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S U M M A R Y
The C-response is a conventional transfer function in global electromagnetic induction research
and is traditionally determined from observations of magnetic variations in the vertical and
horizontal components. Its interpretation relies on the assumption that the source of the
variations is well approximated by a large-scale symmetric (magnetospheric) ring current,
described by a single spherical harmonic. However, there is growing evidence for a more
complex structure of this source. In this paper, we investigate the variability of C-responses
due to sources different from the dominating large-scale symmetric ring current. We show
that the effect is significant and persists at all periods. Describing the magnetospheric source
by a single spherical harmonic coefficient thus injects substantial errors into the estimated
responses. To overcome the problem, we introduce arrays of alternative transfer functions that
relate the components of the magnetic variation to different spherical harmonic coefficients.
These transfer functions can handle a complex spatial structure of the magnetospheric source.
Compared to C-responses, we observe a significant increase in the coherencies relating input
and output quantities of the new transfer functions, especially at high latitudes. This increases
the usability of observatory magnetic data for the recovery of global 3-D mantle conductivity
structure.

Key words: Time-series analysis; Geomagnetic induction; Magnetic and electrical
properties.

1 I N T RO D U C T I O N

Transfer functions are mathematical representations of the relations
between input and output signals of a system in the frequency
domain (Girod et al. 2001). By means of these functions, it is
possible to determine the response of a system to a specified source.
Transfer functions are independent of the amplitude of the source,
which makes their use advantageous in many applications. The
term is often exclusively assigned to linear systems, for which the
determination of transfer functions is simplified.

Due to the linearity of Maxwell’s equations, the conducting Earth
itself can be seen as a linear system. The use of transfer functions
is common in electromagnetic (EM) sounding research, although a
separation of input signals (EM fields due to primary, extraneous
currents) and output signals (EM fields due to secondary, induced
currents) is usually difficult, as measured EM fields contain con-
tributions of both. Under certain assumptions and by means of
mathematical transformations, it is however often possible to esti-
mate transfer functions directly from relations between measured
field components.

A classical example of such a transfer function is the C-response
(Schmucker 1970), which can be used to sense the 1-D conduc-

tivity structure beneath the site for which it was determined. The
C-response is widely applicable and intuitively understood, as its
real part corresponds to the centre depth of the induced currents
and thereby is indicative of the depth to which EM fields (of a given
period) can penetrate (Weidelt 1972).

At periods considered in global induction studies, the C-response
is conveniently determined with the Z/H method (Banks 1969). This
method relates the vertical and horizontal components of the mag-
netic variation at a specific site, hence only requires measurements
from a single location. But it relies on prior knowledge about the
spatial structure of the inducing source, namely that the latter only
has a single degree of freedom. The Z/H method was, for exam-
ple applied by Schultz & Larsen (1987) and Khan et al. (2011) to
observatory magnetic data in order to determine local 1-D conduc-
tivity profiles. Both studies relied on the assumption that the source
can be described by a zonal harmonic of degree 1 (so-called P0

1

assumption).
Thanks to recent improvements in global 3-D EM forward mod-

elling algorithms and the growth of computational resources, rigor-
ous 3-D inversions for mantle conductivity have come into reach.
The first large-scale regional (e.g. Koyama et al. 2006; Shimizu
et al. 2010; Koyama et al. 2014) and global (e.g. Kelbert et al.
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2009; Semenov & Kuvshinov 2012) studies revealed a heteroge-
neous structure of mid-mantle conductivity. These studies are based
on C-responses estimated with the Z/H method from magnetic data
taken by the global network of geomagnetic observatories—and
thus also on the P0

1 assumption.
However, there has long been evidence for a more complex struc-

ture and asymmetry of the magnetospheric ring current (e.g. Daglis
& Kozyra 2002; Balasis et al. 2004; Olsen & Kuvshinov 2004;
Balasis & Egbert 2006). The recovered conductivity structures, both
in 1-D and 3-D studies, might thus be contaminated by errors orig-
inating from an inaccurate description of the source.

In this study, we seek for a solution to the problems associated
with the Z/H method. To this purpose, we first systematically in-
vestigate the global variability of C-responses estimated with the
Z/H method due to a more realistic structure of the magnetospheric
source, which includes spherical harmonic terms up to degree 3.
This gives us an idea of the error injected into C-responses esti-
mated under the P0

1 assumption.
We then introduce sets of alternative transfer functions, which

relate the components of the magnetic variation at the measuring
site to different spherical harmonic expansion (SHE) coefficients
describing the magnetospheric source. These transfer functions are
thus able to deal with a more complex spatial structure of the source.

The paper is organized as follows. In Section 2, we review the
concept of EM transfer functions, introduce the C-response and
squared coherencies. In Section 3, we present modelling results
and demonstrate the variability of C-responses due to complexities
in the source structure. Sets of alternative transfer functions are
introduced in Section 4. In Section 5, we determine these transfer
functions from observatory data and compare their coherencies to
those of corresponding C-responses. How the alternative transfer
functions could be used in the context of an inversion for global
3-D mantle conductivity is discussed in Section 6. Appendices A
and B summarize the computations underlying the results presented
in Section 3.

