

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Interactive Topology Optimization

Nobel-Jørgensen, Morten; Bærentzen, Jakob Andreas

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nobel-Jørgensen, M., & Bærentzen, J. A. (2016). Interactive Topology Optimization. Kgs. Lyngby: Technical
University of Denmark (DTU). (DTU Compute PHD-2015; No. 375).

http://orbit.dtu.dk/en/publications/interactive-topology-optimization(a34062e3-a5b2-44de-8df6-1c8f47ae87e1).html

Interactive Topology
Optimization

Morten Nobel-Jørgensen

Kongens Lyngby 2015

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

Interactivity is the continuous interaction between the user and the application
to solve a task. Topology optimization is the optimization of structures in order
to improve stiffness or other objectives. The goal of the thesis is to explore how
topology optimization can be used in applications in an interactive and intuitive
way. By creating such applications with an intuitive and simple user interface
we allow non-engineers like designers and architects to easily experiment with
boundary conditions, design domains and other optimization settings. This is
in contrast to commercial topology optimization software where the users are
assumed to be well-educated both in the finite element method and topology
optimization.

This dissertation describes how various topology optimization methods have
been used for creating cross-platform applications with high performance. The
user interface design is based on theory of from human-computer interaction
which is described in Chapter 2. Followed by a description of the foundations
of topology optimization in Chapter 3. Our applications for topology optimiza-
tion in 2D and 3D are described in Chapter 4 and a game which trains the
human intuition of topology optimization is presented in Chapter 5. Topology
optimization can also be used as an interactive modeling tool with local control
which is presented in Chapter 6. Finally, Chapter 7 contains a summary of the
findings and concludes the dissertation.

Most of the presented applications of the thesis are available at: http://www.
topopt.dtu.dk.

http://www.topopt.dtu.dk
http://www.topopt.dtu.dk

ii

Summary (Danish)

Interaktivitet er den løbende dialog mellem en bruger og et program for at lø-
se en given opgave. Topologi optimering er optimeringen af strukturer for at
øge deres stivhed eller andre egenskaber. Målet med denne afhandling er at
udforske hvordan topologi optimering kan bruges i programmer på en inter-
aktiv og intuitiv måde. Ved at skabe brugervenlige programmer til interaktiv
topologi optimering vi når en større målgruppe, såsom designere og arkitekter,
som kan eksperimentere med at skabe optimerede former ved at f.eks. at bruge
understøtninger og laste. Dette står i skarp kontrast til kommercielt topologi
optimerings-software, hvis brugere antages for at være eksperter på området.

Denne afhandling beskriver hvordan forskellige topologi optimerings metoder
er blevet brugt til at lave programmer med høj performance til mange forskel-
lige platforme. Design af brugerinterfacet er baseret på teori fra forskning i
menneske-computer interaktion hvilket er beskrevet i kapitel 2. Topologi opti-
merings teori er beskrevet i kapitel 3. Vores topologi optimerings programmer i
2D og 3D er beskrevet i kapitel 4 og et undervisningspil som træner intuitionen
omkring topologi optimering er præsenteret i kapitel 5. Topologi optimering kan
også blive brugt som et interaktivt design redskab med lokal kontrol, hvilket er
beskrevet i kapitel 6. En sammenfatning og konklusionen på afhandlingen findes
i kapitel 7.

De fleste af de præsenterede programmer beskrevet i denne afhandling findes på
følgende hjemmeside: http://www.topopt.dtu.dk

http://www.topopt.dtu.dk

iv

Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark (DTU) in partial fulfil-
ment of the requirements for acquiring the Ph.D. degree in engineering.

The thesis consists of a summary report and a collection of two published sci-
entific papers and one paper currently under review. The work was carried out
between 2012 and 2015.

Lyngby, 30-Juni-2015

Morten Nobel-Jørgensen

vi

List of publications

Included papers

Paper A Aage, N., Nobel-Jørgensen, M., Andreasen, C. S., Sigmund, O. (2013).
Interactive topology optimization on hand-held devices. Structural and
Multidisciplinary Optimization 47.1: 1-6.

Paper B Nobel-Jørgensen, M., Aage, N. Christiansen, A. N., Igarashi, T.,
Bærentzen, J. A., Sigmund, O. (2014). 3D interactive topology optimiza-
tion on hand-held devices. Structural and Multidisciplinary Optimization
51.6: 1385-1391

Paper C Nobel-Jørgensen, Morten, Malmgren-Hansen, D., Bærentzen, J. A.,
Sigmund, O., Aage, N. (2015). Improving topology optimization intuition
through games. (Submitted)

Additional publications

• Aage, N., Nobel-Jørgensen, M., Andreasen, C. S., Sigmund, O. (2012) In-
teractive topology optimization. Presented at the 6th European Congress
on Computational Methods in Applied Sciences and Engineering.

• Christiansen, A. N., Nobel-Jørgensen, M., Bærentzen, J. A., Aage, N.,
and Sigmund, O. (2013). Topology optimization using an explicit interface
representation. Presented at the 10th World Congress on Structural and
Multidisciplinary Optimization (WCSMO-10)

viii

• Nobel-Jørgensen, M., Nielsen, J. B., Larsen, A. B. L., Olsen, M. D., Fris-
vad, J. R., Bærentzen, J. A. (2013) Pond of Illusion: Interacting through
Mixed Reality Proceedings of SIGGRAPH Asia 2013 Posters

• Nobel-Jørgensen, M., Christiansen, A. N., Bærentzen, J. A., Aage, N.,
Sigmund, O. (2013) Improving Topology Optimization using Games Pre-
sented at the 10th World Congress on Structural and Multidisciplinary
Optimization (WCSMO-10)

• Christiansen, A. N., Nobel-Jørgensen, M., Aage, N., Sigmund, O., and
Bærentzen, J. A. (2014). Topology optimization using an explicit interface
representation. Structural and Multidisciplinary Optimization, 49(3):387-
399

• Christiansen, A. N., Bærentzen, J. A., Nobel-Jørgensen, M., Aage, N.,
and Sigmund, O. (2014). Combined shape and topology optimization of
3D structures. Computers & Graphics, 46(2015):25 - 35. Shape Modeling
International 2014

• Malmgren-Hansen, D., Nobel-Jørgensen, M, (2015) Using 3D Models to
Annotate SAR Images for Objective Segmentation Performance Measures
(Submitted)

Acknowledgements

I would like to thank my supervisor Andreas Bærentzen for sharing his know-
dledge and advices throughout the project. I would also like to express my
gratitude to my co-supervisors Ole Sigmund and Niels Aage for their endless
enthusiasm about topology optimization and for always having a solution or an
explanation for the topology optimization challenges I have encountered. And
to Niels Aage for giving a big hand with the implementation of the optimiza-
tion kernels. I am also thankful for the collaboration and the discussions with
my co-authors Asger Nyman Christiansen, David Malmgren-Hansen, Casper S.
Andreasen and Takeo Igarashi.

I am grateful for five months I had at Tokyo University under supervision of
Takeo Igarashi where meet a lot of brilliant people including but not limited to
Lasse Laursen, Masaaki Miki, Hsiang-Ting Chen and Nobuyuki Umetani.

Thanks to Anders Clausen who implemented the server side of the TopOpt app
used for 2D marching squares and 3D email-export. Anders Clausen and I also
co-supervised the flexible void extension to the TopOpt App created by Nis
Peter Lange. And to Asger Nyman Christiansen for creating OOCholmod with
me.

I would also like to thank Timothy A. Davis and University of Florida for al-
lowing us to use relevant parts of the SuiteSparse in non-LGPL compatible
platforms (iOS/Android).

I am grateful for the financial support from the Villum foundation who made this
project possible through the grant ’NextTop’. I would also like to express my

x

gratitude to the Otto Mønsted foundation for supporting my study financially
on my external stay. Furthermore, I am grateful to the Technical University of
Denmark for the financial support of the project and to Lenabot for keeping my
caffeine level high.

I would like to thank my colleagues, the members of the Image Analysis and
Computer Graphics group, for all the interesting discussions and fun times. A
special thank goes to Asger Nyman Christiansen for his support and our close
collaboration throughout the project.

Finally, I am deeply grateful for the support given by my friends and family. I
would especially like to thank my girlfriend Christina.

List of Symbols

f Global load vector containing the nodal forces
u Global displacement vector
K Global stiffness matrix
Ke Element stiffness matrix
E Constitutive matrix
Ee Elastic modulus (Young’s modulus)
v Poison’s ratio
Ne Element basis function
εx,εy Normal strain in x-direction and y-direction
γxy Shear strain
B Strain-displacement field
x Design variables:

Element densities (for density based topology optimization).
Displacement in normal direction (for DSC based topology op-
timization)

xmin Minimum element density for density based topology optimiza-
tion

xmin, xmax Move limits for DSC based topology optimization
c Compliance
vmax Volume fraction
p Penalization parameter used in SIMP
q Penalization parameter used in RAMP
A
e

Mapping from local stiffness matrix to global stiffness matrix

Ĥf Convolution operator
rmin Radius of filter
m Move limit used in optimality criterial method

xii

Be Optimality condition used in the optimality criterial method
η Numerical damping coefficient used in the optimality criterial

method
λ Lagrangian multiplier
Pvoid Set of passive elements with forced void
Pmat Set of passive elements with forced material
n Normal direction
gi Constraints (such as volume constraints)

Note that the mathematical notation may deviate in the included papers.

xiii

xiv Contents

Contents

Summary (English) i

Summary (Danish) iii

Preface v

List of publications vii

Acknowledgements ix

List of Symbols xi

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis overview . 3

2 User interface design 5
2.1 Design rules . 6

2.1.1 Alan Dix’s principles to support usability 7
2.1.2 Golden rules of interface design 7

2.2 HCI patterns . 8
2.3 Usability evaluation methods . 9

2.3.1 Heuristic evaluation . 10
2.3.2 Cognitive walkthrough . 11
2.3.3 User based evaluation . 12
2.3.4 Thinking aloud . 13

2.4 Platform constraints . 13
2.5 Comparing usability design rules and heuristics 14
2.6 Discussion . 15

xvi CONTENTS

3 Topology optimization 17
3.1 Solid mechanics fundamentals . 17
3.2 Structural analysis and the Finite Element Method 19

3.2.1 Discretization . 20
3.2.2 Element behavior . 22
3.2.3 Assembly . 24
3.2.4 Defining loads and supports 25
3.2.5 Solving for displacements 27
3.2.6 Improving accuracy . 27
3.2.7 Performance considerations 28

3.3 Topology optimization . 28
3.3.1 Penalization . 31
3.3.2 Computing displacements and evaluating compliance . . . 32
3.3.3 Sensitivity analysis . 33
3.3.4 Regularization . 33
3.3.5 Optimization . 34
3.3.6 Passive elements . 35
3.3.7 Iterations and converging 36
3.3.8 Examples . 36

4 Interactive topology optimization in 2D and 3D 39
4.1 Related work . 40
4.2 TopOpt 2D . 40

4.2.1 Problem formulation . 41
4.2.2 Implementation . 44
4.2.3 User interaction . 46
4.2.4 Flexible void . 48
4.2.5 Examples . 48

4.3 Finger Finite Element Method 48
4.4 TopOpt 3D . 51

4.4.1 Problem formulation . 51
4.4.2 Implementation . 51
4.4.3 User interaction . 53
4.4.4 Examples . 55

4.5 Discussion . 56

5 Gamification of topology optimization 59
5.1 Related work . 60
5.2 Problem formulation . 61
5.3 Game design and implementation 62
5.4 Level design . 65
5.5 Analyzing player performance . 65
5.6 Discussion . 68

CONTENTS xvii

6 Rethinking topology optimization as a modeling tool 69
6.1 Related work . 70
6.2 The Deformable Simplicial Complex method 72
6.3 DSC based topology optimization 75

6.3.1 Nodal movement . 76
6.3.2 Element relabeling . 77

6.4 Topology optimization based modeling tool 78
6.5 Implementation . 80

6.5.1 DSC subdomain support 80
6.5.2 Parallelization of DSC . 81
6.5.3 DSC raytracing . 82

6.6 Results . 83
6.7 Discussion . 84

7 Discussion and conclusion 85

A Paper A: Interactive topology optimization on hand-held de-
vices 89

B Paper B: 3D interactive topology optimization on hand-held
devices 97

C Paper C: Improving topology optimization intuition through
games 105

D Summary of other publications 113

E Download statistics and user reviews 115

Bibliography 119

xviii CONTENTS

Chapter 1

Introduction

Topology optimization is a structural optimization tool, which optimizes the
material distribution within a design domain in order to maximize stiffness or
other objectives. The research field of topology optimization started within
structural and continuum mechanics but is now also used in other fields such as
optics, acoustics and civil engineering. The method has since its introduction
in the late 1980s been used in a number of different applications for optimizing
structures such as airplanes, engines, buildings, antennas, optical fibers, and
nanostructures. Recently, the method has received an increasing attention from
architectural and industrial designers who wants to use the method as a shape
design tool.

Topology optimization is a computational heavy task even when used on small
problems. Previously solving small problems would take minutes or hours due
to the limited amount of compute resources available. For this reason topology
optimization was primarily used as batch processing, where the optimization
problems was first defined and then send to the optimizer as a job that needed
to be completed. The user would after job-completion evaluate the result and
determine if the problem should be remodeled to obtain a different result.

Current commercial use of topology optimization is found in highly specialized
software, usually as a plugin for computer aided design (CAD) systems or as an
extension to Finite Element (FE) software. Commercial topology optimization

2 Introduction

software is designed for expert users with a background in mechanical engineer-
ing who have received training in that particular software.

1.1 Motivation

The increase in computational power opens up new opportunities to solve com-
putationally demanding tasks in an interactive manner, the same tasks that only
a few years ago required long computation time. The increase in computation
power has up until now roughly followed Moore’s law [S.15] which states that
the number of transistors per surface area doubles every second year.

The goal of this dissertation is to explore how this new capability of running
topology optimization at interactive update rates can be used to create new and
innovative applications. The focus is not on inventing new methods for topology
optimizations, instead existing methods are carefully selected and used in new
ways. Interactive topology optimization is a completely new way of thinking
of and using topology optimization. The goal is to create simple and intuitive
applications, which abstracts away some of the underlying complexity and make
the applications more accessible for people outside the field, such as students,
architects and designers. We hope to broaden peoples awareness by making
topology optimization more accessible using intuitive applications running in
web browsers, on smartphones or on tablets. By increasing the awareness of the
research field we hope to increase the popularity of topology optimization such
that it will be used to its full potential.

Additionally, the goal is to improve the way topology optimization is taught at
universities. Often courses in the Finite Element Method (FEM) and topology
optimization is taught using Matlab or using non-interactive FEM software.
While this is a good approach for explaining the many details of the methods, we
believe that truly interactive applications are much better for explaining the big
picture as well as building students intuition about the methods. The interactive
applications provides a constant flow of feedback based on the actions performed
by the users. Using well-designed interactive applications as a teaching aid helps
students come to a deeper understanding through “supporting conceptualization
and contextualization”, actively involving the student, and promoting internal
reflections [CM01].

1.2 Thesis overview 3

1.2 Thesis overview

Chapter 2 gives an overview of user interface (UI) design and user experience.
The chapter focuses on the elements of Human-Computer Interaction (HCI)
research relevant to this dissertation. The first section is a summary of design
rules posed by several authors. The next chapter describes how knowledge
learned from designing user interfaces can be captured and shared in catalogues
of design patterns. The following section explains how to evaluate user interfaces
using either UI experts or potential users. The chapter ends with a discussion
of how the design rules are related and how the user interface design can be
approached.

Chapter 3 gives an introduction to topology optimization mainly targeting peo-
ple outside the field. The chapter starts with describing relevant concepts in
solid mechanics followed by an overview of how the FEM can be used for struc-
tural analysis. Finally, topology optimization is introduced with a focus on the
density approach and its concepts.

Chapter 4 describes the three interactive applications: TopOpt App (2D), Finger
Finite Element Method (FFEM) and TopOpt 3D App. The chapter begins with
introducing related work followed by a description of each of the applications.
These descriptions include formulations of the problem, how the problems are
solved interactively, and how the user interaction has been designed.

Next, chapter 5 describes how topology optimization has been gamified by cre-
ating the TopOpt Game. The chapter explains how gamification has been used
in other research fields and how we have transformed topology optimization into
an educational game. After discussing the game design and the implementation,
the game data is analyzed in order to unveil how playing the game affects the
players intuition of topology optimization.

Chapter 6 explains experimental research in how topology optimization can be
used as an interactive modeling tool with local control. The chapter starts by
introducing the Deformable Simplicial Complex (DSC) method followed by an
overview of how topology can be optimized using DSC. After discussing the
implementation detains the chapter summaries the findings and discusses what
was learned.

Finally, the thesis is concluded in Chapter 7, which summarizes the thesis and
its contributions.

In addition to the work on interactive topology optimization described in this
dissertation, my other research publications are summarized in section D.

4 Introduction

Chapter 2

User interface design

When engineers design computer programs to solve scientific problems the main
focus is usually on performance or on the problem solving task. The user inter-
face is often neglected and not considered important since the target audience
is expert users who are willing to spend a significant amount of time on learning
how to use the system.

Below are listed a number of different styles of user interface defined in a broad
sense:

• Source code. Some projects are simply source code examples, where
input are provided only by changing hardcoded values.

• Software library. Many project does not provide any user interface but
instead allows interaction using a programming language. This has the
benefit of easy integration with other systems. The downside is that it
takes time to learn how to use the API and often requires documentation
to be read.

• Command line interface. Allows easy integration with other programs
using pipes and command line scripts. Command line programs are not
suitable when many or complex parameters must be provided or when the

6 User interface design

application is used in an interactive manner. Reading the documentation
is usually needed in order to use such programs.

• Configuration file. Programs using configuration files usually allows
much more sophisticated parameters than command line interface pro-
grams. Yet they are still not suitable for complex interactions. Again,
the user needs to read the documentation to learn the valid configuration
options.

• Graphical user interface. A well designed graphical user interface is
often easy and intuitive to use. It has the benefit of providing good ab-
stractions and gives visual hints which in best case allows the program
to be used without consulting any documentation. However, interaction
with other systems may be difficult.

Both source code as well as software libraries have the impediment of differ-
ent compilers, operating systems, and third party library dependencies, which
complicates running the program.

The consequence of not providing a suitable user interface is that the research
is not used to its full potential. Providing only a poorly designed interface
will scare students, newcomers and other non-experts, whom may end up using
other research projects or students may find completely other research fields
more appealing.

This chapter will discuss the foundation of how to create good user interfaces
for non-experts for 2D and 3D problems within the mechanical engineering field
based on research in Human-Computer Interaction (HCI).

2.1 Design rules

Creating good user interfaces is a complex task. Building the perfect interface
requires knowledge of what kind of users you are targeting (sociology), the moti-
vations, feelings and emotions of the user (psychology), the physical interaction
(ergonomics), how the user solves problems using the application (cognitive sci-
ence) - just to name a few of the areas of Human-Computer Interaction (HCI).
While these are all important parts of good interface design, it is usually prefer-
able to focus on design principles and user interface design patterns. By doing
this we use the knowledge gained from the HCI research.

2.1 Design rules 7

2.1.1 Alan Dix’s principles to support usability

Dix et. al. [DFAB03] describe three general principles, which are the most
abstract design rules than can be applied to the user interface design in order
to ensure its usability:

• “Learnability - the ease with which new users can begin effective inter-
action and achieve maximal performance.”

• “Flexibility - the multiplicity of ways in which the user and system ex-
change information.”

• “Robustness - the level of support provided to the user in determining
successful achievement and assessment of goals.”

These abstract principles are often too vague to be useful on actual usability
design, but excellent as categories for other more concrete design rules.

2.1.2 Golden rules of interface design

Shneiderman describes in his book [Shn92] eight golden rules for designing user
interfaces. Awareness of these rules generally lead to better designs, even though
the rules are general and cannot be used in every situation.

1. Strive for consistency. Consistency both in user interactions, terminol-
ogy and visual layout.

2. Design for all types of users. Support all kinds of users. Novice users
often need both hints, help, such as tooltip texts, and documentation,
whereas the focus of experts users is on using the system efficient through
system-responsiveness and keyboard shortcuts.

3. Offer informative feedback. For every action there should be a visible
feedback.

4. Design dialogs to yield closure so users know when a task is
completed. Design sequences of action to have a beginning, middle and
an end.

5. Offer error prevention and simple error handling. Design the sys-
tem such that the users cannot make serious errors. When this is not
possible then guide the user to resolve the problems when they occur.

8 User interface design

6. Support undo of actions. Every action should ideally be reversible.

7. Make user feel in control of the system. The users should be the
initiators of actions rather than the responders to actions.

8. Reduce short-term memory load. Rule of thumb is that humans
can remember “seven plus or minus two chucks” of information. Display
relevant information when needed.

More broadly applicable design guidelines are found in Donald A. Norman’s
book [Nor02] describing how difficult tasks can be transformed into simpler
tasks. He explains the importance of knowing when to use knowledge repre-
sented in the environment (here computer system) and when to use knowledge
existing in the head. The book emphasizes the importance of the user building
a good mental model of the system, and how the interaction should map well
to this model. Good design should exploit the power of constraints to guide
the user to complete the tasks and prevent him from making errors. When an
error occur, the system should be able to recover from it and lead the user back
on track. Finally, standardization can be used in situations when no natural
mapping exists to enable users to reused knowledge about the interaction from
similar systems.

Another comprehensive list of principles of interaction design can be found in
Bruce Tognazzini’s “First Principles of Interaction Design” [Tog14]. The list
covers 19 design principles for traditional GUI applications, web applications,
mobile devices, wearables and Internet-connected smart devices.

2.2 HCI patterns

Another way to work with user interface design is to use the experience gained
by others when solving usability design problems. This experience is described
in HCI patterns which are stored in pattern collections and pattern languages.
HCI patterns are used similar to the way software design patterns are used in
software engineering as described in for instance [GHJV94].

A HCI pattern is described using:

• Pattern name describing the essence of the problem, solution and con-
sequence in one or two words. The name increases the design vocabulary
and allows designers to easily refer to abstract concepts in a simple and
unambiguous way.

2.3 Usability evaluation methods 9

• Problem explains the problem and the context in which it occurs.

• Solution describes the suggested solution including sub elements, respon-
sibilities and reference patterns.

• Consequences discuss the trade-offs for applying the pattern. A typical
tradeoff would be between learnability and expert usage. Consequences
also discusses alternative patterns and distinctions from these.

Different pattern catalogues can have additional descriptive elements such as
examples, links to usability research and advices of when to use the pattern.

It is important to emphasize that HCI patterns are always described with some
level of abstraction such that they can easily be adapted to solve different de-
sign problems. Examples of HCI pattern catalogues and pattern languages are
[Tid10], [Bor01] and [Gra03].

2.3 Usability evaluation methods

Evaluating the user interface design is an important step of software develop-
ment. The goal of the evaluation is to identify usability problems and to ensure
that the system enables the user in solving the intended tasks in an easy and
intuitive manner. Finally, the evaluation is used to access the user’s satisfaction
with the system including the learning curve and the enjoyment of using the
system.

Usability problems are often classified based on severity. There exists several
different classifications such as Jeff Sauro’s rating [Sau13] where each problem
are rated as:

• Minor. Users hesitate or get slightly irritated.

• Moderate. Some users experience occasional task failure; causes delays
and moderate irritation.

• Critical. Users fail to complete tasks and experience extreme irritation.

In addition to the usability problem rating, Sauro’s approach also includes in-
sights/suggestions/positives where users mention ideas or observations which
could enhance the overall experience.

10 User interface design

There exists two general types of usability evaluation methods (UEMs); An-
alytical methods where experts are analyzing the user interface and empirical
methods where users are trying out the user interface to identify problems. Us-
ing expert evaluation is a relative cheap and fast method for evaluating the user
interface using known heuristics and cognitive principles. On the other hand the
problems found in empirical methods are actual usability problems. Empirical
methods are also much better at quantifying the user’s experience of the system
is being used.

Over the years a huge number of UEMs have been developed. Four of the most
popular are described below.

2.3.1 Heuristic evaluation

Heuristic evaluation is an informal method of usability analyses. Experts review
the user interface using a simple set of heuristics in order to identify potential
usability problems. Nielsen presents in [Nie95] a short list of ten heuristics
for evaluation which strongly relates to the design rules from section 2.1. The
heuristics are rules of thumb and may not always be applicable. Instead, the
evaluation rely heavily on the experts own intuition and common sense. The
heuristics can be summarized as:

1. Visibility of system status. Inform user of status using appropriate
feedback within reasonable time.

2. Match between the system and the real world. Use intuitive ab-
stractions that relates to familiar concepts.

3. User control and freedom. User should be able to change state easily
and undo or redo actions.

4. Consistency and standards. Interface elements and interaction must
be consistent. Use platform conventions.

5. Error prevention. Strive for error prevention by guiding user and elim-
inating error-prone conditions.

6. Recognition rather than recall. Objects, actions, and options should
be visible or easily retrievable whenever appropriate.

7. Flexibility and efficiency of use. Support expert users by providing
accelerators to speed up work.

8. Aesthetic and minimalist design. Keep the user interface simple.

2.3 Usability evaluation methods 11

9. Help users recognize, diagnose, and recover from errors. Error
messages should be helpful and understandable for users.

10. Help and documentation. Systems should be designed to be used
without documentation. But documentation should also be available and
easy to understand.

A single evaluator usually only uncover under half of the usability problems.
For this reason Nielsen and Molich suggests in [MB90] to aggregate usability
problems from three to five people and to use other evaluation methods to
identify remaining usability problems.

The main benefits of using heuristic evaluation are that the method is cheap,
simple and intuitive to use. Besides, the method does not requires planning in
advance and it can be used early in the development process. The downsides of
using the method are that it does not suggest solutions for the identified problem
and the problems identified may be biased by the mindsets of the evaluators.

2.3.2 Cognitive walkthrough

Cognitive walkthrough is a subjective and informal evaluation technique. Eval-
uators imagine themselves as users while performing known tasks in the system
to be evaluated.

Cognitive walkthrough can performed using an incomplete prototype or in later
stages of the development process. The tasks to be evaluated need to be doc-
umented including defining a list of actions to complete a given task. Finally,
the experience and knowledge of target user need to be described.

While the evaluator is performing the tasks, he will for each action consider the
following four things:

1. Is the effect of the action the same as the users goal at the time of executing
the action?

2. Can the user see the action to be performed? Is it visible?

3. Does the user recognize the action to be performed? Is it clear and mean-
ingful?

4. After executing the action, is the user able to see the result of the action?
Is the feedback sufficient and clear?

12 User interface design

Throughout the evaluation the good and bad parts about the user interface
are documented - typically using a predefined evaluation form which includes a
rating of the severity of the problem.

