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Abstract: 

After a long period of transition, Danish energy system is half-way towards completely renewable in 2050. 
Drastic changes happened in the last forty years – the imported oil has been replaced by a mix of coal and 
natural gas, energy efficiency and conservation have been improved by extensive use of CHP-based district 
heating and heat saving measures. In the same period Denmark became well-known by integration and 
export of wind turbines. In line with the changes in the past, Denmark currently has very ambitious 
renewable energy targets, most ambitious being the 100 % renewable energy system in 2050. To achieve 
this, it is obvious that the present energy system needs to change, but the open question is how this should 
be done.  
In order to answer this question, the present paper uses TIMES-DTU model. TIMES-DTU is technology-rich, 
bottom-up, optimisation model covering all sectors of the Danish energy system, assuming full foresight and 
perfect competition. It simultaneously optimises investments and operation across all sectors and all time 
periods. Three different scenarios have been described in the present paper: (i) Base scenario without any 
policy constraints imposed on the model, (ii) WLP with the constraint that 50 % of electricity production 
should come from wind starting from 2020, and (iii) WLP-NFE scenario with the constraint that power and 
heat sector should be fossil fuel-free starting from 2035 and Denmark should be 100 % renewable starting 
from 2050. In all scenarios, Denmark was constrained to be a net exporter of electricity. 
The results imply that heat demand in future Danish energy system will be significantly reduced as a result of 
significant heat saving measures within the building stock, especially in rural and sub-urban areas. In urban 
areas, large district heating networks will supply between 55 and 73 % of heat supply in the years close to 
2050. Electricity demand will be largely increased mainly due to transition to large scale heat pumps in the 
district heating networks. More than 90 % of increased demand for electricity will be based on on-shore and 
off-shore wind energy. WLP scenario implies less than 1 % higher total system costs compared to Base 
scenario, while WLP-NFE scenario implies 5-6 % higher total system costs compared to Base scenario. An 
additional conclusion from the current study is that Denmark has sufficient resources to achieve self-
sufficiency in energy supply.  

Keywords: 

Energy system modelling, TIMES model, energy system planning, energy conservation, renewable 
energy system.  

1. Introduction 
If a "snapshot" of the Danish energy system from before the First Oil Crisis in 1973 is analysed, it 

can be concluded that it has been heavily changed in the last 40 years. Power and heat sectors have 

been converted from inefficient, environmentally harmful sectors based on oil to efficient sectors 

based on renewable energy, coal and natural gas. As a result of that, share of renewables in 

electricity production changed from 0 to 46 %, share of renewables in district heating production 

from 0 to 20 % while share of renewables in individual heating changed from 0 to 43 %. District 

heating based on waste heat from CHPs (Combined Heat and Power) and energy conservation 

measures within the building stock proved to be important components in the process of improving 

the overall system efficiency during the period. Even though total heated area of buildings has 
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increased by more than 50 % [1], primary energy consumed for heating decreased by more than 30 

%. In the same period, district heating share increased from 28 % to 54 % [2]. The increase in 

renewable energy shares in transportation sector was much less pronounced; it increased from 0 to 

4.3 % in the whole sector corresponding to the growth from 0 to 5.7 % in the road transport. The 

share of electricity reached 0.7 % of the final energy consumption in the transportation sector in 

2013 or around 30 % of the train transport. Final energy consumption in the transportation sector 

was increased by 50 % over the 40 year period, mainly due to increase of 72 % in the road transport 

[2]. Residential, power and heat sectors have already proven to have a ready set of solutions for 

fulfilment of long term goal of the Danish Government of being 100 % renewable no later than 

2035 [3]. On the other hand, new solutions are needed to reduce energy consumption in 

transportation sector and switch to renewable fuels. 