2 E M T R A N S F E R F U N C T I O N S

2.1 The magnetic potential

EM fields obey Maxwell’s equations. We formulate them in the
frequency domain as

1

μ0
∇ × B = σE + jext, (1)

∇ × E = iωB. (2)

Here B(r, ω) and E(r, ω) are the complex Fourier transforms of
magnetic flux density and electric field, respectively, and jext(r, ω)
is the complex Fourier transform of the electric current density of
the inducing source. The position vector r = (r, ϑ, ϕ) describes a
spherical coordinate system (oriented with the geomagnetic dipole),
with r, ϑ and ϕ being distance from Earth’s centre, colatitude and
longitude, respectively. Further, σ (r) is the spatial conductivity dis-
tribution in the Earth, ω denotes angular frequency and μ0 is the
magnetic permeability of free space. Our formulation of Maxwell’s
equations discards displacement currents, which are negligible in
the considered frequency range (<1 Hz). Note that we adopt the
Fourier convention

f (t) = 1

2π

∫ ∞

−∞
f (ω) e−iωt dω. (3)

Just above Earth’s surface and in the electrically insulating atmo-
sphere, eq. (1) reduces to ∇ × B = 0 due to vanishing conductivity
and absence of source currents. B is thus a potential field and can
be written as the gradient of a scalar magnetic potential V, that is
B = −∇V . Since B is solenoidal, V satisfies Laplace’s equation,
∇2V = 0. The solution can be represented as sum of external and
internal parts (e.g. Backus et al. 1996), V = V ext + V int, with

V ext(r, ω) = a
∞∑

n=1

n∑
m=−n

εm
n (ω)

( r

a

)n
Y m

n (ϑ, ϕ), (4)

V int(r, ω) = a
∞∑

k=1

k∑
l=−k

ιlk(ω)
(a

r

)(k+1)
Y l

k (ϑ, ϕ). (5)

Here a is Earth’s mean radius, and εm
n (ω) and ιlk(ω) are the SHE

coefficients of the external (inducing) and internal (induced) parts
of the potential, respectively. Y m

n is the spherical harmonic of degree
n and order m,

Y m
n (ϑ, ϕ) = P |m|

n (cos ϑ) eimϕ, (6)

with P |m|
n (cos ϑ) being the associated Legendre functions. In par-

ticular, Y 0
1 = P0

1 = cos ϑ is the zonal harmonic of degree 1, which
can be used to describe the magnetic field due to a large-scale sym-
metric ring current around the geomagnetic equator. Note that we
in the following adopt the convention

∑
n,m

=
∞∑

n=1

n∑
m=−n

. (7)

2.2 Sources and transfer functions

Eqs (1) and (2) reflect that electric and magnetic fields are linear
with respect to the source. Because of this, there must also be a
linear relation between the internal part of the potential V int (i.e.
the ‘output’ of the conducting Earth) and the external part V ext (i.e.
its ‘input’). Following the notation of Egbert & Booker (1989), we
thus can write

V int(ra, ω) = Lω[V ext(ra, ω)], (8)

where ra = (a, ϑ, ϕ) describes Earth’s surface. The linear operator
Lω depends on frequency and on the conductivity structure. We will
now illustrate the concept with a simple example. In case of a 1-D
Earth and a source described by a single spherical harmonic, let us
take Y 0

1 , the double sums in eqs (4) and (5) collapse, and we obtain

V ext(ra, ω) = aε0
1(ω)Y 0

1 (ϑ, ϕ), (9)

V int(ra, ω) = aι0
1(ω)Y 0

1 (ϑ, ϕ). (10)

Cancelling terms reveals that the linear operator Lω is in this case
nothing but the scalar Q-response of degree 1,

ι0
1(ω) = Q1(ω)ε0

1(ω). (11)

In general, Lω contains all information about electrical conduc-
tivity in the Earth that can be obtained from measurements on its
surface (Egbert & Booker 1989). The ultimate goal of EM stud-
ies must thus be to obtain as much information as possible about
this operator. However, apart from very simple examples as the one
above, a unique and complete determination of Lω is not possible.
This is mostly due to limited spatial and spectral data coverage, and
associated with this, the difficulty to separate external and internal
parts of the potential, as only their superposition is measured.
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For a more practical treatment of the problem, Egbert & Booker
(1989) introduced the ‘response space’. This concept is based on the
assumption that the source can be described by p independent spa-
tial modes, or, in other words, that the space of source potentials has
p degrees of freedom. In this case, it is possible to introduce linear
mappings relating one (output) observable and any p input observ-
ables, as demonstrated in detail by Egbert & Booker (1989). The
linear mappings are the intercomponent and interstation transfer
functions applied in practice in EM induction research. For exam-
ple, in magnetotellurics (MT) the source is represented by p = 2
plane waves of different polarizations. A set of widely used transfer
functions are the elements of the so-called tipper, which relate the
vertical component of the magnetic field with its p = 2 horizontal
components.

2.3 P 0
1 assumption and C-response

At long periods (days to months) usually considered in global in-
duction, most studies assume that the source of EM variations is
a magnetospheric ring current, which can be described by a single
spatial mode in the form of a zonal spherical harmonic of degree 1
(so-called P0

1 assumption). Hence, p = 1, implying the existence of
transfer functions connecting any two field components. The long
periods impede the use of electric data. As apparent from eq. (2), the
electric field vanishes as frequency decreases. Moreover, Y = Bϕ = 0
in a 1-D Earth excited by a P0

1 -source, such that it is of little use
for induction studies (although a transfer function involving Y was
proposed by Fujii & Schultz (2002) to detect lateral conductivity
heterogeneities).

It is thus natural to devise a transfer function connecting Z = −Br

and X = −Bϑ . This was first done by Banks (1969) and later on
referred to as Z/H method (as the horizontal magnetic variation
H equals X under the given assumptions). By means of a simple
scaling, this transfer function becomes equivalent to the C-response
(Schmucker 1970; Weidelt 1972), which is then given by

C(ra, ω) = −a tan ϑ

2

Br (ra, ω)

Bϑ (ra, ω)
= −a tan ϑ

2

Z (ra, ω)

X (ra, ω)
. (12)

In contrast to the Q-response (eq. 11), which reflects the globally
laterally averaged conductivity, the C-response can be used to sense
the 1-D conductivity profile at a specific location. It is easily shown
that C-responses are the same everywhere on the surface of a 1-D
Earth. In other words, spatial variations of C-responses estimated
with the Z/H method reflect either conductivity heterogeneities or
a violation of the P0

1 assumption. We will discuss this issue in
Section 3.