Usability evaluation with cognitive walkthrough was first described by John
Rieman in [RFR95].

2.3.3 User based evaluation

In order to identify actual usability problems the evaluation needs to be per-
formed using real users instead of usability experts. If real users are unavailable
then a good alternative is to use test users matching the expected user profiles.

The classic evaluation method is to observe users perform one or more tasks
in a controlled experiment. During the evaluation the observer documents any
identified usability problem. After the evaluation the data is analyzed to reveal
which of the usability problems are the most critical and need to be fixed.

The purpose of the controlled experiment is to answer a given hypothesis by
measuring some attribute of participant behavior. Common attributes are time
taken to perform the task and number of errors made. The experiment can
formulated by using different configurations or alternatives (also known as in-
dependent variables), such as alternative interaction patterns or multiple user
interfaces solving the same problem.

The evaluation can take place either in an UI laboratory or in the user’s work
environment. Laboratory studies have the benefit of having everything setup
for usability tests, such as one-way mirrors, cameras, eye-trackers, microphones,
etc. Their disadvantages are that the setup may not reflect the actual work
environment of the user; there is no interruptions, no ambient noise and the
situation may feel unnatural to the user. An evaluation performed in the user’s
own work environment may on the other hand be difficult to observe. A third
option is to perform remote usability evaluation, where users and observers are
partitioned in space and/or time [CHH98].

In general user based evaluation is more expensive than expert based inspections
since it involves a larger number of people. Also analyzing the results and
deriving the underlying problems takes a significant amount of time. The main
benefit of using the method is that the found issues are actual usability problems.

2.4 Platform constraints 13

2.3.4 Thinking aloud

In the thinking aloud method a test subject solves a series of realistic tasks using
the system that is being evaluated. Throughout the evaluation the test subject
is asked to “think aloud” by describing his intentions and understanding of the
system while he is solving the tasks. The role of the evaluator (also known as
the test monitor) is to passively observe while encouraging the test subject to
share his thoughts. In the case of the test subject gets stuck solving a task, the
evaluator may give hints or advices such that the task can be completed.

The advantages of the method are that it clearly points out usability problems
and it uncovers parts of the users mental model of the system. The method is
flexible and can be adapted to work even on paper prototypes (by letting the
evaluator give the response of the system). Disadvantages are that the whole
setup can feel a bit artificial, the test subject may feel that he is the one being
tested and the passive role of the evaluator can also be challenging. The method
also tend to focus on the learnability for novice users. Finally, after the usability
evaluation an extensive analysis need to be performed to uncover the reasons
behind the identified usability problems.

The method originates from Ericsson et. al.’s book [ES84] where it was devel-
oped for cognitive psychology to get valid data on people’s thinking.

2.4 Platform constraints

A user interface design is also strongly influenced by the platform it runs on.
This includes differences such as different screens in terms of both physical size
and pixels per inch and well as interface devices like mouse, touchpad, keyboard,
touch-screen, accelerometer, etc.

When designing for a wide range of devices such as PCs, smartphones and
tablets, there may also be significant differences in terms of memory and com-
pute power for both CPU and GPU.

The most obvious strategy for cross-platform development is to only use tech-
niques that works well on all platforms. By doing this the users can easily switch
between devices without worrying about what interaction technique to use. In
some cases this strategy may be too restrictive; It may end up showing too
much information on small screens or too little information on large screens. A
good understanding of the headache that cross platform development can cause

14 User interface design

is found in Jakob Nielsen’s analysis of Windows 8 [Nie13], where he conclude
that the user experience is “weak on tablets, terrible for PCs”.

2.5 Comparing usability design rules and heuris-
tics

The design rules from Dix et. al. [DFAB03], Shneiderman [Shn92], Norman
[Nor02] and the heuristics from Nielsen [Nie95] can be combined as the following
five rules:

1. User supportive. Applications should support users in doing their work
efficiently.

• Flexibility (Dix)
• Design for all types of users (Shneiderman)
• Make user feel in control of the system (Shneiderman)
• User control and freedom. (Nielsen)
• Flexibility and efficiency of use. (Nielsen)

2. Consistent. The user interaction and user interface should be designed
in a minimalistic and consistent way using standards whenever available.

• Learnability (Dix)
• Strive for consistency (Shneiderman)
• Standardization (Norman)
• Consistency and standards. (Nielsen)
• Aesthetic and minimalist design. (Nielsen)

3. Informative. Show relevant information when needed to communicate
both the state of the system and the state of the tasks to the user

• Learnability (Dix)
• Offer informative feedback (Shneiderman)
• Design dialogs to yield closure so users know when a task is completed

(Shneiderman)
• Reduce short-term memory load (Shneiderman)
• Visibility of system status. (Nielsen)
• Recognition rather than recall. (Nielsen)

2.6 Discussion 15

• Help and documentation. (Nielsen)

4. Design for errors. Make it hard for the users to make errors. When an
error occur, then the system should clearly show the error and offer ways
to recover from the error.

• Robustness (Dix)
• Offer error prevention and simple error handling (Shneiderman)
• Support undo of actions (Shneiderman)
• Prevent errors by design (Norman)
• Error prevention. (Nielsen)
• Help users recognize, diagnose, and recover from errors. (Nielsen)

5. Mental model. Create a well-designed conceptual model of the system.

• Learnability (Dix)
• Knowledge in the head and in the world (Norman)
• Match between the system and the real world. (Nielsen)

The three rules defined by Dix et. al. are very abstract and hence fit all the
five categories. Shneiderman’s eight golden rules are quite evenly spreads across
the first four categories, but do not explicitly discuss the importance of a good
mental model. Nielsen’s ten heuristics are distributed on all five categories
and are very similar to Shneiderman’s eight rules. Finally, Norman’s design
guidelines are human-centric and covers all five categories even though only
three bullet-points are listed above.

2.6 Discussion

Designing a good user interface is a complex task due to the many parameters
involved. For this reason user interface design is usually designed in an iterative
manner to find the most optimal design. These iterations happen both during
the development of a single release of an application but also between different
minor or major updates of an application. In many ways optimizing usability
is similar to finding solutions for a non-convex optimization problem where we
sometimes get stuck in a local optimum and other times learn valuable lessons
that will help us reduce the search space.

For some types of applications the user interface design has converged and the
frequently used design patterns are very obvious. Word processors are good

16 User interface design

example this, where the user interface design is very similar across different
applications and vendors.

When choosing between several user interface alternatives it is sometimes bene-
ficial to select the most widely used and not necessarily the most well designed.
Especially if learnability is a goal. If people have learned a bad habit there
has to be a significant payoff for them to change their behavior without being
annoyed. This is especially true when re-designing existing system with expert
users as discussed in [JFY07].

Other types of applications have clearly not converged into a universal design.
This is typical the case for applications with a small or narrow target group
such or when dealing with very complex user interactions. One such example is
applications manipulating 3D data. Even through there is some general trends,
there are huge differences between applications and moving from one application
to another application requires a significant effort and training for the end user.

Chapter 3

Topology optimization

This chapter will give an overall introduction to topology optimization by first
introducing some solid mechanics foundations, then describing the finite element
method and finally explaining topology optimization. The focus will be on
optimizing for minimum compliance using a fixed amount of material, where
the goal is to find a good solution with a high global stiffness.

3.1 Solid mechanics fundamentals

Solid mechanics is the study of the behavior of structures made of solid materials,
especially their motion and deformation under the action of external forces.

We make the assumption that the materials we use are isotropic and linear-
elastic. A supported structure of such material will deform when an external
force is applied. The structure will return to its initial shape when the external
force is removed. Many materials have this property as long as the magnitude
of the force is under a certain limit (called the elastic limit).

When an external force is applied to a supported structure of an elastic material
two things happen within the object:

18 Topology optimization

Loads

Structure

Fixed

Support

Sliding

Support

Figure 3.1: A solid mechanics problem showing a supported structure with
loads applied.

• Strain: The relative deformation caused by the force.

• Stress: The restorative internal force, which makes sure that the object
returns to its initial shape when the external force is removed.

We assume the material has a linear relationship between strain and stress.
If twice the force is applied to a structure of such material, then twice the
deformation will occur. A linear stress-strain relationship is also known as
Hooke’s law and can be stored in a constitutive matrix.

We also assume that the material is isotropic, such that the behavior of a struc-
ture is independent of the orientation of its material. Fortunately many mate-
rials, such as various metals, behaves both linear-elastic and isotropic.

Parts of the structure are fixed by rigid supports, which prevents the full struc-
ture from moving freely. From an optimization point of view the regions of
supports can be seen as optional attachment points in order to prevent dis-
placement. A support may be limited to only be active in certain directions.
A classic example is when constructing a bridge, you would use fixed support
in one end of the bridge and a sliding support (typically a roller) in the other.
Using sliding supports the bridge allows small non-vertical movements under
the support when forces are applied to the bridge which improves the stability
of the bridge. An example of how such bridge can be modeled can be seen in
figure 3.1. Supports are symbolized using triangles with legs or rollers.

External forces are often referred to as loads. Loads are usually applied to
the boundary/surface of the structure. Point-loads are sometimes used when
modeling a problem, however for real problems loads cover a larger area than
an infinitesimal point. Loads are symbolized using arrows.

3.2 Structural analysis and the Finite Element Method 19

3.2 Structural analysis and the Finite Element
Method

The core of topology optimization is structural analysis, where one of the char-
acteristics, e.g. compliance, of a model is evaluated. To evaluate a structure of
an arbitrary shape, the finite element method (FEM) can be used. The method
is described in e.g. [C+07]. This method exploits that there exists analytical
solutions for primitive shapes. The structure (or the full design domain contain-
ing the structure) is therefore discretized into elements of these primitive shapes
with each element having a number of nodes attached. Using the analytical so-
lution for each element as well as information of how each element relates to its
neighbors, a solution for the discretized structure can be found. Due to details
lost in the discretization of the structure the found solution is no longer exact.

The first use of the method was approximating a solution for the partial differ-
ential problem of structural analysis. The terminology used in FEM relates to
concepts used within structural analysis, even though the method is now used as
a general method for solving field problems where the goal is to find the spatial
distribution of one or more dependent variables. The method is also known as
finite element analysis especially when used for structural analysis.

The FEM is based on the static equilibrium equation, which states that the
acceleration exerted by the external forces has to be countered by an equal and
opposite directed force (Newton’s first and second law). The equation can be
formulated as follows

Ku = f (3.1)
, which states that the external forces f = [f1, . . . ,fn]

T in a system must equal
the displacements u = [u1, . . . ,un] in a system with n nodes, where the stiffness
relation between these nodes are expressed using the stiffness matrix K of size
n× n. Different problems can be solved this ways by using a different stiffness
matrix derived for the particular problem.

We assume that the deformations are small enough that the equilibrium equa-
tions can be written using the original shape rather than using the deformed
shape. We also only consider steady-state problems, also called static problems,
which do not depend on time.

The FEM can be summarized to the following steps:

1. Discretize. This preprocessing step approximates the shape using simple

20 Topology optimization

(a) Triangle (b) Quadrilateral (c) Tetrahedron (d) Hexahedron

Figure 3.2: Often used element types in FEM. The circles show the position
of the nodes.

(a) Original structure (b) Unstructured FE mesh (c) Regular FE mesh

Figure 3.3: Discretization of a complex 2D shape into a finite element (FE)
mesh using triangular and square elements.

element shapes with associated nodes.

2. Build element stiffness matrix. For each unique element shape we
need to formulate the behavior of its nodes in matrix form based on the
stiffness relationship between the nodes.

3. Assemble global stiffness matrix. Encode relations between all nodes
in the global stiffness matrix.

4. Define loads and supports. Define a load vector. Modify global stiff-
ness matrix to contain boundary conditions.

5. Solve for displacements. The linear system is solved in order to find
the nodal displacements.

3.2.1 Discretization

When discretizing the problem commonly used elements are triangles and quadri-
laterals for 2D models and tetrahedron and hexahedral for 3D models as listed in
figure 3.2. Discretization approximates the original shape using a finite element
mesh as shown in figure 3.3.

3.2 Structural analysis and the Finite Element Method 21

Each element contains a number of nodes, where each node contain one or more
values about the system we are solving, such as displacements in the X, Y
and Z direction. The nodal values are the unknowns in the linear system and
they are often referred to as degrees of freedom or d.o.f. The nodes are shared
between elements when located on the element boundary. The d.o.f. are used
for determining the values within the element and when integrating over the
element. For all elements in figure 3.2 the number of nodes equal the number of
corners in the shape. Having only nodes in the corners allows creation of linear
basis function used for interpolation of values inside the element. It is also
possible to use more nodes for each elements, which allows creation of higher-
order basis function, which gives a better approximation at the cost of more
variables.

A regular FE mesh (figure 3.3-c) has the benefit that the basis functions are the
same for every element as opposed to an unstructured mesh (figure 3.3-b) which
requires custom basis functions for each individual element or a per-element
mapping to fixed basis functions.

When using an unstructured FE mesh one has to pay special attention to the
size and the shape of its elements. Since the mesh will be used to solve problems
numerically, then numerical instabilities can occur if the size of an element is
too small or the shape of an element is too flat. The finite element mesh needs
to be of high quality, by having some constraints of minimum edge length as
well as minimum and maximum angle between edges of an element. There
also exists more formal ways to evaluate mesh quality, such as Radovitzky’s
tetrahedron-quality measure described in [RO00].

1 2
u1,v1

u2,v2

u3,v3

u4,v4

u5,v5

u6,v6

Load

Support

Figure 3.4: Example problem where elements and nodal d.o.f. are enumerated.

One important part of the discretization is to enumerate both the elements in
the mesh as well as each d.o.f. for each node in the mesh. Figure 3.4 shows the
enumeration of a 2D example where each node has two d.o.f. The enumeration
is used when assembling the linear system.

22 Topology optimization

3.2.2 Element behavior

For each element we need to define its local stiffness matrix, which describes the
relationship between its nodal values.

The behavior is based on the stress-strain relationship, which can be formulated
in a constitutive matrix. For the 2D case with no initial stresses the relationship
is:

 σx
σy
τxy

 =

 E11 E12 E13

E21 E22 E23

E31 E32 E33

 εx
εy
γxy

 (3.2)

where [σx σy τxy]
T is the stresses, [εx εy γxy]

T is the strains and E is relationship
expressed in the constitutive matrix. The constitutive matrix E for an isotropic
and plane stress condition is:

E =
Ee

1− v2

 1 v 0
v 1 0
0 0 (1− v)/2

 (3.3)

where v is Poison’s ratio and Ee is the elastic modulus (Young’s modulus), which
are both properties of the given material.

u1,v1

u4,v4

u2,v2

u3,v3

y,v

x,u

a a

b

b

Figure 3.5: Quadrilateral element of size 2a× 2b with eight d.o.f.

We define a basis function Ne for each node (also known as shape functions),
which are used for interpolating d.o.f. values inside an element. As an example
we use the 2D quadrilateral element with eight d.o.f. in figure 3.5. Notice how
the d.o.f. also have a local enumeration. Based on this element we can define

3.2 Structural analysis and the Finite Element Method 23

the following bilinear basis functions:

N1(x, y) =
(a−x)(b−y)

4ab N2(x, y) =
(a+x)(b−y)

4ab

N3(x, y) =
(a+x)(b+y)

4ab N4(x, y) =
(a−x)(b+y)

4ab

(3.4)

The complete element displacement field for this example is:

[
u
v

]
=

4∑
i=1

Ni

[
ui
vi

]
=

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
u1
v1
. . .
v4

(3.5)

While the displacement field describes the deformation within the element, the
strain-displacement relation describes the strain field within the displacement
field. We define normal strain (εx, εy) as change in length divided by normal
length and shear strain (γxy) as change in right angle:

εx = ∂u
∂x εy = ∂v

∂y γxy = ∂u
∂y + ∂v

∂x (3.6)

The same strain-displacement relation can also be formulated in matrix form:

 εx
εy
γxy

 =

 ∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

[u
v

]
(3.7)

The strain-displacement field B for the element can now be found by combining
the strain-displacement relation (equation 3.7), the element displacement field

24 Topology optimization

(equation 3.5) and the basis functions (equation 3.4):

B =
1

4ab

−(b− y) 0 −(a− x)
0 −(a− x) −(b− y)

(b− y) 0 −(a+ x)
0 −(a+ x) (b− y)

(b+ y) 0 (a+ x)
0 (a+ x) (b+ y)

−(b+ y) 0 (a− x)
0 (a− x) −(b+ y)

T

(3.8)

Finally, we can compute the element stiffness matrix Ke by using the strain-
displacement fieldB (equation 3.8) with the constitutive matrix E (equation 3.3)
and the parameter t for element thickness (z-axis):

Ke

8× 8
=

∫ b

−b

∫ a

−a

BT

8× 3
E

3× 3
B

3× 8
t dx dy (3.9)

The element stiffness matrix is usually determined analytically using a symbolic
manipulation software, such as Maple.

3.2.3 Assembly

Using the element stiffness matrix we need to assemble the global stiffness ma-
trix. The matrix contains the relations from each node to any neighbor nodes
as showed in figure 3.6.

Figure 3.6: Single node with the adjacent elements and nodes.

The assembly is performed by adding each of the element stiffness matrices to the
global stiffness matrix. Figure 3.7 shows this assembling including remapping
values from the element d.o.f. index to the global d.o.f. index. This can also be

3.2 Structural analysis and the Finite Element Method 25

u1,v1

u4,v4

u2,v2

u3,v3

u1,v1

u4,v4

u2,v2

u3,v3

k1 k2

u1,v1

u2,v2

u3,v3

u4,v4

u5,v5

u6,v6

K K

For each ki

remap and

add to K

Figure 3.7: Assembling the global stiffness matrix based on element stiffness
matrices.

expressed as:

K =

n∑
e=1

A
e
(ke) (3.10)

where A
e
is an operator that maps from a local stiffness matrix (in this case

8 × 8) to a global stiffness matrix (in this case n × n, with n being the global
d.o.f.).

Figure 3.8 shows the conceptual global stiffness matrix K of the example prob-
lem. The light grey elements have coefficients from a single element stiffness
matrix, whereas darker elements have coefficients from two element stiffness
matrices. White elements contains the sparse regions with coefficients equal 0.
For larger problems the matrix becomes significantly more sparse.

3.2.4 Defining loads and supports

Loads are always associated with nodes. A load has an associated force, contain-
ing both a direction and a magnitude, represented using a vector. The (global)
load vector f is assembled by setting its values where nodal loads are defined.
The remaining elements of the load vector are set to zero. For the example
problem in figure 3.4 nodal values u6 and v6 are set to the load [0,−1]T :

f =
[
0 0 0 0 0 0 0 0 0 0 0 −1

]T (3.11)

For the boundary conditions defined by the supports, we need to enforce the
displacements to be zero (if the node is supported in the given direction). This
is done by modifying the global stiffness matrix by replacing rows and columns

26 Topology optimization

u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

u6

v6

Figure 3.8: Assembly of the global stiffness matrixK of example problem from
figure 3.4. The element colors represents usages, where white is
unused (white)

of fixed nodes with the values of the identity matrix as showed in figure 3.9. As
supported nodes cannot have loads applied, the displacements of such nodes are
zero.

u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

u6

v6

1

1

1

1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

00

0 0

00

0 0

00

0 0

00

Figure 3.9: Example of how the global stiffness matrix K is modified for the
boundary conditions by enforcing the displacements of the sup-
ports to equal the value of the loads (which is 0 for these nodes).

3.2 Structural analysis and the Finite Element Method 27

3.2.5 Solving for displacements

The displacements are found by solving system of linear equations in equa-
tion 3.1 after load and support conditions have been defined.

u = K−1f (3.12)

There are two main methods for solving these systems: direct sparse solvers and
iterative solvers.

Direct sparse solvers are efficient on systems up to around 3 millions d.o.f.
[Bat08]. High performance of the direct solvers is achieved by using graph theory
to identify an optimal sequence to eliminate variables in the Gauss elimination
when factorizing the stiffness matrix. One benefit of using direct solvers is that
the factorization can be reused on multiple load cases.

Iterative solvers are usually used for larger systems. Iterative solvers have the
benefit of being able to run in parallel on multiple cores. Iterative solvers are
often implemented as multigrid solvers - sometimes combined with direct solvers.

3.2.6 Improving accuracy

There are several sources of errors when solving a problem using FEM. First of
all, the mathematical problem which models the real-world phenomenon may be
an oversimplification of reality. Solving the mathematical problem using FEM
is also an approximation due to the discretization. The accuracy of FEM can
be improved in two different ways:

H-method is the most obvious way to increasing accuracy by simply using
more elements, which provides a better approximation of the original shape
and captures more details.

P-method is increasing the accuracy by using more nodes per element, which
will give higher-order basis functions for the interpolation and hence in-
crease the accuracy.

Whether to improve the result by refining the discretization using the H-method
or by using a more advanced model using the P-method depends on the nature
of the problem being solved.

28 Topology optimization

3.2.7 Performance considerations

Even through the FEM is a simplification of reality, all FEM problems, except
textbook examples, are so large that they are not feasible to solve without using
computers. For example a small FEM problem in a regular 3D grid of size 103

elements with each node having 3 d.o.f. (such as displacement in x, y and z
direction). This small example will contain 3993 d.o.f. and solving it involves
inverting or factorizing its stiffness matrix of size 3993× 3993.

One important observation is that the stiffness matrix contains the direct rela-
tions between all nodes of the system. Since each node is only associated with
its neighbor nodes (in adjacent elements), the stiffness matrix is a very sparse
matrix. Using either a banded matrix or a sparse matrix representation will re-
sult in a significant performance gain and reduced memory footprint. A similar
observation is that the relation between two nodes are symmetric. This means
we can use a symmetric matrix representation, which will almost reduce storage
size by half and improve computation time.

Another place to gain performance is when modeling the problem. Very often
the problem and solution contains symmetry. E.g. if our small FEM problem de-
scribed above contains symmetries in two dimensions, the elements are reduced
to 10× 5× 5 which means that the stiffness matrix is reduced to 1188× 1188 el-
ements, which reduces the number of coefficients in the (dense) stiffness matrix
with ≈ 91%.

When FEM has to be evaluated multiple times, another choice is between using
fixed grid or allow the structure of the grid to update in each iteration. By using
a fixed grid, the stiffness matrix can be assembled once, factorized and reused in
each iterations. Updating the element structure will on the other hand require
the stiffness matrix to be rebuilt.

3.3 Topology optimization

Topology optimization can be formulated as an optimization problem using a FE
formulation. Using a discretized design space of n elements, we are interested
in distributing a fixed amount of material in order to optimize some objective
function, such as compliance. Figure 3.10 shows how a topology optimization
problem can be modeled and discretized.

The problem can be formulated mathematically as a non-linear mixed 0-1 prob-

3.3 Topology optimization 29

?

(a) Model (b) Discretized model (c) Available material

Figure 3.10: 2D topology optimization using FEM discretization.

lem, where each element xe can have a material density of either 1 (material)
or 0 (void).

min
x∈Rn

: c(x) = uTK(x)u (Compliance)

subject to : K(x)u = f (FEM equilibrium)∑n
e=1

xe

n ≤ vmax (Volume)

xe ∈ {0, 1} e = 1, . . . , n (Design variables)

(3.13)

where c(x) is the compliance, K(x) is the global stiffness matrix, u is the dis-
placement vector and vmax is the global volume fraction. Notice that the global
stiffness matrix K depends on the element density x.

Unfortunately we have no efficient way to solve the problem when it is formu-
lated as a 0-1 problem. Using this formulation only very simple problems can be
solved due to the large search-space containing N !/((N −M)!M !) states, where
N is the number of material elements and M is the total number of elements.
For problems with 100 elements we can find the global optimum for some con-
figurations, but not when N approaches 50 material elements as discussed in
[SS03] and [SB11].

The workaround is to relax the problem to permit x to contain real numbers
in the range from xmin (a small number larger than 0.0) to 1.0. This means
that we allows each element to have a material density instead of the binary
“material or void”. xmin is used to avoid singularity. This formulation is called

30 Topology optimization

the density approach:

min
x∈Rn

: c(x) = uTK(x)u (Compliance)

subject to : K(x)u = f (FEM equilibrium)∑n
e=1

xe

n ≤ vmax (Volume)

0 < xmin ≤ xe ≤ 1 e = 1, . . . , n (Design variables)

(3.14)

Topology optimization is usually solved using “the nested approach”. That is,
we first find the nodal displacements u using the finite element method. We
then compute the sensitivity of the objective function for each element and
change the material a step towards minimum compliance. And we repeat this
until convergence (where changes of element densities are small). Listing 3.1
describes the main steps of the density approach in pseudo-code.

Listing 3.1: Topology optimization in pseudo-code.
1 // nelx, nely = number of elements in x and y direction
2 // volfract = volume fraction
3 // penal = penalization value
4 // rmin = filter radius
5 // maxChange = maximum change in X
6 Matrix topologyOptimization(nelx, nely, volfract, penal, rmin, maxChange) {
7 x = Matrix(nely, nelx)
8 x.fill(volfract)
9 do {

10 oldX = x
11 u = finiteElementAnalysis(x, penal, nelx, nely)
12 compliance = objectiveFunction(x, u)
13 dc = sensitivityAnalysis(x, u)
14 sdc = smoothingSensitilities(nelx, nely, rmin, x, dc)
15 x = optimalityCriteriaBasedOptimization(nelx, nely, x, volfrac, sdc)
16 change = maxDiff(oldX, x)
17 } while (change > maxChange)
18 return x
19 }

3.3 Topology optimization 31

3.3.1 Penalization

One problem with the density approach stated in equation 3.14 is that the
solution at convergence often contains a lot of gray-scale elements. From a
manufacturing perspective gray elements are usually also not desirable. Most
manufacturing processes, such as molding, require or prefer using a single ma-
terial with uniform density. One noteworthy exception is 3D printers, which is
capable of creating infills with different volume fractions.

To reduce the occurrence of grayscale elements, the density values are penalized
such that they tend to become either brighter or darker.

One of the most popular penalization schemes for topology optimization is Sim-
plified Isotropic Material with Penalization (SIMP) [Ben89], [ZR91], [Mle92] -
also known as the power-law approach:

E(xe) = xpe (3.15)

where xe is the element density and p > 1 is the penalization factor (p = 3 has
been found to work well [BS99]).

Using SIMP the compliance part of equation 3.14 is changed to:

c(x) =

N∑
e=1

(xe)
puTe keue (3.16)

where ke is the element stiffness matrix with unit Young’s modulus and ue is
the element displacement vector.

