Technical University of Denmark

Microcontainers improve oral bioavailability of furosemide

Nielsen, Line Hagner; Melero, Ana; Keller, Stephan Sylvest; Rades, Thomas; Müllertz, Anette; Boisen, Anja

Publication date: 2015

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Nielsen, L. H., Melero, A., Keller, S. S., Rades, T., Müllertz, A., & Boisen, A. (2015). Microcontainers improve oral bioavailability of furosemide. Poster session presented at 1st European Conference on Pharmaceutics, Reims, France.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

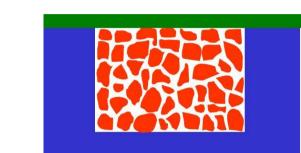
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

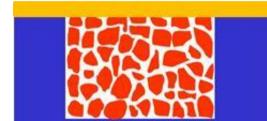
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DTU Nanotech Department of Micro- and Nanotechnology

Line Hagner Nielsen¹, Ana Melero², Stephan Sylvest Keller¹, Thomas Rades³, Anette Müllertz³, Anja Boisen¹

¹Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark ²Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain ³Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark


lihan@nanotech.dtu.dk

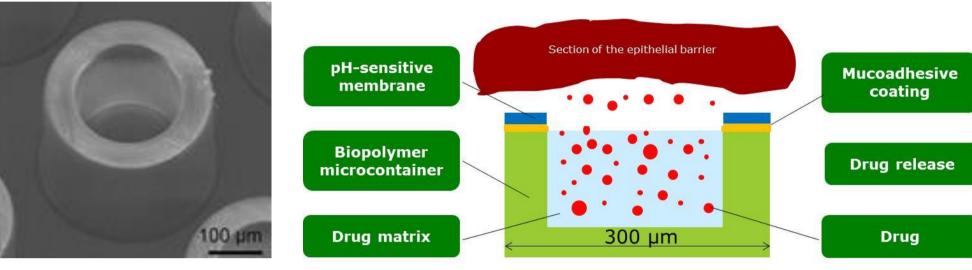

INTRODUCTION & AIM

Microcontainers have been proposed as a novel approach to improve the oral bioavailability of drugs¹. Microcontainers are small polymeric cylinders on a flat base (Fig. 1). The microcontainers allow for protecting the drug in the harsh environment of the stomach and also provide the possibility of unidirectional release of the drug directly to the small intestinal epithelium (Fig. 2).

Coating of drug-filled microcontainers

The drug-filled microcontainers were spray coated with a lid of either the pH-sensitive polymer, Eudragit[®] L100 or the mucoadhesive polymer, chitosan.

Coating of drug-filled microcontainers


Fig. 8 shows a drug-filled SU-8 microcontainer coated with either Eudragit[®] L100 or chitosan. The thickness of the polymer layer was in both cases measured to be approximately $10 \ \mu m$.

VILLUM FONDEN

DTU

In situ intestinal perfusion studies

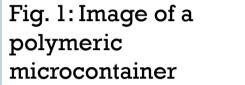
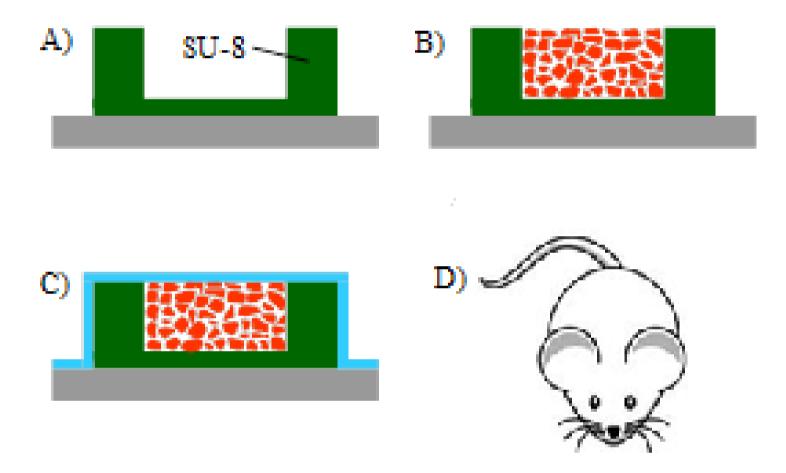
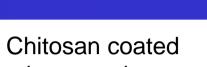