2.4 The concept of coherencies

In a noise-free system excited by a source with p degrees of free-
dom, a given field component is perfectly described by a linear
combination of p other field components. In practice, we can test
the assumption of a p-dimensional source field by measuring the
correlation between the given ‘output’ field component and the
p ‘inputs’. In time-series analysis, the squares of correlation coeffi-
cients are frequently denoted as squared coherencies (e.g. Bendat &
Piersol 2010). Ordinary squared coherencies measure the correla-
tion between the output and a the ith input (i = 1...p), while multiple
squared coherencies measure the correlation of the output with a
linear combination of all inputs. We will apply this concept in the
forthcoming sections.

High coherencies do not necessarily prevent from a misinterpre-
tation of the estimated transfer functions. Even if the value of p
is correctly estimated, we do not know the spatial structure of the
source. Moreover, the coherencies of scalar transfer functions such
as the C-response do not carry information about the dimensional-
ity of the conductivity structure. In other words, even a C-response
with coherency approaching 1 might be biased by local conduc-
tivity heterogeneities, and interpreting it for a 1-D structure will
necessarily lead to an erroneous model.

3 VA R I A B I L I T Y O F C - R E S P O N S E S

3.1 Observed variability

We now investigate the variability of C-responses determined under
the P0

1 assumption. We first estimate C-responses from 16 yr of
observatory data (1997–2012) with the Z/H method. The results
for 77 observatories, located at geomagnetic latitudes between ±10◦

and ±55◦, are shown in Fig. 1. If the source was described perfectly
by the first zonal harmonic and if conductivity depended only on
depth, the derived C-responses at a given frequency should be the
same everywhere at Earth’s surface (indicated by the solid black
lines). However, Fig. 1 reveals a huge variability both in the real
and the imaginary part of C at all periods.

The top panel of Fig. 1 shows squared coherencies between Z and
X for all observatories. Average coherencies (of all observatories)
increase from <0.5 at short periods to a maximum of 0.7 at a period
of 32 d. Hence, a significant proportion of the variations in Z cannot
be explained by variations in X. This challenges the assumption of
p = 1.

For clarity of presentation, we do not show uncertainties of
C-response estimates in Fig. 1. As a measure of the uncertain-
ties, which vary strongly among different observatories, we use the
90 per cent confidence interval (e.g. Aster et al. 2005). The mean of
the confidence interval (at all observatories) increases from about
100 km at a period of 2 d to about 180 km at a period of 32 d. It is
thus in this period range considerably smaller than the overall vari-
ability of both real and imaginary part of C (cf. Fig. 1). For longer
periods, the mean of the confidence interval clearly exceeds 200 km

Figure 1. Variability of observed C-responses, estimated at 77 mid-latitude
observatories with the Z/H method from 16 yr of observatory data (1997–
2012). The solid lines indicate the theoretical prediction, corresponding to
the 1-D conductivity profile derived from satellite data by Kuvshinov &
Olsen (2006). The top panel shows squared coherencies.
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Figure 2. 3-D conductivity model. Left-hand panel: surface conductance (in S), representing the uppermost 10 km. White dots indicate the locations of
geomagnetic observatories for which C-responses were estimated (cf. Fig. 1) and of which data were used to determine the SHE of the magnetospheric source.
Right-hand panel: 1-D conductivity profile beneath the surface shell.

Figure 3. Time-series of the external coefficients qm
n , sm

n (in nT) that describe the source in our model study. Ticks indicate January 1 of the respective years.
Note that the real coefficients qm

n (t), sm
n (t) shown in this figure are related to the complex coefficients εm

n (t) in the following way: εm
n = (qm

n − ism
n )/2 if m > 0,

εm
n = (q |m|

n + is|m|
n )/2 if m < 0, and ε0

n = q0
n . Also note the different scales of the individual plots.

and becomes comparable to the overall variability. Hence, a part of
the observed variability might be explained by measurement uncer-
tainties. However, particularly for periods <32 d, the variability is
too large to be explained solely by (uncorrelated) noise in the data.

3.2 Numerical modelling

In order to analyse the origin of the observed variability, we tried to
reproduce the pattern shown in Fig. 1 numerically. To this purpose,
we computed Z/H C-responses from synthetic magnetic data ob-
tained by simulating induction due to a realistic source (including
higher degree terms εm

n in addition to ε0
1) in a 3-D conductivity

model. The chosen conductivity model consists of a thin, laterally
heterogeneous surface shell (with a resolution of 1◦ × 1◦), mainly
representing the distribution of conductive oceans and resistive con-

tinents (surface shell model taken from Manoj et al. 2006), and a
layered model underneath, recovered from satellite magnetic data
by Kuvshinov & Olsen (2006). The conductivity model is depicted
in Fig. 2. In order to separately investigate the effects of source and
conductivity structure, we also investigate induction in the corre-
sponding 1-D model (i.e. the conductivity profile shown in the right
part of Fig. 2 without the surface shell).