Despite putting a specific focus on different parts of the system and different periods in the future, 

energy system models have been used in recent years to explore how the Danish energy system as a 

whole should develop. The role of district heating in the Danish energy system was analysed in [4] 

for year 2025 and years 2020 and 2060 in [5, 6]. The influence of excess heat production from 

NZEBs (Net Zero Energy Buildings) on the district heating system in year 2050 was addressed in 

[7]. Special emphasis in renewable energy scenario for Aalborg Municipality in year 2050 was put 

on low-temperature geothermal-based district heating system [8]. Influence of residential heat 

pumps on wind power integration has been analysed in [9-11]. Short-term effects of heat savings 

and district heating expansion on local energy system of Frederikshavn have been documented in 

[12], while medium and long-term role of heat savings in buildings in the Danish energy system 

have been analysed in [13, 14]. Different energy systems in different years were used as case 

studies for analysis of transportation sectors:  Danish in 2030 [15], Finnish in 2035 [16], Nordic in 

2050 [17] and North European in 2030 [18] and from 2015 to 2030 [19]. The optimization of waste 

treatment in the Danish energy system from economic perspective was performed in [20], while 

both environmental and economic dimensions have been accounted for in [21]. Models of the 

Danish energy system were also utilised for analysis of topics partly falling within other parts of 

society, such as health-related externalities [13, 22], climate mitigation and economic growth [23] 

and limiting the use of biomass [24]. Majority of the analysis have been performed using two 

models: Balmorel [4, 9, 10, 13-20, 22] and EnergyPlan [5, 6, 8, 11, 12, 23, 23].       

In several other countries, energy system models belonging to TIMES family have been in use for 

many years. Irish TIMES model was used for analysis of national energy security [25], short-term 

[26] and long-term GHG emission targets [27], improving representation of the power sector in the 

long-term energy system models [28], etc. Several TIMES models were used in Germany for 

analysis of decentralised heat supply [29], economic potential for thermal load management [30], 

impacts of prescribed efficiency improvement measures [31], interaction between emission trading 

and renewable electricity support [32], etc. TIMES-Norway was used to evaluate possible ways for 

Norway to fulfil the RES directive [33] and to study the impact of future energy demand on the 

energy system [34], while [35] and [36] described the future of nuclear power in Switzerland and 

France, respectively. 

This paper presents methodology and results of the analysis of the Danish energy system until 2050. 

Three main scenarios have been examined within TIMES-DTU model to answer the following 

questions: What is the optimal supply configuration of the future Danish energy system under 

renewable energy targets? Which fuels should be used in the future? What is the role of efficiency 

measures? How much does it cost to convert the energy system to renewable energy and how does 

it affect the environment?  

2. TIMES models 
The short description of the TIMES models is based on authors' experience in working with TIMES 

models and references [37-41]. 



 

TIMES (an acronym for The Integrated MARKAL-EFOM System) was developed and is 

maintained by the Energy Technology Systems Analysis Programme (ETSAP), an Implementing 

Agreement of the International Energy Agency (IEA), established in 1976. TIMES is a multi-

regional, technology-rich, bottom-up model generator used for long-term analysis and planning of 

regional, national and multi-national energy systems. In addition to that, TIMES is a techno-

economic, partial equilibrium model-generator assuming full foresight and perfectly competitive 

markets. It is usually utilised for simultaneous analysis over a whole energy system, but can be also 

used for analysis of specific sectors.  

Four types of inputs are defined by the user in TIMES models: demand curves, supply curves, 

policies and techno-economic parameters. Supply curves are showing the quantities of primary 

energy resources (such as wind power) or imported commodities (such as electricity) available and 

demanded at a specific cost. The techno-economic parameters are assigned to currently available 

and future technologies (called process in TIMES) that are converting one or more commodities 

into one or more other commodities (for example, oil boiler transforms oil into heat and CO2). The 

examples of technical parameters are efficiency and availability factor, while economical 

parameters include investment costs and interest rates. The policies include effects of legislation, 

taxes, incentives, etc. and thus change the optimal solution for the analysed energy system. The 

example of a policy constraint is the Danish target of being 100 % renewable no later than 2050. 

