rockfish

Amphispiza bilineata Black-throated Sparrow S. crameri Darkblotched rockfish

Calypte anna Anna’s hummingbird S. diploproa Splitnose rockfish

Selasphorus rufus Rufous hummingbird S. elongatus Greenstriped rockfish

Ardea alba Great egret S. entomelas Widow rockfish

Circus cyaneus Northern harrier S. flavidus Yellowtail rockfish

Melanerpes formicivorus Acornwoodpecker S. helvomaculatus Rosethorn rockfish

Dryocopus pileatus Pileated woodpecker S. jordani Shortbelly rockfish

Ammodramus savannarum Grasshopper sparrow S. paucispinis Bocaccio

S. pinniger Canary rockfish

S. zacentrus Sharpchin rockfish

S. melananostictus aleutianus Rougheye complex

S. saxicola Stripetail rockfish

S. aurora Aurora rockfish

S. melanostomus Blackgill rockfish

S. chlorostictus Greenspotted rockfish

S. goodei Chilipepper

S. semicinctus Halfbanded rockfish

S. levis Cowcod

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 627–637
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is repeated for each of 9 years and, in total, we have 163 predictive

evaluations of the SFA model.

MODEL EVALUATION

Finally, we compare the SFA model with a conventional geostatistical

model that analyses data for each species separately. This model

approximates single-species catches using a species-specific spatial field:

Ci �PoissonðexpfKi þ eig; hÞ
Ki ¼ aþ xi

x�MVNð0;RÞ
ei �Normð0;r2Þ

eqn 13

where the covariance of the spatial field is as defined previously. This

single-species model is fitted to data for all rockfish and bird species in

each case study and each year, and its predictions of log-expected

catches Λi for each sample location in the next year is compared with

observed catches ci. Predictions and true counts are again used to calcu-

late the rank (Spearman) correlation between predictions and true

catches in that year. This rank correlation is then used as a basis for

comparing the relative performance of SFA and conventional geosta-

tistical approaches to species distribution models. Future research

could also explore model goodness-of-fit and parsimony using predic-

tive scores (Gelman, Hwang & Vehtari 2014) or other criteria. We use

rank correlation to evaluate model performance because we are pri-

marily interested in the ability of spatial models to broadly reconstruct

areas of high and low density, and we hypothesize that good perfor-

mance asmeasured by predictive scores will requiremore detailed treat-

ment of residual errors for count data (e.g. using zero inflation and

heteroskedastic variance inflation) that we use here. Finally, we also

evaluate model fit by calculating the per cent deviance explained (PDE)

for both single-species and SFA models. To do so, we fitted a ‘null’

model that does not include spatial variation (i.e. where L = 0). We

then calculate PDE as the deviance of the ‘null’ model, minus the devi-

ance of the SFA or the combination single-species models, and then

divided by the deviance of the ‘null’ model.

Results

We found that the spatial distributions of 10 different bird spe-

cies based on counts from across the western USA could be

explained with only five spatial factors (Fig. 2a) and that these

five spatial factors line up well with bird conservation regions

previously defined by the NABCI (i.e. comparing Figs 1 and

2a). Factors 1 and 3 (see Fig. 2b for species loadings) are (neg-

atively) associated with the Great Basin region, while Factor 2

is (negatively) associated with the Southern Rockies. Factor 4

is associated with the northern Pacific rain forests that domi-

nate the coast of Washington and Oregon, whereas Factor 5 is

associated with the low-precipitation areas in California and

Nevada. The subsequent species loadings (Fig. 2b) result in

positive cross-correlations between (i) the three sagebrush obli-

gates: green-tailed towhee, sage thrasher and black-throated

sparrow, and (ii) the primarily coastal species: Anna’s hum-

mingbird, Rufous hummingbird and great egret. The PDE for

the SFAmodel was 19�4%, comparedwith 17�7% for the com-

bination of single-species models. The rank correlation of both

models was similarly close (median rank correlation q = 0�362
for the SFA model, and q = 0�365 for the single-species mod-

els), indicating little improvement in predictive importance for

SFA for these species relative to single-species distribution

models.

