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Abstract 
 
Chemical manufacturing, transportation fuels production and power plants among other 
sectors have strongly depended on fossil-based resources. To support sustained 
economic growth, additional fossil-based resources are required, but, inevitably, this 
also has a major impact on the global environment. These challenges motivate the 
development of sustainable technologies for processing renewable feedstock for the 
production of fuels, chemicals and materials in what is commonly known as a 
biorefinery. The biorefinery concept is a term to describe one or more processes which 
produce various products from bio-based feedstock. Since there are several bio-based 
feedstock sources, this has motivated development of different conversion concepts 
producing various desired products. This results in a number of challenges for the 
synthesis and design of the optimal biorefinery concept at the early-stage of process 
development: (i) Combinatorial challenge: a large number of potential processing paths 
resulting from the combination of many potential feedstocks, and many available 
conversion technologies to produce a number of desired products; (ii) Data challenge: 
the data typically used for early stage process feasibility analysis is of a 
multidisciplinary nature, often limited and uncertain; (iii) Complexity challenge: this 
problem is complex requiring multi-criteria evaluation (technical, economic, 
sustainability).  

This PhD project aims to develop a decision support tool for identifying optimal 
biorefinery concepts at the early-stage of product-process development. To this end, a 
systematic framework has been developed, including a superstructure-based 
optimization approach, a comprehensive database of processing and conversion 
technologies, and model libraries to allow generation and comparison of a large number 
of alternatives at their optimality. The result is the identification of the optimal raw 
material, the product (single vs multi) portfolio and the corresponding process 
technology selection for a given market scenario. The economic risk of investment due 
to market uncertainties is further analysed to enable risk-aware decision making. The 
application of the developed analysis and decision support toolbox is highlighted 
through relevant biorefinery case studies: bioethanol, biogasoline or biodiesel 
production; algal biorefinery; and bioethanol-upgrading concepts are presented. This 
development and analysis provides a robust guidance to support the development of 
sustainable and future biorefineries.  
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Resumé på dansk 
 
Sektorer vedrørende kemikaliefremstilling, brændstofproduktion og kraftværker m.fl. er 
stærkt afhængige af fossile ressourcer. For at understøtte en vedvarende økonomisk 
vækst er flere fossile ressourcer nødvendige, hvilket, uundgåeligt, leder til alvorlige 
virkninger på det globale miljø. Disse udfordringer motiverer udviklingen af 
bæredygtige teknologier til bearbejdning af vedvarende råvarer til produktion af 
brændstoffer, kemikalier og materialer, i det der almindeligvis betragtes som et 
bioraffinaderi. Bioraffinaderikonceptet dækker over de en eller flere processer, der 
producerer forskellige produkter fra biobaseret råmateriale. Da der er flere biobaserede 
råvarer, giver dette anledning til udvikling af forskellige konverteringskoncepter til at 
producere forskellige ønskede produkter. Dette resulterer i en række udfordringer til 
syntese og design af det optimale bioraffinaderikoncept i det tidlige stadie af 
procesudvikling: (i) Kombinatorisk udfordring: et stort antal potentielle behandlingsveje 
som følge af en kombination af mange potentielle råmaterialer, mange 
konverteringsteknologier og produkter; (ii) Dataindsamlingsudfordring: data, der typisk 
anvendes til tidlig procesgennemføreligheds-analyse er af tværfaglig karakter og ofte 
begrænset og usikker; (iii) Kompleksitetsudfordring: dette problem er komplekst, som 
kræver adskillige evalueringskriterier (teknisk, økonomisk, bæredygtighed).  

Dette ph.d.-projekt har til formål at udvikle et beslutningsværktøj til at til at identificere 
optimale bioraffinaderikoncepter i den tidlige produkt/procesudviklingsfase. Til dette 
formål er en systematisk ramme blevet udviklet, der inkluderer en superstrukturbaseret 
optimeringstilgang, en omfattende database af bearbejdnings- og 
omdannelsesteknologier, og modelbiblioteker til at tillade generering og sammenligning 
af et stort antal alternativer for i sidste ende at identificere optimale løsninger. Resultatet 
er identificering af den optimale råvare, produktportefølje (enkelt eller adskillige) og de 
tilsvarende procesteknologivalg for et givet markedsscenario. Den økonomiske 
investeringsrisiko som følge af markedets usikkerhed er yderligere analyseret for at give 
anledning til risikobevidst beslutningstagning. Anvendelsen af den udviklede analyse og 
beslutningsværktøjskasse er fremhævet gennem relevante bioraffinaderi case studier: 
bioethanol, biobenzin eller biodieselproduktion; algebioraffinaderi; og bioethanol-
opgraderingskoncepter er præsenteret. Denne udvikling og analyse giver en robust 
vejledning til at støtte udviklingen af bæredygtige og fremtidige bioraffinaderier. 
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1.
Introduction

 
The first chapter, Introduction, constitutes a general overview of the PhD project. A 

brief background and the challenges of early-stage product-process design of 

biorefinery are given. The motivation of the study together with the overall structure of 

the thesis document is presented here as well. Finally, dissemination activities related to 

the project and the main achievements of this thesis are briefly outlined.  
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1.1 Introduction 

The chemical industries including chemical manufacturing, fuels production and power 

plants have traditionally strongly depended on fossil-based feedstock (crude oil, natural 

gas, coal, chemicals, etc.). Continued economic growth still leads to the development of 

activities that are highly energy dependent and intensive. However, the use of fossil 

fuels as the main energy resource is associated with many issues and impacts including 

long-term availability, supply security, price volatility, and especially, environmental 

impacts such as the emissions of greenhouse gases and the resulting climate change 

effects (King et al., 2010). These challenges motivate the development of sustainable 

technologies for processing renewable feedstock for fuel, chemical and material 

production, and biorefineries are an example of such technologies. The biorefinery 

concept refers to the process which uses biomass as a renewable feedstock to partially 

substitute fossil fuels for both production of energy, fuels and chemicals. 

Process-product design framework 

Chemical product-process design is an open problem which involves many activities 

(process creation, development of basic concept, experimental studies, detailed design, 

etc.), and decision-making at different levels as presented in Figure 1.1. 

Chemical product-process design typically consists of 5 main stages (Seiden et al., 

2009). The concept stage is the earliest stage where a number of ideas and concepts are 

generated. Preliminary process synthesis, which is the decision-making approach at the 

early-stage, is used to screen among the possible alternatives and to identify the 

promising ones in order to move further to the next stage. The feasibility stage is the 

step where the ideas and concepts are further developed by performing the feasibility 

study, simulation study, and an experimental study for selected alternatives. The 

detailed process synthesis is used to rank and compare the feasible concepts that have 

been developed before moving to the detailed design stage. At the detailed design stage, 

one alternative is selected and everything is then ready to perform the detailed design, 

equipment sizing, detailed capital cost estimation, procurement, and detailed economic 

analysis. Consequently, the complete design (plant design and layout) including 
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construction work, commissioning and operation is performed in the Manufacturing

stage. Sales and marketing is then involved in the last stage, the Product introduction, 

in order to plan and maximize the product sales. 

 

Figure 1.1. Product-process design flowsheet (Seiden et al., 2009) 

 

The workflow of chemical product-process design can be represented as the “process 

design funnel” presented in Figure 1.2. This illustrates the amount of data needed 

through different steps of the process design workflow. The largest number of ideas and 

concepts generated is at the earliest stage. The number of feasible ideas and concepts is 

then reduced though the subsequent steps of the workflow by the concept screening and 

refinement steps. The concept screening is the decision-making process to evaluate the 

feasibility and plausibility of the ideas and concepts with respect to the design 

specifications and targets. At the end of the funnel (on the right), the result is the final, 

feasible and optimal concept with respect to every design target and constraint. 

 

Concept stage

•Idea generation
•Process creation
•Preliminary process synthesis
•Equipment selection
•Bench scale experiment

Feasibility
stage

•Development of Base Case
•Creation of process
flowsheet
•Detailed process synthesis

Development
stage

•Detailed design
•Equipment sizing
•Detailed capital cost
estimation

Manufacturing
stage

•Plant design
•Plant layout
•Construction
•Commissioning
•Operation

Product
introduction

•Pricing
•Advertising
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Figure 1.2. Process development funnel (moving from idea generation on the left to the 
final concept on the right through multi-level screening) 

The traditional chemical product-process design follows the steps presented in Figure 

1.1, and performs the concept screening by using the existing knowledge or experience 

from the experts. This is generally time-consuming and costly at the detailed stage 

(development stage, stage 3) where the available information is realistic and adequate 

for decision-making as illustrated in Figure 1.3 (red dashed line). However, the 

activities at this stage have less impact on the overall project and result in a higher cost 

of changing the design than the activities at the early-stage design. Therefore, most of 

the effort used in product-process design should be moved to the early-stage as 

presented in Figure 1.3 (the red dashed line is replaced by the blue dashed line). To this 

end the decision-making process at the early-stage needs to be improved to support 

large and complex problems which consist of multidisciplinary, limited and uncertain 

data. The improved quality of the decisions at the early stage will result in reduced time 

consumption and project cost during the later stage of the project life cycle (Klatt & 

Marquardt, 2009). 
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Figure 1.3. The design effort and impact on the project development (adopted from 
Towler and Sinnott, 2013) 

Biorefinery design concept 

In this PhD study, the chemical process-product design framework presented above is 

adopted for the biorefinery design problem. In a typical biorefinery, the system 

generally works by processing a bio-based feedstock to produce various products such 

as fuels, chemicals, or power/heat. As there are several feedstock sources, as well as 

many alternative conversion platforms and technologies to choose from to match a 

range of products, this creates a number of potential processing paths during the early 

stage of product-process design for biorefinery development.  

The design of a biorefinery is, therefore, a challenging task. These challenges include 

but are not limited to:  

(a.) challenges to achieve the maximum efficiency in terms of improved designs as well 

as through expansion by integration of different conversion platforms (e.g. biochemical 

and thermochemical) or upstream and downstream processes; 
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(b.) challenges to account for a wide range of feedstocks and formulate local/regional 

solutions;  

(c.) challenges to take several dimensions of the design problem into account (i.e. 

feedstock characteristics, feedstock quality and availability; trade-offs between energy 

consumption for feedstock and product distribution, production and product market 

prices).  

Furthermore, being based on biomass (natural feedstock), the economic and 

environmental viability of these processes is highly dependent on local factors such as 

land use and availability, weather conditions, national or regional subsidies and 

regulations. Thus, designing a biorefinery requires a detailed screening among a set of 

potential configurations to identify the most suited options that satisfy a wide set of 

constraints. A detailed evaluation among process alternatives accounting for local 

conditions and constraints is required for a robust decision-making. This demands a 

substantial amount of information (e.g. conversions, efficiencies, cost, and prices) 

which are both time and resource intensive.  

(d.) challenges related to data collection, management and uncertainty analysis. The 

mentioned challenges at the early stage of biorefinery planning and design therefore 

require an enormous amount of data, which are often not available. Hence, proper 

assumptions and simplifications need to be made to manage the complexity of the 

problem. The problem is especially complicated when one broadens the scope of 

biorefinery network design, i.e. by simultaneously focusing on different conversion 

platforms, as it will be done in this thesis. The data for characterization and 

representation of each process alternative requires a substantial amount of information: 

parameters, variables, models of known reactions, thermodynamic properties, process 

efficiencies resulting in a detailed and complex model, and these require the adapted 

systematic optimization approach to solve the complex problem. Moreover, the 

challenges that generally come along with data and models used in biorefinery synthesis 

research are the uncertainties, both external (anticipated raw material and product 

prices, etc.) and technical (e.g. related to process performance metrics). This challenge 
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needs to be formally addressed, and is often tackled by ad hoc based scenario analysis 

rather than being addressed systematically.  

1.2 Objective of PhD project 

With the background information presented earlier, the aim of this PhD project is to 

develop a decision support tool for identifying optimal biorefinery concepts at the early 

stage of the project life cycle, while considering uncertainties inherent to this stage of 

project development. To achieve this objective, a systematic methodology for process 

synthesis and design together with formal uncertainty analysis was developed for the 

purpose of biorefinery concept design. To support the developed framework, the 

database (data, models, processing technologies) needed is developed as well as the 

mathematical formulation with respect to design metrics (techno-economics or 

sustainability). Finally, several case studies of biorefinery design are used to highlight 

and verify the applicability of the design toolbox. 

1.3 Structure of the Thesis 

This PhD thesis consists of 10 chapters as follows:  

Chapter 1 is an introduction to this PhD thesis which briefly explains the 

challenges related to designing a biorefinery and the decision-making at the 

early stage. The motivation of this study is also presented including the structure 

of this PhD thesis and the dissemination activities. 

Chapter 2 is a review on early-stage design of biorefineries. This review consists 

of three main sections. The first section briefly explains the development of the 

biorefinery. The second section discusses the role of PSE related to biorefinery 

design and its development (i.e. methodologies, models). The third section 

expands on the challenges which need further development. The objective of this 

chapter is to identify the gaps, which also form the motivation of this study.  

Chapter 3 presents a systematic framework for synthesis and design of a 

biorefinery. The framework consists of a step-by-step procedure which uses the 

superstructure based optimization approach to: (i) generate the design space and 

alternatives (feedstock, conversion technologies, and products); (ii) formulate 
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the optimization problem with respect to the problem definition; and, (iii) 

identify the optimal processing paths using a suitable set of optimization tools 

(GAMS). 

Chapter 4 presents the data collection and management step. This chapter aims 

at presenting in detail how to manage the complexity of the collection of a large 

amount of multidisciplinary and uncertain data. This step consists of: (i) the 

collection and management of the data; and, (ii) the verification of the collected 

data.  

Chapter 5 presents the first application of the systematic framework of 

biorefinery design on a lignocellulosic biorefinery through a combined 

thermochemical and biochemical conversion platform. The framework is 

presented step-by-step together with the analysis of the results obtained. In 

particular, the effect of market price uncertainties on the design of the 

biorefinery is discussed in more detail.  

Chapter 6 presents the second application which concerns upgrading a 

lignocellulosic biorefinery to convert bioethanol to value-added chemical 

products. A comprehensive economic risk assessment is performed as well on 

the feasibility of the concept.  

Chapter 7 presents an uncertainty analysis in early-stage cost estimation of the 

lignocellulosic biorefinery. This chapter focuses on early-stage cost estimation, 

and in particular, on the characterization of cost estimation data and the impact 

and propagation of uncertainty on the decision-making solutions. 

Chapter 8 presents the third application on an algal biorefinery. The framework 

is followed and presented step-by-step. The results are also verified and 

discussed with respect to the most optimal algal biorefinery concept.   

Chapter 9 presents the critical analyses and comparison in terms of techno-

economic performance and associated risk of a number of biorefinery concepts. 

The optimal biorefinery concepts which provide robustness and resilience 

against unknown disturbances from the market fluctuation are recommended. 

Chapter 10 summarizes the main conclusions and achievements of the PhD 

study. The future perspectives of the work are also discussed. 
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1.4 Dissemination activities 

The concepts applied and results obtained have been presented and discussed in the 

following international conferences and scientific journals. 

Peer-reviewed scientific journal articles  

Peam Cheali; Krist V. Gernaey; Gürkan Sin. (2014) Toward a Computer-Aided 

Synthesis and Design of Biorefinery Networks: Data Collection and 

Management Using a Generic Modeling Approach. ACS Sustainable Chemistry 

& Engineering, Vol. 2, p. 19-29. (chapter 4) 

Peam Cheali; Alberto Quaglia; Krist V. Gernaey; Gürkan Sin. (2014) Effect of 

Market Price Uncertainties on the Design of Optimal Biorefinery Systems—A 

Systematic Approach. Industrial and Engineering Chemistry Research, Vol. 53, 

No. 14, p. 6021-6032. (chapter 5) 

Peam Cheali; John A. Posada; Krist V. Gernaey; Gürkan Sin. (2015) Upgrading 

of lignocellulosic biorefinery to value-added chemicals: sustainability and 

economics of bioethanol-derivatives. Biomass and Bioenergy, Vol. 75, p. 282-
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Peam Cheali; Krist V. Gernaey; Gürkan Sin. (2015) Uncertainties in early-stage 

capital cost estimation of process design – a case study on biorefinery design. 

Frontiers in Energy Research, Vol. 3 (3), Doi:10.3389/fenrg.2015.00003 
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Peer-reviewed conference proceedings (Web of Science/SCOPUS listed)  

Peam Cheali; Krist V. Gernaey; Gürkan Sin. (2013) Synthesis and design of 

optimal biorefinery using an expanded network with thermochemical and 

biochemical biomass conversion platforms. Computer Aided Chemical 

Engineering, Vol. 32, p. 985–990. 

Peam Cheali; Krist V. Gernaey; Gürkan Sin. (2013) A computer-aided support 

tool for synthesis and design of biorefinery networks under uncertainty. 

SCPPE2013, Dalian, China.  
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Peam Cheali; Alberto Quaglia; Krist V. Gernaey; Gürkan Sin. (2014) 

Uncertainty analysis in raw material and utility cost of biorefinery synthesis and 

design. Computer Aided Chemical Engineering, Vol. 33, p. 49–54. 

Peam Cheali; Krist V. Gernaey; Gürkan Sin. (2015) Optimal Design of Algae 

Biorefinery Processing Networks for the production of Protein, Ethanol and 

Biodiesel. Computer Aided Chemical Engineering. Accepted. 

Book chapter 

Peam Cheali; Alberto Quaglia; Carina L. Gargalo; Krist V. Gernaey; Gürkan 

Sin; Rafiqul Gani. (2015) Early stage design and analysis of biorefinery 

networks. Process Design Strategies for Biomass Conversion Systems, John 

Wiley & Sons, Inc. In press. 
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framework for sustainable design of Biorefineries: life cycle analysis and 
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2.
LITERATURE REVIEW 

 
Chapter 2 briefly reviews research work on early-stage design of biorefineries. This 
chapter consists of three main sections. The first section briefly presents an introduction 
to biorefinery challenges and concepts. The second section discusses the role of PSE in 
supporting the development of a biorefinery (i.e. published methodologies, models). 
The third section discusses the remaining challenges and identifies the gaps which set 
the motivation of this PhD study.  
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2.1 Introduction

2.1.1 Drivers and challenges of biorefinery development 

In 1980 and 2006-2013, traditional and mature processes based on fossil fuels have been 

significantly affected by the fluctuation of oil prices. This motivated among others 

diversification efforts such as the development of blended fuels that make use of 

gasoline and diesel blended with high octane bioethanol to reduce the dependency on 

and consumption of fossil fuels. Moreover, in the past decade, the chemical industries 

which mainly use fossil-based chemicals as raw material and as fuel have been claimed 

as the main sources of anthropogenic CO2 emission released to the environment which 

contributes to climate change and global warming (M. Bruscino, 2009). These 

challenges act as important drivers for the development of the technologies to efficiently 

utilize bio-based feedstock as alternative and more sustainable solution to reduce the 

dependency of the chemical industries on fossil-based feedstock and help alleviate the 

climage change impact of the chemical industry.  

2.1.2 Biorefinery concept 

A biorefinery is the system processing a bio-based feedstock to produce bio-based 

products such as biofuels (bioethanol, biogasoline and biodiesel), biochemicals (e.g. 

succinic acid and polylactic aicd), or bioenergy (power/heat). As there are several bio-

based feedstock sources, and many conversion concepts and technologies to choose 

from to match a range of products (presented in Figure 2.1), this results in a large and 

complex system. This large and complex system can be grouped into two main 

conversion concepts: biochemical and thermochemical conversion platforms. These two 

concepts are briefly explained below. 
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Figure 2.1. Technological routes and biorefinery system network (IEA Bioenergy, 
2009) 

Biochemical conversion concept - pretreatment, hydrolysis and fermentation 

technologies

The main goal in these processing steps is the transformation of the complex polymers 

in the feedstock such as cellulose and hemicellulose into simple sugars that can be 

utilized by microorganisms during fermentation. First, the size of the biomass is reduced 

by milling, grinding, or chipping. Subsequently, the separation of the lignocellulosic 

components (lignin, hemicellulose, and cellulose) is achieved and finally conversion to 

sugar and ethanol are performed. Steam explosion, liquid hot water treatment, acid

hydrolysis, dilute acid hydrolysis, alkaline hydrolysis, and enzymatic hydrolysis in 

addition to fermentation technologies using engineered strains are the main 

technologies developed in this processing step. Moreover, the Simultaneous 

Saccharification and Fermentation (SSF) process has recently been developed to 

combine hydrolysis (or saccharification) and fermentation in one reactor to efficiently 
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produce ethanol (Karp et al., 2013). Subsequently, the resulting sugar compounds are 

converted to ethanol using relatively well-known fermentation technology which is the 

main conversion technology producing bioethanol in the biochemical conversion 

concept. For bioethanol production, both (fed-) batch and continuous reactor systems 

have been developed with two main micro-organisms, Saccharomyces cerevisiae and 

Zymomonas mobilis. The latter micro-organism has recently been developed to achieve 

an ethanol yield as high as 97% (Bai et al., 2008). The biochemical conversion concept 

has been developed and is currently operated in large-scale production plants producing 

first and second generation bioethanol from sugar/starch-based biomass and 

lignocellulosic biomass, respectively. A French company called Tereos produces 

bioethanol from sugar beet, sugarcane and cereals in Europe and Brazil, with a 

production volume of 1.1 million m3 in 2011-2012 (Tereos, 2015). In USA, ADM, Poet, 

Valero Energy Corporation, Green Plain Renewable Energy, and Flint Hill Resources 

LP are the five largest bioethanol producers which produced first and second generation 

bioethanol, with a total production of 5.7 billion gallon in 2013. In 2013, ABENGOA 

also produced first and second generation bioethanol – around 1500 ML in Europe and 

400 MGal in USA (ABENGOA, 2013).  

 

Thermochemical conversion concept – gasification, pyrolysis, Fischer-Tropsch, alcohol 

synthesis

This concept aims to efficiently utilize the whole biomass to produce value-added 

intermediates, fuels, chemicals or heat/power (Zhang, 2010). Gasification is the main 

thermochemical conversion concept converting solid feedstock into useful gaseous fuel 

(syngas) that can be burned to produce heat (combustion) or used for production of 

value-added chemicals (Arkansasenergy, 2003; Ridjan et al., 2013). The heat supply 

approach and the gasifying agent are key factors influencing the syngas yield. Pyrolysis 

is also one of the main technologies of thermochemical concept which aims at 

decomposing biomass into a range of useful products, either in the total absence of 

oxidizing agents or with a limited supply. Pyrolysis of biomass is typically carried out at 

a relatively lower temperature (300 to 650 °C) compared to Gasification (700 to 1300 
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°C). Torrefaction or carbonization has also been recently developed to produce a solid 

fuel with a better quality.  

Contaminants produced along with syngas which have an impact on the catalyst or 

materials in the downstream processes, then need to be removed (Koch, 2008). Raw 

syngas which is generally at a temperature of 300-500 oC after heat integration is 

subsequently cooled and simultaneously cleaned by removing moisture, particulates and 

alkali. A filter or scrubber (i.e. water scrubber, venture scrubber) is used to remove 

particulates. The remaining hydrocarbons and tar are converted to H2 and CO using a 

reformer (i.e. catalytic, steam reformer). A water-gas-shift reactor (WGS) is used to 

adjust the molar ratio of H2/CO with respect to the requirement of downstream 

processes. Finally, H2S and COS are removed using liquid-liquid absorption with a 

basic solvent (i.e. MEA, DEPG).  

After primary conversion and cleaning/conditioning processing steps, the clean 

intermediates (i.e. syngas, pyro-oil) are converted to final products in the product 

synthesis step. Alcohol synthesis can be chosen to produce methanol, ethanol or higher 

alcohols, while Fisher-Tropsch (FT) synthesis can produce a wide range of 

transportation fuels (Dry, 2008). Alcohol synthesis is operated at 250-400 oC with higher 

pressure (5-30 MPa) to produce alcohol, mainly ethanol, using catalysts (i.e. modified 

high/low pressure, modified FT, and modified sulfide catalysts) with a high overall 

conversion of 75-90% (He & Zhang, 2011). In Fisher-Tropsch (FT) synthesis, 

hydrocarbons are produced from a gas mixture of H2 and CO. Typical operating 

conditions of FT are 200-250 oC and 25-60 bar. The reaction is exothermic where CO 

reacts catalytically (cobalt or iron catalyst) with H2 forming a growing polymer chain 

and producing a wide range of hydrocarbon products (C1-C30+). Syngas conversion in an 

FT synthesis reactor is typically reported to be 80% with a selectivity of 95% for liquid 

products. The heavier product can also be further cracked into fuels, and unconverted 

syngas can be recycled or used to generate heat and power. FT processes have currently 

been operated in large scale to produce synthesis fuels for countries that have no oil 

available (Subiranas, 2008). Shell and Sasol use natural gas and coal as feedstock to 

produce syngas, respectively. Shell operates the Shell Middle Distillate Synthesis 

30



Literature review 
 

29 
 

process in Malaysia using a Co-catalyst in multi-tubular fixed bed reactors which 

produce heavy waxes, while Sasol operates several types of reactors.   

Many concepts and technologies for processing lignocellulosic feedstock explained 

above are under development, or in operation at pilot or demonstration scale as 

presented in Figure 2.2. Thus, the concepts still require an intensive effort from the 

product-process development point of view to develop a competitive and mature 

technology. This also requires the support from Process Systems Engineering (PSE) 

which is one of the main research areas in chemical process development.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Maturity status of biomass processing technologies (IRENA, 2012) 

2.2 Role of process systems engineering (PSE) 

This section presents the definition of a systems approach (namely as Process System 

Engineering, PSE) and explains its role for supporting further optimization and 

development of biorefinery concepts. PSE relies on systematic methods and tools, 

including process modeling, simulation and optimization (MSO) to support decision-

making of chemical product-process development. The benefits of PSE are typically a 

reduction in time and resources needed for specific development and R&D tasks (e.g. 

experimentation at laboratory and pilot-scale preceding further optimization efforts), or 

a cost reduction of changes required during the operational stage (Klatt & Marquardt, 

2009). All PSE domains (i.e. product and process design, control and operations) have 
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been applied using model-based application methodologies which are further automated 

by developing computer-aided process engineering (CAPE) tools. There are two major 

paradigms in PSE – analysis and synthesis problems (Klatt & Marquardt, 2009). The 

analysis problem assumes that the process flowsheet, the equipment and operating data 

or the molecular structure are given. The model is then used to predict the performance 

indicators of the process and the structural and functional properties of the product. If 

the specifications are given as process performance indicators (or as physical properties 

of the products), the synthesis problem – as the process flowsheet is not known a priori 

– is concerned with identifying an appropriate process flowsheet for the task at hand. 

This problem has to be solved, either by searching in the design space, or by deploying 

numerical optimization algorithms which automate the search for the best alternative.  

In the synthesis problem (or synthesis and design problem), there are two main 

approaches. The heuristic approach is based on the experience of the engineer or a 

researcher. The mathematical programming based approach (or optimization based 

approach) uses algorithmic methods (i.e. mixed integer non-linear programming 

(MINLP) or stochastic programming) to identify the optimal solution regarding the 

specified objectives together with the mathematical representation of the nature of the 

technologies or properties of the components. Both approaches have been widely 

applied in process synthesis and design. However, there are some drawbacks related to 

each method: (i) for the heuristic or strategic method, there is no guarantee of an 

optimal solution because of the lack of interaction between the design levels; (ii) for the 

mathematical or algorithmic method, the process flowsheet and superstructure cannot be 

automatically generated, and a considerable computational effort is required. Therefore, 

integrating these two methods has recently been developed and has resulted in the so-

called hybrid method. This integration approach aims at developing a systematic way to 

achieve truly optimal solutions, and combines the advantages of both the heuristic and 

the mathematical based approach. 
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PSE contributions on process synthesis and design of a biorefinery 

As mentioned earlier, PSE is obviously a multi-disciplinary field at the interface of 

chemical engineering, mathematics, computer science, management science and 

economics. The research in this study applies PSE methods and tools focusing on 

synthesis and design of a biorefinery at the early-stage of product-process development. 

In this section, the use of PSE for synthesis and design of a biorefinery is therefore 

briefly reviewed. 

Berhane et al. (2013) have developed models and algorithms for life cycle analysis, 

supply-chain, design and operation of algal and hydrocarbon biorefineries. A two-stage 

heuristic solution algorithm was proposed to solve a non-convex MINLP problem, and 

trade-off solutions between economic and environmental criteria were presented. 

Kokossis & Yang (2010) reviewed the studies that used PSE at different scales and 

levels of product-process design, and concluded that systems engineering has a huge 

impact on the development of each scale of the process design (i.e. supply chain, unit 

operation, molecular design). Furthermore, the impact of PSE will improve significantly 

if the scales are integrated and combined as a multi-scale formulation including multi-

stage problem-solving to cope with the complexity of biorefinery processes, and to 

generate novelty and innovation. Shabbir et al. (2012) studied the economic viability of 

the biorefinery by optimizing the production of biofuels and biochemicals. The 

superstructure-based optimization approach and insight-based automated targeting were 

combined to handle the allocation of biomass feedstock. Then, fuzzy optimisation was 

used for the synthesis of a sustainable integrated biorefinery which takes economic and 

environmental performance into consideration. Voll and Marquardt (2011) introduced a 

reaction flux network analysis (RFNA) as a novel and rapid screening method for 

synthesis and design of biorefinery processing paths for the biochemical platform, and 

considering both techno-economic and environmental impacts. Potential reaction 

pathways converting biomass to biofuels were generated using this approach. 

Consequently, the optimal pathways were identified through the formulated MINLP 

problem. Baliban et al. (2012) identified the optimal biorefinery design flowsheet 

producing liquid transportation fuels together with integration of energy (heat and 

power) and water consumption for the thermochemical platform. u ek et al. (2014) 
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identified the optimal supply-chain network using a multi-period synthesis framework. 

The multi-period optimization of a heat-integrated biorefinery's supply network was 

formulated as a MILP problem which extended in four layers (seasonality, and 

availability of resources, enabling recycles of products and total site heat integration) in 

order to address a real-world decision-making problem. It was concluded that (i) 

switchgrass and algae are promising raw materials for producing biofuels; (ii) using 

20% of of existing agricultural land satisfies the demand for food and transportation 

fuels. Martin and Grossmann (2012) reviewed results of a biorefinery design using 

mathematical programming to systematically evaluate a large number of alternatives 

and to identify the optimal solution for economic feasibility and sustainability (dealing 

with energy and water consumption, and with process integration). Pham and El-

Halwagi (2012) proposed a systematic two-stage methodology to reduce the number of 

processing steps. The superstructure-based optimization approach was used with a 

proposed two-stage methodology which generates 5 processing steps to reduce the 

complexity. Abdelaziz et al. (2015) proposed a hierarchical approach to improve the 

efficiency of the existing biorefinery plant using a mass and heat integration method. 

