Technical University of Denmark

WindScanner systems

Vasiljevic, Nikola

Publication date: 2014

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA): Vasiljevic, N. (2014). WindScanner systems [Sound/Visual production (digital)]. EERA IRPWind & Joint Programme Wind R&D Conference 2014, Amsterdam, Netherlands, 25/09/2014

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

WindScanner systems *Nikola Vasiljević*

IRPWind conference, Amsterdam 25/09/2014

DTU Wind Energy Department of Wind Energy

Why do we measure wind velocity?

- Performing experiments
- Establish confidence in CFD results
- Test turbulence models used in CFD
- Improving the theory
- Basis for the advancement of our understanding of the atmospheric flows

Necessity for in-situ measurement alternatives

- Tall masts are expensive
- Experiments at large scales are economically challenging
- Costs slow down the pace of the progress
- We need cost-effective and accurate alternatives to tall masts
- The most promising alternatives are coherent Doppler lidars

Offshore met masts	Costs	Max. height
FINO1	19 M€	100 m
Commercial met. mast	7-9 M€	100 m
Swimming met. mast	2-4 M€	60-80 m

Source: Gerrit Wolken-Möhlmann and Julia Gottschall, *Floating lidars*, DTU Risø Campus, Roskilde, Denmark, March 21st, 2013 / MARINET short course

Lidar measurements background

Single lidar measure only radial velocity

WindScanner.DK

 In 2007, DTU Wind Energy, at that time Risø DTU, presented an ambitious idea about the development of the unified measurement systems, known as windscanner systems, which consist of three time-space synchronized scanning coherent Doppler lidars (i.e. WindScanners), specialized for detailed remote measurements of real-time wind velocity fields

Long-range WindScanner system

Short-range WindScanner system

WindScanners

7 DTU Wind Energy, Technical University of Denmark

WindScanners specs

WindScanner	Short-Range	Long-Range
Laser type	Continuous wave	Pulsed
Range	10 - 200 m	25 - 8000 m
Maximum measurement rate	400 Hz	$10 \mathrm{Hz}$
Simultaneous measurements	1	500
Dual axis scanner head	Double prism based	Triple or Dual mir-
		ror based
Mechanical rotation	Belt driven	Gear-box driven
Rotation	Endless	Endless
Atmospheric coverage	Cone with a full	Hemisphere
	opening angle of	
	120°	
Maximum rotational speed	$2880^{\circ}/s$	$50^{\circ}/s$
Weight	120 kg	150 kg

8 DTU Wind Energy, Technical University of Denmark

Long-range WindScanner system

⁹ DTU Wind Energy, Technical University of Denmark

IBL WiSH

- June 2013
- Investigation of changes of sea-land IBL

IBL WiSH experiment layout

11 DTU Wind Energy, Technical University of Denmark

WindScanner 1 / WindScanner 2

WindScanner 1 / WindScanner 2

WindScanner 3

Results

15 DTU Wind Energy, Technical University of Denmark

Kassel experiment

16 DTU Wind Energy, Technical University of Denmark

Lidar at West position (WW):

Azimuth: 90,99° Elevation: 5,69° Distance: 3102m

Laser beam pointing accuracy

Accuracy of 0.05° azimuth/elevation (1m over 1km)

Short-range WindScanner system

er

- WindScanners controlled via a near-by master computer
- Control achieved using network based on optical fibre cables
- WindScanners are synchronized
- Arbitrary scanning trajectories
- Appropriate for detail measurements in a small volume of interest

Applications

1. Laser scanning of a recirculation zone on the Bolund escarpment (Mann et. al, 2012)

Helicopter downwash: 2D vertical scan

22 DTU Wind Energy, Technical University of Denmark

Summary

- Two WindScanner system have been developed
- Two different lidar technology
- Two different approaches how we are forming the system
- Systems are complementary
- They have a great freedom in deployment
- They are flexible in terms of measurements scenarios
- They can provide synchronous 3D measurements of wind velocity fields

Thank you!