Fig. 2: Illustration showing the microcontainer concept including the unidirectional release

AIM: To investigate the *in situ* interaction between the microcontainers and the small intestinal membrane and to evaluate the in vivo performance of the microcontainers filled with amorphous sodium salt of furosemide (ASSF) after oral dosing to rats (Fig. 3).

Eudragit[®] L100 coated microcontainer

microcontainer

In situ intestinal perfusion studies

In situ intestinal perfusion studies were performed in fasted rats with a weight of approximately 200 g (Fig. 6)⁵.

Closed Loop Perfussion Technique

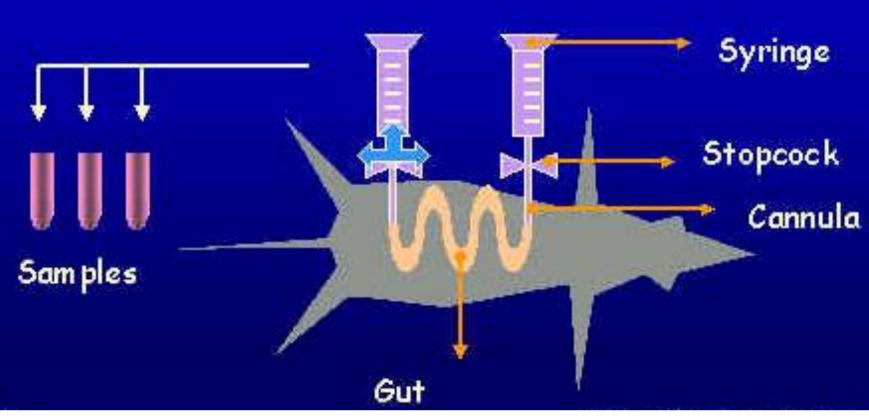


Fig. 6: The set-up for the in situ intestinal perfusion studies in rats

The coated, ASSF-filled microcontainers were dosed with 10 mL of phosphate buffer at pH 6.5 directly to the small intestine. As controls, a solution of furosemide in phosphate buffer, as well as empty microcontainers, were dosed. Blood samples (200 µL) were drawn every 5 min for 30 min. After the 30 min, the small intestine was harvested from the rat and imaged under a UV and fluorescence microscope.

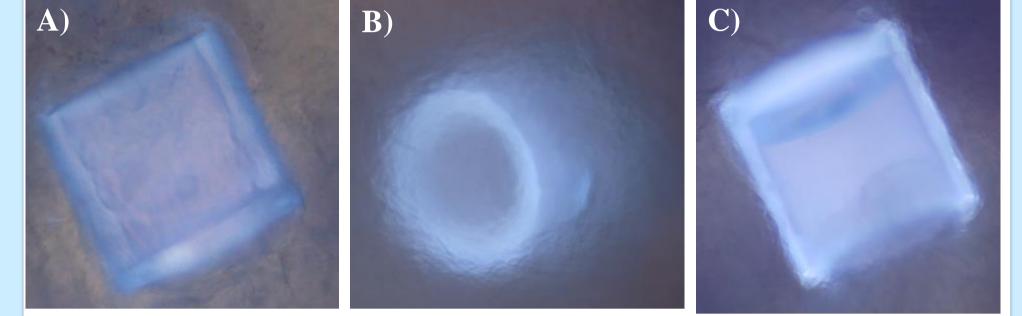


Fig. 9: Interaction of microcontainers with the intestinal mucus following in situ intestinal perfusion studies. Microcontainers were filled with ASSF and coated with a lid of A) Eudragit[®] L100 and B) chitosan. C) empty microcontainers without drug and coating

The microscope images of the small intestine after the perfusion studies showed that the microcontainers interacted with the mucus in the small intestine, and the microcontainers were engulfed by the intestinal mucus (Fig. 9). By these qualitative results, it was observed that also without coating, the microcontainers interacted with the intestinal mucus (Fig. 9C).