The results show a significant reduction of energy consumption and a slightly lower 

total annualized cost. Posada et al. (2013) applied a quick screening method called 

early-stage sustainability assessment to identify the most promising bioethanol 

derivatives resulting from catalytic conversion. The early-stage sustainability 

assessment consists of 5 main design criteria (economic, environmental impact from 

raw material and process, safety and hazard) which are the important factors for 

designing a sustainable biorefinery. Zondervan et al. (2011) studied the use of a 

superstructure-based optimization approach with a generic process model block to 

identify the optimal processing paths among the processing alternatives used in a 

biochemical conversion platform producing bioethanol, gasoline blends and chemicals. 

The aforementioned studies have not only provided interesting methodological 

approaches, but have also generated many promising biorefinery configurations that 

might be considered for commercial scale exploitation in the future.  
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2.3 Remaining challenges and perspectives for PSE to 
support optimal biorefinery synthesis and design 

The aforementioned developments in PSE are great contributions in their own right. 

However, the design and identification of optimal biorefinery concepts for the complete 

processing paths still remains a challenging task. The main challenges are:  

(i) The challenge to achieve the true optimal solutions by expanding the biorefinery 

concepts with more promising conversion concepts, to produce multiple value-

added products. Biorefinery research typically focuses either on the biochemical 

route or the thermochemical route or the algal route. Hence, the expansion 

would avoid that promising alternatives are potentially ignored, and will 

improve the viability of the biorefinery. However there is no truly integrated 

approach that forms a design space that encompasses all these alternatives in a 

single decision space. Therefore, a developed systematic approach which 

generates a large, versatile and promising design space of processing networks is 

required. 

(ii) The challenge to obtain good data to generate a good representation of 

biorefinery design candidates. Data obtained from different experiments, studies, 

or resources are generally not consistent as a consequence of different 

assumptions, conditions or methods. Therefore, the data should be obtained from 

dependable sources and a systematic verification approach is required in order to 

generate the dependable database that can be used as a knowledge base during 

the design. 

(iii) The challenge to manage the uncertainties in data. At the early-stage design 

stage, many data (i.e. yield, operating conditions, separation efficiencies, etc.) 

are obtained from technologies that are still under development, and as a 

consequence a considerable part of the information is generally uncertain. One 

clear example is the fluctuation of market prices. This uncertainty in data should 

therefore be addressed because the optimal solutions are strongly dependent on 

the input data. 

(iv) The challenge to manage a large and complex problem which includes all the 

possible combinations of biomass feedstock and their processing technologies. 
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This combination is composed of a wide range of specific and multi-disciplinary 

characteristics, (un)certain data and (non)linear models of the processing 

technologies. Hence, this large and complex design network needs to be 

managed. The management in a more compact and generic structure would 

reduce the complexity of the problem, thus providing flexibility for further 

analyses with respect to multi-objective design criteria (i.e. economic, 

sustainability). 

(v)  The challenge to compare the solutions with conventional fossil-based 

approaches and the relevant processes in order to attract more interest for 

developing future biorefineries. 

Therefore, these challenges motivate the development of systematic product-process 

development methods as a decision support tool for identifying optimal biorefinery 

concepts at the early design stage. What is needed is a systematic biorefinery process 

synthesisframework which: (i) supports a large design space, including multi-criteria 

decision problems and uncertainties in data; and, (ii) provides a ranking of promising 

optimal processing paths including risk quantification prior to the next stage of product-

process development to enhance the development of robust and sustainable concepts of 

future biorefineries. 
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3.
A systematic framework for synthesis and design of 

biorefinery

 
In this chapter, the superstructure optimization based framework for synthesis and 

design is presented. The framework consists of 5 steps, which are explained in detail. 

The framework is divided into two parts. Part-I is the generation of the database 

(superstructure, models and data). Part-II is the mathematical formulation of the 

optimization problem under deterministic and stochastic conditions, and includes the 

generation of the solution in terms of optimal design concepts.      

 

Note that this chapter is a modified version of a manuscript which has been published in 

(i) ACS Sustainable Chemistry and Engineering as Peam Cheali, Krist V. Gernaey and 

Gürkan Sin (2014), Towards a computer-aided synthesis and design of biorefinery 

networks – data collection and management using a generic modeling approach. 2, 19-

29 and (ii) Industrial and Engineering Chemistry Research as Peam Cheali, Alberto 

Quaglia, Krist V. Gernaey and Gürkan Sin (2014), Effect of market price uncertainties 

on the design of optimal biorefinery systems - a systematic approach. 53(14), 6021-

6032.  
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The overall systematic framework (Figure 3.1) which uses a superstructure-based 

optimization formulation can be separated into two parts: (i) data handling and 

representation (step 1 and step 2); and (ii) mathematical formulation and solution. The 

individual steps of a systematic framework (Figure 3.1) are explained in the following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. A systematic framework for synthesis and design of biorefinery networks 
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A systematic framework for synthesis and design of processing networks (Quaglia, 

2013) is adapted and developed further in this study for biorefinery systems. The 

systematic framework uses a superstructure-based optimization approach to generate the 

design space, and it enables effective formulation and solution of a mixed integer (non-) 

linear problem under deterministic conditions and uncertainty. The framework 

(presented in Figure 3.1) consists of 5 main steps as explained below. 

3.1 Step 1: Problem formulation: (i) problem definition; (ii) 

superstructure definition and data collection; (iii) model 

selection and validation 

The first step includes the definition of the problem scope as well as the selection of 

suitable objective functions and optimization scenarios with respect to certain design 

specification metrics. Superstructure definition together with data collection, model 

selection and verification are then performed, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. A systematic framework for the problem formulation step 
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Step 1.1: Problem definition 

The first step includes the definition of the problem scope, the selection of suitable 

objective functions and optimization scenarios with respect to either economic or 

business metrics, engineering performance, environmental impact or sustainability or a 

combination of such objectives. 

Step 1.2: Superstructure definition 

A superstructure is defined in this study as a group of processing paths simultaneously 

(i) connecting sources (feedstock) to sinks (products) through a number of processing 

steps and (ii) comparing alternatives within each processing task as presented in Figure 

3.3.  In particular, a superstructure representing different biorefinery concepts and 

networks is formulated by performing a literature review. A typical biorefinery network 

consists of a number of processing steps converting or connecting biomass feedstock to 

bio-products such as pretreatment, primary conversion (gasification, pyrolysis), gas 

cleaning and conditioning, fuel synthesis and product separation and purification. Each 

processing step is defined by one or several blocks depending on the number of unit 

operations considered in the step (several unit operations can be modeled using one 

process block). Each block incorporates the generic model to represent various tasks 

carried out in the block such as mixing, reaction and separation as presented in Figure 

3.4. Detailed presentation of the generic model itself is given below.  

 

 

 

 

 

Figure 3.3. A superstructure definition (Quaglia, 2013) 
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Step 1.3: Data collection and modeling 

Once the superstructure is defined, the data are collected and modeling is performed. 

Generally, the models for each processing technology are rigorous, non-linear and 

complex models (e.g. kinetics, thermodynamics). In this step, however, a simple input-

output type generic model is used and put in a model block, and is identified from the 

data generated from the above mentioned complex model. This generic block thus 

consists of four parts of the typical simple mass balance equations: (i) mixing; (ii) 

reaction; (iii) waste separation; and, (iv) product separation.  

 

 

Figure 3.4. The generic process model block 

Equations 3.1-3.7 are the equations used for the generic block to estimate the outlet 

mass flow ( , ) using simple mass balances. In Equations 3.1-3.2, the 

chemicals and utilities used ( ) for each processing technology are calculated by 

using the ratio ( ) to the inlet mass flow rate ( ). The parameter 

represents the consumption of the utilities or chemicals: 0 corresponds to 100% 

consumption; 1 represents no consumption. In Equation 3.3, the reaction outlet mass 

stream ( ) is calculated based on stoichiometry,  and conversion fraction, 

. In Equations 3.4-3.5, the waste stream ( ) and the remaining stream 

( ) are calculated on the basis of the removal fraction, .The product outlet 

streams are calculated in Equations 3.6-3.7 on the basis of a product separation fraction, 
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. Moreover, in order to connect each generic model block and thereby 

formulate the superstructure, the equations 3.8-3.10 are used.  

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9)

(3.10)

The mass outlet flows mentioned earlier ( , ) are called primary and 

secondary outlet flow, respectively. The primary and secondary outlet flows are 

connected to the next generic blocks by specifying binary parameters ), 

respectively. The outlet flows between the generic blocks ( , ) of each 

stream (primary and secondary) are summed up as the input of the next generic block. 

Note as well that recycle flows can be considered using Equations 3.8-3.10 with 

specification of . There are two potential cases of recycle flows addressed: (i) 

recycle flows within the same processing step, i.e. internal recirculation - the simulation 

of the recycle flows and their impact on process performance needs to be done prior to 

estimating the parameter values for the corresponding generic model block; and (ii) 

recycle flows to one of the previous processing steps, which is handled by using Eq. 

3.8-3.9.  

The appropriate values for the above-mentioned parameters can be collected in several 

ways including: (i) literature sources or technical reports; (ii) experimental data; (iii) 

simulation results; or, (iv) stream table or operating data of a designed flowsheet. The 
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collected data are in the end organized in a multi-dimensional matrix form which 

represents processing steps, alternatives, components, among others etc.  

Step 1.4: Models and data verification 

After the superstructure is defined and the parameters are collected, a validation of the 

selected models and parameters needs to be performed for quality and consistency 

check. The validation can be performed in this step by fixing the decision variables in 

the problem formulation of mixed integer (non)-linear programming (MINLP) – i.e. the 

vector y (see section 3.3) – and thereby to perform a simulation for each processing 

technology or path followed by comparison of the simulation results against the 

available data. Such data can originate either from experiments or from the literature. 

All the necessary equations and constraints relevant to each processing technology are 

also formulated in this step prior to being solved as MILP or MINLP problems in the 

optimization tool (GAMS – General Algebraic Modeling System). The output of this 

step is a verified database representing the biorefinery superstructure formulated earlier 

and stored in an excel worksheet.  

3.2 Step 2: Uncertainty characterization 

In this step, the domain of uncertainty is defined. Statistical analysis tools, Monte Carlo 

simulation and Latin Hypercube Sampling with correlation control (Iman et al., 1982) 

are therefore integrated with the deterministic problem. Firstly, specific data or 

parameters need to be selected as uncertain inputs to the optimization problem. 

Secondly, the selected data need to be characterized in terms of a probability 

distribution (e.g. normal or uniform distribution). Thirdly, the correlations between the 

selected data are analyzed in terms of covariance, such that this information can be 

incorporated in the sampling if such information is available. Finally, the sampling of 

uncertain data is performed to generate the possible scenarios. It is important to note 

that this step has been expanded to support the two distinct situations of the availability 

of the cost estimation data at early-stage design which is explained in detail in Chapter

7. 
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3.3 Step 3: Deterministic formulation and solution 

The deterministic optimization problem is solved in this step by varying the decision 

variable  and using the nominal values for parameters – in case a parameter is 

characterized by a certain statistical distribution (hence uncertain input) then its mean 

value is used in this step. For example, a general form of optimization problem 

(MINLP) is briefly presented below to indicate how the generic models and parameters 

are embedded in the optimization problem formulation. The general structural 

optimization formulation is presented in Eq. 3.11-3.18 which consists of the objective 

function (e.g. maximize product sales, Eq. 3.11) subjected to process constraints, the 

process models and constraints (Eq. 3.1-3.10) of the generic model block mentioned 

earlier ( is a process variable, the mass flow rate), structural constraints (Eq. 3.14-3.15) 

representing the superstructure which allows selection of only one process alternative in 

each step and cost functions (Eq. 3.16-3.18) to calculate the operating and capital costs 

using cost parameters ( , waste treatment cost, , utility or 

chemicals cost, , reactor investment cost, , separation investment cost, 

, capital expentidure).  

As an example, the objective function is formulated such as to maximize product sales, 

(3.11) 

Subject to: 

Process models of the generic block as mentioned earlier (see Eqs. 3.1-3.7 and 3.10): 

(3.12) 

Process constraints as mentioned earlier (see Eqs. 3.8-3.9): 

g (3.13) 
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Structural constraints: 

(3.14) 

(3.15)

Cost constraints: 

) + ( (3.16) 

(3.17)

(3.18)

 

The problem can be formulated and solved using appropriate software (e.g. GAMS) and 

the generic model parameters and other data appearing in the constraints (e.g. 

, , , etc) can be accessed from the 

database. Moreover, different scenarios can be analyzed in this step by using different 

objective functions selected in Step 1 (i.e. maximizing profit, minimizing waste and 

utilities, etc.). The result of this step is the deterministic solution of the optimal 

processing path, i.e. yielding one optimized biorefinery flowsheet scenario on the basis 

of mean values of the input data. The ranking of optimal solutions is also presented. 

3.4 Step 4: Decision-making under uncertainty 

Step 4.1: deterministic problem 

In this step, the deterministic optimization problem formulated in step 3 is solved 

repeatedly for each scenario generated by the sampling from the uncertainty domain 

from step 2 (e.g. 200 samples). The results are the probability distribution of the 

objective value and the frequency of occurrence of the resulting optimal processing path 

candidates that are selected for given combinations of uncertain inputs. This analysis 

presents the changes in optimal solutions due to the changes of input uncertainty. 
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Step 4.2: stochastic problem 

In this step, the optimization problem is modified and formulated as a two-stage 

stochastic programming problem (first stage, I and second stage II) by including the 

uncertainty domain into the parameter domain (presented in Eqs. 3.19-3.26). The first 

stage is where the exact values of the uncertain data are unknown. The second stage is 

where exact value of the uncertain data is known and corrective actions are taken 

accordingly in order to find a network which is feasible over the whole uncertain 

domain. In the equations below,  represents the uncertain data and 

 represents the expected value of the objective function within the 

uncertain domain. 

The expected value of the objective function is solved using the sample average 

approximation (SAA) technique (Birge and Louveaux, 1997). While formulating SAA, 

the constraints are converted into a number of constraints which is determined by the 

number of uncertain scenarios defined previously (i.e. NS- number of samples), which 

consequently increases the size of the optimization problem, and thus its complexity. 

Consequently, the objective function value is calculated by averaging the sum of all the 

values obtained for different uncertain scenarios. Therefore, the objective function is 

formulated in terms of minimizing or maximizing the expected value of the objective 

function over the uncertain domain.                
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(3.19) 

Subject to: 

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

 

Report generation 

In order to analyze the results of the optimal solutions under uncertainty, a number of 

indicators are suggested (Birge and Louveaux, 1997; Quaglia, 2013) for summarizing 

and analyzing the solution under uncertainties: i) Expected Value of Perfect Information 

(EVPI), which estimates the cost of lacking the exact information on the uncertain data 

(Eq. 3.27). This indicator shows the possible gain from reducing the uncertainty in data; 

ii) Value of Stochastic Solution (VSS), which estimates the differences in performance 

between stochastic and deterministic solutions (Eq. 3.28). This indicator shows the 

possible gain from solving the stochastic optimization problem; and iii) Uncertainty 

Penalty (UP), which estimates the reduction in performance when the system is affected 

by uncertainties (Eq. 3.29). 

(3.27) 

The first term on the right hand side of Equation 3.25 is the expected value of the results 

of the decision-making under uncertainty with deterministic basis (step 4.1). The second 

term is the solution of the stochastic problem (step 4.2). 
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(3.28) 

The first term in Equation 3.26 is the solution of the stochastic problem (step 4.2). The 

second term is calculated by evaluating the performance of the optimal network selected 

against the uncertainty domain (step 4.1 but fixing the solution from step 3). 

(3.29) 

In Equation 3.27, the first term is the solution of the deterministic problem (step 3). The 

second term corresponds to the solution of the stochastic problem (step 4.2). 

3.5 Step 5: Risk quantification and reduction 

In this step, the optimal solutions from Step 4.1 (see Figure 3.1) are analyzed as risk. 

Risk can be represented as economic loss or environmental impact. Risk is quantified by 

the probability of the actual point which is lower than the referenced/specified point 

times its consequence, which is defined as the difference between the actual point and 

the referenced/specified point. The information on risk results in more robust solutions. 

Moreover, risk can also be reduced as presented in the following step. 

3.5.1 Optimal flexible network 

This step aims at enlarging the search space including redundancy in the resulting 

topology which allows the trade-off between investment and operational flexibility in 

order to mitigate the negative consequences of the uncertainty. Therefore, the decision 

variables (y) are in both the first stage and second stage allowed to follow a wider range 

of optimal processing paths or topologies which are different from previous steps. The 

mathematical formulation is presented in equations 3.30-3.37 (Birge and Louveaux, 

1997).  
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(3.30) 

Subject to: 

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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4.
Data collection and management 

 
The topic of this chapter is the collection and management of the complex biorefinery 

data which are needed among others to support the superstructure based optimization 

studies. To this end, we first formulate an integrated thermo-chemical and biochemical 

biorefinery superstructure and then use a generic modeling approach to represent each 

processing technology in the superstructure. The generic model parameters includes 

reaction yield, utility consumption, and separation efficiency among others, which are 

identified on the basis of input-output data (generated from rigorous models) collected 

from detailed biorefinery case studies reported in the open literature. The outcome is a 

verified database for the extended biorefinery networks combining thermo-chemical and 

biochemical platforms which represents 2882 potential biorefinery routes. The validated 

biorefinery database is made public and can be used to cross-validate and benchmark 

new biorefinery technologies and concepts as well as in superstructure-based 

optimization studies 

 

The chapter is structured as follows: first the challenges and the motivation for this 

chapter is introduced and second, the application of the framework for data collection 

and management is presented and discussed.   

 

This chapter is a modified version of a manuscript which has been published in ACS 

Sustainable Chemistry and Engineering as Peam Cheali, Krist V. Gernaey and Gürkan 

Sin (2014), Towards a computer-aided synthesis and design of biorefinery networks – 

data collection and management using a generic modeling approach. 2, 19-29. 
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4.1 Introduction 

The biorefinery design space includes a large number of potential processing paths and 

technologies as mentioned in Chapter 2. The characterization of each process 

alternative requires a substantial amount of information: parameters, variables, models 

of known reactions, thermodynamic properties, process efficiencies or experimental 

data (Baliban et al., 2012). In order to manage the complexity of designing a 

biorefinery, several publications have focused on simplification i.e. (i) to find an 

optimal processing route considering only the reactions (Voll et al., 2012); (ii) to limit 

the number of processing steps to five steps (Pham et al., 2012); or, (iii) a systematic 

study of the superstructure of integrated biorefineries by using a combined process and 

economic modeling (Sammons et al., 2008). Clearly, in the early stage of biorefinery 

planning and design  a phase that is often characterized by lack of detailed data  it is 

important to simplify and manage the complexity related to the huge amount of data that 

is to be processed prior to identifying the optimal biorefinery processing path with 

respect to economics, consumption of resources, and sustainability.  

The methodology presented in chapter 3 (Section 3.1, Figure 3.1) is based on 

superstructure optimization and consists of tools and methods including databases, 

models, a superstructure, and solution strategies to represent, describe and evaluate 

various processing network alternatives. The data collection and management form a 

significant part of this methodology (presented in Figure 3.2 as the extended 

methodology), which is the highlight of this chapter. In particular, we expand the scope 

and the size of the biorefinery network problem by extending the database, the models 

and the superstructure of the methodology with thermochemical biomass conversion 

routes, and integrate them with the superstructure of the biochemical conversion 

network (Zondervan et al., 2011). We highlight the use of a generic process modeling 

approach to collect and manage multi-disciplinary and multi-dimensional data related to 

process alternatives in a biorefinery process network. We then perform a verification of 

the generic models and its parameters against the actual data source for quality control 

purposes. We also briefly introduce the MI(N)LP-based problem formulation to indicate 

how the generic model and data developed in this contribution are embedded in the 
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optimization problem setting. The solution and the analysis of the optimization problem 

itself, including the effect of data uncertainties, is however presented in the following 

chapters. 

4.2 Data management, collection, verification and discussion 

4.2.1 Step 1.1: Problem definition

The problem to be addressed is the design of an optimal biorefinery network consisting 

of a thermochemical platform integrated with a biochemical platform, which is indeed 

rather data intensive. The availability of data is however critically important for the 

quality of decisions to be generated using the decision support tool. Details about data 

collection and validation are therefore presented below. 

4.2.2 Step 1.2: Superstructure definition 

The thermochemical biomass conversion routes were reviewed to formulate the 

superstructure (Figure 4.1, top). The data and models of thermochemical conversion 

were collected from several U.S. National Renewable Energy Laboratorty (NREL) 

technical reports (Dutta et al., 2009; 2011; Phillips et al., 2007; Swanson et al., 2010; 

Wright et al., 2010) and one U.S. Pacific North National Laboratory (PNNL) report 

(Jones et al., 2009). Based on these NREL reports, the superstructure was defined. The 

proposed processing network for thermochemical conversion consists of 27 process 

intervals: 2 raw materials; 19 processing technologies; 3 main products and 3 by-

products resulting in 156 parameters, 619,364 variables and 26 discrete variables. 

The proposed superstructure of thermochemical conversion was then combined with the 

superstructure of biochemical conversion (Zondervan et al., 2011) resulting in a 

superstructure with a total of 96 processing intervals: 3 raw materials, 79 processing 

technologies and 14 products (Figure 4.1) with 576 parameters, 4,705,181 variables and 

668 discrete variables.  

The above-mentioned studies contain the complex, non-linear, rigorous models 

resulting in the simulated mass flow rate for each designed process stream. This 
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information provides an adequate basis for estimating the parameters of each generic 

block using input-output information. Further explanation and examples are presented 

in the next section. 

 

 

Figure 4.1. Combined superstructure of two biorefinery conversion platforms: 
thermochemical (top) and biochemical platform (bottom).  

4.2.3 Step 3: Data collection and estimation 

The data and parameters required for the generic blocks that are used to define the 

superstructure (section 3.1), are presented here and in Table 4.1-4.5. When the reported 

data are available from experimental or pilot plant studies, the data were collected 

directly. If not, the data need to be obtained from simulations, or should be estimated to 
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obtain the parameters used in the general block using commercial process simulators 

such as Pro II, Aspen, etc. 

Here two examples are presented. Table 4.1, Table 4.2 and Figure 4.2 illustrate how the 

data were collected for the entrained flow gasifier, which is one of the processing steps 

in the combined superstructure. The entrained flow gasifier is used to convert solid fuels 

(coal, biomass) into raw syngas. It requires a special size reduction equipment, steam 

and O2. Char, ash, soot and slag are collected at the bottom as wastes. It is normally 

operated at high temperature (1300 oC), and the reactions during the gasification are 

complex. We have used the design data reported by an NREL study (Swanson et al., 

2010) for estimating generic process block parameter values for steam and O2 ratio, 

conversion fraction, char and ash removal efficiencies. On the other hand, the complete 

stoichiometry of the reaction is not available. Thus, the stoichiometry of the reaction 

needs to be estimated, in this case by using Eq. 4.1 combined with the reported mass 

inlet and outlet streams of the processing unit shown in Table 4.2. The resulting 

estimated stoichiometry is given in Table 4.2 as well, and the reaction stoichiometry is 

shown in Figure 4.2. We note that there is no recycle stream for the entrained flow 

gasifier as a consequence of the very high conversion efficiency of biomass in such an 

entrained flow gasifier. 

 

Table 4.1. The data collection example for the entrained flow gasifier 

Descriptions Raw data from NREL study (Swanson 

et al., 2010) 

Generic block model parameters 

Utilities Steam to biomass ratio 0.48 Mixing: steam ratio 0.48 

 O2 to biomass ratio 0.35 Mixing: O2 ratio 0.35 

Reaction Stoichiometry N/A Reaction: Stoichiometry was 

estimated from stream table 

(Table 2a) 

(eq. 4.1) 

 Conversion fraction of C 1 Reaction: Conversion fraction 1 
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Waste 

separation 

Char, ash, soot, slag removal 99%  0.99 

 Ash removal 95%  0.95 

Product 

separation 

Stream separation 1 outlet 

stream 

 1 

 

 

      (4.1) 

 

 

 

 

 

Figure 4.2. Process diagram showing mass inlet/outlet, the reaction and its 
stoichiometry for the entrained flow gasifier 

Table 4.2. The example of the stream table of the entrained flow gasifier (Swanson et 
al., 2010) 

Component Gasifier 
inlet flow 
(tpd) 

Gasifier 
outlet flow 
(tpd) 

(stoichimetry) (conversion 
fraction) 

H2O 1182 988 -0.13 - 

H2 101 123 0.13 - 
C 945 - -1 1 
S 4.4 - -0.0017 - 
N2 16 17.7 0.0007 - 
O2 1512.6 - 0.6 - 
ASH 120 - - - 
CO - 1457 0.66 - 
CO2 - 1184 0.34 - 
H2S - 4.5 0.002 - 
SOOT - 6 0.07 - 
SLAG - 100 1.3 - 

 

  Entrained-flow gasifier (reaction) 
C + H2O + O2 + S  H2 + N2 + CO + CO2           

+ H2S + SOOT + SLAG 
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Another example of the data collection is the gas cleaning and conditioning step (task 3 

in Figure 4.1). This step has an important function and is used to (i) remove solid 

particles, (ii) convert the remaining hydrocarbons including tar into syngas, (iii) adjust 

the H2/CO ratio, (iv) remove CO2 and H2S which will otherwise have a negative effect 

on the catalysts in the next processing step. There are several unit operations that can be 

used in this step such as a tar reformer, a steam reformer, a water gas shift reactor, 

pressure-swing adsorption, venturi and water scrubber and acid removal. Here, one of 

the gas cleaning and conditioning steps of the NREL studies (Phillips et al., 2007) is 

selected as the second illustrative example. It consists of three main processing sections: 

tar reformer, venturi scrubber and acid removal. The function of the tar reformer is to 

convert tar and hydrocarbons into syngas, and the process consists of two reactors: the 

reformer and combustor which requires air as utility. The function of the venturi 

scrubber is mainly to remove solid particles and water. And the acid removal process is 

necessary to remove CO2 and H2S using aqueous solutions of amines, 35 wt% 

monoethanol amine (MEA). Table 4.3, Table 4.4 and Figure 4.3 illustrate the data 

collection for these processes. With regards to recycle streams, this was modeled using 

Eqs. 3.8-3.9. 

 

Table 4.3. Data collection example for the processing units for gas cleaning and 
conditioning: tar reformer, venturi scrubber and acid removal. 

Descriptions Raw data from NREL study Generic block model parameters 
Utilities Air required for 

combustion (tpd) 
3123 Air to inlet flow ratio 1.2 

Reaction Stoichiometry N/A Stoichiometry was estimated 
from stream table  

(see Table 
4.4 and 
Figure 4.3) 

 Conversion fraction of tar 1 Conversion fraction 1 
Waste 
separation 

Water removal 50%  0.5 

 CO2 removal 36%  0.36 
 H2S removal 85%  0.85 
Product 
separation 

Stream separation 2 outlet 
streams 

 (see Table 
4.4) 
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Table 4.4. The stream table of the tar reformer (Phillips et al., 2007) 

Component Inlet 
stream
(tpd) 

Recycle
stream
(tpd) 

Air
inlet
(tpd) 

Outlet
stream
(tpd) 

Primary
outlet 
(tpd) 

H2O 901 0.35 60.9 1128 0.4 - 523.9 0.46 

H2 37.7 68.8 - 168.75 1.48 - 168.75 1 
N2 - 43.1 2312 2360.3 - - 45.4 0.019 
O2 - - 708.6 86.4 -0.98 - 0 0 
CO 874 903.5 - 2345.7 0.94 - 2345.7 1 
CO2 408 1153.8 1.53 1873.6 0.29 - 978 0.52 
H2S 1.75 0.29  2.04 - - 2.04 1 
NH3 3.8 0.27  0.3 - - 0.3 1 
AR - - 39.4 39.4 - - 0 0 
TAR 19.8 -  - -1 1 - - 
CH4 180 84.9  43 -0.7 - 43 1 
C2H6 5.2 3.52  0.08 -0.015 - 0.08 1 
C2H4 86.7 6.6  6.9 -0.15 - 6.9 1 
C2H2 8.2 0.6  0.65 -0.0159 - 0.65 1 
C6H6 6.6 -  0.04 -0.0042 - 0.04 1 
C3 - 17.4  17.4 - - 17.4 1 
C4 - 3.2  3.2 - - 3.2 1 
C5 - 0.6  0.6 - - 0.6 1 
C1-ol - 4.3  4.3 - - 4.3 1 
C2-ol - 11.6  11.6 - - 11.6 1 
C3-ol - 0.67  0.67 - - 0.67 1 

 

 

 

 

 

 

 

 

Figure 4.3. Process diagram showing mass inlet/outlet, the reaction and its 

stoichiometry for the gas cleaning and conditioning step (modified according to NREL 

report (Phillips et al., 2007). 

 
 

Tar reformer 
(reaction)

Tar + O2 + 
CH4 + C2H6 + 
C2H4 + C2H2 + 
C6H6  H2O + 

H2 + CO + 
CO2      + 
H2S + SOOT + 
SLAG 

Water
srcubber
and acid 
removal
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The two examples above show how the complex data (simulation results, kinetics, 

separation efficiency, etc.) are converted into a generic form as a set of constant 

parameters. The collected data are then stored as a database in a multi-dimensional 

matrix (database uses Excel spreadsheet environment but any other software 

environment would work, e.g.  Matlab, MS Access, etc). In this way, storage of the data 

is flexible as it only requires simple column and row operations to add, modify or 

update data from the database. At the same time, storing the data in the matrix form 

provides a certain structure to organize the data and manage the complexity in a 

compact and efficient way.  

The description and the data collection (plus parameter estimation where necessary) for 

the other process intervals included in the superstructure of the thermochemical 

platform (Figure 4.1, top) is summarized in Table 4.5. For each process interval, mixing 

parameters ( ), reaction parameters ( ), waste separation parameters 

( ) and product separation parameter ( ) are provided. These values are 

then validated by comparing the simulation results with the reported results of the 

NREL/PNNL reports (Dutta et al., 2009; 2011; Phillips et al., 2007; Swanson et al., 

2010; Wright et al., 2010). The validation is presented in the next section and the full 

simulation results are presented as supporting information in Cheali et al. (2014). Note 

that the process intervals which are feedstock and products are presented here as 

follows, (i) feedstock (block no. 1-3, respectively): corn stover, wood, gasoline (for 

blending); (ii) products (blocks no. 83-96, respectively): FT gasoline, FT diesel, mixed 

alcohols, waste heat from gasifier, waste heat from reformer, gasoline (100%), 

bioethanol (5%), bioethanol (10%), bioethanol (100%), biobutanol (5%), biobutanol 

(10%), acetone, biobutanol (100%) and succinic acid. The detailed description for the 

biochemical platform (Figure 4.1, bottom) can be found in the previous study 

(Zondervan et al., 2011). 
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Table 4.5. Summary table for the data collection (mixing, , reaction, ,

.,   waste, , and product, , separation) for thermochemical 
processing networks 
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4.2.4 Step 4: Models and data verification 

Seven processing paths based on five NREL reports (Dutta et al., 2009; 2011; Phillips et 

al., 2007; Swanson et al., 2010; Wright et al., 2010) and a PNNL report (Jones et al., 

2009) were used to validate the models and data used for each process interval and 

processing path. As explained in section 3.1, the verification can be performed by fixing 

the processing path and comparing the simulation results with the NREL and PNNL 

studies. Table 4.6 summarizes the short descriptions, processing paths and the amount 

of biofuel products generated for each of the seven base cases used in this study. The 

simulation results of each processing path were verified by comparing with the detailed 

results published in NREL-PNNL reports.  

