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Abstract

N
ETWORKS are everywhere. From the smallest confines of the cells within

our bodies to the webs of social relations across the globe. Networks

are not static, they constantly change, adapt, and evolve to suit new

conditions. In order to understand the fundamental laws that govern networks

we need new, highly detailed maps that uncover the interactions of all con-

stituents, accurately and in a temporal manner. One of the hardest networks

to understand, but also one of the most interesting ones, is the human social

network. How do humans interact, form friendships, and spread information?

And how are we all affected by an ever changing network structure? Answering

these questions will enrich our understanding of ourselves, our organizations,

and our societies. Yet, mapping the dynamics of social networks has tradition-

ally been an arduous undertaking. Today, however, it is possible to use the

unprecedented amounts of information collected by mobile phones to gain

detailed insight into the dynamics of social systems. This dissertation presents

an unparalleled data collection campaign, collecting highly detailed traces for

approximately 1000 people over the course of multiple years. The availability

of such dynamic maps allows us to probe the underlying social network and

understand how individuals interact and form lasting friendships. More im-

portantly, these highly detailed dynamic maps provide us new perspectives at

traditional problems and allow us to quantify and predict human life.
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Resumé (summary in Danish)

V
I er omgivet af netværk. Fra de inderste dele af vores celler til de glo-

bale venskabsbånd mellem mennesker. Netværk er ikke statiske, men

under konstant evolution for at tilpasse sig vekslende miljøforhold. Vi

har derfor brug for kort—meget detaljerede og præcise kort—for at forstå de

bagvedliggende mekanismer og grundlæggende love, der styrer netværk. Et af

de mest komplekse, men samtidig mest spændende netværk er båndet mellem

mennesker, det vi i daglig tale kalder sociale netværk. Hvordan interagerer

mennesker? Hvordan danner vi venskaber? Og præcis hvordan deler vi viden?

Svarene på disse spørgsmål vil give os en bedre forståelse af hvordan vores

liv, organisationer, og samfund hænger sammen. En kortlægning af disse dy-

namikker er dog ikke et trivielt anliggende og har tidligere vist sig at være meget

vanskelig. Grundet teknologiske fremskridt er det dog i dag muligt at indsamle

uanede mængder af information gennem vores mobiltelefoner. Denne PhD-

afhandling præsenterer et enestående eksperiment hvor vi ved brug af moderne

smartphones har indsamlet detaljeret adfærd for 1 000 mennesker over flere år.

Tilgængeligheden af sådanne dynamiske kort, giver os en enestående mulighed

for at kortlægge og forstå hvordan individer interagerer og danner grupper.

Disse kort giver os også mulighed for at kvantificere vores adfærdsmønstre og

lader os i sidste ende sætte tal på hvor forudsigelige vores liv er.
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“The roots of education are bitter,

but the fruit is sweet.”

— Aristotle

Preface

T
HIS is a story of network science, not the full unabridged story, as it is

way too long to be condensed into just one dissertation. Rather it is my

story. A journey that took me from physics into a new science, network

science.

A physicist by training, I was raised in the fabled hallways and auditoriums

of the Niels Bohr Institute. A place which in the 1920’s and 30’s was the center for

quantum and atomic physics. Around the institute hung these old photographs

depicting the countless great minds of physics who had previously visited Niels

Bohr. Heisenberg, Dirac, Pauli, Born, Gamow, Landau, Ehrenfest, Delbrück,

the list goes on, had all been sitting in the same auditoriums which we were

now lectured in. Here, my fellow students and I were trained in the mystical art

of intuition, stringent logics and were presented with a countless number of

equations, too many to memorize.

After finishing my studies I was not really eager to get a real job, I felt that

there was so much more to learn. So I decided to pursue a PhD where I could

delve into the physics of complex systems, but I was unsure about which aca-

demic institution I should study at. I hastily sent out tree applications to dif-

ferent PhD schools and to my great surprise I was accepted by all three. After

great consideration I had finally settled on one of the programs, when suddenly

my Master’s thesis advisor, Mogens Høgh Jensen, told me that I had yet another

option. He had just talked to a smart and trustworthy young professor who had

recently received a large grant to study social systems with smartphones—an

ambitious but slightly crazy project, I was told. Nevertheless, I went to talk to

the guy and he somehow convinced me to decline all other offers, and continue

my studies under his guidance.

So here I am, a physicist that has devoted three years of his life trying to

untangle the unbelievably complex web of relations between people and un-

derstand how our society works. To my great amusement I am not the first

physicist to invade somebody else’s field, as Duncan Watts so eloquently put it:

“Physicists, it turns out, are almost perfectly suited to invading other

people’s disciplines, being not only extremely clever but also generally

xi
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much less fussy than most about the problems they choose to study.

Physicists tend to see themselves as lords of the academic jungle,

loftily regarding their own methods as above the ken of anybody else

and jealously guarding their own terrain. But their alter egos are

closer to scavengers, happy to borrow ideas and techniques from

anyone if they seem like they might be useful, and delighted to stomp

all over someone else’s problem. As irritating as this attitude can

be to everybody else, the arrival of physicists into a previously non-

physics area of research often presages a period of great discovery and

excitement. Mathematicians do the same thing ocasionally, but no

one descends with such fury and in so great a number as a pack of

hungry physicists, adrenalized by the scent of a new problem.”

— Duncan J. Watts, Six Degrees

The first time I came across this quote I was attending an interdisciplinary

conference and could not stop laughing. Watts is correct, as can be inferred

from the list of references at the back of this dissertation, a majority of the listed

authors are other physicists, who in their quest for new problems decided to

cannibalize somebody else’s field. If you look closer, however, you will see that

the physicists are not there alone, listed alongside them are: mathematicians,

computer scientists, biologists, ecologists, sociologists, economists, psychol-

ogists, anthropologists, linguists and many others. During my PhD studies I

have had the pleasure and pain of working with many of them. As it turns out,

a multidisciplinary collaboration can be very rewarding in terms of new ideas,

but also highly frustrating as our scientific discourses are so very different. I

recall with great delight the many occasions, where I wholeheartedly attempted

at conveying complicated mathematical concepts to researchers from the social

sciences, and other great moments where they tried to educate me in the ways

of a social scientist. Nevertheless, my journey through the PhD has been an

educational, challenging and rewarding experience.
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1
Introduction

T
HE most striking aspect of physics is the simplicity of its Laws. Maxwell’s

equations, Newton’s laws of motion, Hamiltonian mechanics, and Schr-

öedinger’s equation. Everything is simple, neat, and beautiful. However,

venturing outside the safe confines of a physics classroom and out into the

world, everything is not as promised—the world is astonishingly complex. Ev-

erywhere we look we see truly magnificent examples of complex phenomena:

from the delicate ridges of Saharan sand dunes formed by the wind, to the

intricate ecological organization of species, and the swarm-like behavior of bird

flocks (Goldenfeld and Kadanoff, 1999). The traditional physicists approach

in studying such complex systems it to first reduce them to their constituent

components and understand how they individually work. From here we can

then piece together the more complex phenomena. Applying this reductionist

reasoning, physics has been quite successful over the years, in describing the

fundamental behaviors and interactions of particles, up to the scale of atoms.

Put a few atoms together, however, and everything becomes impossibly com-

plex again, that is why chemistry is a science in itself and not just a branch of

physics, biology cannot just be reduced to chemistry and medical sciences are

more than just applied biology (Watts, 2004). There is a hierarchy of complexity,

at each level entirely new properties appear and the understanding of these

behaviors requires new endeavors of research (Anderson et al., 1972).

Complex systems are hard to solve because they are made up of many con-

stituent parts that do not add up in any straightforward manner, meaning that

1
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their collective behavior is not a simple combination of individual behavior. On

the contrary, the components interact in completely new and often unforeseen

ways. Take our genome as an example, even though we are 99.9% similar to

every other human we still exhibit diverse phenotypes such as eye color, hair

color, skin color, height, body type, etc. In reality we humans consist of roughly

20000 genes, similar in number to many insects, worms, and fish, but what

makes us different from them? Genetic variation clearly does not stem from the

raw number of genes, rather it arises from their interconnectedness, as genetic

traits are not expressed by single genes but in a collective fashion. In a simi-

lar manner yours, and my brain consist of roughly 100 billion interconnected

neurons similar in numbers to William Shakespeare’s and Leonardo da Vinci’s,

but when did we last write our Hamlet or paint our Mona Lisa? This non-trivial

phenomena where two otherwise identical entities can produce different types

of behavior is what sets complex systems apart from simpler systems.

With this in mind, what hope do we have of understanding systems such as

our society? If each individual is composed of complex entities, placing humans

together would surely produce even more stunning examples of complexity.

As it turns out, when many humans come together it is possible to ignore

the complicated details such as unique characteristics and personalities of

individuals and extract basic organizing principles from our aggregated patterns.

In fact, while we cannot learn much about society from any single individual,

when many of us come together collective patterns emerge.

Behind each complex system there is a intricate wiring diagram, that defines

the interactions between components—we call this a network. Networked sys-

tems differ greatly from one another. Nodes, for example, can represent entities

from tiny molecules to Internet routers, or humans, while links can denote

chemical reactions governed by quantum mechanics, physical cables laid down

by people, or social relations between families, friends, and professionals. The

processes that have shaped these systems are also of fundamentally different

nature, while metabolic networks have been shaped by billions of years of evolu-

tion, the Internet has been collectively built during the last half century, and our

social networks are deeply rooted in cultures and norms dating back thousands

of years. Given this diversity in size, origin, history, and evolution one would

expect that the underlying networks behind these systems would greatly differ.

Yet, the architecture of all these diverse systems is quite similar and allows us

to formulate a shared set of mathematical tools. This principle of universality

is what makes networks special, as fundamentally different systems observed

within the domains of biology, physics, mathematics, economy, sociology, com-

puter science, etc. can all be described by one single mathematical formalism.

Thus, if we desire a deeper understanding of our complex world, networks are

an excellent place to start.



Chapter 1. Introduction 3

1.1 Aim

In order to understand complex systems and describe their behaviors we first

need to obtain a map of the system. This map should specify the wiring diagram

of the network. For a social system this requires knowing the list of your friends,

their friends, their friends’ friends and so on. In our genome this corresponds

to knowing all interactions between genes, proteins, and their associated in-

terrelations to external environmental factors. A feat we, in spite of countless

modern medical breakthroughs, are not even close to achieving. Even worse, as

none of these systems are static by nature, this calls for dynamic maps. Thus,

in the example of social systems it is not sufficient to know who is friends with

whom, but also when they interact. Yet another important aspect is to know

how entities interact, particularly through which types of relations. For example

do people meet up and talk face-to-face or do they communicate via e-mails,

phone calls or text messages? This is an important piece of information as

messages can propagate with different speeds depending on the type of tie.

The main goal of this dissertation is to take advantage of recent technological

advances in order to collect a dynamic map of unprecedented quality. We focus

on social systems, where this map will give us unparalleled opportunities to

study the intricate web of human relations and allow researchers to gain novel

insights about the social fabric itself. Even though we focus on mapping and

understanding social systems, the universality of networks will enable us to

generalize some of our findings to other domains of network science.

In order to construct a comprehensive picture of the social network we first

need to map the web of interactions. As human dynamics unfold over many

timescales, from transient encounters to long lasting relationships, it is impor-

tant that we sample the network at appropriate levels of detail. Specifically, this

thesis aims to record the network of social interactions with very high resolution,

both in terms of temporal sampling and number of recorded communication

channels. We record data using state-of-the-art smartphones as sensors1 as

they enable us to capture multiple communication channels using only a single

device.

Collecting social network data with mobile devices is still a relatively new

field, so first we need to calibrate our instrument of measurement before we can

apply it to gain theoretical insight. The questions we aim to answer are: What

does an electronic “click” entail, how can they effectively be used to understand

human relationships, and what are the shortcomings of using smartphones as

sensors?

After having laid the groundwork in collecting data and calibrating our

instruments we aim to tackle one of the fundamental problems of behavioral

1Also denoted as sociometers in other parts of the scientific literature see Pentland (2008).
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science, are humans predictable and to what degree? We will look at human

behavioral patterns and extract regularities which we can use to quantify the

actions of each individual. Life is imbued with regularities in many of its facets,

the patterns we aim to understand are geospatial and social. We will look

into the two aspects of daily life and try to understand them separately and

combined. In doing so we will formulate new solutions to the problem of

identifying communities within networks.

1.2 Outline

This dissertation regards the dynamics of high-resolution networks. It is di-

vided into five main parts. Chapter 1 serves as a general introduction into the

field of complex systems and explains why networks are important. Chapter

2 is directed at the growing field of complex networks and gives a theoretical

overview of important concepts and models. As there are already many good

reviews on networks science, chapter 2 tells a story that binds the dissertation

together rather than giving a comprehensive review. For general audiences I

would specifically recommend the books by Barabasi (2002), Buchanan (2003),

and Watts (2004). Curious scientific readers should read the papers by Newman

(2003), Newman (2005), Boccaletti et al. (2006) and Fortunato (2010), and the

books by Newman et al. (2006) and Easley and Kleinberg (2010). The central

parts of this dissertation are located in chapters 3 and 4 which chronicle my

research as a PhD student. Chapter 3 describes a unparalleled data collection

campaign and investigates how we can use the collected traces to infer real

social interactions. Chapter 4 digs into the regularities of human behavior and

presents a novel approach to understanding and extracting dynamic communi-

ties. The last chapter (chapter 5) briefly summarizes the main findings of the

dissertation. All papers are listed at the back along with an additional publica-

tion that is not included in the main storyline of the dissertation.

Without further ado we will continue with a quote:

“Sal, we gotta go and never stop going ’till we get there."

“Where we going, man?"

“I don’t know but we gotta go."

— Jack Kerouac, On the Road



2
Complex networks

N
NETWORKS are everywhere. In fact, we spend our entire lives being

entangled in and navigating numerous complex networks. Our social

ties form different webs: networks of friends, family, coworkers, or

sexual partners. We keep in touch by communicating through a variety of

technological networks such as: telephones, the Internet, and the World Wide

Web2. Infrastructural networks facilitate the transportation of electricity via

power-lines, while an underground network of pipes supply us with water. We

travel on transportation networks, be it roads, trains, ships, or airplanes. Our

biology is governed by networks ranging from microscopic regulatory networks

inside our cells to macroscopic ecological webs between species.

Networks have always surrounded us, and always will. In modern history

they were first noticed by Leonhard Euler in 1735, when he at the age of 28

solved the Königsberg bridge problem by reducing it to a set of nodes and links,

thus laying the foundations for graph theory3. During the twentieth, and the

beginning of the twenty-first century the field of network theory has expanded

and developed into a substantial body of knowledge. Emphasizing the strength

of Euler’s approach and illustrating that, as mathematical objects, networks

are not restricted to only represent bridges between landmasses, but can be

2The distinction between the two latter is that the Internet denotes the physical structure of

routers and servers, while the World Wide Web covers connections of web pages.
3The difference between graphs and networks is subtle, but where a graph is an abstract

mathematical object a network often refers to an actual physical system.

5
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applied in order to understand the features of a variety of complex systems. As

such, researchers have applied network theory in order to describe a plethora

of real world systems which can be loosely classified into four categories: social,

information, technological, and biological systems.

Social networks A social network consists of a set of individuals with some

interaction pattern between them (Wasserman, 1994; Scott and Carrington,

2011). Consequently, this representation can be applied to describe friendships

between individuals (Rapoport and Horvath, 1961), communication between

terrorists (Krebs, 2002), patterns of sexual contacts (Liljeros et al., 2001; Bearman

et al., 2004), business relations between companies (Mariolis, 1975; Davis et al.,

2003), and intermarriages between families (Padgett and Ansell, 1993). The

field of social network analysis was pioneered by Jacob Moreno who in the

1930’s used sociograms to study interpersonal relationships within small groups

(Moreno and Jennings, 1934). A few years later Davis et al. (1941) studied the

social circles of women in an unnamed city in the southern part of USA, and

Rothlisberger and Dickson (1939) studied relations between factory workers in

Chicago. Traditional studies of social networks have been limited to very small

sample sizes because the object of analysis—social ties—are notoriously hard

to observe. With the exception of a few ingenious studies such as Milgram’s

small-world experiment (Milgram, 1967), researchers have mostly relied on

questionnaires, interviews, and self reports (Watts, 2007). The problem with

survey data, however, is that it suffer from small sample sizes, cognitive biases,

errors of perception, and ambiguities such as how respondents might define

a friendship (Wuchty, 2009). In addition, surveys are very labor intensive and

mostly comprised of one-time snapshots, thereby being unable to capture

behavioral patterns over extended periods of time. Although much effort has

been put into resolving these issues it is generally assumed that surveys contain

uncontrollable errors (Marsden, 1990).

With the advent of the Internet, new relatively reliable data sources have

appeared. At the end of the twentieth century researchers had easy access

to collaboration networks between scientists (Newman, 2001), work relations

between movie actors (Adamic and Huberman, 2000; Amaral et al., 2000), co-

appearances of comic book heroes (Alberich et al., 2002), and telephone calls

between individuals (Aiello et al., 2000). These were followed by datasets re-

garding: e-mail communication (Ebel et al., 2002; Newman et al., 2002; Eck-

mann et al., 2004; Kossinets and Watts, 2006), instant-messaging networks

(Leskovec and Horvitz, 2008), and online social networks (Lewis et al., 2008;

Aral and Walker, 2012). As the technological evolution continued, additional

data sources became available, such as mobile phone calls between individuals

(Onnela et al., 2007; Miritello et al., 2013), and time resolved contact patterns
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between teams (de Montjoye et al., 2014), students (Eagle and Pentland, 2006;

Stehlé et al., 2011b; Stopczynski et al., 2014a), and patients and health-care

workers (Isella et al., 2011).

Information networks Information networks represent the exchange of knowl-

edge between parties. A classical example is the web of citations between aca-

demic papers, where articles are nodes and citations embody the transfer of

information. This is a special kind of network, because new papers can only cite

already written papers all links will point backwards in time and will rarely, if

ever, be reciprocated. The great advantage of citation networks is the accuracy

and abundance of data stretching over multiple decades. Lotka (1926) applied

this data to investigate the productivity of scientists and de Solla Price (1965)

pointed out large differences between papers.

A different information network is the World Wide Web, currently consisting

of at least 47.45 billion pages4 connected via hyperlinks. Its structure has been

extensively studied by Albert et al. (1999), Kleinberg et al. (1999), Barabási et al.

(2000), and Adamic and Huberman (2000) to name a few.

Other notable examples of information networks are citations between U.S.

patents (Jaffe and Trajtenberg, 2002), spreading of mobile phone viruses (Wang

et al., 2009), resubmission networks between academic journals (Calcagno et al.,

2012), networks of cultural history (Schich et al., 2014), and semantic relations

between words (Sigman and Cecchi, 2002).

Technological networks These networks are typically man-made and con-

structed for the distribution of a specific commodity. A well known technolog-

ical network is the Internet, organized by the physical connection of routers.

Using special programs to track the paths of data packets Faloutsos et al. (1999)

mapped the Internet and extensively studied its properties. Other examples

of technological networks are airline traffic networks (Amaral et al., 2000), net-

works of roads (Rosvall et al., 2005; Porta et al., 2006), railways (Latora and

Marchiori, 2002; Sen et al., 2003), and electric power grids (Watts and Strogatz,

1998). Although they are naturally occurring, rivers can also be considered as a

form of distribution network (Maritan et al., 1996; Dodds and Rothman, 1999).

An interesting feature of technological networks is that their properties to a

large degree are governed by space and geography (Yook et al., 2002; Daqing

et al., 2011). Links between subunits, be they electrical transformer stations

or cities, are influenced by economic concerns, technological challenges, and

geographical factors. As such the interplay of external factors that affect the

formation of links in spatial embedded networks is not yet fully understood.

4As of Sunday 29th March 2015 (http://www.worldwidewebsize.com).

http://www.worldwidewebsize.com
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Biological networks Each living organism is embedded in a multitude of

biological webs. Large ecosystems are formed from the complex interactions of

species (Baird and Ulanowicz, 1989; Cohen et al., 1990), and their topologies

have been comprehensively studied by Dunne et al. (2002), Williams et al. (2002),

and Jordano et al. (2003) among many others. Looking at smaller length scales

our brains are composed of billions of interconnected neurons forming neural

networks (Sporns, 2002). Due to the staggering number of nodes we have yet

to see a complete picture of the human brain, but White et al. (1986) have

succeeded in mapping the entire neural network of the nematode (roundworm)

C. elegans.

Even the regulatory system that allows organisms to sense and respond to

changing environmental conditions form a web. Here the expression of a gene,

i.e. the process of transcribing and translating genetic material into a protein,

is controlled by the production of other proteins encoded by different genes;

as such our entire genome forms a network5. Representing genes as nodes

and their interactions with protein as edges Shen-Orr et al. (2002) and Guelzim

et al. (2002) among others, have studied the statistical properties of regulatory

networks. Elowitz and Leibler (2000) have even been successful in creating a

simple synthetic regulatory motif consisting of three genes, which they have

implanted in living E. coli.

Within cells, proteins mechanically cooperate with other proteins forming

an additional network of protein-protein interactions. A network that has been

extensively studied by many authors (Uetz et al., 2000; Ito et al., 2001; Jeong

et al., 2001; Maslov and Sneppen, 2002; de Lichtenberg et al., 2005). At even

smaller scales we can represent metabolic reactions of substrates and products

as networks, linking two metabolites together if they are part of the same reac-

tion. The properties of such metabolic networks have been studies by many

scientists, including Jeong et al. (2000), Wagner and Fell (2001), Ravasz et al.

(2002) and Stelling et al. (2002).

The above mentioned networks vary in size, function, and nature representing

connected systems on the order of a few nodes to billions of connected entities.

