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EEG SOURCE RECONSTRUCTION PERFORMANCE AS A FUNCTION OF SKULL
CONDUCTANCE CONTRAST

Sofie Therese Hansen, Lars Kai Hansen

Technical University of Denmark; Department of Applied Mathematics and Computer Science; DK-2800 Kgs. Lyngby

ABSTRACT
Through simulated EEG we investigate the effect of the for-
ward model’s applied skull:scalp conductivity ratio on the
source reconstruction performance. We show that having a
higher conductivity ratio generally leads to improvement of
the solution. Additionally we see a clear connection between
higher conductivity ratios and lower coherence, thus a reduc-
tion of the ill-posedness of the EEG inverse problem. Finally
we show on real EEG data the stability of the strongest source
recovered across conductivity ratios.

Index Terms— EEG source reconstruction, Inverse prob-
lem, Forward models, Sparsity, Variational approximation.

1. INTRODUCTION

The promise of electroencephalography (EEG) based brain
imaging is high in settings where real-time and quasi-natural
conditions are required [1]. These situations call for a neu-
roimaging technique with high temporal resolution and equip-
ment which is portable and lightweight [2]. The span of ap-
plications for EEG source reconstruction includes clinical de-
ployment where EEG is used in, e.g., diagnosis support [3, 4],
home use for self-monitoring [2], and cognitive neuroscience
brain imaging for exploring neural dynamics [1, 5, 6].

The EEG inverse problem is straightforward to formulate
based on the linear relation between EEG sensors and genera-
tors provided by the quasi-static approximation of Maxwell’s
equations [1]. However, the problem is highly underde-
termined; electrodes are counted in hundreds but potential
sources in thousands. The solution is therefore non-trivial
and research in the area is extensive [7, 8, 9, 10, 11]. Several
studies have shown that invoking multiple measurement vec-
tor (MMV) models by assuming common support across time
improve source recovery [8, 9, 10]. Also beneficial is com-
plexity control obtained by enforcing sparsity; warranted by
the assumption that the activity of interest is focal and by the
dipolar nature of independent source components [10, 12].

The forward models (relating the EEG sources to the elec-
trodes) are inherently very coherent and as explained in [13]
this adds to the ill-posedness of the inverse problem. Often
the forward model is assumed fixed and known. The bound-
ary element method (BEM) is an efficient way of obtaining a
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forward model where the geometry of the layers between the
electrodes and sources can be included [1]. For instance, the
three-layered BEM models the scalp, skull and cortex, with
information from either structural head scans or through tem-
plate models [1]. The used conductivity ratios of these layers
have been shown to affect the ability to correctly localize the
EEG sources [14]. Especially the conductance of the skull is
important and due to its complex structure the conductivity
differs not only between subjects but also within a single sub-
ject [15]. Plis et al. suggest to account for the uncertainty of
the skull conductance by including uncertainty in the source
location estimate [15]. In [16] Lew et al. propose to include
the skull conductivity as a parameter to model.

In [17] Wang et al. compare the source localization er-
ror obtainable with skull:scalp conductivity ratios 1/15, 1/20,
1/25 and 1/80 using both the data generating ratio and the
three incorrect ratios. With a signal to noise ratio (SNR) of
10 dB and one planted source, an error of 9mm is reported
when using the true ratio. Single equivalent current dipole
was used for source localization and the solution is thus bi-
ased by the knowledge of the number of planted sources.

The basic question of this paper is how does the skull con-
ductance contrast affect source reconstruction performance?.
We will answer this by systematically investigating the per-
formance of the source reconstruction as a function of the
skull conductivity with several state of the art inverse problem
solvers. Rather than considering the error introduced when
using a wrong conductance ratio as in [15, 16], we use the
same ratio for generating the simulations as we use in the
reconstruction. We thus demonstrate across 100 ratios the
inherent variability of the reconstruction performance. For
one of the solvers we also show that a simple cross-validation
based optimization of hyperparameters leads to close to ora-
cle performance for a large range of conductivities; we thus
expand on the method used in [17]. This insight we use to
investigate, in real EEG data, the stability of the recovered
sources with respect to the applied conductivity ratio.

2. MATERIALS AND METHODS

2.1. Neuroimaging data

Structural magnetic resonance imaging (sMRI) scans from
a subject participating in a multimodal study exploring
the neural mechanisms of face perception were acquired



Scalp

Outer skull
Innner skull

Cortex

Electrodes

Fig. 1. MRI scan of a subject (Left) and the segmentation into
scalp, skull and cortex (Right). The 70 electrodes are placed
in the standard 10-20 system.

through the courtesy of Henson and Wakeman [18]; available
at //ftp.mrc-cbu.cam.ac.uk/personal/rik.
henson/wakemandg_hensonrn/. The T1 weighted
images were recorded on a Siemens 3T Trio. We use the EEG
data, recorded with 70 10-20 arranged Ag-AgCl electrodes,
to create the average difference between seeing faces and
scrambled faces. See stimulus design of the study in [5].