Table 4.6. The seven processing paths used as base cases. 

Cases Descriptions 
Processing path (see 
Figure 4.1) 

Biofuels 
production (tpd) 

1 
Corn stover-entrained flow gasifier-hot gas 
cleaning-Fischer Tropsch (Swanson et al., 
2010) 

1 4 6 12 16 21 83 84 111a, 262b 

2 
Corn stover-fluidized bed gasifier-cold gas 
cleaning- Fischer Tropsch (Swanson et al., 
2010) 

1 4 7 13 16 21 83 84 87a, 206b 

3 
Wood-fluidized bed gasifier-tar reformer-
alcohol synthesis (Phillips et al., 2007) 

2 5 8 14 17 22 85 91 429c 

4 
Wood-fluidized bed gasifier-tar reformer-
alcohol synthesis (Dutta et al., 2009) 

2 5 9 14 17 22 85 91 526c 

5 
Wood-fluidized bed gasifier-tar reformer-
alcohol synthesis (Dutta et al., 2011) 

2 5 8 15 18 22 85 91 549c 

6 
Corn stover-fast pyrolysis (Wright et al., 
2010) 

1 4 10 19 83 84 160a, 160b 

7 Wood-fast pyrolysis (Jones et al., 2009) 2 5 11 20 83 84 245a, 311b 
aFT-gasoline, bFT-diesel, cbio-ethanol 
 

The verification between the reported results from NREL-PNNL reports and the 

simulation results of this study (implemented in GAMS) is necessary in order to 

validate the quality of the collected data and the models used in this study. In the 

previous section, the data collection was presented as examples for (i) the entrained-

flow gasifier and (ii) gas cleaning and conditioning processes. Here, the collected data 

for both examples are validated and presented in Table 4.7 and 4.8, respectively. The 

61



Data collection and management 
 

60 
 

validation results confirm that the quality of the collected data is good and the data are 

consistent. The full simulation results (implemented in GAMS) can be found as 

supporting information in Cheali et al. (2014).  

 

Table 4.7. Summary of the validation results for the entrained flow gasifier. 

 The reported results from NREL 

report18 The simulation results of this study 

  Inlet flow R(i) waste(i) Fout1 Fout2 R(i) waste(i) Fout1 Fout2 

Total 

(tpd) 

2222.22 

1704 106 3819 0 1704 106 3818 0 

H2O 222.22 960   988.4   960   988   

H2 101.2     122.8       123   

O2 812.6 700    0   700   0.1   

N2 16     17.7       17.7   

S 4.4      0        0.1   

C 945.6      0        0.1   

ASH 120     0       0.1   

CO      1457       1457   

CO2      1184       1184   

H2S      4.5       4.5   

NH3      0.1       -   

COS      0.3       -   

AR 43.7   43.7   43.7   43.7   

CH4                  

SLAG    100       100     

SOOT    6       6     

CHAR                  
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Table 4.8. Summary of the validation results for the gas cleaning and conditioning step 
of case 3: tar reformer, water scrubber and acid removal (Phillips et al., 2007). 

 The reported results from NREL 

report 
The simulation results of this study 

Inlet

flow 
Recycle R(i) 

waste

(i) 
Fout1 Fout2 Recycle R(i) 

waste

(i) 
Fout1 

Fout

2

Total 

(tpd) 
2534 2302 3123 1089 3063 3940 2302 3123 1089 3063 3940 

H2O 901.3 68.8 60.9 514.7 9.2 604 68.8 60.9 515 9.2 604 

H2 37.7    168.7     168.7  

O2  43.1 708.6   86.4 43.1 708.6   86 

N2   2313  45.4 2315  2313  45.4 2315 

CO 874.3 903.6   2346  903.6   2346  

CO2 408 1153.8 1.5 572.7 405.3 895.6 1153.8 1.5 573 405.3 896 

H2S 1.8   1.3     1.3   

NH3 3.9           

TAR 19.8         0.1  

COS            

AR   39.4   39.4  39.4   39.4 

CH4 180.5 84.9   43.0  84.9   43  

C2H6 5.2 3.5   0.1  3.5   0.1  

C2H4 86.8 6.6   6.9  6.6   6.9 

C2H2 8.2 0.6   0.7  0.6   0.7 

C6H6 6.6 -     -   0.1 

C3  17.4   17.4  17.4   17.4 

C4  3.2   3.2  3.2   3.2  

C5  0.6   0.6  0.6   0.6  

C1-ol  4.3   4.3  4.3   4.3  

C2-ol  4.3   11.6  4.3   11.6  

C3-ol  11.6   17.4  11.6   17.4  
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4.3 Uncertainties in data 

Another important aspect to consider when collecting data is that there are uncertainties 

which could be related to technical, economic and environmental parameters. It is 

important therefore to address uncertainties in data, which is needed for making 

decisions under uncertainty when applying the computer-aided synthesis and design 

approach (Quaglia et al., 2013). In order to exploit this feature, sources of uncertainties 

in the data need to be identified and characterized. In this study, the feedstock cost and 

the product price are considered to have significant uncertainty associated with their 

reported range. After identifying the uncertain parameters, data were then collected for 

statistical analysis. For estimating the uncertainty on product prices namely gasoline, 

diesel and ethanol prices, historical data (year-2012) have been used (USDA and US 

EIA). The historical data were statistically analyzed using the Matlab statistics toolbox 

which returned the correlation matrix (given in Table 4.9, bottom) as well as empirical 

distribution functions (shown in Figure 4.4). Based on the empirical distribution 

function, a uniform distribution was selected to be appropriate to describe the 

uncertainty range for these data together with upper and lower range as reported in 

Table 4.9 (top). For the characterization of uncertainty on the feedstock, as no historical 

data was available for these, instead, the open literature was reviewed to find out lower 

and upper bound, and reported in Table 4.9 (top). Further, an uniform distribution was 

assumed for these parameters, which is common practice in the uncertainty and 

sensitivity analysis field to use non-informative priors in case of no data availability 

(Helton et al., 2003; Sin et al., 2011). 

Table 4.9. Input uncertainty for feedstock and products 

Input uncertainty Min. Max. References 

Corn stover cost ($/dry ton)  60 100 NREL (Swanson et al., 2010) 

Wood cost ($/dry ton)  60 100 NREL (Dutta et al., 2011) 

 Mean Std. References 

Gasoline price ($/gal)  3.53 0.21 U.S. EIA  

Diesel price ($/gal)  3.97 0.14 U.S. EIA  

Ethanol price ($/gal)  2.24 0.18 U.S. Department of Agriculture 

Correlation matrix between uncertain data (USDA, US EIA) 
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Correlation matrix Stover 

cost 

Wood 

cost 

Gasoline 

price 

Diesel 

price 

Ethanol price 

Stover cost  1 0 0 0 0 

Wood cost   0 1 0 0 0 

Gasoline price   0 0 1 0.71 0.12 

Diesel price  0 0 0.71 1 0.36 

Ethanol price  0 0 0.12 0.36 1 
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Figure 4.4. Fuel price ($/gal) in 2012 and the corresponding probability density 
function for gasoline (top), diesel (middle) and ethanol (bottom). 
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4.4 Discussion 

The expanded network provides an expanded space for optimization studies meaning 

that it can generate more scenarios to compare a large number of processing alternatives 

before generating an optimal decision for biorefinery designs, but it can also generate a 

large amount of data. 

The problem of optimal biorefinery design is data intensive with several categories of 

data (thermodynamic properties, kinetics, operating conditions or processing 

technologies), and it is therefore important to organize the data in a compact and generic 

way. This is achieved by defining and using a generic process model block. In this way, 

it becomes relatively easy to collect and summarize different types of data (kinetics, 

experimental data, thermodynamics properties, simulation results, operating conditions, 

etc.) from many resources (literatures, reports, etc.) following the generic data structure. 

Indeed, the generic model reduces the data needs to six parameters representing mixing 

( ), reaction ( ), waste ( ) and product separation ( ), 

which are obtained from experimental and rigorous simulation studies reported. 

Moreover, the resulting database and its structure can be used for cross-checking and 

validating data.  

The availability of informative data resources is important, also with the use of the 

generic model blocks, since the quality of the results strongly depends on the quality of 

the input data. In this study, therefore, peer-reviewed sources and reports from national 

and renowned institutes such as NREL-PNNL studies were used for several reasons: (i) 

the data are in general considered to be objective and of high quality as the data source 

(i.e. NREL-PNNL) confirms to quality check and assurance and remains impartial to 

technology developers; (ii) the studies are easily accessible through public resources 

(open literature, books, reports); and, (iii) the commercial technologies together with 

their improved process designs (heat integration, techno-economic analysis, etc.) are 

represented in the alternatives. For these reasons, the superstructure defined and data 

collected represents a technically realistic and validated database of biorefinery relevant 

processing technologies. The database can be accessed from the following link: 
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(http://www.capec.kt.dtu.dk/documents/biorefinery/InputData_biorefinery_for_public.x

ls).  

The database also features an option to include uncertainties for data by defining an 

appropriate statistical distribution function together with their parameters (e.g. lower 

and upper bounds for uniform distribution). This provides a means to assess quality of 

the data source – the larger the uncertainty, the lower the reliability of the data which 

affects the performance of the included alternatives. In this study, we considered raw 

material costs and product prices to be major sources of uncertainty and provided a 

corresponding uncertainty characterization. Such uncertainty information is valuable for 

making robust decisions as discussed elsewhere (Quaglia et al., 2013).  

The database will be maintained and expanded with more biorefinery relevant 

technology development efforts to keep it up-to-date and use it in our research for 

identifying optimal biorefinery concepts with respect to technical, economic and 

environmental objectives using the developed computer-aided synthesis and design 

toolbox.  

 

4.5 Conclusion 

The development of a superstructure and a database for thermochemical conversion and 

its integration with a biochemical conversion route were presented. The intensive data 

requirement of the biorefinery network design problem was addressed by using a 

structured and generic model to represent process alternatives. The structured and 

generic approach is important to manage and check the quality and consistency of 

multidimensional data. In the future, the database will be maintained and expanded with 

more biorefinery pathways and process alternatives, and will be used to perform multi-

criteria evaluation to identify optimal biorefinery concepts under various applications 

and optimization scenarios including sustainability metrics.  The biorefinery database 

features also characterization of important sources of uncertainties in data, which is 

valuable for assessing risk associated with biorefinery design as well as supporting risk-

based decision making during early project planning/development stages.  
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5.
CASE STUDIES I: INTEGRATED 

BIOREFINERY - THERMOCHEMICAL, 
BIOCHEMICAL CONCEPTS 

This chapter presents the development of a computer-aided decision support tool for 

identifying optimal biorefinery concepts for production of biofuels at an early design 

stage. To this end, the superstructure-based process synthesis approach integrated with 

uncertainty analysis is used. The developed superstructure, verified database and models 

from chapter 4 are used as the input in this chapter. The application of the tool for 

generating optimal biorefinery concepts for a lignocellulosic biorefinery is 

demonstrated. In particular, the mathematical formulation and solution of an 

optimization problem under deterministic and stochastic conditions is highlighted to 

identify the optimal processing route for multiple raw materials and products. 

Furthermore, the impact of market price uncertainties on the optimal solutions is 

evaluated, and the associated risk to enable informed and risk-aware decisions is 

calculated. 

 

This chapter is a modified version of an article which has been published in Industrial 

and Engineering Chemistry Research as Peam Cheali, Alberto Quaglia, Krist V. 

Gernaey and Gürkan Sin (2014), Effect of market price uncertainties on the design of 

optimal biorefinery systems - a systematic approach. 53(14), 6021-6032.  
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5.1 Introduction 

In a typical biorefinery, the system generally works by processing a bio-based feedstock 

to produce various products such as fuels, chemicals, or power/heat. As there are several 

feedstock sources, as well as many alternative conversion technologies to choose from 

to match a range of products, this creates a number of potential processing paths during 

the early stage of product-process design of biorefinery development. Therefore, during 

the early stage of planning and design, it is important to identify the optimal biorefinery 

processing path with respect to economics, consumption of resources, and 

sustainability, as well as considering the impact of uncertainties on decision making. 

As presented in chapter 2, a number of studies have been published on the synthesis and 

design of biorefinery networks focusing on different aspects of the challenges and 

opportunities of such a synthesis and design task. While each of these studies provided a 

valuable contribution, however the scope of the study was always limited to one 

processing/conversion platform (i.e. biochemical, thermochemical, chemical or 

biological platforms). In this chapter, this challenge is tackled by broadening the scope 

of biorefinery synthesis to consider thermo-chemical and biochemical platforms, 

simultaneously. 

Another challenge during the early stage of biorefinery planning and design is the 

enormous need for data and models as presented in Chapter 4. This challenge generally 

comes with uncertainty, both external (anticipated raw material and product prices, etc.) 

and technical (e.g. related to process performance metrics). This challenge needs to be 

formally addressed, and is often tackled by ad hoc based scenario analysis. With this 

background information in mind, the aim of this chapter is to develop a decision support 

tool for identifying optimal biorefinery concepts at the early stage of the project life 

cycle, while considering uncertainties inherently present at this stage of project 

development. 

To this end, a systematic methodology for process synthesis and design together with 

formal uncertainty analysis (presented in Chapter 3, Section 3.1) was applied. As 

mentioned earlier, the developed superstructure with the verified database and models 
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from chapter 4 was used as an input for optimization, in combination with the definition 

of a suitable feedstock. Following the definition of the superstructure, different 

optimization problems were solved: the deterministic problem, the deterministic 

problem under uncertainties and a stochastic problem were all solved with the final goal 

to identify the optimal solutions under uncertainties and to calculate the associated risk. 

5.2 Synthesis and design of biorefinery network under 

uncertainties: results and discussion 

In this section, the application of the framework to the formulation and solution of the 

biorefinery design problem is demonstrated, and the results obtained for different 

scenarios are discussed.  

5.2.1 Step 1: Problem formulation: (i) problem definition; (ii) superstructure 

definition and data collection; (iii) model selection and validation  

The goal of the problem was the identification of the optimal biorefinery concept, with 

respect to a given techno-economical objective. Four objectives have been considered, 

resulting in the definition of 4 scenarios for the analysis, which have the following 

objectives: (1) maximize production of FT-products (FT-gasoline and FT-diesel); (2) 

maximize Earnings Before Interest, Taxes, Depreciation and Amortization (EBITDA) 

for FT-products; (3) maximize production of bioethanol; (4) maximize Earnings Before 

Interest, Taxes, Depreciation and Amortization (EBITDA) for bioethanol production.  

The developed superstructure (combining thermochemical and biochemical processing 

routes, which was to convert corn stover or wood to biofuels and bioethanol, Figure 

4.1), and the collected data from the previous chapter are used as a basis for this 

chapter, and these tasks are therefore not described in the present chapter. 

 
5.2.2 Step 2: Uncertainty characterization 

In this step, the most relevant sources of uncertainties based on the data analysis were 

identified and characterized using statistical distribution functions. The uncertainties of 
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market prices (raw material cost and product prices) identified in chapter 4 as the 

important sources affecting the decision concerning the biorefinery design are also used 

as the input for this chapter. We are of course aware of the fact that other sources of 

uncertainties are present in the system such as uncertainties in technical performance 

data (yield, conversion, utility consumption, etc.). These uncertainties are kept outside 

of the scope of this study for the sake of simplicity, but also because many pilot and 

demonstration scale studies as well as NREL and PNNL studies have demonstrated the 

feasibility of the technological alternatives. 

Selection and characterization of uncertainties 

It is obvious that the feedstock costs (corn stover and wood costs) and biofuels prices 

have fluctuated considerably in the past, e.g. in the year 2012 (USDA; US EIA). These 

inputs were therefore selected as major sources of uncertainties. The probability density 

functions were estimated empirically from the historical observations for these market 

prices and were used to infer a proper statistical distribution function. The analysis was 

presented and explained in chapter 4, indicating that feedstock costs and product prices 

can be characterized as uniform and normal distributions, respectively.  

Sampling with correlation control 

The parameters of the distribution (Table 4.9, top) together with the correlation matrix 

(Table 4.9, bottom) were used to generate 200 samples (Figure 5.1) from this defined 

uncertainty domain by using Latin Hypercube Sampling with the correlation control 

method. As regards the correlation matrix, it is noted that the correlation coefficients for 

fuel products were identified from historical data, whilst no correlation was assumed 

between feedstock costs and product market prices as no information or data were 

available to this end. 
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Figure 5.1. The sampling results with correlation control of corn stover cost (P11), 
wood cost (P12), gasoline price (P3122), diesel price (P3123), ethanol price (P3131). 

 

As a result (Figure 5.1) of the sampling procedure, 200 samples representing future 

scenarios defined by different sets of feedstock costs and product prices were defined. 

In the uncertainty domain defined for the analysis, these samples have equal probability 

of realization. 

5.2.3 Step 3: Deterministic formulation and solution 

Mathematical formulation 

The optimization problems for different scenarios of objective functions were solved in 

this step. The full optimization formulation used for this study is presented below. 

The objective functions, 
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Scenario-1: (5.1) 

Scenario-2: (5.2)

Scenario-3: (5.3) 

Scenario-4: (5.4) 

Subject to the following constraints: 

(i) process models: material balances of the generic block 

Raw materials, 

(5.5)

Mixing-1: main equation, 

(5.6)

Mixing-2: chemicals or utilities used, 

(5.7)

Reaction, 

(5.8)

Waste separation, 

(5.9)

(5.10)

Product separation, 
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(5.11)

(5.12)

 (ii) process constraints: rules defining the superstructure together with the flow 

constraints, 

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

 (iii) structural constraints: to define the extended superstructure (the referenced 

number presented with decision variable (y) refers to the process intervals presented in 

Figure 4.1) 

Raw materials, 

(5.19)

 

Processing step 1: pretreatment (thermochemical) together with a size reduction step 

(biochemical), 

(5.20)

Processing step 2: primary conversion (thermochemical) together with pretreatment 

(biochemical), 

(5.21)

Processing step 3: gas cleaning and conditioning (thermochemical) together with 

hydrolysis (biochemical), 
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(5.22)

Processing step 4: product synthesis (thermochemical) together with fermentation 

(biochemical), 

(5.23)

Processing step 5: product separation and purification, 

Thermochemical: 

(5.24)

Biochemical: 

   (5.25)

(5.26)

(5.27)

 (iv) cost models 

Operating cost, 

) +  ( (5.28)

 

 

Capital cost: (i) data collected and (ii) piecewise linearization, 

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
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(v) optimization constraints: big-M formulation, 

(5.34)

(5.35)

(5.36)

(5.37)

Results 

In this step, the optimal solutions were also identified under the aforementioned specific 

scenarios of the nominal data (or mean values) and the results are presented in Table 1 

illustrating the comparison results between different specific optimization scenarios. 

Production rate, EBITDA and total annualized cost (TAC) as well as the optimal 

processing paths were presented. This solution corresponded to the deterministic 

solution of the optimization problem where no uncertainties were considered. The 

formulation of the optimization problem for the specific scenarios (scenario 2) consists 

of 3,887,985 equations, 3,858,131 variables and 612 discrete variables. This problem 

was solved using the DICOPT solver using Windows 7, Intel® Core™ i7 CPU@ 

3.4GHz, 4GB RAM, and required 10 seconds of execution. 

Table 5.1. The optimization results and comparison to the reference studies (Processing 
paths referred to Figure 4.1) 

Sce-
nari-

os 

Objective 
function 

Process 
intervals
selection

(Figure 4.1) 

FT produc-
tion 
(tpd) 

EBITDA
(MM$/year) 

TAC
(MM$/year) References 

1 Max. FT-
products 

2 4 6 15 16 
21 83 84 171a, 403b 205 92 

This study 
2 

Max. FT-
products 

sales, min. 
utility, 
waste, 

investment 

2 5 6 14 16 
21 83 84 170a, 402b 210 88 

NREL (thermo-
chemical) 

1 4 6 12 16 
21 83 84 111a, 262b 105 91 Swanson et 

al. (2010) 

PNNL (thermo-
chemical) 

2 5 11 20 83 
84 245a, 311b 149 133 Jones et al. 

(2009) 
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Sce-
nari-

os 

Objective 
function 

Process 
intervals
selection

Ethanol
production

(tpd) 

EBITDA
(MM 

USD/year) 

TAC (MM 
USD/year) References 

3 Max. Etha-
nol 

2 4 6 15 18 
22 85 91 600 86.2 102 

This study 
4 

Max. Etha-
nol sales, 

min. utility, 
waste, 

investment 

2 5 6 14 17 
22 85 91 590 86.6 79 

Max. Ethanol 
(biochemical) 

1 24 26 32 
39 40 41 42 
43 44 45 50 

54 81 91 

556 58 98 Zondervan et 
al. (2011) 

Max. Ethanol - 
min.utility, waste, 

equipment cost 
(biochemical) 

1 23 25 33 
39 40 41 42 
43 44 45 49 

54 81 91 

520 51 95 Zondervan et 
al. (2011) 

NREL (biochemi-
cal) 

2 5 9 15 18 
22 85 91 544 75 79 Dutta et al. 

(2011) 

NREL (biochemi-
cal) - 527 55.5 92.5 Foust et al. 

(2009) 

NREL (thermo-
chemical) - 589 75 90 Foust et al. 

(2009) 
aFT-gasoline, bFT-diesel 

 

As presented in Table 5.1, the entrained-flow gasifier (block no. 6) was the favourite 

alternative due to its higher raw syngas yield and high biomass conversion. Woody 

biomass (block no. 2) was also the favourite feedstock due to its high carbon content. 

The scenarios 1 and 2, which were to produce transportation fuels (FT-gasoline and FT-

diesel) had a higher EBITDA compared to scenarios 3 and 4 (in Table 5.1) because of 

higher market prices, even though higher costs were presented. The total annualized 

costs (capital and operating costs) had a direct effect on the optimal solution. The 

feedstock costs, on the contrary, have no effect on the optimal solutions in this case 

study because similar market prices were defined. Moreover, in comparison, the new 

optimal processing paths show a better production rate with reduced TAC. 

In addition to the optimal solution, the top-five optimal solutions are presented in Tables 

5.2a-5.2d for the four scenarios mentioned earlier. Each table presents the objective 

value, production rates, EBITDA and total annualized cost (TAC). 
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Table 5.2. Top-five rank of the optimal solutions 

5.2(a): Top-five rank of the optimal solutions: scenario 1: max. production of FT-products 

Rank
no. 

Process intervals selec-
tion 

Objective 
value 

Production 
(tpd) 

EBITDA
(MM 

USD/year) 

TAC (MM 
USD/year) 

1 2 4 6 15 16 21 83 84 171a, 403b 171a, 403b 205 92 

2  2 5 6 14 16 21 83 84 170a, 400b 170a, 400b 210 88 

324 2 5 11 20 83 84 245a, 311b 245a, 311b 149 133 

4 2 5 8 15 16 21 83 84 141a, 334b 141a, 334b 170 77.5 

5 2 4 8 14 16 21 83 84 138a, 327b 138a, 327b 166 76 
5.2(b): scenario 2: max. FT-products sales, min. operating cost and investment cost (max. 

EBITDA)

Rank
no. 

Process intervals selec-
tion 

Objective 
value 

Production 
(tpd) 

EBITDA
(MM 

USD/year) 

TAC (MM 
USD/year) 

1 2 5 6 14 16 21 83 84 210 170a, 400b 210 88 

2  2 4 6 15 16 21 83 84 205 171a, 403b 205 92 

3 2 5 8 15 16 21 83 84 170 141a, 334b 170 77.5 

4 2 4 8 14 16 21 83 84 166 138a, 327b 166 76 

526 2 5 11 20 83 84 75 160a, 160b 75 89 

5.2(c): scenario 3: max. production of bioethanol 

Rank
no. 

Process intervals selec-
tion 

Objective 
value 

Production 
(tpd) 

EBITDA
(MM 

USD/year) 

TAC (MM 
USD/year) 

1 2 4 6 15 17 22 85 91 600 600 86.2 82 

2  2 5 6 15 17 22 85 91 600 600 85.2 83 

3 2 5 6 14 17 22 85 91 590 590 86.6 79 

4 2 4 8 15 17 22 85 91 565 565 86.2 73 

510 1 24 26 32 39 40 41 42 
43 44 45 50 54 81 91 556 556 58 98 

5.2(d): scenario 4: max. ethanol product sales, min. operating cost and investment cost (max. 
EBITDA)

Rank
no. 

Process intervals selec-
tion 

Objective 
value 

Production 
(tpd) 

EBITDA
(MM 

USD/year) 

TAC (MM 
USD/year) 

1 2 5 6 14 17 22 85 91 86.6 590 86.6 79 

2 2 4 6 15 17 22 85 91 86.2 600 86.2 82 

3 2 4 8 15 17 22 85 91 86.2 565 86.2 73 

4 2 5 6 15 17 22 85 91 85.2 600 85.2 83 

523 2 5 8 15 18 22 85 91 77 544 77 76 
aFT-Gasoline, bFT-Diesel 
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The optimal solutions for producing FT-gasoline, -diesel and bioethanol are presented in 

Table 5.2 (5.2a-5.2b and 5.2c-5.2d, respectively). The results illustrate that the 

thermochemical conversion platform (pyrolysis, gasification) was most of the time 

selected. In contrast, there was only a single processing path of the biochemical 

platform selected, ranking fourth (as shown in Table 5.2c). Wood, entrained flow 

gasifier and catalytic reformer together with DEPG acid removal were the most 

frequently selected processing intervals. Moreover, the differences between the top-

three ranking solutions are small meaning that the input data are very important. This 

issue will be addressed in more detail in future work by performing uncertainty analysis 

on uncertain parameters of the selected biorefinery alternatives. 

5.2.4 Step 4a: Solution under uncertainty - deterministic condition 

For each of the 200 samples generated in step 2, the optimization problem was 

formulated and solved to identify the optimal processing path, resulting in 200 optimal 

solutions, which are then statistically analysed for example using a cumulative 

distribution function (CDF) to fully characterise the effect of uncertainties on the 

decision making. The full results were then mapped and analysed, in order to identify 

the optimal solution under uncertainties. The processing paths, frequency of selection 

and their objective value are presented in Table 5.3 and Figure 5.2. 

Table 5.3. The frequency of selection of the optimal processing paths for 200 scenarios 

Network no. Processing path Frequency of 
selection

EBITDA
(MM$/a) 

1 2 4 6 15 16 21 83 84 83/200 138-230 
2 2 5 6 14 16 21 83 84 74/200 140-197 
3 1 4 11 20 83 84 18/200 133-195 
4 1 5 11 20 83 84 16/200 146-177 
5 1 5 10 20 83 84 7/200 154-175 
6 1 5 6 14 16 22 83 84 2/200 138-173 
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Figure 5.2. Uncertainty mapping and analysis: the frequency of selection of the optimal 
processing paths. 

As can be seen in Table 5.3 and Figure 5.2, with 200 potential scenarios resulting from 

considering uncertainties, there were 6 processing paths selected and network 1 (first 

bar on the left) and network 2 (second bar on the left) were good candidates under 

uncertainties. Then, the internal rate of return (IRR) was used in order to analyze and 

evaluate the different potential engineering projects resulting from the optimizations. 

IRR is an indicator of the efficiency, quality, or yield of an investment. IRR is 

commonly used to evaluate the desirability of investments or projects (Schmidt, 2004). 

IRR is mathematically equal to the internal rate of return where net present value (NPV) 

is zero, . The higher a project's IRR, the more desirable it is to 

undertake the project. 

In Figure 5.3 (left and right), the impact of market price uncertainties on the IRR for 

network 1 and 2 is  presented in terms of IRR cumulative distribution functions (CDF), 

from which the probability of obtaining a return equal to or higher than a given 

threshold value can be obtained. 

In order to highlight the application of this tool, a company that has a target IRR for 

engineering projects of 10% within 20 years of project life time is assumed. For the 
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network 1, the CDF indicates that there is a 10% probability of failure to reach this 

target IRR of the company (hence Pr (IRR<10%) is 0.1). For the network 2, the 

probability of failure to reach the target IRR (10%) is 15%, hence Pr(IRR<=10%) . This 

provides the probability of occurrence of an undesirable situation. 

For a more complete picture of uncertainties, risk analysis is usually needed. Risk is 

defined as the product of probability of occurrence and its consequences (Crowl et al., 

2002). The consequence in this case is defined as lower rate of economic return of an 

engineering project making it a bad investment option. Hence, the risk is calculated as 

the product of the probability of occurrence ( ) of a lower rate of return (IRR) (within 

20 years of project investment life time) times the magnitude of the economic impact of 

the risk ( in $) as follows: , where  is the occurrence of the 

undesirable event,  is the probability of that occurrence and is the consequence (in 

$) of the undesirable event. The calculation of risk is in fact equal to the integral of the 

area highlighted in the cumulative distribution function for IRR shown in Figure 5.  In 

this calculation, EBITDA corresponding to IRR at 10% is assumed as break-even point, 

hence the risk in economic terms is calculated as the summation of probability of 

occurrence times the deviation of EBITDA from the break-even point: 

]. The risk calculation is summarized for 

network 1 and network 2 in Table 5.4 (above). The results indicate that there is a risk of 

0.84 MM$/a versus 1.35 MM$/a for network 1 and network 2, respectively. Relative to 

the expected return the risk can be considered small at hindsight. However, the absolute 

risk number calculated in this study reflects the market uncertainties definition (see step 

5.2.2) and is intended for illustration purposes on how the market uncertainty can be 

included in economic evaluation of the project. For a more comprehensive analysis, it is 

noted that the scenario definition for the market price uncertainties and investment costs 

(capital, interest rates, depreciation etc.) should be provided following typical corporate 

guidelines. All in all the risk calculation indicates that network 1 is a safer investment 

option compared to network 2. 