While previously it was difficult to acquire such data, the Internet revolution has

made it relatively easy. Nowadays, we can collect networked datasets from Twit-

ter, the blogosphere, or from any of the countless available network databases

with little effort. However, in order to understand and describe these rich pat-

terns of interaction we need mathematical tools that embrace the apparent

diversity of complex systems. Figure 2.1 illustrates the problem we are facing. It

shows a relatively small network consisting of 263 individuals, linked together if

5In certain cases, if the concentration of a specific protein is high, the protein can even

regulate its own gene thus forming self loops in the network.
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they share a friendship. From visual inspection we can see that some individuals

have more friends than others, that nodes aggregate and form groups, and that

the structure of the social network is inhomogeneous. While the human eye

is good at revealing structure, even this small network poses a problem as the

tangle of links makes it hard to describe the network in a satisfactory manner.

For larger networks visual inspection is completely out of the question and we

need statistical tools in order study their properties.

Figure 2.1: A network showing the friendship structure between 263 students at a

Danish University. Each links symbolizes an online friendship. Data is collected from

Facebook and supplied by Snorre Ralund, University of Copenhagen.

2.1 Statistical measures

Each network is composed of a number of nodes n wired together via m links.

Their connections can be represented in a variety of ways, with the most simple

being binary, describing whether the link is present or not. Such wiring schemes

are defined by the adjacency matrix

A i j =







1 if nodes i and j share a connection,

0 otherwise.
(2.1)
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Other ways to represent edges is with associated weights that record their

strength relative to each other, e.g. describing the number of calls between

persons i and j , or by allowing multiple types of edges to connect nodes, letting

i and j interact across multiple network layers. In addition, each tie can have

an intrinsic direction, indicating whether i contacted j or vice versa. In order

to keep things as simple as possible, we will focus exclusively on single layer

networks comprised of undirected and unweighted links, however, a majority

of the statistical measures can be generalized for the case of directed, weighted,

and multiplex networks (Barrat et al., 2004; Newman, 2004a; Boccaletti et al.,

2006; De Domenico et al., 2013b).

2.1.1 Degree distribution

The degree k i denotes the number of links or edges that are connected to node i ,

as a result k i can also be regarded as the number of neighbors of i (Figure 2.2 a).

It can easily be calculated by taking the corresponding row (or column) sum

of the adjacency matrix6. Because nodes in a network typically do not have

the same number of links, e.g. humans have different numbers of friends,

we characterize a system using the degree distribution P(k ). The probability

function P(k ) thus denotes the probability that a randomly chosen node has

exactly k links.

To gain a qualitative understanding of the distribution we can look at its

moments. The q th moment of the degree distribution is defined as

〈k q 〉=
∑

k

k q P(k ) =

∫

k

k q P(k )dk . (2.2)

In analytical calculations it is often more convenient to assume that degrees can

take any positive real values; thus the second definition. The lower moments

contain important physical interpretations about the distribution.

q = 0: The zeroth moment, 〈k 0〉, describes the mass of the distribution, where
∑

k P(k ) = 1.

q = 1: The first moment, 〈k 〉, is the average of the distribution, i.e. the average

degree.

q = 2: The second moment, 〈k 2〉, describes the variance of the distribution

σ2 = 〈k 2〉− 〈k 〉2, measuring the spread in the number of connections.

6If the network is undirected the row and column sums will be identical (k i =
∑

j A i j =
∑

i A i j ), otherwise the sums denote the number of outgoing (k ou t
i =

∑

j A i j ) and the number of

incoming connections (k i n
i =

∑

i ′ A i ′ j ).
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q = 3: The third moment, 〈k 3〉, measures the skewness of the distribution, reveal-

ing how symmetric P(k ) is around the average. A symmetric distribution

has zero skewness.

As we will see later in Section 2.2, the degree distribution plays a central role in

characterizing the structure of a network.

2.1.2 Mixing and degree correlations

Exploring the topology of networks more rigorously, we can look at which pairs

of nodes tend to link up to each other. Since many networks consist of different

types of nodes, the probability of them linking up will depend on the type. A

good example is a food web where nodes represent species and links denote

their predator-pray relations (Cohen et al., 1990). Here, there are many edges

linking herbivores and plants and herbivores and carnivores together, while

direct relations between herbivores and herbivores and carnivores and plants

are unlikely (Williams and Martinez, 2000).

Social networks display a different kind of connection pattern, called as-

sortative mixing or homophily, where we tend to associate with people that

are similar to ourselves. A classical example is the choice of partner, where

ethnically distinct groups tend to mix together, preferentially picking partners

with the same ethnic background (Kalmijn, 1998). Because similarity breeds

connection homophily has also been observed for characteristics such as age,

religion, education, occupation, and gender (McPherson et al., 2001).

It is particularly interesting to look at mixing patterns between the degree of

nodes and ask whether high degree nodes link up with other high degree nodes,

or if they prefer to attach to low degree ones. The chance that a node with degree

k is connected to a node of degree k ′ is given by the conditional probability

P(k ′|k ). For nodes with degree k we can calculate the average degree of their

nearest neighbors as

〈knn 〉(k ) =
∑

k ′

k ′P(k ′|k ). (2.3)

If there is a correlation between the degree of nodes, such that high degree

nodes link up to other high degree nodes, then we call it assortative mixing

and 〈knn 〉(k ) will be an increasing function of k . The reverse situation where

〈knn 〉(k ) decreases as a function of k signals that high degree nodes prefer to

connect to low degree nodes. Such mixing is denoted as being disassortative. As

it turns out, we observe both situations in networks (Newman, 2002). A majority

of social networks appear to be assortative, while information, technological

and biological appear to be disassortative.
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i
i j

(a) (c)(b)

Figure 2.2: Network measures. (a) Node i has a degree of 4 and its neighborhood is

marked in black. (b) The shortest path between nodes i and j has length 3. There

are four such paths, one of them is marked in black. (c) Transitivity in the network is

T = 3 ·2/17≈ 0.353 and average clustering is C = 1/7 · (1+1/3+1/3+1/3+1+1/6+0)≈
0.452.

2.1.3 Shortest paths, diameter and betweenness

Knowing the shortest paths plays a vital role in navigating and communicating

within networks. Suppose you want to travel from Copenhagen to Boston, know-

ing the optimal path would save you considerable amounts of time. Distance

between nodes is measured as the number of links one needs to traverse in

order to get from node i to node j , this is also known as the geodesic distance.

Note that there may be multiple shortest paths connecting two nodes, meaning

that the shortest path between Copenhagen and Boston (because there are no

direct flights) can take you through Frankfurt, London, Reykjavik, or some other

city (Figure 2.2 b). Watts (1999) defined the typical separation between two

nodes in a network as the average shortest path length, calculated as the mean

geodesic distance (d i j ) between all pairs of nodes:

l =
1

n (n −1)

∑

i ,j ,i 6=j

d i j . (2.4)

Consequently the diameter of a network is defined as the longest geodesic path

between any two nodes. There is, however, a problem with this definition as l

diverges if there are disconnected nodes or components. Latora and Marchiori

(2001) proposed an alternative and defined the average efficiency or harmonic

mean as

l −1 =
1

n (n −1)

∑

i ,j ,i 6=j

d −1
i ,j . (2.5)

If d i j diverges l −1 will still be well defined. The average distance tells us some-

thing about the size of a network, but it lacks any information about which

paths are important. Communication between two non-neighboring nodes i

and j , depends on other nodes on the paths that connect them. In this regard,

we can measure the importance of a node by counting the number of shortest

paths that go through it. As such the betweenness (b ) of node u is defined as

bu =
∑

i ,j ,i 6=j

σi ,j (u )
σi ,j

, (2.6)
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whereσi ,j is the total number of shortest paths that connect nodes i and j , and

σi ,j (u ) is the number of these paths that go through node u . As an analogy to

node betweenness we can similarly define the betweenness of an edge as the

number of shortest paths that utilize a specific tie (Costa et al., 2007). Along

with the degree, betweenness measures the centrality of a node (or an edge)

within a network, consequently the concept can be applied in order to under-

stand the vulnerability of networks, quantifying the impact of structural failures

on network performance (Holme et al., 2002; Newman, 2003). It is possible

to define centrality in different ways, as such variations of centrality include:

closeness centrality (Sabidussi, 1966), straightness centrality (Vragović et al.,

2005), Katz centrality (Katz, 1953), Eigenvector centrality (Newman, 2008), and

information centrality (Porta et al., 2006).

2.1.4 Navigability

The above measures tell us which paths to travel along given that we want to

take the shortest route, but they can only be calculated if we know the entire

structure of the network. So how do humans navigate networks with limited

knowledge? Milgram’s famous small-world experiment (Milgram, 1967) was the

first to probe the size of the global social network by asking randomly chosen

individuals to forward a letter via their first name acquaintances to a specified

target individual. It demonstrated that there exist short paths between sup-

posedly distant individuals. More surprisingly it also established that ordinary

people without any special knowledge were good at finding them. So what is it

about social networks that make them special? As Kleinberg (2000) pointed out

it is their structure. On a random network short paths do exist but no one is able

to find them due to the inherent randomness. With this in mind Peter Dodds

and collaborators (Watts et al., 2002; Dodds et al., 2003) repeated Milgram’s

experiment using modern technology that allowed them to track the social

search more thoroughly and pinpoint exactly which attribute was vital for a

successful search. They found that while successful social search is conducted

primarily through intermediate or weak strength ties, it depends on the incen-

tive of individuals. This is directly in line with an earlier study performed by

Marc Granovetter (Granovetter, 1973), who investigated how people get a job.

Not surprisingly successful job hunting depends on the number of connections

one has, however the type of connections is of even greater importance. As

it turns out, it is not your closest friends that are of most use to you, as they

are exposed to the same information as you. Paradoxically you have a higher

chance of getting a new job through a weak tie, such as a distant acquaintance,

because these weak ties act as bridges and can supply you with information you

otherwise would not have received.
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Ten years later, in May 2011, Facebook set in mind to test Milgram’s finding

and calculated the average distance between their then 721 million users7.

Their result was not surprising; between any two individuals on earth, or at least

amongst their users, the average distance was 〈l F B 〉 = 4.74 (Backstrom et al.,

2012), indicating that the diameter of our social network indeed is very small.

2.1.5 Clustering

In social networks it is very likely that the friend of your friend is also going to be

your friend, this effect is called clustering or transitivity (Wasserman, 1994). In

terms of network topology this effect manifests itself via an heightened number

of triangles—sets of three nodes that are connected to each other. By counting

the number of realized triangles versus the number of incomplete triangles in a

network it is possible to define transitivity T as (Barrat and Weigt, 2000)

T =
3 ·number of triangles in the network

number of connected triplets of nodes
, (2.7)

where a connected triplet denotes a single node that is linked to two other

nodes forming an incomplete triangle8. The factor of three compensates for

the fact that each triangle consists of three triplets, which in turn ensures that

transitivity lies in the range 0≤ T ≤ 1. In effect, transitivity measures the fraction

of connected triples that are closed, meaning they have their third edge filled in

to complete the triangle.

Watts and Strogatz (1998) proposed an alternative definition of cluster-

ing—local clustering—where they focus on individual nodes and formulate the

clustering coefficient as

c i =
number of triangles connected to node i

number of triplets centered on node i
. (2.8)

This definition is used widely within the sociological literature where it is intro-

duced as network density (Scott and Carrington, 2011). Global clustering for

the entire network is then defined as the average of the local values

C =
1

n

∑

i

c i . (2.9)

By definition 0≤ c i ≤ 1 and 0≤C ≤ 1. The difference between calculating tran-

sitivity and clustering lies in the order of operations, Equation 2.7 estimates the

7This number has doubled since then, as of December 31th 2014, Facebook had 1.39 bil-

lion active monthly users (http://investor.fb.com/releasedetail.cfm?ReleaseID=
893395).

8An easier graphical way to illustrate transitivity is T = 3N4/N∧.

http://investor.fb.com/releasedetail.cfm?ReleaseID=893395
http://investor.fb.com/releasedetail.cfm?ReleaseID=893395
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fraction of averages, while Equation 2.9 calculates the average of fractions (Fig-

ure 2.2 c). Regardless of which definition we use, clustering (or transitivity) is

remarkably high for social networks compared to networks where nodes are

connected at random. According to Newman and Park (2003) high levels of

clustering, along with degree correlations, are some of the properties that make

social networks special.

2.2 Network models

A network model is a way to explain the fundamental organizing principles of a

system and to make predictions about future behavior. Constructing a network

is nothing more than following a schematic that specifies the wiring diagram,

denoting how to connect the various entities. This section will go through

the most important networks models and focus on how successive discover-

ies about network properties have shaped our understanding of networked

systems.

The simplest form of a network is given by a lattice (Figure 2.3 a). While its

usefulness in modeling physical systems cannot be overestimated the general

structure of a lattice model does not resemble any real-world network. This is

because networks representing real-world systems are not regular, they are in

fact objects, where order coexists with disorder.

(a) (b) (c) (d)

Figure 2.3: Network models. (a) Two-dimensional lattice model, where each node is

connected to its four nearest neighbors. (b) Random network model proposed by Erdős

and Rényi (1959), with n = 30 nodes and probability p = 0.15 of connecting pairs of

nodes. (c) Small-world network by Watts and Strogatz (1998) with n = 30 nodes, k = 4

nearest neighbors, and rewiring probability p = 0.1 (d) Scale-free network of n = 30

nodes, constructed by the Barabási-Albert model (Barabási et al., 2000). Network is

grown with the addition of one node and two edges per time-step. Nodes are sized

according to their degree.

2.2.1 Random Networks

Proposed by two Hungarian mathematicians Erdős and Rényi (1959), random

networks, or graphs as they are called in the mathematical literature, introduced
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a new paradigm. The strength of random networks lies in their simplicity; de-

fined entirely by the number of nodes n and the probability p of an edge exist-

ing between each pair of nodes (Figure 2.3 b). Due to this simple description

many of their properties can be derived analytically. From their definition it

immediately follows that the average number of edges in a random network

is 〈m 〉 = p n(n − 1)/2. Accordingly, the average degree of a node is 〈k 〉 = n p ,

which leads to the degree distribution assuming a binomial form

P(k ) =
�

n −1

k

�

p k (1−p )n−1−k . (2.10)

For large networks, i.e. large values of n , this expression can be rewritten into

the mathematically simpler Poisson distribution

P(k ) =
〈k 〉k

k !
e−〈k 〉. (2.11)

Random graphs have been extensively studied and shown to possess many

interesting properties, we will briefly list some of them here, for a more com-

plete overview see Albert and Barabási (2002). In terms of size, if the graph is

connected, such that 〈k 〉 ≥ ln(n ), we can express the network diameter as

d =
ln(n )

ln(〈k 〉)
. (2.12)

Thus the average number of steps between any two nodes scales as l r a nd ∼
ln(n )/ ln(〈k 〉). Effectively this implies that the “world” is small, making it possi-

ble to traverse the network with relatively few steps. With respect to clustering; if

we pick a random node the probability of two of its neighbors being connected

is

Cr a nd = p =
〈k 〉
n

. (2.13)

As such, for large random networks (n→∞) the clustering coefficient becomes

negligible.

Random networks are a good first approximation of real world systems,

but as was pointed out by Kleinberg (2000) and Newman and Park (2003) real

networks are found to be very unlike random graphs.

2.2.2 Small-world networks

In their seminal paper Watts and Strogatz (1998) tried to reconcile the terminol-

ogy of random networks with the result from Stanley Milgram’s study (Milgram,

1967), which revealed that the distance between random individuals is very

short. In fact, distances are so short that any pair of individuals, on average, are

connected with just six steps, leading to the popular notion of “Six degrees of
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separation” (Guare, 1990). Networks that posses this trait are called small-world

networks. As it turns out, random networks display small-world properties

because node-wise distances scale logarithmically with the number of individu-

als (l r a nd ∼ ln(n)/ ln(〈k 〉)). The problem of random networks, however, lies in

the clustering. Social networks display an unusually high number of triangles,

i.e. situations where your friends are also friends, while random networks lack

this property, because nodes, as the name implies, are linked at random. To

solve this issue Watts and Strogatz viewed the problem from an entirely new

perspective.

Their solution is based on a very simple idea; start from a regular lattice

which has high values of clustering and mix in a little randomness to create the

small-world effect (Figure 2.3 c). Beginning from a ring lattice where every node

is connected to k individuals, they rewire links at random with probability p ,

enabling them to tune the network between order (p = 0) and disorder (p = 1);

amidst the two the small-world property emerges. The small-world model

captures most of the structural elements which we typically associate with a

social network. We are all embedded in cliques with a very few close friends,

but we also have distant weak ties with friends from childhood or with someone

we have met while traveling—effectively making the world smaller.

There is, however, one problem with the small-world model by Watts and

Strogatz (1998)—it is wrong! Its basic assumption about the structure of net-

works produces a Poissonian degree distribution similar in shape to random

graphs (Equation 2.11). Effectively, this implies that nodes on average have

similar numbers of connections and that networks have a typical size or scale.

In stark contrast to studies that have discovered broad degree distributions in

networks (Faloutsos et al., 1999; Barabási and Albert, 1999).

2.2.3 Scale-free networks

The small-world model was successful in incorporating short paths and high

degrees of clustering, but failed in explaining why some nodes are considerably

better connected than others. In 1999 two important papers by Faloutsos et al.

(1999) and Barabási and Albert (1999) showed that hubs are an essential part of

many real world networks, and that their degree distributions follow a power

law

P(k )∼ k−γ, (2.14)

where γ varies from system to system but is always > 1 and typically 2<γ< 3

(Dorogovtsev and Mendes, 2002; Newman, 2003). Power laws are often called

scale-free distributions, this is because they look the same on any scale. Note

that for networks it is only their degree distributions that can be considered as

scale-free. Mathematically this implies that the probability distribution satisfies
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the criteria

p (αx ) =q (α)p (x ) (2.15)

for any value of α (Newman, 2005). Plainly put, if we change the scale on which

we study x by a factor of α, then Equation 2.15 tells us that its overall shape is

unchanged except for a multiplicative constant q (α).
Power law distributions are not new, in a non-network context they have

been known since the early nineteenth century. Vilfred Pareto, an Italian econ-

omist, was studying landownership in Italy and noticed a disparity of wealth

where 80% of the land was owned by 20% of the population (Pareto, 1896). Later,

American linguist George K. Zipf applied similar reasoning and formulated

Zipf ’s law, accounting for the frequencies of words in the English language

corpus (Zipf, 1949). In general, many properties such as city sizes, magnitude

of earthquakes, and wars follow a power law (Newman, 2005).

Figure 2.4 illustrates the fundamental structural differences between ran-

dom and scale-free networks. In a random network a typical node will have a de-

gree of k ∼ 〈k 〉, as opposed to scale free networks where the lack of scale implies

that a randomly chosen node can have a degree in the range of k ∼ 〈k 〉 ± ∞9.

Consequently, these highly connected nodes, denoted hubs, dominate the net-

work topology (Figure 2.3 d).

For scale-free networks the distance between nodes scales as

l ∼











































const. if γ= 2,

ln(ln(n ))

ln(γ−1)
if 2<γ< 3,

ln(n )

ln(ln(n ))
if γ= 3,

ln(n ) if γ> 3,

(2.16)

depending directly on γ (Cohen and Havlin, 2003; Bollobás and Riordan, 2004).

For γ= 2 the degree of the biggest hub grows linearly as function of network

size, this forces nodes into a hub and spoke configuration, where all nodes are

a short, constant, distance from each other10. In the region where 2 < γ < 3

the network distance grows as ln(ln(n)), thus comparably slower than ln(n)
for random networks. This is denoted as the ultra small-world regime, where

9The degree of a node is of course limited to positive integer values k = 1, k = 2, k = 3,

etc.〈k 〉 ± ∞mainly indicates that the mean value is not descriptive of the system.
10Networks can also exist with γ< 2, this is called the anomalous regime. Here the largest hub

grows faster than the size of the network. Thus for large values of n the biggest hub will have

more connection than total number of nodes in the network, as km a x ∼ n
1
γ−1 (Newman, 2003).

This is only possible if self-loops and/or multiple links can connect the same pair of nodes. One

therefore has to treat networks in this regime with great caution.
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hubs connect many low degree nodes, radically shrinking the distance between

them. For γ> 3 we observe the previously discussed small world networks (see

subsection 2.2.2) where distance grows as ln(n ). In between, at the critical point

γ= 3, there is a mix of effects where the term ln(n ) appears but is corrected by a

double logarithmic correction. The slight difference between small-world and

ultra small-world regimes may not seem like much, but if we consider a social

network consisting of n = 7000000000 individuals, the average separation

distance between pairs will be of the order ln(n )≈ 22 (small-world), in contrast

to ln(ln(n)) ≈ 3 (ultra small-world). Demonstrating that hubs substantially

reduce distances between nodes.
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Figure 2.4: Network degree distributions P(k ), illustrating differences between a bell

shaped Poisson degree distribution and a power law distribution. For random networks

most nodes will have similar number of connections. In contrast to scale-free networks

where a majority of nodes have very few links while few hubs are greatly connected.

Redrawn from Barabasi (2002).

2.3 Network resilience

Networks rely on their connectivity to function, i.e. it is vital that paths exist

between pairs of nodes. Removing nodes will increase the typical path length

until a critical point where the network breaks up into separate components and

communication becomes impossible. Thus, an important property of networks

is their resilience towards node failure. Understanding how networks respond

to node removal is important in many fields, in particular epidemiology; by

removing (vaccinating) carefully chosen individuals we can split the network

into separate components and stop the spread of diseases. As we, however,

can remove nodes in a variety of ways, different networks will display varying

degrees of resilience, but, as we will ultimately see, resilience is closely related

to the degree distribution of a network.
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Albert et al. (2000) were the first to investigate the resilience of scale-free net-

works with respect to node removal. They focused on two schemes of removing

nodes, one removes nodes at random, while the second removes nodes accord-

ing to their degree, removing high degree nodes first. Applying the schemes

on representative samples of the Internet and of the World Wide Web, they

looked at how the average distance between nodes was affected as they re-

moved increasingly larger number of nodes. Figure 2.5 shows their results;

both networks are relatively unaffected by random removal of nodes, while

targeting high degree nodes has destructive consequences. In the context of

scale-free networks we can intuitively understand this from the degree distri-

bution. Because a majority of nodes have very few links, they will not lie on

any vital paths, thus removing them will not affect the overall network. On the

other hand, high degree nodes act as hubs for the network, i.e. many shortest

paths travel through them, hence removing them will increase the overall path

length. A great example is the worldwide airline network (Guimera et al., 2005),

if we remove the most central airports we can still travel from city A to city

B , but we would on average need to take more flights. The findings by Albert

et al. (2000) suggest that scale-free networks are highly resilient towards node

failures, but vulnerable against targeted attacks on its highest degree nodes. A

comprehensive study of the resilience of complex networks has been performed

by Holme et al. (2002), where the authors considered other strategies of node

removal, and also looked into what happened if edges were removed instead of

nodes.

