### Technical University of Denmark



#### Effects of the fabrication process on the grain-boundary resistance in BaZr0.9Y0.1O3-

Ricote, S.; Bonanos, Nikolaos; Manerbino, A.; Sullivana, N. P.; Coorsc, W. G.

Published in: Journal of Materials Chemistry A

Link to article, DOI: 10.1039/c5ta90117k

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Ricote, S., Bonanos, N., Manerbino, A., Sullivana, N. P., & Coorsc, W. G. (2015). Effects of the fabrication process on the grain-boundary resistance in BaZr0.9Y0.1O3-. Journal of Materials Chemistry A, 3(23), 12558. DOI: 10.1039/c5ta90117k

## DTU Library

Technical Information Center of Denmark

#### **General rights**

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

# Journal of Materials Chemistry A



## **CORRECTION**

View Article Online
View Journal | View Issue



## Correction: Effects of the fabrication process on the grain-boundary resistance in $BaZr_{0.9}Y_{0.1}O_{3-\delta}$

Cite this: J. Mater. Chem. A, 2015, 3, 12558

S. Ricote,\*a N. Bonanos,b A. Manerbino,c N. P. Sullivana and W. G. Coorsc

DOI: 10.1039/c5ta90117k

www.rsc.org/MaterialsA

Correction for 'Effects of the fabrication process on the grain-boundary resistance in BaZr<sub>0.9</sub>Y<sub>0.1</sub>O<sub>3- $\delta$ </sub>' by S. Ricote *et al.*, *J. Mater. Chem. A*, 2014, **2**, 16107–16115.

The conductivity values at  $600\,^{\circ}\text{C}$  of SSR-Ni and SSRS in Table 4 of the manuscript are incorrect. The correct values are included in the revised table below.

Table 4 Conductivity in (mS cm<sup>-1</sup>) of BZY10 in moist reducing atmosphere at 500 and 600 °C from this work and literature

| Synthesis            | Sintering     | Total conductivity 600 $^{\circ}\mathrm{C}$ | Total conductivity 500 °C | Atmosphere                                    | Ref.      |
|----------------------|---------------|---------------------------------------------|---------------------------|-----------------------------------------------|-----------|
| Solid state reaction | 5 h 1800 °C   | 1.8                                         | _                         | $H_2$ , 1.7 × 10 <sup>3</sup> Pa $H_2$ O      | 6         |
| Solid state reaction | 30 h 1715 °C  | 0.8                                         | _                         | 4% H <sub>2</sub> , moist                     | 40        |
| Flash combustion     | 1500 °C       | 2.2                                         |                           | N <sub>2</sub> , 3% H <sub>2</sub> O          | 41        |
| Pechini process      | 10 h 1600 °C  | 0.8                                         | 0.55                      | N <sub>2</sub> , 20.65 h Pa H <sub>2</sub> O  | 42        |
| Solid state reaction | 1700 °C       | <del>-</del>                                | 0.55                      | 5% H <sub>2</sub> , moist                     | 30        |
| Solid state reaction | 10 h 1750 °C  | ~6                                          | ~4                        | H <sub>2</sub> , 1.9 kPa H <sub>2</sub> O     | 43        |
| SPS                  | 5 min 1700 °C | 2.32                                        | 1.4                       | 5% H <sub>2</sub> , 0.03 atm H <sub>2</sub> O | This work |
| HT                   | 2200 °C       | 3.43                                        | 1.7                       | 5% H <sub>2</sub> , 0.03 atm H <sub>2</sub> O | This work |
| SSR-Ni               | 12 h 1600 °C  | 2.7                                         | 1.1                       | 5% H <sub>2</sub> , 0.03 atm H <sub>2</sub> O | This work |
| SSRS                 | 5 h 1535 °C   | 3.0                                         | 1.6                       | 5% H <sub>2</sub> , 0.03 atm H <sub>2</sub> O | This work |
|                      |               |                                             |                           | <u>_</u>                                      |           |

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

<sup>&</sup>quot;Colorado Fuel Cell Center, Mechanical Engineering Dept, 1500 Illinois Street, Golden, CO 80401, USA. E-mail: sricote@mines.edu; Tel: +1 303 384 2091

<sup>&</sup>lt;sup>b</sup>Department of Energy Conversion and Storage, Danish Technical University, Frederiksborgvej 399, 4000 Roskilde, Denmark

Coorstek Inc., 600 9th Street, Golden, CO 80401, USA