83



CASE STUDIES I: Integrated biorefinery - thermochemical, biochemical concepts 
 

82 
 

Table 5.4. The comparison of risk occurring under uncertainties and the distribution 
characterization of %IRR between network 1 and network 2 

 Units Network 1 Network 2 

A quantified economic risk 

Total investment (MM$) 575 600 

Expected return (MM$/a) 210.25 205 

Risk (MM$/a) 0.84 1.35 

Data characterization 

Frequency of selection - 83/200 74/200 

Average IRR (%) (%) 11.06 10.99 

Standard deviation of IRR - 0.94 1.19 

*Risk is calculated for a break-even at IRR of 10%. 
 , which is the area under CDF (Figure 5.3). 

 

Moreover, with respect to the data characterization presented in Table 5.4 (below), the 

standard deviation of network 1 is lower confirming that the network 1 is more robust 

under uncertainties, which is in agreement with the risk analysis performed for the 

economic return of biorefinery investment options above. This information provides a 

deeper analysis and insights on the risks due to a defined source(s) of uncertainties on 

the technology/biorefinery concept selection at the early stage.  
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Figure 5.3. Uncertainty mapping and analysis: the probability distribution of %IRR for 
network 1 (left) and network 2 (right). 

5.2.5 Step 4b: Solution under uncertainty – stochastic conditions 

In this step, the domain of uncertainty defined in step 2, and used in step 4, was used 

again. Instead of performing the optimization individually for each uncertain 

combination of input data, a stochastic programming was formulated and incorporated 

into the optimization problem. In this problem, the uncertain data are raw material costs 

( ) and product prices ( ). Therefore, the equations 5.4 and 5.28 were re-

formulated by adding the uncertainty domain to the domain of the parameter as follows. 

(5.38)

) + (5.39) 
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The result of this step is 210.215 (MM$/a) which is lower than the result of step 3 

because of the effect of uncertainties. The result of the optimal solution under 

uncertainties was presented in Table 5.5. 

Report generation 

As explained earlier in the previous section, this section presents the results of the 

indicators presenting the effect of uncertainties in Table 5.5. All the results obtained 

from each step (step 5.2.3-5.2.5), were used to determine each indicator. 

Table 5.5. Report generation (Processing paths refer to Figure 4.1) 

Solutions Processing paths EBITDA (MM$/a) 

Optimal network  
(step 5.2.3, scenario 2) Wood, entrained-flow gasifier, steam re-

forming, Fischer-Tropsch, Hydroprocessing 

210.24 

Network under uncertain-
ties (step 5.2.5) 210.215 

Indicators EVPI (MM$/a) VSS (MM$/a) UP (MM$/a) 

Network under the effect 
of uncertainties (step 

5.2.3-5.2.5) 
0.09 0 0.025 

 

As shown in Table 5.5, the same process topology was selected and this confirms 

therefore the robustness of the deterministic solution. The analysis of the uncertainty 

indicators (EVPI, VSS and UP) confirms this observation. A small value is obtained as 

Expected Value of Uncertainty Information (EVPI), indicating that the exact knowledge 

of the uncertain data (market price) would not allow identifying a better solution than 

the one already identified in the deterministic case. Moreover, the Value of Stochastic 

Solution (VSS) is zero, since the solution obtained under uncertainty is equal to the one 

obtained for the deterministic case. Similarly, a small value is obtained as Uncertainty 

Price. This is due to the fact that the same solution remains optimal over the uncertainty 

domain, whose symmetric structure results in a balance between positive and negative 

effects of data uncertainty on the objective function value. It is important to note that 

there is no requirement to include a risk reduction step due to the small impact of 

uncertainties. 
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5.3 Discussion 

The results of each step of the framework presented earlier confirms that a wide range 

of biorefinery designs can be compared, ranked and new optimal processing paths were 

found by following the framework. However, a number of issues need to be discussed. 

The superstructure of the thermochemical platform considered raw materials and 

processing technologies to produce two major products mainly used for industries: (i) 

transportation fuels (in this study, FT-gasoline, FT-diesel); (ii) bioethanol. Furthermore, 

the superstructure considered two major, commercial raw materials (corn stover and 

wood). A number of appropriate alternatives were considered based on the NREL and 

PNNL studies including the general, commercial and well-studied technologies. In 

parallel many studies performed systematic selection of technology, heat integration, 

pinch analysis, life cycle assessment, sensitivity and sustainability analysis which 

resulted in the superstructure that is able to cover all of the potential alternatives. The 

extended biorefinery networks (combined thermochemical and biochemical platforms) 

were developed to expand the design space, meaning that it can compare more 

platforms, processing paths, and alternatives. The extended networks can also generate 

more scenarios, solutions and satisfy more requirements and specifications of end-users 

(engineers, researchers, managers, etc.). As can be seen, the new optimal processing 

path can be successfully identified using the approach and methodology, resulting in a 

significant improvement and reduction of product yield and costs, respectively. This 

implementation and improvement provides a more robust optimal solution. Moreover, a 

relatively high number of initial ideas can be reduced into a smaller number prior to 

evaluating the final decisions. Alternatively, the bottleneck can be identified for the 

existing processes, and this can also help end-users (e.g. engineers) improving their 

processes. 

The plausibility and feasibility of the optimal solutions were also checked and discussed 

as follows. For the primary conversion task (processing task 2, Figure 4.1), the 

comparison among the gasification technologies has been studied by Zhang (2010) and 

it was concluded that entrained-flow gasification is the most promising gasification 

technology which is an agreement with the study of Boerrigter et al. (2004). Moreover, 
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van der Drift et al. (2004) have also reported a high conversion efficiency of entrained 

flow gasification and also concludeded that the similar pretreatment and gas cleaning 

processes as obtained here provided the highest overall efficiency to convert biomass to 

clean syngas (H2/CO=2). An entrained flow gasifier has been commercially used for 

coal gasification processes that are part of the manufacturing operations of Shell, Teaco, 

Krupp-Uhde, Dow, MHI, etc. Recently, it has been adapted and widely used for 

biomass conversion by CHOREN, Range Fuel, KIT with Siemens, MHI and Pearson 

technology (E4tech, 2009). These aforementioned studies confirm and verify the 

selection of the entrained flow gasifier in this study. For the gas cleaning and 

conditioning (processing task 3, Figure 4.1), raw syngas containing tar/heavy 

hydrocarbons and raw syngas containing a little fly-ash/slag are produced from the 

fluidized-bed gasifier and the entrained flow gasifier, respectively. The produced tar 

needs to be removed or converted by catalytic conversion (Gassner et al., 2009) or 

scrubbing liquid (Boerrigter et al., 2004). On the other hand, raw syngas from the 

entrained flow gasifier contains lower impurities and is easier to clean, however the 

H2/CO ratio needs to be adjusted resulting in a high amount of CO2 which needs to be 

removed. In this task, the process configuration, which depends on a downstream 

application, has a major effect on the process selection resulting in an optimized 

arrangement of unit operations and recycles (Swanson et al., 2010; Zhang, 2010; 

Clausen, 2011; Kumar et al., 2009). This confirms the selection results that the recycle 

flow rate and the sequence of unit operations are the critical points and should be 

optimized. For the fuel synthesis task (processing task 4, Figure 4.1), there are two 

major processes producing fuels which are Fischer-Tropsch and Methanol to Gasoline 

(MTG) presented by Spath & Dayton (2003). However, only Fischer-Tropsch is 

considered in this study because MTG can only produce gasoline (Baliban et al., 2012; 

Zhoa et al., 2008). Fischer-Tropsch is a promising process producing clean synthetic 

fuels (straight-chain paraffin) directly from syngas (Baliban et al., 2012; Boerringer et 

al., 2004). The hydroprocessing unit is required to treat FT-liquids and convert wax into 

the suitable fuels. Moreover, ethanol can also be produced directly from syngas via 

alcohol synthesis (Spath & Dayton, 2003). The aforementioned studies indicate that FT 

and alcohol synthesis are the promising alternatives. In addition, pyrolysis is also 

considered as one of the promising technologies for biomass conversion and utilization, 
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however, having an efficient technology available for upgrading a pyrolysis-oil is 

crucial (Mohan et al., 2006) because of the presence of a substantial amount of water 

and mixed oxygenated compounds. Moreover, the different types and operation modes 

of pyrolysis produce different compositions of pyrolysis-oil which leads to different 

process configurations of the upgrading processes (Bridgwater, 2012). This confirms 

that there was no selection of the pyrolysis pathway from the superstructure because of 

the high total annualized cost of the upgrading processes. In addition to the biochemical 

platform, the type of feedstock presents a significant impact on the conversion 

platforms: herbaceous biomass (agricultural residue and energy crops) is suitable for 

biochemical conversion; in contrast, wood is suitable for the thermochemical platform 

(Foust et al., 2009). The thermochemical platform produces a higher amount of product, 

although it has a higher total annualized cost resulting in a very comparable operating 

profit when comparing both platforms. Each platform has its individual strengths and 

weaknesses. However, the objective functions defined in this study (maximizing 

products and maximizing operating profit) lead to no selection of the biochemical 

platform because lignin utilization is not considered. The results are in agreement with 

the comparison study in the thesis of Falano (2012). In addition to product portfolio, 

this study focuses on converting biomass into transportation fuels which are FT-

gasoline, FT-diesel and bioethanol. Building on these results, further work is directed at 

exploring more biorefinery concepts including the lignin utilization in a hybrid manner 

as well as the multi-product biorefinery considering more diversified chemical products 

and by-products such as DME, methanol, H2, fertilizer, etc. 

The input data and its quality are of major significance as they directly influence the 

optimal solution. Therefore, uncertainty analysis was used in order to estimate and 

predict the probabilities and economic risks of the optimal solution under market 

uncertainties. As uncertainty analysis clearly demonstrated that there is a considerable 

risk in decision metrics concerning the optimal biorefinery concept, hence this shows 

the importance of both formally treating the uncertainties as well as – if possible – 

making an investment to reduce the sources or magnitude of uncertainties. Three 

indicators (EVPI, VSS, UP) also highlight the effect of the uncertainties on the solutions 

and they indicated that the uncertainty of market prices had an impact on the expected 
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performance of the optimal design, although the process topology did not change under 

the defined uncertainty domain regarding the linearity and symmetry of the problem. 

This is proven by the Basic Sensitivity Theorem (Fiacco & Bank, 1984) in which there 

is a linear relationship between the value of an uncertain parameter ( ) and the value of 

the objective function of the linear problem (Eq. 5.40). 

(5.40) 

Therefore, it is proven that for the linear problem, at the optimal network ( ) - at the 

point in the uncertainty domain ( ), the same feasible and optimal solutions exist when 

comparing deterministic ( ) and stochastic solutions 

( ). 

Alternatively, the optimal flexible network concept (step 5, 3.5.1) can be applied to 

manage the uncertainties by selecting more than one processing technology, and then 

choosing the best one to be operated after the uncertainties are known better. This 

alternative method was successfully shown to be the most favorable choice in an earlier 

study (Quaglia et al., 2013). Sensitivity and uncertainty on process performance and 

investment cost related parameters can complement further the economic risk evaluation 

of the optimal biorefinery concept during early project planning/development stages. 

5.4 Conclusion 

The extended biorefinery network coupled with a superstructure optimization based 

approach and uncertainty analysis framework was presented and discussed. The optimal 

solutions show that wood, entrained-flow gasifier, steam reforming, acid removal 

(amine) and the optimized recycles were favorable. Two optimal solutions analyzed 

under market price uncertainties revealed significant economic risks in the range of 0.84 

and 1.35 MM$/a. This analysis helps identify and quantify the economic risk of 

investment in biorefinery concepts and technology at the early stage and is expected to 

contribute to more robust decision making. 
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6.
CASE STUDIES II: UPGRADING BIOETHANOL 

TO VALUE ADDED CHEMICALS 

The upgrading strategies to improve the overall economy of the lignocellulosic biore-

finery are presented in this chapter. First, the superstructure representing the lignocellu-

losic biorefinery design network (presented in Chapter 4 and analyzed in Chapter 5) is 

extended to include the options for catalytic conversion of bioethanol to value-added 

derivatives. Second, the optimization problem for biorefinery upgrading is formulated 

and solved for two different objective functions: (i) maximization of operating profit 

(i.e. the techno-economic criteria); and (ii) minimization of the sustainability single in-

dex ratio (i.e., the sustainability criteria). This chapter aims to (i) improve overall econ-

omy of the lignocellulosic biorefinery presented in Chapter 5, (ii) compare the solutions 

with petro-based processes using sustainability index; and (iii) analyze the impact of 

market prices uncertainties. The results are presented and discussed in detail. 

 

This chapter is a modified version of a paper which has been published in Journal of 

Biomass and Bioenergy as Peam Cheali, John A. Posada, Krist V. Gernaey and Gürkan 

Sin (2015), Upgrading of lignocellulosic biorefinery to value added chemicals: sustain-

ability and economics of bioethanol-derivatives. Biomass and Bioenergy, Vol. 75, p. 

282-300.  
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6.1 Introduction 

An important concept related to the efficient processing of renewable feedstock into 

bio-based products is the “integrated biorefinery”, which aims to convert all biomass 

fractions into a range of marketable products. This concept can be identified as “the 

integrated production of bio-based chemicals, biofuels, bio-based polymers, 

pharmaceuticals, food and/or feed” (adapted from Cherubini and Strømman, 2011). 

However, for this integrated production there are usually multiple bio-based feedstocks 

and conversion technologies that match a range of pre-defined products, resulting in a 

large number of potential processing combinations and production paths for the 

conceptual design of biorefineries (Aden et al., 2004). Therefore, during the early stage 

of planning and design, a methodology capable of rapidly reducing the number of 

alternatives, and thus reducing the complexity of the design problem, would strongly 

support decision-making in the early stage of the conceptual design (Klatt and 

Marquardt, 2009).  

There are, however, a number of challenges related to the synthesis and design of 

biorefinery systems (as presented in chapter 2), for example: (a) challenges to achieve 

the maximum efficiency with improved designs as well as expansion by integration of 

conversion platforms (e.g. biochemical and thermochemical) or upstream and 

downstream processes; (b) challenges to account for a wide range of feedstocks and 

formulate local/regional solutions instead of solutions on a global basis as is the case for 

fossil-fuel based processes; (c) challenges to take several dimensions of the design 

problem into account (i.e. feedstock characteristics, feedstock quality and availability; 

trade-offs between energy consumption for feedstock and product distribution, 

production and product market prices).  

To overcome these challenges, a number of studies on lignocellulosic biorefineries have 

been performed in the past covering different areas, e.g. supply-chain, process synthesis 

and design, and product design. These studies looked at different aspects of the 

biorefinery concept such as type of feedstock, processing technologies, and products as 

reviewed by Yuan et al. (2013). Moreover, most of these aforementioned studies deal 

with bioenergy and biofuels production, in particular with bioethanol as end product. 
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However bioethanol can be used as intermediate feedstock to further synthesize and 

produce a large number of higher value-added chemicals, which can improve the overall 

economy of the biorefinery (Zwart, 2006; Posada et al., 2013). This study therefore 

expands the scope of the biorefinery concept in two ways: (a) by simultaneously 

considering both thermochemical and biochemical conversion technologies in the 

design space; and, (b) by considering upgrading bioethanol to produce value-added 

chemicals.  

Therefore, this chapter aims to address the problem of finding an optimal upgrading 

strategy for lignocellulosic biorefineries towards production of bioethanol derived 

value-added chemicals. A systematic evaluation methodology is used which was 

developed on the basis of earlier studies (chapter 4 and chapter 5). In particular, the 

following is presented: (i) an extension of the lignocellulosic biorefinery superstructure 

by including the processes needed for bioethanol upgrading into value-added chemicals 

to improve the overall biorefinery economy; and, (ii) a comparison of two objective 

functions (i.e. techno-economic and sustainability) under market uncertainties. The 

techno-economic objective function considers the operating profit, while the 

sustainability objective function is a multi-criteria index that compares the bio-based 

reference system to its equivalent petrochemical counterpart, and which considers: 

techno-economic aspects of feedstock and products, greenhouse gas emission (GHG) 

and cumulative energy demand (CED) of raw materials and processes, hazards 

indicators of all chemicals present in the system and economic aspects related to 

external agents. 

6.2 Materials and methods 

As mentioned earlier, two objective functions are used for two analyses in this chapter: 

the first one is a purely techno-economic evaluation (i.e. maximization of Earnings 

Before Interest, Taxes, Depreciation and Amortization (EBITDA) for producing 

bioethanol-derivatives, while the second one is a simplified version of the comparative 

early stage sustainability assessment method for bio-based materials. A description of 

both functions is provided below. 
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6.2.1 Techno-economic analysis of ethanol derivatives (maximization of 

operating profit) 

This first objective function aims to identify the optimal processing paths which provide 

the highest annual profit or EBITDA (MM$/a) as presented in Eq. 6.1. Product sales are 

calculated based on the predicted amount of bioethanol-derivatives to be produced 

combined with product market prices. Moreover, the total annualized cost (TAC) 

consists of an annualized capital cost and operating cost as presented in Eq. 6.2. 

(6.1)

(6.2)

In this study, the capital investment for bioethanol conversion processes is estimated 

using the order of magnitude approach (Towler and Sinnott, 2013) ( ) based 

on the relevant information (capacity and investment) of the existing plant.  

represents the required capital at a volume y,  represents the required capital at a 

volume x,  and  represent the volume y and volume x, respectively; n is an exponent 

varied between 0.5-0.9 based on the type of process considered (i.e. n = 0.6 is an 

average value of this exponent across the whole chemical industry (Towler and Sinnott, 

2013)). Moreover, when the operating cost (MM$/a, excluding the raw material costs) is 

unable to be estimated, the rule of thumb of 2% of the total capital investment can 

roughly be used. This method has for example been applied by Dow Chemical 

(Anderson, 2009) in the early stage design where the lack of complete information is 

most prominent.  

Furthermore, during the project evaluation, EBITDA is then transformed to the internal 

rate of return (IRR) using Eq. 6.3 for an improved analysis and evaluation of the 

economic potential of the engineering projects resulting from the optimizations – the 

higher a project's IRR, the better.  
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(6.3)

Subsequently, the probability of failure to reach the target IRR is calculated, and the risk 

analysis is performed. Risk is defined as the product between probability of occurrence 

and its consequences (Crowl and Louvar, 2002) where these are lower than the defined 

favorable target.  

6.2.2 Sustainability analysis (min. sustainability single index ratio) 

The early-stage sustainability assessment method was developed to allow a quick 

preliminary analysis of chemical conversion routes for bio-based products within a 

broader sustainability context (it contains elements of green chemistry, techno-

economic analysis and environmental life-cycle assessment (LCA)). The method 

evaluates a (novel) proposed chemical route against a comparable existing process using 

a multi-criteria approach that combines five dimensionless quantitative and qualitative 

proxy indicators (describing economic, environmental, health and safety and operational 

aspects) in a single score index (Posada et al., 2013; Patel et al., 2012). These five proxy 

indicators are briefly described below. A full description is available in an earlier study 

(Posada et al., 2013), while the general aspects of the methodology are briefly recalled 

below. 

The economic constraint (EC) is defined as the ratio of raw material costs 

( ) to product sales ( ) as represented by Eq. 6.4. Therefore, a 

lower ratio reflects a higher economic potential. This index aims to evaluate the 

economic viability for a new project or an early-stage process design.  

(6.4)

Environmental impact of raw material (EIRM) is determined by the cumulative energy 

demand (CED) and the greenhouse gas (GHG) emissions of the raw material as 

represented by Eq. 6.5. The two impact categories (CED and GHG) are considered 

equally important with equal contributions to EIRM, i.e. 50% each. CED is the total 

energy consumption of a cradle-to-factory gate system for feedstock production. GHG 
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emissions reflect the use of fossil resources for feedstock production. The used values 

include fossil carbon embedded in the product, following a cradle-to-grave approach. 

This approach was applied based on the assumption that the embedded carbon would be 

released at a later point in time by either waste incineration or by the action of micro-

organisms in the case of organic chemicals.  

In the case of multi-product systems, an economic allocation factor (AF) is additionally 

applied to ensure a suitable assessment as presented by Eq. 6.6 which is the ratio 

between sales of main products ( ) and total product sales ( ). 

(6.5)

(6.6)

Process cost and environmental impact (PCEI) indicates the process complexity and 

therefore indirectly represents the process cost, energy use and emissions associated to 

the reaction and separation stages. PCEI is estimated based on 7 subcategories 

(represented by Eqs. 6.7 – 6.15) namely: 1) presence of water in the outlet; 2) product 

(molar) concentration in the outlet; 3) minimum boiling point difference between main 

product and other products in the outlet stream; 4) mass loss index (MLI); 5) reaction 

enthalpy; 6) number of co-products; and 7) requirement of feedstock pre-treatment. The 

last category is especially useful when the pre-treatment technology has not been 

defined at the early-stage design, and the aim of the analysis is only the intermediate or 

final conversion step. These categories are scored between 0 and 1 for low and high 

impacts, respectively. 

(6.7)

. (6.8)

(6.9)

(6.10)
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(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

Environmental-Health-Safety index (EHSI) represents a proxy measure of the EHS 

characteristics of a chemical process. EHSI is estimated based on 3 categories and 10 

subcategories as shown by Eq. 6.16: i) the environmental category consists of 

persistency (half-life in water), air hazard (index value of chronic toxicity), water hazard 

(L(E)C50 aquatic, R-codes) and solid waste; ii) the health category consists of irritation 

(EU-class, R-codes, LD50dermal) and chronic toxicity (EU-class, GK, R-codes); iii) the 

safety category consists of mobility (partial pressure, boiling point), fire/explosion 

(flash point, R-codes), reaction/decomposition (NFPA reactivity, R-codes) and acute 

toxicity (IDLH, EU-class, GK, R-codes).  

(6.16)

The indicator Risk aspects (RA) indicates the risk associated with economic and 

technical aspects estimated based on 5 categories: global feedstock availability (GFA), 

local feedstock potential (LFP), market size (MS), compatibility with current 

infrastructure (CCI) and inherent benefits (IB) as shown by Eq. 6.17. 

(6.17)

Each one of the 5 indicators is first calculated for both processes that are to be 

compared, i.e. bio-based route and petrochemical counterpart. The 5 indicators are then 

normalized by considering the maximum score out of the two analyzed processes. The 

normalized values for each indicator are integrated in a single score index by using the 

specific weighting factors as shown in Eq. 6.18 for the total score (TS). 
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(6.18)

The selection of these weighting factors was based on expert opinions as reported by 

Patel et al. (2012) and Posada et al. (2013). They performed an uncertainty analysis 

using Monte Carlo simulation in order to study the effect of variations of the weighting 

factors for the five indicators. This uncertainty analysis demonstrated that absolute 

differences between the originally obtained index ratio and the mean value resulting 

from the uncertainty analysis did not exceed 5%, and hence this factor was deemed not 

to be significant. 

The TS indicators are then compared via the index ratio (IR) (Eq. 6.19), which is the 

ratio between the bio-based TS and the petrochemical TS. The IR provides a direct 

comparison of the new conversion route with respect to existing petrochemical 

technologies; i.e.: IR < 1 indicates that the bio-based conversion route is favorable, and 

IR >1 indicates that the bio-based conversion route is unfavorable compared to the 

petrochemical process.  

(6.19)

It is important to note that, in this study, EHSI and RA are beyond the scope of the 

analysis and only the first three indicators are taken into account. Note that this is 

because the EHSI and RA are qualitative indicators which are unable to model 

mathematically and not standardized. 

The sustainability assessment method is integrated into the developed framework in the 

second part of the analysis by reformulating the objective function (minimization of the 

index ratio) and by including the additional constraints (Eq. 6.4-6.19) for calculating the 

sustainability indicators. This integration results in the optimal sustainable solutions 

with respect to techno-economics, environmental impacts (greenhouse gas emission and 

energy usage) and the reference petrochemical processes. 
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6.3 Results and discussion 

In this section, the developed superstructure is presented. The results obtained from two 

different evaluation objectives, i.e. techno-economic and sustainability, are presented 

and discussed. 

Design-space development 

The superstructure developed earlier for producing biofuels (Chapter 4, Figure 4.1) was 

combined with the bioethanol-upgrading superstructure developed in this study (Figure 

6.1). The scope of the combined superstructure was extended and defined to convert 

lignocellulosic biomass (corn stover (block no. 1) and poplar wood (block no. 2)) to 

both biofuels (bioethanol and FT-products) and bioethanol-derivatives. The extension of 

the design space of the biorefinery aims to significantly improve the overall economics 

of a biorefinery by upgrading bioethanol to higher value added products. 

 

 

 

 

 

 

Figure 6.1. The superstructure of the biorefinery network extended with bioethanol 
based derivatives (highlighted in red: box 83-94, and box 100-111).  
 
The full description is presented in Appendix B for biomass feedstock (block no. 1-2); 

thermochemical conversion (block no. 4-22); biochemical conversion platform (block 
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no. 23-82); ethanol-derivatives conversion (block no. 83-94); bioproducts (block no. 95-

122; FT-products, bioethanol, ethanol-derivatives, electricity). 

The identification and selection of bioethanol-upgrading products was performed in the 

previous study (Posada et al., 2013) in which 12 potential candidates were selected 

based on more than 200 studies. As presented in Figure 6.11, the bioethanol-upgrading 

processing step, containing 12 bioethanol conversion processes (box 83 to box 94), was 

built (highlighted area) and combined into the superstructure earlier developed resulting 

in a superstructure with a total of 122 processing intervals, composed of: 2 biomass 

feedstocks, 1 gasoline for blending, 91 processing technologies and 28 products. 

The data collection and management for the thermochemical and biochemical 

processing network is based on a previous study (presented in chapter 4), while for the 

bioethanol-upgrading processes those steps were performed as presented in the 

following example for diethyl ether (DEE) production. DEE is produced from 

bioethanol through a dehydration process (block no. 85). Therefore, following the 

framework (section 3.1), the stoichiometry is required for the generic process model 

block (see Figure 3.4) to allow the estimation of the product outlet for the dehydration 

process. The design data (input-output flow rate) were collected in the previous study 

(Posada et al., 2013). The stoichiometric coefficients were calculated using Eq. 6.20, 

and are presented in Table 6.1 and Figure 6.2. The results of the data collection for the 

12 bioethanol-upgrading processes are presented in Table 6.2. Note that the extended 

superstructure and the collected data were used for two analyses presented in the 

following sub-sections. 

(6.20)
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Figure 6.2. Simplified process diagram presenting mass inlet/outlet, and the 
stoichiometry for DEE production. The stoichiometric coefficients are presented in 
Table 6.1. 

Table 6.1. The stream table for the DEE production from the dehydration process of 
bioethanol 

Component Inlet flow 
(tpd) 

Outlet flow 
(tpd) 

  
(stoichimetry) 

  
(conversion 

fraction) 

Ethanol 556 57.6 -1 0.89 

N2 1690 1690 - - 

Ethylene - 53.8 0.18 - 

Diethyl ether - 329.7 0.41 - 

Water - 114.7 0.6 - 

 

 

 

 

 

 

 

101



CASE STUDIES II: Upgrading bioethanol to value added chemicals 
 

100 
 

Table 6.2. Summary table for the data collection for ethanol derivative processes 

Processing tech-
nologies Products Mixing Reaction ( )  Waste 

separation 
Product 

separation 

(83) Dehydration Ethylene 

- 

C2H5OH  0.99C2H4 + 0.004C2H4O + 
0.0015C4H10O + 0.002C2H6 + H2O 0.995 

- - 

(84) Oxidation Acetaldehyde C2H5OH + 0.63O2  0.95C2H4O + 0.1CO2 
+ 1.1H2O 0.82 

(85) Vapor-phase 
dehydration Diethyl ether C2H5OH  0.18C2H4 + 0.41C4H10O + 

0.6H2O 0.89 

(86) Fermentation n-Butanol 
C2H5OH  0.036C2H4 + 0.023C2H4O + 

0.22C4H10O + 0.06H2 + 0.04C4H6 + 0.5H2O 
+ 0.14C6Alcohols +0.243Others 

0.575 

(87) Fischer esteri-
fication Ethylacetate C2H5OH .058C2H4O + 0.47C4H8O2 + 

0.994H2 
0.7 

(88) Fermentation Acetic acid C2H5OH + 1.06O2   0.97C2H4O2 + 
0.06CO2 + 1.06H2O 0.99 

(89) High tempera-
ture ethanol re-
forming 

Hydrogen C2H5OH + 2.4H2O   4.8H2 + 0.3CH4 + 
1.7CO2 

0.998 

(90) Metathesis Propylene C2H5OH   0.5C2H4 + 0.3478C3H6 + 
0.15C4H8 + 0.4H2O + 0.087Others 1 

(91) Fermentation  Iso-Butylene C2H5OH + 0.37H2O   2H2 + 0.64CO2 + 
0.28C4H8 + 0.08(CH3)2CO 1 

(92) Fermentation Acetone C2H5OH + 0.3876H2O   1.78H2 + 
0.0894C2H4 + 0.447CO2 + 0.447(CH3)2CO 1 

(93) Oxidation Ethylene 
oxide 

C2H5OH  0.994H2 + 0.0203C2H4 + 
0.994C2H4O + 0.0203H2O 0.98 

(94) Catalytic 
dehydrogenation  1,3-butadiene C2H5OH   0.46H2 + 0.11C2H4 + 0.43C4H6 

+ 0.02C2H4O + 0.98H2O 1 

 

 

6.3.1 Techno-economic analysis of ethanol derivatives (maximization of operating 

profit) 

The objective function for techno-economic analysis is to maximize the EBITDA of the 

extended superstructure. The optimization problems (MILP or MINLP) formulated and 
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implemented in GAMS for the defined objective functions were solved in this step. The 

full optimization formulation can be found in Appendix C. 

a. Deterministic solution 

In this section, the deterministic solutions, where no uncertainties were considered, were 

identified under the aforementioned specific scenarios of the nominal data (or mean 

values, Table 6.3). The formulation of the optimization problem (MILP) for this techno-

economic analysis consists of 3,972,533 equations and 3,941,332 variables (595 discrete 

variables). This MILP problem was solved in about 10 seconds using the CPLEX solver 

using Windows 7, Intel® Core™ i7 CPU@ 3.4GHz, 4GB RAM. 

Table 6.3. Input uncertainty for ethanol-derivatives prices (Tecnon OrbiChem, 2013)

No. Bioethanol deriva-
tives 

Average prices  
(2011-2013, $/ 

ton) 
std.