The realistic source is described by external coefficients εm
n of the

SHE of the magnetic field due to signals of magnetospheric origin.
Hourly mean time-series of these coefficients in a geomagnetic
dipole coordinate system (up to degree n = 3 and order m = 1) were
obtained by analysis of 16 years of observatory data (1997–2012)
with the method described in Appendix A. For the computation of
synthetic C-responses, we used subsets of 4.5 yr of these time-series
(1998 July–2002 December), which are depicted in Fig. 3.
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322 C. Püthe, A. Kuvshinov and N. Olsen

Figure 4. Variability of modelled C-responses for the locations of 77 observatories at geomagnetic latitudes between ±10◦ and ±55◦. Left-hand panel:
variability due to the ocean effect (case b). Middle panel: variability due to a complex source (case c). Right-hand panel: variability due to ocean and source
effect (case d). The black lines in all plots denote, as a reference, the globally uniform C-response corresponding to the 1-D model that has been excited by ε0

1
(case a).

For our analysis we generated synthetic data sets for each of the
following four cases:

(a) Induction due to a simplified source (only coefficient ε0
1) in

the 1-D model.
(b) Induction due to a simplified source (only coefficient ε0

1) in
the 3-D model. With this case we study the influence of the ‘ocean
effect’.

(c) Induction due to a complex source (described by nonzero
coefficients εm

n , n ≤ 3, |m| ≤ 1) in the 1-D model. With this case
we study the influence of the ‘source effect’.

(d) Induction due to a complex source in the 3-D model. This
case contains both ocean effect and source effect.

The procedure to estimate C-responses is the same for each of the
four cases. Details are provided in Appendix B.

Fig. 4 presents the squared coherency, coh2(C), between Z and
X and the estimated C-responses for the simulated cases (b)–(d).
Shown are results for the 77 observatories at geomagnetic latitudes
between ±10◦ and ±55◦ of Fig. 1. Outside this latitude range, the
estimation of C-responses with the Z/H method becomes unstable,
that is already minor violations of the assumptions can lead to
large errors. This becomes apparent when analysing eq. (12): At
the equator (ϑ = 90◦), a vanishing Z must compensate for tan ϑ

approaching infinity, while at the poles (ϑ = 0◦, resp. 180◦), a
vanishing H must compensate for tan ϑ approaching zero.

The left-hand panel of Fig. 4 shows results obtained by simulating
induction due to ε0

1 in the given 3-D model (case b). It thus presents
the variability of C-responses due to the ocean effect. The variabil-
ity is very large for short periods, spanning more than 1000 km
at a period of 2 d. As expected, it decreases with increasing period,
since longer periods sample deeper regions of the Earth and are thus
less affected by heterogeneities in the top layer. The variability of
C-responses due to the ocean effect is discussed in detail by Se-
menov & Kuvshinov (2012). The coherency is equal to one, because
p = 1 is fulfilled and there is no noise in the synthetic data.

The middle panel of Fig. 4 shows results obtained by simulat-
ing induction due to the full set of spherical harmonic sources in
the corresponding 1-D model. It thus presents the variability of the
responses due to source structures other than Y 0

1 (case c). The real
part of the responses (Re C) seems to be slightly more affected
than the imaginary part (Im C). A variability in Re C of about
500 km is apparent for virtually the entire period range. For periods
>10 d, the variability of Re C due to source effects becomes dom-
inant over the variability due to the ocean effect. For Im C, the
source effect variability dominates over the ocean effect variability
only at periods >40 d. Interestingly, the source effect variability of

Im C is minimum at a period of 12 d. On average, the source effect
variability comprises about 50 per cent of the responses themselves.

The right panel of Fig. 4 shows results obtained by simulating
induction due to the full set of spherical harmonic sources in the
3-D model (case d). With this simulation, we want to mimic the
situation on Earth. The synthetic C-responses show a large variabil-
ity, explaining a major part of the variability seen in the observed
C-responses (cf. Fig. 1). Low coherency indicates that the output
variable Z cannot fully be described by the input variable H and
thus confirms that p �= 1. This is an example of correlated noise due
to undescribed sources (e.g. Egbert & Booker 1989). Coherencies
are however still substantially larger than for observed C-responses,
indicating that there are more sources of noise than derived by us.

Spatial patterns of both source and ocean effect can be analysed
by plotting global maps of C-responses, as presented in Fig. 5. We
show the real and imaginary part for three selected periods (2.0, 13.6
and 91.3 d). The panels of Fig. 5 correspond to the cases (a)–(d)
presented above. As a reference, Fig. 5(a) shows the C-responses
computed in a 1-D model that was excited by ε0

1. As expected, the
responses are the same everywhere on the globe. Fig. 5(b) presents
C-responses corresponding to induction due to the same source
(ε0

1) in a 3-D model. The remaining columns show C-responses
corresponding to induction due to the full set of source terms in a
1-D model (c) and a 3-D model (d), respectively.

The effect of a complex source structure is presented in Fig. 5(c).
It is most clearly seen at the period of 91.3 d. As expected and al-
ready discussed, maximum anomalies in C-responses are detected in
polar and equatorial regions (defined by geomagnetic latitude). But
anomalous C-responses are also very pronounced in mid-latitudes.
For example, Im C shows a strong source effect in the Indian Ocean.
Another prominent feature follows the geometry of the geomag-
netic equator. The effect can be traced up to geomagnetic latitudes
of ±20◦, which in particular means that C-responses at many mid-
latitude observatories (for example Honolulu) are likely influenced
by the source complexity.

Fig. 5(d) also contains the estimated C-responses at observatory
locations as coloured dots. Modellings and estimates are in good
agreement at a period of 2.0 d, but deviate strongly at 91.3 d. This is
likely due to the large uncertainties of C-response estimates at long
periods.