2.4 Network growth

Up to now the discussed network models have tried to incorporate observed

properties of real-world systems, such as clustering or length of paths, in an

attempt to create networks that reproduce these patterns. The models, however,

have not addressed the issue of how the networks in the first place acquired

these properties. So in order to explain characteristic network features, such

as highly skewed degree distributions, we shift our focus to models of network

growth.

The Barabási-Albert model Not only did Barabási and Albert (1999) docu-

ment that many real world networks follow power-laws, they also suggested

a possible mechanism that explains how the phenomenon might arise. They

argue that the scale-free nature of networks originates from two generic mecha-

nisms: (1) most real networks are dynamic systems, which grow by the addition

of nodes and edges, and (2) nodes do not link up at random, they follow certain

preferences. The second mechanism is called preferential attachment. It states
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Figure 2.5: Network resilience, represented as the average node-to-node distance

for increasingly larger fractions of removed nodes. Left panel shows the network of

Internet routers, right panel show the network of web pages on the World Wide Web.

Removing nodes in random order (�) slightly increases the distance. Opposite, if

nodes are removed in an organized fashion, largest degree first (©), distance increases

dramatically, even for low fractions of node removal. Redrawn from Albert et al. (2000).

that new nodes link to preexisting nodes with probability proportional to their

degree. In plain words this means that nodes favor to link up to already popular

individuals. The concept of preferential attachment is not new, Simon (1955)

originally used it in order to explain the unequal growth in wealth, called the

“rich get richer” effect. 20 years later de Solla Price (1976) applied it in a net-

work context to explain the observed skewness in the distribution of citations

between scientific papers (de Solla Price, 1965). Suggesting that highly cited

papers acquire citations at higher rates than less cited publications. Thus the

model should arguably be called the Simon or the Prince model, but as the

name, Barabási-Albert model, during the past 15 years has gained considerable

popularity in the scientific discourse, we shall stick with it.

The Barabási-Albert model consists of three elements. (1) Start from an

small initial configuration of nodes (n 0). (2) At every time-step add a new node

with m < n 0 edges, linking it to m already present nodes in the network. (3) The

probability, Π, for a new node to link to vertex i depends on the connectivity

k i , such that Π(k i ) = k i/
∑

j k j . Due to preferential attachment, nodes with

high degrees will acquire new connections faster, hence any initial differences

between nodes will be amplified. The authors further demonstrated that steps

(2) and (3) are necessary in creating a power law, as absence of one fails to

reproduce the desired behavior.
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For the Barabási-Albert model it is possible to obtain an analytical expres-

sion for the power-law exponent, γ, which ultimately hints at the underlying

topology of the scale-free network, see Equation 2.16. The rate at which node i

gains connections is
∂ k i

∂ t
=mΠ(k i ) =m

k i
∑

j k j
. (2.17)

As
∑

j k j = 2m t , Equation 2.17 reduces to

∂ k i

∂ t
=

k i

2t
. (2.18)

Solving for k i yields

k i (t ) =m

�

t

t i

�1/2

, (2.19)

where t i is the time at which node i was added to the system. Thus, the prob-

ability that node i has lower connectivity than k , P(k i (t ) < k ), can be writ-

ten as P(t i > m 2t /k 2). Given that we add new nodes at fixed time intervals,

P(t i ) = 1/(n 0+ t ), we can write

P

�

t i >
m 2t

k 2

�

= 1−
m 2t

k 2(n 0− t )
. (2.20)

The degree distribution can be obtained from

P(k ) =
∂ P(k i (t )< k )

∂ k
=

2m 2t

n 0+ t

1

k 3
. (2.21)

In the asymptotic limit t →∞ it scales as

P(k )∼ k−3, (2.22)

with the exponent being independent of the number of edges (m ) we add per

time step (Albert and Barabási, 2002).

The Barabási-Albert model correctly constructs a scale free network, but as

it turns out it has certain shortcomings in capturing other aspects of network

structure. Krapivsky and Redner (2001) note that it introduces correlations

between nodes, such that nodes of similar degrees are connected, however,

as was discussed in subsection 2.1.2 this feature is only true for certain types

of networks. In addition, Krapivsky and Redner (2002) also noted that power-

law degree distributions only arise for a linear attachment of nodes. Another

unnatural feature, which the authors themselves noted, is that the clustering

coefficient vanishes as n→∞ (Albert and Barabási, 2002). Moreover, the model

produces a correlation between the age of a node and its degree, i.e. older nodes

will experience a higher increase of connectivity at the expense of younger
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nodes. Adamic and Huberman (2000) showed that this prediction is inconsis-

tent with empirically observed structural properties of the World Wide Web.

In fact, a great deal of empirical evidence indicates that first movers do not

necessary end up as the most important ones, good examples are: AltaVista,

once the most popular web search engine, it quickly lost ground to a latecomer—

Google. Or the popular online social network MySpace which was later beaten

by Facebook.

Responding to criticism Barabási et al. modified their model by introducing

a novelty term (Adamic and Huberman, 2000; Albert and Barabási, 2002), such

that each new node connects to already preexisting nodes with probability

Π=
ηi k i

∑

j ηj k j
, (2.23)

where ηi is the fitness of node i . This ensures that even relatively young nodes

with fewer edges can accumulate connections at higher rates than older nodes.

Nonetheless, it is an open question how to sample ηi , and from which distribu-

tion.

Finally, it has been shown that many other mechanisms can create power

law distributions (Newman, 2005), thus preferential attachment might not be

as important as previously assumed.

Despite the criticism, the model by Barabási and Albert was an important

attempt in understanding the structure of networks, it represents a first simpli-

fied version of the world and highlights the importance of capturing topological

features of real world networks.

2.5 Community structure

Networks are not organized at random; due to mixing effects, edges will be

inhomogeneously distributed both globally and locally forming tight clusters

of nodes. This feature is called community structure (Girvan and Newman,

2002). It is not a surprising fact, as we know from common experience that

people segregate into groups along the lines of family, interest, age, occupation,

ethnicity, and so forth. Within sociology it is therefore widely assumed that

people form tightly connected groups, having a high density of edges within

the group, and a lower density of edges between groups (Scott and Carrington,

2011; Wasserman, 1994). Figure 2.6 illustrates such structures revealing three

distinct clusters.

Communities are not limited to only occur in social structures, but are

observed in other networked systems from biology to the World Wide Web (For-

tunato, 2010). Good examples are: clustering of web pages that deal with similar

or related topics (Flake et al., 2002; Dourisboure et al., 2007), groups of proteins
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Figure 2.6: Community struc-

ture in a network, with three

visible clusters denoted by

black circles. Density of ed-

ges is higher within clusters,

than outside. Edges between

communities are colored red.

Reprinted from Newman and

Girvan (2004).

that have specific functions within our cells (Rives and Galitski, 2003; Jonsson

et al., 2006; Spirin and Mirny, 2003; Chen and Yuan, 2006), or compartments

within food webs (Pimm, 1979; Krause et al., 2003). The idea of identifying dis-

tinct groups of nodes is not new, Rice (1927) looked for clusters of people based

on voting patterns, and Homans (1951) suggested a technique of identifying

social groups by manipulating the rows and columns of adjacency matrices. By

the 1950’s and 60’s computers had grown so large that electrical engineers faced

the problem of partitioning electrical circuits into boards, dividing components

into clusters by minimizing the number of cross connections (Kernighan and

Lin, 1970).

Networks can display different levels of organization at different scales.

This sometimes produces hierarchically nested structures with nodes being

organized into communities which have smaller communities nested inside,

which may again contain smaller communities, and so on. We wish to detect all

these communities, thus we cannot focus on one specific community size, but

need algorithms than can effectively infer these structures for us across multiple

scales. One of the first algorithms to appear from within the network science

community and one of the most popular algorithms nowadays, was proposed

by Girvan and Newman (2002). In their seminal paper they suggest to identify

communities using betweenness centrality. Edges with high betweenness act as

connectors between otherwise separate clusters (Figure 2.6, red ties), removing

them we can uncover the underlying community structure. The general idea

of the algorithm is to (1) calculate the betweenness of all edges, (2) pick the

edge with the highest value and remove it, (3) recalculate betweenness for the

remaining edges, and (4) repeat from step 2. This procedure incrementally

removes edges and builds a dendrogram of components, where at the lowest

level, nodes are separated into individual communities. Run rampant this

process will not find any meaningful partitions, but the question is when to

stop it? To answer this, Newman and Girvan introduced a quantity called

modularity, that measures how well a network splits into clusters. In their

paper they argue that a good split is not necessary when there are few edges
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between two components, but when there are fewer edges than expected. Thus

modularity can be defined as:

Q = fraction of edges within communities

− expected fraction of such edges. (2.24)

If the number of within-community edges is no better than what we can expect

at random then Q = 0. Opposite, values of Q = 1 indicate good community

division. In mathematical terms we can write Q as

Q =
1

2m

∑

i j

�

A i j −Pi j

�

δ(c i , c j ), (2.25)

where the sum runs over all pairs of nodes, m is the total number of edges in

the graph, A is the adjacency matrix, and P represents the expected number

of edges in the null model. The Kronecker δ takes the value 1 if nodes i and j

are in the same community (c i = c j ), and 0 otherwise. According Newman and

Girvan (2004) very high values of Q are rare, for real networks high modularity

values will lie in the range between 0.3 to 0.7.

The betweenness algorithm progressively removes ties and calculates Q for

each partition; this is repeated until the process reaches the node level where

no edges remain. The maximum value of Q then reveals the best place to stop

the process and hence the optimal partition. In practice this algorithm works

very well, but it suffers from one disadvantage: computation of all shortest

paths for each iterative step is very expensive. Even for highly sparse graphs

the complexity of the most optimized version of the algorithm scales as O (n 3),
limiting its applicability to relatively small networks with 104−105 nodes.

The goal of the betweenness algorithm is to find partitions with very high

values of modularity. As it turns out, calculating betweenness is computationally

costly, but why not just optimize Q directly? Newman and collaborators realized

this possibility in two later papers (Newman, 2004b; Clauset et al., 2004), where

they maximized Q using a greedy optimization scheme.

Today there are many strategies of optimizing modularity, we will not delve

into them here, instead we focus on the choice of null model term, P . In

principle this choice is arbitrary. We can, for instance, choose a network that

has the same number of edges as the original graph, but demand that edges

are placed at random. This will give us a random network with a Poissonian

degree distribution, however, as was discussed in Section 2.2 this is not a good

descriptor of real-world networks. A preferable null model should mimic the

degree landscape of the original graph. Using the configuration model11 (Łuczak,

11 The configuration model is a generalization of random graphs to sample networks with

preferred degree sequences. Start from n disconnected nodes and assign each node a number of
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1989; Molloy and Reed, 1995) it is possible to calculate the probability that nodes

i and j with degrees k i and k j are connected. To form a link between i and

j we need to join two “stubs” (half-links). The probability to randomly join a

stub attached to i with a stub incident on j is given by k j /(2m −1), excluding

the stub already attached to i . As there are k i chances of this occurring, the

expected number of edges between nodes i and j is Pi j = k i k j /(2m − 1). In

the limit of large m it reduces to Pi j = k i k j /2m . Using this the expression of

modularity yields:

Q =
1

2m

∑

i j

�

A i j −
k i k j

2m

�

δ(c i , c j ). (2.26)

Since only node pairs that are in the same cluster contribute to the sum, they

can be grouped together and the sum can be rewritten to

Q =
∑

c

�

mc

m
−
�

d c

2m

�2
�

, (2.27)

where the summation now runs over all communities c , mc is the number of

within-community edges, and d c is the sum of degrees of nodes in commu-

nity c (Fortunato, 2010). Modularity maximization is widely applied in many

algorithms, most notably in the Louvain method (Blondel et al., 2008).

Although no common definition has been agreed upon, communities are

generally thought of as containing more internal than external connections.

This was also the basic assumption of modularity. However, communities in

networks often overlap, such that nodes can belong to several groups (Palla et al.,

2005). In highly overlapping cases we even, counterintuitively, observe that

communities have more external than internal connections. Thus, the general

assumption of binary assignment of nodes breaks down, a new approach is

needed. To solve this problem Ahn et al. (2010) introduced a new idea, instead

of clustering nodes, why not cluster links? Their concept builds upon the

observation that while nodes can belong to multiple groups, such as families,

friends, and colleagues, links exist for one specific reason and within a single

context. Rather than partition nodes into groups they consider a community

to be a set of similar links. Since links that share a node are expected to be

more similar than disconnected link-pairs Ahn et al. focus on such pairs and

calculate the similarity between two links e i u and e j u as

S(e i u , e j u ) =
|n+(i )∩n+(j )|
|n+(i )∪n+(j )|

, (2.28)

“stubs” (half-edges) corresponding the the degree sequence of the original graph. To construct a

randomized version of the graph, pair stubs at random. This yields a possibility of constructing

self loops and multi-edges. The constructed graph will be an instance of the degree sequence of

the original network.
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where n+(i ) denotes the set of neighbors of node i . Using hierarchical clustering,

links are structured into a dendrogram, where each link is assigned to a single

link community. By virtue of nodes having multiple links they can occupy

multiple positions in the tree. As such, thresholding the tree nodes inherit all

memberships of their links and can therefore belong to multiple communities.

The dendrogram provides a rich hierarchy of structure where link communities

can be extracted at multiple levels by cutting the tree. However, to obtain

meaningful communities we need to determine the optimal place to cut the

tree. For this purpose, the authors introduced an objective function, similar in

purpose to modularity. The partition density measures the quality of a partition

as

D =
2

m

∑

c

mc
mc − (n c −1)
(n c −2)(n c −1)

, (2.29)

where n c is the number of nodes in community c and where the contribution

for a community is defined as zero if n c = 2. The partition density measures

how “clique-ish” versus “tree-ish” each community is. When every community

is a fully connected clique D = 1, and when each community resembles a tree

D = 0. If a partition is less dense than a tree, i.e. has disconnected components,

then D can assume negative values.

Overall, knowing the community structure of networks is a valuable tool in

understanding the topology and function of networked systems. Modularity

and link clustering are just two of many methods that uncover this structure.

In fact, community detection is the most prolific area of networks science

producing an abundance of algorithms; in addition to modularity and link

clustering some of the most popular algorithms are: clique percolation (Palla

et al., 2005),Derényi et al. (2005), the Louvain method (Blondel et al., 2008),

spectral methods (Newman, 2006), OSLOM (Lancichinetti et al., 2011), and

InfoMap (Rosvall and Bergstrom, 2008).

2.6 Temporal networks

Human beings are not static, our behaviors, relations, and even our patterns

of thinking change over time (Wrzus et al., 2013). Apart from certain growth

models, where nodes in some sense are regarded as “dead” because once they

arrive they never do anything new, we have so far viewed networks as static

structures whose properties are fixed in time, but this could not be further

from the truth. Intuitively we know that networks are constantly evolving, e.g.

the number of web pages on the World Wide Web dynamically changes with

some pages disappearing and new ones appearing. Like network topology,

edges also display a temporal dimension, we know that our social ties are not

continuously active, but only employed when we communicate. Networks, or
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graphs, therefore have an inseparable temporal component where topology and

edge activation profiles greatly affect the network behavior. In light of this, many

of the traditional approaches to networks do not generalize to the temporal

regime, and as we shall see, the temporal representation greatly complicates

the description of networks. Nonetheless, the framework for studying temporal

interactions is a valuable tool in understanding dynamic systems.

Many complex systems have an underlying temporal dependence and can

therefore be described as temporal networks. Thus the study of temporal net-

works, in essence, is a very interdisciplinary field composed of disparate disci-

plines. This is reflected in the terminology, where one concept can easily have

multiple names; to be consistent we will tie the formulation of temporal net-

works in with the previously discussed terminology in Section 2.1. For curious

readers, a more thorough examination can be found in the excellent review by

Holme and Saramäki (2012).

The rest of this section is structured as follows, first we highlight various real

world systems that can benefit from being described with a temporal framework,

followed by an overview of measures that quantify the properties of such net-

works. Lastly, we briefly discuss how to represent temporally evolving structures

as static graphs.

2.6.1 Examples of temporal networks

Many complex systems might benefit from being represented as temporal

networks. The following examples are, therefore, not at any level comprehensive,

they merely emphasize that time is a vital component in complex networks.

Person-to-person interactions Social interactions are particularity suited to

be described as temporal networks. Calls, texts, instant messages, and e-mails

are all good example of dynamic processes where the spreading of information

is temporally constricted. This representation can, among others, give us better

insight into the dynamics of relationships (Holme, 2003), and how information

spreads (Iribarren and Moro, 2009; Miritello et al., 2011).

A special type of human networks are proximity interactions, denoting who

we are close to at what time. As we will see later in chapter 3, such data can

be collected trough various schemes and e.g. be applied in order to study the

dynamics of diseases (Salathé et al., 2010; Stehlé et al., 2011a).

Cell biology Inside our cells, proteins are not expressed at all times. Since this

is a waste of energy certain genes are only transcribed when they are needed.

Incorporating time in a genetic regulatory networks Nelson et al. (2004) experi-

mentally showed that oscillations appear, and Lewis (2003) demonstrated that
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the formation of somites (precursors to the vertebral column) can only occur

if constituent gene expression varies in time. Furthermore, considering the

cell cycle in a temporal context with periodically and constitutively expressed

proteins de Lichtenberg et al. (2005) experimentally demonstrated the presence

of previously unknown modules and components.

Ecological systems The relationship between predator and prey is dynamic

and changes with seasons, or over the course of an animals life cycle (Pahl-

Wostl, 1995; de Ruiter et al., 2005). The evolutionary web itself evolves with

species dying out and new ones arriving, although these processes occur over

much longer periods of time.

Animals, or humans for that matter, are not stationary, we move around in

space. Thus, population biology studies how proximity and mobility networks

of animals change over time (Lusseau et al., 2003; Tantipathananandh et al.,

2007). Much like humans, animal mobility is studied with respect to the spread

of infectious diseases (Vernon and Keeling, 2009; Bajardi et al., 2011).

Neural networks Within our brains networks of neural connections represent

another class of systems that can benefit from the temporal network approach.

Over the course of a day, brain activity fluctuates with specific areas being active

at different points in time depending on the mental task at hand (Dimitriadis

et al., 2010). Valencia et al. (2008) showed that connectivity of functional regions

changes in response to visual stimuli producing small-world characteristics.

Bassett et al. (2011) demonstrated that the brain adapts its connectivity patterns

in response to learning, reconfiguring edges between different regions of the

brain, and Petri et al. (2014) showed that ingesting hallucinogens changes the

brain’s functional network.

Additional systems Other notable examples of networked systems that might

benefit from the dynamic network approach are airline flight networks (Gautreau

et al., 2009). Although flight connections are relatively stable each link has a

dynamic weight (number of passengers) and a dynamically changing activation

profile. In addition, the interrelations between banks, companies, or countries

are all systems that might benefit from being modeled as temporal networks

(Schweitzer et al., 2009).

In summary, complex systems are nontrivial combinations of evolving net-

work structures and dynamical processes that take place on top of the networks.

The question of whether a system should be modeled using the temporal frame-

work ultimately relates to the timescales of the system (Gautreau et al., 2009). If

the dynamical processes that unfold on the network are much faster than the
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evolution of the underlying topology, then there is no need to model the system

as a temporal network. As such, if networks change faster than the dynamics

that occur on them, the formalism might be a good approach.

2.6.2 Properties of temporal networks

Temporal networks can be portrayed by three different representations (Fig-

ure 2.7). The continuous representation encodes interactions in a time-ordered

sequence where each interaction can be viewed as instantaneous. This is typ-

ically used to represent communication events between individuals such as:

e-mails, text messages, and calls, where we for the latter assume that the du-

ration of a call is not important. The discrete representation divides time into

windows and aggregates interactions that occur within each bin into a net-

work. This approach is usually used to describe prolonged interactions, and

can e.g. be used to characterize physical proximity of individuals. Aggregating

interactions across all time yields the static representation, here all temporal

information is lost. Regardless of which representation we use (continuous or

discrete), including time in the network picture will often result in new and

unforeseen behaviors, thus the statistical measures that we previously applied

in describing static networks need revising.
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Figure 2.7: Temporal network representations of interactions between a set of nodes.

The continuous representation consists of a time-ordered sequence of interactions. The

discrete representation can be derived by segmenting time into equally sized windows

and aggregating interactions that fall within. Aggregating events over all time produces

the static representation. Figure is inspired by Williams (2013).
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Degree distribution The degree distribution denotes the number of connec-

tions per node and characterizes the topology of a network. In a temporal

context the degree distribution is best studied over longer periods of time, since

time-resolved data is usually very sparse. In the case of high-resolution datasets

there will only be a handful of edges present at each time-step. Figure 2.8 shows

the growth of a network, and its subsequent change in topology, illustrated for

various windows of aggregation (∆t ). If we let∆t →∞ we arrive at the static

network regime. Frameworks for finding optimal (also called natural) time-

scales, where the conversion of dynamic data into discrete snapshots yields the

best result, have been studied by Sulo et al. (2010), Clauset and Eagle (2012), and

Krings et al. (2012). In general, there is no single optimal timescale, it depends

entirely on the system of study and the dynamical processes that unfold on it.