An alternative to SIMP is Rational Approximation of Material Properties (RAMP) [SS01]:

E(xe) =
xe

1 + q(1− x) (3.17)

where q > 0 is the penalization variable. RAMP was introduced to improve
non-concavity of SIMP interpolation, however it does not seem to play a strong
role for practical problems [SM13]. Examples of different penalization variables
in SIMP and RAMP can be found in figure 3.11.

32 Topology optimization

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stiffness of material

Fr
ac

tio
n

va
ria

bl
e

Figure 3.11: Dotted lines: RAMP with penalization= [0, 1, 4, 8].
Solid lines: SIMP with penalization= [2, 3, 7].

A variation of the SIMP worth mentioning is the modified SIMP as described in
[Sig07]. This approach allows element densities x to be zero and instead adds a
minimum density in the penalization:

E(xe) = Emin + xpe(E0 − Emin) (3.18)

The modified SIMP has a number of benefits, such as simple implementation of
additional filters.

For the remaining part of the chapter SIMP is used as penalization scheme.

3.3.2 Computing displacements and evaluating compliance

To compute the displacement vector u we need to assemble the global stiffness
matrix K using the penalized element densities to solve the FEM equilibrium
equation 3.1:

K =

n∑
e=1

A
e
(xpeKe) (3.19)

where A
e
is the FE assembly operator.

3.3 Topology optimization 33

After the global stiffness matrix K has been assembled and modified using
boundary constraints, the displacement vector can easily be evaluated:

u = K−1f (3.20)

Using the displacement vector the compliance of the current material distribu-
tion can be computed using equation 3.16.

3.3.3 Sensitivity analysis

The sensitivity of the objective function with respect to element densities xe
can be derived using the adjoint method with the result:

∂c

∂xe
= −p(xe)p−1uTe keue (3.21)

The full derivation can be found in [BS03]

The sensitivity of the material volume V with respect to element densities xe
when assuming unit area of elements is given by:

∂V

∂xe
= 1 (3.22)

3.3.4 Regularization

To ensure existence of solutions and avoid checkerboard patterns a simple smooth-
ing filter is applied to the sensitivities as described in [Sig97]:

∂̂c

∂xe
=

1

xe
∑n
f=1 Ĥf

n∑
f=1

Ĥfxf
∂c

∂xf
(3.23)

where Ĥf is the convolution operator (weight factor) which can be written as:

Ĥf = max(0, rmin − dist(e, f)) (3.24)

34 Topology optimization

where rmin is the filter radius and dist(e, f) is the distance between element e
and element f . The filter weight decays linearly from the element e to a radius
of rmin.

As an alternative, or supplement, to smoothing the sensitivities, a smoothing
filtering can be run on element densities x using a filter such as:

x̃e =
1∑n

f=1 Ĥf

n∑
f=1

Ĥfxf (3.25)

3.3.5 Optimization

The algorithm now updates the element densities xe using the Optimality Cri-
teria (OC) method. This method is based on the following heuristic for how
material is redistributed based on the current element density and the element
sensitivity:

xnewe =

max(xmin, xe −m)
if xeB

η
e ≤ max(xmin, xe −m)

xeB
η
e

if max(xmin, xe −m) < xeB
η
e < min(1, xe −m)

min(1, xe −m)
if min(1, xe −m) ≤ xeBηe

(3.26)

where m is the positive move limit, Be is the optimality condition and η is the
numerical damping coefficient (such as 1

2).

The optimality condition Be is defined as:

Be =
− ∂c
∂xe

λ ∂V∂xe

(3.27)

, here λ is the Lagrangian multiplier that can be found by a bisection algorithm
which ensures that the global volume constraint is satisfied.

3.3 Topology optimization 35

Passive

Void
Passive

Material

Figure 3.12: Passive elements in topology optimization.

As an alternative to the OC method there exists a number of other optimizers
such as the Sequential Linear Programming method (SLP) described in [YC94]
or the Method of Moving Asymptotes (MMA) described in [Sva87].

3.3.6 Passive elements

Topology optimization using the density approach is often computed on top of
regular rectangular grids. This simplifies the implementation of the FEM mesh
and hence also has a positive effect on the final runtime complexity. To allow
non-rectangular design domains, certain elements can be flagged to be passive
(either enforcing material or void) as shown in figure 3.12. The optimization
should then skip updating element densities on any element flagged as passive.
The density update heuristic can be modified to the following:

xnewe =

xmin
if e ∈ Pvoid

1
if e ∈ Pmat

max(xmin, xe −m)
if xeB

η
e ≤ max(xmin, xe −m)

xeB
η
e

if max(xmin, xe −m) < xeB
η
e < min(1, xe −m)

min(1, xe −m)
if min(1, xe −m) ≤ xeBηe

(3.28)

where Pvoid and Pmat is the set of passive elements with forced void or material.

36 Topology optimization

3.3.7 Iterations and converging

As outlined in listing 3.1 the optimization is run until convergence where no
significant change of the structure occurs. The maximum change of element
density is used as stopping criteria which will end the optimization when the
change is under a given threshold.

3.3.8 Examples

The Messerschmitt–Bölkow–Blohm (MBB) beam is one of the standard prob-
lems used for topology optimization. The problem can be described using a
design domain with the width-to-height aspect of 3:1. The problem has a down-
ward load, in the upper left corner, vertical rolling support at the left side and
a fixed support in the lower right corner, as shown in figure 3.13.

Figure 3.13: Example problem.

The volume fraction vmax is set to 0.5, which allows up to half of the domain
to be material, and the filter radius rmin is set to 3.0. A SIMP interpolation
model is used with a penalization factor p of 3.0.

Figure 3.14 shows the example problems running for 100 iterations before the
maximum change in a single element density is below 0.01 after the 100th iter-
ation. After the first 10 iterations the final topology begins to appear and the
distinction between the 25th and the 100th iterations is hardly visible.

The result can clearly be interpreted as a truss structure with triangular holes.

As can be seen from figure 3.14 the result still contains some amount of gray
elements, even through they are penalized using SIMP. An often used approach
to extract the surface from element densities is to use marching squares for 2D or
marching cubes for 3D [LC87]. Note that this is an interpretation of the result
and the structural performance of the extracted shape may be different from

3.3 Topology optimization 37

(a) 5 iterations (b) 10 iterations (c) 25 iterations

(d) 100 iterations

Figure 3.14: The result of the example problem during the first 100 iterations.

the performance computed using the element densities. Also the constraints are
no longer guaranteed to be satisfied.

A similar problem can be posed in 3D as seen in figure 3.15. Here the result
is visualized using marching cubes since visualizing densities of 3D elements is
hard. The downward loads are located at the green bar in lower right corner
and the supports are located at the the red plane. Since the optimization starts
with the density of all elements set to the material fraction, the marching cubes
surface starts without finding any shape. As the element density increases after
a few iterations, the shape starts to appear. Even though the appearance of the
shape in figure 3.15 looks smooth, the underlying FE mesh is only 24× 12× 12
elements.

38 Topology optimization

(a) 0 iterations (b) 8 iterations (c) 10 iterations

(d) 17 iterations

Figure 3.15: The result of the example problem during the first 17 iterations.

Chapter 4

Interactive topology
optimization in 2D and 3D

This chapter shows new interactive ways of using topology optimization in ap-
plications. The main focus is interactivity and usability. Interactivity requires
that the application is responsive and the update rate of the optimization is
high. This is achieved by using highly optimized code, by using only the fastest
methods and by limiting how large problems are solved. The update rate is kept
under 10 seconds, which is “about the limit for keeping the user’s attention” as
discussed in [Nie93]. Another challenge is how to design a simple, yet flexible,
user interface for interactive topology optimization. The user interface should
additionally work equally well when running on PCs and on handheld devices
such as smartphones and tables.

This chapter first gives an overview of work related to these topics. It then
describes how interactive topology optimization has been accomplished for 2D
problems in the TopOpt 2D app - also the topic of Paper A. The following section
explains how this app has been used as a starting point for the Finger Finite
Element Method app. The next section describes how the computationally
harder problems are solved in the TopOpt 3D app as well as how its user interface
has been designed. The TopOpt 3D is also the topic of Paper B. Finally, the last
section evaluates the success of the applications and discusses choice of software
platform and software architecture used.

40 Interactive topology optimization in 2D and 3D

4.1 Related work

The precursor of the interactive TopOpt apps is the web-based topology opti-
mization program created and hosted by the TopOpt group [TS01]. This appli-
cation uses a Java Applet frontend for modeling the problems and visualizing
the results as shown in figure 4.1a. The actual computations are performed on
a server backend. The interaction pattern is batch processing where the user
submit the optimization job to the server and wait 5-10 seconds until the re-
sults are received and showed as short animation. The application was very
innovative when it was launched in 1999 by allowing users to perform topology
optimization directly in the browser. The application has been a huge success
with over 13,000 unique users during the first 13 years. However, compared to
todays standards its user interface and the problem sizes seems a bit outdated.

ForcePad is a similar tool for modeling, analyzing and solving 2D structural
problems. Figure 4.1b shows Von Mises stress visualized using ForcePad. The
tool performs all computations locally on the users PC and is able to solve
detailed problems. The application can be used for computing displacements,
Von Mises stress as well as performing topology optimization. Even through
the computations are performed locally in an efficient manner, the application
still has a distinct modeling mode and an action mode where the computations
are performed and visualized. ForcePad is created by the division of Structural
Mechanics in Lund University and is released under an open source GPL license.
The application and its source code is freely available at http://forcepad.
sourceforge.net/.

An example of a more interactive physics simulations is found in apps perform-
ing aerodynamic analysis using flow simulations. One such app is WindTunnel
available at http://www.algorizk.com. This app allows you to draw a cus-
tom shape during the wind simulation and instantly see a visualization of the
effect. The application can be used for detecting high and low pressure fields,
identifying turbulence and computing wind speed. An example usage is shown
in figure 4.1c.

4.2 TopOpt 2D

The TopOpt app allows modeling a topology optimization problem while the
program continuously optimizes the shape based on the current configuration.
This interactive modeling as well as the frequent updates of the shape gives a
feel of the shape becomes alive during the modeling. Besides, due to the short

http://forcepad.sourceforge.net/
http://forcepad.sourceforge.net/
http://www.algorizk.com

4.2 TopOpt 2D 41

(a) Legacy TopOpt Applet (b) ForcePad (c) Windtunnel

Figure 4.1: Other applications related to interactive topology optimization.

Figure 4.2: Example usage of the 2D TopOpt app: The user is moving a load
while getting continuous visual feedback on how the movement
affects the optimization of the structure.

feedback loop, often under one second, the user gets the feeling that he is in
control of the program and the interactivity helps him understanding conse-
quence of his actions. This relates to the user interface guidelines being both
user supportive and informative as discussed in section 2.5. An example of using
the app is found in figure 4.2.

The TopOpt 2D is created for both web browsers (using the Unity plugin), iOS
and Android. The application was originally released in 2012, but has frequently
been updated with new features, improvements and bug-fixes. The application
is available free of charge at http://www.topopt.dtu.dk.

4.2.1 Problem formulation

The optimization problem is the same as described in equation 3.14. In addition
the application should maintain a stable frame rate and the solution should be
able to converge from any given design.

http://www.topopt.dtu.dk

42 Interactive topology optimization in 2D and 3D

Figure 4.3: The multiresolution approach (MTOP), where the circles repre-
sent displacement nodes, the dots is the design variables (element
densities), which are separated by the dashed lines.

SIMP has been used with a high lower bound on both the density and the
stiffness. The stiffness interpolation is given as

E(xi) = 0.01 + 0.99xpi (4.1)

where p = 3 is the penalization factor. Using the high lower bound on the
stiffness Emin = 0.01 allows the shape to easily adapt from one optimum to
the next when the model is changed. The same is true for the lower bound on
densities xmin = 0.01. Both Emin and xmin are gradually lowered to 10−7 after
the optimization problem has remained unchanged for 7 iterations, but is reset
to 0.01 as soon any parameter is changed. These values have been found by
numerous numerical experiments.

The multi-resolution design representation (MTOP) [NPSL10] is used to ad-
ditionally increase performance by obtaining a finer design representation with
little extra computational cost. This is achieved by dividing every finite element
into a number, in this case four, design variables as illustrated in figure 4.3. Us-
ing the MTOP approach, the element matrix contribution can be given as:

Ke(xe) =

4∑
i=1

Ki
0x
i
e (4.2)

where Ki
0 is the reference stiffness matrix evaluated at each of the four design

variable locations. Using MTOP has the benefit that even though the assembly
takes four times as long, the size of the linear systems to be solved remains
the same. Since the mesh is regular, the numerical integration of the four sub-
matrices can be found once and be reused for all finite elements throughout the
iteration process.

4.2 TopOpt 2D 43

Input Assemble

K

Computing

displacements

Compute

Sensitivities

+

+ +

 - +

 - -

 -

Smoothing filter

E
le

m
e
n
t

 d
e
n
s
it

ie
s

M
o
d
e
l Optimility

criteria update

of densities

V
is

u
a
l

R
e
s
u
lt

Project to

display mesh

Heavyside projection

Post processed

result

Figure 4.4: Main steps of one iteration of topology optimization in the TopOpt
2D app

To avoid the checkerboard problem, the sensitivities are filtered using equa-
tion 3.23. Since the checkerboard problem depends on the standard element
discretization, the filtering must be performed with a radius relative to the
physical element size. The chosen distance is set to rmin = 2.6 times the design
element size (i.e. 1.3 times the finite element size).

The design update is using the optimality criterial method as described in sec-
tion 3.3.5.

To improve the visual appearance the shape is refined in a post processing step
before displayed. This is done by projecting the fine element densities to a
display mesh with twice the resolution. To make mesh appear smooth, the
display mesh is then filtered using a standard density filter with a radius of two
display mesh elements. Finally, in order to sharpen the edges, a Heavyside step
function is applied to the densities as described in [WLS11]:

x̃i =
tanh(βη) + tanh(β(xi − η))
tanh(βη) + tanh(β(1− η)) (4.3)

with the sharpness control parameter set to β = 6 and cut-off point set to
η = 0.5.

A full conceptual iteration is summarized in figure 4.4.

44 Interactive topology optimization in 2D and 3D

4.2.2 Implementation

The initial version of the app was implemented purely in Unity using C#, which
allowed using the same code for both web browsers, iOS and Android apps. The
cost of this portability is performance, since highly optimized linear algebra
libraries such as BLAS and LAPACK cannot be used.

In the initial version we had implemented a simple sparse linear algebra library
used for both filtering and for the linear solver. We also experimented with
iterative solvers and the multigrid preconditioned conjugate gradient method in
particular. Even through this gave a significant speedup we found the result
was often less visually appealing. When we changed the optimization settings
using the iterative solver, the gradient would sometimes be too inaccurate, which
resulted in material being added or removed at seemingly random locations. Due
to this, the iterative solvers was discarded. We also experimented with banded
matrices as well as using some existing C# linear algebra libraries, however we
found that our own simple sparse library was the most efficient for this use case.

Later, the optimization kernel was rewritten in native C++ code used on the
iOS platform which gave a significant speedup of approximately factor 10.
This performance gain was both due to changing to a more low-level pro-
gramming language as well as using the SuiteSparse, BLAS and LAPACK
libraries for linear algebra operations. The SuiteSparse library contains the
CHOLMOD library which is used for an efficient sparse Cholesky factoriza-
tion of the symmetric positive global stiffness matrix K. This factorization is
used for efficiently solving the FEM linear system. In order use a simple and
MATLAB-like matrix syntax instead of the complicated C-function calls, we
created OOCholmod which is released under the GPL open source license at
https://github.com/mortennobel/OOCholmod. Matrix access and operations
for both dense and sparse matrices are primarily using C++ operator overload.
The library also abstracts away the two data structures used by SuiteSparse:
the triplet form (column, row, value) and the compressed sparse column form
(CSC). Instead, the elements of a matrix are always accessed using row and
column index. When the structure of a sparse matrix has been defined a build
function is invoked, which translates the internal representation from triplet
form to CSC. Afterwards the library still allows efficient access to the matrix
values which internally searches the CSC using bisection.

The C++ kernel uses parallel assembly of the global stiffness matrix K which
is one of the performance bottlenecks. In order to avoid race conditions the
assembly is divided into two parts, where the first part assembles nodal relations
belonging to every second column of elements. When the first part is finished,
then the remaining columns are assembled. Each of the spawned threads in

https://github.com/mortennobel/OOCholmod

4.2 TopOpt 2D 45

Thread 1
Thread 2

Main thread

Part 1 Part 2Join threads Join threads

FE Mesh

Time

Figure 4.5: Parallel assembly of the global stiffness matrix. Race conditions
are avoided by dividing the assembling into two parts, where each
thread will never conflict with other threads.

C#

Graphical User Interface

C#

Kernel

C# C++

C# C++

CS Kernel

CS Lin Alg

CPP Kernel

OOCholmod

C

SuiteSparse

C

BLAS

C

LAPACK

Sync. communication queue

GUI Thread

Kernel Thread

Figure 4.6: Conceptual software architecture of TopOpt App shown in UML.

the assembly is responsible for assembling a number of columns. Using this
scheme the global stiffness matrix will be assembled in parallel with no risk
of simultaneously accessing the same element from multiple threads. The only
locking used is waiting for the first and second part of the algorithm to finish.
The real benefit of using this approach comes from using OOCholmod, which
provides efficient access to the values of a built sparse matrix. The parallel
assembly is illustrated in figure 4.5.

In order to prevent the optimization kernel to stall the responsiveness of the user
interface, the kernel runs in its own thread. In each frame the user interface
thread will send any model changes to the kernel and update the visualization if
an update is available. The communication between the user interface and the
kernel is performed using two synchronized queues. Except for the two synchro-
nized queues no memory is shared between the two threads. The architecture
of the kernel is illustrated in figure 4.6.

46 Interactive topology optimization in 2D and 3D

4.2.3 User interaction

The user interface is designed for users already familiar with mechanical engi-
neering and the symbols used in the field. Unlike other applications, where the
modeling is spatially separated from the result, the users instead models the de-
sign problem on top of the optimized shape using loads, sliding/fixed supports
and passive elements. This approach makes it much easier to understand the
relationship between the modeling and its effects on the optimized shape.

The design strives for being informative by only displaying information when
needed. For instance, the user only sees the result on the fine display grid,
except when performing modeling operations where the coarse grid appears.
The modeling operations also snap to the coarse grid to enforce a valid model.
An icon based menu is used for selecting the current action as shown in figure 4.7.
To keep the menu simple, some of its items contains sub-menus, which slides
into the screen on activation. Additional information about the current action
is displayed in the upper right corner, e.g. “Move (20,30)”.

The design problem is modeled using a drag gesture based scheme where com-
ponents can be moved, rotated or distributed. Rotation is clamped to steps
of 10 degrees for loads and 90 degrees for supports. Even through rotation of
supports only has effect on sliding supports, it is still possible on all types of
supports to improve the visual appearance of the modeling.

Loads and supports can easily be changed to affect multiple nodes using the
distribute action. Loads can be distributed horizontally or vertically, which
transforms the load from a point load to a distributed load. When distributing
a load, its force is distributed among the affected nodes with the end nodes
weighted half of the center nodes. When loads are distributed, materials are
automatically added to the elements next to the load in order to automatically
enforce a more physically plausible model. Supports can be distributed both
horizontally, vertically and to a rectangular region.

The application supports up to three different load cases. When using multiple
load cases, each load case has its own load vector fi and a displacement vector
ui is found for each load case. The objective function is changed to the sum
of the compliances for all load cases. The load case action is used to toggle a
load between three possible load cases, which are color-coded using gray, red
and green. The magnitude of each load can also be changed. Finally, hand-
held devices includes a gravity load, where the load direction is determined by
the gravitational force applied to the actual device. This will change the load
direction depending on how the device is held, which couples the optimization
with the real world.

4.2 TopOpt 2D 47

(a) User interface (b) Coarse grid appears when modeling

Figure 4.7: Graphical user interface in the TopOpt App

The application also supports passive elements, which are elements where the
densities are forced to be either void or full material, and hence left out of the
optimization. Adding passive void elements can be seen as modifying the design
domain, such that it is no longer a rectangular shape. Adding passive material
elements forces the optimizer to have some region of the shape predefined. Pas-
sive elements are defined on the coarse mesh using a simple drawing gesture.
To simplify marking a larger region as passive elements, the user can draw a
boundary of a shape and its interior will be filled automatically. When the
draw gesture is initiated on an existing passive element, the gesture will act as
an eraser by deleting passive elements under the stroke.

The app also supports exporting the optimized shape as a 3D geometry with
a specified thickness, which makes it easy to manufacture using a 3D printer.
The export also allows specifying symmetries on the four sides of the design
domain. The 3D geometry is created by first extracting polygons from the
display element density grid using marching squares and then extruding the
shape to the given thickness. Finally, the 3D geometry is sent as a STL-file
to a user provided email-address. This feature uses a server-side part which
generates the geometry file and sends out the email.

Other features of the app includes changing the volume fraction and penaliza-
tion, restarting the optimization (which may end up in another local optimum)
and changing the grid resolution.

The design of user interface has been evaluated in an informal way using both
heuristic evaluation as well as user based evaluation, where test-subjects, pri-
marily members of the TopOpt-group, was asked to try out the new app while
being observed (both usability evaluation methods were discussed in section 2.3).

48 Interactive topology optimization in 2D and 3D

4.2.4 Flexible void

A recent extension to the App is support for flexible void. A flexible void
region can be reshaped by the optimizer to improve the objective function while
maintaining its volume as described in [CAS14]. The motivation for using this
extension is to be able to solve design problems with some geometric restrictions,
where the shape must include predefined void regions, due to manufacturing or
functional requirements. The shape of these predefined void regions is allowed
to be changed by the optimizer in order to improve the objective function. An
example of this is when modeling a wall with a windows, where we have some
requirements of the window size but not on its shape.

From a usability perspective a flexible void region is used in the same way as
passive elements, except that after a flexible void region has been defined by
the user it will be deformed by the optimizer. During editing of flexible void
regions the optimization of the regions is turned off.

Due to the computational complexity, the extension is currently only available
on iOS, which is the only platform with C++ and OOCholmod support. The
extension was implemented by Nis Peter Lange.

4.2.5 Examples

Figure 4.8 shows how a problem of multiple load-cases is interactively modeled
on a very fine mesh (50 × 100 elements on the coarse mesh - 200 × 400 on the
display mesh). Note that except for the first and the last image, the images
shows shapes that have not yet converged. Modeling of the design problem is
performed while the optimizer is running.

The flexible void usage is demonstrated in figure 4.9. Notice how the flexible
void boundary is drawn and then automatically filled. After the flexible void is
inserted it is reshaped while maintaining its volume, such that the compliance
of its enclosing figure is minimized.

4.3 Finger Finite Element Method

Finger Finite Element Method (FFEM) is an app created by the DTU Master
students Søren Madsen and Nis Peter Lange under supervision from Niels Aage

4.3 Finger Finite Element Method 49

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Example usage of optimizing multiple load-cases in TopOpt App.
(b) Move load to lower right corner (c) Insert new load in upper
right corner (d) Rotate inserted load upwards (e) Change load-case
of inserted load (f) Converged result

and Morten Nobel-Jørgensen. The app is based on the code of the TopOpt app
and includes some of the same user interface elements and features.

FFEM allows the user to model a FEM problem by first creating a design domain
by drawing where the square elements should be located. The design domain are
then augmented using fixed or sliding loads, similarly to TopOpt App. Finally,
the user can touch the structure and make a drag gesture to set a prescribed dis-
placement. Multi-touch is supported, such that many simultaneous prescribed
displacements can be defined. The program will interactively show the deformed
model as well as visualize the stress in the shape. An example usage of the app
can be seen in figure 4.10.

The displacements and stresses are found by solving the 2D linear elasticity
FE problem for plane stress as described in section 3.2. The isotropic, linear
elastic material is intentionally made very soft with Youngs Modulus E = 1
and Poisson’s ratio v = 0.4. The Jet color scheme is used for visualization of
both Von Mises stresses, normal stresses in x or y direction, shear stresses and
magnitude of displacements.

The FFEM app is freely available for both iOS and Android at http://www.

http://www.topopt.dtu.dk/?q=node/891
http://www.topopt.dtu.dk/?q=node/891
http://www.topopt.dtu.dk/?q=node/891

50 Interactive topology optimization in 2D and 3D

(a) (b)

(c) (d)

Figure 4.9: Example of using a flexible void. (b) A flexible void boundary
is drawn (c) The flexible void region is filled and optimizer start
optimizing both shape and flexible void region (d) The converged
shape.

(a) (b)

(c) (d)

Figure 4.10: Example usage of FFEM, where (a) shows drawing the design
domain (b) supporting the designed domain using fixed supports
(c) and (d) shows deformation and visualization of Von Mises
stresses.

http://www.topopt.dtu.dk/?q=node/891
http://www.topopt.dtu.dk/?q=node/891
http://www.topopt.dtu.dk/?q=node/891
http://www.topopt.dtu.dk/?q=node/891

4.4 TopOpt 3D 51

topopt.dtu.dk/?q=node/891.

4.4 TopOpt 3D

The TopOpt 3D app was created as a successor to the TopOpt 2D App. The
goal of the app is to extend the functionality of the TopOpt 2D app into 3D
while maintaining a simple and intuitive user interface.

4.4.1 Problem formulation

The topology optimization problem solved in TopOpt 3D is the same as equa-
tion 3.14, with the exception that the modified SIMP is used, which allows
element densities to become zero:

min
x∈Rn

: c(x) = uTK(x)u (Compliance)

subject to : K(x)u = f (FEM equilibrium)∑n
e=1

xe

n ≤ vmax (Volume)

0 ≤ xe ≤ 1 e = 1, . . . , n (Design variables)

(4.4)

4.4.2 Implementation

Going from a 2D FEM problem to a 3D FEM problem is a huge increase in
complexity, e.g. the local stiffness matrix, describing the stress/strain relations
of a single element, grows from (4 × 2)2 to (8 × 3)2 for bilinear square and
trilinear cubic elements. One consequence of this is that the global stiffness
matrix becomes much larger for the same number of elements.

To achieve interactive update rates on hand-held devices, the optimization kernel
used in TopOpt App 3D is implemented in C++ using the libraries OOCholmod,
SuiteSparse, LAPACK and BLAS.

http://www.topopt.dtu.dk/?q=node/891
http://www.topopt.dtu.dk/?q=node/891
http://www.topopt.dtu.dk/?q=node/891

52 Interactive topology optimization in 2D and 3D

Input Assemble

K
Project to

coarser Ki

Solve iteratively

for displacements

Sensitivity filter

E
le

m
e
n
t

 d
e
n
s
it

ie
s

M
o
d
e
l

Compute

sensitivities

V
is

u
a
l

R
e
s
u
lt

+ -

Optimality

criteria update

of densities

Isosurface

using MC

Improve mesh

quality

Figure 4.11: Main steps of one iteration of topology optimization in the
TopOpt 3D app. First the global stiffness matrix K is assem-
bled using the element densities, the design model as well as
the local stiffness matrix Ke. K is then projected to coarser
matrices, which are used in the iterative solver to find the dis-
placements. The sensitivities and the objective value are then
found and a filtered sensitivity field is used to update the el-
ement densities using the OC method. The updated element
densities are used for extracting the isosurface using marching
cubes algorithm. The mesh of the isosurface is finally optimized
to improve the visualization.