A comparison of the results presented in Figs 5(b), (c) and (d)
confirms that the ocean effect is the dominant source of variability
for short periods, while the source effect dominates at long periods.
The imaginary part at long periods is more affected by the ocean
effect than the real part. Ocean effect and source effect together can
explain a large proportion of the variability seen in observatory
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Figure 5. Maps of modelled C-responses (in km) for periods of 2.0, 13.6 and 91.3 d, respectively. Top panels: real part, bottom panels: imaginary part of C.
(a) 1-D model, excited by ε0

1. (b) 3-D model, excited by ε0
1 (showing the ocean effect). (c) 1-D model, excited by the full set of εm

n (showing the source effect).
(d) 3-D model, excited by the full set of εm

n (showing ocean and source effects). The solid black lines indicate geomagnetic latitudes of ±10◦ and ±55◦,
respectively. Observed responses at observatory locations are added as coloured dots to panel (d).

C-responses. Differences between observed and computed re-
sponses might be due to erroneous data, more complicated source
structures (e.g. the auroral electrojet, cf. Semenov & Kuvshinov
2012) and deep 3-D conductivity heterogeneities.

4 I N T RO D U C I N G N E W T R A N S F E R
F U N C T I O N S

Based on the results of the previous section, we now want to formu-
late criteria a transfer function should fulfil to be useful for induction
studies. We will see that, by design, the C-response can only fulfil
a part of these criteria. We will therefore seek for alternatives to
overcome the shortcomings associated with C-responses.

An ideal transfer function must show high coherencies between
its input and output channels to ensure that all sources have been
taken into account. It should be highly sensitive to induction pro-
cesses. For generality, it should be applicable in 3-D environments,
and 3-D structures should be apparent in the estimated transfer
function.

Which of these criteria does the C-response fulfil? Since its esti-
mation with the Z/H-method involves the Z-component of magnetic
variations, the C-response is highly sensitive to induction processes.
For the same reason, it is however also sensitive to conductivity het-
erogeneities, which can, as seen in the previous section, lead to
enormous biases in the estimates. Whether the subsurface is 1-D,
2-D or 3-D is usually not readily apparent in C-responses, just like
in other scalar transfer functions. Further, if the C-response is es-
timated with the Z/H-method, it is based on the assumption that
p = 1. As shown above, the presence of other sources leads to drop-
ping coherencies, which can make a reliable interpretation of the
estimated transfer function in terms of conductivity impossible.

In MT, the impedance tensor has many of the desired properties.
It thus seems natural to also devise arrays of transfer functions for
global induction studies. A consistent treatment can be envisioned
by a 3-D modification of eq. (11), which reads

ιlk(ω) =
∑
n,m

Qlm
kn (ω)εm

n (ω). (13)
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Qlm
kn is a 2-D array of transfer functions that we refer to as ‘Q-matrix’

and that was, for example discussed by Olsen (1999). Estimation
of the Q-matrix, its analysis and interpretation have been described
by Püthe & Kuvshinov (2014). In practice, an estimation of the
Q-matrix however hinges on the precise determination of induced
fields in a spherical harmonic representation. This is difficult to
accomplish in a 3-D Earth with a sparse network of irregularly
distributed observatories.

We will now devise transfer functions that combine advantages of
both Q-matrix and C-response. Thanks to the linearity of Maxwell’s
equations with respect to the source, the magnetic field can be
represented as the sum of individual magnetic fields due to specific
sources. Using a spherical harmonic parametrization of the source,
we can thus write the magnetic field outside the source region as

B(r, ω) =
∑
n,m

εm
n (ω)Bm

n (r, ω). (14)

Bm
n (r, ω) is the magnetic field due to a unit scale spherical harmonic

source. In particular, we can write for Z = −Br

Z (r, ω) =
∑
n,m

εm
n (ω)T m

n (r, ω). (15)

T m
n (r, ω) can be regarded as a transfer function relating the

Z-component of the magnetic variation at the measuring site to
the source coefficient εm

n (ω). The T m
n form a 1-D, potentially infi-

nite array. In practice, its size is limited by the number of external
SHE coefficients that can be determined.

Eq. (14) also holds in regions in which ∇ × B �= 0, for example
under water. Therefore, transfer functions T m

n can also be estimated
for ocean bottom stations. For ground-based magnetic observatories
(r = a), the T m

n are easily related to the Q-matrix as

T m
n (ra, ω) = nY m

n (ϑ, ϕ) −
∑
k,l

(k + 1)Qlm
kn (ω)Y l

k (ϑ, ϕ), (16)

which is easily verified from eqs (4), (5), (13) and (14). In contrast
to the Q-matrix, the T m

n make use of local information on the con-
ductivity structure and are thus suitable transfer functions in case
of sparse and irregularly distributed observations.

The above equations are in particular also valid if the source
can be described by the single spherical harmonic Y 0

1 alone and
conductivity only depends on depth. T 0

1 is in this case related to the
C- and Q-responses,

T 0
1 (ϑ,ω) = 3C(ω)

a + C(ω)
cos ϑ = [1 − 2Q1(ω)] cos ϑ. (17)

In the zero-order-approximation |C| � a in the considered period
range; therefore, T 0

1 is roughly proportional to C. We can expect
a similarity in shape even if ε0

1 is not the only, but the dominating
source coefficient. In contrast to C, all T m

n vary with geographi-
cal location by definition. Note also that while estimating C is a
univariate problem, estimating the T m

n is generally a multivariate
problem.

For the horizontal components of the magnetic variation,
X = −Bϑ and Y = Bϕ , we can analogously define

X (r, ω) =
∑
n,m

εm
n (ω)U m

n (r, ω) (18)

and

Y (r, ω) =
∑
n,m

εm
n (ω)V m

n (r, ω). (19)

In case of ground-based magnetic observations, U m
n and V m

n relate
to the Q-matrix as

U m
n (ra, ω) = ∂Y m

n (ϑ, ϕ)

∂ϑ
+

∑
k,l

Qlm
kn (ω)

∂Y l
k (ϑ, ϕ)

∂ϑ
(20)

and

V m
n (ra, ω) = − i

sin ϑ

[
mY m

n (ϑ, ϕ) +
∑
k,l

l Qlm
kn (ω)Y l

k (ϑ, ϕ)

]
. (21)

We want to note that we mainly introduced U m
n and V m

n for com-
pleteness. In practice, these transfer functions do not prove very
beneficial for a recovery of the conductivity structure. Since they
only involve the horizontal components of the magnetic variation,
U m

n and V m
n are not very sensitive to induction processes. We will

thus in the following mainly focus on transfer functions T m
n .