1 C2H5OH 1010 520 
2 C2H4 1050 100 
3 C2H4O 980 220 
4 C4H10O 2270 410 
5 C4H10O 2190 190 
6 C4H8O2 1290 40 
7 C2H4O2 490 20 
8 H2 2290 420 
9 C3H6 1400 210 

10 C4H8 750 170 
11 (CH3)2CO 1230 230 
12 C2H4O 1330 80 
13 C4H6 2010 710 

 

The results are presented in Table 6.4 as the top-five ranking solutions. Production rate, 

EBITDA and total annualized costs (TAC) as well as the optimal processing paths are 

presented. The results illustrate that the thermochemical platform using poplar wood as 

feedstock, and with the unit operation steps size reduction, indirectly contacted dryer, 

entrained-flow gasifier, steam reforming, scrubber, acid gas removal with amine, 

alcohol synthesis, molecular sieve, distillation and diethyl ether production (by 

dehydration of bioethanol) were preferably chosen with respect to the specified techno-

economic criteria.  
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Table 6.4. Top-five ranking optimal solutions (max. EBITDA of producing ethanol-
derivatives)

Rank no. Process intervals selection 
Objective value 

(EBITDA
(MM$/year)) 

Products Production
(tpd) 

TAC (MM 
USD/year) 

1 

Wood, Entrained-flow gasifier, steam reform-
ing, scrubber, acid gas removal using amine, 

alcohol synthesis, mol. sieve, distillation, 
diethyl ether production 

247 Diethyl 
ether 345 82.9 

2  

Wood, Entrained-flow gasifier, steam reform-
ing, scrubber, acid gas removal using amine, 

alcohol synthesis, mol. sieve, distillation, 
ethylene oxide production 

241 1,3-
butadiene 292 86.9 

3 

Wood, Entrained-flow gasifier, steam reform-
ing, scrubber, acid gas removal using amine, 
alcohol synthesis, mol. sieve, distillation, 1,3-

butadiene production 

202 Butanol 118 81.3 

4 

Wood, Entrained-flow gasifier, steam reform-
ing, scrubber, acid gas removal using amine, 

alcohol synthesis, mol. sieve, distillation, 
acetic acid production 

163 Ethylacetate 371 91.9 

5 

Wood, Entrained-flow gasifier, steam reform-
ing, scrubber, acid gas removal using amine, 

alcohol synthesis, mol. sieve, distillation, 
ethylacetate production 

138 Ethylene 
oxide 544 126.3 

Moreover, the differences among the solutions show that the input data are important 

for the decision-making process, and especially the market prices as shown in Table 6.3, 

which includes a very high standard deviation of the prices of ethanol derivatives. This 

issue will be addressed in more detail in the following section by performing an 

uncertainty analysis.  

b. Stochastic solution 

The historical data about the prices of the ethanol derivatives were analyzed. The prices 

have fluctuated considerably in the period 2011-2013 (Tecnon OrbiChem, 2013), and 

therefore these inputs were selected as major sources of uncertainties to be studied 

further. The fluctuation of ethanol-derivative prices was characterized using a normal 

distribution function for which a mean and standard deviation were calculated for each 

product using its corresponding historical set of data. In addition the linear (Pearson) 

correlation coefficient between each pair of product prices was also calculated from 

historical data to be used for Monte Carlo sampling. The other sources of uncertainties 

such as yield and conversion were analyzed in a previous study (Posada et al., 2013) and 
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found negligible. Thus, they were not repeated here. Subsequently, the Latin Hypercube 

Sampling (LHS) method with correlation control method was applied to generate 200 

samples in total, which formed the dataset used for solving the optimization problem 

under uncertainty (Iman and Conover, 1982). 

A stochastic programming was formulated (presented in Appendix C) using the sample 

average approximation (SAA) of the objective function over the uncertainty domain, 

and was solved in GAMS. The stochastic solution is 161 (MM$/a) which is lower than 

the deterministic solution (i.e., 247 MM$/a) due to the effect of uncertainties. The result 

of the optimal solution under uncertainties is presented in Table 6.5, and further 

discussed below. 

Table 6.5. Report generation for the identification of an optimal solution under market 
price uncertainties (max. EBITDA)

Solutions Processing paths EBITDA (MM$/a) 

Optimal network  
(Step 3) Wood, Entrained-flow gasifier, steam reforming, 

scrubber, acid gas removal using amine, alcohol 
synthesis, mol. sieve, distillation, diethyl ether pro-

duction 

247 

Network under uncertain-
ties (Step 4.2) 161 

Optimal flexible network 
(Step 5) 

Wood, Entrained-flow gasifier, steam reforming, 
scrubber, acid gas removal using amine, alcohol 

synthesis, mol. sieve, distillation, diethyl ether and 
1,3-butadiene production 

187 

Indicators EVPI (MM$/a) VSS (MM$/a) UP (MM$/a) 
Network under the effect 
of uncertainties (Step 3-

4.2) 139 
84 86 

Flexible network (Step 5) 100 60 

As shown in Table 6.5, the same process topology was selected in the different solutions 

(deterministic and stochastic solutions), which confirms the robustness of the 

deterministic solution. However, the analysis of the uncertainty indicators, i.e. Expected 

Value of Uncertainty Information (EVPI), Value of Stochastic Solution (VSS) and 

Uncertainty Price (UP), shows a significant effect of market price uncertainties. A large 

value of EVPI indicates that the operating profit could be improved significantly if 

market price uncertainties are reduced. Moreover, the VSS is high confirming that the 

market price uncertainties are highly important. These observations are also confirmed 

by the high value of the UP indicator, which is due to the high impact of the uncertainty 
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in product market prices compared with the deterministic scenario where no 

uncertainties are considered.  

The impact of uncertainty can be reduced by proposing a design with high/optimal 

flexibility, meaning that modifications are allowed during the operational stage where 

the data are available. This allows building two or more redundant technologies to 

generate/yield a larger variety of products, which enables to switch the operational 

mode or to derive/yield products with a higher economic value. Therefore, the 

stochastic formulation was modified to identify the redundant networks. It resulted in an 

improved result compared to the stochastic solution (from 161 MM$/a to 187 MM$/a). 

6.3.2 Sustainability analysis (minimization of sustainability single index ratio) 

In this part, the optimization problem was reformulated in order to identify the optimal 

processing path with respect to economic performance, greenhouse gas emissions and 

energy use, compared to the petrochemical-based equivalent as a reference, and using 

the single score sustainability index ratio (mentioned in Section 2). The framework 

applied in techno-economic analysis was here repeated using the reformulated objective 

function and the additional constraints presented in Appendix C.  

a. deterministic solution 

The modified objective function, as shown in Eq. 6.21, is applied to minimize the index 

ratio as presented below. In this study, only three indicators regarding sustainability 

(EC, EIRM, and PCEI) are considered (as described in Section 2) and the original 

weighting factors (30% for EC, 20% for EIRM, and 20% for PCEI) are used as 

normalized value (as shown in Eq. 6.21). The additional constraints mentioned earlier 

(Eqs. 6.4-6.19) for estimating the sustainability indicators were also included in the 

optimization problem.  

(6.21)
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The reformulated optimization problem was then solved allowing a direct comparison 

of bio-based processes to conventional fossil-based processes using the single index 

ratio (IR). The single index ratio (IR) is defined as , where IR<1 indicates 

that the bio-based conversion route is favorable; and IR>1 indicates that the bio-based 

conversion route is unfavorable compared to the petrochemical process.  

In Table 6.6, the top-five ranking solutions consisting of the optimal processing path, 

the sustainability indicators and the index ratio are presented. The deterministic 

solutions (Table 6.6) show that 1,3-butadiene and diethyl ether were the favorable 

derivatives with respect to the evaluation criteria specified in this study (economic 

performance, greenhouse gas emissions, and energy use, and comparison with the 

fossil-based processes as reference).  

Table 6.6.  Top-five rank of the optimal solutions (min. total index ratio)

Rank Processing path EC EIRM PCEI 
Index 
(bio-

based) 

Index 
(petroche

mical-
based) 

Index 
ratio 

1 

Wood, Entrained-flow gasifier, steam 
reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. sieve, 
distillation, 1,3-butadiene production 

0.25 0.16 11.4 0.41 0.8 0.51 

2 

Wood, Entrained-flow gasifier, steam 
reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. sieve, 
distillation, diethyl ether production 

0.246 0.12 10.7 0.4 0.74 0.54 

3 

Wood, Entrained-flow gasifier, steam 
reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. sieve, 
distillation, ethylacetate production 

0.32 0.15 11.3 0.44 0.73 0.61 

4 

Wood, Entrained-flow gasifier, steam 
reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. sieve, 
distillation, propylene production 

0.39 0.16 10.9 0.47 0.77 0.62 

5 

Wood, Entrained-flow gasifier, steam 
reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. sieve, 
distillation, acetaldehyde production 

0.42 0.193 10.8 0.47 0.75 0.63 
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b. stochastic solution 

In the sustainability analysis, the relatively high fluctuation of the market prices of 

ethanol-derivatives which was also addressed as economic constraints were also 

considered as one of the sustainability criteria. Table 6.6 illustrates that production of 

1,3 butadiene is more favorable than diethyl ether production in this analysis compared 

to the result of a purely techno-economic analysis. The reason is that from the 

sustainability point of view (economic performance, greenhouse gas emissions, energy 

use and fossil-based equivalent), production of 1,3-butadiene is more attractive. 

Moreover, the uncertainty effects on the sustainability index ratio were low because 

market prices affected only one out of three sustainability indicators (EC). Therefore, a 

slight improvement from the optimal flexible network was found which provided a 

robust solution in decision-making under uncertainties. 

6.4 Discussion 

In the chapter 5, the optimal design network for converting biomass to biofuels was 

identified. In this study, the perspective of the lignocellulosic biorefinery concept was 

expanded to consider bioethanol as a raw material by including the conversion step to 

value-added derivatives. Moreover, the sustainability analysis was also performed. In 

this section, these perspectives are compared and discussed.  

Upgrading strategy - 1: improving the economy of a lignocellulosic biorefinery by 

upgrading bioethanol to high value added derivatives

The different perspectives of biorefinery design with respect to techno-economic criteria 

are compared and presented in Table 6.7. The profitability (EBITDA and IRR) was 

significantly improved by bioethanol-upgrading compared to the more traditional 

standalone bioethanol production (no. 1-2 compared to no. 3-6, in Table 6.7), providing 

a strong case for establishment of a biorefinery concept including bioethanol upgrading. 

Moreover, the production of diethyl ether is more favorable compared to 1,3-butadiene 

production with respect to the purely techno-economic criteria. 
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Table 6.7. Comparison of different biorefinery design perspectives 

No. Processing path Products 
EBITDA
(MM$/a) 

TAC
(MM$/a) 

IRR
(%) 

Index
ratio 

Reference 

1 

Wood, Entrained-flow gasifier, 
steam reforming, scrubber, acid 

gas removal using amine, alcohol 
synthesis, mol. sieve, distillation, 

diethyl ether production 

diethyl 
ether 

247 82.9 26 0.54 (this study) 

2 

Wood, Entrained-flow gasifier, 
steam reforming, scrubber, acid 

gas removal using amine, alcohol 
synthesis, mol. sieve, distillation, 

1,3-butadiene production 

1,3-
butadiene 

241 86.9 21 0.51 (this study) 

3 

Corn stover, AFEX pretreatment, 
hydrolysis by spezyme, 

fermentation, distillation, 
extraction with BMIMCI 

bioethanol 92.8* 77.2 13 - 
(Zonderva

n et al., 
2013) 

4 

Corn stover, AFEX pretreatment, 
hydrolysis by spezyme, 

fermentation, distillation, 
extraction with BMIMCI incl. 
lignin utilization (electricity) 

bioethanol 99.8* 79 11 - (chapter 5) 

5 

Wood, Entrained-flow gasifier, 
steam reforming, scrubber, acid 

gas removal using amine, alcohol 
synthesis, mol. sieve, distillation 

incl. electricity production 

bioethanol 114* 78 12 - (chapter 5) 

6 

Wood, Entrained-flow gasifier, 
steam reforming, scrubber, acid 

gas removal using amine, 
Fischer-Tropsch (FT), 
hydroprocessing unit 

FT-
products 

210 88 17 - (chapter 5) 

7 Wood waste, energy crop, 
biofuels Bioethanol 200 - - - 

(Andippan 
et al., 
2015) 

8 Black liquor, Fischer-Tropsch 
(FT), Gas turbine Biofuels 133-200 - - - 

(Tay et al., 
2011) 

9 Wood, fermentation Bioethanol 110 90 - - 

(Voll and 
Marquardt 

et al., 
2012) 

10 Lignocellulosic biomass, acid 
fermentation, esterification Bioethanol 108 54 - - 

(Pham et 
al., 2012) 

*The lignin utilization was included and the market prices were updated from the previous study. 
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These results are also in agreement with the outlook and perspectives presented by 

Kamm et al. (2012), where the financial success is dependent on co-product utilization 

and the ability to shift to high value-added products. Bruscino (2009) also reported that 

the benefit of integrating bioethanol and chemicals production (in particular ethylene) 

reduces the operating and capital cost compared to the cost of pure bioethanol 

production from biomass. The analysis presented here provides a quantitative evidence 

for these perspectives. 

Upgrading strategy - 2: improving sustainability of lignocellulosic biorefinery by 

producing more sustainable bioethanol-derivatives

Another important aspect of the biorefinery concept is its potential contribution to 

sustainable development of chemical/biochemical industries (Zwart, 2006). Therefore, 

sustainability analysis was performed using a single index ratio indicator to identify the 

promising, competitive and sustainable solutions. As presented earlier, the production of 

1,3-butadiene is more sustainable compared to diethyl ether production. This is in 

agreement with the study from Angelici et al. (2013) – the study of the chemocatalytic 

conversion of bioethanol to chemicals – which concluded that butadiene production 

from bioethanol provides an excellent opportunity for sustainable development of a 

biorefinery. 

Upgrading strategy - 3: multi-product biorefinery offers a more robust and risk-aware 

upgrading strategy against the inherently stochastic market price uncertainties 

Market uncertainties are found to have considerable impact on the economic targets of 

biorefinery design. In response, a risk-based decision making relying on quantitative 

analysis of economic risks is suggested. Figure 6.3 presents the IRR cumulative 

distribution with a quantified risk of Network 1 (production of diethyl ether) and 

Network 2 (production of 1,3-butadiene). As mentioned in Section 2, IRR was used to 

allow an improved project evaluation. The calculation of risk is equal to the integral of 

the highlighted area. In this calculation, the EBITDA value corresponding to IRR@15% 

is considered as break-even point, hence the risk in economic terms is calculated as the 

summation of the probability of occurrence times the deviation of EBITDA from the 
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break-even point: ]. The results indicate 

that there is a risk of 12 MM$/a for network 1, meaning 12 MM$/a (240 MM$ over the 

project life time). The risk of network 2 is much higher with 92 MM$/a. 

 

 

 

 

 

Figure 6.3. Uncertainty mapping and analysis (max. EBITDA): i) the frequency of 
selection of the optimal processing paths; ii) EBITDA cumulative distribution; iii) IRR 
cumulative distribution with a quantified risk of network 1; iv) IRR cumulative 
distribution with a quantified risk of network 2. 

Moreover, the impact of market price uncertainties was reduced by 16% (compared to a 

stochastic solution) by implementing the flexible network analysis to produce multiple 

products (producing diethyl ether and 1,3-butadiene) as presented in Table 6.5. 

Therefore, this analysis of flexible network design indicates that the multi-product 

biorefinery design offers a promising alternative that allows covering future market 

price fluctuations. 

Further verification and highlights 

Table 6.7 also compares the results here obtained to those reported in other studies 

performing  detailed process synthesis with fuzzy optimization (Andippan et al., 2015; 

Tay et al., 2011), path synthesis with reaction network flux analysis (RNFA) (Voll and 

Marquardt, 2012), and path synthesis with forward-backward (Pham and El-Halwagi et 

al., 2012) methodologies. The results in this study are in agreement with other studies 

(refer to No. 4-5 to No. 7-10 in Table 6.7). However, the superstructure-based 

optimization approach presented here provides more flexibility as illustrated with the 

following examples. First, a larger size of the design space can be obtained and more 

alternatives can be compared. Second, the database obtained is large and at the same 
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time compact and structured which is also easy to access and update. Third, a large set 

of models and information about constraints can be represented using a generic 

modeling approach to support uncertainty analysis and multi-criteria evaluation (techno-

economic, environmental impact, LCA, sustainability). These advantages point out a 

high flexibility of the superstructure-based optimization approach to manage a large 

amount of information which is multi-disciplinary and inherently uncertain. This 

approach is thus well suited for obtaining robust solutions. The advantages are 

highlighted and verified in the following example. 

The current drop of oil prices regarding shale oil/gas revolution (among others) causes 

the fluctuation of chemicals prices. In this study, market prices of chemicals used are 

also highly fluctuated as revealed by the high standard deviation of the mean price 

values (Table 6.3). After that an uncertainty analysis is performed, the results (Table 

6.5) confirm that highly fluctuating market prices of the high value-added chemicals 

have a high, direct and negative impact on economic performance – as shown by the 

high standard deviation of the estimated economic profits (e.g. EBIDTA in Table 6.5). 

Among other parameters oil prices are one of the key factors affecting the prices of 

commodity chemicals considered in this study as bioethanol derivatives. This can also 

be confirmed by the recent drop of chemical price due to sharp reduction in oil prices 

(Wood and Marshall, 2015). However, the reduction of this economic impact can be 

counter-addressed by carefully diversifying the product portfolio and producing 

multiple products as presented in upgrading strategies 3. In the case of the 

sustainability index (section 6.2.2), the results (i.e., products ranking) are not 

significantly affected by the low prices of the fossil-based chemicals. This behaviour 

may be explained because the prices of the petrochemical counterparts are expected to 

decrease by equivalent ratios. Thus, the economic potential for all bio-products is 

reduced with similar percentages while the ranking, from the best to the worst, remains 

quite similar. Of course, many of the bio-based products would now be categorized as 

unfavourable derivatives because of their limited economic potential.  

Although low oil prices can slow down the development and production of bio-based 

materials, the search of alternative routes for chemicals and fuels production will remain 

a need for a sustainable society, and in this context efficient integrated and multi-
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product biorefineries will play an important role. Some examples of successful 

companies producing biofuels show the potential for bio-based products in the current 

economy. In 2010, Mascoma Corporation (Faber et al., 2010) reported the study of a 

wood biorefinery with an annual profit of 97 MM$ for 207 ML. In 2013, ABENGOA 

(2013), one of the leading biofuels producers, produced in total 3180 ML first and 

second generation biofuels (bioethanol and biodiesel) from biomass resulting in an 

annual EBITDA of 273 MM$. In 2014, Green Plains (Lane, 2015), an ethanol 

production company in Nebraska, produced 933 ML of ethanol annually from corn with 

an EBITDA of 350 MM$. Similarly, in the case of the Archer Daniels Midland 

company (ADM) (Lane, 2015), the company reported an annual operating profit of 395 

MM$ with an annual production of 3000 ML. These reported data confirm that 

biorefineries producing bioethanol are profitable which is in agreement with this study. 

6.5 Conclusion 

A systematic framework consisting of a superstructure optimization based approach 

under uncertainty integrated with a sustainability assessment method was applied for 

designing lignocellulosic biorefineries that include the conversion of ethanol to value-

added products. The results showed that bioethanol-upgrading improves in general the 

economics and sustainability of a lignocellulosic biorefinery. In particular, the 

thermochemical platform from poplar wood producing diethyl ether and 1,3-butadiene 

was favorable with respect to techno-economic and sustainability criteria (considering 

economics, greenhouse gas emissions and energy use). Moreover, the market price 

uncertainties identified from historical data were found to bring about a considerable 

economic risk on the biorefinery design – in the range of 12 MM$/a to 92 MM$/a for 

the studied domain of price uncertainties. The multi-product biorefinery design offers a 

promising strategy to minimize the risk against price fluctuations. The comparison 

between bio-based processes and fossil-based processes represented by the 

sustainability index ratios was improved by 19% resulting in a more sustainable 

integrated biorefinery system. These analyses provide useful information regarding 

economic and sustainability drivers for the future development of a biorefinery.  
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7.
CASE STUDIES III: UNCERTAINTY ANALYSIS 

IN EARLY STAGE CAPITAL COST 
ESTIMATION

In this chapter, an uncertainty analysis of the cost estimation at early-stage design of a 

biorefinery is presented. Capital investment, next to the product demand, sales and pro-

duction costs, is one of the key metrics commonly used for project evaluation and feasi-

bility assessment. Estimating the investment costs of a new product/process alternatives 

during early stage design is a challenging task, which is especially relevant in biorefin-

ery research where information about new technologies and experience with new tech-

nologies is limited. Four well-known models of early-stage cost estimation are reviewed 

and used for this analysis. An impact of uncertainties in cost estimation on the identifi-

cation of optimal processing paths is quantified and presented.  

 

This chapter is a modified version of a paper published in Frontiers in Energy System 

Engineering as Peam Cheali, Krist V. Gernaey and Gürkan Sin (2015), Uncertainties in 

early stage capital cost estimation of process design – a case study on biorefinery de-

sign. doi: 10.3389/fenrg.2015.00003.   
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7.1 Introduction 

Cost estimation is one of the major challenges of chemical and biochemical process 

design. The cost estimation (including fixed and variable cost) during each stage of the 

project design (concept screening, preliminary study, budget authorization, budget 

control, construction) is different since the quality and quantity of the information 

available in the successive stages of the project life cycle is different. (Towler and 

Sinnott, 2013). The Association of the Advancement of Cost Estimating International 

(AACE International) classifies the capital cost estimation into five classes, according to 

the level of accuracy and the purpose of the estimation in specific parts of the project 

life cycle (Table 7.1). 

Table 7.1. Cost estimate classification matrix for the process industries (adapted from 
Christensen and Dysert, 2011) 

Estimate 

Class 

Project 

deliverables 

Purpose of 

estimate 

Methodology 

(Typical estimating method) 

Accuracy range 

(expected)* 

Class 5 0% - 2% 
Concept 

screening 
Order-of-magnitude 

L: -20% to -50% 

H: +30% to +100% 

Class 4 1% - 15% Preliminary 
Equipment factored or 

parameter models 

L: -15% to -30% 

H: +20% to +50% 

Class 3 10% - 40% 
Budget 

authorization 
Detailed unit cost 

L: -10% to -20% 

H: +10% to +30% 

Class 2 30% - 75% Budget control Costs from the contractor 
L: -5% to -15% 

H: +5% to +20% 

Class 1 65% - 100% Construction 
Cost from the completed 

design and bidding 

L: -3% to -10% 

H: +3% to +15% 

*L corresponds to low range of estimation or underestimation; H corresponds to high range of 

estimation or overestimation. 

 Class 5, concept screening (order of magnitude). This class is based on the cost data 

and the capacity from similar plants, and it is usually used for initial feasibility studies 

and for screening purposes. Class 4, preliminary (study of feasibility). This class mainly 

uses factors for the estimation, relying on so-called factored estimation methods. This 

method is based on material and energy balances as well as types and size of major 
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equipment. It is used to make a rough screening among the design alternatives. Class 3, 

detailed design (budget authorization or definitive estimate). The project control 

estimate method is based on the approximate sizes of the major equipments; it is used 

for the authorization of project funds. Class 2, contractor estimate (budget control or 

detailed estimate). The quotation or contract estimate is based on the front-end 

engineering design (FEED) including the complete quotation of the equipment. This 

cost estimation is very detailed and is generally used to make a fixed price contract and 

to control the project cost. Class 1, construction (check estimates). The bid or tender 

estimate is based on the completed design and concluded negotiation on procurement.  

The cost estimation has a significant impact on the project life cycle as presented in 

Figure 7.1. At the early stage, the possibility to change the design (black full line) is the 

highest and comes along with the lowest cost (black dashed line). Therefore, the main 

motivation for investing in such a detailed analysis and treatment of cost data 

uncertainties at the early stage of process design is simply that this stage has the highest 

impact on the overall project economics and feasibility considering the typical life cycle 

of a project (to move the red dashed line to the blue one). Hence, since increased 

investment of time and resources is required by these analyses, it will mean that the 

project cost will be high at the beginning of the project life cycle. However, the 

advantage is that the improved quality of decisions that is achieved thanks to these 

rather detailed early stage analysis efforts will translate to reduced project cost during 

the later stages of the project life cycle. 
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Figure 7.1. The design effort and impact on the project development (adopted from 
Towler and Sinnott, 2013) 

 

In this chapter, we perform an in-depth analysis of the issues and challenges related to 

performing cost data estimation, and we develop methods and tools to properly address 

these issues in order to provide a robust decision-making platform for process synthesis 

and design. An assessment of the uncertainties of early stage cost estimation methods 

will be performed. In particular, the four standard models for cost estimation during the 

early stage were considered for the analysis, and will be explained in the next section. 

Moreover, the systematic framework is extended for two different situations considered 

for the uncertainty characterization and the cost estimation methods: (i) When historical 

cost data are available: the uncertainties of the cost estimation were obtained from 

regression analysis using the bootstrap regression technique (presented as motivating 

example in section 7.3); (ii) When cost data are not available: the Monte Carlo 

technique in combination with expert review of uncertainties is used (presented in 

section 7.4). 
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7.2 Materials and Methods 

7.2.1 Cost estimation methods 

Estimating the manufacturing costs of a new product/process during early stage design 

can provide a good indication of the project’s economic viability (Christensen and 

Dysert, 2011). Early estimates generally used for conceptual screening have the purpose 

of allowing businesses to assign the most suitable resources and new/different 

alternatives (feedstock, technologies, or products) with respect to the defined 

specification. Anderson (2009) reported the methods to estimate three main cost 

components accordingly: i) Variable cost. A good and insightful resource of relevant 

information (prices and availability) about the raw materials, and has a significant 

impact. If relevant information cannot be found, the risk related to this lack of 

information should be quantified using uncertainty analysis. The utility costs can be 

estimated using a rule of thumb approach, (e.g., 2% of capital investment); ii) Capital 

investment. The capital investment can be estimated using the order-of-magnitude or the 

Viola method, which requires only information about capacity and capital investment 

for similar existing technologies. If both the type and number of unit operations are 

known, the relative factor regarding each unit operation is applied further to refine the 

results. The depreciation can be estimated rapidly as well using the ratio of capital 

investment and the product of project lifetime and production rate. iii) Other fixed costs 

(e.g., labour cost, maintenance). The factor-based rule of thumb is used for estimating 

the other fixed costs. In addition to the above, there are a variety of other estimation 

methods reported in the literature (Petley, 1997). Those, that use the recorded capacities 

and investment cost, are called exponent estimates. Those that use factors to multiply 

equipment costs to generate an overall investment cost are called factorial estimates. 

Those that use the plant parameters and functional units known in the early stage design 

are called functional unit estimates. Those that use the production profit to estimate the 

overall production cost are called pay-back method. In this study, the four mentioned 

methods of early stage cost estimation are used. These methods require different types 

of information, and therefore the results using different cost estimation methods will be 

compared and discussed.  
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a. Model 1: Order of magnitude estimates [production rate and investment of the 

existing plant]

Exponent estimates are used in the early stage design. The required capital cost is 

estimated by scaling the known investment cost corresponding to the capacity of an 

existing manufacturing plant (Eq. 7.1). This requires no complete design information. 

The value of the exponent (n) in Eq. 7.1 varies between 0.5 and 1 depending on the type 

of manufacturing process, as explained in Table 7.2.  

Model 1, 

(7.1)

Table 7.2.The range of exponents typically used in the exponent based cost estimation 
methods (Towler and Sinnott, 2013) 

Exponent, n Type of manufacturing process 

0.8 to 0.9 
A lot of mechanical work or gas compression (i.e. methanol, paper 

pulping) 

0.7 Typical petrochemical processes 

0.4 – 0.5 
Small-scale highly-instrumented processes (i.e. specialty chemical or 

pharmaceuticals) 

0.6 Averaged across the whole chemical industry. 

It is important to note that when there are insufficient data available, n = 0.6 can be used 

for a rough estimation. This case is commonly referred as the six-tenths rule method. 

This approach refers to the economy of scale, meaning that increasing capacity of the 

plant decreases unit marginal production cost. The disadvantage of this method is the 

requirement of having information available about the capacity and investment data of 
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similar plants. Therefore as well, this method can be particularly problematic for new 

processes. This method has been further developed by estimating the cost of the main 

equipment instead of the investment of the entire plant (Garrett, 1989). Using this 

method for estimating the cost during the R&D phase, the typical accuracy for chemical 

processes has been found by Uppal and Van Gool (1992) to be ± 40 %. Of course, it 

could be better or worse depending on the design criteria defined.  

b. Model 2: Bridgewater’s methods [production rate, number of functional units and 

conversion fraction] 

Factorial estimates were first introduced by Lang (1947) to estimate the investment cost 

by multiplying the equipment costs with a factor (Eq. 7.2). 

(7.2)

Where  is the capital cost, $;  is the factor (3.10 for solid processing; 3.63 for 

combined solid and fluid processing; 4.74 for fluid processing); E is the equipment cost, 

$). The equipment costs can be determined from the quotations of vendors, from 

published data or by estimation using design information. The overall factors can be 

divided into different categories, i.e. for foundations, supports, insulation, installation, 

piping and contractors and engineering expenses. Cran (1981) suggested using a 

universal factor of 3.45 instead of classifying the plants into three types as shown above. 

Miller (1965) reported that the factors depend on the size of the equipment, the material 

of construction and the operating pressure resulting in an effect on the average cost of 

each piece of equipment in the process. The factorial method has been developed by 

many authors. However, this is a complicated method considering that there are many 

types of components of several manufacturers related to each process (process type, 

equipment, functional units, capacity, piping and instrumentation). Moreover, the 

companies generally develop their own values taking into account their specific 

requirements resulting in a wide range of the factors. 

Alternatively, when the cost data for a similar process are not available, then, the order 

of magnitude estimate can be used with some modifications by employing the different 
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plant sections or functional units. For example, experienced engineers provide a quick 

guideline for many petrochemical processes by considering that 20% of the investment 

is for the reactor and 80% is for the distillation and product separation. This alternate 

approach, called Functional unit estimates uses the process parameters and the 

functional units during the early stage design to predict the investment cost instead of 

using the equipment cost and factors as in the Factorial estimates method. The method 

has been derived by a statistical analysis of existing plants for determining the sequence 

of significant process steps (functional units). The method was introduced by Wessel 

(1953) who used the number of processing steps to calculate the labor costs. The 

functional units separate the process into these processing steps where the material 

compositions are significantly changed, for instance, a reaction or separation. The 

equipment cost ( ) Eq. 7.2 of Factorial estimates, is replaced by the number of 

functional units ( ) as presented in Eq. 7.3. 

(7.3)

Where  is is the capital cost in 1954 ($);  is the Chilton factor to allow for piping, 

instrumentation, facilities, engineering, construction and capacity;  is installed 

equipment cost ($);  is the capacity (tons per year). 

Bridgwater’s method (Bridgwater and Mumford, 1979) has been developed and applied 

for early capital cost estimation using  as the capacity together with 

the functional units as presented in Eq. 7.4 and the recently developed models in Eq 7.5, 

which are used as Model 2 for the analysis in this study. 