The user also specifies the properties of existing stock of technologies in the base year. 

Using the inputs, TIMES optimizes investments, operation, energy supply and import/export over 

all regions and all time periods. The outputs from the model include region and time-specific 

investment, operation and import/export levels optimal for the energy system as a whole. In 

addition to that, the costs, environmental indicators, prices of commodities, etc. are obtained 

alongside the optimal solution.  

The basic elements of any TIMES model are: processes, commodities and commodity flows. 

Commodities consist of energy carriers (such as oil or biomass), energy services (transported ton of 

freight), materials (for example reserves of natural gas), monetary flows (DKK, USD …) and 

emissions (CO2, CH4…). Processes are "converters" from one or more commodities into one or 

more different commodities. Commodity flows are the links between processes and commodities. A 

commodity flow has the same nature as a commodity but is attached to the particular process, and 

represents one input or one output of that process. 

3. TIMES model for Denmark 
The first fully-working version of TIMES model for Denmark , including residential, power and 

heat and transportation sectors, is developed by Energy Systems Analysis group, DTU Management 

Engineering, E4SMA and the IntERACT team from the Danish Energy Agency. All of the authors 

of the current paper have been members of the project team. For detailed description of TIMES-

DTU model, the reader should consult model documentation at www.ens.dk/interact.  

3.1 Geographical and temporal definition 

Denmark is divided into two regions – East and West Denmark. These regions will be denoted with 

DKE and DKW throughout the paper. These regions are electrically connected by 600 MW HVDC 

cable, while demand and supply of heat need to be balanced within each of the regions.   

Time is represented in the form of time-slices without established chronology. Time-slices represent 

hours with similar characteristics within the same year. The 32 time-slices in TIMES-DTU resulted 

from the aggregation of periods with specific hourly values: 

▪ Four seasons in a year,  

▪ Two periods in a week – workday and weekend, 

▪ Four critical situations in the Danish power system: 

http://www.ens.dk/interact


 

o Wind power is high, while power demand is low. There is a risk of excess electricity 

production in these periods which could result in low power prices and need for wind 

curtailment or export. 

o Wind power is low, while power demand is high. There is a need for import or 

backup capacity in these periods. 

o Peak PV production. There is a risk of excess electricity production in these periods 

which could result in low power prices and need for export.  

o Remaining time periods.  

 

Time-slices have different lengths, ranging from 1 hour in case of time-slice covering winter 

workdays with high wind power and low power demand up to 1409 hours in case of time-slice 

covering workdays in autumn classified as "Remaining time periods". One or more years are 

grouped into time-periods. The lengths of time-periods vary from one to five years and are longer if 

they are closer to the end of the analysed period, as showed in Table 1. 

Table 1. Length of time-periods in TIMES-DTU 

Time period  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Start year 2010 2011 2014 2018 2023 2028 2033 2038 2043 2048 

End year 2010 2013 2017 2022 2027 2032 2037 2042 2047 2052 

Length (years) 1 3 4 5 5 5 5 5 5 5 

Representative year 2010 2012 2015 2020 2025 2030 2035 2040 2045 2050 

3.2 Energy resources and trade  

TIMES-DTU uses domestically available and imported, renewable and non-renewable resources for 

production of electricity, heat and transport work in the energy system.  

For non-internationally traded fuels, their domestic potentials were specified in the model. 

Domestically available onshore and offshore wind and wave potentials were obtained from [42], 

while domestic PV, solar thermal and geothermal potential were obtained from [43]. The domestic 

potentials of straw, woodchips, wood waste and slurry were based on [44].  

Domestic waste potentials were obtained from FRIDA model [45] and TIMES-DTU was forced to 

incinerate the entire potential in all analysed scenarios. The long-term price projections for straw, 

woodchips, wood waste and slurry were obtained from [46]. For internationally traded fuels, long-

term price projections have been obtained from [47] and their import was not constrained in the 

model.  