Spatial factor analysis also revealed several interpretable

spatial patterns in catches of Pacific rockfishes in 2003

(Fig. 3a,b). AIC model selection indicated that a 6-factor

model was far more parsimonious (i.e. approx. 1600 AIC units

less) than either (i) a single-factor SFA model, or (ii) the con-

ventional geostatistical approach, where each species has an

independent spatial factor (Table 2). Among spatial factors

(Fig. 3a), several can be easily interpreted, including a factor

(negatively) associated with a band of intermediate depth run-

ning north–south along the coast (Factor 2), a factor discrimi-

nating between northern and southern rockfishes (Factor 3), a

factor (negatively) associated with rockfishes primarily off the

southern Oregon coast (Factor 4) and a factor associated with

elevated densities in nearshore California environments (Fac-

tor 5). Different linear combinations of these factors (LΩ) can

generate awide diversity of spatial distributions (Fig. 4), where

most species (except aurora) are negatively associated with

Factor 2, but factors 1 and 3–6 generally include both positive

and negative loadings (Fig. 3b) and hence discriminate among

species. For Pacific rockfishes in 2003, the SFA model had a

PDE of 17�6%, compared with a PDE of 7�2% for the combi-

nation of single-species models.

Calculation of between-species correlations (Fig. 5) shows

that the analytic computations (upper-left panel of Fig. 5a,b)

show a strong resemblance to the sample correlation in Ω
(upper-right panel of 5a,b). As expected from the loading

matrix L’ for the rockfish example, aurora has a spatial dis-

tribution that differs strongly from most other species (in

particular, canary and yellowtail). Meanwhile, the standard

single-species geostatistical approach implicitly assumes that

all species are statistically independent (correlation = 0 for

off-diagonal; lower-left panel in Fig. 5a,b). However, the

Fig. 1. Bird conservation regions across the western U.S.A., as defined

by the North American Bird Conservation Initiative (Babcock et al.

1998).
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single-species estimates of xj for all species 1 through J are

still correlated among species. Interestingly, the sample corre-

lations for the single-species models are very different than

the sample or analytic correlations for SFA in the rockfish

example (Fig. 5a), but less so for the North American bird

example.

(a)

(b)

Fig. 2. Results for the spatial factor analysis model applied to breeding bird survey data for 10 species in 2013 (see main text for list): (a) the esti-

mated factors after varimax rotation (Ω0, where red signifies high and blue signifies low values), (b) the varimax-rotated loadingsmatrix (L0).
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When using cross-validation in 2003 to evaluate model per-

formance for the Pacific rockfish case study (i.e. comparing

model predictions when fitting to data in 2003 to the true

catches in 2004; Table 2), the median rank correlation across

all 16 species was maximized by a 5-factor model (q = 0�337),
but it was essentially the same as that for the AIC-ranked best

model with six factors (q = 0�335). Notably, both of these rank

correlations were substantially higher than the median rank

correlation across all 16 species for the single-species geostatis-

tical models (q = 0�296). Across all 163 combinations of spe-

cies and year (Fig. 6), SFA generally provides greater rank

correlation (median: 0�329) than the single-species models

(median: 0�285) and also decreases the number of species and

years with a correlation <0�2. We therefore conclude that AIC

identifies a number of factors that has reasonable performance

for predictive purposes. We also conclude that SFA has better

predictive performance than the single-species models for Paci-

fic rockfishes. We hypothesize that differences in predictive

performance between case studies arise because the Pacific

rockfishes generally have a strong positive correlation (and

hence a large amount of mutual information), while the bird

species generally have fewer pairs with strong positive or nega-

tive correlation (and hence less mutual information).

Discussion

Wehave developed a new spatial analogue of conventional fac-

tor analysis, SFA, and shown how it can be used to estimate

joint distributions for multiple species using a small number of

spatial factors. In the style of principal components analysis or

other dimension-reducing techniques that simplify large data

sets (McCune, Grace & Urban 2002), SFA incorporates data

from a variety of species, summarizes the numerous underlying

landscape factors that drive their distributions and presents the

results as a reduced series of maps. By analysing all species

simultaneously, we have shown that the improved parsimony

of SFA (relative to individual species distribution models) in

some cases translates to improved precision in predictions of

Table 2. Summary of goodness-of-fit for rockfish data in 2003 when

predicting data in 2004, that is model selection criteria (Akaike Infor-

mation Criterion, applied to marginal likelihood), and predictive accu-

racy (in-bag: Pearson correlation between model fits and data used to

fit the model; out-of-bag: Pearson correlation between model predic-

tions and next year’s data) for single-species models and the spatial fac-

tor analysismodel using 1–7 factors

Factors

Model

selection

Correlation

DAIC

Predicting 2003 data

(‘in-bag prediction’)

Predicting 2004 data

(‘out-of-bag prediction’)

Single-speciesmodels

NA 1620�7 0�529 0�296
Spatial factor analysis

1 1273�0 0�374 0�207
2 509�0 0�451 0�29
3 142�9 0�511 0�297
4 17�2 0�509 0�333
5 0�4 0�513 0�337
6 0 0�513 0�335
7 8�1 0�511 0�331