For penalization the modified SIMP scheme is used with a penalization value of
p = 3.0.

In contrast to TopOpt App 2D, an iterative solver is here used to solve the FEM
problem sufficiently fast. The solver used is the geometric multigrid precondi-
tioned conjugate gradient (MG-PCG) method described in [AAL14]. We use
the solver without the premature termination heuristics presented in [AAL14],
and instead use a default of three multigrid levels and a relative tolerance of
10−5 as a convergence criteria for the linear solver.

During each iteration a number of checks is made to ensure validity of the design
problem. These include that the FEM system is non-singular, etc. In the rare
case that a problem is detected, the user is informed using an error message and
the optimization is paused until the problem has been resolved.

The sensitivities are smoothed with a filter radius of 1.6 in order to ensure
existence of the solution and to avoid checkerboard problems.

4.4 TopOpt 3D 53

(a) Design domain (b) Regions

(c) Augmenting (d) Optimizations

Figure 4.12: Concepts of the the TopOpt 3D.

As in the 2D app we use a high lower bound on the stiffness Emin = 10−4 which
after 7 iterations are gradually lowered to Emin = 10−7.

Finally, in order achieve a good visualization of the result, an isosurface mesh is
extracted from the element density field using marching cubes with a threshold
of 0.5. The resulting mesh is further refined by removing thin needles and mini-
mizing the curvature energy using an edge-flipping, greedy algorithm [DHKL01].
Finally, the vertex normals are found using the angle-weighted pseudonormal
scheme [BA05].

Figure 4.11 outlines a single iteration of the optimization.

4.4.3 User interaction

The user interaction of the TopOpt 3D is very similar to the TopOpt 2D. Fig-
ure 4.12 shows the main concepts used in the application. In a design domain
(4.12a) volumetric regions (4.12b) are used to define loads, supports and passive
elements (4.12c). The optimizer will continuously update the shape (4.12d) to
minimize the objective function such that the modeling of the problems becomes
an exploration of optimized shapes.

The user interface design of the TopOpt 3D app based on three main principles:
Simplicity, continuity and consistency. These principles are a subset of list of
principles described in [Tog14] and also relates strongly the rules described in

54 Interactive topology optimization in 2D and 3D

Figure 4.13: The user interface of TopOpt 3D app

section 2.5. The user interface of the application is shown in figure 4.13.

Simplicity principle: “Everything should be made as simple as possible, but
not simpler.” This famous Albert Einstein quote is valid both for physics as well
as user interaction design. When designing applications to be run on the small
screen of todays smartphones, the physical screen size combined with the inaccu-
rate touch input gives additional restrictions on the amount of information and
choices presented to the user at a given time. To keep the user interface simple
and compact, the available actions are mainly displayed using icon buttons.

The application uses a single viewport for the 3D content, which shows both
the model problem as well as the optimized shape. This is in contrast to the
use of multiple viewport commonly found in other programs for manipulating
3D content.

Continuity principle: In order to build the users mental model of the system,
it is important to visually show how the actions are performed in a continuous
way instead of using instant transitions between the system states.

One example of the continuity principle is found when modeling the problem;
Loads, supports and passive elements are specified using augmented regions
(such as cubes or spheres). When a new region is inserted into the design
domain it is animated as if it was falling from the sky. This allows the user
to see the effect of the action as well as understanding where the new region is
located - even if the destination is partial or fully occluded.

Another important usage of the continuity principle is found in the ViewCube

4.4 TopOpt 3D 55

(a) Cantilever (b) L-shaped cantilever

Figure 4.14: Standard examples used in topology optimization.

widget located in the upper right corner. The ViewCube widget, invented by
Autodesk [KMF+08], allows the user to easily see the orientation of the camera
relative to the shape using the named sides of the cube. The ViewCube can also
be used to change the camera view by either dragging the cube or by clicking on
its face, edge or corner. This will rotate the view to the desired destination using
a short, smooth animation. Gradient based horizon and shadows projected to
the ground are two other visual cues used for increasing the users perception of
both the camera orientation and the shape.

Consistency principle: By having consistency in the user interaction, the
user can learn a concept once and apply the same concept in many different
situations.

Consistency is for instance found in the way that the regions in the design
domain are transformed: When the user has selected a region, using click or
lasso selection, the region can be moved, rotated or scaled using the 3D widget
appearing at the pivot point of the region.

Additionally, the application allows the user to load or save the design model
as well as exporting the optimized shape as an OBJ file.

4.4.4 Examples

Figure 4.14 shows two of the standard examples used in topology optimization:
a cantilever beam and an L-shaped cantilever.

Figure 4.15 shows how a chair can be modeled. The ground is modeled as
support using two bars, the seat using a plane with vertical loads and the back-
rest using a plane with backwards-pointing loads. After only 16 iterations the
shape begin to look like a chair. After approximately 150 iterations the topology
of the chair changes from a tree-legged chair into a four-legged chair. The whole

56 Interactive topology optimization in 2D and 3D

(a) Iter. 0 (b) Iter. 4 (c) Iter. 7 (d) Iter. 16

(e) Iter. 100 (f) Iter. 150 (g) Iter. 200 (h) 3D print

Figure 4.15: Modeling a chair (volume fraction 12%).

process of modeling and optimizing the chair only takes around 2-3 minutes.
If the shape does not satisfy the user during the modeling / optimization, the
user is able to guide the shape at any given time by changing the design model.
Often this can be done by adding passive void regions to force material away
from certain areas in the design domain. The last image in the sequence shows
how a shape can be exported and manufactured using a 3D printer.

4.5 Discussion

The applications presented in this chapter have all been enormously well-received
both in terms of download statistics and user reviews as shown in Appendix E.
We see this as a validation of both good performance, well-chosen features and
well-designed usability. Most successful is the TopOpt app which in a little over
three years has been downloaded over 21,000 times. This clearly surpasses its
predecessor which had 13,000 users over a period of 13 years.

The predecessor used a client-server solution with a thin Java Applet front-
end and server back-end for performing the computations. This setup has the
benefit of performing equally well on all platforms, only limited by the server
capabilities and the network connection. Instead of continuing this approach, we

4.5 Discussion 57

chose a purely client based solution as the compute powers of modern hand-held
devices made this possible. This approach has the benefit of a much simpler
software architecture and does not rely on network connections or servers.

Another choice is whether to perform the computations only on the CPU or also
use the GPU as a co-processor (GPGPU). Even though GPGPU is an obvious
choice when solving computationally demanding problems, we chose not to use
this for the following reasons: While the variation in performance on PC and
mobile CPUs varies around a factor of 10, the variation of the capabilities of
GPUs is much higher. Besides the mobile GPU architecture is often less suitable
for general purpose computations. GPGPU APIs are also not yet common on
mobile platforms.

A final choice is software platform. We decided to use Unity due to its good
support for cross-platform development. If the projects were to be recreated
today, one alternative to consider is to target a pure browser-based solution in
contrast to Unity’s browser plugin. This means that the browser is executing
code defined in JavaScript, asm.js (a high performance subset of JavaScript)
or the recently announced WebAssembly (low-level browser bytecode with sup-
port for SIMD instructions) [Bri15]. Currently, pure browser performance is
approximately four times slower than native code [Ben15], but will be much
more portable than native or plugin based solutions. These performance issues
could be solved by going back to a client-server architecture.

58 Interactive topology optimization in 2D and 3D

Chapter 5

Gamification of topology
optimization

In order use topology optimization to its full potential, we find it important to
have a good understanding and intuition about how the method behaves. This
is especially important to possess to avoid just using Topology optimization as
a black-box solver but instead being able to question its results and adjust its
parameters appropriately to fit ones needs. This includes problems where the
topology optimization method gets stuck in a local optimum and optimizations
where the design model contains errors leading to an unwanted result.

Education is another place where intuition about topology optimization is im-
portant. Intuition is built from both knowledge and experience, hence it is
important that education both contains theory as well as hands-on experience.
When working with complicated topics such as topology optimization, it is easy
for students to get lost in the many details of the problem. This can hinder
a high-level understanding of the nature of the problem and its solution. A
related aspect is the importance of repetitions as a technique to reinforce the
knowledge.

This chapter describes the TopOpt Game and how this game has been designed
for training the intuition of topology optimization. In the game the player solves
various topology optimization challenges in a number of levels. The chapter will

60 Gamification of topology optimization

first highlight some of the related work, then discuss the game and finally make
a statistical analysis of the gameplay data to unveil the improvements gained
from playing the game. The TopOpt Game is also the topic of Paper C.

5.1 Related work

Gamification, the use of game elements added to non-game context, has been
used several places, including science. One of the most successful scientific
applications of gamification is within research of protein folding. Computing
how proteins fold is a hard non-convex optimization problem and is an important
research field in order to understand and potentially cure many diseases such as
Alzheimer’s, Parkinson’s and some types of cancer. The following two research
projects use gamification for protein folding (also shown in figure 5.1a and 5.1b):

• Folding@Home allows people to donate CPU time of their computer
when it is not used. The project currently has over 140,000 computers
associated which act as a distributed cluster with the total compute power
of over 30,000 teraflops. Folding@Home is using gamification by having
leaderboards, which motivates people to compete, individually or in teams,
by donating CPU resources.

• FoldIt has transformed the problem into a puzzle game by using mean-
ingful and simple abstractions. In FoldIt the players search for optimal
solutions for protein folding problems. The game starts with a tutorial
containing simple problems and a limited set of tools. The player is chal-
lenged by a gradually increasing complexity and by more complex tools.
In some cases, the performance of the players has beaten existing protein
folding algorithms. User behavior in FoldIt has been studied in order to
extract strategies to improve the protein folding algorithms.

Besides the problem solving aspect, the two projects also have the positive side
effect of increasing peoples awareness of the diseases related to protein folding.

Other related work includes games where mechanical engineering is used as a
game mechanic. A good example is found in Bridge Constructor by Headup
Games, where the goal is to design a bridge using truss structures such that the
bridge can withstand loads from crossing cars and trucks as shown in figure 5.1c.

5.2 Problem formulation 61

(a) Folding@Home (b) FoldIt (c) Bridge Constructor

Figure 5.1: Related work. (a) and (b) is examples of gamifications used in
science and (c) is a game where mechanical engineering is the core
game mechanic.

5.2 Problem formulation

TopOpt Game is based on the discrete problem formulation from equation 3.13.
However, to follow the conventions used in games, the problem is reposed as an
optimization problem where the objective function is to maximize the score:

max
x∈Rn

: s(x) = 108

c(x) (Score)

subject to : c(x) = uTK(x)u (Compliance)

K(x)u = f (FEM equilibrium)∑n
e=1

xe

n ≤ vmax (Volume)

xe ∈ {xmin, 1} e = 1, . . . , n (Design variables)

(5.1)

where xmin is the lower bound on the design variable.

The player of the game acts as the optimizer trying to optimize the score by
modifying the design variables. That is the player will distribute material within
a design domain in a given level in order to find a good solution for the problem
posed.

As mentioned in section 3.3 this discrete topology optimization is in general
not feasible to solve, which means that the maximum score for a given level is

62 Gamification of topology optimization

unknown. To be able to rate the performance of the player a baseline score is
approximated using the density approach.

The maximum score varies between levels since it depends on the problem posed.
It is also important to realize that the relationship between the player’s score
of a given level and his “performance” is not linear. A valid, trivial solution
(e.g. by connecting all loads with supports using available material) often gives
around 50% of the estimated maximum score, whereas finding solutions close to
the approximated maximum score is much more difficult.

5.3 Game design and implementation

The TopOpt Game has been designed as a puzzle game - a genre of games
where the player is challenged by problems with increasing difficulty and given
rewards when progress is made. In the TopOpt Game each level challenges
the player with a topology optimization problem composed of a design domain,
loads, supports and a limit on the material. The goal of the player is to find the
optimal material distribution, which will give the highest score and minimum
compliance. To keep a steady flow of challenges and to force the player to be
focused each level must be completed within a time limit between 30 and 180
seconds. As a visual hint the strain energy density is displayed on the structure
using the Jet color scheme, allowing the player to easily identify problematic
areas with high strain energy density.

A typical gameplay is presented in figure 5.2, where the player first tries one
strategy (5.2a - 5.2c), then erases the design (5.2d) and finally finds a better
solution (5.2e - 5.2f). During the gameplay the player uses too much material
(5.2e) which is penalized by setting the score to 0. To give the player a final
feedback on his performance the player is rewarded with 0-3 stars based on how
the achieved score relates to the predefined baseline score.

The player distributes material in the design domain using brush stroke gestures
similar to a painting program. There are six different brushes available in various
shapes and sizes. Four different tools are used to alter the material distribution;
One for adding, one for removing and additional two tools which add or remove
elements on the boundary of the shape.

One of the important task of the user interface of the game is to provide feed-
back to the player about his current performance. This is done using the score
label and the score graph as shown in figure 5.3. The score graph shows the
progression of the score over time, which makes it easy for the player to see how

5.3 Game design and implementation 63

(a) (b) (c)

(d) (e) (f)

Figure 5.2: Gameplay: While the user paints a solution the game provides
feedback in terms of a score and by visualizing the strain energy
density using the Jet color scheme.

Figure 5.3: Score graph: Sliding the handle left or right allows easy backtrack-
ing. The green text shows the personal high-score from previous
games.

his actions affects the score. This reduces the players short-term memory load,
as described in section 2.1.2, by not having to remember previous scores. The
score graph also allows to easily backtrack to a previous design by sliding the
handle below the graph to a previous time point. Finally, the score graph also
acts as a countdown timer, such that when the graph reaches the right side then
the time is up.

The game is designed for players to primarily compete against themselves. The
game keeps track of the maximum score and number of stars each player has
achieved in each level. This player highscore is highlighted both during the
gameplay as well as in the award popup in the end of each level. On iOS the
game is additionally using GameCenter. This has the benefit of viewing stats

64 Gamification of topology optimization

Input Assemble

K

Computing

displacements

E
le

m
e
n
t

 d
e
n
s
it

ie
s

M
o
d
e
l

Compute strain energy densities

Compute compliance/score

Figure 5.4: Evaluating the score in the TopOpt Game.

on friends progress as well as being able to send challenges to friends in the case
that a good solution for a level has been found.

Performance is an important part of the application. Whenever the player has
changed the material distribution it is important to give him feedback, in terms
of a score and updated strain energy visualization, within a reasonable time, e.g.
a few seconds. A too large delay between the action and the received feedback
will make the game feel non-interactive and will disturb the gameplay flow.

The architecture of the game is similar to TopOpt 2D as shown in figure 4.6.
The evaluation of the score and compliance is computed in its own thread.
This allows the player to continue working on the design, e.g. using a draw
gesture, even through the last material distribution has not been evaluated. If
an update occurs when an unprocessed updated is waiting to be evaluated by the
solver thread, the new update will then overwrite the unprocessed update. This
means that only the newest updates are evaluated and some old updates may be
discarded. The kernel is also written in C++ using the libraries OOCholmod,
SuiteSparse, LAPACK and BLAS.

The C++ kernel is simpler than in the TopOpt app, since the game does not
need to compute the sensitivities or to perform the optimization. Figure 5.4
shows how the score, compliance and strain energy density is computed. First
the global stiffness matrix is assembled using the players material distribution
and the design model. The FEM linear system is solved to find the displace-
ments and finally the compliance, the score and the strain energy field can be
computed. In contrast the TopOpt 2D, the MTOP is not used, since this method
does not penalize solutions that are not watertight. This had the implication
that solutions where the material was separated by an empty row or column
on the fine grid were evaluated as if they were connected. Not using MTOP
means that the full global stiffness matrix must be assembled and solved which
is significantly slower that using MTOP. To keep a fast score evaluation the
resolution of the design domain is therefor limited to a maximum of 60 × 60
elements.

5.4 Level design 65

The previously mentioned apps described in chapter 4 were primarily designed as
standalone apps. In contrast, the TopOpt Game is designed as a connected app
where Internet availability is assumed. This means that the player optionally
can login and share the account between multiple devices or alternatively play
using an anonymous account. All game data, such as levels and highscores,
are stored on a server using the Google App Engine. To be able to analyze
the player performance, all gameplay data is also stored on the server. The
gameplay data contains all information about the player performance during
gameplay including every evaluated action the player has performed and its
associated score and compliance. The game also supports playing offline, where
the data gathered is sent next time the game connects to the server.

5.4 Level design

One problem in creating a topology optimization game is how to generate levels,
which gradually increases in complexity and still remains fun and challenging to
play. Procedurally generated levels would be one way to go, however to come
up with an algorithm for this would be a very hard problem to solve. Instead
the levels in the game are crafted manually in the built-in level designer.

The level designer essentially uses the same user interface as the TopOpt app.
The tool allows the user to create a level design composed of a design domain,
loads, supports and possible passive elements as shown in figure 5.5. Addition-
ally information about the level must also be provided, such as volume fraction,
available time, difficulty, etc.

The level editor is available for all users of the app. A custom designed level
can be suggested as a new global level by submitting it from the level editor.
When a suggested level is approved by an administrator, it is public available
for everybody to use. This means that the game is not static, but will evolve
when new challenges are being added.

5.5 Analyzing player performance

Since the TopOpt Game is created for educational use, it is important to eval-
uate the effect of playing the game. Based on actual gameplay data gathered
when people have played the game, the following analysis aims to unveil the
relationship between the number of levels a player has played (the experience

66 Gamification of topology optimization

(a) (b) (c)

Figure 5.5: Designing a level for TopOpt Game, by (a) defining a rectangular
design domain, (b) adjusting the design domain using passive void
elements and (c) augmenting the design domain using load and
supports.

of the player) and the score the player achieves (their intuition about topology
optimization). Note that the player is allowed to play the levels in any order.

To perform this analysis the following simplifying assumptions have been made:

1. Each player account correspond to a single person

2. Players are always trying their best

3. A high score correlates to a high intuition of topology optimization

The score has been normalized in order to reduce the effect of different complex-
ities across levels. Besides, when the player scored 0 due to violated volume, the
associated gameplay data was removed from the analysis since we found that
this was more related to the rules of the game than to the intuition of topology
optimization.

Figure 5.6 shows the normalized scores of all observations plotted as a function
of experience. The graph is clamped at 150, since the number of observations
beyond that point is very low. In the figure a Linear Mixed-Effect (LME) has
been applied to model the observations. In the LME the players are modeled
as the random effect, since players cannot be assumed to have equal skills with
regards to topology optimization prior to playing this game. Also their learning
curve (increase of score as a function of experience) may vary. Figure 5.6 shows
that the data is very scattered and noisy, however the red line plotting the LME
model shows a correlation between the increase in experience and the increase

5.5 Analyzing player performance 67

0.00

0.25

0.50

0.75

1.00

0 50 100 150
Experience

N
or

m
M

ax

Figure 5.6: Normalized score based on experience with Linear Mixed-Effect
model fit (red line).
NormScore = 0.0038× Experience+ 0.3861

0.00

0.25

0.50

0.75

1.00

0 50 100 150
Experience

N
or
m
M
ax

"linear"
linear

count
25
50
75
100

Count up to

95% conf.
interval

Figure 5.7: Linear Regression analysis

in score with significant parameters (< 0.001) in the model for both slope and
intercept.

The same trend can be seen by using the simpler Linear Regression analysis
(LR) to find the relationship between the player experience and the normalized
score as shown in figure 5.7. Since the densities of the observations are poor for
observations over 50, the analysis has been performed in intervals of 50. The
first two intervals shows a clear relationship where experience will increase the
score. The third interval shows a drop in player performance, but the data is
very sparse and we believe more data is needed before any conclusions is made
for this interval.

We therefor conclude that there is a statistically significant correlation between
playing the game and increasing one’s intuition of topology optimization. The
gameplay data is however very noisy, which we believe is due to topology op-
timization being a hard problem for human to solve as well as our simplifying

68 Gamification of topology optimization

assumptions may not always be valid.

5.6 Discussion

TopOpt Game allows players to build up a intuition about topology optimization
by solving interactive puzzles. The game continuously provides feedback about
the player’s progress using the score graph and by visualizing the strain energy
density. This creates a nice feeling of flow when playing the game. The game
is also relatively fast-paced due to the limited time available for optimizing the
topology within a level.

However, we are aware of a few areas where the game could be improved. By
providing a better introduction to the game, in terms of for instance interactive
tutorials or better documentation, the game could give a better experience for
people outside its current target group of mechanical engineers. This could
also be used to emphasize important learning points when new concepts are
introduced (such as sliding support or multiple load cases). Ideally, the game
should be able to provide more hints to the player during gameplay in order to
guide the player from a trivial solution to a good solution.

In a learning situation it is probably a good idea to first introduce topology
optimization using the TopOpt App. When the students have become familiar
with its concepts then the game can be used to give the students a feel of the
complexity of the problem.

In many ways TopOpt Game is very similar to FoldIt - both asking the players
to solve very hard problems. One thing that FoldIt does particularly well is how
it uses abstractions to make the problem solving more accessible. For instance it
has tools such as rubber band (creates a soft constraint) and shake (randomizes
the solution slightly to avoid local optimum). If similar abstractions could be
found for TopOpt Game, then this could also improve the usability of the game.

Chapter 6

Rethinking topology
optimization as a modeling

tool

The main focus of the applications described in chapter 4 is to find solutions
to the topology optimization problem in an interactive manner. These applica-
tions are mainly valuable for educational use and as playgrounds for engineers,
whereas designers and architects will have some issues with using them as shape
modeling tools. The main challenges these applications have from a design-tool’s
point of view are:

• Lack of local control. Often designers are interested in controlling the
shape on both a global and local scale. The tools presented so far all
model the shape on a global scale, maybe with the exception of passive
elements which provide some local control.

• Lack of predictability. A related problem is that small local changes
potentially end up in a significant different shape and topology, which
may not be aesthetically pleasing. Since aesthetics cannot easily (if at
all) be formulated mathematically as an objective function, the lack of
predictability is a huge issue for designers.

70 Rethinking topology optimization as a modeling tool

• Indirect modeling. The interaction of the modeling is indirect, meaning
that the shape of structure is changed by modifying some of the constrains
or optimization parameters. This indirect form of modeling is challenging
for designers who often prefer a more direct and explicit control of the
modeling.

• Lack of expressiveness. The designers may not feel that the tools pro-
vide them with the expressiveness they need for supporting their creative
process.

These challenges have strong relations to first usability design rule “user sup-
portive” from section 2.5, since the designer will have a hard time predicting
the consequences of his actions. Some of these challenges may be inherent prob-
lems in topology optimization, however we at the same time believe that part
of the problem is due to traditional thinking and lack of experimental research
in designing such tools.

This chapter will describe a new experimental way of using topology optimiza-
tion that better supports designers in their creative work of creating optimized
structures. First, the chapter will go through related works. Then follows pre-
sentations of the Deformable Simplicial Complex (DSC) method and how DSC
can be used for topology optimization. Finally, it describes the proposed tool
including implementation details as well as a discussing of the found results and
limitations.

6.1 Related work

We are not aware of any research or commercial projects which tries to use
topology optimization as a fully integral part of a design tool. Rather, topology
optimization tend to be used as distinct task performed in a non-interactive
manner.

However, a lot of related research is performed on interactive design of structures
with physical or other constraints. Such design tools use different methods to
support the designer:

Guided Exploration. Here the program allows the designer to explore the
design space more or less freely. To ensure the physical constraints on the struc-
ture are fulfilled the structure is frequently analyzed and areas with problems
are presented to the user along with one or more suggested solutions. This is
a very attractive method that does not suffer from any of the four challenges

6.1 Related work 71

described above. This main challenge with the method is to find multiple mean-
ingful alternative solutions for at given problem. For this reason the method
has only been used on problems with inherent limited design space or other
problems where solutions can easily be obtained.

A good example of guided exploration can be found in the furniture design tool
described in [UIM12]. Here the user can design nail-joined furniture, such as
bookcases. During the modeling of a furniture the system will continuously
evaluate the physical validity of the structure, both in terms of whether the
nail joints are durable and whether the stability of the structure meets the
requirements. If a problem is identified then the system will present the problem
to the user along with proposed solutions. A screenshot of the tool is shown in
figure 6.1a.

Sketch based modeling. Another approach is to allow abstract modeling of a
structure, such as creating a sketch, and then use an algorithm to find the actual
design (possibly using topology optimization). Similar to guided exploration this
approach has a large design freedom. One potential problem is too large differ-
ences between the sketch (or the vision of the designer) and the actual design.
Sketch based modeling is usually performed without physical constraints. The
basic challenge in sketch based modeling is to deduce a complete model based
on a sparse model, such as creating a 3D model based on one or more sketches
created in 2D. An overview of sketch based modeling can be found in [OSSJ09].

A very popular example of sketch based modeling is Teddy [IMT99] and its
successor SmoothTeddy, which transforms 2D silhouette sketches into 3D poly-
gon surfaces. The example application of Teddy is the generation of stuffed toy
animals. The user starts by creating a silhouette, which is then automatically
transformed into a 3D shape by first defining a spine of the structure and then
revolving the outline around that spine. From here on the user will be sketch-
ing on the 3D model. The program allows the user to rotate the model during
the sketching in order to provide details at arbitrary positions in 3D using 2D
sketching. A screenshot of the app is shown in figure 6.1b.

Shape optimization. Shape optimization is usually formulated as an opti-
mization problem, where the goal is to optimize an objective by moving the
surface of a shape while satisfying some constraints. When used in interactive
applications, the optimization is then performed “in collaboration” with the user,
for instance the user can guide the shape by interactively changing the objective
function or the constraints.

Make It Stand [PWLSH13] is an excellent example of how physical problems
can be solved in an interactive manner. The application solves the imbalance
problems, such that a 3D model can stand after fabrication (typically 3D print-

72 Rethinking topology optimization as a modeling tool

(a) Guided Exploration of
Physically Valid Shapes
for Furniture Design

(b) SmoothTeddy (c) Make It Stand

Figure 6.1: Examples of research in interactive modeling tools.

ing). Using a simple user interface the designer can provide a few control points,
which are used both by the designer to alter the model, as well as the optimizer
to ensure a well balanced models as shown in figure 6.1c. The optimization will
try to preserve surface details by primarily doing inner carving and secondary
deform the shape using the control points. A similar, but more automated,
approach using shape and topology optimization is found in [CSB14].