In addition, some systems might even display multiple time-scales comprised

of daily, monthly, and yearly patterns.

Aggregating interactions is a simple way of removing the temporal dimen-

sion and allows us to apply the statistical framework from static graphs, but it

can discard important information. Nevertheless, it is useful when the topologi-

cal properties are of greater interest than the temporal.

Time-respecting paths Paths that connect nodes were previously thought as

being ever-present. Thus if there was a path from a to b and from b to c then

there was also a path connecting a and c . In the temporal regime, however, we

need to take the time ordering of links into account. For nodes a and c to be

connected there needs to be a sequence of time-ordered link-activations, such

that the link (a ,b ) has to appear before (b , c ) (Kempe et al., 2000). Consequently

this implies that temporal networks are not necessarily transitive, meaning

that there can exist a time-respecting path from a to c , but not from c to a .

Furthermore, because paths are temporal by nature it is not guaranteed that

a path joining a and c at time t will exist later at time t ′; moreover, future

paths might even follow entirely different routes. Figure 2.9 illustrates the above

concepts; node A is connected to node D via two time-respecting paths either

through C or B . On the other hand, as interactions are not transitive node D is

unable to interact with node A.

Time-respecting paths define which nodes can potentially be reached from

other nodes, as a result they give us a clue about the reachability within a graph.

Thus, the influence of node i is defined as the set of nodes that can be reached

via time-respecting paths from i . This, in particular, is a valuable measure in

understanding disease spreading, as it denotes the number of nodes that can

be infected by i . Holme (2005) defined the reachability ratio as the average

fraction of nodes that can be influenced. Conversely, one can also define the

source set of node i as the set of nodes that can reach i via time-respecting

paths, capturing potential sources of infection (Riolo et al., 2001).
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(a) (b)

(c) (d)

Figure 2.8: Network growth corresponding to aggregated call patterns within a subnet-

work of individuals from a single postal code. Links that participate in triangles are

colored black. Network is aggregated within intervals: (a)∆t = 1 day. (b)∆t = 1 week.

(c)∆t = 4 weeks. (d)∆t = 6 months. Figure is adapted from Krings et al. (2012).
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Figure 2.9: Time-respecting paths and the issue of transitivity. (a) Illustration of a

temporal interaction sequence between four nodes. (b) Contact sequence from (a)

visualized as a network, colored accordingly. Time of link activation are indicated on

the edges. Adapted from Holme and Saramäki (2012).
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Distances and fastest paths In static networks we defined distance as the

number of ties one has to traverse in order to get from node i to j . Thus, it tells

us something about the overall diameter of the network. Adding time to the

formulation, we are no longer only interested in the length of a path, but also

the time it takes to walk the path, a concept called latency or temporal distance

(Pan and Saramäki, 2011). Introduced in the study of distributed computing,

latency measures the age of i ’s information about j (Lamport, 1978). Where it is

assumed that nodes in contact update their information such that they posses

the most recent. Thus average latency is a measure of how fast information

propagates in a network. Empirically measuring the propagation of information

has, however, proven difficult, as the generally accepted definition of latency

relies on the existence of time-respecting paths. Various strategies that mitigate

this issue are outlined in Pan and Saramäki (2011) and Karsai et al. (2011).

Centrality Centrality quantifies the importance of each node by e.g. counting

how many shortest-paths pass through it or by its relative closeness to other

nodes. Betweenness centrality is defined for static networks by Equation 2.6,

this definition generalizes directly to the temporal regime by adding an explicit

dependence on time (Tang et al., 2010):

bu (t )∼
∑

i ,j ,i 6=j

σi ,j (u , t )
σi ,j (t )

, (2.30)

whereσi ,j (u , t ) is the number of shortest temporal paths from i to j in which

node u has either received or relayed the information at time t , and the de-

nominator,σi ,j (t ), is the number of shortest temporal paths from i to j within

a time-window (tm i n < t < tm a x ). Other centrality measures such as closeness

centrality, can also be generalized by adding an explicit dependence on time

(Holme and Saramäki, 2012).

Inter-contact and Burstiness To supplement measures that characterize the

overall structural and dynamical properties of temporal networks we can look

at the constituent contributions from individual nodes and edges. Their associ-

ated activation sequences can tell us something about the correlation patterns

between different entities, and might reveal important features about the timing

and duration of time-respecting paths.

Human communication patterns have been shown to deviate from memo-

ryless and random Poisson processes, instead they are concentrated in bursts

(Barabasi, 2005; Oliveira and Barabási, 2005; Malmgren et al., 2009; Wu et al.,

2010). This behavior manifests itself in the probability distribution of inter-

contact times, P(τ), producing a broader than expected probability profile.

However, due to certain inhomogeneities in the network structure, such as
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heavy-tailed degree distributions, it is difficult to directly relate the inter-event

distribution to the activation profile. It has therefore become common to display

the rescaled distribution, P(τ/τ∗), which compared to a Poisson distribution

still displays a heavy tail (Candia et al., 2008; Miritello et al., 2011).

To quantify a signal Goh and Barabási (2008) introduced the coefficient of

burstiness, defined as

B =
στ−mτ

στ+mτ

, (2.31)

where στ is the standard deviation, and mτ the mean of the inter-contact

pattern. Note, the definition is only meaningful when both mean and standard

deviation exist. As this is always the case for real world signals, B is bounded to

the interval (−1, 1). B = 1 is the most bursty signal imaginable, B = 0 reflects a

random process with Poissonian inter-contact times, and B =−1 corresponds

to a completely periodic signal. Regular human heartbeat patterns have a

burstiness coefficient around −0.75, while communication patterns between

humans are more bursty and lie in the range 0.2< B < 0.7 (Goh and Barabási,

2008).

Models of temporal networks Temporal network analysis is a relatively new

field, and the number of models that explain the characteristics of temporal

networks is rather limited. Few notable examples are: the model of social group

dynamics by Zhao et al. (2011), and the models of temporal network structure

by Jo et al. (2011) and Karsai et al. (2014). A more comprehensive overview is

given in Holme and Saramäki (2012).

Including time in our representations of networks greatly complicates the math-

ematical description, but what do we gain in return? First, not all complex

systems are suitable to be described by the formalism, it all depends on the

structure and dynamics of the system. Secondly, bursty dynamics and time-

respecting paths play a crucial role in spreading processes, be it the spread of

cat-videos on social networks or the transmission of diseases, they influence

these processes in new and unforeseen ways. Potential benefits of explaining

such phenomena ranges from a deeper understanding of epidemics and how

to prevent them, to the creation of more viral advertising campaigns. Last and

most importantly, the paradigm of temporal networks represents a more realis-

tic view of our world, enabling us to better understand its underlying driving

forces. There are, however, still many open questions left, and according to

Holme and Saramäki (2012): “there is much room for improvement.”



3
Measuring Networks

N
ETWORK science focuses on understanding complex natural phenom-

ena by reducing them to the bare minimum—a collection of objects

interconnected in some fashion. While a lot can be learned from the-

oretical approaches we need empirical data to understand real world systems.

But what data should we collect and how should we go about collecting it?

There are enormous differences between collecting data in a classical sense

and collecting data about humans. Atoms and cells do not mind if we observe,

disturb, or prod them in order to uncover their fundamental secrets, nor do they

protest when we change their environment. Humans, on the other hand, value

the concept of privacy and we are not as keen at divulging our secrets. Because

social systems are in a constant state of flux, one of the main pillars of the

scientific method, reproducibility, does not apply, as it is virtually impossible to

exactly replicate experiments in order to reproduce results. Thus, the challenges

we face are colossal; to overcome them we need novel approaches.

In order to comprehend society we first need to understand the intricate

web between people. To do so requires a detailed map of human interactions.

Consequently, this chapter deals with ways of collecting, and measuring human

behavior. As behavioral traces can be collected in a variety of ways, rather than

giving a comprehensive overview of the methods of acquisition this chapter

will focus on applying electronically collected traces as proxies for human life.

Specifically we will discuss how recent technological advances have led to

a better understanding of social systems and how new studies are currently

35
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pushing the boundaries of quantitative social science even further. In this

regard we will touch upon the dimensionality of data, can we view the world

through a single lens or is that too simple of an approximation? Finally, this

chapter concludes with an investigation of whether electronic traces can be

applied to infer real physical interactions between individuals.

3.1 Proxy for human life

Recognizing genuine social relations is a central issue within multiple disci-

plines. When do connections happen? Where do they take place? And with

whom is an individual connected? These questions are important when study-

ing close-contact spreading of infectious diseases (Liljeros et al., 2001), or or-

ganizing teams of knowledge workers (Pentland, 2012). In spite of their impor-

tance, measuring social ties in the real world can be difficult.

For over a century social scientists have studied distinctive demograph-

ics using surveys, interviews, or by directly embedding observers within the

environment of interest (Cooley, 1910; Moreno and Jennings, 1934). These

methods capture rich sociological data, but are time demanding and labor

intensive. Thus they are constrained to small sample sizes. With the rise of

the information society our methods of capturing behavioral patterns have

greatly improved. In fact our methods have improved so much that nowadays

all our interactions with computers are stored in a database somewhere: every

phone call, email, credit card transaction, shared picture, watched video, geo-

graphical check-in, and online comment is collected and stored somewhere. In

addition, governments and cities record and collect comprehensive statistics

about public spending, crime, and healthcare. Every aspect of our daily lives is

being captured and stored in great detail, and the rate of information growth is

expected to accelerate in the future (Lazer et al., 2009). These rich digital traces

have the potential to revolutionize how we understand our society, and grant us

the possibility to gain novel insights into human behavior and the underlying

social fabric.

Collecting data has become relatively easy, but combining disparate datasets

is still a challenge. Partially because of practical concerns such as noisy and

incomplete data, but in part also due to complicated legal, ownership, and

privacy issues of these highly sensitive traces. As a result most studies have

concentrated on single samples of data such as emails (Kossinets and Watts,

2006), call detail records (Onnela et al., 2007), and online social networks (Lewis

et al., 2008). These networks represent thousands to millions of individuals

and display a wealth of interesting properties, but the rich information on in-

terpersonal relations that previously was collected by human observers is now

lost. Digital data traces offer a simplification of our world, and can can be
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used to understand global features such as human mobility patterns (Gonza-

lez et al., 2008), but they fall short of describing the full complexity of human

relations. This is because our interactions are expressed across a multitude

of channels, we can talk face-to-face or over the phone, we can message each

other using text messages, emails, or online social networks such as Facebook

or Twitter. While we cannot communicate across all channels at once, we can

effortlessly switch between them. Studying human relations using only one

channel, therefore, does not yield a representative picture. The trade-off be-

tween rich ethnographic data and digital traces is complicated, and application

of either data source depends on the system of interest. But is it possible to

reconcile the two viewpoints and generate both rich and large-scale data?

We live in the era of mobile computing, where off-the-shelf mobile phones

have more computational power than computers used by NASA when they first

sent mankind to the moon. Nowadays smartphones can be modified in order to

diagnose infectious diseases such as AIDS (Laksanasopin et al., 2015), or even

be applied as portable brain scanners (Stopczynski et al., 2014b). The number

of mobile phone subscriptions has grown rapidly over the previous 10 years

(Figure 3.1). By the end of 2014 the number of active mobile phone subscriptions

was expected to reach 6.915 billions, equivalent to roughly one device per every

living person on Earth (ITU, 2014), making mobile phones the most pervasive

piece of technology in human history. The ubiquity and functionality of mobile

phones combined with our seemingly symbiotic relationship to them, makes

them a perfect proxy for studying human behavior.
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3.2 Data collection endeavors

Modern day smartphones come equipped with an arsenal of sensors and with

enough computational power to rival personal computers. We are, therefore,

not the only ones to have realized their potential, in fact there exists a large

number of solutions for collecting behavioral data (Lane et al., 2010; Miller,

2012). Yet, few have attempted at collecting rich behavioral and longitudinal
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data for relatively large populations. Examples are: the Reality Mining project

where 100 mobile phones over a nine month period were applied as sensors to

register social dynamics (Eagle and Pentland, 2006), and the Social fMRI study

that collected the physical, online (Facebook), and credit card traces for 130

individuals over a 15 month period (Aharony et al., 2011). Lastly, the Lausanne

Data Collection Campaign collected the daily traces of 170 volunteers living in

the Lausanne area in Switzerland (Kiukkonen et al., 2010). Another interesting

study that deserves a mention was performed by the SocioPatterns collaboration.

They applied Radio Frequency Identification Devices (RFID) in order to study

the dynamics of physical interactions (Cattuto et al., 2010). The downside of

their approach is that individuals have to be outfitted with custom-made RFID

tags and that interactions can only be studied in areas equipped with special

radio beacons that communicate with the tags.

All the above mentioned studies have focused on relatively small and sparsely

connected samples of individuals. For example the Reality mining project

handed out 100 phones to students and employees at the Massachusetts Insti-

tute of Technology, yet only managed to capture 22 reciprocated friendships.

While these studies have provided us with vital knowledge, they have been

unable to provide us with fundamental insights into the dynamics of social

systems. Fueled by the thirst for knowledge we want to go further and study the

interactions between large numbers of densely connected individuals. More-

over, we want to study relations within a large number of different contexts,

from workplaces to social settings, and from casual encounters to interactions

between good friends. Thus, an unlikely but good place to start is at a university

campus.

3.3 Copenhagen Networks Study

Aiming to push the boundaries of quantitative social science the Copenhagen

Networks Study addresses the trade-off between rich ethnographic and longi-

tudinal data by collecting information across multiple channels (Stopczynski

et al., 2014a). Using state-of-the art smartphones as sociometers, the study

collects data from a number of different sources regarding behavior, interac-

tions, and demographics for approximately 1000 densely connected students

at a large European university. A series of questionnaires provide background

information about socioeconomic, psychological, and health related factors for

each participant. Data from Facebook produces a picture of the online persona,

contributing with a view of the online social network and its dynamics. Sensors

on the phones register and collect: geographic locations, telecommunication

patterns, observable wireless networks, and face-to-face interactions between

study participants. All this information is collected with a high temporal res-
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olution down to the minute scale. In addition to the mentioned channels, an

embedded anthropologist collects qualitative data about a subsample of the

participants. All included this effectively makes the Copenhagen Networks Study

the largest of its kind both in terms of covered information channels, and in

number of participants.

These highly dynamic networks open up for new levels of observation. For

example we are now able to study the diffusion of behavior, information, as

well as infectious diseases. Some of these properties will only spread on specific

types of links, e.g. we expect diseases such as influenza to spread via physical

proximity, while information may diffuse across all types of links. As such we

can study the differences and similarities between various spreading processes

and find corresponding patterns. In addition to the richness of collected data,

the setup of the Copenhagen Networks Study opens up for the possibility to run

controlled experiments, addressing the notoriously complicated question of

casual inference (Shalizi and Thomas, 2011).

The networks we collect are complex, entangled, and messy. Understanding

them is a very difficult task, especially because the required knowledge to dissect

their structures and dynamics is segregated across many scientific disciplines.

Physicists and mathematicians have amazing analytical and computational

skills, but they typically have very limited knowledge about individual behavior,

social structures, and cultural norms. On the other hand, researchers from the

social sciences, such as sociologists, psychologists and anthropologists, have

spent a great deal of time thinking about such problems, but they lack the math-

ematical education. A deeper understanding of networks, therefore, requires

collaboration across the sciences. The Copenhagen Networks Study is unique

in this sense, as it is a collaboration between physicists, computer scientists,

economists, anthropologists, psychologists, sociologists, philosophers, and

public health researchers.

Summary of Paper I

Collecting rich behavioral traces from approximately 1000 individuals along

with their demographic and online information is a daunting task. In Paper I we

present an overview of the Copenhagen Networks Study and describe in great

detail the many considerations behind the experiment. More specifically we

motivate our approach, outline the backend system, discuss important privacy

issues, and suggest methods of returning data back to the participants.

Only preliminary results are presented, yet they clearly indicate the temporal

aspects of human interactions (Figure 3.2) and show that human dynamics

can unfold across multiple timescales. This has grave implications for the

study of human relations as there is no simple way of aggregating data into a
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stack of static networks. Instead this absence of a characteristic temporal scale

accentuates the need for novel ways of perceiving dynamic data. Paper I further

lists the statistical properties of each data source and e.g. illustrates that the

distribution of personality traits within our sample is in alignment with previous

studies performed on more diverse populations. Moreover, we demonstrate, as

a proof of concept, how data from wireless access points (WiFi) can be applied

to uncover physical interactions, effectively acting as a supplement to data

collected from the proximity sensor. In cases where something goes wrong with

the data collection or if users manually turn of their proximity sensor we can

compensate by using this redundancy.

Each collected communication network reveals a specific aspect of human

life and exhibits unique temporal properties, thus knowing only a single com-

munication channel is not enough. Figure 3.3 shows the differences between (a)

proximity networks, (b) call networks, (c) text networks, and (d) online networks.

Providing evidence that social systems can look significantly different when

viewed through different channels. Because we can, and do, communicate

across multiple channels the scientific community needs to be aware of the

limitations of using uni-modal data. In this regard, modeling the spread of

information on a single communication channel will only uncover parts of

the dynamics; while physical co-locations might be fully representative of the

spread of certain diseases, they might not be entirely indicative of the spread of

knowledge.

As the amount of collected data increases researchers will gain a better

understanding of social systems and human nature in general, but we have to

be careful not two draw these inferences from incomplete data sources. While

the presented approach produces a dataset that is nearly complete in terms of

communication between participants, it is clearly not the final answer. Since

we only record data from a finite number of participants, our study popula-

tion is a subset, and every network we analyze will be biased in some way

(Kossinets, 2006). Nevertheless, our study represents a significant improvement

in collecting, handling, and analyzing complex datasets.

3.4 Inferring relations

Our ability to collect and store data about networks has increased dramatically

over the last few years, but how can we understand this data and what does it

reveal? As networks are universal, we can be talking about friendships between

individuals or physical connections between Internet routers, what properties

should we measure and can we apply the same measures for all types of net-

works? As it turns out, it depends on the specific application in mind. The

network features that reveal which individuals are most likely to be infected by a
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Figure 3.2: Dynamics of face-to-face interactions shown for a sample of the participants

during four specific hours of a day. Students meet in the morning and attend classes

within four different study lines (majors). Later during the evening they interact across

majors. Edges are colored according to the frequency of observation, ranging from low

(light blue) to high (pink). Nodes are linearly scaled according to degree.

disease may not be the same as the features that allow us to identify individuals

most susceptible at adopting new technologies (Centola, 2010; Brockmann

and Helbing, 2013). So, in order to understand networks we not only need to

know how to characterize them but also whether the data we have collected can

actually be applied for the purpose in mind. A lot of work has focused on the

former issue, finding the correct characterization of networks properties (Costa

et al., 2007), while little time has been devoted to understanding the underlying

network data and whether we can make inferences about the social world from

incomplete observations of events around us.

Applying data from Flickr, a popular online social network where users

can share photos and interact, Crandall et al. (2010) siphoned through geo-

graphically tagged pictures and focused on events where pictures were taken by

distinct individuals within the relative same geographical area at approximately

the same time. From these coincidences they were successful in inferring on-

line social ties. Suggesting that sparse data can be used in order to uncover

parts of an online social network. Calabrese et al. (2011) went one step further

and looked at the interplay between telephone calls, travel patterns, and geo-

graphic locations, in order to infer face-to-face meetings. Their results imply

that physical meetings, to a certain degree, can be revealed by a combination of

movement patterns where people travel to a prearranged location, and coordi-

nation behavior where individuals prior to a meeting exchange an increased

number of calls in order to make the final preparations. While both studies

uncover interesting properties about social structures, they ultimately do not

reveal the entire truth because their data is too coarse-grained.

Using state of the art mobile phones as sensors Eagle and Pentland (2006)

demonstrated a system for electronically sensing social interactions in their

natural habitat. Combining observational data with self reports they further

established the possibility of utilizing such proximity data in order to infer social
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Figure 3.3: Perspectives of a social network, uncovered across four communication

channels during one week. Focusing on internal interactions between participants in

the Copenhagen Networks Study. (a) Top 5% most frequent face-to-face interactions,

collected via the proximity probe. (b) Call network. (c) Text messaging network (SMS).

(d) Online activity network from Facebook, denoting interactions where people either

comment, share, or like each others posts. Due to privacy reasons private messages

are not collected. Nodes are colored black and links gray if they are not present in a

communication channel but appear in any of the others.

ties—accurately inferring 95% of reciprocated friendships (Eagle et al., 2009).

Surprisingly, there are large differences between self-reported and electronic

data, revealing that friends are more accurate in assessing their daily proximity

patterns than pairs of individuals who do not consider each other as friends.

This suggests that not all sensed ties are informative. As phones record proximity

interactions within a sphere of radius 0−10 meters, they will undoubtedly infer

false positive ties, sensing relations between individuals that are located in
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different rooms, or on separate floors of a building. Furthermore, it is easy to

think of examples where proximity does not correspond to social interaction,

e.g. transient co-location in a dining hall. As such we have yet to understand to

what extent electronic datasets may serve as a valid proxy for real life physical

interactions.