(a) (b)

Fig. 3. Results for the spatial factor analysis

model applied to Pacific rockfish data for 16

species in 2003 (see main text for list): (a) the

estimated factors after varimax rotation (Ω0,
where red signifies high and blue signifies low

values), (b) the varimax-rotated loadings

matrix (L0).
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future survey data. This confirms results from previous studies

that share information among species to achieve improved pre-

dictions or explanatory power (Ovaskainen & Soininen 2011;

Clark et al. 2013; Pollock et al. 2014). SFA has the additional

benefit of providing an analytical form for cross-correlation,

which complements previous work for calculating cross-corre-

lation due to measured covariates and correlated residuals

(Pollock et al. 2014).

Spatial maps of species abundance and diversity form the

basis for biogeographical studies and conservation planning

(Graham & Hijmans 2006; Spalding et al. 2007; Tittensor

et al. 2010). Examination of species distribution maps is typi-

cally the first step in designing protected areas or reserves

that will protect the greatest level of biodiversity (Margules

& Pressey 2000). A variety of techniques exist for estimating

species distribution and density maps, ranging from expert

opinion to logical and statistical models (Johnson, Seip &

Boyce 2004; Graham & Hijmans 2006), although it remains

difficult to synthesize all available information or determine

which method is optimal for a given planning task. For

example, simple range maps may suffice for determining

simple presence or absence, but they are often insufficient for

conservation planning because they assume a uniform distri-

bution within the region of interest (Gaston & Rodrigues

2003; Williams et al. 2014). By contrast, SFA (like other

joint species distribution models) produces a rank-reduced,

comprehensive map of multispecies densities. This allows for

easy identification of dominant spatial patterns in densities

that could, in turn, be incorporated into formal spatial plan-

ning. Furthermore, errors in distribution maps are rarely

acknowledged, which can plague conservation decision-mak-

ing (Tulloch et al. 2013). SFA differs from other JSDMs by

not including measured covariates to predict individual spe-

cies (Clark et al. 2013; Pollock et al. 2014) or species arche-

types (Dunstan, Foster & Darnell 2011; Hui et al. 2013).

Bahn & McGill (2007) highlighted the good performance of

spatial models like SFA when imputing between sampled

locations, but we hypothesize that JSDMs that include

measured covariates will often perform better than SFA

when extrapolating outside the sampled domain.

Fig. 4. Expected log-abundance (standardized to have mean zero for each species, that is, LΩi, and having the same colour-scale for all panels) for

all 16 rockfishes that have 25 ormore encounters in 2003 (red is positive values, and blue is negative values).
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In the USA and elsewhere, marine spatial planning efforts are

underway to balance a variety of stakeholder interests such as

commercial fishing and ecotourism (White, Halpern & Kappel

2012; Rassweiler et al. 2014). Spatial factor analysis could prove

to be a valuable tool in these endeavours for two reasons. First,

many species distributions are estimated from statistical relation-

shipswith habitat or other descriptions of the environment (Gui-

san&Thuiller 2005; Stelzenm€uller, Ellis &Rogers 2010). Spatial

factor analysis does not require any pre-measured environmen-

tal covariates with which to estimate species abundance

(although covariates could be easily added) and instead allows

the data to highlight any perceived biogeographical features (e.g.

Point Conception in the California Transition Zone). Secondly,

conservation planning is usually focused on static notions of

abundance patterns rather than the dynamic processes that gen-

erated them (Pressey et al. 2007). Spatial factor analysis provides

a better prediction of 1-year ahead spatial patterns than an ad

hoc combination single-species models for Pacific rockfishes and

hence may be more suitable for identifying changes in their dis-

tribution over time.

We have also shown that SFA provides an analytical esti-

mate of cross-correlation, where cross-correlation has been fre-

quently discussed in ecology, for example regarding

community assembly rules (Gotelli &McCabe 2002). The rank

reduction used by SFAwill probably be parsimonious inmany

applications and will likely improve estimates of the cross-cor-

relation matrix in these cases. The ability to provide an

analytic estimate of cross-correlation enables future modifica-

tions, such as using species-level covariates to predict or inform

species’ cross-correlations. One potential avenue of particular

interest would be using species traits to generate one or more

trait- or phylogeny-based dissimilarity matrix (Kissling et al.