Preprocessing is done using MATLAB (MathWorks Inc.)
in part by scripts provided by Wakeman and Henson. Seg-
mentation of the subject’s sMRI is done using SPM8 [19] and
co-registration to the EEG electrodes is obtained through fidu-
cials placed on the nasion and the left and right pre-auricular,
together with headshape points. The cortex mesh is set to con-
sist of 8196 vertices. The BEM, in the ”bemcp” implementa-
tion (by Phillips [20]), is used to create 100 forward models
having the conductivities [1, c, 1] · 0.33 of brain:skull:scalp,
where 100 samples of c are drawn from a uniform distribu-
tion between 1/250 and 1/15 (in SPM8 default setting is 1/80).
The constructed layers can be seen in Fig. 1 together with the
electrodes.

2.2. Synthetic EEG data

Five synthetic data sets are constructed by planting two active
sources; for all configurations one source is placed in each
hemisphere (see Fig. 4). The sources are given the temporal
dynamics of two synchronous sinusoids across 25 time sam-
ples. The synthetic source distributions are projected to the
70 electrodes through each of the 100 forward models. Ad-
ditionally white noise is added to yield SNR= 5 dB in ten
repetitions (in total 5× 100× 10 = 5000 data sets).

2.3. Source reconstruction methods

We will apply two source reconstruction methods to investi-
gate the generated forward models; MFOCUSS [8] and our
adapted version of the variational garrote (VG) [21]. The
methods are similar in three ways. 1) They both have a regu-
larization parameter that controls the density of the solution.
2) They assume common support across time samples. 3)
Their relation to the `0-norm solution.

We use the implementation of MFOCUSS as provided by
Zhang; http://dsp.ucsd.edu/˜zhilin/TMSBL.
html. MFOCUSS by Cotter et al. [8] is an MMV version of
FOCUSS (FOCal Underdetermined System Solution), which
finds a reweighted minimum norm (MN) solution [7, 22], and
thus approximates the `0 (numerousity) regularizer [10]. FO-
CUSS is initialized with the MN solution and then iteratively
increases large solution values and decreases small [7].

The regularization parameter of MFOCUSS is the noise
level of the data. This parameter is in the experiments varied
from 10−11 to 1 in 100 steps on the log10 scale. We use MFO-
CUSS in an oracle like setup where we report the solution
with lowest localization error and highest F-measure across
investigated noise levels. This is of course not applicable to
real data where we would not have ground truth available.
However on the synthetic data we want to use this approach
to find the best possible solution obtainable using MFOCUSS
and a forward model with a specific skull:scalp conductivity
ratio. The localization error is the average Euclidean distance
between the two planted and two estimated strongest sources.
And F-measure = 2 · TP/(P + TP + FP) [23]; TP, FP and P
are the number of true, false and all actual positives, respec-
tively. Perfect localization yields an F-measure of 1.

The second source reconstruction method we test is our
MMV modified version of VG [21]. The `0 regularization
is achieved in VG for the single measurement by including
a binary variable sn ∈ {0, 1} (for electrode n = 1..N ) in
the linear relation between electrodes and sources, modelling
whether a source is active or not. In our modification, detailed
in [24], we extend VG to MMV by simply fixing this binary
variable across time; we call it the time-expanded VG (teVG).
The binary variable has the prior p(s|γ) =

∏N
n=1 p(sn|γ)

where p(sn|γ) =
exp (γsn)

1 + exp (γ)
[21]. The hyperparameter γ is

thus sparsity controlling.
The solution scheme proposed by Kappen et al. is

based on Bayesian inference by maximizing the posterior
probability. As this is non-trivial, variational approxima-
tion is employed. First a marginalization over s is per-
formed and q(s) =

∏N
n=1 qn(sn) is introduced, where

qn(sn) = mnsn + (1 − mn)(1 − sn) [21]. The parame-
ter mn is the variational mean and can be interpreted as the
probability of sn being active, thus it has values between 0
and 1. Next, Jensen’s inequality is applied giving us the lower
bound; i.e. the free energy F . We pose the free energy in a
dual formulation following [21], and minimize it by setting
the partial derivatives equal to zero, except for γ which we
estimate through cross-validation. In Fig. 2 we show how
we split the 70 electrodes into four folds. The partitioning
is done with the aim of maximizing the spread of the 17-18
electrodes contained in each fold.