5 A P P L I C AT I O N T O O B S E RVAT O RY
DATA

5.1 Description of the source

The concept elaborated in the previous section is now applied to
observatory hourly mean values of the years 1997–2012. To derive
time-series of external coefficients εm

n (n ≤ 3, m ≤ 1), we applied
the method described in Appendix A. Note that these are the same
coefficients as used previously in Section 3, just that the time-series
were cropped to 4.5 yr for numerical modelling in order to speed
up computations.

Power spectra of the coefficients are shown in Fig. 6. Clear
peaks are visible at 1 d and its harmonics, reflecting the daily Sq
variations—with, as expected, most energy in coefficient ε1

2. Fur-
ther distinct peaks are apparent at 1 yr (and its second harmonic),
with most energy in coefficient ε0

2. Both daily and yearly variations
are of ionospheric origin and are known to be due to a complicated
source. We are however interested in periods between 1 and 100 d,
in which magnetic variations are mostly of magnetospheric origin.
In this period range, coefficient ε0

1 has most energy, as apparent
from Fig. 6. The dominance of ε0

1 increases with period; for periods
>10 d, other coefficients seem to be negligible. However, as seen in
Section 3, these appearances are deceiving.

5.2 Observatory transfer functions

From time-series of εm
n , X, Y and Z, we estimated, according to

eqs (15)–(21), the proposed transfer functions T m
n , U m

n and V m
n

for selected observatories. To this purpose, we used the multivari-
ate time-series analysis algorithm recently presented by Püthe &
Kuvshinov (2014). The algorithm is based on the section-averaging
method and iteratively re-weighted least squares (e.g. Aster et al.
2005). Uncertainties were estimated with a jackknife approach
(e.g. Chave & Thomson 1989). As a reference, we also estimated
C-responses with the Z/H method.

In Fig. 7, we present estimates of C and T m
n for the observatory

Hermanus (HER, South Africa, geomagnetic latitude 34◦S). As
expected, C and T 0

1 are similar in shape. This similarity confirms
that ε0

1 is the dominant inducing coefficient. However, T m
n of higher n

and |m| are non-zero and show distinct structures (especially at short
periods), for example T 0

3 , T −1
2 and T 1

2 . The uncertainties of these
responses increase at periods >30 d, which is probably due to the
limited length of the time-series. In solid lines, we show modelled
transfer functions corresponding to the conductivity model of Fig. 2.
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Figure 6. Power spectral density of the external coefficients εm
n (in nT2), here defined as P[εm

n (ω)] = |εm
n (ω)|2.

Figure 7. Transfer functions estimated for the observatory Hermanus (HER, South Africa) at geomagnetic latitude of 34◦S. The top panel in the first column
shows C-responses. The bottom panel in the first column shows squared coherencies for C and multiple squared coherencies for the alternative transfer functions
T m

n , U m
n and V m

n . The further panels show the transfer functions T m
n (n ≤ 3, m ≤ 1). For all responses, the real part is presented in blue, the imaginary part in

red. The 90 per cent confidence interval is indicated for each estimate. Modelled transfer functions, corresponding to the conductivity model shown in Fig. 2,
are marked by solid lines.

For many T m
n , there is a good correspondence between estimates

and modellings, at least concerning the general trend. Differences
might be due to noise in the data, inaccuracies in the estimated
source coefficients, but also due to structures not present in our

simplified conductivity model. The latter is probably the reason for
the differences between modelled and estimated T 0

1 at periods <5 d.
We do not show transfer functions U m

n and V m
n for the reasons

mentioned in Section 4—both are not very sensitive to induction.
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Figure 8. Squared coherencies for C (black) and multiple squared coherencies for T m
n (magenta), U m

n (orange) and V m
n (green) at different geomagnetic

observatories. Geomagnetic latitude is indicated.

However, analysing their coherencies can help to understand the
source structure. Squared coherencies coh2(C) and multiple squared
coherencies coh2

mult(T
m

n ), coh2
mult(U

m
n ) and coh2

mult(V
m

n ) are presented
in the bottom left-hand panel of Fig. 7. The plot clearly shows
that for all periods, coh2

mult(T
m

n ) > coh2(C). This means that the
addition of a small number of source terms substantially increases
the coherency and thus decreases the bias of the estimated responses
by correlated noise (in agreement with the results of Olsen 1998).

Squared coherencies for the V m
n are relatively small; indeed,

coh2
mult(V

m
n ) < coh2(C) for all periods. The low coherencies primar-

ily indicate that variations of Y at HER cannot be explained by low-
degree spherical harmonic sources alone. In contrast, coh2

mult(U
m
n )

are very large and approach 1 with increasing period. Variations in
X at HER are thus well explained by low-degree spherical harmonic
sources. Note that, when deriving the εm

n by a spherical harmonic
analysis (SHA) of the horizontal components of B, we excluded
data from HER to avoid any circularity in our analysis. Tests how-
ever showed that this has only very minor effects on the resulting
transfer functions and coherencies. The effect might be larger for
more isolated observatories (e.g. Honolulu).