Summary of Paper II

The use of mobile phones as scientific instruments is relatively new. Like any

other instrument we first need to calibrate it, and understand what each mea-

surement entails before we can apply the devices to study social systems. In

Paper II we therefore focus on a sample of proximity data from the Copenhagen

Networks Study and investigate how to identify real social ties and filter away

noisy encounters. The proximity sensor collects data on the form (i , j , t , s )
where each measurement implies that person j has been in proximity (0−10m )

of person i at time t , where the devices have observed each other with signal

strength s . Our investigation digs into the role of the received signal strength

parameter and how this can be applied to distinguish between social and non-

social interactions. Being present in a majority of other recorded proximity

datasets, the signal strength parameter suggests a rough estimate of the dis-

tance between two devices. Intuition from physics tells us that the decay should

be on the form ∼ 1/4πr−2. Nonetheless we perform an empirical study to

confirm our reasoning. Taking pairs of devices we place them at distances

d = 0, 1, 2, and 3 meters away from each other and measure the received signal

strength. To check for signal variations phones are at each distance left to collect

data for seven days. The empirical study confirms our general intuition, but

it also uncovers interesting phenomena, such as bi-modal distributions. Yet,

the study reveals that a simple signal filtering heuristic for a large majority of

cases enables us to focus on interactions that occur within distances of 0−2

meters. Such distances are in the social sciences denoted as a typical separation

for interactions among close acquaintances (Hall, 1969).

To tie the findings from the empirical study with behavioral data from the

participants, we look into whats happens if we apply the heuristic and threshold

weak (low signal strength) links. Behavioral data is divided into five minute wide

temporal bins (Figure 3.4 a). Within each bin we remove observed edges if they

have a signal strength below the threshold (Figure 3.4 b). We compare results

to two reference models: a null model where we remove an equal number of

ties, but where ties are chosen at random (Figure 3.4 c), and a control model

where we remove the same amount of ties starting from the strongest ones first

(Figure 3.4 d). We proceed to show that removing weak ties does not change

the social networks structure greatly. Removing ties at random, however, has a
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profound affect on network structure and significantly reduces clustering.

Disregarding weak interactions reduces the number of links in the network,

but do we remove the correct links? The fact that clustering remains high in

spite of removing a large fraction of links is a good sign. To investigate this

question more directly we consider the probability that a removed link might

reappear a short time later. Our results show that weak ties have a significantly

lower probability of re-appearing in one of the subsequent time-steps than

random ties. Regardless, the probability is not zero, because even weak links

imply physical proximity. Similarly, if we remove a strong link, the probability

of it reappearing is considerably higher than with a random tie. These results

indicate that our proposed framework emphasizes real social connections while

eliminating some noise.

Simply thresholding links based on signal strength is, however, not a perfect

solution. Numerous scenarios exist where people are in close proximity of each

other but are not friends, one obvious example is queuing. Each human interac-

tion has a specific social context, and an understanding of the underlying social

fabric is required to ascertain when a proximity link is a genuine social interac-

tion. Paper II presents a first solution at the problem, a natural continuation

would be to look into more complex features, such as co-arrival, co-departure

and time spent together. In addition, telephone logs, online friendships and

geographic locations are also factors which, coupled with proximity data, could

give us a better insight into the dynamics of social interactions.

(a) (b) (c) (d)

Figure 3.4: Heuristics of removing network ties in physical proximity networks. (a)

Example of a typical proximity network observed within a time-window. The thickness

of a link symbolizes the strength of the signal between two users. (b) Thresholded

network, where links with signal strengths below a certain threshold are removed,

dotted lines indicate the removed links. (c) Null model, where the same amount of links

is removed but where ties are chosen at random. (d) Control network; an equal number

of ties is removed, however, starting from the strongest first.



4
Understanding social systems

H
UMANS have the potential to exhibit relatively random patterns of be-

havior, yet our lives are mainly dominated by routine. Viewed across

different timescales these routines consist of daily practices from

getting out of bed, eating breakfast, and commuting to work, to weekly, and

longer yearly patterns such as holidays, where we e.g. prefer to spend religious

holidays with our families. Although we rarely perceive our own actions as

being random, for an outside observer they may seem highly unpredictable. All

the choices we make are reflected in our mobility traces as well as in our social

networks, which are in a constant state of flux. While we have seen impressive

progress in understanding the basic laws that govern human motion (Gonzalez

et al., 2008) little is known about the regularities of social systems.

This chapter deals with understanding human behavior, especially social

dynamics. What role does randomness play in social life and to what degree can

we describe and predict individual human actions? It is possible to study social

systems from a wealth of different perspectives such as: network organization

(Szell and Thurner, 2013), link formation (Wang et al., 2011), or contagion (Aral

and Walker, 2012) among others. We choose to look at social systems from

the perspective of sociality, where we focus on how individuals engage and

participate in dynamic communities. The study of sociality is deeply rooted in

the social science literature (Simmel, 1950; Goffman, 1967) and is a fundamental

component of network science (Fortunato, 2010).

The chapter is structured as follows: first we discuss methods for uncovering

45
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and extracting routine from behavioral traces. Then, employing proximity

data collected by the Copenhagen Networks Study we investigate the social

dynamics at microscopic levels of observation and describe a conceptually

simple method of identifying evolving gatherings. From the temporal patterns

of these gatherings, we infer dynamical communities, which in turn provide

a simplification of the social system as a whole, resulting in a vocabulary for

quantifying the complexity of social life.

4.1 Uncovering routine

Even though human life at times seems chaotic, it is imbued with regularities.

Figure 4.1 shows an example of repeating patterns hidden within a dynamic

social network. The figure shows that patterns of physical interactions, which

we observe for the entire social system, are closely interrelated with interactions

observed at later times, revealing correlations across days and weeks.

Certain patterns are easy to recognize, others are more subtle. For example

the pattern of sleeping in is usually correlated with an activity in the previ-

ous evening, or to a specific situation, e.g. a weekend. These patterns can

be difficult to observe, but become more apparent when put into a specific

context such as temporal, spatial, or social. A traditional approach in modeling

reappearing patterns is to apply Markov models. While they may work well for

certain types of behaviors, they ultimately fall short in representing temporal

patterns with multiple timescales (Eagle and Pentland, 2009). For such cases

we need to adopt conceptually different methods. Eagle and Pentland instead

propose a methodology that identifies repeated structures in the underlying

behavior by breaking it down into principal components. Each component, or

eigenbehavior as Eagle and Pentland call them, represents a characteristic set

of features of an individual’s behavior. A weighted sum of an individual’s prin-

cipal eigenbehaviors can then accurately reconstruct the behavior from each

day. Eagle and Pentland further show that when weights are calculated halfway

through a day, they can be applied to predict the behavior of the remainder of

the day with 79% accuracy. Their method, however, can only be applied for

short-term predictions as we need to recalculate and adjust the weights of the

linear combination in order to accurately reconstruct behavior.

To explore long-term regularities in human dynamics Song et al. (2010)

studied the patterns of human mobility by analyzing anonymized call detail

records of mobile phone users. Every time a person makes or receives a call

or text message the associated cell tower is registered. From this information

they are able to reconstruct the trajectories of 50000 individuals over a three

month period. To measure the role of randomness and understand to what

degree human mobility is predictable Song et al. apply entropy, an information
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theoretic measure, that characterizes the amount of uncertainty within a data

stream. Given a sequence of states for an individual i we can define entropy

in three ways. First we can think of entropy in a random sense, capturing the

degree of uncertainty of a persons whereabouts if each location is visited with

equal probability

Sr a nd
i = log2(Ni ), (4.1)

where Ni is the number of distinct locations visited by person i . Secondly,

we can think of uncertainty in a temporally uncorrelated sense with entropy

defined as

Su nc
i =−

Ni
∑

j

p j log2 p j , (4.2)

where p j is the probability of observing state j . This version of entropy is

usually denoted as Shannon entropy named after Claude Shannon (Shannon,

1948). Equation 4.2 captures the uncertainty of a person’s location history by

accounting for the frequency of states, but it does not take the order of visits

into account. Thus it discards important information contained in the daily,

weekly and monthly sequences of behavior. The true entropy of a person takes

both frequency of states and the order in which they were visited into account.

Let Ti = [x1,x2, . . . ,xL] denote the sequence of states that user i has visited, true

or temporal entropy is then defined as

St e m p
i =−

∑

T ′i ⊂Ti

p (T ′i ) log2[p (T
′

i )], (4.3)
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where p (T ′i ) is the probability of finding a subsequence T ′i in the trajectory

Ti . Clearly, 0 ≤ St e m p ≤ Su nc ≤ Sr a nd ≤ ∞. The expression in Equation 4.3

is very difficult to evaluate. In practice one therefore resorts to estimating it

numerically using Lempel-Ziv compression (Ziv and Lempel, 1978), which is

known to rapidly converge to the real entropy of a time series (Gao et al., 2008).

The Lempel-Ziv entropy estimate of a time series of length n is given by

St e m p
e s t =







1

n

n
∑

j=1

Λj

log2 n







−1

, (4.4)

where Λj is the length of the shortest substring starting at time step j which

previously has not been observed. Further, Kontoyiannis et al. (1998) have

proved that St e m p
e s t converges to St e m p when n→∞.

From the entropy of an individual (Si ) one can estimate the upper bound

of predictability (Πi ) by solving a limiting case of Fano’s inequality (Fano, 1961;

Song et al., 2010; Jensen et al., 2010):

Si =H (Πi )+ (1−Πi ) log2(Ni −1), (4.5)

where

H (Πi ) =−Πi log2(Πi )− (1−Πi ) log2(1−Πi ). (4.6)

Using the above methodology Song et al. (2010) estimated the upper limit of

predictability in human mobility to be 93%, averaged across all individuals in

their dataset. A limit which they found to be largely independent of the distance

individuals cover on a daily basis.

Their method was a remarkable step forward in quantifying human dynam-

ics, however, their results were obtained for meta-stable mobility patterns. We

know that over the course of a human life our behaviors change. Caused either

by transitioning from childhood to adulthood or by unfamiliar conditions such

as emergencies (Bagrow et al., 2011). With this in mind Lu et al. (2012) looked

into how the predictability of individuals changes after disasters. Collaborating

with the largest mobile phone operator in Haiti Lu et al. analyzed the move-

ments of 1.9 million mobile phone users prior to and after the devastating Haiti

earthquake of January 12th 2010. Even though the earthquake greatly perturbed

the lives of millions, their travel patterns, counterintuitively, still exhibited large

degrees of predictability. Suggesting that our behaviors may be significantly

more predictable than previously imagined.

4.2 Social groups

So far we have only considered regularities within our geospatial behavioral

patterns, but our social life is also fundamentally based on routine. During
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nights most of us sleep alone or with the same partner, in the morning we go

to work and during the day we collaborate with colleagues; in the evening we

hang out with the same gang of friends, and next day we more or less repeat

the same patterns. These regularities in our social behavior are closely related

to our geospatial patterns. For example interacting with colleagues is highly

correlated with being at work, while nights are closely related to being at home.

Thus complementary to mobility our social life should be equally predictable.

In order to understand the inherent patterns of social life, we first need to

identify groups of interacting individuals. Luckily, within network science there

is an entire discipline devoted to identifying structures within relations—it is

called community detection. Yet, because human life is fundamentally dynamic

we cannot apply the great body of knowledge about static networks, instead we

need to view relations as temporal entities that can appear and disappear. While

considerable amounts of work have been devoted in inferring communities in

static networks, dynamic networks still pose a problem. Nevertheless, some

progress has been made. Mucha et al. (2010) developed a generalized framework

of quality functions that allowed them to extend the concept of modularity

maximization for multislice and temporal networks. Modularity, however, has

certain drawbacks as it experiences a resolution limit failing to identify clusters

smaller than a certain scale (Fortunato and Barthélemy, 2007). Further, it has

been shown that modularity exhibits degeneracies, lacking a global maximum

and admitting an exponential number of distinct high-scoring solutions (Good

et al., 2010).

In a more recent paper Gauvin et al. (2014) suggested the use of non-negative

tensor factorization to detect dynamic communities. But, tensor factorization

is a mathematically complicated optimization problem with two major draw-

backs: (1) it does not have a unique global minimum and (2) we explicitly need

to state the number of components it has to find. In their paper Gauvin et

al. give examples of quality metrics that can be used to tune the number of

components, but tensor methods are mainly viable in situations where we know

the ground truth of the network, i.e. when we know how many clusters we

should look for.

A more simple approach was proposed by Palla et al. (2007). They con-

structed an algorithm based on clique percolation that allowed them to track

evolving communities. The percolation method builds communities from k -

cliques, where each clique is a fully connected sub-graph of k nodes. Two

k -cliques are adjacent if they share k − 1 nodes. A (k -clique) community is

then defined as the union of all k -cliques that can be reached from each other

through a series of adjacent k -cliques (Palla et al., 2005). Using this algorithm

they successfully inferred dynamic communities in call and collaboration net-

works. However, the issue with clique percolation is the value of k , as it is not
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clear what clique sizes one should chose and how this choice in general affects

the quality of the inferred communities. Further, clique percolation is very sen-

sitive to sparse data as it requires the presence of fully connected sub-graphs to

function. Thus, for sparse networks, e.g. call networks (Krings et al., 2012), one

needs to aggregate data into bins, but this inevitably leads us to the question of

how to choose the appropriate bins width—a highly non-trivial question.

Each algorithm has its strengths and weaknesses. But the lack of bench-

marks in the dynamic community detection field makes it difficult to pick

the optimal one, as we cannot systematically compare and evaluate existing

methods.

Instead, we choose to tackle the problem of identifying groups from an

entirely new perspective. The remainder of this section is therefore devoted to

describing our novel approach and exemplify its applications. First, we describe

the basic principles behind the method and discuss how to sample dynamic

networks with respect to time. Later we focus on how to track the evolution of

social group and propose a scheme to identify re-appearing social structures.

The following sections are part of the supplementary material of paper III, but

are included here in order to present a coherent story. They will ultimately be

tied in with the summary of paper III at the end of this chapter.

4.2.1 Network representations

Social networks are inherently dynamic, with nodes and links appearing and

disappearing. When viewed at specific resolutions they reveal interesting prop-

erties (Figure 4.2). At daily, monthly, and yearly levels of aggregation we observe

large densely connected networks that reveal the general structure of social

systems and allow us to e.g. summarize their topological properties. Nonethe-

less, these large periods of aggregation obscure individual relations and make it

nearly impossible, or at least very hard, to detect social groups. Hourly windows

of aggregation supply us with a more local, yet still too aggregated view of social

interactions. While a micro-level description disentangles the social web and

directly uncovers group structures. Thus, when time slices are shorter than the

group’s turnover rate, we can directly and without ambiguity observe individ-

ual’s group affiliations. Rather than identifying communities the challenge has

shifted towards tracking group evolution.

4.2.2 Gatherings

It is possible to track the evolution of groups in many ways from simple match-

ing schemes to more sophisticated machine learning techniques. Here we

outline a simple method that applies hierarchical clustering to effectively track
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Figure 4.2: Physical proximity networks, constructed using daily (pink), 60-minute (pur-

ple), and 5-minute (blue) temporal windows. Below, corresponding adjacency matrices,

colored appropriately, and sorted according to sizes of connected components.

group structures.

Dividing time into micro snapshots (Figure 4.2, right) we identify connected

components, i.e. nodes that are in close physical proximity as social groups.

Consequently, gatherings are defined as groups that are persistent across time.

To infer gatherings we apply agglomerative hierarchical clustering—a widely

used method that merges groups based on their similarity, S (Ward Jr, 1963). Ini-

tially, each group is assigned to its own cluster, then every iteration-step merges

the most similar clusters according to the single linkage criteria (min(S(cu , cv ));
Gower and Ross, 1969). This merge criterion is strictly local and will agglomer-

ate clusters into chains, a preferable effect when clustering temporal structures.

The clustering procedure is repeated until all groups have been merged into a

single cluster. This results in a dendrogram where each leaf is a group and where

branches represent social gatherings. Similarity between groups is calculated

using a modified version of Jaccard overlap

S(c t , c t ′) =
|c t ∩ c t ′ |
|c t ∪ c t ′ |

f (∆t ,β ), (4.7)

where c t denotes the set of nodes present in group c at time t , f (∆t ,β ) de-

notes coupling between slices, ∆t = t ′ − t denotes the temporal distance,

and the β-parameter models decay. S is only defined for groups that share

at least one node, as a result it is bounded between 0 and 1. The coupling
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term, f , models memory (information) between temporal windows, where we

assume that neighboring windows are related, but that this memory slowly

disintegrates over time. The two most prominent forms of decay are exponen-

tial (exp(−β (∆t −1))), and power-law (∆t −β ). In the case of consecutive bins

∆t = 1, hence f (∆t = 1,β ) = 1 implying that there is zero decay (maximal

memory) between neighboring slices. As∆t increases, S becomes negligible,

and for large temporal distances we can completely disregard it and define the

similarity as zero. In addition, as we are interested in the future evolution of

groups, we require that∆t > 0. Combined, these two observations effectively

reduce the computational overhead of the algorithm, since similarity only needs

to be evaluated locally between groups observed within proximate time-slices

that satisfy the criteria t ′ > t .

The outlined procedure constructs a dendrogram by repeatedly merging

groups until all are assigned to a single cluster. This eventually forces highly

dissimilar groups into single clusters. To extract meaningful social structures we

need to partition the tree, but what quality function should we use? Modularity

and link density have previously been applied (see Section 2.5) but they do not

generalize well for dynamic processes, wherefore we need to construct our own.

A preferable quality function compares the partitioned tree to some reference

model, e.g. to the number of expected links. As we are, however, partitioning

groups into gatherings we require a null model that comparatively mimics these

structures, yet this is not straightforward as groups display non-trivial dynamics

(Figure 4.3). Currently, the author is unaware of any reference model that might

be applicable for such a situation.

. . . . . . 

time
. . . 

. . . 

Figure 4.3: Gathering dynamics,

with members flowing in and out of

social contexts and with gatherings

appearing and disappearing.

In lieu of constructing a reference model, we focus on the stability of inferred

gatherings and argue that we should partition the dendrogram at the level where

we uncover the most stable social structures. Each gathering is comprised of

multiple groups, or slices, and can be thought of as the set {g 1, g 2, . . . , g N },
where g 1 and g N respectively denote the first (birth) and last (death) slice of the

gathering. Gathering stability can then be defined in two ways. Local stability,

calculated between consecutive slices as

ω=

N−1
∑

u=1
J (g u , g u+1)

N −1
, (4.8)
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and global stability, calculated between slices and the aggregated structure:

Ω=

N
∑

u=1
J (g u ,G )

N
, (4.9)

where J is the node-wise overlap between slices (J = |u ∩ v |/|u ∪ v |), and G

is the aggregated structure (G = g 1 ∪ g 2 ∪ . . . ∪ g N ). Both stability measures

are defined as zero if gatherings are comprised of less than two groups. An

analogous measure has previously been applied by Palla et al. (2007) in order

to estimate the stationarity of communities. As each gathering has a specific

stability, we are more interested in the average quantities of the entire system:

<ω> and<Ω>. If the dendrogram is cut too high, S→ 1, many gatherings will

only consist of single groups, thus the stabilities will in that limit go towards

zero. On the other hand if the tree is cut too low, S→ 0, <ω> and < Ω> will

again go towards zero as many dissimilar groups will be clustered together.

Somewhere in between the stability measures will achieve a maximum.

It is also worth noting that cutting the tree at values S ≤ 1/2, may lead to

unwanted side-effects. For example it is easy to imagine a scenario where two

groups of equal size merge to form a new gathering or where a gathering splits

into two equally sized parts. In such cases cutting the tree at values S ≤ 1/2 will

merge the gathering with both parts. We, however, find that a more desirable

behavior is to declare the old gathering as dead and identify two new gatherings

as born.

4.2.3 Dynamic communities

Each gathering contains information about its local appearance, so to gain a

dynamical picture we need to match gatherings across time. A strict matching

criteria is out of the question as gatherings have soft boundaries (Figure 4.4),

with individuals participating unequally. An observations that is unlike the

typical community detection assumption of binary assignment, see Fortunato

(2010). We observe that some members participate for the total duration of

a gathering, while others participate only briefly. The basic assumption of

inferring groups as connected components will include noise, as people who

coincidently walk past a gathering might be included in it. One solution to this

problem would be to prune such noisy interactions according to the heuristic

presented in Paper II, however, as social interactions are not restricted to face-

to-face meetings, this approach might cause more problems than it solves.

Nevertheless, we need a method that lets us compare gatherings with varying

levels of node participation.

Counting the number of times a node has been present in a gathering, we

weight its participation relative to the total duration of the gathering. For exam-
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Figure 4.4: Gathering boundaries.

Individual nodes participate in a non-

homogeneous manner hence real

world gatherings display soft bound-

aries, with nodes being organized

into a stable core and a periphery.

Node-sizes corresponds to participa-

tion.

ple if a node has participated in 80 bins within a gathering that has existed for

100 bins, we weight the node’s participation relative to the gathering’s lifetime

and the node will get a weight of 80/100= 0.8. Because nodes no longer assume

binary values, but may assume levels in the interval 0 ≤ n i ≤ 1 we calculate

gathering similarity according to a continuous version of the Jaccard overlap

S(Gu ,Gv ) =

N
∑

n=1
min(Gu ,Gv )

N
∑

n=1
max(Gu ,Gv )

, (4.10)

where Gu is a vector containing normalized node-wise participation values for

gathering u , and N is the total number of nodes in Gu ∪Gv . The functions

max and min act piecewise on the two vectors, and S(Gu ,Gv ) = 0 between two

gatherings with zero node-overlap. Using this metric we look for underlying

patterns in how nodes participate in gatherings. To uncover these structures we

apply an agglomerated hierarchical clustering scheme with the average linkage

criterion12. Iteratively this method produces a dendrogram with gatherings as

leafs. Partitioning the tree clusters similar gatherings together into communi-

ties. As each gathering appears at different points in time we can think of the

communities as being dynamic.

A community consists of all nodes from its constituent gatherings, but it

also inherits their individual participation vectors. Thus we need a method to

construct a community participation profile from its gathering subcomponents.

This can be done in many ways, we chose a version where we weight the partici-

pation vector of each gathering with its respective lifetime (τG ), producing the

community participation vector:

C =
1

∑

G∈C
τG

∑

G∈C

τG G . (4.11)

12It is possible to apply other linkage criteria as well, such as complete or Ward-linkage. All

three types of criteria yield comparatively similar results.
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Facing the same challenge as before (section 4.2.2), we again have to estimate

the optimal place to partition the tree. This time, however, we are in luck as we

can solve the problem using standard machine learning tools. The gap statistic

was originally proposed by Tibshirani et al. (2001) as an unsupervised method

for estimating the number of clusters by finding latent structures within the data.