(7.4)

Model 2, 

(7.5)
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Where  is is the capital cost in 1992 (£);  is the capacity (tons per year);  is a 

constant; x is an exponent. However, determining the value for the number of functional 

units  is a major challenge of this method due to the inconsistency of the definition of 

the functional units.  

c. Model 3: Pay-back method [production rate, raw material and product price] 

Apart from the general methods mentioned above, using the profit and production cost 

can also be applied for a rough cost estimation. The pay-back method (Eq. 7.6) 

estimates the plant cost by assuming that the company would be paid back within 3-5 

years (average is 4 years, the first factor) of pay-back period, for a rough estimate of the 

plant cost. The net profit is then estimated by assuming that the raw materials costs 

represent 80-90% of the total annualized cost (TAC), resulting in the second factor of 

1.2. It is important to note that this method is normally used under the assumption that 

the specific project will generate a reasonable return. 

Model 3, 

(7.6)

d. Model 4: Total cost of production (TCOP) method [production rate, raw material 

and product price] 

Total cost of production (TCOP) is simpler than the pay-back method using the raw 

material cost for estimating the annualized production cost. This method (Eq. 7.7) is 

normally applied for a large-scale production (>500,000 pieces per year). This method 

is a rule of thumb method assuming that the annualized capital cost is one-fifth of the 

total annualized production cost (including raw material cost, utility cost, annualized 

capital cost). 

Model 4, 

(7.7)
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The methods reviewed above have been applied to many cases and provide a good 

guideline during the decision-making processes. However, when extrapolating to 

fundamentally different plants and processes, the accuracy of their estimation becomes 

challenged due to uncertainties in their assumptions/factors/parameter values.  

7.2.2 Uncertainty characterization and estimation of cost data 

In this step, the uncertainties involved in cost estimation are reviewed and analyzed. As 

mentioned, uncertainty characterization (presented in Chapter 3) is extended to support 

the two distinct situations of the availability of the cost estimation data at early-stage 

design as presented in Figure 7.2. To this end, two different methods are presented: a) 

cost data available: in this case, cost data are reported from prior experiences with 

plant construction and operations. In this case, the challenge is to estimate the 

parameters of the cost estimation model using the data and then to quantify the accuracy 

of the estimation using regression analysis; b) cost data not available: this case refers 

to situations where new technology is developed, and hence there are no prior 

experiences or the technology in question is not mature. For this situation, the 

uncertainties can be characterized by using an expert judgment and peer review 

procedure (Sin et al., 2009). Once uncertainties have been defined, then the Monte 

Carlo technique can be used to propagate these uncertainties in the analysis.  
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Figure 7.2. A systematic framework for synthesis and design of biorefinery (left), and 
an extended framework for uncertainty characterization (right). 

a. Data available: bootstrap regression for parameter estimation 

Bootstrap regression (Efron, 1979) is a method for assigning measures of accuracy 

(defined in terms of bias, variance, confidence intervals, etc.) to sample estimates. This 

technique allows estimation of the sampling distribution of almost any statistic using 

only very simple methods. 

This method can be divided into three main steps: (i) Parameter estimation; (ii) 

Generation of synthetic data (bootstrap sampling); (iii) Evaluation of the distribution of 

theta. The bootstrap theory is briefly explained in the following using a simple non-

linear model ( ) as an example. 

Parameter estimation: The actual data set , “measures” a set of parameters . 

These true parameters are statistically realized as a measured data set . The data set 
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 is known as the experimenter. The experimenter fits a model to the data by a 

minimization (i.e. using least squares; :  ) or other techniques and 

obtains measured, fitted values for the parameters, .  

Generate synthetic data (bootstrap sampling): In this step the actual data set is then 

used with its  data points to generate a number of synthetic data sets , 

also with  data points.  data points are replaced at a time from the set . 

Therefore, based on the given non-linear example, the bootstrap defines  as 

the sample probability distribution of . Then, for the given  and , the 

bootstrap sample is . 

Evaluate distribution of theta. For each data set, the same estimation procedure is 

performed giving a set of simulated measured parameters ( ). The distribution 

of errors ( ) is estimated by minimizing the error of each data point using the least 

squares method. The distribution of errors ( ) which is estimated as sample is plotted 

for graphical analysis.  

b. Data not available: Monte Carlo technique

Uncertainty analysis using the Monte Carlo technique can be divided into four steps:  (i) 

Input uncertainty characterisation; (ii) Sampling; (iii) Model evaluations; and, (iv) 

Output uncertainty analysis.  

Input uncertainty: Based on historical data, experiences and realizations, the parameters, 

which are inconsistent, are generally selected as uncertain data. The parameters are then 

characterized by choosing a distribution function such as a uniform or normal 

distribution.  

Sampling: The domain of uncertainty defined previously is sampled to generate a list of 

possible future scenarios, with equal probability of realization. In order to facilitate this 

task, and assure the quality of the sampling procedure (in terms of coverage of the 

uncertain space) the approach integrates a Latin Hypercube Sampling (LHS) based 

sampling technique with the rank correlation control method proposed by Iman and 
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Conover (1982), in order to reflect the correlation between the uncertain parameters in 

the generated future scenarios.  

Model evaluations: The generated Monte Carlo samples are then used as discretization 

points to approximate the probability integral, appearing in the objective function of 

optimization under uncertainty problems. The relationship between samples and outputs 

is established using a linear regression. In this regression, the parameter  is the 

standardized regression coefficient (SRC) of the parameter  on output ; if  has a 

negative sign, it means that a parameter j has a negative influence on the output k; if  

has a positive sign it indicates that a parameter has a positive influence on the output k; 

a high value of   means a high impact on the output k. The sum of squares of the 

standardized regression coefficients is equal to one ( ). 

Output uncertainty. The results are then analysed by using a non-parametric distribution 

function such as a cumulative distribution function (CDF), and frequentist statistics 

such as mean, variance and percentile analysis etc.  

7.3 Motivating example: estimation of uncertainty in cost data 

Ethylene is an important and widely used intermediate in the chemical industries. The 

production of ethylene is used as a case study to highlight the uncertainties involved in 

cost estimation methods. The systematic methodology consists of two parts: (i) 

bootstrap parameter estimation; (ii) Monte Carlo technique with an expert judgment of 

uncertainties, are illustrated below. 

3a. Bootstrap regression for parameter estimation

Table 7.3 presents the capacity and investment cost of the existing plant, which can be 

used for estimating the capital investment using the order-of-magnitude method (Eq. 

7.1). This information is reported annually by SRI Consulting, Chem Systems, NREL or 

NETL. As presented in Table 7.3, there are five data points available, and the 

bootstrapping method is therefore applied.  
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Table 7.3. Historical data for order-of-magnitude cost estimation (Towler and Sinnott, 
2013) 

No. Licensor Technology 
Capital cost

(MM$/a) 

a = 

C1/S1
n

S2

(tpd) 

S2

(MMlb/a) 
n Conversion

1 Generic 
ethane 

cracking 
620 9.57 

1300* 1045* 0.6 

0.8 

2 UOP/INEOS 
UOP/Hydro 

MTO 
559 8.63 0.8 

3 Generic LN cracker 1063 16.41 0.3 

4 Generic 
ethane/propane 

cracking 
510 7.88 0.45 

5 Generic gas oil cracker 1109 17.12 0.25 

 

Consequently, these data (Table 7.3) are regressed and characterized as the input 

parameters presented in Table 7.4. As shown in Table 7.4, the standard deviation is 

significant, and therefore, the parameter  is considered to be an uncertain parameter. 

Table 7.4. The input parameter for cost estimation using Model 1 

Model Parameter Mean Std.

Model 1: 

  

a 11.92 4.47 

n 0.60 0 

 

3b. Early stage cost estimation – Monte Carlo technique

When data of similar plants are unavailable, the suggestion from an expert can be used. 

In this section, the Monte Carlo simulation with expert judgment is used for uncertainty 

analysis on the cost estimation. Table 7.5 presents the input uncertain data for cost 

estimation methods which are defined using the  with respect to 

the cost estimation accuracy in Class 5 (Table 7.1). To avoid any inaccuracy in the 

correlation between the parameters (the production rate, overall conversion and the 

number of functional units), the  value, representing the 

uncertainties of the estimated capital cost, is used. The input data in Table 7.5 consist of 

two sections regarding two ranges of expert judgment: (i) lower range (underestimate), -

20% to -50%; (ii) higher range (overestimate), +30% to +100%.  
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Table 7.5. The input parameters for three cost estimation models 

Model Parameter 
Mean Min Max Mean Min Max

(-20% to -50%) (+30% to +100%) 

Model 2: 

  
1 0.5 0.8 1 1.3 2 

Model 3: 

 

 

Model 4: 

 

 

 

Results  

The results of the different cost estimation methods are presented and compared in 

Table 7.6. The estimation results obtained from different models yield significant 

differences. This motivating example confirms the significant impact on the selection of 

the methods for early stage cost estimation. This impact on process synthesis and design 

will be analyzed and discussed in the next section.   

Table 7.6. The comparison of early stage cost estimation for an ethylene production plant of 
1300 tpd 

Model 1 
Ranges of expert 

judgement
Model 2 Model 3 Model 4 

(MM$) std. (MM$) std. (MM$) std. (MM$) std. 

Capital 

cost 

estimation  

772.5 289.4 

-20% to -50% 143 19 2156 288 185 25 

+30% to +100% 363 45 5427 671 470 57 
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7.4 Process synthesis and design of biorefinery: impact of 

uncertainties in cost estimation on the decision making 

7.4.1 Step 1: Problem formulation (Step 1.1: problem definition, superstructure 

definition, data collection, model selection and validation), Step 1.2: 

Superstructure definition, and Step 1.3: Data collection, modeling and 

verification).  

The problem in this chapter has been defined earlier (chapter 6). The biorefinery design 

networks resulting from chapter 6 are used again here, and therefore, the development 

of the superstructure and the data collection/management were not repeated. However, 

it is necessary to present the superstructure again (Figure 7.3). The objective function 

defined in this study was to maximize the operating profit (product sales – operating 

cost – annualized capital cost). 

 

 

 

 

 

 

 

 

Figure 7.3. The superstructure of the biorefinery network extended with bioethanol 
based derivatives (presented again in this chapter).  
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7.4.2 Step 2: Uncertainty characterization.  

In this step, the methodology presented earlier in (Figure 7.2) was applied to 

characterize the early stage cost estimation. Since there is very little information on the 

existing plant producing bioethanol derivatives, the bootstrapping regression model 

could not be applied. The Monte Carlo approach with Latin Hypercube Sampling was 

therefore applied instead.   

Prior to any further analysis, it is important to note that there is only an overestimation 

scenario (+30% to +100%) that is presented in this context because it has a negative 

impact on the operating profit of the project. An underestimation scenario (-20% to -

50%) is presented in the appendix D.  

The input uncertainty for early stage cost estimation is presented in Table 7.7. The 

parameters of each cost estimation method were selected as uncertain data, and they 

were characterized as a uniform distribution (mean/min./max.) for two ranges of expert 

judgment with respect to the accuracy range presented in Table 7.1. The input 

uncertainties from Table 7.7 were then sampled for 200 scenarios. 

Table 7.7. Input uncertainties for early stage cost estimation of ethanol derivatives for 4 cost 
estimation models 

Model Parameter 

R1:

ethylene 

R2:

acetaldehyde

R3:

diethyl ether 

R4:

n-butanol 

R5:

ethylacetate 

R6:

acetic acid 

a b c a b c a b c a b c a b c a b c

1 a 6.3 8.19 12.6 0.62 0.81 1.24 0.3 0.39 0.6 - 18.9 24 37.7 4.8 6.2 9.6

2,3,4 
Uncertaint

y factor 
1 1.3 2 1 1.3 2 1 1.3 2 1 1.3 2 1 1.3 2 1 1.3 2 

Model parameter 

R7:

hydrogen 

R8:

propylene 

R9:

isobutylene 

R10:

acetone 

R11:

ethylene oxide 

R12:

1,3-butadiene

a b c a b c a b c a b c a b c a b c

1 a 0.87 1.13 1.74 7.1 9.23 14.2 0.05 0.07 0.10 - 5.6 7.28 11.2 1.85 2.4 3.8

2,3,4 
Uncertaint

y factor 
1 1.3 2 1 1.3 2 1 1.3 2 1 1.3 2 1 1.3 2 1 1.3 2 

a is mean; b is min; c is max. 
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7.4.3 Step 3: Deterministic problem 

The deterministic optimization problem is solved in this step. The result of this step is 

the deterministic solution of the optimal processing path, i.e. one optimal processing 

path on the basis of mean values representing the input data (Table 7.7). The top-five 

ranking of maximum operating profit is presented in Table 7.8. 

Table 7.8 Top-five ranking of the optimal solutions using Model 1-4 for capital cost 
estimation of +30% to +100% over-estimates for max. EBITDA of producing ethanol 
derivatives 

Model 1

Rank

no.
Process intervals selection 

EBITDA

(MM$/a) 
Products 

Produc-

tion 

(tpd) 

TAC

(MM 

$/a) 

Capex

(MM 

$/a) 

1 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, diethyl ether 

production 

246 
Diethyl 

ether 
345 83.42 23.62 

2  

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, 1,3-butadiene 

production 

238 
1,3-

butadiene 
292 90.2 29.35 

3 

Wood, ammonia explosion, Spyzyme 

enzyme hydrolysis from AFEX, 

Butanol production by Clostridium

beijirickii Gas stripping by CO2 and 

H2, distillation, butanol production 

180 Butanol 118 75 15 

4 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethanol production 

133 Ethanol 590 81.3 22 

5 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethylene oxide 

production 

121 
Ethylene 

oxide 
544 143 25.7 

Model 2
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Rank

no.
Process intervals selection 

EBITDA

(MM$/a) 
Products 

Produc-

tion 

(tpd) 

TAC

(MM 

$/a) 

Capex

(MM 

$/a) 

1 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, diethyl ether 

production 

241 
Diethyl 

ether 
345 88 29.6 

2  

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, 1,3-butadiene 

production 

240 
1,3-

butadiene 
292 87.4 27.44 

3 

Wood, ammonia explosion, Spyzyme 

enzyme hydrolysis from AFEX, 

Butanol production by Clostridium

beijirickii Gas stripping by CO2 and 

H2, distillation, butanol production 

180 Butanol 118 75 15 

4 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethylacetate pro-

duction 

164 
Ethylaceta

te 
371 90 30.6 

5 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, Ethylene oxide 

production 

139 
Ethylene 

oxide 
544 123 30.7 

Model 3

Rank

no.
Process intervals selection 

EBITDA

(MM$/a) 
Products 

Produc-

tion 

(tpd) 

TAC

(MM 

$/a) 

Capex

(MM 

$/a) 

1 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, 1,3-butadiene 

production 

183 
1,3-

butadiene 
292 133 84 

2 

Wood, ammonia explosion, Spyzyme 

enzyme hydrolysis from AFEX, 

Butanol production by Clostridium

beijirickii Gas stripping by CO2 and 

H2, distillation, butanol production 

180 Butanol 118 75 15 

3  

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

179 
Diethyl 

ether 
345 150 93 
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sieve, distillation, diethyl ether 

production 

4 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethanol production 

133 Ethanol 590 81.3 22 

5 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethylacetate pro-

duction 

127 
Ethylaceta

te 
371 129 67.6 

Model 4

Rank

no.
Process intervals selection 

EBITDA

(MM$/a) 
Products 

Produc-

tion 

(tpd) 

TAC

(MM 

$/a) 

Capex

(MM 

$/a) 

1 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, 1,3-butadiene 

production 

239 
1,3-

butadiene 
292 94.6 28 

2 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, diethyl ether 

production 

238 
Diethyl 

ether 
345 93.5 31.3 

3 

Wood, ammonia explosion, Spyzyme 

enzyme hydrolysis from AFEX, 

Butanol production by Clostridium

beijirickii Gas stripping by CO2 and 

H2, distillation, butanol production 

180 Butanol 118 75 15 

4 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethylacetate pro-

duction 

161 
Ethylaceta

te 
371 95 33 

5 

Wood, entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, Ethylene oxide 

production 

136 
Ethylene 

oxide 
544 129 33 

The results presented in Table 7.8 show that there are slight differences in the results 

with respect to the identification of the optimal processing paths. Diethyl ether is 
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predicted to be the most profitable using Model 1, Model 2, and Model 4 for estimating 

capital cost. On the other hand, 1,3-butadiene is predicted as being the most favorable 

product when using Model 3. Overall, the production of diethyl ether, 1,3-butadiene and 

butanol are in the top-three ranking for every scenario. 

7.4.4 Step 4: Decision-making under uncertainty 

Step 4.1 Deterministic problem 

Instead of using a certain (mean) value as input data, the sampling results (200 samples 

generated in Step 2) from the uncertainty domain were used as the input data for the 

deterministic problem resulting in 200 optimal solutions.  

The results (Table 7.9) are (i) the probability distribution of the objective value; and (ii) 

the frequency of selection of the optimal processing path candidates under the generated 

uncertain samples. These identify the promising processing paths given the considered 

uncertainties. 

Table 7.9. Uncertainty mapping and analysis: frequency of selection with respect to 200 
input uncertainty scenarios 

Model 

Range of 

expert 

judgement

Operating 

profit (MM$/a)

Annualized 

capital cost 

(MM$/a) 

Frequency of selection 

 
 (MM$) std. (MM$) std. 

Diethyl ether 

production 

1,3 butadiene 

production 

1 

+30% to 

+100% 

246.6 0.24 22.92 0.24 200/200 - 

2 242 0.8 29.6 1 145/200 55/200 

3 196.6 9.4 86 7.9 36/200 164/200 

4 236.6 1.37 31 1.2 176/200 24/200 

The results show that using Model 1, there were no changes of the optimal processing 

path compared to the deterministic solution. On the contrary, using Model 3, the 

production of 1,3 butadiene was more favorable confirming the results in Step 3 (section 

7.4.3). Overall, the production of diethyl ether and 1,3-butadiene were reported to be the 

most favorable and profitable. The results in this step confirm the robustness of the 

deterministic solutions in Step 3 (section 7.4.3). 
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7.4.5 Step 5: Risk quantification 

The results from Step 3 and Step 4.1 presented previously show that the production of 

diethyl ether and 1,3-butadiene are the most profitable/promising. Therefore, these two 

productions were further analyzed. In this step, EBITDA is converted into IRR (Eq. 7.8) 

which is an appropriate economic indicator for project evaluation. Figure 7.4 and Figure 

7.5 present the cumulative distribution of the %IRR related to diethyl ether and 1,3-

butadiene production, respectively. 

 

 

 

 

 

Figure 7.4. Diethyl ether production: the empirical cumulative distribution function 
(ECDF) of the IRR estimated from four estimation models 

 

 

 

 

 

Figure 7.5. 1,3-butadiene production: the empirical cumulative distribution function 
(ECDF) of the IRR estimated from four estimation models 

Risk analysis was also performed and analyzed based on the production of diethyl ether 

and 1,3-butadiene. Risk is defined as the probability (failed to achieve the target) times 
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the consequence (the deviation from the target). In this study, the target is the internal 

rate of return (IRR) which is estimated based on the certain value (mean) of the input 

parameter used for capital cost estimation. Table 7.10 presents the risks quantified based 

on the two production processes (diethyl ether and 1,3-butadiene), four cost estimation 

models and the reference estimation (no uncertainty considered).  

Table 7.10. Risk analysis of the production of diethyl ether and 1,3-butadiene 

Model Diethyl ether production 1,3 butadiene production 

Referenced 

estimation 

(%) 

Estimated 

IRR (%), 

Fig.6 

Quantified risk 

(MM$/a) 

Referenced 

estimation 

(%) 

Estimated 

IRR (%), 

Fig.7 

Quantified risk 

(MM$/a) 

1 26.2 25.6 ± 0.31 0.24 22.7 19.1 ± 0.91 4.9 

2 24.2 20.6 ± 0.89 0.02 25.2 21.7 ± 0.7 6.4 

3 8.9 -0.2 ± 1.98 20.3 8 2.6 ± 2.1 13.9 

4 20.1 16.5 ± 0.95 3.63 23.6 15.9 ± 0.9 8.7 

As presented in Table 7.10, the risks quantified for diethyl ether production are lower 

compared to 1,3-butadiene production except for the case where Model 3 was used. The 

reason for this is that the price of diethyl ether is lower resulting in a lower operating 

profit and IRR. Moreover, Model 3 resulted in a significantly lower IRR compared to 

the results from the other models. Therefore, Model 3 should be considered as invalid. 

7.5 Discussion 

The comparison results show that different cost estimation methods lead to different 

results. This is because of the differences in the assumptions and the types of data used 

for the estimation. Therefore, the selection of the proper cost estimation method is 

critical.  

Moreover, the results show that the uncertainty impact of cost estimation on the optimal 

processing paths is significant in the case study considered for the analysis. Hence, we 

conclude here that cost analysis cannot be based on a deterministic approach, but should 

be done using a probabilistic approach in which uncertainties are accounted for. 

Moreover, the Model 3 is found not to be preferable because the results are inconsistent 
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compared to the other models. The underlying reason is attributed to the fact that the 

Model 3 is an indirect method that requires too much input information including the 

assumption of pay-back period, product sales and raw material cost. Hence, Model 3 is 

more vulnerable to input uncertainties. On the contrary, the Model 4 – another indirect 

method, uses only one assumption (raw material cost) and provides more consistent 

results with the cost estimation obtained from direct methods, i.e. the Model 1 and 

Model 2.  

In this study, IRR and EBITDA were used as economic indicators according to 

industrial practice (Towler and Sinnott, 2013). The results are expected to be the same 

as using net present value (NPV) due to the direct relation between IRR and NPV as 

presented in Eq. 8 (Towler and Sinnott, 2013). 

(7.8)

In engineering companies, the cost estimation is usually refined in each successive 

phase of the project. For example in the detailed engineering phase, the cost estimation 

will be made based on the vendor information about pipes, tanks etc. resulting in more 

accurate estimates compared to the rough estimation obtained at the early project stage 

using simple methods (the Model 1, 2, 3 and 4 as presented here). Hence as a future 

scope for further improving the accuracy of early stage cost models, it is suggested to 

calibrate the model parameters against more accurate cost estimation models. 

Overall the results in this study support the argument that while the early stage 

assessment of the main cost components (capital investment and operating costs) is an 

approximation, these estimation results can still be useful for comparing and screening 

among alternatives (Anderson, 2009). Therefore, if the assumptions are reasonable, the 

process alternatives that are clearly economically infeasible can be identified early and 

removed from further analysis in subsequent project design stages.  
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7.6 Conclusions 

An assessment of uncertainties in early stage cost estimation of process synthesis and 

design of a biorefinery was studied and discussed. A systematic framework was applied 

consisting of a superstructure optimization based approach under uncertainty integrated 

with the proposed uncertainty characterization framework supporting the different types 

of data available (i.e. historical data from existing plants, an expert judgment). The 

comparison results from the case study on the process synthesis and design of the 

biorefinery problem showed that the results are different when using different cost 

estimation models. The Model 3 is found not to be favourable in this study because the 

results are inconsistent with the other models. Moreover, using the same methods 

including the uncertainties resulted in a significant impact on changing the selection of 

the processing paths. Therefore, the selection of early stage cost estimation method is 

critical. Furthermore, the cost analysis cannot be based on a deterministic approach but 

should be evaluated by means of a probabilistic approach in which uncertainties are 

accounted for. It was found that the production of diethyl ether and 1,3-butadiene are 

the most economically profitable. These analyses provide useful information supporting 

the future development of biorefineries.  
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8.
CASE STUDIES IV: ALGAL BIOREFINERY 

In this chapter, optimal design of an algal biorefinery using microalgae is presented with 

respect to techno-economic criteria. A superstructure representing a wide range of 

technologies developed for processing microalgae to produce end products is 

formulated. The corresponding technical and economic data is collected and structured 

using generic input-output mass balance models. An optimization problem is formulated 

and solved to identify the optimal designs. The effect of uncertainties inherent in 

economic analysis such as microalgae production cost, composition of microalgae (e.g. 

oil content) in microalgae and biodiesel/bioethanol market prices is investigated and 

presented as well.  

 
Parts of this chapter have been published in the following publications: (i) Peam Cheali; 

Krist V. Gernaey; Gürkan Sin. (2015) Optimal Design of Algae Biorefinery Processing 

Networks for the production of Protein, Ethanol and Biodiesel. Computer Aided 

Chemical Engineering, in press; (ii) Peam Cheali; Carina L. Gargalo; Krist V. Gernaey; 

Gürkan Sin. (2015) A framework for sustainable design of Biorefineries: life cycle 

analysis and economic aspects. Algal Biorefineries Vol. 2, Springer, in press. 
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8.1 Introduction 

Among other renewable feedstocks (i.e. corn stover, wood, palm or soybean), algae 

contain the highest oil yield per hectare per year (Demirbas & Demirbas, 2011). 

Moreover, high growth rate, CO2 consumption, clean technologies, and a variety of 

potential products (i.e. biofuels, bioenergy, animal feed, cosmetics, fertilizer, fibers, and 

intermediate protiens) enhance the development of algae cultivation and conversion 

technologies (FAO 2010). 

In development of the algal biorefinery, there are a number of alternatives potentially 

available to choose from depending on the specific type of microalgae and the 

processing technologies used to produce biodiesel, glycerol, ethanol and protein-based 

compounds. The typical algal biorefinery consists of algae cultivation, harvesting, 

pretreatment, extraction, and conversion (i.e. transesterification). Thermochemical 

processes (i.e. hydrothermal liquefaction or pyrolysis) can also be used to convert algae 

to biofuels. Moreover, algae, which contain a number of nutrients, can also be converted 

into non-energy products (i.e. intermediate protein, animal feed or fertilizer). In this 

chapter, only the typical algal biorefinery is addressed.  

One of the challenges in identifying optimal algal biorefinery concept is the underlying 

uncertainties in data used for comparison and evaluation. These include the volatility of 

market prices, process conversion factors and yields inherent to new technologies. 

Therefore, it is important to use a systematic methodological approach at the early stage 

design phase to identify the optimal designs under uncertainties.  

To this end, a systematic framework that uses superstructure-based optimization is 

applied to identify the optimal algal biorefinery concept in this chapter. The study 

considers the effect of uncertainties in raw material composition and product prices on 

the decision making as well. First, a superstructure representing the design space of the 

algal biorefinery is developed containing various types of microalgae and subsequent 

pretreatment, reaction and separation technologies to produce biodiesel, ethanol and 

protein-based compounds. Subsequently, the database (generic model and parameters 

and data) is collected The superstructure which is formed by the combination of the 
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alternatives (types of feedstock, technologies, and products) together with the collected 

data, is then mathematically formulated as an optimization problem and solved to 

identify the optimal designs with respect to techno-economic constraints. Further 

product market prices and algae oil content uncertainties are analyzed for robust 

decision making purposes.  

8.2 Identification of algae biorefinery optimal designs 

In this section, synthesis and design of algal biorefinery networks under uncertainty was 

performed using the systematic framework presented in earlier sections.  

8.2.1: Step 1-Problem formulation: (1.1) problem definition; (1.2) superstructure 

definition and data collection; (1.3) model selection and validation 

The problem statement was formulated as the identification of optimal biorefinery 

concepts with respect to techno-economic specifications under a specific objective 

function aiming at maximizing company earnings. The superstructure (Figure 8.1) of 

the algae biorefinery processing network was generated producing biodiesel and co-

products by processing microalgae cultivated in a raceway pond with a 1300 tpd 

capacity (the same basis as Pacific Northwest National Laboratory (PNNL), Jones, et 

al., 2014). The superstructure has four main processing steps consisting of 12 harvesting 

technologies; 4 pretreatment technologies; 4 extraction technologies; 6 

transesterification alternatives; and 4 conversion technologies of co-products, resulting 

in a total of 1920 processing paths. The data collection including model verification was 

performed against the experimental data published prior to the identification of optimal 

processing paths in the next steps.  
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Figure 8.1. The superstructure of algae biorefinery processing networks 

 

Data collection and estimation 

The data and parameters required for the generic process model blocks (section 3.1) that 

are used to define the superstructure, are presented in this section and in Table 8.1-8.3. 

The alternatives technologies presented and defined in this study are based on the 

available data from publications (i.e. literature, technical reports). Cost estimation was 

performed on the basis of the amount of utilities consumed (operating cost) and the 

available information of the existing plant/technologies by applying the six-tenth rule 

(capital cost). 

Table 8.1 presents the parameters for the generic process model block in the harvesting 

processing step. The harvesting step is used to collect the algae. The algae form a dilute 

suspension in water and the main purpose of the harvesting step is to increase the 
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concentration of algae in the feed stream to the biorefinery. Therefore, there are three 

parameters presented: (i) the ratio of utilities or chemicals added ( ); (ii) the 

consumption of added utilities or chemicals ( ); (iii) product separation ( ). 

Table 8.1. The parameters for the generic process model block in the harvesting 
processing step (  = 1) 

Process blocks  References 

(2) Centrifuge     Price et al. (1974) 

(3) Gravity sedimentation    Sim et al. (1988) 

(4) Press filtration    Sim et al. (1988) 

(5) Tangential filtration    Petrusevski et al. (1995) 

(6) Membrane filtration    Zhang et al. (2010) 

(7) Ferric Chloride floccula-
tion  Ferric Chloride 1.25 1 Granados et al. (2012) 

(8) pH induced flocculation NaOH 0.2 1 Wu et al. (2012) 

(9) Alum sulfide flocculation Alum 0.27 1 Sirin  et al. (2012) 

(10) Chitosan flocculation Chitosan 0.18 1 Divakaran et al. (2002) 

(11) Polyanium chloride 
flocculation 

Polyanium 
chloride 0.27 1 Divakaran et al. (2002) 

(12) Electro flocculation    Granados et al. (2012) 

(13) Dissolved air floccula-
tion 

   Sim et al. (1988) 

 
The pretreatment step is used to increase the concentration of the algae to 20 wt% or 

higher. Therefore, the parameters here are (i) the heat and electricity required; and (ii) 

the concentration of algae at the outlet (20 wt %). In this step, there are four 

alternatives: (i) algae hydrothermal liquefaction (AHTL) with a conversion fraction of 

0.52 of raw algae to algae oil (Jones et al., 2014); (ii) drying and grinding; (iii) drying, 

grinding and microwave; (iv) drying, grinding, microwave, and ultrasonic treatment. 