Oral bioavailability study in rats

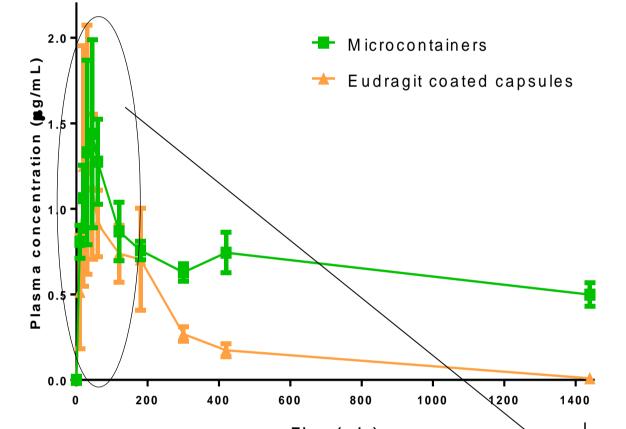


Fig. 3: Illustrations of the experimental methods. A) Fabrication of SU-8 microcontainers. B) Filling with drug powder (amorphous furosemide sodium salt). C) Spray coating of a lid of Eudragit[®] L100 or chitosan. D) In situ intestinal perfusion studies and oral bioavailability studies in rats of the drug-filled microcontainers coated with Eudragit® L100

METHODOLOGY

Fabrication of microcontainers

SU-8 (epoxy-based photoresist) microcontainers were fabricated through two steps of photolithography to define the base and the walls (Fig. 4). This resulted in microcontainers with inner diameter of 223 µm (Fig. 1). Silicon wafers supporting the microcontainers were cut into squares of 12.8 x 12.8 mm^2 resulting in 25 x 25 microcontainers with a pitch of 450 μ m (Fig. 5)².

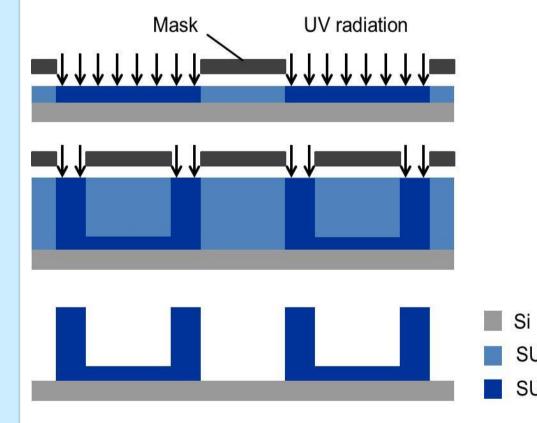


Fig. 4:Scematic of the fabrication process of SU-8 microcontainers

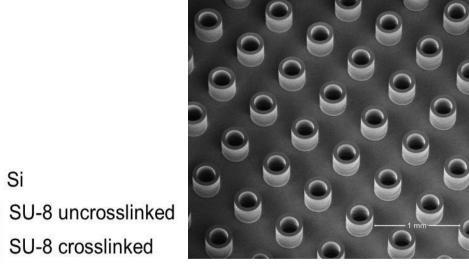
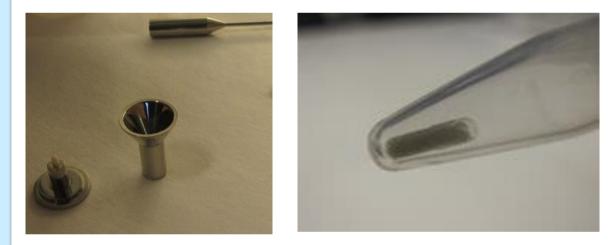
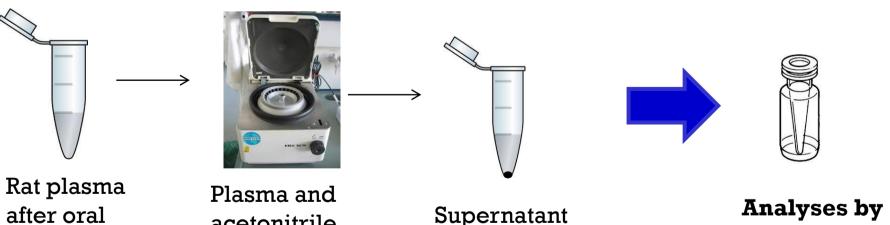