Their method is based on calculating the change of error between partitions

as the number of clusters is increased, compared to a similar change within

an appropriate reference model. Given a total of g gatherings clustered into k

communities, C1,C2, . . .Ck , we calculate the within-cluster error, or dispersion

as

Wk =
k
∑

r=1

1

2|Cr |

∑

u ,v∈Cr

Du v , (4.12)

where |Cr | is the cardinality13 of cluster r , and Du v = 1−S(Gu ,Gv ) is the pairwise

distance between gatherings u and v where S is defined in Equation 4.10. Thus

Wk is the accumulated sum of within-cluster differences around the cluster

mean, and the factor of two takes double counting into account. The idea

behind Tibshirani et al. approach is to compare this difference to the expected

within-cluster error generated by a reference model (Wkb ), defining the gap

statistic as

Gap(k ) =
1

B





B
∑

b=1

log(Wkb )



− log(Wk ), (4.13)

where we average over B reference datasets. The optimal number of clusters

which we should partition our data into is the value of k for which log(Wk ) falls

furthers below the reference curve after we have taken the sampling distribution

into account, i.e. it is the value of k = k ∗ such that

k ∗ = argmin
k
{k |Gap(k )≥Gap(k +1)−

∼
s k+1}, (4.14)

where
∼
s k = sk

p

1+1/B , and sk is the standard deviation of log(Wkb ) over the B

reference datasets.

In their paper Tibshirani et al. (2001) give examples of how to construct

simple and effective reference models. They have two suggestions: (1) gen-

erate reference models by sampling features uniformly over the range of the

observed values for each feature, or (2) generate features from a uniform distri-

bution aligned with the principal components of the data. Given that we cluster

gatherings, our features include nodes and their respective participation levels.

Finding principal components is not really an applicable method as data at the

node-level is one dimensional. Rather, we follow their other suggestion and

13Cardinality of a set is the number of elements in the set. For example the set A = {1, 2, 3, 5, 8}
contains 5 elements and therefore has cardinality 5. Hence the cardinality of a cluster is the

number of gatherings that belong to it.
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construct reference models by assigning random participation values sampled

from a uniform distribution. In detail, we assign participation values uniformly

sampled from the interval (0,1] to randomly chosen nodes. This is done in

accordance with the size distribution of gatherings, such that our reference

models reproduce the underlying structural aspects of social meetings.

The gap statistic has certain drawbacks; for example it is notoriously slow

for large datasets as it needs to compute the within-cluster dispersion for all

partitions from k = 1 to k =N , where N is the total number of data points. For

such cases there exist computationally fast approximations of the gap statistic

(Giancarlo et al., 2008).

In order to identify both gatherings and dynamic communities we applied

hierarchical clustering and partitioned the corresponding dendrogram in the

most optimal place, found by a quality metric. An interesting point, however,

was made by Pons and Latapy (2011): when partitioning a dendrogram why

constrain ourselves to a straight horizontal cut? As some parts can be higher

or lower in the tree, a horizontal but not necessarily straight cut might reveal

better quality partitions. This insight is especially intriguing and relevant for

our approach as we partition the dendrogram according to average values of

the quality metrics. In a worst case scenario it might turn out that while the cuts

are optimal for the average values they are not optimal for any single gathering

or community. Thus Pons and Latapy’s idea is a good way of improving our

proposed approach.

The past sections have been heavy with methods but sparse with results. To

counteract, we will apply the outlined methods in hope of understanding and

quantifying the behavior of individuals. The next section highlights the work

performed in Paper III, and focuses on describing individuals from the aspect

of their sociality.

Summary of Paper III

A wide range of applications from predicting the spread of epidemics, to city

planning, and resource management can benefit from an ability to foresee

human behavior. Where, when, how, and with whom? All are questions that try

to probe a specific aspect of human life, but is human behavior predictable? By

measuring the entropy of human travel patterns Song et al. (2010) demonstrated

that we are less chaotic than we usually think, and quantified that human

mobility can be correctly predicted with up to 93% accuracy14. While we have

14Even though I do not entirely believe in their results as their prediction problem deals

with guessing the location of an individual in the next time-bin, rather than guessing the next

location; their approach was a remarkable leap forward in quantifying human behavior. Yet,
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seen impressive progress in understanding the fundamental laws that govern

human travel patterns and complex systems in general, little is known about

the regularities governing social networks.

Based on a unique data-sample from the Copenhagen Networks Study we

consider the social relations between approximately 1000 densely connected

individuals over a period of 5 months, representing roughly one semester. We

show that high-resolution data untangles the intricate web of relations and

allows us to observe social groups directly and without ambiguity—making

traditional community detection algorithms redundant. A simple clustering

scheme across time-slices then reveals the temporal development of each gath-

ering, where dynamically evolving gatherings present a fundamentally new

entity for quantitative study. While nodes can only be part of one gathering

per time-step they can effortlessly switch affiliations between coinciding gath-

erings. It is due to this gradual exchange of nodes that community detection

has proved difficult in previous settings. Unlike the conventional community

detection assumption of binary assignment we observe that gatherings have

soft boundaries with members coming and going, but organized via a stable

core of individuals who are present throughout the entirety of the meetings.

From repeated appearances of cores we then infer dynamic communities. Some

communities are only observed once while others are more active, appearing,

on average, multiple times per day. This results in a broadly distributed number

of appearances. Dividing communities into recreation and work settings, de-

pending on where they are observed, allows us to distinguish between schedule

driven and social behavior. We observe a clear difference in how individuals

engage and spend time with respect to varying social context; for example

recreational meetings tend to be smaller but last considerably longer.

Representing a persons social interactions in terms of cores provides a pow-

erful simplification of a dynamic social network (Figure 4.5 a). Instead of the

constant and unwieldy flow of interactions that we observe in raw data, cores

represent a set of states for quantifying social life. In analogy to geospatial be-

havior we can think of human social life as a temporal sequence of social states

(Figure 4.5 b). Given this sequence, we can use information theory, specifically

temporal entropy, to quantify the predictability of social life. Additionally, as

we have access to detailed mobility patterns for each individual (Cuttone et al.,

2014), we can compare the limits of predictability for both spatial and social

aspects of human life. Surprisingly, we find that social interactions contain even

higher levels of predictability than human mobility patterns, however, we also

we show in the supplementary material of paper III that it is possible to achieve arbitrary high

values of prediction by narrowing the bin-size. For example, we can predict individuals with

approximately 98% accuracy if we focus on 30-minute wide bins instead of the 60-minute bins

applied by Song et al.
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demonstrate that the overall levels of social and spatial predictability are not

correlated.

(a)

(b)

Figure 4.5: Cores summarize social con-

text. (a) Ego view of communities dis-

playing overlapping and hierarchically

stacked structures. Shown for a represen-

tative individual (red). (b) The tempo-

ral complexity of participation for cores

shown in panel a, colored accordingly.

Each horizontal row of data corresponds

to activation of a core. Hatched and

gray regions correspond to holidays and

weekends, respectively.

C
or

es

Jan 30 2014 Feb 13 2014 Feb 27 2014 Mar 13 2014 Mar 27 2014 Apr 10 2014 Apr 24 2014

In general, predictable geospatial behavior does not imply predictable social

behavior, or vice versa. While the two types of behavior are not correlated over

longer periods of time there is a subtle interplay between them as they both are

closely related to daily and weekly schedules. We find that during the week, our

social and spatial behaviors are entangled; we tend to meet the same people

in the same places. However, during weekends this interrelation is reduced.

While our mobility traces shows clear signs of exploratory behavior during

weekends, our social interactions become simpler and more consolidated. We

use this to propose a new kind of prediction—social prediction. It is a well

known fact that individuals who share a social tie are predictive of each other

(Crandall et al., 2010; Cho et al., 2011; De Domenico et al., 2013a). Nonetheless,

friendships lack a temporal signature informing us exactly when individuals are

predictive. Cores, on the other hand, provide such a temporal context, where an

incomplete set of core members implies that the remaining members will arrive

shortly. We demonstrate this concept for cores of size three. Given that two

members are observed we calculate the probability of the remaining individual

joining within one hour. We compare this to two reference models: (1) where

we construct reference groups by randomly picking individuals and (2) where

we use pairwise friendships to construct groups. To avoid testing on meetings

that are driven by the academic schedule, we focus on weekends and weekday

evenings and nights (6pm-8am). Furthermore, we test on a month of data that

has not been applied for identifying cores. Our results show that cores greatly
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outcompete both reference models. Which in turn illustrates that pairwise

friendships are not enough to predict future interactions of people. Rather,

it is the signal encoded within the context of the meeting that is important;

the reason cores are able to predict the arrival of individuals is because social

context requires all core members to be present.

The presented work is a first descriptive effort at quantifying the rich pat-

terns encoded within social systems and suggests a new framework for describ-

ing human behavior. It is generally believed that incorporating a temporal

dimension complicates our description of networks. In Paper III, however, we

find that community detection becomes considerably simpler as we can directly

observe communities on short timescales. Utilizing this, we identify gatherings

that consist of stable cores of individuals. These cores then provide a powerful

new description of social behavior which, among others, can be applied to

characterize the predictability of social life. The paper does not claim that the

subjects in the Copenhagen Networks Study are a fully representative sample of

society. Nonetheless, many people exhibit regularities in their daily life, from

getting up in the morning, eating breakfast, traveling to work, and returning

home in the evening. As such, routine is not an exclusive trait of our population.

In fact we can imagine that students with large amounts of spare time and

constantly evolving social networks are even more unpredictable than a typical

human being.





5
Summary

N
ETWORKS are a fundamental part of life. Understanding them is vital

if we are to gain insights into the complex working of nature, society,

and humans. As networks are in a constant state of evolution, we

cannot approach them with the traditional paradigm of static graphs. Instead

we need new approaches that reconcile the worldview of static graphs with

the complexity of dynamic networks. Yet, before we can start to unravel the

mysteries of dynamic networks, we first need maps, not just any type of maps

but highly detailed and accurate maps.

In this dissertation we have described how to collect, measure, and ana-

lyze complex social networks. We have emphasized that human life cannot be

viewed through any single network layer as we interact over a wealth of com-

munication channels. As such information can diffuse through: face-to-face

interactions, calls, text messages, tweets, emails, interactions on online fora, and

even television and radio broadcasts. Further, life cannot be perceived at any

single temporal scale as all our networks are ever-changing. Nevertheless, each

time-scale can be used to view traditional problems from new perspectives.

Network data usually comes in unstructured and messy batches. Often we

do not even know whether the data is representative of the object we want to

study. Exploring the question of sociality, we demonstrated how to infer social

relations from noisy proximity traces. Although our solution is not perfect it

serves as a first iteration and illustrates that a simple mechanism is surprisingly

efficient in emphasizing social encounters.
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Collecting network data with high resolution gives us a new outlook at the

microscopic levels of social systems. From this data we show that one can eas-

ily and without ambiguity identify dynamic communities, making traditional

community detection heuristics redundant. Contrary to the usual assumption

of binary assignment of nodes into clusters we show that people participate in

non-homogeneous ways, forming stable cores within each community. Repre-

senting a person’s social interactions in terms of their cores provides a powerful

simplification of social systems. Viewing cores as social states lets us to think

about behavior in terms of information theory and allows us to quantify the

complexity of human social life.

5.1 Concluding remarks

This dissertation is but a small part of the growing corpus of knowledge about

networks. The science of networks is still a relatively new science, one that

cannot be categorized as a subfield of any traditional science, rather it is an

interdisciplinary endeavor that during the past 15 years rapidly has gained the

attention of the broader scientific community and society in general. Nowadays

there are a dozen or so yearly conferences, workshops and schools that focus

on networks. There are three entire journals devoted to the science of networks

and every year multiple new books are published. During the last years we

have seen an increase in the number of universities that offer network science

courses and it is now even possible to earn a PhD in networks science. So it

is tempting to ask: Where are we currently standing? Can we use networks

to understand the complexity of our world? Can we use networks in order to

design better, more stable and efficient systems? We are not there yet, not by

a long shot as the financial crisis in the late 2000’s clearly demonstrated. Our

world is stunningly complex but also fragile. It is one thing is to understand

how the collapse of Lehman Brothers brought down the world’s financial system

and how the subsequent cascade swept around the world. But it is an entirely

other thing to say under which precise conditions this can happen again and

when. Nevertheless we have seen considerable progress, as network science has

provided us with new ways of thinking about traditional problems; ways that

might lead to novel findings. Almost 300 years after Euler laid the foundations

to graph theory, we have just begun our quest of understanding the world, and

have a long journey ahead. Or as was phrased by Winston Churchill after the

battle of El Alamein:

“Now this is not the end. It is not even the beginning of the end. But

it is, perhaps the end of the beginning.”

— Winston Churchill, November 10th, 1942
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Introduction

Driven by the ubiquitous availability of data and inexpensive

data storage capabilities, the concept of big data has permeated

the public discourse and led to surprising insights across the

sciences and humanities [1,2]. While collecting data may be

relatively easy, it is a challenge to combine datasets from multiple

sources. This is in part due to mundane practical issues, such as

matching up noisy and incomplete data, and in part due to

complex legal and moral issues connected to data ownership and

privacy, since many datasets contain sensitive data regarding

individuals [3]. As a consequence, most large datasets are

currently locked in ‘silos’, owned by governments or private

companies, and in this sense the big data we use today are

‘shallow’—only a single or very few channels are typically

examined.

Such shallow data limit the results we can hope to generate from

analyzing these large datasets. We argue below (in Motivations

Section) that in terms of understanding of human social networks,

such shallow big data sets are not sufficient to push the boundaries

in certain areas. The reason is that human social interactions take

place across various communication channels; we seamlessly and

routinely connect to the same individuals using face-to-face

communication, phone calls, text messages, social networks (such

as Facebook and Twitter), emails, and many other platforms. Our

hypothesis is that, in order to understand social networks, we must

study communication across these many channels that are

currently siloed. Existing big data approaches have typically

concentrated on large populations (O(105){O(108)), but with a

relatively low number of bits per participant, for example in call

detail records (CDR) studies [4] or Twitter analysis [5]. Here, we

are interested in capturing deeper data, looking at multiple

channels from sizable populations. Using big data collection and

analysis techniques that can scale in number of participants, we

show how to start deep, i.e. with detailed information about every

single study participant, and then scale up to very large

populations.

We are not only interested in collecting deep data from a large,

highly connected population, but we also aim to create a dataset

that is collected interactively, allowing us to change the collection

process. This enables us to rapidly adapt and change our collection

methods if current data, for example, have insufficient temporal

resolution with regard to a specific question we would like to

answer. We have designed our data collection setup in such a way

that we are able to deploy experiments. We have done this because

we know that causal inference is notoriously complicated in

network settings [6]. Moreover, our design allows us to perform

continuous quality control of the data collected. The mindset of

real-time data access can be extended beyond pure research,

monitoring data quality and performing interventions. Using the

methods described here, we can potentially use big data in real

time to observe and react to the processes taking place across

entire societies. In order to achieve this goal, researchers must

approach the data in the same way large Internet services do—as a
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resource that can be manipulated and made available in real time

as this kind of data inevitably loses value over time.

In order to realize the interactive data collection, we need to

build long-lasting testbeds to rapidly deploy experiments, while still

retaining access to all the data collected hitherto. Human beings

are not static; our behavior, our networks, our thinking change

over time [7,8]. To be able to analyze and understand changes

over long time scales, we need longitudinal data, available not just

to a single group of researchers, but to changing teams of

researchers who work with an evolving set of ideas, hypotheses,

and perspectives. Ultimately, we aim to be able to access the data

containing the entire life-experience of people and look at their

lives as dynamic processes. Eventually, we aim to even go beyond

the lifespan of individuals and analyze the data of the entire

generations. We are not there yet, but we are moving in this

direction. For example, today, all tweets are archived in the

Library of Congress (https://blog.twitter.com/2010/tweet-

preservation), a person born today in a developed country has a

good chance of keeping every single picture they ever take, the

next generation will have a good chance of keeping highly detailed

life-log, including, for example, every single electronic message

they have ever exchanged with their friends. The status quo is that

we need to actively opt out if we want to prevent our experiences

from being auto-shared: major cloud storage providers offer auto-

upload feature for pictures taken with a smartphone, every song

we listen to on Spotify is remembered and used to build our

profile—unless we actively turn on private mode.

In this paper, we describe a large-scale study that observes the

lives of students through multiple channels—the Copenhagen

Network Study. With its iterative approach to deployments, this

study provides an example of an interdisciplinary approach. We

collect data from multiple sources, including questionnaires, online

social networks, and smartphones handed out to the students.

Data from all of these channels are used to create a multi-layered

view of the individuals, their networks, and their environments.

These views can then be examined separately, and jointly, by

researchers from different fields. We are building the Copenhagen

Networks Study as a framework for long-lived extensible studies.

The 2012 and 2013 deployments described here are called

SensibleDTU and are based at the Technical University of

Denmark. They have been designed as part of the Social Fabric

project (see Acknowledgements for details) in close collaboration

with researchers from the social sciences, natural sciences,

medicine (public health), and the humanities. We are currently

in the second iteration where we have deployed phones to about 1

000 participants, enabling us to compile a dataset of unprece-

dented size and resolution. In addition to the core task of collecting

deep behavioral data, we also experiment with creating rich

services for our participants and improving privacy practices.

Human lives, especially when seen over a period of months and

years, take place in multiple dimensions. Capturing only a single

channel, even for the entire life of an individual, limits the

knowledge that can be applied to understand a human being. True

interdisciplinary studies require deep data. Anthropologists,

economists, philosophers, physicists, psychologists, public health

researchers, sociologists, and computational social science re-

searchers are all interested in distinct questions, and traditionally

use very different methods. We believe that it is when these groups

start working together, qualitatively better findings can be made.

Here we give a brief overview of the related work, in the

domains of data collection and analysis, extend the description of

the motivation driving the project, and outline the experimental

plan and data collection methodology. We report on privacy and

informed consent practices that are used in the study, emphasizing

how we went beyond the usual practice in such studies and created

some cutting edge solutions in the domain. We also report a few

initial results from the project, primarily in the form of an overview

of collected data, and outline future directions. We hope the work

presented here will serve as a guideline for deploying similar

massive sensor-driven human-data collection studies. With the

overview of the collected data, we extend an invitation to

researches of all fields to contact the authors for the purpose of

defining novel projects around the Copenhagen Networks Study

testbed.

Related Work

Lazer et al. introduced computational social science (CSS) as a

new field of research that studies individuals and groups in order to

understand populations, organizations, and societies using big

data, i.e. phone call records, GPS traces, credit card transactions,

webpage visits, emails, and data from social networks [9]. CSS

focuses on questions that can now be studied using data-driven

computational analyses of datasets such as the ones mentioned

above, and which could only previously be addressed as self-

reported data or direct observations, for example dynamics in

work groups, face-to-face interactions, human mobility, or

information spreading. The hope is that such a data-driven

approach will bring new types of insight that are not available

using traditional methods. The challenges that emerge in this set of

new approaches include wrangling big data, applying network

analysis to dynamic networks, ensuring privacy of personal

information, and enabling interdisciplinary work between com-

puter science and social science, to name just a few.

In this section we describe related work in terms of the central

methods of data collection. Furthermore, we provide a brief

overview of results obtained from the analysis of CSS data, and

finally, mention some principles regarding privacy and data

treatment.

Data collection
Many of the CSS studies carried out to date have been

performed on call detail records (CDRs), which are records of

phone calls and messages collected by mobile phone operators.

Although CDRs can be a proxy for mobility and social interaction

[10], much of the social interaction happens face-to-face, and may

therefore be difficult to capture with CDRs or other channels such

as social networks (Twitter, Facebook, etc.) [11]. To gain a fuller

view of participants’ behavior, some CSS studies have developed

an approach of employing Radio Frequency Identification (RFID)

devices [12], sociometetric badges [13,14], as well as smartphones

for the data collection [15–18]. Smartphones are unobtrusive,

relatively cheap, feature a plethora of embedded sensors, and tend

to travel nearly everywhere with their users. They allow for

automatic collection of sensor data including GPS, WiFi, Blue-

tooth, calls, SMS, battery, and application usage [19]. However,

collecting data with smartphones presents several limitations as

sensing is mainly limited to pre-installed sensors, which may not be

of highest quality. Furthermore, off-the-shelf software and

hardware may not be sufficiently robust for longitudinal studies.

A large number of solutions for sensor-driven human data

collection have been developed, ranging from dedicated software

to complete platforms, notably ContextPhone [20], SocioXensor

[21], MyExperience [22], Anonysense [23], CenceMe [24],

Cityware [25], Darwin phones [26], Vita [27], and ContextTool-

box [28].

Running longitudinal rich behavioral data collection from large

populations presents multiple logistical challenges and only few
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studies have attempted to do this so far. In the Reality Mining

study, data from 100 mobile phones were collected over a nine-

month period [29]. In the Social fMRI study, 130 participants

carried smartphones running the Funf mobile software [30] for 15

months [31]. Data was also collected from Facebook, credit card

transactions, and surveys were pushed to the participants’ phones.

The Lausanne Data Collection Campaign [32,33] featured 170

volunteers in the Lausanne area of Switzerland, between October

2009 and March 2011. In the SensibleOrganization study [34],

researchers used RFID tags for a period of one month to collect

face-to-face interactions of 22 employees working in a real

organization. Preliminary results from the OtaSizzle study

covering 20 participants from a large university campus have

been reported [35]. Finally, in the Locaccino study [36], location

within a metropolitan region was recorded for 489 participants for

varying periods, ranging from seven days to several months.

Data analysis
In the following, we provide selected examples of results

obtained from analysis of CSS datasets in various domains.