Electricity trade with neighbouring countries was enabled in TIMES-DTU. Connections have been 

represented with capacities (in MW) and import/export price projections (DKK1/MWh) from/to 

each of the neighbouring countries. The price projections, existing capacities and planned 

extensions of transmission capacities have been adopted according to [48].  

3.3 Power and heat sector  

Power and heat sector in TIMES-DTU is responsible for producing electricity and district heat in 

the model. Consumers are supplied with electricity and district heat via the transmission and 

distribution networks. State of the energy system in the base year is described with the number and 

installed capacities of facilities and grouped by size, type and geographical region. Retirement 

profile (share of the base year stock that will be decommissioned in each of the time periods) was 

specified for each group. The data about existing stock were obtained from [49, 50].  

Each of the existing production facilities was represented in the model with following parameters: 

efficiency, fixed and variable O&M costs and availability factor. The techno-economic parameters 
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used for describing the existing stock were obtained from [51]. The capacities of existing DH2 grids 

in the base year were obtained from [52]. The electrical grid within DKE and DKW regions was 

described only with efficiencies, i.e. it is assumed that sufficient grid capacity is always available. 

In addition to parameters used for modelling of existing stock, new technologies are described by 

investment costs. Ref. [51] was used as a source of data techno-economic parameters for new 

technologies.  

3.4 Transportation sector 

Energy consumption of the transportation sector is endogenous in the model. The sector comprises 

two types of transport work i.e., passenger transport and transport of freight. These are delivered by 

the following modes: rail, road, aviation and ship transport. Vehicle stock is represented explicitly 

for both road and rail transport. There is a possibility for fuel switch and efficiency improvement in 

the sector. The transport sector is largely based on data from Statistics Denmark. 

3.5 Residential sector  

Residential sector in TIMES-DTU represents energy demand of Danish residential buildings.  The 

data about buildings in the base year were obtained from the BBR dataset [53]. Net demand for 

space heating and domestic hot water for 360 groups of buildings was calculated based on the 

methodology presented in [54] and aggregated according to construction period (buildings built 

before 1972, after 1972 and new buildings), building type (Single-family and Multi-family 

buildings) and region (DKE and DKW). Electricity consumption of household appliances and their 

lifetimes were obtained from "Elmodelbolig" survey.  

After the base year, heat demand in the residential sector is driven by the change in the heated area 

of buildings. Demolition rate of 0.5 Mm2 per year and construction rate of 3 Mm2 per year is 

assumed. The construction and demolition rates are distributed across the building stock 

proportionally to ratios in the base year. The electricity demand in the residential sector is driven by 

the assumed increase in number of electrical appliances and their efficiency.  

There are two options for heat supply and one option for electricity supply of buildings – heat can 

be delivered from district heating system or individual heating technologies, while electricity can 

only be produced centrally in the system and transmitted to consumers. Residential heat demand 

can be reduced by heat saving measures.  

In TIMES-DTU, district heating areas are grouped into Central and Decentral, according to the 

classification of DH plants in [49]. Central DH areas are usually based in bigger cities, have higher 

installed capacities, higher number of consumers and higher efficiencies compared to Decentral DH 

areas. Accordingly, residential buildings located within or close to Central DH areas belong to 

Central group, while buildings within or close to Decentral DH areas belong to Decentral group. 

Buildings located far away from existing DH areas belong to Individual group. For each of these 

building groups, potentials and costs of heat saving measures are defined according to methodology 

presented in [55].    

3.6 Other sectors in TIMES-DTU 

Besides residential, power and heat sector and transportation sector, TIMES-DTU includes six other 

sectors: Private Service, Public service, Construction activity, Manufacturing, Agriculture and 

Other sectors. These sectors are represented with inelastic demands for electricity and district 

heating which were adopted from DEA's (Danish Energy Agency's) Baseline Scenario from 

October 2012 [56].  

4. Analysed scenarios 
Three scenarios have been developed for the Danish energy system until 2050: 

                                                 
2 DH denotes district heating throughout the paper. 



 

▪ Base – No policy measures or renewable energy targets are being implemented.  