Table 8.2 presents the parameters in the lipid extraction step. This step is used to extract 

algae oil (lipid) from the algae feed (20 wt %) after the drying processes. Therefore, 

solvents are required and product separation of algae oil (lipid) is done in practice. The 

primary product of this step is algae oil (lipid) and the secondary products which are 

separated are then processed in the co-product utilization step.  
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Table 8.2. The parameters for the generic process block in the lipid extraction 
processing step 

Process blocks   References 

(18) Extraction Hexane Sochlet 0.18 0 0.26 Prommuak et al. 
(2012) 

(19) Extraction Chloroform and 
Hexane Sochlet 0.18 0 0.2 Long et al. (2011) 

(20) Supercritical 
fluid extraction CO2   0.1 Herrero et al. (2006)

(21) Press oil extrac-
tion (Expeller)   0.75 Topare et al. (2011)

 
Table 8.3 presents the parameters for the generic process model block in the 

transesterification processing step. Transesterification is used to convert algae oil (lipid) 

to biodiesel and glycerol. Acid or base catalysts are required as well as methanol which 

is then recycled. The stoichiometric coefficient ( ) following the typical 

transesterification reaction (Algae oil (lipid) + 3MeOH  3Fatty acid methyl ester 

(FAME) + glycerol) and conversion fraction ( ) are furthermore required in this 

processing step.  

 

Table 8.3. The parameters for the generic process block in transesterification, co-
product utilization, purification processing step 

Transesterification    References 

(22) Homogeneous KOH, MeOH 0.05, 16 0, 1 0.92 Vicente et al. (2004) 

(23) Homogeneous H2SO4, MeOH 0.03, 9 0, 1 0.95 Miao et al. (2006) 

(24) Enzymatic Enzyme, MeOH 0.0012, 6 0, 1 0.83 Levine (2013) 

(25) Supercritical MeOH 9 1 0.89 Levine (2013) 

(26) Catalytic 
hydrocracking 

Cobalt-modified 
MoS2 catalyst   0.82 Jones (2014) 

(27) Ultrasonic 
assisted transesteri-
fication (UAT) 

KOH 9 0 0.925 Levine (2013) 

 
Fertilizer (block no. 28) in this study is used to produce potassium nitrate. The constant 

(0.9) is used to simply convert a protein and starch mixture to fertilizer. The amount of 

dry cake of protein and starch mixture produced by the dryer (block no. 29) corresponds 

146



CASE STUDIES IV: Algal biorefinery 
 

145 
 

to the animal feed product. Bio-methane is produced using anaerobic digestion (block 

no. 30). The constant (0.03) is also used to produce bio-methane and carbon dioxide as 

the by-product. Hydrolysis and fermentation (block no. 31) are used to produce 

bioethanol. The constant (0.3) is also used for this process. These constants are 

estimated based on the available information from the literature (Alabi et al., 2009). 

Models and data verification 

In this step, models and data are verified by checking the conservation of mass for each 

process model block.  The output of this step is the verified database for the algae 

biorefinery which is then used as the input data for the optimization problem in the next 

step to identify the optimal processing paths. This step is highlighted for two processes 

below. 

The first example is for hydrothermal liquefaction process to produce algae oil (lipid) 

from raw algae. Heat is used as the main utility in this process. The mass balance (inlet 

stream(s) – outlet streams) for this process is closed by 100% as shown in Figure 8.2. 

 
 

 
 

Figure 8.2. The simplified process diagram showing mass inlet/outlet for hydrothermal 
liquefaction  

 
The second example is for homogeneous transesterification with H2SO4 to produce 
FAME (biodiesel) and glycerol from algae oil (lipid). Similarly the mass balance around 
this processing block is 100% closed by as shown in Figure 8.3. 
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Figure 8.3.The simplified process diagram showing mass inlet/outlet for homogeneous 
transesterification with H2SO4

8.2.2  Step 2: Uncertainty characterization. 

In this chapter, the uncertainties of market prices (biodiesel and bioethanol prices) and 

oil content in microalgae were identified as the important sources of uncertainty 

affecting the decision making process. Other potential sources of uncertainties (i.e. 

yields, reaction conversions, efficiencies) were not considered because of the low values 

of reported uncertainties. A summary of the input uncertainties and the correlation 

coefficient if available used in this study is presented in Table 8.4. These data form the 

input uncertainty domain, which was then sampled to generate 200 samples of the 

uncertain inputs. The Latin Hypercube Sampling (LHS) technique was used to this end. 

Table 8.4. Input uncertainty and correlation control coefficient 

 
mean Std Reference 

Biodiesel price ($/kg) 1,43 0,07 EIA 

Bioethanol price ($/kg) 0,72 0,08 USDA 

 
min Max  

Oil content (Raceway pond) 7,5 50 
Alabi et al. (2009) and 

Jones et al. (2014) 

Raw algae cost ($/ton) 300 560 Jones et al. (2014) 

Correlation matrix 

 
DO EtOH RC Algae 

Biodiesel price (DO) 1 0,194 0 0 

Bioethanol price (EtOH) 0,194 1 0 0 

Oil content (RC) 0 0 1 0 

Algae cost 0 0 0 1 
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8.2.3 Step 3: decision making on the deterministic basis 

In this study, the objective function was defined as maximizing the operating profit 

(MM$/a) for the biodiesel scenario. The formulated MI(N)LP was solved in this step for 

the deterministic basis (mean input values), in particular, by maximizing Earnings 

Before Interest, Taxes, Depreciation and Amortization (EBITDA). The optimization 

solutions are presented in Table 8.5. The results show that a new optimal processing 

path (no. 1 in Table 8.5) was found slightly better compared to the case study from the 

PNNL report (Jones et al., 2014). 

Objective function, 

(8.1)

In this step, the formulated MILP/MINLP problem was solved; the optimal solutions 

were identified (max. EBITDA); and the results are presented in Table 8.5 illustrating 

the top-three ranking of the solutions. The production rate of diesel and glycerol, 

EBITDA, production rate, total capital cost and operating cost as well as the optimal 

processing paths were presented. This solution corresponded to the deterministic 

solution of the optimization problem where no uncertainties are considered. The 

formulation of the optimization problem consists of 99,437 equations and 97,319 

variables and 40 decision variables. This problem was solved using DICOPT solver 

using Windows 7, Intel® Core™ i7 CPU@ 3.4GHz, 4GB RAM, resulting in 10 seconds 

of the execution. 
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Table 8.5. Top-three ranking processing paths of algal biorefinery with respect to 
economic criteria 

Rank Processing path 
EBITDA 
(MM$/a) 

Production  
(biodiesel/glycerol)

(tpd) 

Capital 
cost 

 (MM$) 

Operating 
cost  

(MM$/a) 

1 
Algae, hydrothermal liq-
uefaction, transesterifica-
tion with H2SO4  

87 670/67 252 198 

2 
Algae, hydrothermal liq-
uefaction, transesterifica-
tion with KOH  

60 648/65 252 201 

3 

Algae, hydrothermal liq-
uefaction, su-
per/subcritical transesteri-
fication with methanol 

47 627/63 252 196 

 
As presented in Table 8.5, hydrothermal liquefaction was selected because it results in 

the highest yield of algae oil produced compared to lipid extraction alternatives. The 

homogeneous transesterification using H2SO4 as catalyst was selected because it reaches 

the highest conversion. The results are in agreement with the PNNL report (Jones et al., 

2014) which used hydrothermal liquefaction and catalytic hydrotreating resulting in 280 

MM$/a. The differences are due to the use of transesterification with H2SO4 instead of 

catalytic hydrotreating which has a lower yield and higher cost. It also shows that the 

cost of algae feedstock (190 MM$/a, 1300 tpd) is accounted for 90% of total annualized 

cost which is much higher than the feedstock cost for lignocellulosic biomass (60 

MM$/a, 2000 tpd). 

8.2.4 Step 4: decision-making under uncertainties 

Step 4.1 Deterministic problem 

In this step the 200 samples generated from the LHS sampling were used as the input 

data for the MIP/MINLP problem, resulting in 200 optimal solutions. The full results 

were then analysed to identify the optimal solution under uncertainty. As presented in 

Table 8.6, two processing paths were selected under uncertainty.  

From the 200 considered scenarios under uncertainty, network 1 and network 2 are 

identified as the best candidates. Moreover, network 1 resulted in higher EBITDA, 

however, the standard deviation is slightly higher compared to network 2 meaning that 
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further analysis should be performed to mitigate the impact of uncertainties such as 

flexible network solution. 

Table 8.6. The frequency of selection of the optimal processing paths  
for 200 input scenarios under uncertainties 

Network 
no. Processing path Frequency of 

selection
EBITDA
(MM$/a) Std. 

1 
Algae, hydrothermal liq-
uefaction, transesterifica-

tion with H2SO4  
130/200 122 26 

2 
Algae, hydrothermal liq-
uefaction, transesterifica-

tion with KOH 
70/200 87 25 

 

Step 4.2 Stochastic problem 

The mathematical formulations used in Step 3 and Step 4.1 were reformulated as 

stochastic programming and solved in this step. Table 8.7 presents the optimal solutions 

(processing paths and operating profits) under uncertainty. As regards the optimal 

network solutions under uncertainty, the process topologies selected were slightly 

different from the deterministic case, which was the result of the trade-off between 

conversion and utility cost, and therefore confirming the robustness of the deterministic 

solution and the strong impact of uncertainties. 

Table 8.7. Optimal solutions under uncertainty 

Solution Network EBITDA
(MM$/a) 

Capital 
cost

(MM$) 

Operating cost (MM$/a) 

Microalgae 
cost 

Natural 
gas 

Cata-
lyst/Chemi

cals 

Optimal 
network 
(Step 3) 

Algae, hydrothermal 
liquefaction, trans-
esterification with 

H2SO4 

87 252 190 6.6 4.5 

Network 
under 

uncertainty 
(Step 4b) 

Algae, hydrothermal 
liquefaction, trans-
esterification with 

KOH 

85 252 190 6.6 3.8 

 
Summarizing, based on the techno-economic analysis of the optimal biorefinery 

network presented in the previous steps of the methodology, the network presented in 

Figure 8.4 is found as the optimal solution both for the deterministic case and under 

uncertainty – in particular market uncertainties. Hence the result from the optimal 
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flexible network (Algae, hydrothermal liquefaction, transesterification with H2SO4 and 

KOH) is then recommended as the best candidate for further research and development 

efforts among the design space candidates.  

Moreover, it is important to note that 90% of the biodiesel production cost is 

represented by the microalgae cost (1300 tpd of microalgae, 190 MM$/a) which is much 

higher compared to lignocellulosic biomass (60 MM$/a, chapter 5 and chapter 6). 

Furthermore, for the same capital investment, the algal biorefinery has a lower capacity 

compared to a lignocellulosic biorefinery meaning that it is more expensive (Jones et 

al., 2014). However, the biodiesel yield is higher, 51% maximum for the algal 

biorefinery and 28% for the lignocellulosic biorefinery (chapter 5 and chapter 6). 

 

Figure 8.4. The optimal processing network (simplified flowsheet) 

8.3 Discussion 

The systematic framework for synthesis and design of processing networks followed in 

this chapter generated a large verified database resulting in a large design space with a 

number of scenario that were produced prior to the identification of optimal designs.  

The input data were collected from the literature and the PNNL report. The resulting 

optimal design concept consisted of whole algae cultivation from a raceway pond, 

hydrothermal liquefaction, and transesterification with H2SO4. The algae feedstock cost 

was estimated earlier by U.S. Department of Energy (DOE 2013) as a fixed price of 430 
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$/ton (340 $/ton for cultivation, 90 $/ton for dewatering) or 204 MM$/a for biodiesel 

production from lipid extraction. This cost was reduced to 300 $/ton (or 190 MM$/a) 

due to the use of whole algae reported by PNNL (Jones et al. 2014). Therefore, an algae 

cost of 300 $/ton was used in this study. Moreover, a new optimal design concept was 

found in this study resulting in slightly higher EBITDA compared with the result in 

PNNL; 319 and 280 MM$/a, respectively. It is important to note that 90% of the 

biodiesel production is related to the cost of algae feedstock (190 MM$/a, 1300 tpd) 

which is much higher than for lignocellulosic biomass (60 MM$/a, 2000 tpd). However, 

the maximum biodiesel yield for an algal biorefinery (51%) is much higher than for a 

lignocellulosic biorefinery (28%) reported in the previous study (chapter 5 and chapter 

6).  

The results in this study are in agreement with the PNNL report. However, the study 

from British Columbia (Alabi et al. 2009) which performed economic analysis on the 

algal biorefinery based on three different algae feedstock concluded that algae 

cultivated from raceway pond and photobioreactor cannot produce oil at competitive 

prices except for algae cultivated from a fermenter due to the productivity of algae and 

the oil content in algae feedstock. Therefore, the identification of optimal designs of the 

algal biorefinery is still a challenging problem due to the quality of the data available. 

The database should be kept up to date and will be expanded with more promising data 

and technologies. Moreover, uncertainty analysis should also be performed in the future 

work as the data are highly uncertain at the early development stage of algal biorefinery 

design.  

8.4 Conclusion 

In this study, the systematic framework for synthesis and design of processing networks 

under uncertainty was applied for designing an optimal algal biorefinery processing 

network. A new optimal processing path was identified which includes the following 

processing scheme: hydrothermal liquefaction and transesterification with acid (H2SO4) 

or KOH. Moreover, the solutions – both deterministic and under uncertainties in product 

market prices, algae cost and oil content are slightly different. These confirm the strong 

impact of the oil content in algae and the biodiesel market prices for algae biorefinery 
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processing networks. It is also important to note that the microalgae cost is around 90% 

of the biodiesel production which indicates that research and development efforts need 

to focus to bring down the production costs of microalgae by and large. 

Using the framework, many processing network alternatives are generated and 

evaluated at their optimality resulting in the identification of the optimal processing 

paths. The generated database and superstructure provide a versatile process synthesis 

toolbox used in designing future and sustainable algal biorefineries. 
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9.
ECONOMIC RISK ANALYSIS AND CRITICAL 
COMPARISON OF OPTIMAL BIOREFINERY 

CONCEPTS

In this chapter a number of optimal biorefinery concepts presented earlier are critically 

analyzed and compared in terms of techno-economic performance and associated 

economic risks against historical market fluctuations. Moreover, the economic analysis 

of each biorefinery concept is tested against a sudden drop in oil prices to compare 

fitness/survival of the biorefinery concept under extreme market disturbances.  
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9.1 Introduction 

Chemical industries and other manufacturing and industrial sectors strongly depend on 

fossil-based feedstock for raw materials and energy production. This dependence results 

in issues related to supply security and long-term availability, price volatility, and 

negative environmental impacts like climate change effects (Tuck et al., 2006). This 

context has motivated the development of sustainable technologies for processing 

renewable feedstock into fuels, chemicals and materials. The biorefinery concept has 

thus become a promising solution for efficiently using and processing different types of 

renewable biomass feedstock.  

The wide range of biomass characteristics has resulted in a significant development in 

the area of biorefinery processing technologies (i.e. hydrolysis, fermentation, 

gasification, product synthesis) in lab-, pilot-, demonstration- to full-scale production 

(Rødsrud et al., 2012). However, the development and design of optimal biorefinery 

concepts in a competitive market and considering uncertainties still remains an open 

challenge.  

Therefore, a quick, robust and systematic approach for designing optimal biorefineries 

under market price uncertainties was developed to support decision-making processes 

(Chapter 3). The approach has been used to design optimal biorefineries for: (i) 

lignocellulosic ethanol production via thermochemical and biochemical conversion 

from corn stover and poplar wood (Chapter 5); (ii) ethanol-based production of high 

value-added derivatives (Chapter 6); and (iii) biodiesel, ethanol and protein production 

from microalgae (Chapter 8).  

In this chapter a number of optimal biorefinery concepts capable of producing biofuels 

and biochemicals employing different feedstock (lignocellulosic versus microalgal 

biomass) and with biochemical versus thermochemical conversion platforms are 

critically studied for in-depth comparison and economic risk analysis against market 

price uncertainties. To perform economic risk analysis, two market uncertainty 

scenarios were evaluated: (a) long-term historical trend of fluctuation for product prices; 

and, (b) the recent sudden drop in oil prices and the corresponding effect on product 
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prices. For the economic performance analysis, the following metrics were used: (i) 

EBITDA: Earnings before interests, taxes, depreciation and amortization – for 

deterministic analysis and comparison, (ii) MESP: minimum selling price – to compare 

cost breakdown for production cost (feedstock versus utility costs), and (iii) IRR: 

internal rate of return – a typical investment parameter which is also used to quantify 

the economic risk of failure for investment in a given biorefinery concept. This 

comprehensive quantitative comparison of technically and conceptually different 

systems allows identifying the cases with the most attractive strategy, i.e. choice of 

feedstock, choice of processing/conversion technology and product portfolio that  

performs best against past and present market price uncertainties. 

9.2 Synthesis and design of biorefinery network under 

uncertainties: results and discussion 

As mentioned in earlier chapters, the superstructure based optimization methodology 

developed earlier (Chapter 3) has been used to perform techno-economic performance 

and economic risk analysis on the major biorefinery concepts (Chapter 5-8) to identify 

their optimal processing paths. These biorefinery concepts and their optimal solutions 

are summarized again in Table 1.  
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Table 9.1. The optimal biorefinery concepts investigated for economic risk analysis and 
critical comparison  

Concept Feedstock 
Optimal conversion 

technology 
Products Data sources 

Biorefinery
1A 

2000 tpd of 
corn stover 

Biochemical conversion concept 
(APR pretreatment, spezyme 

hydrolysis, fermentation)  
(Zondervan et al., 2011) 

556 tpd of 
Bioethanol  

NREL(Aden et 
al., 2002) and 

literatures 

Biorefinery 
1B 

2000 tpd of 
corn stover 

Thermochemical conversion 
concept 

(Chapter 5) 

544 tpd of 
Bioethanol 

NREL (e.g. 
Swanson et al., 

2010) 

Biorefinery 
1C 

2000 tpd of 
poplar wood 

Biochemical conversion concept 
(APR pretreatment, spezyme 

hydrolysis, fermentation) 
(Chapter 5) 

468 tpd of 
Bioethanol 

NREL and 
Zondervan et al. 

(2011) 

Biorefinery 
1D 

2000 tpd of 
poplar wood 

Thermochemical conversion 
concept 

(Chapter 5) 

590 tpd of 
Bioethanol 

NREL (e.g. Dutta 
et al., 2009; 2011) 

Biorefinery 
2A 

2000 tpd of 
poplar wood 

Thermochemical conversion 
concept 

(Chapter 5) 

170 tpd of FT-
gasoline, 400 

tpd of FT-
diesel 

NREL(e.g. 
Swanson et al., 

2010 

Biorefinery 
2B 

1300 tpd of 
microalgae 

Thermochemical conversion 
concept (liquefaction and 

transesterification) 
(Chapter 8) 

670 tpd of 
Biodiesel 

PNNL (Jones et 
al., 2014) 

Biorefinery 
3A 

2000 tpd of 
poplar wood 

Thermochemical conversion 
concept and bioethanol upgrading 

processes 
(Chapter 6) 

356 tpd of 
Diethyl ether 

NREL and Posada 
et al. (2013) 

Biorefinery 
3B 

2000 tpd of 
poplar wood 

Thermochemical conversion 
concept and bioethanol upgrading 

processes 
(Chapter 6) 

306 tpd of 1,3-
butadiene 

1The lignin utilization was included and the market prices were updated from the previous study. 2Biodiesel 
price was updated to be comparable with the previous study (Chapter 5). 

In the earlier studies (Table 9.1), the processing networks (or the so called 

superstructure) are defined together with data collection and management regarding 

feedstock composition, technological factors (e.g. reaction stoichiometry, yields, 

separation units, utilities/chemicals usage, capital and operating costs), and market 

prices of raw materials and products. The data of market price uncertainties are 

characterized as probability distributions and used to generate possible future scenarios 

using the Monte Carlo technique. The Monte Carlo technique consists of the following 
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four steps:  (i) Input uncertainty characterisation; (ii) Sampling; (iii) Model evaluations; 

and, (iv) Output uncertainty analysis. 

Input uncertainty: This is based on historical data, experiences and realization, the 

parameters, which are inconsistent, are generally selected as uncertain data. The 

parameters are then characterized by choosing a distribution function such as a uniform 

or normal distribution.  

Sampling: The domain of uncertainty defined previously is sampled to generate a list of 

possible future scenarios with equal probability of realization. Latin Hypercube 

Sampling (LHS) with the rank correlation control method proposed by Iman and 

Conover (1982) are applied.  

Model evaluation(s): The economic objective function(s) (see detailed discussion 

below) is evaluated for each Monte Carlo sample and the results are recorded for 

statistical analysis below.  

Output uncertainty: The results from the model evaluation step are analysed by using a 

non-parametric distribution function such as a cumulative distribution function (CDF), 

and frequentist statistics such as mean, variance and percentile analysis of the data. 

In model evaluation step, optimization problems for each biorefinery concept are 

formulated and solved by maximizing EBITDA for techno-economic analysis. EBITDA 

is then converted into IRR for economic risk analysis. Risk is by definition equal to 

likelihood of occurrence of an undesired event (probability) multiplied with its 

consequence (e.g. economic loss). In this study, the economic risk resulting from market 

price uncertainties is calculated as follows: the summation of the probability of 

occurrence times the economic loss which is defined as deviation from EBITDA when 

the %IRR is lower than the targeted economic return. The target return is defined as 

10% IRR and this case the deviation from the target is equal to: 

. It is noted that an IRR of 10% is selected as this is considered to 

be the common target in industry which is also used in the economic performance of 

renewable energy technologies studied by the National Renewable Energy Laboratory 

(NREL, Short et al., 1995). 
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The IRR in this chapter is calculated for economic risk analysis of two market 

uncertainty scenarios namely the effect of long-term/historical fluctuations in product 

prices versus and the effect of sudden drop in oil prices to the prices of bioethanol and 

its chemical derivatives. IRR or discounted cash-flow rate of return (DCFROR) forms a 

measure of the maximum interest rate the project could pay and still break even by the 

end of project life, where net present value (NPV) is equal to zero (Towler & Sinnott, 

2013). IRR is calculated using Equation 9.1-9.2 and fixed product prices (in Eq. 9.2). 

(9.1)

(9.2)

The minimum selling price (MSP) metric is used here for techno-economic analysis in 

particular for detailed cost break-down and comparison among different biorefinery 

concepts. MSP is an economic indicator used for a critical comparison (Aden et al., 

2002). The estimated capital cost and operating cost are used to estimate MSP at fixed 

IRR (e.g. 10%). MSP is the product price which is generally included in calculation of 

the discounted cash flow ( ) of year ( ) (see Eq. 9.3). MSP is calculated by fixing 

IRR (e.g. 10%) and iterating MSP until NPV is equal to zero (Eq. 9.4). It is important to 

note that NREL excel worksheet can also be used for MSP estimation 

(http://www.nrel.gov/extranet/biorefinery/aspen_models). 

(9.3)

(9.4)

The economic assumptions and parameters (i.e. equity loan, depreciation period, cost 

year, indirect cost estimation) follows the NREL studies presented in their reports (i.e. 

Aden et al., 2002) which is also summarized here in Table 9.2.  
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Table 9.2. The economic parameter used for MSP and IRR calculation (NREL) 

Equity 40% 

Loan Interest 8,0% 

Loan Term, years 10 

Working Capital (% of FCI) 5,00%

Depreciation Period (Years)

- General Plant 7

- Steam/Electricity System 20

Construction Period (Years) 3

% Spent in Year -2 8%

% Spent in Year -1 60% 

% Spent in Year 0 32%

Start-up Time (Years) 0,25

EtOH production/Feedstock use (% of Normal) 50%

Variable Costs (% of Normal) 75%

Fixed Cost (% of Normal) 100%

Income Tax Rate 35,00%

FTproducts Production Rate (MMgal/yr) 92

Cost Year for Analysis 2007

9.3 Critical comparison of optimal biorefinery concepts 

The optimal processing paths for the three main biorefinery concepts resulting from the 

previous studies (presented in Table 9.1) are compared and discussed in this section. 

3.1. Concept 1: Lignocellulosic bioethanol production from corn stover versus wood 

feedstock. 

This section presents the comparison of the MESP of the optimal bioethanol production 

from corn stover and wood using two conversion concepts (biochemical and thermo-

chemical). Concept 1A and 1B use corn stover as feedstock while Concept 1C and 1D 

use poplar wood. Concept 1A and 1C use hydrolysis and fermentation as biochemical 
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conversion concept while Concept 1B and 1D use gasification as thermochemical con-

version concept. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1. Minimum selling prices (MSP) and cost distribution of the four biorefinery 
concepts producing bioethanol  

This comparison shows that the Concept 1D is the most promising one due to its 

relatively high EBITDA (99.8 MM$/a) and IRR (14%) resulting in the lowest MSP.  

This favorable result for the combination of woody biomass with thermochemical 

conversion is due to the higher carbon content of poplar which leads to a higher yield 

(43 wt%) of syngas (H2/CO). It is important to note that corn stover, which has lower 

carbon content, is preferable with the biochemical conversion concept due to its lower 

lignin content compared to woody biomass, 19 and 27 wt%, respectively.  

Moreover, the optimal solutions of biochemical and thermochemical concepts (Concept 

1A and 1D) presented in Figure 9.1 show that the thermochemical conversion concept 
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provides a better techno-economic result compared to the biochemical conversion 

concept at the capacity of 2000 tpd of dry biomass input. This is due to (i) higher 

bioethanol yield; and (ii) a lower operating cost. On the contrary, at a smaller capacity 

of the biorefinery using the biochemical conversion concept is preferable due to the 

lower investment that is required. This is confirmed by Figure 9.2 which presents 

EBITDA and IRR compared among three biomass input capacities (1000, 2000, and 

3000 dry ton biomass per day). 

 

Figure 9.2. The comparison of EBITDA and IRR of biochemical and thermochemical 
conversion concepts with three biomass input capacities. 

At 1000 tpd of biomass input, biochemical conversion concept is more preferable due to 

a significantly lower investment than the thermochemical concept at a similar 

bioethanol production. At higher biomass processing capacity, the thermochemical 

concept produces higher bioethanol resulting in higher EBITDA and IRR due to higher 

bioethanol production, lower operating cost, and the benefit from economy of scale of 

investment on scaling up the plant capacity. It is also important to note that the 

transportation cost of biomass (considered the same in this study) would be higher for 

plants with higher processing capacity (since a larger area of land availability would be 

needed to supply the needed biomass). This transportation cost would affect the 

economics of thermochemical conversion technologies (Akgul et al., 2010).  
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3.2. Concept-2: Transportation fuels production from wood versus microalgae feed-

stock

This section presents the comparison of the MSP of optimal transportation fuels produc-

tion: (i) Concept 2A is gasoline and diesel production from poplar wood using gasifica-

tion and Fischer-Tropsch; and (ii) Concept 2B is biodiesel production from microalgae 

using liquefaction and transesterification. Using liquefaction to produce algal oil from 

wet algae in a cultivation pond is the state of technology where lipid extraction is not 

required leading to lower cost of using traditional cultivation, harvesting, drying, and 

lipid extraction processes. This process pressurizes and condenses water and microalgae 

and subsequently converts them into a higher yield of biodiesel (Jones et al., 2014). 

 

 

 

 

 

 

 

 

 

 

Figure 9.3. Minimum selling prices and cost distribution of two biorefinery concepts 
producing transportation fuels. 

Concept 2A is the more promising concept due to its significantly lower feedstock costs 

as compared to the microalgae-based biorefinery. However, the Concept 2B has a higher 

EBITDA due to its significantly higher biodiesel yield (51 wt%) in comparison to the 

thermochemical conversion of wood (28 wt%). This high yield is due to the oil content 

of 50 wt%. reported by the PNNL study (Jones et al., 2014). It is important to note that 

oil content reported by PNNL is optimistic compared to other studies (Alabi et al., 

2009). The uncertainty of the oil content, a variable which is highly uncertainty (10-50 

wt%), has been addressed in earlier studies resulting in a significant impact on biodiesel 

4,8% 2,4%3,8%

0,4%

0,5%

84,4%

3,6%

(2B) Microalgae to biodiesel
MSP 2.923 $/gal diesel

Algal hydrothermal
liquefaction
cat. Hydro treating
and frac.
cat. Hydrothermal
gasification
Utility facility

Working Capital

Feedstock cost

Utility cost

3,9%
11,6%

5,6%

8,6%

5,6%

7,7%
2,2%

52,2%

2,6%

(2A) Wood to gasoline/diesel
MSP 2.49 $/gal gasoline;

2,74 $/gal diesel

Pretreatment
Gasification
Cleaning
Alcohol synthesis
Purification
Utility facility
Working Capital
Feedstock cost
Utility cost

164



Economic risk analysis and critical comparison of optimal biorefinery concepts 
 

163 
 

production and EBITDA (Chpater 8). Moreover, the impacts of market price 

uncertainties on the thermochemical conversion concept are lower than for the algal 

biorefinery due to its higher operational flexibility to adapt to the market changes in 

gasoline and diesel demand (Chpater 5). 

3.3. Concept-3: Lignocellulosic bioethanol versus ethanol-based high value-added 

chemicals production. 

This section presents the comparison of the MSP of optimal bioethanol-upgrading pro-

cesses (Figure 9.4): (i) concept 3A is diethyl ether (DEE) production from poplar wood 

using gasification, alcohol synthesis and catalytic dehydration of ethanol; and (ii) con-

cept 3B is 1,3 butadiene (13BD) production from poplar wood using gasification, alco-

hol synthesis and catalytic conversion of ethanol. 

 

 

 

 

 

Figure 9.4. Minimum selling prices (MSP) and cost distribution of two biorefinery 
concepts producing high value-added chemicals. 

The overall economic performance of the lignocellulosic bioethanol biorefinery using 

wood and thermochemical conversion platform (Concept 1D) is significantly improved 

from 99.8 to 247 MM$/a of EBITDA and 14 to 23% of IRR. These improved 

biorefinery concepts, built based on the lignocellulosic ethanol concepts, aim to (i) 

increase the overall economic performance of the biorefinery; (ii) identify more 

sustainable concepts with environmental and social benefits; and (iii) reduce the 

economic impacts from market price uncertainties which affect the viability of a 

biorefinery project. Moreover, multi-production of chemicals was found to offer a 

promising strategy to minimize risks against price fluctuations (Chapter 6). In this 
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context, economic-risk analysis provides a robust support for decision-making as it is 

discussed in the next section. 

9.4 Economic-risks analysis - Impact of market price 

uncertainties on the optimal biorefinery concepts 

A particular challenge when designing biorefinery concepts at the early-stage is 

uncertainties related to market prices of products as mentioned earlier. Uncertainty 

analysis is therefore required to provide economic-risk aware decision making. The 

optimal solutions under two market uncertainty scenarios are analysed: (i) long-term 

historical trend of fluctuation for product prices in 2011-2013 (EIA, Technon 

OrbiChem) and (ii) the fluctuation that includes a recent drop in oil prices (EIA, 

Technon OrbiChem). These analyses result in the comparison of corresponding effects 

between two market scenarios. 