Fig. 5: SU-8 microcontainers on a silicon wafer

Preparation of the amorphous sodium salt of furosemide³

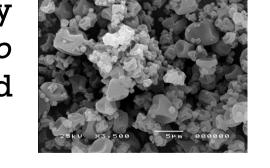

Oral bioavailability study in rats

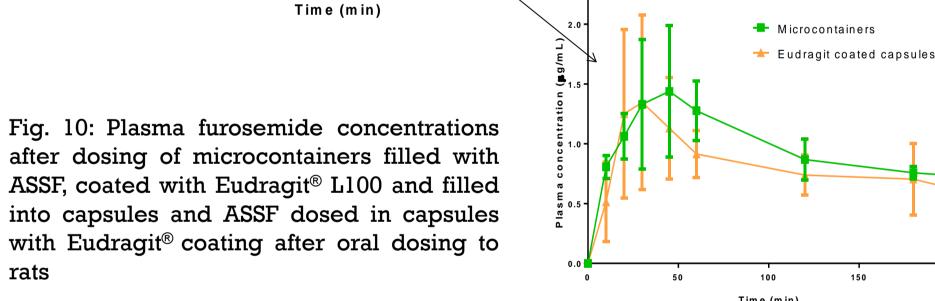
The ASSF-filled microcontainers were coated with Eudragit[®] L100 and filled into capsules (size 9). As control ASSF was filled into capsules and subsequently, coated with Eudragit[®] L100 were used. The capsules were dosed orally to rats (~300 g) and 10 blood samples were taken during 24h.

Analysis of ASSF in the plasma samples:

centrifuged

dosing


acetonitrile


Supernatant LC-MS

RESULTS

Preparation of the ASSF

ASSF was successfully prepared by spray drying. The drug form showed promising *in vitro* properties in terms of high solubility and