Human Mobility. Gonzales et al. analyzed six months of

CDRs of 100 000 users. Their results revealed that human

mobility is quite predictable, with high spatial and temporal

regularity, and few highly frequented locations [37]. Their findings

were further explored by Song et al., who analyzed three months

of CDRs from 50 000 individuals and found a 93% upper bound

of predictability of human mobility. This figure applies to most

users regardless of different travel patterns and demographics [38].

Sevtsuk et al. focused instead on the aggregate usage of 398 cell

towers, describing the hourly, daily, and weekly patterns and their

relation to demographics and city structure [39]. Bagrow et al.

analyzed 34 weeks of CDRs for 90 000 users, identifying habitats

(groups of related places) and found that the majority of

individuals in their dataset had between 5 and 20 habitats [40].

De Domenico et al. showed in [41] how location prediction can be

performed using multivariate non-linear time series prediction,

and how accuracy can be improved considering the geo-spatial

movement of other users with correlated mobility patterns.

Social Interactions. Face-to-face interactions can be used to

model social ties over time and organizational rhythms in response

to events [29,42,43]. Comparing these interactions with Facebook

networks, Cranshaw et al. found that meetings in locations of high

entropy (featuring a diverse set of visitors) are less indicative than

meetings in locations visited by a small set of users [36]. Clauset et

al. found that a natural time scale of face-to-face social networks is

4 hours [44].

Onnela et al. analyzed CDRs from 3.9 million users [45] and

found evidence supporting the weak ties hypothesis [46].

Lambiotte et al. analyzed CDRs from 2 million users and found

that the probability of the existence of the links decreases as d{2,

where d is the distance between users [47]. In another study with

CDRs from 3.4 million users, the probability was found to

decrease as d{1:5 [48]. Analyzing CDRs for 2 million users,

Hidalgo et al. found that persistent links tend to be reciprocal and

associated with low degree nodes [49].

Miritello et al. analyzed CDRs for 20 million people and

observed that individuals have a finite limit of number of active

ties, and two different strategies for social communication [50,51].

Sun et al. analyzed 20 million bus trips made by about 55% of the

Singapore population and found distinct temporal patterns of

regular encounters between strangers, resulting in a co-presence

network across the entire metropolitan area [52].

Health and Public Safety. Using CDRs from the period of

the 2008 earthquake in Rwanda, Kapoor et al. created a model for

detection of the earthquake, the estimation of the epicenter, and

determination of regions requiring relief efforts [53]. Aharony et

al. performed and evaluated a fitness activity intervention with

different reward schemes, based on face-to-face interactions [31],

while Madan et al. studied how different illnesses (common cold,

depression, anxiety) manifest themselves in common mobile-

sensed features (WiFi, location, Bluetooth) and the effect of social

exposure on obesity [54]. Salathé et al. showed that disease models

simulated on top of proximity data obtained from a high school

are in good agreement with the level of absenteeism during an

influenza season [55], and emphasize that contact data is required

to design effective immunization strategies.

Influence and Information Spread. Chronis et al. [16] and

Madan et al. [56] investigated how face-to-face interactions affect

political opinions. Wang et al. reported on the spread of viruses in

mobile networks; Bluetooth viruses can have a very slow growth

but can spread over time to a large portion of the network, while

MMS viruses can have an explosive growth but their spread is

limited to sub-networks [57]. Aharony et al. analyzed the usage of

mobile apps in relation to face-to-face interactions and found that

more face-to-face interaction increases the number of common

applications [31]. Using RFID for sensing face-to-face interac-

tions, Isella et al. estimated the most probable vehicles for infection

propagation [58]. Using a similar technique, however applied to

232 children and 10 teachers in a primary school, Stehle et al.

described a strong age homophily in the interactions between

children [59].

Bagrow et al. showed how CDR communications, in relation to

entertainment events (e.g. concerts, sporting events) and emer-

gencies (e.g. fires, storms, earthquakes), have two well-distinguish-

able patterns in human movement [60]. Karsai et al. analyzed

CDR from six millions users and found that strong ties tend to

constrain the information spread within localized groups of

individuals [61].

Studies of Christakis and Fowler on the spread of obesity and

smoking in networks [62,63] prompted a lively debate on how

homophily and influence are confounded. Lyons was critical

toward the statistical methods used [64]. Stelich et al. discussed

how friendship formation in a dynamic network based on

homophily can be mistaken for influence [65], and Shalizi and

Thomas showed examples of how homophily and influence can be

confounded [6]. Finally, Aral et al. provided a generalized

statistical framework for distinguishing peer-to-peer influence

from homophily in dynamic networks [66].

Socioeconomics and Organizational Behavior. For em-

ployees in a real work environment, face-to-face contact and email

communication can be used to predict job satisfaction and group

work quality [34]. Having more diverse social connections is

correlated with economic opportunities, as found in the study

containing CDRs of over 65 million users [67]. A similar result

was reported in a study of economic status and physical proximity,

where a direct correlation between more social interaction

diversity and better financial status was found [31]. Or, as shown

in a study of Belgian users, language regions in a country can be

identified based solely on CDRs [68].

Privacy
Data collected about human participants is sensitive and

ensuring privacy of the participants is a fundamental require-

ment—even when participants may have limited understanding of

the implications of data sharing [69,70]. A significant amount of

literature exists regarding the possible attacks that can be

performed on personal data, such as unauthorized analysis [71]

with a view to decoding daily routines [72] or friendships [42] of
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the participants. In side channel information attacks, data from public

datasets (e.g. online social networks) are used to re-identify users

[73–75]. Even connecting the different records of one user within

the same system can compromise privacy [73]. Specific attacks are

also possible in network data, as nodes can be identified based on

the network structure and attributes of the neighbors [76,77].

Various de-identification techniques can be applied to the data.

Personally Identifiable Information (PII) is any information that can be

used to identify an individual, such as name, address, social

security number, date and place of birth, employment, education,

or financial status. In order to avoid re-identification and

consequent malicious usage of data, PII can be completely

removed, hidden by aggregation, or transformed to be less

identifiable, resulting in a trade-off between privacy and utility

[78]. Substituting PII with the correspondent one-way hash allows

removal of plaintext information and breaks the link to other

datasets. This method, however, does not guarantee protection

from re-identification [79–82]. K{anonymity is a technique of

ensuring that it is not possible to distinguish any user from at least

k{1 other in the dataset [83]; studies have shown that this

method often may be too weak [72]. L{diversity [84] and

t{closeness [85] have been proposed as extensions of

k{anonymity with stronger guarantees.

Another approach to introducing privacy is based on perturbing

the data by introducing noise, with the goal of producing privacy-

preserving statistics [86–90]. Homomorphic encryption, on the other

hand, can be used to perform computation directly on the

encrypted data, thus eliminating the need of exposing any sensitive

information [91–94]; this technique has been applied, for example,

to vehicle positioning data [95] and medical records [96].

The flows of data—creation, copying, sharing—can be restrict-

ed. Information Flow Control solutions such as [97–99] attempt to

regulate the flow of information in digital systems. Auditing

implementations such as [100–102] track the data flow by

generating usage logs. Data Expiration makes data inaccessible after

a specific time, for example by self-destruction or by invalidating

encryption keys [103–106]. Watermarking identifies records using

hidden fingerprints, to allow traceability and identification of leaks

[107–109].

Motivation

Here we describe our primary motivation for deploying the

Copenhagen Networks Study, featuring deep and high-resolution

data and a longitudinal approach.

Multiplexity
The majority of big data studies use datasets containing data

from a single source, such as call detail records (CDRs) [4], RFID

sensors [110], Bluetooth scanners [111], or online social networks

activity [2]. Although, as we presented in the Related Work

section, analyzing these datasets has led to some exciting findings,

we may however not understand how much bias is introduced in

such single-channel approaches, particularly in the case of highly

interconnected data such as social networks.

We recognize two primary concerns related to the single-source

approach: incomplete data and limitation with respect to an

interdisciplinary approach. For social networks, we intuitively

understand that people communicate on multiple channels: they

call each other on the phone, meet face-to-face, or correspond

through email. Observing only one channel may introduce bias

that is difficult to estimate [11]. Ranjan et al. investigated in [112]

how CDR datasets, containing samples dependent upon user

activity and requiring user participation, may bias our under-

standing of human mobility. The authors used data activities as

the ground truth; due to applications running in the background,

sending and requesting data, smartphones exchange data with the

network much more often than typical users make calls and

without the need for their participation. Comparing the number of

locations and significant locations [113], they found that the CDRs

reveal only a small fraction of users’ mobility, when compared with

data activity. The identified home and work locations, which are

considered the most important locations, did not, however, differ

significantly when estimated using either of the three channels

(voice, SMS, and data).

Domains of science operate primarily on different types of data.

Across the sciences, researchers are interested in distinct questions

and use very different methods. Similarly, as datasets are obtained

from different populations and in different situations, it is difficult

to cross-validate or combine findings. Moreover, the single-

channel origin of the data can be a preventive factor in applying

expertise from multiple domains. If we collect data from multiple

channels in the same studies, on the same population, we can work

together across field boundaries and draw on the different

expertise and results generated by the studies and thereby achieve

more robust insights.

Social networks are ‘multiplex’ in the sense that many different

types of links may connect any pair of nodes. While recent work

[114,115] has begun to explore the topic, a coherent theory

describing multiplex, weighted, and directed networks remains

beyond the frontier of our current understanding.

Sampling
In many big data studies, data sampling is uneven. CDRs, for

example, only provide data when users actively engage, by making

or receiving a phone call or SMS. Users can also have different

patterns of engagement with social networks, some checking and

interacting several times a day, while others only do so once a

week [116]. Further, CDRs are typically provided by a single

provider who has a finite market share. If the market share is 20%
of the population and you consider only links internal to your

dataset, this translates to only 4% of the total number of links,

assuming random network and random sampling [4]. Thus, while

CDRs might be sufficient when analysing of mobility, it is not clear

that CDRs are a useful basis for social network analysis. Such

uneven, sparse sampling decreases the resolution of data available

for analysis. Ensuring the highest possible quality of the data, and

even sampling, is possible with primarily passive data gathering,

focusing on digital traces left by participants as they go through

their lives, for example by using phones to automatically measure

Bluetooth proximity, record location, and visible WiFi networks

[9,29,31]. In cases where we cannot observe participants passively

or when something simply goes wrong with the data collection, we

aim to use the redundancy in the channels: if the participant turns

off Bluetooth for a period, we can still estimate the proximity of

participants using WiFi scans (as described in the Results section).

Uneven sampling not only reduces the quality of available data,

but also—maybe more importantly—may lead to selection bias

when choosing participants to include in the analysis. As

investigated in [112], when only high-frequency voice-callers are

chosen from a CDR dataset for the purpose of analysis, this can

incur biases in Shannon entropy values (measure of uncertainty) of

mobility, causing overestimation of the randomness of partici-

pants’ behavior. Similarly, as shown in [116], choosing users with

a large network and many interactions on Facebook may lead to

overestimation of diversity in the ego-networks. Every time we

have to discard a significant number of participants, we risk

introducing bias in the data. Highly uneven sampling that cannot
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be corrected with redundant data, compels the researcher to make

mostly arbitrary choices as part of the analysis, complicating

subsequent analysis, especially when no well-established ground

truth is available to understand the bias. Our goal here is to collect

evenly sampled high-quality data for all the participants, so we do

not have to discard anyone; an impossible goal, but one worth

pursuing.

Since we only record data from a finite number of participants,

our study population is also a subset, and every network we

analyze will be sampled in some way, see [117] for a review on

sampling. While the 2013 deployment produces a dataset that is

nearly complete in terms of communication between the

participants, it is clear that it is subject to other sampling-related

issues. For example, a relatively small network embedded in a

larger society has a large ‘surface’ of links pointing to the outside

world, creating a boundary specification problem [118].

Dynamics
The networks and behaviors we observe are not static; rather

they display dynamics on multiple time-scales. Long-term

dynamics may be lost in big data studies when the participants

are not followed for a sufficiently long period, and only a relatively

narrow slice of data is acquired. Short-term dynamics may be

missed when the sampling frequency is too low.

It is a well-established fact that social networks evolve over time

[8,119]. The time scale of the changes varies and depends on

many factors, for example the semester cycle in students’ life,

changing schools or work, or simply getting older. Without

following such dynamics, and if we focus on a single temporal slice,

we risk missing an important aspect of human nature. To capture

it, we need long-term studies, that follow participants for months

or even years.

Our behavior is not static, even when measured for very short

intervals. We have daily routines, meeting with different people in

the morning and hanging out with other people in the evening, see

Figure 1. Our workdays may see us going to places and interacting

with people differently than on weekends. It is easy to miss

dynamics like these when the quality of the data is insufficient,

either because it has not been sampled frequently enough or

because of poor resolution, requiring large time bins.

Because each node has a limited bandwidth, only a small

fraction of the network is actually ‘on’ at any given time, even if

the underlying social network is very dense. Thus, to get from

node A to node B, a piece of information may only travel on links

that are active at subsequent times. Some progress has been made

on the understanding of dynamic networks, for a recent review see

[120]. However, in order to understand the dynamics of our highly

dense, multiplex network, we need to expand and adapt the

current methodologies, for example by adapting the link-based

viewpoint to dynamical systems.

Feedback
In many studies, the data collection phase is separated from the

analysis. The data might have been collected during usual

operation, before the idea of the study had even been conceived

(e.g. CDRs, WiFi logs), or access to the data might have not been

granted before a single frozen and de-identified dataset was

produced.

One real strength of the research proposed here is that, in

addition to the richness of the collected data, we are able to run

controlled experiments, including surveys distributed via the

smartphone software. We can, for example, divide participants

into sub-populations and expose them to distinct stimuli,

addressing the topic of causality as well as confounding factors

both of which have proven problematic [64,121] for the current

state-of-the-art [122,123].

Moreover, we monitor the data quality not only on the most

basic level of a participant (number of data points) but also by

looking at the entire live dataset to understand if the quality of the

collected data is sufficient to answer our research questions. This

allows us to see and fix bugs in the data collection software, or

learn that certain behaviors of the participants may introduce bias

in the data: for example after discovering missing data, some

interviewed students reported turning their phones off for the night

to preserve battery. This allowed us to understand that, even if in

terms of the raw numbers, we may be missing some hours of data

per day for these specific participants, there was very little

information in that particular data anyway.

Building systems with real-time data processing and access

allows us to provide the participants with applications and services.

It is an important part of the study not only to collect and analyze

the data but also to learn how to create a feedback loop, directly

feeding back extracted knowledge on behavior and interactions to

the participants. We are interested in studying how personal data

can be used to provide feedback about individual behavior and

promote self-awareness and positive behavior change, which is an

active area of research in Personal Informatics [124]. Applications

for participants create value, which may be sufficient to allow us to

deploy studies without buying a large number of smartphones to

provide to participants. Our initial approach has included the

development and deployment of a mobile app that provides

feedback about personal mobility and social interactions based on

personal participant data [125]. Preliminary results from the

deployment of the app, participant surveys, and usage logs suggest

an interest in such applications, with a subset of participants

repeatedly using the mobile app for personal feedback [126]. It is

Figure 1. Dynamics of face-to-face interactions in the 2012 deployment. The participants meet in the morning, attend classes within four
different study lines, and interact across majors in the evening. Edges are colored according to the frequency of observation, ranging from low (blue)
to high (red). With 24 possible observations per hour, the color thresholds are respectively: blue (0v observations ƒ6), purple (6v observations
ƒ12), and red (v12 observations). Node size is linearly scaled according to degree.
doi:10.1371/journal.pone.0095978.g001
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clear that feedback can potentially influence the study results:

awareness of a certain behavior may cause participants to want to

change that behavior. We believe, however, that such feedback is

unavoidable in any study, and studying the effects of such feedback

(in order to account for it) is an active part of our research.

New Science
The ability to record the highly dynamic networks opens up a

new, microscopic level of observation for the study of diffusion on

the network. We are now able to study diffusion of behavior, such

as expressions of happiness, academic performance, alcohol and

other substance abuse, information, as well as real world infectious

disease (e.g. influenza). Some of these vectors may spread on some

types of links, but not others. For example, influenza depends on

physical proximity for its spread, while information may diffuse on

all types of links; with the deep data approach we can study

differences and similarities between various types of spreading and

the interplay between the various communication channels

[127,128].

A crucial step when studying the structure and dynamics of

networks is to identify communities (densely connected groups of

nodes) [129,130]. In social networks, communities roughly

correspond to social spheres. Recently, we pointed out that

communities in many real world networks display pervasive overlap,

where each and every node belongs to more than one group [131].

It is important to underscore that the question of whether or not

communities in networks exhibit pervasive overlap has great

practical importance. For example, the patterns of epidemic

spreading change, and the optimal corresponding societal

countermeasures are very different, depending on the details of

the network structure.

Although algorithms that detect disjoint communities have

operated successfully since the notion of graph partitioning was

introduced in the 1970s [132], we point out that most networks

investigated so far are highly incomplete in multiple senses.

Moreover, we can use a simple model to show that sampling could

cause pervasively overlapping communities to appear to be disjoint

[133]. The results reveal a fundamental problem related to

working with incomplete data: Without an accurate model of the

structural ordering of the full network, we cannot estimate the implications of

working with incomplete data. Needless to say, this fact is of particular

importance to studies carried out on (thin) slices of data, describing

only a single communication channel, or a fraction of nodes using

that channel. By creating a high-quality, high-resolution data set,

we are able to form accurate descriptions of the full data set

needed to inform a proper theory for incomplete data. A deeper

understanding of sampling is instrumental for unleashing the full

potential of data from the billions of mobile phones in use today.

Methods: Data Collection

The Copenhagen Networks Study aims to address the problem

of single-modality data by collecting information from a number of

sources that can be used to build networks, study social

phenomena, and provide context necessary to interpret the

findings. A series of questionnaires provides information on the

socioeconomic background, psychological traces, and well-being of

the participants; Facebook data enables us to learn about the

presence and activity of subjects in the biggest online social

networking platform [134]; finally, the smartphones carried by all

participants record their location, telecommunication patterns,

and face-to-face interactions. Sensor data is collected with fixed

intervals, regardless of the users’ activity, and thus the uneven

sampling issue, daunting especially CDR-based studies, is mainly

overcome. Finally, the study is performed on the largest and the

most dense population to date in this type of studies. The physical

density of the participants helps to address the problem of missing

data, but raises new questions regarding privacy, since missing

data about a person can, in many cases, be inferred from existing

data of other participants. For example, if we know that person A,

B, and C met at a certain location based on the data from person

A, we do not need social and location data from B and C to know

where and with whom they were spending time.

Below we describe the technical challenges and solutions in

multi-channel data collection in 2012 and 2013 deployments. Data

collection, anonymization, and storage were approved by the

Danish Data Protection Agency, and comply with both local and

EU regulations.

Data Sources
The data collected in the two studies were obtained from

questionnaires, Facebook, mobile sensing, an anthropological field

study, and the WiFi system on campus.

Questionnaires. In 2012 we deployed a survey containing

95 questions, covering socioeconomic factors, participants’ work-

ing habits, and the Big Five Inventory (BFI) measuring personality

traits [135]. The questions were presented as a Google Form and

participation in the survey was optional.

In 2013 we posed 310 questions to each participant. These

questions were prepared by a group of collaborating public health

researchers, psychologists, anthropologists, and economists from

the Social Fabric project (see Acknowledgements). The questions

in the 2013 deployment included BFI, Rosenberg Self Esteem

Scale [136], Narcissism NAR-Q [137], Satisfaction With Life

Scale [138], Rotters Locus of Control Scale [139], UCLA

Loneliness scale [140], Self-efficacy [141], Cohens perceived stress

scale [142], Major Depression Inventory [143], The Copenhagen

Social Relation Questionnaire [144], and Panas [145], as well as

number of general health- and behavior-related questions. The

questions were presented using a custom-built web application,

which allowed for full customization and complete control over

privacy and handling of the respondents’ data. The questionnaire

application is capable of presenting different types of questions,

with branching depending on the answers given by the participant,

and saving each participant’s progress. The application is available

as an open source project at github.com/MIT-Model-Open-Data-

and-Identity-System/SensibleDTUData-Apps-Questionaires. Par-

ticipation in the survey was required for taking part in the

experiment. In order to track and analyze temporal development,

the survey (in a slightly modified form) was repeated every

semester on all participating students.

Facebook Data. For all participants in both the 2012 and

2013 deployment, it was optional to authorize data collection from

Facebook, and a large majority opted in. In the 2012 deployment,

only the friendship graph was collected every 24 hours, until the

original tokens expired. In the 2013 deployment, data from

Facebook was collected as a snapshot, every 24 hours. The

accessed scopes were birthday, education, feed, friend lists, friend

requests, friends, groups, hometown, interests, likes, location,

political views, religion, statuses, and work. We used long-lived

Facebook access tokens, valid for 60 days, and when the tokens

expired, participants received notification on their phones,

prompting them to renew the authorizations. For the academic

study purposes, the Facebook data provided rich demographics

describing the participants, their structural (friendship graph) and

functional (interactions) networks, as well as location updates.

Sensor Data. For the data collection from mobile phones, we

used a modified version of the Funf framework [31] in both
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deployments. The data collection app was built using the

framework runs on Android smartphones, which were handed

out to participants (Samsung Galaxy Nexus in 2012 and LG Nexus

4 in 2013). All the bugfixes and the improvement of the framework

are public and available under the OpenSensing github organi-

zation at github.com/organizations/OpenSensing.

In the 2012 deployment, we manually kept track of which

phone was used by each student, and identified data using device

IMEI numbers, but this created problems when the phones were

returned and then handed out to other participants. Thus, in the

2013 deployment, the phones were registered in the system by the

students in an OAuth2 authorization flow initiated from the

phone; the data were identified by a token stored on the phone

and embedded in the data files. The sensed data were saved as

locally encrypted sqlite3 databases and then uploaded to the server

every 2 hours, provided the phone was connected to WiFi. Each

file contained 1 hour of participant data from all probes, saved as

a single table. When uploaded, the data was decrypted, extracted,

and included in the main study database.