Kappen et al. suggest to obtain the solution through fixed
point iteration, which has a computational complexity that
scales quadratic in the number of electrodes and linearly in



Fig. 2. Partioning of the 70 10-20 arranged EEG electrodes
into four folds represented by the coloring.

the number of sources, thus keeping computation time low
(further reduced using common support in teVG). As the
VG solves a non-convex problem a smoothing parameter is
needed to control the variational mean updates. How to set
this parameter is non-trivial, therefore we suggest to control
the updates of m through gradient descent. The update to m

will now be m−η ∂F
∂m

. The parameter η now needs to be set,
however the solution is much less sensitive to this parameter,
than the before mentioned smoothing parameter. A starting
value of η0 = 10−3 is heuristically set. At each iteration
the decrease or increase in the free energy will increase the
η-value by 10% or reduce it by 50%, respectively. Addi-
tional convergence speed is gained by raising η to η0 for a
number of iterations. We call this faster VG version GDteVG
(Gradient Descent time-expanded Variational Garrote).

We apply GDteVG in two settings. On the synthetic data
we 1) run GDteVG in the same oracle setup as MFOCUSS,
and 2) using cross-validation to find the regularization param-
eter, γ. On the real EEG data we can of course only do the
latter. In the oracle setup we explore solutions with sparsity
levels from −250 to −1 in 100 steps, and we cross-validate
25 steps of sparsity between −150 and −10.

3. RESULTS

We investigate the matrix properties of the forward models
through their coherence and condition number. The coher-
ences of the forward models are shown in Fig. 3. As the for-
ward models are very coherent we show ’1− the coherence’.
Another matrix characteristic, the condition number, is high
for these models (between 1.4 · 1015 and 2.9 · 1015) but is not
found to be linked to the conductivity ratio.

The ability of the forward models to recover the sources
they themselves have projected to the electrodes is now tested.
We compare the forward models through localization error
and F-measure in Fig. 4. MFOCUSS and GDteVG are
run in the oracle setup described earlier and GDteVGcross
is GDteVG with cross-validation on the regularization pa-
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Fig. 3. ’1− the coherence’ of the 100 forward models.

rameter. There is a general trend that forward models with
lower contrast, i.e., lower conductivity ratios, perform worse
(source configuration 1, 2, 3 and in part 4). In the the fifth
source configuration we see relatively limited effects of the
contrast. Generally the GDteVG solver shows the lowest
localization error and highest F-measure, and there is a good
correspondence between the oracle and the cross-validation
forms of the method, which allows us to make inferences for
the real EEG data where ground truth is unavailable.

Finally we investigate the real EEG data described in sec-
tion 2.1. As we now do not know the ground truth and can not
report localization error, we instead track the strongest source
found as a function of conductivity ratio, see Fig. 5. Across
the 100 conductivity ratios five different sources dominate the
source reconstruction solutions. Generally it is agreed that the
activity happens posteriorly and 87 of the tested conductivity
ratios place the strongest source in the right posterior inferior
temporal lobe (red and green in Fig. 5). The solution is rather
robust with respect to the time of maximum activity; having a
mean of 154.4ms with the standard deviation 1.5ms.

4. CONCLUSION

This contribution relies on advances in both EEG forward
modeling [14, 15, 16, 17, 20] and inverse inference techniques
[7, 8, 9, 10, 11, 12, 21, 22] to expand on the dependence of
skull conductivity on the source reconstruction performance.

For establishing an accurate electrical forward model for
EEG, the conductivity distribution is needed. Here we have
investigated the sensitivity of the solution to one important
aspect herein, namely the skull conductivity contrast. We
found that increasing the skull conductivity contrast reduces
the forward model coherence, hence, in this aspect reduces
the ill-posedness of the linear inverse problem. This relation
was confirmed in experiments using two different sparse in-
verse problem solvers MFOCUSS and the variational garrote
(VG). Both showed a higher localization error for low con-
trasts. We found that a simple cross-validation scheme could
reliably be used to infer the sparsity level in VG and using
the cross-validation scheme we showed that the most active
dipoles found in a real EEG data set was relatively stable to
the skull conductivity contrast for a wide window of values.
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Fig. 4. Performance of MFOCUSS, GDteVG and GDteVGcross with forward models of varying skull:scalp conductivity ratios
on synthetic data. The two former are favored by here reporting the lowest localization error (middle panel) and highest F-
measure (lower panel) across regularization. At each conductivity ratio the investigated forward model is used as the data
generating design matrix. The SPM8 default setting of the ratio is indicated by the dashed lines. Results are from five source
configurations, each having two active sources; the locations of these can be seen in the top panel. Noise is added to give an
SNR of 5 dB, this is done in ten repetitions. In the implementations with MFOCUSS the columns of the forward models are
scaled to unit norm while they are merely centered for VG.
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Fig. 5. Stability of the solution when using real EEG data across conductivity ratios (the SPM8 default setting is indicated).
Each color represents a different dominating source, in total five unique strongest sources are found. Source reconstruction is
performed using GDteVG with four-fold cross-validation. The EEG data is the differential signal of the conditions faces and
scrambled faces. The signal is 23 time samples long, corresponding to 100ms, and begins 100ms after stimuli.
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