6.2 The Deformable Simplicial Complex method

The implementation used here is based on topology optimization using the de-
formable simplicial complex (DSC) method ([MAB10], [MB12]).

DSC is a method for deforming shapes represented using simplices (triangles
for 2D and tetrahedral for 3D), while maintaining a high quality meshing. The
method has been successfully applied on fluid simulation ([MB12], [MEB+14])
and combined shape and topology optimization ([CBS], [CNJA+14], [CBNJ+15],
[CTAS14]). DSC software libraries for 2D and 3D are open source under the
GPL license and are available for download at https://github.com/janba.
The following description is limited to the 3D version, however, for clarification
many of the concepts are explained using 2D illustrations.

The main advantages of DSC are:

• Explicit surface representation. The surface is explicit defined during
the deformation.

https://github.com/janba

6.2 The Deformable Simplicial Complex method 73

Discretization

boundary

Design

domain

Shape

interface

Figure 6.2: A 2D DSC discretization of a shape including a optimization do-
main.

• Topological adaptivity. Topology changes are an integral part of the
method during the mesh quality optimization step.

• Multiple optimization strategies. The object shape can change by
either moving the interface nodal position or relabeling the simplicial ele-
ments.

• Little numerical diffusion. Fine details are maintained during defor-
mation.

Before starting the deformations a design domain needs to be specified. The
bounds of the design domain is fixed, which means that it needs to be large
enough to encapsulate both the initial shape, all intermediate shapes as well as
the final shape. Since the boundary of the discretization is fixed, DSC requires
some additional space between any shape boundary and the design domain. The
discretization is using tetrahedrons, where each tetrahedron is initially labelled
as being either material or void. An example of such discretization is shown
in figure 6.2. Multiple types of materials are supported by providing a unique
label for each material. In DSC the term ’interface’ is used for describing the
interface to the enclosed shape, whereas the term ’boundary’ is used for the
boundary of the discretization.

DSC is designed for iterative solutions where the surface in each iteration moves
while maintaining a high quality meshing until the solution has converged (e.g.
when the surface movement becomes significant small). This can be described
using two steps:

74 Rethinking topology optimization as a modeling tool

DSC velocity function

Clamped destination

Interface

Change

DSC velocity function

Clamped destination

Interface

(a) (b) (c)

Figure 6.3: Conceptual overview of DSC in 2D. (a) Destination of the inter-
face nodes are found by clamping the velocity function (b) after
nodal movement the mesh is optimized - here using edgeflips only
(c) result after one iteration.

1. Nodal Movement. Based on a user provided velocity function the po-
sition of each node is moved. Each movement is limited by the adjacent
tetrahedrons, such that each movement will not make any tetrahedron
degenerate. See figure 6.3a.

2. Mesh optimization. Using five local mesh operations the high quality
of the mesh is maintained. See figure 6.3b.

The five local mesh operations used are:

• Smart Laplacian smoothing as described in [Fie88] moves the node
position to its barycenters if the node is not interface and not boundary.
This is only applied if the local mesh quality after movement is improved
or the quality is above a user defined threshold.

• Edge removal is performed using a sequence of 2-3 flips followed by a
single 3-2 flip as described in [She02]. The sequence of 2-3 flips which
improves the local mesh quality the most is found using dynamic pro-
gramming as described in [Kli80]. Edge removal can also be applied on
the interface or on the boundary of the discretized domain where the final
3-2 flip is replaced by a 4-4 flip or 2-2 flip respectively. The 4-4 flips are
only applied on the a sufficiently flat surface.

• Multi-face removal. The opposite operation of edge removal is multi-
face removal as described in [She02] performed using a single 2-3 flip fol-
lowing by a sequence of 3-2 flips. Not applicable on interface or boundary
since it would change these.

• Node removal merges two end nodes of an edge if this does not result

6.3 DSC based topology optimization 75

in any inverted tetrahedra. The end nodes may reside on the interface.
Used to remove low quality tetrahedron when above operations fail.

• Node insertion inserts a new node at the barycenter of an edge. The
node insertion is mainly used to increase the mesh quality in cases where
other operations fail.

The heuristic strategies for using these five mesh operations to ensure high mesh
quality are described in full details in ([MAB10], [MB12]).

One important consequence of the mesh optimization is that it will join two
parts if the separating space is too thin. Likewise a shape can be teared into
two parts if the mesh is sufficiently thin in the middle of the shape. Another
important feature is that mesh optimizing operations are only used when needed,
which makes the method more efficient than a complete remeshing.

The mesh detail level in DSC is mainly defined by the parameter δ corresponding
to the average edge length of the discretization. The parameter can potentially
be lowered after each DSC iteration to increase the mesh complexity during the
deformation.

6.3 DSC based topology optimization

DSC for topology optimization is using an explicit surface representation which
means that there is no need for the material density as in the density approach
described in section 3.3. DSC based topology optimization as described in [CBS]
uses both nodal movement and element relabeling for finding good solutions. An
overview of the method is illustrated in figure 6.4 which for simplicity only shows
the shape and not the full design domain discretization. First, the global stiffness
matrix K is assembled and solved to compute the nodal displacement vector u.
Finally the optimized shaped is found using element relabeling and/or nodal
movement based on the sensitivity analysis as described below. These steps are
repeated until convergence.

In order to avoid local optima and minimize a jagged surface, the preferred FE
element type is Linear Strain Tetrahedron (LST) with 10 d.o.f. per element
instead of the Constant Strain Tetrahedron (CST) with 4 d.o.f. [CNJA+14].

76 Rethinking topology optimization as a modeling tool

Model Assemble

K

Direct solve for

displacements

Element

relabelling

(discrete

topology

optimization)

Nodal movement

(shape

optimization)

Improved

model

Figure 6.4: Overview of DSC based topology optimization.

Model Move

nodes

+

-

for movement in

normal direction
MMA optimization

Find node

destination

Compute

move limits

+

Gradient for constraints

+

-

+

Gradient for obj. func.

 Iterative DSC

Mesh

quality

control

Remove

material

islands

Assemble

K

Solve for

displacements

Figure 6.5: Optimizing shape by moving nodes along the normal direction.

6.3.1 Nodal movement

The interface of the object is moved to improve the objective function, such as
compliance, while satisfying the constraints as illustrated in figure 6.5. In order
to reduce the d.o.f. each node is restricted to move only in its normal direction
of the surface. This simplification is based on the observation that motion in
the tangent direction of the surface will not change the shape much.

The design variables in the optimization is the displacements x in the normal
direction n where the goal is to find the new position p(x) based on the original
position x0:

pi(xi) = x0i + xi · ni (6.1)

6.3 DSC based topology optimization 77

where i is interface nodes. The optimization problem can then be posed as:

min
x∈Rn

: c(x) (Objective function)

subject to : gi(x) ≤ 0 , i = 1, . . . , q (Constraints)

K(x)u = f(x) (FEM equilibrium)

xmin ≤ xe ≤ xmax e = 1, . . . , n (Design variables)

(6.2)
where gi(x) is the constraints (e.g. volume constraint), f(x) is the region based
load, c(x) is the objective function, such as compliance. The xmin and xmax
are move limits based on surrounding simplicies, such that movement will not
cause any simplex to become degenerate or flipped.

This is a smooth, non-linear optimization problem and can be solved using
a gradient based solver, such as the Method of Moving Asymptotes (MMA)
[Sva87].

In order to be able to compute the gradient, we need the global stiffness matrix
K to be non singular at any given time. To ensure this the optimization is
initiated with a full volume fraction, which are then lowered to the specified
volume fraction over a number of iterations. An alternative way to ensuring
non singularity is to start with an arbitrary figure, which connects all loads and
supports. One of the performance tricks used is that the FEM is computed
using only elements with material.

6.3.2 Element relabeling

Simplicial complexies are relabelled to speed up the optimization as well as to
introduce holes inside the structure. Creating internal holes is important since
this will prevent some local optima which can occur when only node movement
is used. The relabeling is based on the gradient of the objective function and
the constraints as shown in figure 6.6.

78 Rethinking topology optimization as a modeling tool

Model
Relabel based on

objective function

and constraints

Remove

material

islands

Displacements

+
-

+
-

Gradient for

objective function

Gradient for

contraints

Figure 6.6: Relabeling used in DSC based topology optimization.

The relabeling can be formulated as a discrete optimization problem:

min
m∈Rn

: c(m) (Objective function)

subject to : gi(m) ≤ 0 , i = 1, . . . , q (Constraints)

K(m)u = f(m) (FEM equilibrium)

me ∈ {m1, . . . ,mn} (Design variables)

(6.3)

where n is the number of simplex elements. Since the relabeling is combined with
the continuous optimization using node movements it does not have to be solved
optimally. Instead of solving the computationally hard optimization problem, an
approximate solution is found based on heuristic strategies as described in [CBS].
These heuristic strategies are based on the theory of topological derivatives
([EKS94], [SZ99], [GGM00],[FNTP03], [DGAJ08]). The topological derivative
is the change in objective function c when introducing an infinitesimal hole in
element e.

6.4 Topology optimization based modeling tool

There exists many types of tools for creating and modeling virtual 3D shapes.
One such tool is digital sculpting tools, where the user modifies the shape of
an object using drag-based strokes using a mouse or a digitizing tablet. Each
stroke correspond to a local operation on the shape, such as adding material,

6.4 Topology optimization based modeling tool 79

A B C

D E F

Figure 6.7: Modeling using DSC based topology optimization. (A) Initial
shape (B) Selection of subdomain (C) Adding point load (D) Sub-
domain is fixed where material is located at the boundary (E)
Subregion will be topology optimized for minimum compliance
where volume is maintained (F) Final shape

removing material, smoothing, sharpening or pinching. Sculpting tools are pri-
marily used for designing organic shapes, such as humans and animals. The
user interaction design used in sculpting tools is heavily inspired by clay mod-
eling and hence the terminology used often refers to this. Sculpting tools stand
out from other 3D modeling tools by providing a very direct way of modeling
with purely local control and high predictability. There exists many commercial
and open source programs which provides digital sculpting capabilities, such as
ZBrush and Blender.

The idea of a topology optimization based modeling tool is heavily inspired
by digital sculpting tools. On an existing shape the user can optimize the
material distribution locally in a specified subdomain using the tool illustrated
in figure 6.7. The size of this subdomain can be changed by the user, and hereby
changing the size of the local operation. A shape change is initiated by a simple
gesture, where a click defines the position of a load (6.7-B), followed by a drag
gesture to specify the direction of the load (6.7-C). The shape is supported at
the boundary of the region of interest (6.7-D). The tool will now optimize the
subdomain while maintaining the volume of the shape (6.7-E). The topology
optimizer will continuously optimize the shape as long as the drag gesture is
active (6.7-E).

80 Rethinking topology optimization as a modeling tool

Create

subdomain

mesh

Set load and

supports

DSC

Topology

Optimization

DSC surface

smoothing

(optional)

Clear

subdomain

+ update UI

Model

While gesture active

Figure 6.8: Overview of DSC topology optimization based modeling.

The goal of the tool is to use topology optimization as a tool to find interesting
and aesthetically pleasing shapes, rather than searching for global solutions to
physically based optimization problem.

6.5 Implementation

One of the key challenges is to make the tool interactive and provide visual
feedback within reasonable time. To speedup the topology optimization com-
putations the subdomain support and parallelization has been added to DSC.
Also raytracing capabilities have been added to improve the responsiveness of
the user interface.

Figure 6.8 shows how the subdomain is used to only run the topology optimiza-
tion on elements within a subdomain in order to achieve an interactive update
rate. An optional smoothing step can be performed on movable nodes in the
subdomain to reduce the occurrence jagged edges.

6.5.1 DSC subdomain support

One essential problem is that DSC work on the full domain, where as this tool
only make small local changes and hence only local mesh quality control is
required.

To solve this problem DSC has been modified to supports subdomain, which
essentially flags elements outside the subdomain as excluded. The iterators for
the simplex types (tetrahedrons, faces, edges and nodes) will not include any ex-
cluded element and hence quality control and other algorithms using DSC will
only operate on the subset. From a performance perspective the subdomain

6.5 Implementation 81

feature is nearly free, since the simplex types already have a status flag, which
is checked during iteration to only include active elements. The only signifi-
cant performance cost is setting a subdomain, which involves identifying which
tetrahedrons are inside the subdomain and finding their associated faces, edges
and nodes. One important detail is that excluded elements are still accessible
when traversing the data structure from a single element (using the boundary
and co-boundary relations of a simplex). This allows algorithms which use in-
formation from the neighborhood of an element to still execute correctly - smart
Laplacian smoothing is an example of such algorithm.

6.5.2 Parallelization of DSC

While the DSC based topology optimization library uses multiple threads to
speed up the computation time, the DSC itself was not designed for multi-
threading. For this reason the DSC has been redesigned to natively support
multiple treads. The parallelization extension is created using two C++ tem-
plate functions which works with all of the four simplex types. The number
of parallel worker threads used can be adjusted if other than the number of
available hardware threads is needed.

for_each_par()

This extension adds parallelization to DSC using the fork-join execution model.
The for_each_par() function takes a single lambda function as parameter
which is executed on all valid elements on the given simplex type. The exe-
cution is performed by dividing the internal simplex storage among the number
of threads used. Then all threads are launched, each of which is executing the
lambda expression on its subset. This approach has the benefit that each thread
access its elements in a memory coherent way (since the elements are located
sequentially in memory). After all worker threads have been launched the main
threads will wait for all worker threads to finish before continuing execution. A
conceptual illustration is found in figure 6.9-a. In case the DSC has requested
only one thread, then everything is executed in the main thread.

One limitation of the extension is that the execution is not synchronized in any
way. This means that it cannot be used for updating elements based on values
read from other elements, due to potential race conditions. This limitation also
includes creation, deletion and changing relation of simplices.

The extension is now used inside DSC to speed up basic operations, such as
find() and get_max_edge_length().

82 Rethinking topology optimization as a modeling tool

Nodes

Thread 1

Thread 2
Sync

Mesh

(a) for_each_par()

Thread 1

Thread 2

Thread 1

Thread 2

Sync

Sync

Mesh

(b) for_each_par_sp()

Figure 6.9: Parallelization of DSC - here shown for nodes. (a) shows how each
thread process a subset of the kernels list of nodes. (b) show how
the thread iterations is based on the spatial position of the nodes.

for_each_par_sp()

To support cases where updating elements are based on data from neighbor
elements, a space partitioning version of the for_each_par() is added. The
idea here is to partition the domain in one dimension, such that there is at
least two tetrahedra between two neighbor partitions. The parallelization is
then first evaluated on every second partition, where each partition is assigned
to a thread. Afterwards, the remaining partitions are evaluated. A conceptual
illustration is shown in figure 6.9-b.

This evaluation scheme allows reading from neighbor simplicies when updating
values relating to a simplex, without the risk of data races. The total runtime
is slower than for_each_par() due to time spend on partitioning and due to a
less memory coherent data access.

The extension is now used for in DSC to speed up smoothing.

6.5.3 DSC raytracing

When using DSC in an interactive manner, it is often important to find the
face of the interface based on a location in screen-space, for instance such that
a face can be selected based on a mouse click. To solve this problem in an
efficient manner, a raytracer for the simplex data structure of DSC has been
implemented. The raytracer works efficiently by finding entry and exit points
for a tetrahedron and then use the simplex relations to find the adjacent tetra-
hedron. Using the spatial relationship to search the DSC data structure is a
performance improvement compared to naively testing all faces of the mesh for
intersections. The concept is illustrated in figure 6.10.

6.6 Results 83

Mesh

Raytracing start Interface intersection

Figure 6.10: Raytracing DSC here returning only interface faces.

(a) Initial model (b) Optimized after 10 seconds

(c) Optimized after 15 seconds (d) Optimized after 25 seconds

Figure 6.11: Example of DSC based topology optimization modeling. The red
area is supported elements. The tiny green line is load.

6.6 Results

We have tested the tool on a standard example. The example adds a vertical
load to a simple cantilever is shown in figure 6.11. The subdomain radius is
limited to only affecting half of the beam, which is visualized using the red
support region. The result has the expected I-profile, which can also be found
using the TopOpt 3D app as shown in figure 6.12.

84 Rethinking topology optimization as a modeling tool

Figure 6.12: Cantilever example created using the TopOpt 3D app

6.7 Discussion

One limitation of the proposed tool is performance. While the tool provides a
reasonable framerate when dealing with small problems such as figure 6.11, the
update rate drops significant when used for larger regions. This problem can
be improved by either using faster hardware with more and/or faster threads or
improving the parallelism of the implementation.

Since the structure is initiated with an active volume constraint, the discrete
topology optimization step does usually not remove any elements. Instead the
optimization is mainly based on the continuous shape optimization. A related
problem is that since the optimization only moves the interface based on the
interface node gradients, there is no way for the structure to ’sense’ other options
for support. Both issues may lead some local optimum. A solution could be
to fill the subdomain with material and slowly lower the volume fraction to
the initial value which is also the approach used in [CBS]. This approach will
however challenge the interactive nature of the tool, since this requires many
more iterations and the initial iterations will be more computationally heavy.

Alternatively, the topology optimizing modeling tool could also be implemented
using the density approach, which also has been used in the TopOpt apps de-
scribed in the previous chapters. This would also cure the above mentioned
problems, but using the density approach would require that the subdomain
is translated back and forth between explicit and implicit surface representa-
tions during optimization. It also involves ’stitching’ the result back to the full
structure. These problems are avoided completely when using an adaptive mesh
such as DSC, where any surface details down to a specified threshold are main-
tained and the same representation can used for visualization, optimization and
manufacturing.

Chapter 7

Discussion and conclusion

The overall goal of this thesis has been to explore how to use topology opti-
mization to create new and innovative applications running in an interactive
manner. The thesis has a broad focus covering both the human-computer inter-
action, used for creating well-designed user interfaces, computer science, used
for parallelism of the code and cross-platform development, and mechanical en-
gineering, for structural analysis and topology optimization.

Interactive topology optimization is now possible both on PCs and handheld
devices primarily due to the increase in computational power as well as the
highly optimized libraries and methods available. When designing such new
types of applications it is often needed to rethink the user interface and user
interaction in order fully exploit the full potential of the interactivity. The
main reason for this is that such applications have fundamental differences from
existing applications. Instead, a good user interface design can be created using
the user interface design principles and the usability can be evaluated using the
usability evaluation methods both described in chapter 2.

TopOpt App and TopOpt 3D app are both first applications of their kind for
interactive topology optimization in 2D and 3D. The applications show a new
way of modeling shapes using an indirect approach where user specifies the
constraints the shape must obey while the shape emerges through topology
optimization. The high performance of both apps is achieved using the MTOP

86 Discussion and conclusion

approach for the 2D case and the MG-PCG method for the 3D case. Another
important performance gain comes creating a native C++ optimization kernel
using our library OOCholmod as an elegant and efficient abstraction of the
low-level libraries SuiteSparse / Cholmod, BLAS and LAPACK. In addition the
FFEM app shows how the code and user interface of the TopOpt App can easily
be adapted to solve a similar problem.

The TopOpt Game shows how topology optimization can be gamified, by ask-
ing the player to create a shape in order to optimize his score (and minimize
compliance). During gameplay the player can constantly see the consequences
of his actions in the score-graph, which can also be used for backtracking to an
earlier state. By analysing the game data we have found that playing the game
will improve the players intuition of topology optimization.

The presented applications have all been designed to work well on both PCs
and handheld devices with touch-screens. The user interface design is therefor
constrained both in terms of how much information can be displayed on the
screen as well as the accuracy on the input. Throughout the development of
the applications, their usability has been evaluated primarily using heuristic
evaluation and informal user based evaluations, where people are asked to try
the application while their interactions are being observed.

One way to measure the success of the applications is to look at download
statistics and user reviews in Appendix E. The TopOpt App is the most popular
app, which is probably due to that is has been available for a long time and that
introductions to topology optimization often focuses on 2D problems. Users
have also provided very positive feedback for both the TopOpt App and the the
FFEM App where the average ratings are between 4.0 and 4.8 out of 5. The
TopOpt Game has relative low download numbers. We believe the reason for
this is that people are unaware of its existence and hope to see a significant
increase once Paper C gets published. Overall, we are very pleased with the
download numbers as well as the positive feedback and see this as a verification
of well-designed user interfaces and high performance code.

Modeling using DSC Based topology optimization shows how topology opti-
mization can be used in a completely new way as a local modeling tool with a
very direct user interaction. The method uses the DSC for storing and deform-
ing the structure which has the benefit of having an explicitly defined interface.
This avoids loosing details which would likely occur if the structure had to be
transformed to an implicit representation. To ensure interactiveness the DSC
has been extended with support for parallelism as well as subdomains. The
current result is an interactive proof of concept. It has not been made public
available since the application is still a bit too sensitive to quality parameters
used in both DSC as well as DSC based topology optimization.

87

This thesis has shown how topology optimization can be used interactively in
applications for both 2D and 3D. Interesting future work includes optimization
of coated structures as described in [CAS15] where the optimized structure has
a coating with a prescribed thickness and different material properties. It could
also be interesting to explore how the many sensors on the handheld devices
could be used. Currently the accelerometer and gyroscope are used for the
gravity loads in the TopOpt 2D, but could also be used for controlling both the
view orientation as well as gravity loads in the 3D app. The upcoming Force
Touch sensor for Apple devices could also be used to vary load magnitude based
on the pressure level. The camera could be used to capture design of existing
structures, such as bridges, for a structural analysis in the FFEM app.

From informal empirical studies we know that people generally find the user
interface in apps simple and intuitive to use. For the 3D app the ViewCube
provides an easy way to control the view, however this only works for simple
and small structures. A new view interaction scheme would be needed if the app
is extended to more complex structures. The same is also true for the 2D app,
where zoom and pinch gestures would be needed if the resolution is increased
significant.

Hopefully, the work of this thesis will inspire new, innovative and interactive
applications both within topology optimization and in science in general.

88 Discussion and conclusion

Appendix A

Paper A: Interactive
topology optimization on

hand-held devices

Aage, N., Nobel-Jørgensen, M., Andreasen, C. S., Sigmund, O. (2013). Inter-
active topology optimization on hand-held devices. Structural and Multi-
disciplinary Optimization 47.1: 1-6.

Struct Multidisc Optim (2013) 47:1–6
DOI 10.1007/s00158-012-0827-z

EDUCATIONAL ARTICLE

Interactive topology optimization on hand-held devices

Niels Aage · Morten Nobel-Jørgensen ·
Casper Schousboe Andreasen · Ole Sigmund

Received: 29 March 2012 / Revised: 15 June 2012 / Accepted: 24 June 2012 / Published online: 19 July 2012
c© Springer-Verlag 2012

Abstract This paper presents an interactive topology opti-
mization application designed for hand-held devices running
iOS or Android. The TopOpt app solves the 2D minimum
compliance problem with interactive control of load and
support positions as well as volume fraction. Thus, it is pos-
sible to change the problem settings on the fly and watch
the design evolve to a new optimum in real time. The use
of an interactive app makes it extremely simple to learn
and understand the influence of load-directions, support
conditions and volume fraction. The topology optimization
kernel is written in C# and the graphical user interface is
developed using the game engine Unity3D. The underly-
ing code is inspired by the publicly available 88 and 99
line Matlab codes for topology optimization but does not
utilize any low-level linear algebra routines such as BLAS
or LAPACK. The TopOpt App can be downloaded on iOS
devices from the Apple App Store, at Google Play for the
Android platform, and a web-version can be run from www.
topopt.dtu.dk.

Keywords Interactiveness · Topology optimization ·
Smartphones · Tablets · PDE constrained optimization

The authors acknowledge the support from the Villum foundation
through the NextTop project.

N. Aage (B) · C. S. Andreasen · O. Sigmund
Department of Mechanical Engineering, Solid Mechanics,
Technical University of Denmark, Nils Koppels Alle,
B.404, 2800 Kgs. Lyngby, Denmark
e-mail: naa@mek.dtu.dk

M. Nobel-Jørgensen
Department of Informatics and Mathematical Modelling,
Technical University of Denmark, Asmussens Alle,
B.305, 2800 Kgs. Lyngby, Denmark

1 Introduction

In Denmark more than 50 % of all households are in pos-
session of a smartphone (Statistics Denmark 2012), and
it is expected that the percentage is much higher amongst
households with engineering, design and architecture stu-
dents. Not only do smartphones provide the user with easy
access to gadgets such as GPS, gyroscopes, accelerometers,
etc., they also contain powerful processing units that can
be used for advanced scientific computing and high-level
educational tools as demonstrated in this paper.

The topology optimization method is a numerical and
iterative structural optimization tool which optimizes the
material distribution in a specified design domain in order
to maximize stiffness or other objectives, typically sub-
ject to a volume constraint. Since 1999, the TopOpt-group
has been hosting a web-based topology optimization Applet
(www.topopt.dtu.dk, “Applets and Software”, “Server side
applets”, “Compliance Design”) (Tcherniak and Sigmund
2001). The Applet has been extensively used by engineer-
ing, architectural and industrial design students and practi-
tioners as well as a general audience and has by now (March
2012) been run over 210,000 times by more than 13,000
unique users. This code is passive in the sense that the user
selects design specifications (design domain, boundary con-
ditions, volume fraction, etc.), presses a submit button and
then waits for the optimization to finish (in usually 5–10 s)
before he/she sees an animation of the design process on his
screen. The code is run on a server and hence the response
time depends on the number of active users at any given time
and on the speed of the internet connection.

In this paper we present a fully interactive topology opti-
mization application, the TopOpt App, which solves the
2D minimum compliance problem with interactive control
of loads and supports as well as the amount of available

2 N. Aage et al.

Fig. 1 Picture of the TopOpt App being used on an iPad

material. The App is developed partially to provide a more
interactive user interface than the existing web applet and
partially to port the web applet to mobile platforms. Based
on an efficient code that is executed directly on the device,
and not server-side, the users will have the impression that
the structure becomes “alive”—constantly adapting to vary-
ing loads and boundary conditions. With this set-up it is
extremely simple to learn and understand the influence of
load-directions and support conditions and to develop a gen-
eral understanding and intuition for structural design by the
topology optimization method. A picture of the TopOpt App
running on an iPad is shown in Fig. 1.

The paper is organized as follows. The topology opti-
mization problem is presented in Section 2 along with
motivation for the chosen approach. Section 3 presents
the framework used to develop the TopOpt App with the
interactive graphical user-interface (GUI) and the C# opti-
mization kernel. Section 4 presents snapshots of the applet
as well as a discussion of the different issues that arise
when allowing the optimization problem to be modified on
the fly. Section 5 summarizes our findings and gives some
directions for future extensions and applications.