We do not show ordinary coherencies for individual T m
n , U m

n and
V m

n , describing the proportion of Z, X or Y, respectively, that can
be described by the individual inputs εm

n . The ordinary coherency
for T 0

1 is very similar to that of the C-response. The coherencies
for other T m

n are small (generally below 0.2), but non-zero and thus
contribute to coh2

mult. The ordinary coherency for U 0
1 approaches

unity for periods longer than 5 days. In contrast to Z, variations in
X are thus well explained by a large-scale symmetric ring current.
Coherencies for other U m

n are low. Among the V m
n , V 0

1 , V −1
2 and

V 1
2 show the highest ordinary coherencies (ranging between 0.2 and

0.4, depending on period).

5.3 Analysis of coherencies

For further locations, we focus on the squared coherencies. Fig. 8
shows coherency plots for the observatories Kakioka (KAK, Japan),
Fürstenfeldbruck (FUR, Germany), Irkutsk (IRT, Russia) and Addis
Abeba (AAE, Ethiopia).

For the mid-latitude observatory KAK, the addition of source
terms does not lead to a substantial increase in the coherencies,
that is coh2

mult(T
m

n ) ≈ coh2(C) at all periods. For FUR and IRT, coh2

however increases substantially when estimating the T m
n instead of

C, especially at short periods. We have mentioned in Section 3 that
the estimation of C-responses with the Z/H method becomes un-
stable towards high latitudes. The addition of source terms other
than ε0

1 seems to improve the situation. The low coherencies of C at
FUR and IRT are however not only due to the way C is estimated.
The measurements at both observatories are believed to be influ-

enced by the polar electrojet (e.g. Fujii & Schultz 2002; Semenov &
Kuvshinov 2012). The transfer functions of higher n and |m| might
thus ‘catch’ part of the noise arising from this source.

Coherencies of C are generally very low for AAE. This is due
to the vanishing Z-component close to the geomagnetic equator, as
discussed in Section 3. coh2

mult(T
m

n ) are not much larger, indicating
that the chosen subset of εm

n can not explain the variations of Z at
AAE.

For KAK, FUR and IRT, coherencies of C, T m
n and U m

n increase
with period. We attribute this behaviour to a growing dominance
of ε0

1 at longer periods. This assumption is confirmed by the power
spectra shown in Fig. 6. The same argument holds for the decrease
of coh2

mult(V
m

n ) with increasing period, since a source described spa-
tially by Y 0

1 does not contribute to variations in Y unless conductivity
heterogeneities are present.

Multiple squared coherencies of the U m
n are very high for all

observatories analysed in this study. This is even the case at AAE,
where the other transfer functions fail. The high coherencies of U m

n

are due to the fact that the X-component of magnetic variations only
vanishes near the poles and is less sensitive to source structures of
high n than the Z-component (cf. eqs A1–A3).

In this study, we assumed that the source can be described by 9
external SHE coefficients (p = 9). Compared to the usual assump-
tion of p = 1, we observed a substantial increase in coherencies,
especially at periods <10 d and geomagnetic latitudes >40◦. The
choice of coefficients however was rather arbitrary and does not have
a physical basis. Adding more source terms might permit an even
better agreement between input and output. However, εm

n of even
higher n and |m| are hard to determine accurately. Moreover, there
is a trade-off between the number of input source terms (i.e. εm

n ) and
the period range for which transfer functions can be determined, as
discussed by Püthe & Kuvshinov (2014).

6 C O N C E P T O F A N I N V E R S I O N

Semenov & Kuvshinov (2012) inverted C-responses of the global
network of geomagnetic observatories for 3-D mantle conductivity
structure. The alternative transfer functions T m

n introduced in this
study could be inverted in a similar fashion. If treated with care, U m

n

(and potentially also V m
n ) might be useful in regions where coheren-

cies of T m
n are small, particularly near the equator. While Semenov

& Kuvshinov (2012) excluded observatories at low and high lati-
tudes from their analysis, we could, with a suitable combination of
T m

n , U m
n and V m

n , use data from these observatories, permitting a
better global coverage.

Our modular inversion code (Püthe & Kuvshinov 2014) is easily
modified to incorporate new data types. Modifications mainly con-
cern a new formulation of the data misfit and the adjoint source,
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which is used to compute the misfit gradient. Following the general
methodology presented by Pankratov & Kuvshinov (2010), such a
formulation is also straightforward. We applied the required mod-
ifications and successfully tested the inversion code with synthetic
data.

The main difference to the inversion of C-responses however is
the requirement for time-series of the external SHE coefficients εm

n .
In this study, an SHA of the measured horizontal components of
the magnetic variation was performed to estimate the unseparated
coefficients vm

n (cf. eqs A2–A3). External and internal contributions
were subsequently separated by using the conductivity model shown
in Fig. 2. In the context of an inversion, this strategy appears to
be rather tautologic. One possible solution is to simultaneously
determine source and conductivity structure in a looped sequential
procedure, as recently discussed by Koch & Kuvshinov (2013).

The main result of Section 5, the substantial increase in coheren-
cies, is independent of the conductivity model used to separate in-
ternal and external contributions. Therefore, the fact that our model
does not perfectly describe Earth’s conductivity structure does not
affect the validity of the results in this study.

An iterative approach could be avoided by relating unseparated
coefficients vm

n , rather than εm
n , to Z. This would essentially be

equivalent to the Z/Y method (Schmucker 1979; Olsen 1998). A
recovery of vm

n is always possible without using prior information
about the conductivity structure. The Z/Y method however suffers
from the intrinsic assumption that not only the source, but also the
conductivity, only varies on large spatial scales.

Due to the sparse and irregular distribution of observatories,
we do not plan to recover a 3-D mantle conductivity model from
ground-based data alone, but rather use the transfer function T m

n

(possibly together with U m
n and V m

n ) as additional constraints on the
solution when inverting satellite data (e.g. Q-matrices, cf. Püthe &
Kuvshinov 2014). Such an inversion is planned with data provided
by the Swarm multisatellite mission.