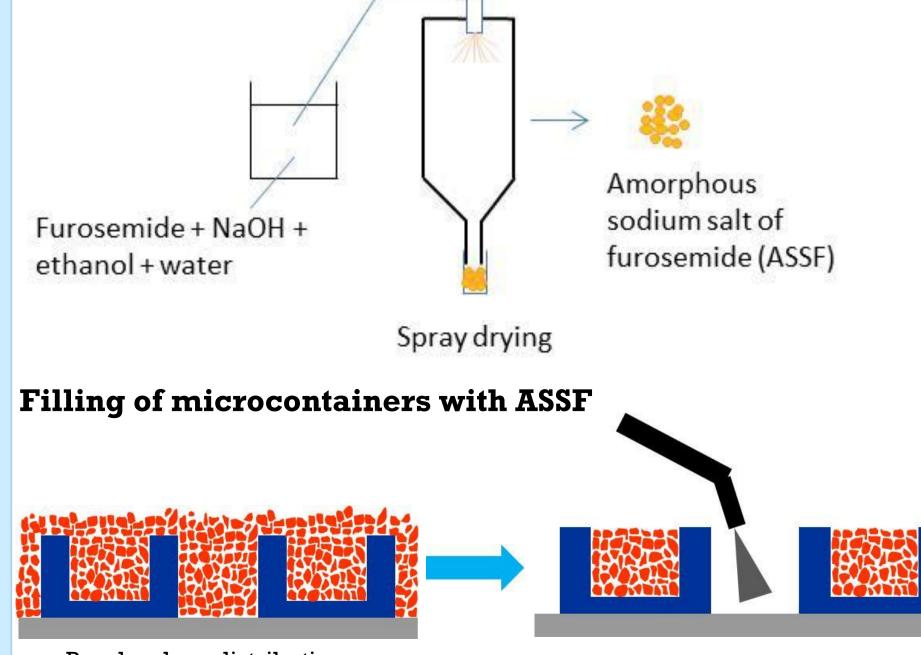

After the oral dosing of the rats with either ASSF-filled microcontainers or ASSF filled into capsules, the plasma concentrations were initially similar, but the microcontainers exhibited a prolonged release of ASSF (Fig. 10) resulting in a bioavailability of 220% compared to the drug-filled capsules (Table 1).

Table 1: Noncompartmental pharmacokinetic parameters of ASSF following oral administration to rats

	Eudragit coated microcontainers (Mean±SEM)	Eudragit coated capsules (Mean±SEM)
T _{max} (min)	34.2 ± 9.7	48.0±7.3
C _{max} (µg/mL)	1.9 ± 0.48	1.7 ± 0.68
AUC _{0-180 min}	179.6 ± 33.3	152.2 ± 39.2
AUC _{0-1440 min}	1696.4 ± 299.7	326.1 ± 55.0
Relative bioavailability (%)	220.2±43.2	_

CONCLUSION

• SU-8 microcontainers with inner diameter of 223 µm were fabricated

Powder drug distribution

Removal with air gun

The microcontainers were filled with ASSF by first distributing the powder onto the squares with microcontainers and subsequently, removing the powder in between the microcontainers with an air gun⁴.

increased dissolution rate at pH 6.5⁴.

Filling of microcontainers with drug powder

Loading of drug powder into the microcontainers was shown to be a very useful method for quickly filling the microcontainers while avoiding deposition of drug powder in between the microcontainers (Fig. 7). Moreover, the method can be utilised for all type of drugs.

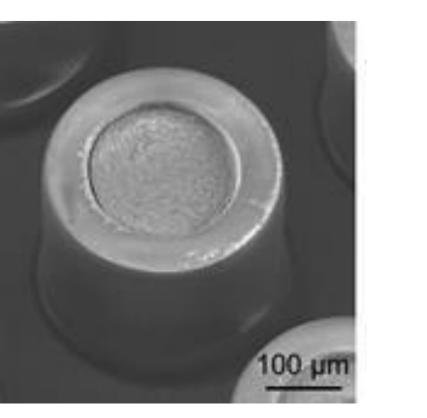


Fig. 7: A microcontainer after drug filling

• Microcontainers were filled with powder drug using a fast and widely-applicable method.

• The microcontainers interacted with the intestinal mucus layer

• In rats ASSF in microcontainers exhibited a oral bioavailability of 220% compared to capsules filled with ASSF

 Microcontainers are proposed as a promising oral drug delivery system

REFERENCES

¹Ainslie *et al.* Small, <u>5</u>, 2857-63 (2009) ³Nielsen et al. Eur J Pharm Biopharm., <u>81</u>, 418-25 (2012) ⁴Nielsen et al. Eur J Pharm Biopharm., <u>85</u>, 942-51 (2013) ⁵Nielsen *et al*. Submitted to Biomedical microdevices 2014 ⁶Doluisio *et al.* J Pharm Sci., 58, 1200-1202 (1969)

The authors would like to acknowledge the Villum Kann Rasmussen Foundation and the Danish Research Council for Technology and Production (FTP), Project DFF - 4004-00120B for financial support. Moreover, the NAnoMEChanical sensors and actuators, fundamentals and new directions (NAMEC) – a VKR Centre of Excellence is acknowledged.