2 Problem formulation

The minimum compliance problem is a classical topology
optimization problem in which the goal is to maximize the
stiffness of a structure subject to a constraint on the available
material (Bendsøe and Sigmund 2004). The requirements
to the implementation presented in this paper differ slightly
from standard implementations, including the ones found
in Sigmund (2001) and Andreassen et al. (2010), which
otherwise form a basis for the optimizer presented here.
The TopOpt App does not only require a fast solver to

maintain a high frame rate. More importantly, the solver
must be capable of starting from any given 0–1 design,
and from this, evolve to a new optimum. Furthermore, the
way in which the design evolves when changing loads and
supports, must also look and feel right to ensure that the
user experiences the structure as being alive and constantly
adapting to changing conditions. Although the demands on
the optimization solver are somewhat different, the mini-
mum compliance problem remains unchanged and can be
stated in a discrete form as

min
ρ∈Rn

φ(u(ρ), ρ) = FT u

s.t. K (ρ)u = F

V (ρ)/V ∗ − 1 ≤ 0

0 < ρmin ≤ ρi ≤ 1, i = 1, n

(1)

where φ = FT u is the compliance, ρ is a vector of n densi-
ties (design variables), u and F are the nodal displacement
and force vectors, respectively, K (ρ) is the global stiffness
matrix , and V (ρ)/V ∗ − 1 ≤ 0 is the volume constraint.
Finally, ρmin is a lower bound on the design variables. The
elasticity equations are solved by the finite element method
using four node bilinear elements (see e.g. Zienkiewicz and
Taylor 2000).

2.1 Design representation

The design representation for the TopOpt App has to pro-
vide the user with a smooth interactive experience, and
the design representation should be as fine as possible. To
accommodate the smoothness it was by numerous numer-
ical experiments found that the SIMP scheme (Bendsøe
1989; Zhou and Rozvany 1991; Mlejnek 1992) with a high
lower bound on both density and stiffness gives the best
results. The implemented stiffness interpolation is given as

E(ρi) = 0.01 + 0.99ρ
p
i (2)

where p = 3 is the penalization factor. The lower bound on
stiffness Emin = 0.01 is chosen relatively high, since this
has shown to yield the best performance when the design
has to evolve from one already determined optimum to
the next. We have found that a higher value ensures bet-
ter behavior when a load or a support suddenly is moved
to a void region, however, a higher value also adds a risk
of introducing artificial stiffness of void regions that may
alter the design in undesired manners. The same argument
applies to the choice of lower bound for the densities, which
is set to ρmin = 0.01. During the development of the TopOpt
App the RAMP interpolation scheme (Stolpe and Svanberg
2001) was tested as an alternative to SIMP. However, at the
end, the SIMP scheme was selected for its superior stability.

Interactive topology optimization on hand-held devices 3

Though the CPUs of smartphones have evolved tremen-
dously during the past few years, they are still lacking
behind the performance of laptop, or desktop, CPUs. The
speed ratio for the TopOpt App running on the IPhone 4S,
Ipad 2 or a high level laptop is approximately 1:1.2:12.
Therefore we have employed the multiresolution (MTOP)
design representation from Nguyen et al. (2010), to obtain
a finer design representation with little extra computational
cost. The MTOP approach divides every finite element into
several design elements. For the TopOpt App we use four
design variables for every finite element as illustrated in
Fig. 2. Thus, for each finite element the element matrix
contribution can be given as

K e(ρe) =
4∑

i=1

K i
0ρ

i
e (3)

where K i
0 is the reference stiffness matrix evaluated at each

of the four design variable locations. Hence, the MTOP
approach can be compared to a Gaussian integration with
a piecewise constant density variable for each integration
point. The major benefit of the MTOP approach is that
although the assembly becomes four times more expensive,
the size of the linear equation system to be solved remains
the same. Since the mesh used is regular, the numerical
integration of the four sub-matrices can be done once and
reused for all finite elements throughout the iteration pro-
cess. Although the MTOP approach yields a finer design
representation, it is important to note that the checkerboard
problem depends on the standard finite element discretiza-

Fig. 2 Illustration of the multiresolution (MTOP) approach used for
the TopOpt App. The full lines represent the displacement element and
the circles indicate displacement nodes. The dashes lines show the dis-
tribution of design variables, ρi , within each physical element and the
filled circles their location

tion and hence any subsequent filtering must be performed
with a radius comparable to the physical element size.

To alleviate checkerboarding we apply the sensitivity
filter (Sigmund 1997). The filter operator can be stated as
seen below following the matrix approach from Andreassen
et al. (2010)

ˆ∂φ

∂ρi
= 1

ρi
∑

j∈Ni

Hi j

∑

j∈Ni

Hi jρ j
∂φ

∂ρ j
(4)

where Ni is the index set of design variables within a radius
rmin from design variable ρi , and the weight factor Hi j is
given by the sparse matrix

Hi j = max(0, rmin − dist(ρi , ρ j)) (5)

where dist(ρi , ρ j) is the distance from design variable ρi to
variable ρ j . The filter radius is set to rmin = 2.6 times the
design element size (i.e. 1.3 times the finite element size).
Note that we use the sensitivity filter since, again by exten-
sive numerical experiments, it tends to provide smoother
convergence and is better to avoid getting stuck in local
minima compared to the density filter (Bruns and Tortorelli
2001; Bourdin 2001).

The design update is performed using the optimality cri-
teria approach as implemented in Andreassen et al. (2010).

Before the optimized design is displayed on screen it is
post-processed in the following way. It is first projected onto
a two times refined design mesh and subsequently filtered
using the standard density filter using a filter radius equiv-
alent to two element sizes on the refined mesh. Finally, to
make the interface between void and material sharper, the
refined and filtered design is projected using a Heaviside
step function as presented in Wang et al. (2011), i.e.

ρ̃i = tanh(βη) + tanh(β(ρi − η))

tanh(βη) + tanh(β(1 − η))
(6)

with a sharpness control of β = 6 and cut-off point of
η = 0.5. Note that the final steps of filtering and projec-
tion are performed outside the optimization framework, and
thus simply act as an image processing technique to enhance
the design resolution. Basically, the post-processing step
corresponds to a smoothed thresholding of the density field.

3 Implementation

The TopOpt App has been developed in the Unity3D game
engine (Unity Technologies 2012), which was chosen due
to its cross-platform portability and due to the presence
of in-house expertise. The multi-platform support means
that the same optimization kernel can be used for Android,

4 N. Aage et al.

iOS and web releases with only minor modifications to
the layout of the GUI and user-interaction. However, the
cross-platform support capability comes at the cost of gen-
erality which hinders the use of optimized linear algebra
libraries such as BLAS and LAPACK which are only avail-
able for certain platforms. Therefore our optimization kernel
is built from scratch including sparse matrix classes con-
taining linear solvers, assembly operators, matrix-vector
multiplication, etc.

3.1 Optimization kernel

The TopOpt kernel contains an optimization solver equiv-
alent to that presented in the 99 line Matlab code paper
(Sigmund 2001), but is written entirely in C# since this is
the language supported by Unity3D. Due to the object ori-
ented nature of C# it is straight forward to implement sparse
matrix classes which can be used for both filtering and lin-
ear solver. Using sparse matrices for filtering is described in
detail in Andreassen et al. (2010), and the major advantage
of this approach is that the neighborhood search only has to
be done once while assembling the filter matrix. The filter
can then be applied as a single sparse matrix-vector product
followed by a scaling operation. The sparse matrix approach
to filtering is generally faster than performing a quadruple
for-loop for each filtering operation as done in the 99 line
Matlab code paper (Sigmund 2001). This is mainly because
the for-loop approach requires the evaluation of (4) and sub-
sequently (5) numerous times at each iteration. Especially
(5) is expensive since it both involves a max-statement and
a square root. Note however, that if it was not for the benefit
of the simple way to perform filtering using sparse matri-
ces, a banded solver could just as well have been used
since our tests have shown that a banded solver matches the
performance of the implemented sparse solver.

During the development phase we have also experi-
mented with iterative solvers and the multigrid precondi-
tioned conjugate gradient method in particular. Although
this solver can outperform the direct solver when utilizing
a smart stopping criteria as described in Arioli (2004) and
tricks from re-analysis (Amir and Sigmund 2011), it yields
undesirable iterations when changing the optimization set-
tings. That is, due to an inexact FE solution the sensitivities
in parts of the domain may be wrong, which results in
material appearing and disappearing at seemingly random
locations in brief glimpses. Since the App is intended to
provide a natural transition between optima, the slower, yet
more stable, direct solver is used.

Due to the interactive nature of the App, it is very easy to
pose a problem which is infeasible or numerically ill-posed.
This could for example be a result of missing loads, inade-
quate supports (singular system), possible free modes (close
to singular system) or any combinations of such. If any of

the above problems are detected, the optimization solver
is frozen and an error message is displayed until the user
resolves the problem.

As a final remark our experience has shown that for very
coarse discretizations superior stability is achieved for a
larger filter radius, e.g. rmin = 1.4.

3.2 GUI

The GUI can be seen in Fig. 3 and consists of the follow-
ing items—all conveniently implemented using the Unity3D
game engine which, as mentioned in previous sections,
facilitates an easy way to port the code between different
platforms. The move symbol allows the user to freely move
both loads and supports between nodes in the underlying
finite element mesh. The rotation symbol provide the pos-
sibility to rotate forces and supports. Note that rotating the
supports only has a physical meaning for the simple sup-
ports. The scaling operator, illustrated by a square frame
with an arrow attached to the top left corner, is used to dis-
tribute forces and supports. The downward arrow denotes a
nodal force with unit magnitude, independent of load orien-
tation. Note that the unit magnitude is maintained also for a
distributed load. Furthermore, it should be mentioned that a
single nodal force combined with a distributed load, in some
cases, can result in designs for which the distributed load is
not fully supported. This issue will be addressed and fixed
in an upcoming version of the App. The two supports repre-
sent simple and fixed nodal supports, respectively. The trash
can is used to delete items from the optimization domain,
and the white triangle is used to change the volume fraction.
All the above mentioned GUI objects are fully interactive,

Fig. 3 Screenshot of the interactive TopOpt App. The menu can be
seen to the left and the optimization domain to the right. Centered at
the top the current value of compliance is shown. In case of un-physical
settings an appropriate error message is shown instead. At the bottom
right corner the frame-rate is shown

Interactive topology optimization on hand-held devices 5

meaning that any modification will change the optimization
problem from the next frame (iteration) and on.

The remaining symbols are comprised of the following
functionality: A restart feature denoted by an elongated cir-
cle, is used to restart the optimization solver with a uniform
material distribution equal to that of the current volume
fraction. This is needed since the optimizer can, and does,
reach local optima, which can be alleviated by a restart. The
grid button allows the user to change between a number of
fixed mesh resolutions and will restart the entire optimiza-
tion code when a new grid size is selected. The final two
items in the menu yield a short summary of the underly-
ing optimization problem and solution approach and a help
menu, denoted with i and ?, respectively.

4 Discussion

The TopOpt App is mainly intended for educational pur-
poses, and not as a commercial optimization tool. It can,
however, readily be used as inspiration in the early stages of
a design process in e.g. architecture, industrial design and
engineering. Figure 4 shows a series of screenshots from
running the App, demonstrating how the design evolves
from one optimum to another. As for most topology opti-
mization problems, the major changes in topology take
place within the first 30 design cycles. This means that
although the TopOpt App should solve the optimization
problem as fast as possible, more than 30 frames per sec-
ond will hinder the user in following the design evolution.
In order to get a reasonable speed we therefore adapt the dis-
cretization to the device. For example on an iPhone 4S the
standard density mesh is chosen as 88 × 64 (i.e. 22 × 16

Fig. 4 The screenshots in (a) through (d) show how the TopOpt app
evolves from one optimum to another

4-node finite elements), which yields a satisfactory eight
frames per second. For slower or faster devices, the user
may select coarser or finer discretizations.

5 Conclusions

This paper presents a new interactive topology optimiza-
tion applet, the TopOpt App, for minimum compliance
problems. The App can be run on smartphones with iOS
and Android, and as a web application. The TopOpt App
both demonstrates the capabilities of smartphones in terms
of CPU power, but also a new way to perform topology
optimization by real-time interaction. The objective of the
App is to provide engineering, design and architect students
and practitioners with a fast and simple way to use topol-
ogy optimization. This may lead to a better understanding
of optimal material distributions with respect to changes
in load conditions, support conditions and the amount of
available material. Apart from the educative possibilities,
the App may also be interesting to play with for sea-
soned topology optimization practitioners. For example, it
is mind-boggling to see how much a design can change by
simply moving a point load or support from the domain
corner and one element length into the domain.

The TopOpt App is the first mobile App to offer topology
optimization. Future versions will include multiple loads
and passive domains as offered by its passive predecessor
still found at the www.topopt.dtu.dk web-site.

With the publication of this App, we hope to inspire the
topology optimization community as well as the mechanics
community in general to provide educative Apps that can
be used to help students in understanding complex mechan-
ical topics. One may just think of the smartphones’ built-in
accelerometers and gyroscopes which, with the right App,
could provide entirely new and inventive ways of teaching
engineering dynamics.

Acknowledgments The authors would like to extend their gratitude
to the members of the TopOpt and NextTop groups at DTU for their
invaluable input on the design and testing of the TopOpt app.

References

Amir O, Sigmund O (2011) On reducing computational effort in topol-
ogy optimization: how far can we go? Struct Multidisc Optim
44:25–29

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O
(2010) Efficient topology optimization in MATLAB using 88
lines of code. Struct Multidisc Optim 43(1):1–16

Arioli M (2004) A stopping criterion for the conjugate gradient
algorithm in a finite element method framework. Numer Math
97:1–24

Bendsøe M (1989) Optimal shape design as a material distribution
problem. Struct Optim 1:193–202

6 N. Aage et al.

Bendsøe M, Sigmund O (2004) Topology optimization; theory, meth-
ods and applications, 2nd edn. Springer, Berlin Heidelberg
New York

Bourdin B (2001) Filters in topology optimization Int J Numer Meth-
ods Eng 50(9):2143–2158

Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear
elastic structures and compliant mechanisms. Comput Methods
Appl Mech Eng 190(26–27):3443–3459

Mlejnek HP (1992) Some aspects of the genesis of structures. Struct
Optim 5:64–69

Nguyen TH, Paulino GH, Song J, Le CH (2010) A computa-
tional paradigm for multiresolution topology optimization (mtop).
Struct Multidisc Optim 41:525–539

Sigmund O (1997) On the design of compliant mechanisms using
topology optimization. Mechan Struct Mach 25(4):493–525

Sigmund O (2001) A 99 line topology optimization code written in
MATLAB. Struct Multidisc Optim 21(2):120–127

Statistics Denmark (2012) http://www.dst.dk/statistik/nyt/emneopdelt.
aspx?psi=1409. Accessed 14 Jun 2012

Stolpe M, Svanberg K (2001) An alternative interpolation scheme
for minimum compliance topology optimization. Struct Multidisc
Optim 22(2):116–124

Tcherniak D, Sigmund O (2001) A web-based topology optimization
program. Struct Multidisc Optim 22(3):179–187

Unity Technologies (2012) Unity3d. www.unity3d.com. Accessed 20
Mar 2012

Wang F, Lazarov B, Sigmund O (2011) On projection methods, con-
vergence and robust formulations in topology optimization. Struct
Multidisc Optim 43(6):767–784

Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topo-
logical, geometry and generalized shape optimization. Comput
Methods Appl Mech Eng 89(1–3):309–336

Zienkiewicz OC, Taylor RL (2000) Finite element method, vol 1,
5th edn. Butterworth-Heinemann

96 Paper A: Interactive topology optimization on hand-held devices

Appendix B

Paper B: 3D interactive
topology optimization on

hand-held devices

Nobel-Jørgensen, M., Aage, N. Christiansen, A. N., Igarashi, T., Bærentzen,
J. A., Sigmund, O. (2014). 3D interactive topology optimization on hand-
held devices. Structural and Multidisciplinary Optimization 51.6: 1385-
1391

Struct Multidisc Optim (2015) 51:1385–1391
DOI 10.1007/s00158-014-1214-8

EDUCATIONAL ARTICLE

3D interactive topology optimization on hand-held devices

Morten Nobel-Jørgensen ·Niels Aage ·
Asger Nyman Christiansen ·Takeo Igarashi ·
J. Andreas Bærentzen ·Ole Sigmund

Received: 26 September 2014 / Revised: 26 November 2014 / Accepted: 28 November 2014 / Published online: 20 December 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract This educational paper describes the implementa-
tion aspects, user interface design considerations and work-
flow potential of the recently published TopOpt 3D App.
The app solves the standard minimum compliance prob-
lem in 3D and allows the user to change design settings
interactively at any point in time during the optimization.
Apart from its educational nature, the app may point towards
future ways of performing industrial design. Instead of the
usual geometrize, then model and optimize approach, the
geometry now automatically adapts to the varying bound-
ary and loading conditions. The app is freely available for
iOS at Apple’s App Store and at http://www.topopt.dtu.dk/
TopOpt3D for Windows and OSX.

Keywords Interactive · Topology optimization ·
Smartphones · Tablets

M. Nobel-Jørgensen (�) · A. Nyman Christiansen ·
J. A. Bærentzen
Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Asmussens Alle,
B.305, 2800 Kgs. Lyngby, Denmark
e-mail: mono@dtu.dk

T. Igarashi
Department of Computer Science, The University of Tokyo,
Science bldg. 7, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

N. Aage · O. Sigmund
Department of Mechanical Engineering, Solid Mechanics,
Technical University of Denmark, Nils Koppels Alle,
B.404, 2800, Kgs. Lyngby, Denmark

1 Introduction

Handheld devices such as mobile phones and tablets are
becoming increasingly powerful and even beat supercom-
puters from the 90s in terms of pure computation power
(Rooney 2011). This increased performance allows devel-
opers to create applications which solve hard problems in
an interactive manner - the same problems that years ago
ran as batch jobs on supercomputers. The performance as
well as the number of different sensors, such as touch-
screen, microphone, camera, and accelerometer, open up
new opportunities for new and innovative applications.

Topology optimization (Bendsøe and Kikuchi 1988) is
a numerical and iterative method for determining optimal
material distributions. The classical example from structural
mechanics is to maximize the stiffness of an elastic structure
subject to a constraint on the amount of available material,
i.e. the minimum compliance problem. Despite its sim-
plicity, the minimum compliance objective has become an
important design tool in e.g. the automobile and aerospace
industries (Bendsøe and Sigmund 2003). The minimum
compliance problem is also the topic of a number of edu-
cational applications and code examples. The first of such
applications was a web-based applet developed by the DTU
TopOpt group (Tcherniak and Sigmund 2001). To date this
applet has been run almost a quarter million times by close
to 15.000 unique users. In 2012 the TopOpt App (Aage
et al. 2013) was released, introducing the concept of inter-
active topology optimization. The TopOpt App solves the
2D minimum compliance problem with interactive control
of loads and supports and can be used on both desktop
computers and handheld devices (iOS and Android). Fur-
thermore, the computations are performed locally on the
device. Through a simple graphical user interface, the user
defines the topology optimization problem, including loads,

1386 M. Nobel-Jørgensen et al.

Fig. 1 TopOpt 3D running on an iPad

supports, volume fraction, etc., while the optimized solution
appears in real time. The application is highly interactive,
which is a natural consequence of the update frequency, i.e.
time for a single design cycle, which exceeds 30 cycles per
second on most newer handheld devices. The high update
frequency gives the user the impression that the structure
comes “alive” and keeps the user’s full attention as dis-
cussed in Miller (1968) and later in Nielsen (1994). The
TopOpt App has become highly successful and had been
installed on more than 11,500 handheld devices and used by
more than 8,500 unique web users as of November 2014.

In this paper we present the next generation of fully inter-
active topology applications, namely the TopOpt 3D App.
The app targets both desktop computers and iOS hand-
held devices such as iPad and iPhone. Equivalent to the 2D
app, the user defines the problem using loads and supports,
while the program shows the optimized shape on-the-fly.
The topology optimization solver runs on the local device
and is capable of achieving interactive update rates1 even on
handheld devices.2 The user can navigate around the design
domain to see and interact with the 3D model from different
view directions. A picture of the application running on an
iPad can be seen in Fig. 1.

In addition to TopOpt 3D’s obvious application within
teaching and education, it also presents a completely
new way to think of geometry generation. In classical
CAD/CAE, the industrial designer, or engineer, first designs
the geometry, then models the problem and finally performs
the optimization. The work presented in this paper suggests
the opposite. That is, the designer first specifies the problem
in terms of loads, supports, etc, and then follows the evolu-
tion of the geometry as it is being created by the optimizer.

1We define interactive update rates to be less than 10 seconds, which
is about the limit for keeping the user’s attention (Nielsen 1993).
2The best experience will be achieved using newer devices such as
iPhone 5s and iPad Air.

On top of this, the designer is allowed to interact directly
with the geometry generation as it takes place and the pro-
cess thus provides maximum design freedom with minimal
waiting time.

The remainder of the paper is organized as follows: The
topology optimization problem is described in Section 2
along with motivation for creating the application. Section 3
describes the implementation of the optimization kernel as
well as the user interface and the visualization of the result.
Section 4 presents different results created by the applica-
tions and how the application can be used as valuable tool in
education and as a geometry-generating tool. Section 5 sum-
marizes our findings and gives some directions for future
extensions and applications.

2 Problem formulation

The optimization problem solved in TopOpt 3D is the
standard minimum compliance design problem for linear
elasticity (Bendsøe and Sigmund 2003). Following a finite
element (FE) discretization, the classical topology optimiza-
tion problem can be stated in a discrete form using the
density approach (Sigmund and Maute 2013) as

min
ρ∈Rn

φ(u, ρ) = FT u

s.t. K(ρ)u = F

V (ρ)/V ∗ − 1 ≤ 0
0 < ρmin ≤ ρi ≤ 1 , i = 1, . . . , n

(1)

where φ = FT u is compliance, ρ is a vector of n densi-
ties (design variables), u and F are the nodal displacement
and force vectors respectively, K(ρ) is the global stiffness
matrix, and V (ρ)/V ∗ − 1 ≤ 0 is the volume constraint.
Finally, ρmin is a lower bound on the design variables.

The solution approach for the design problem in (1) is
dictated by the interactivity requirement. That is, the design
cycles should be very fast and the transition from a given
optima to a new one should be smooth, i.e. avoiding poor
local minima. Thus, the solution strategy used in this work
can be seen as a direct extension of the approach used for
TopOpt App (Aage et al. 2013). Any noteworthy differences
will be clearified in the upcomming sections.

3 Implementation

To make the app available on multiple platforms, we have
used the game engine Unity as a platform abstraction layer,
and this minimizes platform-specific code. The user inter-
face code is written in C# and the optimization kernel is
written in C++ to achieve maximum performance. Due to
the huge increase in computational complexity compared

3D interactive topology optimization on hand-held devices 1387

to the 2D app, we have chosen to switch from the in-
house developed C# math kernel to CHOLMOD (Davis
et al. 2014) built on (optimized) BLAS/LAPACK (BLAS
Basic Linear Algebra Subprograms 2014; LAPACK - Lin-
ear Algebra PACKage 2014).3 Due to the large variety of
Android distributions and hardware, we have decided only
to release TopOpt 3D for iOS,Windows and OSX, for which
we can guarantee the performance of the app. At time of
writing, the framerate on an iPad Air is 1.5 fps and 6-8 fps
on a desktop computer.

3.1 Optimization kernel

The most performance-critical functions in the optimization
kernel are solving the linear elasticity equation, performing
the sensitivity filtering and completing the design update.
The common denominator for these functions is that they
depend on efficient sparse and dense matrix operations, i.e.
matrix assemblies, matrix-vector multiplications, etc. For
sensitivity filtering and the optimality criteria update, the
approach presented in the 88 line Matlab (Sigmund 2001)
code is readily adopted. However, the solution to the FEM
system of equations is not feasible with direct methods due
to the huge amount of time required for the matrix factoriza-
tion. To alleviate this potential bottleneck, and in some sense
make the 3D interactivity possible, we apply a geomet-
ric multigrid preconditioned conjugate gradient (MG-PCG)
method for the solution of the linear system. The MG-PCG
solver, as well as its numerical implementation, is described
in detail in Amir et al. (2014) and Aage et al. (2014). In
TopOpt 3D, we use the solver without the premature ter-
mination heuristics presented in Amir et al. (2014), and
instead use a default of three multigrid levels and a rela-
tive tolerance of 10−5 as convergence criteria for the linear
solver.

The possibility of interacting with an ongoing optimiza-
tion process poses several additional requirements to the
optimization kernel. This means a number of safety checks
needs to be conducted between each design cycle to ensure
that the design problem is feasible, that there are sufficient
supports for a given loading, that the FEM system is non-
singular, etc. In the rare case when such an issue is detected,
the app will pause the optimization and display an error
message to the user. Once the problem has been resolved,
the app will continue the optimization process.

The optimization kernel runs in its own thread, which
makes the GUI respond instantly to user interactions. After
each optimization iteration, the optimized shape is sent to

3On iOS and OSX we use the optimized BLAS and LAPACK bundled
in the operating system and on Windows we use AMD’s core math
library (AMD core math library 2014).

the GUI for visualization and the optimization kernel is
updated with the user actions, if any.

The achieved performance is 9.9 seconds per optimiza-
tion iteration when running on a configuration with the
highest number of elements (32×32×16) running on an
iPad Air. On a 2.3 GHz Intel Core i7 computer the perfor-
mance is 1.2 seconds per iteration. The application has the
same grid size options on all platforms in order to be able to
share models across platforms.

The optimization kernel is currently single threaded, so
a future extension is to utilize all hardware threads on the
platform to boost performance. At the time of writing, most
desktop and laptop computers have two to eight hardware
threads, whereas handheld devices usually have two and in
rare cases four hardware threads. A related optimization is
to use the GPU for some of the computations.

3.2 Interactive shape modelling

A wide number of popular techniques exist to model 3D
shapes interactively. The user performs a sequence of mod-
elling operations which change the shape. Often, these
operations are performed in a continuous way i.e. across
a number of frames where the user has control of the
single operation. Some of the frequently used techniques
include:

– Surface-based modelling, which provides direct
manipulation of a polygonal mesh. Operations are per-
formed on vertices, edges or polygons.

– Solid-based modelling, which uses parametric geome-
try. The user will often sketch a profile in 2D and then
extrude or sweep this into a 3D shape. Shapes can be
combined using boolean operations.

– Sculpting, which mimics clay modelling. Typical tools
are clay strips, brush, inflate, deflate, crease and
smooth.

On the other hand, topology optimization is usually per-
formed in a non-interactive manner, where modelling the
problem and inspecting the result are two distinct stages
separated by a long wait during which the optimized shape
is computed. Often, topology optimization is used as either
the only shape design tool, in cases where the aesthetics and
design do not matter, or as a post-processing tool, where an
existing model can be benchmarked against an optimized
shape.