7 C O N C LU S I O N S

It is well-known that the C-responses estimated at geomagnetic
observatories around the globe with the classical Z/H method show
a large variability. The Z/H method relies on the assumptions of a
source exclusively described by Y 0

1 and 1-D conductivity. We have
demonstrated in this study that the variability is not only due to
conductivity heterogeneities. Components of the magnetospheric
source other than Y 0

1 cause a substantial variability, which persists
at all periods between a few days and a few months.

An alternative set of transfer functions, relating the Z-component
of magnetic variations to external SHE coefficients, has been intro-
duced to overcome this problem. With observatory data, it has been
shown that considering nine low-degree external coefficients instead
of a single one substantially increases the coherency between inputs
(time-series of SHE coefficients εm

n ) and output (time-series of the
local Z-component). This is in particular the case at high latitudes,
where the polar electrojet is believed to affect the measurements.
With a more suitable parametrization of the source, which describes
its main characteristics with as few terms as possible, even higher
coherencies might be attainable. Deriving such a parametrization is
a challenge we want to tackle in the future.

The concept elaborated in this paper could easily be extended to
other types of data, such as measurements of the tangential compo-
nents of the electric field, voltage data from abandoned submarine
telecommunication cables or sea-bottom magnetic signals. In com-

bination with satellite data, the alternative transfer functions can be
used to recover the 3-D conductivity structure of Earth’s mantle.
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A P P E N D I X A : R E C OV E RY O F S O U RC E
C O E F F I C I E N T S

At the surface of the Earth, the magnetic field vector components
are derived by taking the negative gradient of the magnetic potential
given by eqs (4) and (5) and setting r = ra . This yields

Br (ra, ω) = −
∑
n,m

zm
n (ω)Y m

n (ϑ, ϕ), (A1)

Bϑ (ra, ω) = −
∑
n,m

vm
n (ω)

∂Y m
n (ϑ, ϕ)

∂ϑ
, (A2)

Bϕ(ra, ω) = −
∑
n,m

vm
n (ω)

1

sin ϑ

∂Y m
n (ϑ, ϕ)

∂ϕ
, (A3)

with vm
n = εm

n + ιm
n and zm

n = nεm
n − (n + 1)ιm

n . In vector notation,
the time domain equivalents of eqs (A2) and (A3) can be combined
to

Bτ (ra, t) = −
∑
n,m

vm
n (t)∇⊥Y m

n (ϑ, ϕ), (A4)

where subscript τ denotes the horizontal part of B and ∇⊥ is the
angular part of the gradient operator.

Our method to recover external SHE coefficients εm
n requires a

conductivity model of the Earth (Fig. 2) and involves the following
steps.

(i) Simulation of EM induction due to unit amplitude spherical
harmonic sources εm

n = 1 in frequency domain at a set of logarith-

mically spaced frequencies ωj. To this purpose, we use a numerical
solution (Kuvshinov 2008) based on a contracting integral equation
approach (Pankratov et al. 1995). The calculations yield responses
to unit scale spherical harmonic sources at Earth’s surface, termed
Bm

n (ra, ω j ).
(ii) Calculation of scalar Q-responses Qn(ωj) from the Bm

n (ra, ω j )
by using eq. (31) of Püthe & Kuvshinov (2014).

(iii) Collection of magnetic data from all available observatories
at mid-latitudes and removal of core and crustal field by fitting the
data with a low-degree polynomial.

(iv) Using the horizontal components of these data, construction
of a system of linear equations (A4) and solution of this system
for unseparated coefficients vm

n . This is done separately for each
instant t.

(v) Fourier transformation of the unseparated coefficients, yield-
ing vm

n (ω).
(vi) Spectral interpolation of Qn to the full set of frequencies

contained in the data.
(vii) Separation of external and internal contributions with the

formula εm
n (ω) = vm

n (ω)/[1 + Qn(ω)], which follows from eq. (11).
(viii) If required, time-series of εm

n are obtained by inverse Fourier
transform.

A different method, which completely works in frequency do-
main and incorporates 3-D effects in a more consistent way,
was presented by Olsen & Kuvshinov (2004). That method is
however only applicable if there are no gaps in the data. We
found in a different context that both methods yield very simi-
lar source models, thus justifying our simplified technique for this
study.

A P P E N D I X B : C A L C U L AT I O N O F
S Y N T H E T I C C - R E S P O N S E S

Given the Bm
n (ra, ω j ) and time spectra of coefficients εm

n , both
obtained with the methods described in Appendix A, synthetic
C-responses at sites of interest rs can be calculated in the following
way.

(i) Spatial interpolation of the Bm
n (ra, ω j ) to sites of interest,

yielding Bm
n (rs, ω j ).

(ii) Spectral interpolation of Bm
n to the full set of frequencies

contained in the data, yielding Bm
n (rs, ω).

(iii) Computation of magnetic field time spectra at site rs by
exploiting the linearity of Maxwell’s equations with respect to the
source, that is

B(rs, ω) =
∑
n,m

εm
n (ω)Bm

n (rs, ω). (B1)

(iv) Inverse Fourier transformation, yielding time-series
B(rs, t).

(v) Estimation of C-responses from time-series of Br and Bϑ

with the Z/H-method, cf. eq. (12). This is done with a univariate
data analysis algorithm, using the section-averaging method (e.g.
Olsen 1998) and iteratively re-weighted least squares (e.g. Aster
et al. 2005).

Note that the components of Bm
n are essentially equivalent to the

new transfer functions T m
n , U m

n and V m
n introduced in Section 4 of

this study.
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