2012; Oke, Heard & Lundholm 2014). This dissimilarity

matrix could then be used as a covariate when modelling

species cross-correlations. In this way, information regard-

ing species traits could be used directly when modelling the

(a) (b)

Fig. 5. Estimated correlations among species using rockfish data from 2003 (a) and breeding bird survey data from 2013 (b), where red is a correla-

tion of 1, white is a correlation of 0, and blue is a correlation of�1 (shading is used on a gradient between these colours). The top row shows the esti-

mated correlations from the spatial factor analysis, while the bottom row shows correlations from each single-species geostatistical model. The left

column shows analytic estimates of correlations, while the right column for each shows the sample correlation (seeMethods section for details).

Fig. 6. Distribution of Spearman correlations between AIC-selected

spatial factor analysis estimates of spatial distribution from each year

of the Pacific rockfish case study, and the realized catches in the next

year. Also shown is the same distributionwhen using single-species geo-

statistical models to predict next year’s catches.
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spatial distribution of species within a given community. This

strategy could potentially be used in a hypothesis-testing

design, to determine whether the similarity of species traits is a

better predictor of spatial distributions than expected at ran-

dom.

We note that single-species geostatistical models provided

a very different picture of species co-occurrence than did the

SFA model. In particular, the sample cross-correlation from

single-species models had many more negative elements than

did the SFA when applied to data for Pacific rockfishes, and

would lead to inference that different environmental associa-

tions and/or negative interactions were stronger in the single-

species than the SFA model. The interpretation of spatial

cross-correlations has a long history in ecology. For exam-

ple, spatial cross-correlations have been used to infer drivers

of bird population eruptions (Bock & Lepthien 1976), causes

of fungal co-occurrence in different habitats (Ovaskainen,

Hottola & Siitonen 2010) and providing evidence for species

assembly rules (Gotelli & McCabe 2002). Given that

researchers have advocated increased use of multispecies dis-

tribution models to infer correlations in species distribution

(e.g. Kissling et al. 2012), the fact that estimated structure of

cross-correlations depend strongly on the method used to

estimate it is an important result. Which model provides a

better picture of species interactions will require future simu-

lation testing of the SFA model. However, the SFA model

has better performance at predicting future catches, so we

hypothesize that it will have superior performance in other

characteristics as well.

Future research can combine GRFs and measured envi-

ronmental variables in joint species distribution models (La-

timer et al. 2009; Ovaskainen, Hottola & Siitonen 2010;

Clark et al. 2013; Pollock et al. 2014; Harris 2015), although

we have not done so in this analysis. This decision was made

to ensure that our model is a strict analogue of conventional

factor analysis (which does not include measured covariates).

Nevertheless, it would be easy to modify the equations for

the expected value of each species to include covariates, and

cross-correlations between random fields and measured cova-

riates could be calculated following Pollock et al. (2014). We

recommend that future joint species distribution models

include measured covariates (as is possible in our R package

SpatialFA) because these are likely to improve predictive

accuracy, particularly when predicting species densities in

regions with low sampling intensity or outside the sampling

domain of the original data set (Shelton et al. 2014). How-

ever, in many cases the covariates may not be available for

the entire spatial domain (e.g. the presence of biogenic habi-

tats in marine systems; Krigsman et al. 2012) or an appro-

priate parametric relationship between the covariate and

species may be unknown. In such cases, the flexibility pro-

vided by SFA is preferable to estimating an ad hoc func-

tional form. A low-rank approximation to cross-correlations

may also be important for JSDMs that already estimate

cross-correlations in residuals (Clark et al. 2013; Pollock

et al. 2014). We note that improved precision could also be

achieved in some cases by pooling data across multiple time

periods and hence increasing sample sizes (e.g. by combining

data among all years 2003–2012 in the rockfish example).

However, combining data from multiple years will only be

appropriate if spatial distributions do not change over time,

or changes can be modelled as an annual offset without

changes in the relative distribution among areas.

Finally, we advocate further research regarding joint spe-

cies distribution models that estimate changes over time

(Kissling et al. 2012). Dynamic spatial models for multiple

species could generalize non-spatial approaches for inferring

competitive interactions (Ives et al. 2003), and the spatial

approach is likely important when densities vary spatially

and interactions are local (Thorson et al. In press). In the

case that distributions change among years, we suspect that

a fully spatiotemporal approach is more appropriate than

pooling all years in a static distribution model. However,

dynamic joint species distribution models will require effi-

cient use of available data, which may be benefited by the

rank-reduced method illustrated by the SFA model. There-

fore, a dynamic SFA model would be an appropriate next

step for research when combining data from multiple species

and years to estimate changes in species distributions and

co-occurrence. This model has been explored outside ecology

(Calder 2007; Lopes et al. 2012), but remains an important

tool to test for joint species distribution modelling.
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