The TopOpt 3D App combines the interactiveness of tra-
ditional 3D shape modelling with optimized shape design.
To our knowledge, the TopOpt 3D App is the first appli-
cation that uses this approach for shape design in 3D.
Consequently, one of the challenges is to design a simple
and user-friendly interface for the application.

1388 M. Nobel-Jørgensen et al.

Fig. 2 The user interface with the ViewCube in the upper right corner
which shows the current orientation

3.3 User interface design principles

The user interface of the TopOpt 3D App is designed for
tablets, smartphones and computers using touchscreen or
mouse as input. This imposes some design restrictions, such
as different screen sizes, no tooltip help when the mouse
cursor hovers over an element and the keyboard should only
be used for text input (Fig. 2).

During creation of an appropriate and intuitive cross-
platform user interface we have found the following three
principles invaluable: simplicity, continuity and consistency.
These principles are a subset of the principles of good
interaction design described in Tognazzini (2014).

Simplicity principle: Simplicity is often praised as
the main principle for good interface design. This is in

Fig. 3 Workflow: After the design domain has been specified (a)
regions are specified (b) and regions are augmented with loads and
supports (c) after which the topology optimization begins and the result
appears (b)

particular true for apps running on smartphones with small
screen sizes and inaccurate touch input. Consequently, to
make the user interface work on all platforms, the applica-
tion uses icon buttons as the primary user interface element,
which only takes up little screen space.

The application uses a single viewport for the 3D content.
This is in contrast to the majority of 3D programs, which use
multiple viewports. The single view is used for displaying
both the topology optimization problem (such as loads and
supports) and the optimized shape. This makes it easy to
grasp how small changes can affect the optimized shape.

Continuity principle: Instead of using instant state
changes, we use short continuous transitions between states.
Displaying this transition improves the visual perception of
the state change.

An example of this is found when modelling the opti-
mization problem. This is done by specifying regions, which
are later augmented to have a specific meaning (See Fig. 3).
The regions are defined by inserting 3D models into the
design domain. The user can choose from predefined shapes
(cube, sphere and plane) and other closed surfaces imported
from geometry files. The action of inserting the 3D model
is performed as an animation in which the model falls into
the scene from the sky. This makes it easy to understand the
spatial location of the new region - even when it is partial or
fully occluded.

Another example of continuity is when changing a con-
straint, such as the volume fraction, which gradually causes
the shape to evolve to a new optimum over time.

Consistency principle: By designing the user interac-
tion in a consistent way, the user only needs to learn a few
concepts that can be applied in multiple contexts.

One example is transformation of regions. First, regions
are selected using either a clicking or lasso-selecting ges-
ture. Then, a 3D widget appears in the selection which can
be used for translating, rotating or scaling by dragging one
of its handles, as described in Bowman et al. (2004).

After modelling, each region can be assigned a single
label as a load, a support, or a passive element (forced to be
void or material). Essentially, the labelled region is used as
a consistent way of labeling nodes (for supports) and ele-
ments (for loads and passive elements) inside the region in
the discretized design domain.

3.4 Visualization and navigation

The result of the optimization kernel is a voxel grid with
a density for each element. We use two different methods
for visualizing the result; voxel visualization and a march-
ing cubes visualization as seen in Fig. 4. As opposed to the
2D TopOpt App, the TopOpt 3D App does not use the multi
resolution approach (Nguyen et al. 2010), since smooth
3D visualization is more practically performed using for

3D interactive topology optimization on hand-held devices 1389

Fig. 4 Visualization modes

example marching cubes. Note that the shape generated by
either approach is no longer guaranteed to respect the given
volume constraint.

Voxel visualization displays all elements with a density
above a given threshold. Voxel visualization gives a blocky-
looking result and it is difficult for the user to perceive the
shape due to the uniform shading of the planar faces.

A more visually pleasing solution is to use the march-
ing cubes algorithm (Lorensen and Cline 1987) to extract
a triangular mesh. The extracted mesh is further improved
by removing thin needles, minimizing the curvature energy
using an edge-flipping greedy algorithm (Dyn et al. 2001),

Fig. 5 Modeling a chair (volume fraction 12 %)

Fig. 6 A photo of the topology optimized chair manufactured using a
3D printer

and finally computing the angle-weighted vertex normals.
The mesh is rendered using either smooth shading (Fig. 4b)
or additive blending where the contours of the surface are
highlighted (Fig. 4c).

The opaque visualizations are rendered with two oppo-
sitely directed light sources; a sun light and a darker direc-
tional ambient light. Furthermore, the scene has a simple
skybox where the ground and the sky are used as a visual cue
of the orientation of the camera. To help the user perceive
the shape, a shadow is rendered on the ground.

The ViewCube (Khan et al. 2008) is used both for naviga-
tion and to show the current camera orientation (see Fig. 2).
The navigation is performed by rotating the virtual cam-
era around the design while looking at the center of the

Fig. 7 Shape based on imported heart-shaped geometry

1390 M. Nobel-Jørgensen et al.

Fig. 8 Classic topology optimization examples

design domain. The ViewCube supports both dragging ges-
ture, which changes the elevation and azimuth angle, and
clicking on one of the faces, edges or corners of the cube,
which rotates to the selected view.

4 Results

Figure 5 shows how a chair can be modelled:

– Two regions of supports on the ground are defined.
– The seat is modelled using a horizontal plane with

vertical loads.
– The back-rest is modelled using a vertical plane with

the load direction of the back pointing backwards.

The shape of the chair appears after only 16 itera-
tions. After approximately 150 iterations the chair changes
topology from a three-legged chair into a four-legged chair.

The chair can be modelled in 2-3 minutes using around
60 user actions (clicks or drags). About three-quarters of the
time is spent on actual modelling and the remaining time the
user watches the shape evolve.

Note that Fig. 5 does not show the interactive nature of
the modelling. In a typical use-case the problem will be
modified frequently during the optimization until a desired
shape is found. The optimized chair has been exported from
the app and printed in 3D (Fig. 6).

Figure 7 shows how imported shapes can be used for
modelling problems that would otherwise be cumbersome
to create.

Finally, Fig. 8 shows the modelling and shape of two
standard examples in topology optimization; a cantilever
beam and an L-shaped cantilever.

5 Conclusion

In this paper, we have presented TopOpt 3D, the first topol-
ogy optimization application of its kind which runs on both
computers and handheld devices. The application shows a
new way of modeling shapes where the user does not design
the shape. Rather, the user specifies the constraints the shape

must obey, and the shape emerges through topology opti-
mization. Since the result of the optimization is displayed
interactively, if the result is not as desired, the constraints
may be changed during the optimization process, allowing
for fast design iterations.

TopOpt 3D is mainly created as an educational tool for
teaching topology optimization using a hands-on approach.
By using the app students will learn the concepts of topol-
ogy optimization in a fun and intuitive way. The application
can also be used as a tool for prototyping interesting designs
early in the design process in e.g. architecture and industrial
design engineering.

There are several features which we plan to add to the
App such as multiple load cases and gravitational loads
which both exist in the TopOpt App (2D). In the longer term,
we note that direct manipulation of the geometry is not pos-
sible using the presented work. We do, however, believe it
to be possible to combine direct manipulation (sculpting)
with optimization based shape modeling as discussed in this
paper, and plan to pursue that idea.

Acknowledgments The authors gratefully acknowledge the support
from the Villum foundation through the NextTop project. The authors
would also like to extend their gratitude to the members of the DTU-
TopOpt group for their invaluable input on the design and testing of
the TopOpt 3D App.

References

AMD core math library (2014). http://developer.amd.
com/tools-and-sdks/cpu-development/cpu-libraries/
amd-core-math-library-acml/

BLAS Basic Linear Algebra Subprograms (2014). http://www.netlib.
org/blas/

LAPACK - Linear Algebra PACKage (2014). http://www.netlib.org/
lapack/

Aage N, Andreassen E, Lazarov B (2014) Topology optimization
using PETSc: An easy-to-use, fully parallel, open source topology
optimization framework. Structural and Multidisciplinary Opti-
mization, pp 1–8. doi:10.1007/s00158-014-1157-0

Aage N, Nobel-Jørgensen M, Andreasen C, Sigmund O (2013) Inter-
active topology optimization on hand-held devices. Struct Multi-
discip Optim 47(1):1–6

Amir O, Aage N, Lazarov B (2014) On multigrid-CG for efficient
topology optimization. Struct Multidiscip Optim 49(5):815–829.
doi:10.1007/s00158-013-1015-5

Bendsøe M, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods
Appl Mech Eng 71:197–224

Bendsøe M, Sigmund O (2003) Topology optimization: theory, meth-
ods and applications. Engineering online library. Springer

Bowman DA, Kruijff E, LaViola Jr JJ, Poupyrev I (2004) 3D User
Interfaces: Theory and Practice. Addison-Wesley Professional

Davis T, Duff I, Amestoy P, Gilbert J, Larimore S, Natarajan EP,
Chen Y, Hager W, Rajamanickam S (2014) Suite sparse: a suite of
sparse matrix packages. http://www.cise.ufl.edu/research/sparse/
SuiteSparse/

3D interactive topology optimization on hand-held devices 1391

Dyn N, Hormann K, Kim SJ, Levin D (2001) Optimizing 3d triangula-
tions using discrete curvature analysis. Mathematical methods for
curves and surfaces, pp 135–146

Khan A, Mordatch I, Fitzmaurice G, Matejka J, Kurtenbach G (2008)
ViewCube: a 3d orientation indicator and controller. In: Proceed-
ings of the 2008 symposium on Interactive 3D graphics and games.
ACM, pp 17–25

Lorensen WE, Cline HE (1987) Marching cubes: A high resolution
3d surface construction algorithm. In: ACM Siggraph Computer
Graphics, vol 21. ACM, pp 163–169

Miller RB (1968) Response time in man-computer conversational
transactions. In: Proceedings of the December 9-11, 1968, fall
joint computer conference, part I. ACM, pp 267–277

Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational
paradigm for multiresolution topology optimization (mtop). Struct
Multidisc Optim 41:525–539. doi:10.1007/s00158-009-0443-8

Nielsen J (1993) Usability engineering. Academic Press Inc
Nielsen J (1994) Usability engineering. Elsevier
Rooney B (2011) The wall street journal: ipad 2 more powerful than

1990s supercomputer. http://blogs.wsj.com/tech-europe/2011/05/
11/ipad-2-more-powerful-than-1990s-supercomputer/. Accessed
30 June 2014

Sigmund O (2001) A 99 line topology optimization code written
in Matlab. Structural and Multidisciplinary Optimization (1999),
pp 120–127

Sigmund O, Maute K (2013) Topology optimization approaches.
Struct Multidiscip Optim 48(6):1031–1055

Tcherniak D, Sigmund O (2001) A web-based topology optimization
program. Struct Multidiscip Optim 22(3):179–187

Tognazzini B (2014) First principles of interaction
design (revised & expanded). http://asktog.com/atc/
principles-of-interaction-design/. Accessed 5 Oct 2014

Appendix C

Paper C: Improving
topology optimization

intuition through games

Nobel-Jørgensen, Morten, Malmgren-Hansen, D., Bærentzen, J. A., Sigmund,
O., Aage, N. (2015). Improving topology optimization intuition through
games. (Submitted)

Noname manuscript No.
(will be inserted by the editor)

Improving topology optimization intuition through games

Morten Nobel-Jørgensen · David Malmgren-Hansen · J. Andreas
Bærentzen · Ole Sigmund · Niels Aage

Received: date / Accepted: date

Abstract This paper describes the educational game,
TopOpt Game, which invites the player to solve various

optimization challenges. The main purpose of gamify-
ing topology optimization is to create a supplemental
educational tool which can be used to introduce con-

cepts of topology optimization to newcomers as well as
to train human intuition of topology optimization. The
players are challenged to solve the standard minimum
compliance problem in 2D by distributing material in

a design domain given a number of loads and supports
with a material constraint. A statistical analysis of the
gameplay data shows that players achieve higher scores

the more they play the game. The game is freely avail-
able for the iOS platform at Apple’s App Store and
at http://www.topopt.dtu.dk/?q=node/909 for Win-

dows and OSX.

Keywords Interactive · Topology optimization · Gam-
ification · Smartphones · Tablets · PDE constrained

optimization

1 Introduction

Topology optimization has for the past two and a half

decade made a great impact on the design of struc-

The authors acknowledge the support from the Villum foun-
dation through the NextTop project.

M. Nobel-Jørgensen · D. Malmgren-Hansen · J. A. Bærentzen
Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Asmussens Alle,
B.305, 2800 Kgs. Lyngby, Denmark
E-mail: mono@dtu.dk

N. Aage · O. Sigmund
Department of Mechanical Engineering, Solid Mechanics,
Technical University of Denmark, Nils Koppels Alle,
B.404, 2800 Kgs. Lyngby, Denmark

tures and mechanical elements. The method is used
in many different fields of engineering and can be ap-

plied on many different scales, from designing micro-
structures to large-scale constructions such as ships,
skyscrapers and aircrafts. Topology optimization is usu-

ally performed as a discrete step in the design process
- often integrated with CAD software. Even though
topology optimization algorithms are able to find good

solutions to most problems, it is important for their
users to have a good intuition for the method in or-
der to get a feel of the process and be able to identify
cases where the algorithms clearly get stuck at a lo-

cal minimum. In cases where topology optimization is
not used in the design process, due to time or resource
constraints, the final design relies on performance of the

”human topology optimization”, where a good intuition
is critical.

This article describes how we have transformed the
topology optimization problem into a game in order to
train human intuition for the problem. The game can be
used as an educational game in topology optimization

lectures – or it can be played by people with no ex-
perience in the field. By anonymously tracking players’
progress in the game we are able to estimate people’s

topology optimization intuition and how this intuition
progresses the more times a single user plays.

By gamifying topology optimization we are also aim-
ing at heightening the awareness of the field for a broader
audience.

2 Related work

Gamification, where game elements and game design

are added to non-game contexts, can be used to improve
the user experience and user engagement [4]. Gamifica-

2 Morten Nobel-Jørgensen et al.

tion is used in various places, including science, where it
has helped research in protein folding. Computing how
proteins fold is a hard non-convex optimization prob-
lem, and finding good foldings is crucial for understand-

ing, and potentially curing, diseases like Alzheimer’s,
Parkinson’s and some types of cancers. Two famous
gamification projects using protein folding are:

– Folding@home turns consumers’ computers into
one big distributed computer by utilizing the com-

puter’s idle time to perform the heavy computa-
tions. Folding@home uses a scoreboard (both per-
sonal and team-based) as a way to motivate people

to run the software on their computer [2].
– FoldIt has a different take on protein folding. The

creators have turned protein folding into a game by
abstracting the mathematical problem into easily

understandable metaphors. In FoldIt, users compete
(individually or in groups) to come up with the best
folding. In some cases, the player performance can

even beat the solutions found by existing protein
algorithms. User behavior in FoldIt has been studied
in order to extract strategies to improve the protein

folding algorithms [5].

The two protein-folding projects also have the pos-

itive side effect of increasing people’s awareness of the
protein-folding problem and its related diseases.

The work presented here is related to the TopOpt
app [1], where topology optimization is solved in an in-

teractive manner. Some elements of the user interface
have been reused as well as parts of the topology opti-
mization kernel. One feature that has not been reused is

the multiresolution topology optimization scheme MTOP
[6], since this method does not penalize solutions which
are not watertight. This had the implication that so-

lutions where the material was separated by an empty
row or column on the fine grid were evaluated as if they
were connected.

The TopOpt Game app was launched for iOS and

PC on the 28th of August 2014.

3 Problem formulation

The optimization problem we ask the player to solve

in the TopOpt Game is the standard minimum compli-
ance design problem for linear elasticity [3]. Following
a finite element (FE) discretization, the classical topol-

ogy optimization problem can be stated in a discrete
form using the density approach [8] as

Fig. 1: Gameplay: While the user paints a solution the

game provides feedback in terms of a score and by vi-
sualizing the strain energy density using the jet color
scheme.

min
ρ∈Rn

φ(u,ρ) = F Tu

s.t. K(ρ)u = F
V (ρ)/V ∗ − 1 ≤ 0
ρi ∈ {ρmin, 1} , i = 1, . . . , n

(1)

where φ = F Tu is compliance, ρ is a vector of n ele-
ment densities (design variables), u and F are the nodal

displacement and force vectors, respectively, K(ρ) is
the global stiffness matrix, and V (ρ)/V ∗− 1 ≤ 0 is the
volume constraint. Finally, ρmin is a lower bound on
the design variables.

During level design, a baseline compliance is found
using the solver from [1], where each design variable can
have a value between ρmin and 1. The baseline compli-

ance is used for rating the player performance in terms
of 0-3 stars. The actual rating mapping is adjusted to
the difficulty of each problem during level design.

4 Game design and implementation

TopOpt Game is inspired by puzzle-games (a genre of

computer games), which constantly challenge the play-
ers and give rewards when progress is made. This en-

Improving topology optimization intuition through games 3

Fig. 2: Score graph: Sliding the handle left or right al-
lows easy backtracking.

gagement loop will take the player on a journey start-
ing with simple problems with few supports and a sin-

gle load and gradually increase the difficulty by adding
more loads, restrictions on the design domain, distributed
loads and multiple load cases.

The goal of the game is to distribute a constrained

amount of material in a design domain in order to min-
imize compliance (and hence maximize stiffness). The
player must find the best material distribution which

connects all the loads with the relevant support regions
before a timer runs out. Figure 1 shows a typical game-
play. If too much material has been used, the player is
penalized by setting the score to zero.

The way material is distributed is inspired by brush
strokes in painting programs; The player selects the add
or remove material state and a brush type, and then

makes a drag-gesture in the design domain. There also
exist two specialized tools which add or remove ele-
ments only on the boundary of the structure. As a vi-
sual cue, a particle effect helps illustrate how elements

are constructed or dissolved when using the draw tools.
Note that the design elements within the design domain
either have material or are void; ”graylevel” elements

are not allowed in order to simplify the user interaction.

To ensure a good responsiveness of the user inter-
face, we use multiple threads. The main thread is re-
sponsible for updating the user interface, listening for

events, and rendering the game. Another thread evalu-
ates the compliance of the current structure in an asyn-
chronously way. When the compliance has been evalu-

ated, the value is displayed to the player as well as
a score (a scaled multiplicative inverse of the compli-
ance). We found that maximizing a value (score) is a
much more intuitive goal than minimizing a value.

The score is the most important user interface ele-
ment and it is very important that the player is able to
see if a change has a positive or negative consequence.

For this reason the score is visualized in two compli-
mentary ways:

– A score label which accurately shows the exact
score to the player as a number. It is easy to com-

pare this with a previous highscore (also shown as
a label).

– A score graph which allows the player to see the

development of the score over time, as shown in 2.
Changes to the graph are smoothly animated, which
makes it easy to grasp when the score increases.

The score graph also shows three important score
milestones as horizontal lines for a two-star rating,
a three-star rating and previous highscore (if any).

Besides visualizing the score, the score graph also
serves two other purposes: It works as the game timer,
showing the player how much time remains, and the

handle below the graph allows the player to easily back-
track the solution to any previous evaluated state by
dragging the handle to a previous time point.

When the player is out of time, or is submitting the

level, the score is compared to a baseline score and the
player’s solution is rated from 0 to 3 stars. We use this
simplified rating system to give a clear indication of the

player performance.

The player is also able to compete against himself or
herself, trying to beat his/hers best score. In addition,
the game is on iOS integrated with GameCenter. Using

GameCenter, a detailed leaderboard for each level is
available as well as the option of challenging friends if
a good solution to a level is found.

When a level has been played, gameplay informa-

tion is sent to a server. The gameplay information con-
tains all information about the player performance dur-
ing gameplay, including every evaluated action that the

player performs as well as score and compliance of each
action.

5 Level editor

One of the biggest challenges in creating the game was
how to create interesting and fun topology optimization

problems. One option would be to create procedurally
generated levels containing topology optimization prob-
lems created by parameters such as difficulty and time

complexity. However, we found that this idea would be
a too hard problem to solve and instead decided to man-
ually craft the levels.

To make level design easy, we have built a level ed-

itor similar to the user-interface used in TopOpt app
[1].

A user can create a level by defining the size of the
design domain followed by removing or adding elements

using a drawing tool.

The level is then augmented with loads and sup-
ports, which are inserted onto the nodes of the grid and
optionally distributed horizontally or vertically. Figure

3 shows the steps of designing a level.

4 Morten Nobel-Jørgensen et al.

(a) Defining the design domain (size and excluded
elements)

(b) Adding loads and supports

Fig. 3: Designing a level in the built-in level editor

When a level has been designed and some additional
properties (time, name, category, volume fraction) have
been specified it can be play-tested to find out if it
works as intended.

User-generated levels are private and only visible to
the player who created them. However, the user has the
option to suggest a custom level as a global level, and
in time this will increase the number of global levels.

Members of the DTU TopOpt group created the ini-

tial global levels in the game. The levels include clas-
sic topology optimization problems such as cantilever
and L-shaped cantilever. A recent addition to the set

of levels is the Zhou-Rozvany problem [9], which is in-
teresting since it is one of the few cases where we know

the global optimum and where many numerical TopOpt
approaches fail.

6 Results

To evaluate whether playing the game actually improves
players’ intuition about topology optimization, we have

analyzed the gameplay data to find a relationship be-
tween the number of games a person has played and
the score he achieves. Since the analysis is performed
on data from uncontrolled usage, we make the following

assumptions:

1. Each player (registered or unregistered) corresponds
to a single person.

2. In each completed gameplay the player strives for

the maximum score.
3. There is a correlation between obtaining a high score

in the game and having a good intuition about topol-

ogy optimization. Hereby we neglect the performance
gain of both learning the user interface, as well as
known solutions from previous gameplays of the same

or similar kind.

The following analysis is based on gameplay data
from the global levels. It consists of gameplay observa-
tions with the variables listed below:

– Player ID
– Level ID

– Experience (number of games the player has played
prior to current gameplay).

– Score (reciprocal of compliance).
– Normalized score (The score divided by the maxi-

mum score achieved at the current Level ID).

The normalized score was introduced to remove the

effect of different complexities across levels.
A gameplay sometimes has the final score of 0. This

usually means that the player broke the volume con-

straint at end of the game and did not have time to
undo the action. We found that these cases do not tell
us much about the player’s topology optimization intu-

ition and therefore removed such observations from the
analysis.

In fig 4 the normalized scores of all observations
are plotted as a function of experience. It is seen how

the density of the observations decreases with experi-
ence. As players individually decide how many game-
plays they play, our observations are not balanced at all

experiences. In fact only 13 players have played more
than 50 times at the time of writing. This gives an in-
creased uncertainty for higher experiences.

In figure 4 we have applied a Linear Mixed-Effect (LME)1

1 Fitted with R-library lmerTest

Improving topology optimization intuition through games 5

0.00

0.25

0.50

0.75

1.00

0 50 100 150
Experience

N
or

m
M

ax

Fig. 4: Normalized score based on experience with Lin-
ear Mixed-Effect model fit (red line).
NormScore = 0.0038 ∗ Experience+ 0.3861

0.00

0.25

0.50

0.75

1.00

0 50 100 150
Experience

N
or
m
M
ax

"linear"
linear

count
25
50
75
100

Count up to

95% conf.
interval

Fig. 5: Linear Regression on averaged data with 95%
confidence intervals. LM fits in intervals of 50 experi-
ence. Linear Model from 1 to 50:

slope = 0.003(pvalue = 0.01)
intercept = 0.405(pvalue < 0.001)
R2 = 0.44

model to the observations. The players cannot be as-
sumed to have equal skills prior to playing this game,

as some are already familiar with topology optimization
while others are new to the topic. This might affect their
starting score, but also their learning curve (increase of

score as a function of experience). An LME model is
suitable to adjust for this, as it can take into account
that a variable has independent variance.

Even though we achieve significant parameters (<0.001)

in the model for both slope and intercept, it is visually
clear that the data is somewhat noisy. This is due to the
fact that, even though players averagely improve with

experience, they tend to still have occasionally “bad”
gameplays with low score (see figure 4). Because of this,

we analyze the data with a different approach as well. In

figure 5 we have averaged all players for each experience
level and instead of the LME approach we fit a standard
Linear Model. Since the density of the original observa-

tions is so poor for experiences over 50 (seen by the size
of dots in figure 5), we have shown a linear regression
separately for experience intervals of 50. From the plot

of confidence intervals on the figure, it is clearly seen
how much uncertainty there is to modelling the higher
experiences.
Table 1 shows the normalized score averaged across all

players in experience intervals of 10 steps. The vari-
ance within the interval is also calculated along with
the count of observations.

Experience mean var obvs
10 0.4016 0.0858 1000
20 0.4611 0.0979 637
30 0.4605 0.0929 347
40 0.5237 0.0943 214
50 0.5202 0.1072 148
60 0.5317 0.0977 84
70 0.6753 0.0693 82
80 0.6515 0.0751 55
90 0.6983 0.0676 36

100 0.6107 0.0879 32
110 0.6101 0.0656 31
120 0.4938 0.0784 19
130 0.4830 0.0470 16
140 0.5819 0.0504 9
150 0.4927 0.1209 8

Table 1: Normalized score averaged across all players

Table 1 shows the same trend as the linear regression
model from Figure 5, with an increasing mean score
up to an experience of around 90 gameplays. After 90

gameplays the mean score drops and so do the number
of observations.

7 Conclusion

In this paper, we have presented the TopOpt Game, an
educational game which allows players to learn topology
optimization by finding good solutions to given prob-

lems. The game shows a new way of teaching topology
optimization, by which the students get familiar with
the overall concepts. Using the game as a supplement
to traditional MATLAB-based teaching allows students

to compete against each other and to get a feel for how
hard a problem topology optimization is.

We have shown that players averagely increase their

score as they become more experienced. We encoun-
tered difficulties analyzing high experience due to lack

6 Morten Nobel-Jørgensen et al.

of observations here. The trend of increasing score with
increasing experience seems very strong up to values of
90. Whether the trend decreases because of a saturated
learning curve or actually continues, is not possible to

answer with the data collected, but the overall trend is
clear.
Other than lack of observations our problems in the

analysis might be found in the assumptions we state.
Referring to the Results section, assumptions 1 and 2
are critical, but probably not always met. We have no

guarantee that a player corresponds to a single person
and this leads to a source of uncertainty in our analy-
sis. Also, that players may not always perform, or strive,
their best in every single gameplay misled the analysis.

Players might be distracted during playing or try a silly
solution out of curiosity.

One future simplification of the game is to let the
game enforce the volume constraint. This should make

the gameplay slightly easier, since players have one less
thing to think about and it should have a positive effect
on the learning rate when the data is analyzed.