 Here, EBITDA and the targeted IRR (10% commonly used in industry for this analysis) 

are used as economic indicators to support a risk-aware decision making. As mentioned 

in section 9.2, risks are here calculated as the summation of the probability of 

occurrence times economic losses (the deviation of EBITDA from the break-even 

point), , as presented in the highlighted area 

in Figure 9.5.  
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Figure 9.5. Probability distribution of IRR with respect to market prices uncertainty for 

the production of: (i) bioethanol (Concept 1D), (ii) FTgasoline/diesel (Concept 2A), (iii) 

biodiesel from microalgae (Concept 2B); (iv) diethyl ether (Concept 3A), and (v) 1,3-

butadiene (Concept 3B).  

The results indicate that there is a risk of 22.3, 0, 0, 2.12, and 72.8 MM$/a as 

highlighted in Figure 9.5, respectively. This shows that the economic impact from 

market price uncertainty for bioethanol and specialty chemicals is significant while the 

impact on transportation fuels production is low. To further highlight the effects of 

uncertainty of the market prices, the sudden oil-prices drop scenario is addressed. Table 

9.3 compares the solutions from two market price scenarios: (i) the recent drop of 

market prices in December-2014 and January-2015; and (ii) long-term historical trend 

of product prices in 2011-2013.  

Table 9.3. Impacts of market price uncertainty for low oil prices scenario in January-
2015 with respect to the normal scenarios for 2011-2013 (EIA, Technon OrbiChem) 

 Impact from oil prices drop Impact from market prices in 2011-2013 

Bioethanol deriva-
tives 

Spot price 
Jan-2015  

($/ton) 

EBITDA
(MM$/a) %IRR 

Average pric-
es

($/ton) 

EBITDA
(MM$/a) %IRR 

Single product 
Diesel (Algae) 1020  36  5  1300 87 17 

Ethanol 490  29  2  700 76  11  
Diethyl ether  1900  147  18  2270 161  21  
1,3-butadiene 870  18  -1  2010 158  17  
Ethyl acetate 920  50  4.5  1290 98  13  

Multiple products 
Gasoline/Diesel 950/1020  120  12 1100/1300 169 17 

DEE/1,3-butadiene 1900/870  147  18 2270/2010 187 24 

Risk Risk Risk
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Table 9.3 presents a significant economic impact from an oil price drop scenario 

resulting in much lower EBITDA and IRR. This leads to a significant economic loss at 

the operational stage. In particular, (i) bioethanol prices which dropped 30% causes the 

lignocellulosic bioethanol biorefinery unfavorable (IRR 11% to 2%); (ii) biodiesel 

prices dropped 21% and as a consequence the algal biorefinery idea became unfavorable 

(IRR 17% to 5%); (iii) chemical prices dropped 16-60% causing the high value-added 

biochemical biorefinery unfavorable (IRR 17% to -1% for 13BD).  

Therefore, good design strategies with respect to pricing, data selection, market analysis 

against this type of impact should be an integral part of biorefinery concept 

development since ignoring these uncertainties may lead to outcompeting of the 

design/concept from the market.  

One of the alternatives to reduce potential negative economic impacts, is to 

systematically diversify the product portfolio and produce multiple products as 

presented in Table 9.3 where (i) the multiple products biorefinery (gasoline/diesel and 

DEE/13BD) received a minimum impact from the oil prices drop; and (ii) EBITDA was 

improved by 16% by simultaneously producing multiple products (DEE and 1,3-

butadiene) for a normal market prices scenario. This concept aims to increase the 

operational flexibility of a biorefinery in the supply chain (e.g. planning and scheduling) 

to optimize daily demand-supply and to maximize the product sales. This concept also 

helps to protect against the impacts of prices uncertainties by optimizing the production 

plan to produce a number of products to maintain higher profitability. 

9.5 Conclusions and future perspectives 

Biochemical or thermochemical conversion concepts should be selected based on the 

specific constraints (e.g. type of biomass feedstock available, production capacity, 

conversion technologies, and type of desired products). The biochemical conversion 

concept is preferable for biomass containing a small amount of lignin and with as 

relatively low production capacity (<2000 tpd), while, the thermochemical conversion 

concept is preferable for biomass with a high amount of carbon and a large production 

capacity. Biogasoline and biodiesel produced by the thermochemical conversion 
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concept with wood feedstock is economically competitive with low risks. The economic 

feasibility of algal biorefinery (e.g. using liquefaction and transesterification for 

biodiesel production) depends on high oil content assumption of algal biomass 

composition (e.g. 50%wt oil). Therefore, it is important to note that the economic 

viability of the algal biorefinery is critically dependent on the oil content in the algae 

feedstock as well as requires a huge cost of algal feedstock and capital investment 

compared to the other concepts analysed. Moreover, the production of high value-added 

chemicals via lignocellulosic ethanol, in particular diethyl ether, is the most promising 

concept for the biorefinery (EBITDA of 247 MM$/a, 23.5 %IRR and 3.7 $/gal of 

minimum selling price).  

The sudden drop in oil prices lead to significant drops biofules and bioproduct prices 

which in turn severely and negatively affected economic profitability of biorefinery 

concept for biofuels and biochemicals production. One can be protected from this type 

of economic impact due to market uncertainities by either (a) upgrading the 

lignocellulosic bioethanol to high value-added chemicals; and/or (b) diversifying 

product portfolio to manufacture multiple products. In particular, the production of 

bioethanol-upgraded and multiple products (DEE and 13BD) is a concept is found 

promising to weather the negative impacts of significant reduction in oil prices. In this 

way, EBITDA and IRR are improved from 169 to 187 MM$/a and 17 to 24%, 

respectively.  

With this economic risk analysis and comparison, the bioethanol-upgrading and multi-

products concepts are recommended as a strategy that can provide robustness and 

resilience against unknown market disturbances in particular sustained low levels of oil 

price. For proper guidance on designing future competitive biorefineries, it is 

recommended that comprehensive economic risk analysis is performed. 
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10.
CONCLUSIONS AND FUTURE PERSPECTIVES 

The overall conclusion and achievements of the research project are presented in this 

chapter, and some future perspectives are highlighted as well. 
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10.1 Summary of the outcomes and achievements 

In this PhD project, the problem of computer-aided synthesis and design of biorefinery 

concepts is presented. To this end, the systematic framework developed earlier which 

uses a superstructure-based optimization approach has been adapted and further 

extended. A systematic approach is used to manage the complexity and solving 

simultaneously both the business and the engineering dimension of the problem. This 

allows generation and comparison of a large number of alternatives at their optimal 

point. The result is the identification of the optimal raw material, multi-product portfolio 

and process technology selection for a given market scenario, combined with the 

relevant sustainability metrics of the most promising alternative and the risk of 

investment under market uncertainties enabling risk-aware decision making. Several 

case studies of biorefinery networks focusing on production of bioethanol, biofuels, and 

high value-added chemicals have been used to highlight the application of the 

framework developed above, and including the case study of the algal biorefinery. 

In particular, the studies and results presented in this thesis fulfill the objectives as 

defined and presented as follows. 

(i) The development of an extended superstructure and database for 

thermochemical conversion and bioethanol-upgrading concepts was 

accomplished. This extended superstructure was combined with a biochemical 

conversion route developed earlier, generating an even larger design space. The 

intensive data requirement of the extended biorefinery network design problem 

was addressed by using a structured and generic model to represent process 

alternatives. The structured and generic approach is important to manage and 

check the quality and consistency of multi-dimensional data. The biorefinery 

database also features the characterization of important sources of uncertainties 

in data.  

(ii)  A systematic framework consisting of a superstructure optimization based 

approach under uncertainty was further developed and extended. The uncertainty 

characterization step in the systematic framework was extended to support the 

different types of data available (i.e. historical data from existing plants, an 
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expert judgment). The comparison results showed that the selection of the early 

stage cost estimation method is critical. Moreover, the cost analysis cannot be 

based on a deterministic approach but should be evaluated by means of a 

probabilistic approach in which uncertainties are accounted for. These analyses 

provide useful information supporting the future development of biorefineries. 

(iii) A sustainability assessment method was also integrated with the systematic 

framework to broaden the analysis and the features of the framework from only 

techno-economic to multi-criteria (sustainability) evaluation, as well as 

including the direct comparison between bio-based processes and fossil-based 

processes. These analyses provide useful information regarding economic and 

sustainability drivers for the future development of a biorefinery. 

(iv) Biorefinery concepts should be selected based on the specific constraints (e.g. 

type of biomass feedstock available, production capacity, conversion 

technologies, and type of desired products). The biochemical conversion concept 

is preferable for biomass with a small amount of lignin and for a small 

production capacity (<2000 tpd), while, the thermochemical conversion concept 

is preferable for biomass with high lignin content and for a large production 

capacity. Biogasoline and biodiesel produced by the thermochemical conversion 

concept using wood as feedstock is found to be economically competitive as 

well as having a lower economic risk. An algal biorefinery using liquefaction 

and transesterification is also found favourable at a high oil content (50% wt) 

assumption. It is important to note that the viability of the algal biorefinery is 

critically dependent on the oil content in the algae feedstock. It is noted that the 

algal biorefinery is very costly due to the algal feedstock cost, and therefore is 

capital intensive. Moreover, the production of high value-added chemicals via 

lignocellulosic ethanol, in particular diethyl ether is the most promising 

biorefinery concept (EBITDA of 247 MM$/a, 23.5 % IRR and 3.7 $/gal of 

minimum selling price). 

(v) Economic risk analysis due to market price uncertainties shows that (i) 

upgrading lignocellulosic bioethanol to high value-added chemicals; and (ii) 

multiple-products production, in particular, the production of bioethanol-

upgraded and multiple products (DEE and 13BD) are the most promising 
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concepts which can survive better against the negative impacts of a significant 

drop in oil prices. They are therefore recommended, which provides robustness 

and resilience against unknown disturbance from the market. All in all it is 

recommended that a comprehensive economic risk analysis becomes an integral 

part of future biorefinery concept development for proper guidance on designing 

future competitive biorefineries. This is valuable for assessing the risk 

associated with biorefinery design as well as for supporting risk-based decision 

making during early project planning/development stages. 

Overall, the PhD project results in a framework implemented as a decision-making 

toolbox for synthesis and design of biorefineries at the early-stage of product-process 

development to serve as enabling technology for facilitating the innovation cycle in 

biorefineries and support development of renewable carbon-based technologies and 

industries. 

10.2 Future perspectives 

This PhD project has presented many contributions to support the development of 

biorefinery concepts. However, a number of issues presented below could still benefit 

substantially from further development.  

(i) The optimal solutions are limited by the limited number of alternatives. 

Therefore, the design space should be further extended to identify or 

benchmark new solutions.  

(ii) A large problem (more than 1 million variables and equations) creates 

difficulties to be solved using GAMS: (i) one challenge is related to 

initializing the large amount of data and models; and (ii) a second challenge 

is the slow execution. Moreover, the additional domain (uncertainty 

analysis), or the additional alternatives result in a significant higher number 

of variables and equations. Proper solution strategies are required to 

overcome this challenge by systematically reducing the size of the problem 

i.e. the number of alternatives, number of samples or number of constraints. 
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The resulting ranking of optimal solutions can also be used to systematically 

generate a smaller superstructure used for further designs and development. 

(iii) The use of the generic process model block with the collected and estimated 

parameters allows managing a large complex problem. However, this limits 

the flexibility of the technology to only specific data and conditions (e.g. 

capacity, operating conditions, and efficiency). This limitation can be 

overcome by performing uncertainty analysis on the technical process 

parameters, but rigorous simulations are still required in the next design 

stages to further verify and optimize the design concept. 

(iv) The data collection and verification is a very time-consuming step regarding 

the limited availability of existing technologies and data. Moreover, the 

estimation or the unavailability of data leads to significant uncertainties. 

Therefore, the data collection, estimation and verification should be further 

developed in more systematic way. An integration with the other methods 

and tools (i.e. computer-aided molecular/flowsheet design, CAMD, CAFD) 

is required to systematically generate or estimate the possible design 

networks consisting of a flowsheet with processing technologies and the 

relevant process parameters. In this way, one could overcome this issue and 

broaden the development in process synthesis and design of processing 

networks. 

(v) In this study the biorefinery concepts were compared at their optimality. 

However, the optimization formulation can be extended to include heat/mass 

integration and supply-chain network analysis. Integration with the other 

methods and tools to generate additional model libraries would further 

broaden the design analysis of the process synthesis and design problem 

resulting in more robust solutions. 

(vi) The database and model libraries, which are created manually, are not fully 

user-friendly and human errors can occur easily. A software implementation 

using a friendly graphical user interface (GUI) would facilitate the 

dissemination of this tool and the methods. The software implementation can 

be done by considering the following workflow: (i) drawing the processing 

network to define a superstructure, (ii) input the collected data (or estimated 
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data by integration tools) for each alternative, and (iii) verify the data. 

Consequently, the objective functions, design criteria and model libraries are 

selected to generate the optimization formulations which will be used and 

solved further in GAMS. 
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APPENDICES

Abbreviations, process description, model libraries and the remaining results are 
presented in the appendices. 
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Appendix A. – Nomenclature
 
Indexes

i,j Components 
n Main products 

k Process Interval (origin) 

kk Process Interval (destination) 

react Key reactant 

rr Reaction 

ss Samplings 

P Product 

RM Raw material 

bio Bio-based processes 

petro Petro-based processes 

Parameters  

Molecular weight 

Raw material costs 

Utility Prices 

Product prices 

Waste fractions 

Superstructure: consisting of primary and secondary outlets (binary) 

Superstructure: primary outlet (binary) 

Investment and capacity ratio for capital cost estimation 

Exponent coefficient for capital cost estimation 

Specific utility consumption 

Reaction stoichiometry 
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Split factors 

Conversion of key reactant  

Fraction of utility mixed with process stream 

Time (year) 

 Number of samples 

 Total years of the investment 

 Raw material cost 

 Product price 

 Cumulative energy demand (MJ/kg) from processing raw material 

 Greenhouse gas production (kg CO2 eq/kg) from processing raw 

material 

 Heat of reaction 

 Index value of the specific component emitted in the category of 

environmental, health, and safety hazards 

 Feed composition of feedstock kk 

  

Variables

Component i flow from process intervals k to process intervals kk 

Component flow after mixing 

Utility flow 

 Component flow after reaction 

Component flow after waste separation 

 Component flow of waste stream after waste separation  

 Component flow leaving process interval kk through primary outlet 

Component flow leaving process interval kk through secondary outlet 

Selection of process intervals (binary variable) 
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 Selection of a piece of the piecewise linearization (linear) 

 Raw material mass flow rate 

 Product mass flow rate 

 Cash flow in year    

 Molar concentration of main product  

 Number of co-products 

 Mass loss index (ratio of total mass of undesired products to total 

mass of main and co-products) 

 The smallest absolute difference between the boiling point of the 

main product and the others 

 Total score for sustainability assessment 

 Index ratio for sustainability assessment 

  

Abbreviations  

GAMS Generic algebraic modeling system 

EVPI Expected value of perfect information 

VSS Value of stochastic solution 

UP Uncertainty price 

NPV Net present value 

CAPEX Capital Investment 

OPEX Operating cost 

Earnings Before Interest, Taxes, Depreciation and Amortization 

IRR Internal rate of return 

MSP Minimum selling price 

EC Economic constraint 

EIRM Environmental impact of raw material 

CED Cumulative energy demand 
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GHG Greenhouse gas emission 

AF Allocation factor 

PCEI Process cost and environmental impact 

EHSI Environmental-Health-Safety index 

EH Environmental hazard 

HH Health hazard 

SH Safety hazard 

RA Risk aspect 

GFA Global feedstock availability 

LFP Local feedstock potential 

MS Market size 

CCI Current infrastructure 

IB Inherent benefits 

TS Total score 

SAA Sample average approximation 

IR Index ratio 

UB Upper bound of the objective function 

LB Lower bound of the objective function 

GUI Graphical user interface 
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Appendix B. – the description of processing alternatives
Table B.1 The description of process intervals presented in Figure 6.1

FEEDSTOCK 
1 Corn stover, 2000 tpd 3 Gasoline, 400 tpd 
2 Poplar wood, 2000 tpd         

THERMOCHEMICAL CONVERSION PLATFORM 

  Processing Techniques 13 
Scrubber, acid removal, 
SMR and WGS 

4 
Size reduction, dryer (steam, 
indirect contact) 

14 
Tar reformer, scrubber, acid 
removal 

5 
Size reduction , dryer (flue 
gas, direct contact) 

15 
Tar reformer, scrubber, 
DEPG 

6 
Entrained flow gasifier with 
size reduction 

16 
Fisher-Tropsch with 
special H2S removal 

  

7 
Bubbling fluidized bed 
gasifier 

17 
Alcohol synthesis (metal-
sulfide catalyst) 

8 
Indirectly-heated with 
circulating gasifier 

18 
Alcohol synthesis (MoS2 
catalyst) 

9 
Directly-heated with 
bubbling gasifier 

19 
Hydroprocessing (H2-
production) 

10 
Pyrolysis (bubbling fluidized 
bed) 

20 
Hydroprocessing (H2-
purchasing) 

11 Fast Pyrolysis (fluidized bed) 21 
Decanter with 
hydroprocessing unit 

12 
Scrubber, sour WGS reactor, 
acid removal 

22 
Molecular sieve , two 
distillation columns 

BIOCHEMICAL CONVERSION PLATFORM 
  Processing Techniques 53 Molecular sieve 

23 Size reduction by 60% water 54 Anhydrous ethanol 
24 Size reduction by 54% water 55 Fermentation feed handling 
25 Ammonia fiber explosion  56 Seed production 
26 Pretreatment dilute acid   57 Seed production bypass 

27 Controlled pH pretreatment 58 
Succinic acid fermentation 
by E-coli 

28 
Aqueous ammonia recycle 
pretreatment 

59 Filtration     

29 Lime pretreatment  60 Evaporation     
30 Dilute acid hydrolysis  61 Crystallization   
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31 Concentrate acid hydrolysis 62 
Water splitting electro 
dialysis 

32 NREL enzyme hydrolysis  63 Electro dialysis   

33 
Spyzyme hydrolysis from 
AFEX 

64 Crystallization   

34 
Spyzyme hydrolysis from 
dilute acid 

65 Reactive distillation   

35 
Spyzyme hydrolysis from 
controlled pH 

66 Vacuum distillation   

36 
Spyzyme hydrolysis from 
APR 

67 Crystallization   

37 
Spyzyme hydrolysis from 
lime 

68 Succinic acid storage   

38 Hydrolysis bypass  69 Fermentation feed handling 
39 Sugar division  70 Seed production   
40 Fermentation feed handling 71 Seed production bypass   
41 Seed production  72 Butanol fermentation   
42 Seed production bypass  73 Gas stripping   
43 Ethanol fermentation  74 Adsorption     

44 Flash   75 
Solvent extraction by oleyl 
alcohol 

45 Distillation column  76 Pervaporation   

46 
Solvent-based extraction by 
ethylene glycol 

77 Membrane separation   

47 
Solvent-based extraction by 
ethylene glycerol 

78 Distillation for butanol   

48 
Extraction with ionic liquid - 
EMIMBF4 

79 Distillation for acetone   

49 
Extraction with ionic liquid - 
EMIMCl 

80 Distillation for ethanol   

50 
Extraction with ionic liquid - 
EMIM+EtSO4 

81 Total ethanol production   

51 
Extraction with ionic liquid - 
EMIM+DMP 

82 Butanol storage   

52 Membrane separation    
ETHANOL DERIVATIVES CONVERSION 

83 Dehydration 89 
Hihgh temperature 
reforming 

84 Oxidation 90 Metathesis 
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85 Vapor-phase dehydration 91 Fermentation 
86 Fermentation 92 Fermentation 
87 Fischer esterification 93 Oxidation 
88 Fermentation 94 Catalytic dehydrogenation 

PRODUCTS and BY-PRODUCTS 
95 FT-gasoline 109 Acetone 
96 FT-diesel 110 Ethylene oxide 

97 
Higher alcohols (C3-ol, C4-ol, 
C5-ol) 

111 1,3-butadiene 

98 
Hot flue gas from gasifier 
combustor 

112 Ethanol (100%) 

99 
Hot flue gas from tar 
reformer combustor 

113 Acetone 

100 Ethylene 114 Butanol (100%) 
101 Acetaldehyde 115 Gasoline (100%) 
102 Diethyl ether 116 E5 (Ethanol-gasoline blend) 

103 n-Butanol   117 
E10 (Ethanol-gasoline 
blend) 

104 Ethylacetate   118 B5 (butanol-gasoline blend) 

105 Acetic acid   119 
B10 (butanol-gasoline 
blend) 

106 Hydrogen   120 Succinic acid 
107 Propylene   121 Electricity     
108 Iso-Butylene   122 Lignin pellet     
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Appendix C. – The optimization formulation for the 
deterministic and stochastic problems 

Deterministic problem
The objective functions,

Economic analysis:
(C.1)

Sustainability analysis: 
min. (C.2)

Subject to the following constraints: 

i) process models: material balances of the generic block 

Raw materials, 
(C.3)

Mixing-1: main equation, 
(C.4)

Mixing-2: chemicals or utilities used, 
(C.5)

Reaction, 
(C.6)

Waste separation, 
(C.7)

(C.8)

Product separation, 
(C.9)

(C.10)

 

ii) process constraints: rules defining superstructure together with the flow constraints, 
(C.11)

(C.12)
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(C.13)

(C.14)

(C.15)

(C.16)

 

iii) structural constraints: to define the extended superstructure 

Raw materials, 
(C.17)

Processing step 1: pretreatment (thermochemical) together with a size reduction step 

(biochemical), 
(C.18)

Processing step 2: primary conversion (thermochemical) together with pretreatment 

(biochemical), 
(C.19)

Processing step 3: gas cleaning and conditioning (thermochemical) together with hy-

drolysis (biochemical), 
(C.20)

Processing step 4: product synthesis (thermochemical) together with fermentation (bio-

chemical), 
(C.21)

Processing step-5: product separation and purification, 
(C.22)

Processing step: separation (biochemical), 
(C.23)
(C.24)
(C.25)

 

Processing step: bioethanol-upgrading process, 
(C.26)

 

iv) cost models 
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Operating cost, 

) + ( (C.27)

Capital cost: i) data collected and ii) piecewise linearization, 
(C.28)
(C.29)

(C.30)
(C.31)
(C.32)

 

v) optimization constraints: big-M formulation, 
(C.33)
(C.34)
(C.35)
(C.36)

vi) sustainability assessment index constraints, 

Economic constraint (EC), 

(C.37)

Environmental impact of raw material (EIRM), 
(C.38)

(C.39)

Process cost and environmental impact (PCEI), 
(C.40)

. (C.41)
(C.42)
(C.43)
(C.44)
(C.45)

(C.46)

(C.47)
(C.48)

Total score (TS) 
(C.49)

Total index ratio 

(C.50)
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Stochastic problem: price parameters were reformulated consisting of uncertainty 
domain ( ) 
Economic analysis:

(C.51)

Sustainability analysis: 
min. (C.52)

(C.53)

(C.54)

 
Optimal flexible network problem: all the process variables ( ) and decision 
variables ( ) were reformulated integrating the uncertainty domain ( ). The following 
equations are some examples of the reformulation. 

(C.55)
(C.56)

Raw materials, 
(C.57)

Objective function - Part 1:
(C.58)

Objective function - Part 2: 
min. (C.59)

(C.60)

Optimization constraints, 
(C.61)
(C.62)

Process constraints: raw materials, 
(C.63)
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Appendix D. – The additional input uncertainties and results 
regarding under-estimate of cost estimation (as presented 
in Chapter 7)

Table D.1 Input uncertainties for early stage cost estimation of ethanol-derivatives (expert 
judgement for under-estimates: -20% to -50%)

Model Parameter 

R1: ethylene 
R2:

acetaldehyde

R3:

diethyl ether 
R4: n-butanol

R5:

ethylacetate 

R6: acetic 

acid

mea

n

mi

n

ma

x

mea

n

mi

n

ma

x

mea

n

mi

n
max

mea

n

mi

n
max mean

mi

n
max

mea

n
min

ma

x

1 a 6.3 3.15 5.04 0.62 0.31 0.5 0.3 0.15 0.24 - 18.85 9.43 15.08 4.8 2.4 3.84

2,3,4 
Uncertaint

y factor 
1 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 0.5 0.8

Model parameter 

R7: hydrogen 
R8:

propylene 

R9:

isobutylene 
R10: acetone 

R11: ethylene 

oxide

R12: 1,3-

butadiene 

mea

n

mi

n

ma

x

mea

n

mi

n

ma

x

mea

n

mi

n
max

mea

n

mi

n
max mean

mi

n
max

mea

n
min

ma

x

1 a 0.87 0.44 0.7 7.1 3.55 5.68 0.05 0.03 0.04 - 5.6 2.8 4.48 1.85 0.93 1.48

2,3,4 
Uncertaint

y factor 
1 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 0.5 0.8

Table D.2. The comparison of early stage cost estimation for ethanol-derivatives production 
(expert judgement for under-estimates: -20% to -50%)

Products Model 1 Model 2 Model 3 Model 4 

(MM$) std. (MM$) std. (MM$) std. (MM$) std. 

Capital cost 

estimation  

Ethylene 237 35 54 7 165 22 60 8 

Acetaldehyde 27 4 73 10 224 30 93 12 

Diethyl ether 13 2 66 9 567 79 79 11 

Butanol (butanol is converted directly from biomass) 

Ethylacetate 858 134 73 10 365 49 93 12 

Acetic acid 200 34 90 12 -6 1 126 17 

Hydrogen 32 5 33 5 168 22 29 4 

Propylene 261 40 56 7 340 45 62 8 

Butylene 2 0 48 7 8 1 50 7 

Acetone (acetone is converted directly from biomass) 

Ethylene 

oxide 203 33 74 10 345 46 95 13 

1,3-butadiene 58 9 48 7 498 67 50 7 
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Table D.3. Top-five ranking of the optimal solutions using Model 1-4 for capital cost 
estimation  and expert scenario for under-estimates (-20% to -50%) 

Model 1 

Rank

no.
Process intervals selection 

EBITDA

(MM$/a) 
Products 

Produc-

tion 

(tpd) 

TAC

(MM 

$/a) 

Capex

(MM 

$/a) 

1 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, diethyl ether 

production 

247 
Diethyl 

ether 
345 82.9 22.64 

2  

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, 1,3-butadiene 

production 

242 
1,3-

butadiene 
292 85.8 24.89 

3 

Wood, ammonia explosion, Spyzyme 

enzyme hydrolysis from AFEX, 

Butanol production by Clostridium

beijirickii Gas stripping by CO2 and 

H2, distillation, butanol production 

180 Butanol 118 75 15 

4 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethylene oxide 

production 

138 
Ethylene 

oxide 
544 127 30.16 

5 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethanol production 

133 Ethanol 590 81.3 22 

Model 2 

Rank

no.
Process intervals selection 

(EBITDA

(MM$/a) 
Products 

Produc-

tion 

(tpd) 

TAC

(MM 

$/a) 

Capex

(MM 

$/a) 

1 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, diethyl ether 

production 

246 
Diethyl 

ether 
345 82.9 24.6 

2  

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, 1,3-butadiene 

production 

241 
1,3-

butadiene 
292 85.8 23.7 
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3 

Wood, ammonia explosion, Spyzyme 

enzyme hydrolysis from AFEX, 

Butanol production by Clostridium

beijirickii Gas stripping by CO2 and 

H2, distillation, butanol production 

180 Butanol 118 75 15 

4 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethylene oxide 

production 

136 
Ethylene 

oxide 
544 127 25 

5 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethanol production 

133 Ethanol 590 81.3 22 

Model 3 

Rank

no.
Process intervals selection 

(EBITDA

(MM$/a) 
Products 

Produc-

tion 

(tpd) 

TAC

(MM 

$/a) 

Capex

(MM 

$/a) 

1 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, diethyl ether 

production 

220 
Diethyl 

ether 
345 108 49.6 

2 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, 1,3-butadiene 

production 

219 
1,3-

butadiene 
292 102 46 

3 

Wood, ammonia explosion, Spyzyme 

enzyme hydrolysis from AFEX, 

Butanol production by Clostridium

beijirickii Gas stripping by CO2 and 

H2, distillation, butanol production 

180 Butanol 118 75 15 

4 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethylacetate pro-

duction 

154 
Ethylaceta

te 
371 101 40 

5 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethanol production 

133 Ethanol 590 81.3 22 

Model 4 
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Rank

no.
Process intervals selection 

(EBITDA

(MM$/a) 
Products 

Produc-

tion 

(tpd) 

TAC

(MM 

$/a) 

Capex

(MM 

$/a) 

1 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, diethyl ether 

production 

245 
Diethyl 

ether 
345 86.4 25.3 

2  

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, 1,3-butadiene 

production 

244 
1,3-

butadiene 
292 87.5 23.8 

3 

Wood, ammonia explosion, Spyzyme 

enzyme hydrolysis from AFEX, 

Butanol production by Clostridium

beijirickii Gas stripping by CO2 and 

H2, distillation, butanol production 

180 Butanol 118 75 15 

4 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, ethylacetate pro-

duction 

167 
Ethylaceta

te 
371 87.8 26 

5 

Wood, Entrained-flow gasifier, steam 

reforming, scrubber, acid gas removal 

using amine, alcohol synthesis, mol. 

sieve, distillation, Ethylene oxide 

production 

142 
Ethylene 

oxide 
544 122 26 

 

Table D.4. Uncertainty mapping and analysis: frequency of selection with respect to 200 input 
uncertainty scenarios 

Model 

Range of 

expert 

judgement

Operating 

profit (MM$/a)

Annualized 

capital cost 

(MM$/a) 

Frequency of selection 

 

(MM$) std. (MM$) std. 

Diethyl ether 

production 

1,3 butadiene 

production 

1 

-20% to -

50% 

247.6 0.1 21.9 0.1 200/200 - 

2 246.9 0.2 24.6 0.44 200/200 - 

3 226.9 3.9 47.2 3.5 56/200 144/200 

4 243.6 0.62 25.3 0.53 200/200 - 
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Table D.5. Risk analysis of the production of diethyl ether and 1,3-butadiene 

Model Diethyl ether production 1,3 butadiene production 
Referenced 
estimation 

(%) 

Estimated IRR 
(%) 

Quantified 
risk 

(MM$/a) 

Referenced 
estimation 

(%) 

Estimated IRR 
(%) 

Quantified 
risk 

(MM$/a) 
1 26.2 31 ± 4.9 0.31 22.7 23 ± 0.5 2.78 
2 24.2 23.6 ± 0.89 0.7 25.2 23.9 ± 0.4 4 
3 8.9 8.7 ± 1.3 1.14 8 9.5 ± 1.26 1.6 
4 20.1 17.6 ± 0.89 2.84 23.6 23.8 ± 0.4 4.3 
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