▪ WLP (Wind Low Production) – Starting from 2020, at least 50 % of Danish electricity 

consumption needs to be produced from wind power [57].   

▪ WLP-NFE (Wind Low Production–Non Fossil Energy) – In addition to WLP scenario, fossil 

fuels must not be used for power and heat production starting from 2035 and starting from 2050 

energy system should be 100 % renewable [58]. 

Base scenario shows how the Danish energy system would look like solely as a result of 

minimization of total system costs. The comparison between WLP and Base scenario shows how 

the optimal configuration changes when significant amount of intermittent power production from 

wind needs to be balanced. In this scenario, the "traditional setup" of the energy system can be 

maintained without significant increase of total system costs – fast-reacting fossil-fuel-based units 

can provide backup for wind production, while waste heat from CHPs can be used for district 

heating. The only way to maintain the "traditional setup" in WLP-NFE scenario would be to use 

imported electricity, biomass or waste. However, relying on imported electricity, biomass or waste 

cannot be justified from the security of supply point of view. For that reason, in all scenarios, 

Denmark needs to be a net exporter of electricity and use only domestically available biomass and 

waste. 

5. Results 
The results are divided into the future of electricity and heat supply, future costs and future 

environmental emissions until 2050 for Base, WLP and WLP-NFE scenario.   

5.1 Electricity and heat supply 

The heat delivered to residential consumers is presented in Figure 1, while production of district 

heating which is being transmitted and distributed to all sectors is presented in Erreur ! Source du 

renvoi introuvable.. In Base scenario, TIMES-DTU model bases future heat supply mostly on 

district heating. Even though the heat delivered to households in 2050 is only 3% higher compared 

to 2010, share of district heating increased from 56.1 to 76.3 %. In the same period, amount of heat 

delivered by individual heating solutions decreased almost three times as a result of heat saving 

measures. There are two reasons for very high shares of residential heat demand being supplied by 

district heating – inexpensive coal and waste-based DH and inexpensive heat saving measures 

compared to individual heating solutions. Residential heat supply in WLP scenario is also mainly 

based on DH and it increases to 73 % in 2050. DH is mainly produced from waste and coal. In the 

transition period, from 2015 to 2040, between 5 and 22 % of district heating is produced by large-

scale heat pumps. This is the result of the constraint that at least 50 % of electricity needs to be 

produced from wind power starting from 2020 – efficient production of district heating is found to 

be the most cost-efficient alternative. After 2035, export of electricity becomes most cost-efficient 

alternative. In WLP-NFE scenario DH remains favourable mean of supply, as it covers between 56 

and 62 % of residential heat demand. Heat delivered from Central DH decreases by 14 %, but its 

share in total delivered heat increases from 36 to 43 %. However, Decentral DH losses its 

competitiveness in this system setup and covers only 14 % of demand in 2050. TIMES-DTU 

chooses large heat pumps before 2035 for the same reason as in WLP scenario, but "No fossil fuels 

after 2035" constraint limits fuel choices for DH production after 2035 to waste, biomass or 

electricity. Due to high costs and limited biomass potentials, waste incinerations and large scale 

heat pumps are selected. In all scenarios heat saving measures are utilised as inexpensive solutions 

for reducing heat demand, especially in Single-family buildings built before 1972 in Individual 

areas.  

The production, export and import of electricity are presented in Figure 3. In Base scenario majority 

of domestic electricity production comes from coal-based Centralized CHPs. Its share grows from 

2010 and reaches 86 % in 2050. The remaining share is being produced from onshore wind. Due to 

relatively low electricity prices compared to surrounding countries, Denmark exports between 42 



 

and 47 % of its domestic production. In WLP scenario, the model utilises entire onshore wind 

potential already in 2020 and after that invests in offshore wind mills. At the end of analysed 

period, offshore wind makes 43%, onshore wind 13% and Centralized CHPs 44 % of total domestic 

production. In this scenario Denmark also acts as big exporter of electricity. In WLP-NFE scenario, 

effects of renewable energy targets in 2020 and 2035 are visible from the base year – the model 

heavily invests in onshore and offshore wind, while it doesn't invest in coal-based CHPs. The 

electricity production after 2035 is based only on wind power. Since the entire onshore wind 

potential is utilised in 2030, all investments after 2030 are made into offshore wind mills.     