When more gameplay data has been gathered, it

could be interesting to investigate the data more thor-
oughly to unveil the underlying strategies humans use
to solve topology optimization. Potentially, this could
lead to improvements of existing topology optimization

algorithms. It would also be interesting to analyze the
data to see if some types of problems are particular hard
to solve for humans in order to identify typical pitfalls

to be aware of. This includes a further investigation of
the Zhou-Rozvany problem where the global optimum
is known.
In relation to this, a new experiment could involve a

test group of 10-20 persons. Letting these players play
the game in a controlled environment would improve
the chances of the first two assumptions in section 6 to

be true. By testing statistically whether the test groups’
performance deviates significantly from the other data,
it could help reveal whether the assumptions are right.

Furthermore the group could get a set of different topol-
ogy optimization tasks before and after playing the
game in order to see whether it improved their skills
in this.

The topology optimization game could also be ex-

tended to 3D (similar to TopOpt App 3D [7]), where
voxels could be added or removed by using a paint-
ing gesture on existing material similar to the popular

game, Minecraft. Moving to 3D does add some addi-
tional challenges, such as visualizing strain energy den-
sity inside a volume.

Acknowledgements The authors would like to extend their
gratitude to the members of the TopOpt and NextTop groups

at DTU for their invaluable input to the design and testing
of the TopOpt Game.

References

1. Aage, N., Nobel-Jørgensen, M., Andreasen, C., Sigmund,
O.: Interactive topology optimization on hand-held de-
vices. Structural and Multidisciplinary Optimization
47(1), 1–6 (2013)

2. Beberg, A., Ensign, D., Jayachandran, G., Khaliq, S.,
Pande, V.: Folding@home: Lessons from eight years of
volunteer distributed computing. In: Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Sym-
posium on, pp. 1–8 (2009). DOI 10.1109/IPDPS.2009.
5160922

3. Bendsøe, M., Sigmund, O.: Topology Optimization: The-
ory, Methods and Applications. Engineering online library.
Springer (2003)

4. Deterding, S., Sicart, M., Nacke, L., O’Hara, K., Dixon,
D.: Gamification. using game-design elements in non-
gaming contexts. In: CHI ’11 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’11, pp.
2425–2428. ACM, New York, NY, USA (2011). DOI
10.1145/1979742.1979575. URL http://doi.acm.org/10.

1145/1979742.1979575

5. Khatib, F., Cooper, S., Tyka, M.D., Xu, K., Makedon, I.,
Popović, Z., Baker, D., Players, F.: Algorithm discovery
by protein folding game players. Proceedings of the Na-
tional Academy of Sciences 108(47), 18,949–18,953 (2011).
DOI 10.1073/pnas.1115898108. URL http://www.pnas.

org/content/108/47/18949.abstract

6. Nguyen, T., Paulino, G., Song, J., Le, C.: A computa-
tional paradigm for multiresolution topology optimization
(mtop). Structural and Multidisciplinary Optimization
41(4), 525–539 (2010). DOI 10.1007/s00158-009-0443-8.
URL http://dx.doi.org/10.1007/s00158-009-0443-8

7. Nobel-Jørgensen, M., Aage, N., Nyman Christiansen, A.,
Igarashi, T., Andreas Bærentzen, J., Sigmund, O.: 3d
interactive topology optimization on hand-held devices.
Structural and Multidisciplinary Optimization pp. 1–7
(2014). DOI 10.1007/s00158-014-1214-8. URL http:

//dx.doi.org/10.1007/s00158-014-1214-8

8. Sigmund, O., Maute, K.: Topology optimization ap-
proaches. Structural and Multidisciplinary Optimization
48(6), 1031–1055 (2013)

9. Zhou, M., Rozvany, G.: On the validity of eso type meth-
ods in topology optimization. Structural and Multidis-
ciplinary Optimization 21(1), 80–83 (2001). DOI 10.
1007/s001580050170. URL http://dx.doi.org/10.1007/

s001580050170

112 Paper C: Improving topology optimization intuition through games

Appendix D

Summary of other
publications

The following gives a short description of my additional publications found in
the list in the Publications chapter.

Besides the journal article included in Paper A, the TopOpt App was also
presented in the talk “Interactive topology optimization” at the 6th European
Congress on Computational Methods in Applied Sciences and Engineering in
2012.

I also made contributions to the work of the DSC based Topology Optimization,
where Asger Nyman Christiansen was the main author and main contributor.
These contributions ranged from discussions of the concepts, implementation
details as well as visualization. This work was presented in the WCSMO-10
talk “Topology optimization using an explicit interface representation” and in
the journal articles “Topology optimization using an explicit interface represen-
tation” (Structural and Multidisciplinary Optimization) and “Combined shape
and topology optimization of 3D structures” (Computers & Graphics).

I also gave a poster presentation in Siggraph Asia 2013 with the work of “Pond
of Illusion: Interacting through Mixed Reality”. The topic presented here was
an example of how virtual reality and the real world could be mixed in an

114 Summary of other publications

(a) Concepts (b) Example usage

Figure D.1: Pond of illusion with multiple views into the virtual space. Notice
how it is possible to see out on the other side of the virtual space.

interactive installation which our group had made as a showcase. Figure D.1
shows how the virtual space is created using two screens each with a Microsoft
Kinect camera attached.

Finally, I have helped with the paper “Using 3D Models to Annotate SAR Im-
ages for Objective Segmentation Performance Measures” where I contributed
with creating software for projecting 3D models used for estimating SAR image
targets.

Appendix E

Download statistics and
user reviews

Table E.1 shows the number of downloads and unique users for the four ap-
plications. Web is the Unity Web Plugin, whereas PC is Windows or OS/X
applications.

iOS (*) Android (*) Web (#) PC (#) Total
TopOpt App (2012) 8,500 4,400 8,200 21,100
FFEM App (2013) 2,100 1,300 3,400
TopOpt 3D App (2014) 2,000 400 2,400
TopOpt Game (2014) 500 100 600
Total 13,100 5,700 8,200 500 27,500

Table E.1: Download (*) and unique user (#) statistics for the applications as
of June 2015. Rounded to nearest hundred.

116 Download statistics and user reviews

User reviews

The following is a complete list of user reviews from Apples AppStore for iOS
and Googles Play app-store for Android apps.

iOS - TopOpt App

AppStore Stars Title and Description Username
Denmark 5 Unique app! Everyone interested in solid mechanics should check

out this app!
Sørmand

Denmark 5 Great app. Super educational app - a lot of fun. C. Niordson
Australia 1 Sub standard. Very poor graphics, substandard app, total waste of

time.
Churchiesj

Brazil 5 Amazing App. I’m a Mechanical Engineering student here in Brazil,
and this app is very interesting for Mechanics of Solids.

Rafael.Jost

Germany 5 Sehr schön! Macht die Topologie-Optimierung anschaulich und
greifbar! (Translated: Very nice! The power topology optimiza-
tion vividly and tangibly!)

Deejot

Luxembourg 3 Seems to be useful but ... How to change default boundary condi-
tions ???

cedric2080

Netherlands 4 Optimization at your fingertips. Cool little tool to play with. Not
yet likely to be used in designing anything, but it sure is fun to
see how the shapes come about! Recent updates have made it more
versatile and realistic.

AL-hunter

Taiwan 5 Cool. Nice SIMP implementation. hueyke
Turkey 5 Basarılı. Topolojik optimizasyon konusunda basit ama güzel bir

uygulama. (Translated: Successful. Topological optimization ap-
plication simple but nice.)

ObjektifGorus

USA 5 Fantastic! A very first ! Ben-msu
USA 5 I love it!!! It’s amazing to freely reset the boundaries and loading

with intuitive click. I love it!!!
figureedge

Average rating: 4.36 / 5.00.

Android - TopOpt App

117

Stars Title and Description Username
5 Us Not the Show original review pitsanu parabab
5 thanks seeing such an advanced appplication like this is heart warming . This

helps both researchers and engineering students to get familiar with an ad-
vanced structural design philosophy . i hope to see a more video lectures
about this applucation and a more clarifying tutorial.

Mohamed Abdellah

5 Optimal Kai Habermehl
5 Best! It’s so amazing!! Sonbyeongjin
5 Dr.optim Ifjohn
5 I am sure that you will like it. Jiefan Zhao
5 Amazing Kishen Chatra
5 Nice Abdullah Waseem
5 Excelente (Translated: Excellent) Andrés Quiceno
5 Super optimisation tool Very good tool to give awareness for optimisation

capabilities. Works excellent.
Matthias Hegenbart

5 Cool! Mariusz Kuzniar
5 Absolutely amazing. Great code and it runs in a smartphone. Daniel Häffelin
5 Can’t exit. I had to "hard reboot" to exit this app because it fails to follow

android standards. It was otherwise cool.
Rebecca Brannon

5 Great toy. Nice tool - great for teaching the basics of topology optimization
to students

Niels Aage

5 Excellent app. Have used the website for years and have been even more
impressed by this implementation. The only way I could see it being better
would be if you could have an image in the background to help you setup the
geometry.

Richard Gowland

5 Good A Google User
5 Epic A Google User
5 Amazing. A Google User
5 Great on my Asus Transformer Prime. Works really well on my Asus Trans-

former Prime tablet.
A Google User

5 Awesome! Great to show off in fron of fellow optimization researchers. Real-
time operation is definitely the strongest point of this app. Heartily recom-
mend.

A Google User

5 Optimal app. The app can be used to optimize the design of an unlimited
number of structures. Only your imagination limits you! And it only takes a
short time to learn how to use it, which is nice.

A Google User

5 Cool. How cool that I can do structural optimization on my smart phone A Google User

Average rating (based on 75 reviews): 4.65 / 5.00

iOS - FFEM

AppStore Stars Title and Description Username
USA 5 Cool. Very Nice , useful. Thanx 2033 gf
Italy 4 Very funny. Very funny app. The feature that allow to fix and lock

imposed displacement is very nice. For 5 stars if there be also spring
and load or dumper.

Marco Castelli

Germany 5 Good worke. 2. good App Keep going :D Fisch3g
Denmark 5 FFEM. Very good idea and it makes it easier to undestand what is

happening in the specimen. Well done.
Betonmanden

Denmark 5 Cool! Great tool for illustrating and understanding basic mechanics! Sørmand

Average rating: 4.8 / 5.00.

Android - FFEM

Stars Title and Description Username
5 Cool! Great for first year mechanical / civil engineering students

and others interested is solid mechanics!
Søren Madsen

5 A great little app It is great fun to manipulate the small, simple
little structures that you can make in this app simply by the touch
of your fingers and see the results right away.

Mads Rune Lykke Christensen

5 Great tool! Great tool for illustrating and understanding basic me-
chanics.

Nis Peter Lange

Average rating (based on 20 reviews): 4.00 / 5.00

118 Download statistics and user reviews

Bibliography

[AAL14] Oded Amir, Niels Aage, and Boyan S Lazarov. On multigrid-cg for
efficient topology optimization. Structural and Multidisciplinary
Optimization, 49(5):815–829, 2014.

[BA05] J Andreas Baerentzen and Henrik Aanaes. Signed distance compu-
tation using the angle weighted pseudonormal. Visualization and
Computer Graphics, IEEE Transactions on, 11(3):243–253, 2005.

[Bat08] Klaus-Jürgen Bathe. Finite element method. Wiley encyclopedia
of computer science and engineering, 2008.

[Ben89] M. Bendsøe. Optimal shape design as a material distribution prob-
lem. Structural Optimization, 1:193–202, 1989.

[Ben15] The computer language benchmarks game. http:
//benchmarksgame.alioth.debian.org/u32/compare.php?
lang=v8&lang2=gcc, 2015.

[Bor01] Jan O Borchers. A pattern approach to interaction design. Ai &
Society, 15(4):359–376, 2001.

[Bri15] Peter Bright. The web is getting its bytecode: Webassem-
bly. http://arstechnica.com/information-technology/2015/
06/the-web-is-getting-its-bytecode-webassembly/, 2015.

[BS99] Martin P Bendsøe and Ole Sigmund. Material interpolation
schemes in topology optimization. Archive of applied mechanics,
69(9-10):635–654, 1999.

http://benchmarksgame.alioth.debian.org/u32/compare.php?lang=v8&lang2=gcc
http://benchmarksgame.alioth.debian.org/u32/compare.php?lang=v8&lang2=gcc
http://benchmarksgame.alioth.debian.org/u32/compare.php?lang=v8&lang2=gcc
http://arstechnica.com/information-technology/2015/06/the-web-is-getting-its-bytecode-webassembly/
http://arstechnica.com/information-technology/2015/06/the-web-is-getting-its-bytecode-webassembly/

120 BIBLIOGRAPHY

[BS03] Martin Philip Bendsoe and Ole Sigmund. Topology optimization:
theory, methods and applications. Springer Science & Business Me-
dia, 2003.

[C+07] Robert D Cook et al. Concepts and applications of finite element
analysis. John Wiley & Sons, 2007.

[CAS14] Anders Clausen, Niels Aage, and Ole Sigmund. Topology opti-
mization with flexible void area. Structural and Multidisciplinary
Optimization, pages 1–17, 2014.

[CAS15] Anders Clausen, Niels Aage, and Ole Sigmund. Topology optimiza-
tion of coated structures and material interface problems. Com-
puter Methods in Applied Mechanics and Engineering, 290:524–
541, 2015.

[CBNJ+15] Asger Nyman Christiansen, J Andreas Bærentzen, Morten Nobel-
Jørgensen, Niels Aage, and Ole Sigmund. Combined shape and
topology optimization of 3d structures. Computers & Graphics,
46:25–35, 2015.

[CBS] Asger Nyman Christiansen, Jakob Andreas Bærentzen, and Ole
Sigmund. Combined Shape and Topology Optimization. PhD thesis,
Technical University of DenmarkDanmarks Tekniske Universitet,
Department of Solid MechanicsInstitut for Faststofmekanik.

[CHH98] José C Castillo, H Rex Hartson, and Deborah Hix. Remote usabil-
ity evaluation: can users report their own critical incidents? In
CHI 98 Cconference Summary on Human Factors in Computing
Systems, pages 253–254. ACM, 1998.

[CM01] Sandra Cairncross and Mike Mannion. Interactive multimedia and
learning: Realizing the benefits. Innovations in Education and
Teaching International, 38(2):156–164, 2001.

[CNJA+14] Asger Nyman Christiansen, Morten Nobel-Jørgensen, Niels Aage,
Ole Sigmund, and Jakob Andreas Bærentzen. Topology optimiza-
tion using an explicit interface representation. Structural and Mul-
tidisciplinary Optimization, 49(3):387–399, 2014.

[CSB14] Asger Nyman Christiansen, Ryan Schmidt, and Jakob Andreas
Bærentzen. Automatic balancing of 3d models. Computer-Aided
Design, 58(Januar 2015):236–241, 2014.

[CTAS14] Asger Nyman Christiansen, Daniel A Tortorelli, Niels Aage, and
Ole Sigmund. Combined shape and topology optimization for min-
imization of von mises stress. In 4th International Conference on
Engineering Optimization, 2014.

BIBLIOGRAPHY 121

[DFAB03] Alan Dix, Janet E. Finlay, Gregory D. Abowd, and Russell Beale.
Human-Computer Interaction (3rd Edition). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 2003.

[DGAJ08] Frederic De Gournay, Grégoire Allaire, and François Jouve. Shape
and topology optimization of the robust compliance via the level
set method. ESAIM: Control, Optimisation and Calculus of Vari-
ations, 14(01):43–70, 2008.

[DHKL01] Nira Dyn, Kai Hormann, Sun-Jeong Kim, and David Levin. Opti-
mizing 3d triangulations using discrete curvature analysis. Mathe-
matical methods for curves and surfaces, pages 135–146, 2001.

[EKS94] Hans A Eschenauer, Vladimir V Kobelev, and A Schumacher. Bub-
ble method for topology and shape optimization of structures.
Structural optimization, 8(1):42–51, 1994.

[ES84] K Anders Ericsson and Herbert Alexander Simon. Protocol analy-
sis. MIT-press, 1984.

[Fie88] David A Field. Laplacian smoothing and delaunay triangula-
tions. Communications in applied numerical methods, 4(6):709–
712, 1988.

[FNTP03] Raúl A Feijóo, Antonio A Novotny, Edgardo Taroco, and Claudio
Padra. The topological derivative for the poisson’s problem. Math-
ematical Models and Methods in Applied Sciences, 13(12):1825–
1844, 2003.

[GGM00] S Garreau, P Guillaume, and M Masmoudi. The topological
asymptotic for pde systems. 2000.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education, 1994.

[Gra03] Ian Graham. A pattern language for web usability. Addison-Wesley
Amsterdam, 2003.

[IMT99] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy:
A sketching interface for 3d freeform design. In Proceedings of the
26th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’99, pages 409–416, New York, NY, USA,
1999. ACM Press/Addison-Wesley Publishing Co.

[JFY07] Per A Jonasson, Morten Fjeld, and Aiko Fallas Yamashita. Expert
habits vs. ui improvements: re-design of a room booking system.
In Proceedings of the 21st British HCI Group Annual Conference

122 BIBLIOGRAPHY

on People and Computers: HCI... but not as we know it-Volume
2, pages 51–54. British Computer Society, 2007.

[Kli80] GT Klincsek. Minimal triangulations of polygonal domains. Annals
of Discrete Mathematics, 9:121–123, 1980.

[KMF+08] Azam Khan, Igor Mordatch, George Fitzmaurice, Justin Matejka,
and Gordon Kurtenbach. ViewCube: a 3d orientation indicator
and controller. In Proceedings of the 2008 symposium on Interactive
3D graphics and games, pages 17–25. ACM, 2008.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH
Comput. Graph., 21(4):163–169, August 1987.

[MAB10] Marek Krzysztof Misztal, François Anton, and Jakob Andreas
Bærentzen. Deformable simplicial complexes. PhD thesis, Tech-
nical University of DenmarkDanmarks Tekniske Universitet, De-
partment of AutomationInstitut for Automation, 2010.

[MB90] Rolf Molich and Ballerup. Heuristic Evaluation of User Interfaces.
CHI ’90 Proceedings, (April):249–256, 1990.

[MB12] Marek Krzysztof Misztal and Jakob Andreas Bærentzen. Topology-
adaptive interface tracking using the deformable simplicial com-
plex. ACM Trans. Graph., 31(3):24:1–24:12, June 2012.

[MEB+14] M.K. Misztal, K. Erleben, A. Bargteil, J. Fursund, B.B. Chris-
tensen, J. Andreas Bærentzen, and R. Bridson. Multiphase flow
of immiscible fluids on unstructured moving meshes. Visualization
and Computer Graphics, IEEE Transactions on, 20(1):4–16, Jan
2014.

[Mle92] H. P. Mlejnek. Some aspects of the genesis of structures. Structural
Optimization, 5:64–69, 1992.

[Nie93] Jakob Nielsen. Response times: The 3 impor-
tant limits. http://www.nngroup.com/articles/
response-times-3-important-limits/, 1993.

[Nie95] Jakob Nielsen. 10 usability heuristics for user in-
terface design. http://www.nngroup.com/articles/
ten-usability-heuristics/, 1995.

[Nie13] Jakob Nielsen. Windows 8 — disappointing usability for both
novice and power users. http://www.nngroup.com/articles/
windows-8-disappointing-usability/, 2013.

http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/windows-8-disappointing-usability/
http://www.nngroup.com/articles/windows-8-disappointing-usability/

BIBLIOGRAPHY 123

[Nor02] Donald A Norman. The design of everyday things. Basic books,
2002.

[NPSL10] Tam H Nguyen, Glaucio H Paulino, Junho Song, and Chau H Le. A
computational paradigm for multiresolution topology optimization
(mtop). Structural and Multidisciplinary Optimization, 41(4):525–
539, 2010.

[OSSJ09] Luke Olsen, Faramarz F Samavati, Mario Costa Sousa, and
Joaquim A Jorge. Sketch-based modeling: A survey. Computers
& Graphics, 33(1):85–103, 2009.

[PWLSH13] Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga
Sorkine-Hornung. Make it stand: Balancing shapes for 3d fab-
rication. ACM Trans. Graph., 32(4):81:1–81:10, July 2013.

[RFR95] John Rieman, Marita Franzke, and David Redmiles. Usability
Evaluation with the Cognitive Walkthrough. pages 387–388, 1995.

[RO00] R Radovitzky and M Ortiz. Tetrahedral mesh generation based on
node insertion in crystal lattice arrangements and advancing-front-
delaunay triangulation. Computer Methods in Applied Mechanics
and Engineering, 187(3):543–569, 2000.

[S.15] L. S. The end of moore’s law. http://www.economist.com/
blogs/economist-explains/2015/04/economist-explains-17,
2015.

[Sau13] Jeff Sauro. Rating the severity of usability problems. http://www.
measuringu.com/blog/rating-severity.php, 2013.

[SB11] Mathias Stolpe and Martin P. Bendsøe. Global optima for the
zhou–rozvany problem. Structural and Multidisciplinary Optimiza-
tion, 43:151–164, 2011. 10.1007/s00158-010-0574-y.

[She02] Jonathan Richard Shewchuk. Two discrete optimization algorithms
for the topological improvement of tetrahedral meshes. Unpublished
manuscript, 65, 2002.

[Shn92] Ben Shneiderman. Designing the user interface: strategies for ef-
fective human-computer interaction, volume 2. Addison-Wesley
Reading, MA, 1992.

[Sig97] Ole Sigmund. On the design of compliant mechanisms using topol-
ogy optimization. Journal of Structural Mechanics, 25(4):493–524,
1997.

http://www.economist.com/blogs/economist-explains/2015/04/economist-explains-17
http://www.economist.com/blogs/economist-explains/2015/04/economist-explains-17
http://www.measuringu.com/blog/rating-severity.php
http://www.measuringu.com/blog/rating-severity.php

124 BIBLIOGRAPHY

[Sig07] Ole Sigmund. Morphology-based black and white filters for topol-
ogy optimization. Structural and Multidisciplinary Optimization,
33(4-5):401–424, 2007.

[SM13] Ole Sigmund and Kurt Maute. Topology optimization approaches.
Structural and Multidisciplinary Optimization, 48(6):1031–1055,
2013.

[SS01] Mathias Stolpe and Krister Svanberg. An alternative interpolation
scheme for minimum compliance topology optimization. Structural
and Multidisciplinary Optimization, 22(2):116–124, 2001.

[SS03] M. Stolpe and K. Svanberg. Modelling topology optimization prob-
lems as linear mixed 0–1 programs. International Journal for Nu-
merical Methods in Engineering, 57(5):723–739, 2003.

[Sva87] Krister Svanberg. The method of moving asymptotes—a new
method for structural optimization. International journal for nu-
merical methods in engineering, 24(2):359–373, 1987.

[SZ99] J Sokolowski and A Zochowski. On the topological derivative in
shape optimization. SIAM Journal on Control and Optimization,
37(4):1251–1272., 1999.

[Tid10] Jenifer Tidwell. Designing interfaces. O’Reilly Media, Inc., 2010.

[Tog14] Bruce Tognazzini. First principles of interaction design. http://
asktog.com/atc/principles-of-interaction-design/, 2014.

[TS01] D Tcherniak and Ole Sigmund. A web-based topology optimization
program. Structural and multidisciplinary optimization, 22(3):179–
187, 2001.

[UIM12] Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph., 31(4):86:1–86:11, July 2012.

[WLS11] Fengwen Wang, Boyan Stefanov Lazarov, and Ole Sigmund. On
projection methods, convergence and robust formulations in topol-
ogy optimization. Structural and Multidisciplinary Optimization,
43(6):767–784, 2011.

[YC94] RJ Yang and CH Chuang. Optimal topology design using linear
programming. Computers & structures, 52(2):265–275, 1994.

[ZR91] M. Zhou and G. I. N. Rozvany. The COC algorithm, part II: Topo-
logical, geometry and generalized shape optimization. Computer
Methods in Applied Mechanics and Engineering, 89(1-3):309–336,
1991.

http://asktog.com/atc/principles-of-interaction-design/
http://asktog.com/atc/principles-of-interaction-design/

	Summary (English)
	Summary (Danish)
	Preface
	List of publications
	Acknowledgements
	List of Symbols
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Thesis overview

	2 User interface design
	2.1 Design rules
	2.1.1 Alan Dix's principles to support usability
	2.1.2 Golden rules of interface design

	2.2 HCI patterns
	2.3 Usability evaluation methods
	2.3.1 Heuristic evaluation
	2.3.2 Cognitive walkthrough
	2.3.3 User based evaluation
	2.3.4 Thinking aloud

	2.4 Platform constraints
	2.5 Comparing usability design rules and heuristics
	2.6 Discussion

	3 Topology optimization
	3.1 Solid mechanics fundamentals
	3.2 Structural analysis and the Finite Element Method
	3.2.1 Discretization
	3.2.2 Element behavior
	3.2.3 Assembly
	3.2.4 Defining loads and supports
	3.2.5 Solving for displacements
	3.2.6 Improving accuracy
	3.2.7 Performance considerations

	3.3 Topology optimization
	3.3.1 Penalization
	3.3.2 Computing displacements and evaluating compliance
	3.3.3 Sensitivity analysis
	3.3.4 Regularization
	3.3.5 Optimization
	3.3.6 Passive elements
	3.3.7 Iterations and converging
	3.3.8 Examples

	4 Interactive topology optimization in 2D and 3D
	4.1 Related work
	4.2 TopOpt 2D
	4.2.1 Problem formulation
	4.2.2 Implementation
	4.2.3 User interaction
	4.2.4 Flexible void
	4.2.5 Examples

	4.3 Finger Finite Element Method
	4.4 TopOpt 3D
	4.4.1 Problem formulation
	4.4.2 Implementation
	4.4.3 User interaction
	4.4.4 Examples

	4.5 Discussion

	5 Gamification of topology optimization
	5.1 Related work
	5.2 Problem formulation
	5.3 Game design and implementation
	5.4 Level design
	5.5 Analyzing player performance
	5.6 Discussion

	6 Rethinking topology optimization as a modeling tool
	6.1 Related work
	6.2 The Deformable Simplicial Complex method
	6.3 DSC based topology optimization
	6.3.1 Nodal movement
	6.3.2 Element relabeling

	6.4 Topology optimization based modeling tool
	6.5 Implementation
	6.5.1 DSC subdomain support
	6.5.2 Parallelization of DSC
	6.5.3 DSC raytracing

	6.6 Results
	6.7 Discussion

	7 Discussion and conclusion
	A Paper A: Interactive topology optimization on hand-held devices
	B Paper B: 3D interactive topology optimization on hand-held devices
	C Paper C: Improving topology optimization intuition through games
	D Summary of other publications
	E Download statistics and user reviews
	Bibliography