 

Fig. 1.  Heat supply to residential sector 

 

Fig. 2.  Production of district heating 



 

 

Fig. 3.  Production, import and export of electricity 

5.2 Costs and environmental emissions 

Environmental emissions and the sum of undiscounted system costs for all scenarios until 2050 are 

presented in Figures 4 and 5, respectively.  

Base scenario is characterized by the extensive production of electricity and heat from large 

centralized coal-based CHPs. It is a mature technology utilising economy of scale and inexpensive 

fuel. As a result of that investment costs are 7 and 15 % lower than in WLP and WLP-NFE 

scenario, respectively. In Base scenario, electricity price in Denmark is lower compared to 

neighbouring countries, so total system costs are reduced by export of electricity. As a result of high 

production from coal and absence of any emission constraint, high environmental emissions arise in 

Base scenario. 

In WLP scenario, part of the electricity production from coal-based CHPs is substituted by 

production from offshore wind mills resulting in higher investment costs. On the other hand, less 

fuel is used in this scenario resulting in lower fuel costs. The total system costs are higher in WLP 

scenario compared to Base because earnings from export of electricity are 18 % lower. The imposed 

renewable energy target only affects the fuel use in power and heat sector resulting in lower 

emissions from this sector while emissions from other sectors remained almost unchanged.    

In WLP-NFE scenario, renewable energy constraints were dictating the investments from the 

beginning of the analysed period. The investments are mainly made in offshore wind, resulting in 

highest investment and lowest fuel costs compared to other analysed scenarios. The average 

electricity price is higher than in other scenarios resulting in lower export and thus lower earnings 

from electricity export. Environmental emissions from power production are reduced starting from 

2020, while after 2035 environmental emissions from power and heat production come only from 

incineration of waste. Transport sector produces emissions all the way until 2050 when is affected 

by "100 % renewable energy system constraint". 

6. Conclusion 
TIMES model of the Danish energy system, TIMES-DTU was used to analyse three possible 

development paths of the Danish energy system until 2050. The results show that if no renewable 

energy targets are imposed to the model, most of the electricity and heat would be produced in coal- 

based CHPs. District heating share would reach 73 % of total heat demand in 2050, while 40-50 % 

of the Danish power production would be exported.  



 

 

Fig. 4.  Undiscounted system costs  

 

Fig. 5.  Environmental emissions from different sectors 

Renewable energy target of 50 % of electricity from wind in 2020 forces investments in wind 

power. Since onshore potentials are not sufficient, investments in offshore wind are necessary. In 

this scenario, offshore wind makes 43 % of Danish electricity production in 2050. Heat supply is 

still dominated by district heating based on waste and coal. Denmark still exports significant 

amounts of electricity. When the use of fossil fuels for production of electricity and heat is 

forbidden starting from 2035, power production becomes totally reliant on wind power, especially 

offshore. The district heating production switches from coal-based CHPs to large-scale heat pumps.  

Four overall conclusions can be drawn from the analysed scenarios. First, achieving at least 50 % of 

electricity production from wind power starting from 2020 (WLP scenario) implies less than 1 % 

higher total system costs compared to Base scenario. Second, achieving fossil fuel free power and 

heat production starting from 2035 and 100 % renewable energy system starting from 2050 (WLP-

NFE scenario) implies 5-6 % higher total system costs compared to Base scenario. Third, heat 



 

savings in building stock are important components of the future Danish energy system in all 

scenarios. Fourth, Denmark has sufficient resources to base its renewable energy supply on 

domestic resources at reasonable costs.   
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