Qualitative Data. An anthropological field study was

included in the 2013 deployment. An anthropologist from the

Social Fabric project was embedded within a randomly selected

group of approximately 60 students (August 2013–august 2014). A

field study consists of participant observation within the selected

group, collecting qualitative data while simultaneously engaging in

the group activities. The goal is to collect data on various

rationales underlying different group formations, while at the same

time experiencing bodily and emotionally what it was like to be

part of these formations [146]. The participant observation

included all the student activities and courses, including extracur-

ricular activities such as group work, parties, trips, and other social

leisure activities. All participants were informed and periodically

reminded about the role of the anthropologist.

In addition to its central purpose, the anthropological data adds

to the multitude of different data channels, deepening the total

pool of data. This proved useful for running and optimizing the

project in a number of ways.

Firstly, data from qualitative social analysis are useful—in a very

practical sense—in terms of acquiring feedback from the

participants. One of the goals of the project is to provide value

to the participants; in addition to providing quantified-self style

access to data, we have also created a number of public services: a

homepage, a Facebook page, and a blog, where news and

information about the project can be posted and commented on.

These services are intended to keep the students interested, as well

as to make participants aware of the types and amounts of data

collected (see Privacy section). Because of the anthropologist’s real-

world engagement with the students, the qualitative feedback

contains complex information about participants’ interests and

opinions, including what annoyed, humored, or bored them. This

input has been used to improve existing services, such as

visualizations (content and visual expression), and to develop ideas

for the future services. In summary, qualitative insights helped us

understand the participants better and, in turn, to maintain and

increase participation.

Secondly, the inclusion of qualitative data increases the

potential for interdisciplinary work between the fields of computer

science and social science. Our central goal is to capture the full

richness of social interactions by increasing the number of

recorded communication channels. Adding a qualitative social

network approach makes it possible to relate the qualitative

observations to the quantitative data obtained from the mobile

sensing, creating an interdisciplinary space for methods and

theory. We are particularly interested in the relationship between

the observations made by the embedded anthropologist and the

data recorded using questionnaires and mobile sensing, to answer

questions about the elements difficult to capture using our high-

resolution approach. Similarly, from the perspective of social

sciences, we are able to consider what may be captured by

incorporating quantitative data from mobile sensing into a

qualitative data pool—and what can we learn about social

networks using modern sensing technology.

Finally, these qualitative data can be used to ground the

mathematical modeling process. Certain things are difficult or

impossible to infer from quantitative measurements and mathe-

matical models of social networks, particularly in regard to

understanding why things happen in the network, as computational

models tend to focus on how. Questions about relationship-links

severing, tight networks dissolving, and who or what caused the

break, can be very difficult to answer, but they are important with

regard to understanding the dynamics of the social network. By

including data concerned with answering why in social networks,

we add a new level of understanding to the quantitative data.

WiFi Data. For the 2012 deployment, between August 2012

and May 2013, we were granted access to the campus WiFi system

logs. Every 10 minutes the system provided metadata about all

devices connected to the wireless access points on campus (access

point MAC address and building location), together with the

student ID used for authentication. We collected the data in a de-

identified form, removing the student IDs and matching the

participants with students in our study. Campus WiFi data was not

collected for the 2013 deployment.

Backend System
The backend system, used for data collection, storage, and

access, was developed separately for the 2012 and 2013

deployments. The system developed in 2012 was not designed

for extensibility, as it focused mostly on testing various solutions

and approaches to massive sensor-driven data collection. Building

on this experience, the system for the 2013 deployment was

designed and implemented as an extensible framework for data

collection, sharing, and analysis.

The 2012 Deployment. The system for the 2012 deployment

was built as a Django web application. The data from the

participants from the multiple sources, were stored in a CouchDB

database. The informed consent was obtained by presenting a

document to the participants after they authenticated with

university credentials. The mobile sensing data was stored in

multiple databases inside a single CouchDB instance and made

available via an API. Participants could access their own data,

using their university credentials. Although sufficient for the data

collection and research access, the system performance was not

adequate for exposing the data for real-time application access,

mainly due to the inefficient de-identification scheme and

insufficient database structure optimization.

The 2013 Deployment. The 2013 system was built as an

open Personal Data System (openPDS) [147] in an extensible

fashion. The architecture of the system is depicted in Figure 2 and

consisted of three layers: platform, services, and applications. In

the platform layer, the components common for multiple services

were grouped, involving identity provider and participant-facing

portal for granting authorizations. The identity provider was based

on OpenID 2.0 standard and enabled single sign-on (SSO) for

multiple applications. The authorizations were realized using

OAuth2 and could be used with both web and mobile

applications. Participants enroll into studies by giving informed

consent and subsequently authorizing application to submit and

access data from the study. The data storage was implemented

Measuring Large-Scale Social Networks with High Resolution

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e95978

IX



using MongoDB. Participants can see the status and change their

authorizations on the portal site, the system included an

implementation of the Living Informed Consent [3].

Deployment Methods
Organizing studies of this size is a major undertaking. All parts

from planning to execution have to be synchronized, and below

we share some considerations and our approaches. While their

main purpose was identical, the two deployments differed greatly

in size and therefore also in the methods applied for enrolling and

engaging the participants.

SensibleDTU 2012. In 2012 approximately 1,400 new

students were admitted to the university, divided between two

main branches of undergraduate programs. We focused our efforts

on the larger branch containing 900 students, subdivided into 15

study lines (majors). For this deployment we had *200 phones

available to distribute between the students. To achieve maximal

coverage and density of the social connections, we decided to only

hand out phones in a few selected majors that had a sufficient

number of students interested in participating in the experiment.

Directly asking students about their interest in the study was not a

good approach, as it could lead to biased estimates and would not

scale well for a large number of individuals. Instead, we appealed

to the competitive element of human nature by staging a

competition, running for two weeks from the start of the semester.

All students had access to a web forum, which was kept separate

for each major, where they could post ideas that could be realized

by the data we would collect, and subsequently vote for their own

ideas or three seed ideas that we provided. The goal of the

competition was twofold; first we wanted students to register with

their Facebook account, thereby enabling us to study their online

social network, and second we wanted to see which major could

Figure 2. Sensible Data openPDS architecture. This system is used in the 2013 deployment and consists of three layers: platform, services, and
applications. The platform contains element common for multiple services (in this context: studies). The studies are the deployments of particular
data collection efforts. The applications are OAuth2 clients to studies and can submit and access data, based on user authorizations.
doi:10.1371/journal.pone.0095978.g002
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gain most support (percentage of active students) behind a single

idea. Students were informed about the project and competition

by the Dean in person and at one of 15 talks given—one at each

major. Students were told that our choice of participants would be

based on the support each major could muster behind their

strongest idea before a given deadline. This resulted in 24 new

research ideas and 1 026 unique votes. Four majors gained w93%

support for at least one idea and were chosen to participate in the

experiment.

The physical handing out of the phones was split into four

major sessions, in which students from the chosen majors were

invited; additional small sessions were arranged for students that

were unable to attend the main ones. At each session, participants

were introduced to our data collection methods, de-identification

schemes, and were presented with the informed consent form. In

addition, the participants were instructed to fill out the question-

naire. A small symbolic deposit in cash was requested from each

student; this served partially as compensation for broken phones,

but was mainly intended to encourage participants take better care

of the phones, than if they had received them for free [148]. Upon

receiving a phone, participants were instructed to install the data

collector application. The configuration on each phone was

manually checked when participants were leaving—this was

particularly important to ensure high quality of data.

This approach had certain drawbacks; coding and setting up the

web fora, manually visiting all majors and introducing them to the

project and competition, and organizing the handout sessions

required considerable effort and time. However, certain aspects

were facilitated with strong support from the central administra-

tion of the university. A strong disadvantage of the outlined

handout process is that phones were handed out 3–4 weeks into

the semester, thus missing the very first interactions between

students.

SensibleDTU 2013. The 2013 deployment was one order of

magnitude larger, with 1 000 phones to distribute. Furthermore,

our focus shifted to engaging the students as early as possible.

Pamphlets informing prospective undergraduate students about

the project were sent out along with the official acceptance letters

from the university. Early-birds who registered online via Face-

book using the links given in the pamphlet were promised phones

before the start of their studies. Students from both branches of

undergraduate programs were invited to participate (approxi-

mately 1 500 individuals in total), as we expected an adoption

percentage between 30% and 60%. Around 300 phones were

handed out to early-birds, and an additional 200 were handed out

during the first weeks of semester. As the adoption rate plateaued,

we invited undergraduate students from older years to participate

in the project.

The structure of the physical handout was also modified, the

participants were requested to enroll online before receiving the

phone. Moreover, the informed consent and the questionnaire

were part of the registration. Again, we required a symbolic cash

deposit for each phone. We pre-installed custom software on each

phone to streamline the handout process; students still had to

finalize set up of the phones (make them Bluetooth-discoverable,

activate WiFi connection, etc.).

For researchers considering similar projects with large scale

handouts, we recommend that the pool of subjects are engaged in

the projects as early as possible and be sure to keep their interest.

Make it easy for participants to contact you, preferably through

media platforms aimed at their specific age group. Establish clear

procedures in case of malfunctions. On a side note, if collecting

even a small deposit, when multiplied by a factor of 1 000, the total

can add up to significant amount, which must be handled

properly.

Methods: Privacy

When collecting data of very high resolution, over an extended

period, from a large population, it is crucial to address the privacy

of the participants appropriately. We measure the privacy as a

difference between what a participant understands and consents to

regarding her data, and what in fact happens to these data.

We believe that ensuring sufficient privacy for the participants,

in large part, is the task of providing them with tools to align the

data usage with their understanding. Such privacy tools must be of

two kinds: to inform, ensuring participants understand the

situation, and to control, aligning the situation with the

participant’s preferences. There is a tight loop where these tools

interact: as the participant grows more informed, she may decide

to change the settings, and then verify if the change had the

expected result. By exercising the right to information and control,

the participant expresses Living Informed Consent as described in

[3].

Not all students are interested in privacy, in fact we experienced

quite the opposite attitude. During our current deployments the

questions regarding privacy were rarely asked by the participants,

as they tended to accept any terms presented to them without

thorough analysis. It is our—the researchers’—responsibility to

make the participants more aware and empowered to make the

right decisions regarding their privacy: by providing the tools,

promoting their usage, and engaging in a dialog about privacy-

related issues.

In the 2012 deployment, we used a basic informed consent

procedure with an online form accepted by the participants, after

they authenticated with the university account system. The

accepted form was then stored in a database, together with the

username, timestamp, and the full text displayed to the par-

ticipant. The form itself was a text in Danish, describing the study

purpose, parties responsible, and participants’ rights and obliga-

tions. The full text is available at [149] with English translation

available at [150].

In the 2013 deployment, we used our backend solution

(described in Backend System Section) to address the informed

consent procedure and privacy in general. The account system,

realized as an OpenID 2.0 server, allowed us to enroll participants,

while also supporting research and developer accounts (with

different levels of data access). The sensitive Personally Identifiable

Information attributes (PIIs) of the participants were kept

completely separate from the participant data, all the applications

identified participants based only on the pseudonym identifiers.

The applications could also access a controlled set of identity

attributes for the purpose of personalization (e.g. greeting the

participant by name), subject to user OAuth2 authorization. In

the enrollment into the study, after the participant had accepted

the informed consent document—essentially identical to that from

2012 deployment—a token for a scope enroll was created and

shared between the platform and service (see Figure 2). The

acceptance of the document was recorded in the database by

storing the username, timestamp, hash of the text presented to the

participant, as well as the git commit identifying the version of the

form.

All the communication in the system was realized over HTTPS,

and endpoints were protected with short-lived OAuth2 bearer

tokens. The text of the documents, including informed consent,

was stored in a git repository, allowing us to modify everything,

while still maintaining the history and being able to reference
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which version each participant has seen and accepted. A single

page overview of the status of the authorizations, presented in

Figure 3, is an important step in moving beyond lengthy,

incomprehensible legal documents accepted by the users blindly

and giving more control over permissions to the participant.

In the 2013 deployment, the participants could access all their

data using the same API as the one provided for the researchers

and application developers. To simplify the navigation, we

developed a data viewer application as depicted in Figure 4,

which supports building queries with all the basic parameters in a

more user-friendly way than constructing API URLs. Simply

having access to all the raw data is, however, not sufficient, as it is

really high-level inferences drawn from the data that are important

to understand, for example Is someone accessing my data to see how fast I

drive or to study population mobility? For this purpose, we promoted the

development of a question & answer framework, where the high-

level features are extracted from the data before leaving the server,

promoting better participant understanding of data flows. This is

aligned with the vision of the open Personal Data Store [147].

Finally, for the purposes of engaging the participants in the

discussion about privacy, we published blogposts (e.g. https://

www.sensible.dtu.dk/?p = 1622), presented relevant material to

students, and answered their questions via the Facebook

page(https://www.facebook.com/SensibleDtu).

Results and Discussion

As described in the previous sections, our study has collected

comprehensive data about a number of aspects regarding human

behavior. Below, we discuss primary data channels and report

some early results and findings. The results are mainly based on

the 2012 deployment due to the availability of longitudinal data.

Figure 3. Authorizations page. Participants have an overview of the studies in which they are enrolled and which applications are able to submit
to and access their data. This is an important step towards users’ understanding what happens with their data and to exercising control over it. This
figure shows a translated version of the original page that participants saw in Danish.
doi:10.1371/journal.pone.0095978.g003
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Bluetooth and Social Ties
Bluetooth is a wireless technology ubiquitous in modern-day

mobile devices. It is used for short-range communication between

devices, including smartphones, hands-free headsets, tablets, and

other wearables. As the transmitters used in mobile devices are

primarily of very short range—between 5 and 10 m (16{33
feet)—detection of the devices of other participants (set in ‘visible’

mode) can be used as a proxy for face-to-face interactions [29]. We

take the individual Bluetooth scans in the form i,j,t,sð Þ, denoting

that device i has observed device j at time t with signal strength s.

Figure 4. Data viewer application. All the collected data can be explored and accessed via an API. The API is the same for research, application,
and end-user access, the endpoints are protected by OAuth2 bearer token. Map image from USGS National Map Viewer, replacing original image
used in the deployed application (Google Maps).
doi:10.1371/journal.pone.0095978.g004
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Figure 6. Face-to-face network properties at different resolution levels. Distributions are calculated by aggregating sub-distributions across
temporal window. Differences in rescaled distributions suggest that social dynamics unfold on multiple timescales.
doi:10.1371/journal.pone.0095978.g006

Figure 5. Weekly temporal dynamics of interactions. Face-to-face interaction patterns of participants in 5-minute time-bins over two weeks.
Only active participants are included, i.e. those that have either observed another person or themselves been observed in a given time-bin. On
average we observed 29 edges and 12 nodes in 5-minute time-bins and registered 10 634 unique links between participants.
doi:10.1371/journal.pone.0095978.g005
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Bluetooth scans do not constitute a perfect proxy for face-to-face

interactions [151], since a) it is possible for people within 10 m

radius not to interact socially, and b) it is possible to interact

socially over a distance greater than 10 m, nevertheless, they have

been successfully used for sensing social networks [31] or crowd

tracking [152].

Between October 1st, 2012 and September 1st, 2013, we

collected 12 623 599 Bluetooth observations in which we observed

153 208 unique devices. The scans on the participants’ phones

were triggered every five minutes, measured from the last time the

phone was powered on. Thus, the phones scanned for Bluetooth in

a desynchronized fashion, and not according to a global schedule.

To account for this, when extracting interactions from the raw

Bluetooth scans, we bin them into fixed-length time windows,

aggregating the scans within them. The resulting adjacency

matrix, W t does not have to be strictly symmetric, meaning that

participant i can observe participant j in time-bin t, but not the

other way around. Here we assume that Bluetooth scans do not

produce false positives (devices are not discovered unless they are

really there), and in the subsequent network analysis, we force the

matrix to be symmetric, assuming that if participant i observed

participant j, the opposite is also true.

The interactions between the participants exhibit both daily and

weekly rhythms. Figure 1 shows that the topology of the network

of face-to-face meetings changes significantly within single day,

revealing academic and social patterns formed by the students.

Similarly, the intensity of the interactions varies during the week,

see Figure 5.

Aggregating over large time-windows blurs the social interac-

tions (network is close to fully connected) while a narrow window

reveals detailed temporal structures in the network. Figure 6A

shows the aggregated degree distributions for varying temporal

resolutions, with P(k) being shifted towards higher degrees for

larger window sizes; this is an expected behavior pattern since

each node has more time to amass connections. Figure 6B presents

the opposite effect, where the edge weight distributions P(w) shift

towards lower weights for larger windows; this is a consequence on

definition of a link for longer time-scales or, conversely, of links

Figure 7. WiFi similarity measures. Positive predictive value (precision, ratio of number of true positives to number of positive calls, marked with
dashed lines) and recall (sensitivity, fraction of retrieved positives, marked with solid lines) as functions of parameters in different similarity measures.
A) In 98% of face-to-face meetings derived from Bluetooth, the two devices also sensed at least one common access point. D) Identical strongest
access point for two separate mobile devices is a strong indication of a face-to-face meeting.
doi:10.1371/journal.pone.0095978.g007
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appearing in each window on shorter timescales. To compare the

distribution between timescales, we rescale the properties accord-

ing to Krings et al. [153] as Q(x)~SxTP(x=SxT) with

SxT~
P

xP xð Þ (Figure 6C and 6D). The divergence of the

rescaled distributions suggest a difference in underlying social

dynamics between long and short timescales, an observation

supported by recent work on temporal networks [44,153,154].

WiFi as an Additional Channel for Social Ties
Over the last two decades, wireless technology has transformed

our society to the degree where every city in the developed world is

now fully covered by mobile [155] and wireless networks [156].

The data collector application for mobile phones was configured

to scan for wireless networks in constant intervals, but also to

record the results of scans triggered by any other application

running on the phone (‘opportunistic’ sensing). Out of the box,

Android OS scans for WiFi every 15 seconds, and since we

collected these data, our database contains 42 692 072 WiFi

observations, with 142 871 unique networks (SSIDs) between

October 1st, 2012 and September 1st, 2013 (i.e. the 2012

deployment). Below we present the preliminary result on WiFi

as an additional data-stream for social ties, to provide an example

of how our multiple layers of information can complement and

enrich each other.

For computational social science, using Bluetooth-based detec-

tion of participants’ devices as a proxy for face-to-face interactions

is a well-established method [19,29,31]. The usage of WiFi as a

social proxy has been investigated [157], but, to our knowledge,

has not yet been used in a large-scale longitudinal study. For the

method we describe here, the participants’ devices do not sense

Figure 8. Location and Mobility. We show the accuracy of the collected samples, radius of gyration of the participants, and identify patterns of
collective mobility.
doi:10.1371/journal.pone.0095978.g008
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each other, instead they record the visible beacons (in this instance

WiFi access points) in their environment. Then, physical proximity

between two devices—or lack thereof—can be inferred by

comparing results of the WiFi scans that occurred within a

sufficiently small time window. Proximity is assumed if the lists of

access points (APs) visible to both devices are similar according to a

similarity measure. We establish the appropriate definition of the

similarity measure in a data-driven manner, based on best fit to

Bluetooth data. The strategy is to compare the lists of results in 10-

minute-long time bins, which corresponds to the forced sampling

period of the WiFi probe as well as to our analysis of Bluetooth

data. If there are multiple scans within the 10-minute bin, the

results are compared pair-wise, and proximity is assumed if at least

one of these comparisons is positive. The possibility of extracting

face-to-face interactions from such signals is interesting, due to the

ubiquitous nature of WiFi and high temporal resolution of the

signal.

We consider four measures and present their performance in

Figure 7. Figure 7A shows the positive predictive value and recall

as a function of minimum number of overlapping access points

(jX\Y j) required to assume physical proximity. In approximately

98% of all Bluetooth encounters, at least one access point was seen

by both devices. However, the recall drops quickly with the

increase of their required number. This measure favors interac-

tions in places with a high number of access points, where it is

more likely that devices will have a large scan overlap. The result

confirms that lack of a common AP has a very high positive

predictive power as a proxy for lack of physical proximity, as

postulated in [158]. Note, that for the remaining measures, we

assume at last one overlapping AP in the compared lists of scan

results.

The overlap coefficient defined as overlap(X ,Y )~
jX\Y j

min (jX j,jY j)
penalizes encounters taking place in WiFi-dense areas, due to higher

probability of one device picking up a signal from a remote access

point that is not available to the other device, see Figure 7B.

Next, we compare the received signal strengths between

overlapping routers using the mean ‘1-norm (mean Manhattan

distance,
jjX\Y jj1
jX\Y j ). Received signal strength (RSSI) is measured

in dBm and the Manhattan distance between two routers is the

difference in the RSSI between them, measured in dB. Thus, the

mean Manhattan distance is the mean difference in received signal

strength of the overlapping routers in the two compared scans.

Finally, we investigate the similarity based on the router with

the highest received signal strength—the proximity is assumed

whenever it is the same access point for both devices,

max(X )~max(Y ). This measure provides both high recall and

positive predictive value and, after further investigation for the

causes for errors, is a candidate proxy for face-to-face interactions.

The performance of face-to-face event detection based on WiFi

can be further improved by applying machine-learning approach-

es [158,159]. It is yet to be established, by using longitudinal data,

whether the errors in using single features are caused by inherent

noise in measuring the environment, or if there is a bias that could

be quantified and mitigated. Most importantly, the present

analysis is a proof-of-concept and further investigation is required

to verify if networks inferred from WiFi and Bluetooth signals are

satisfyingly similar, before WiFi can be used as an autonomous

channel for face-to-face event detection in the context of current

and future studies. Being able to quantify the performance of

multi-channel approximation of face-to-face interaction and to

apply it in the data analysis is crucial to address the problem of

missing data, as well as to estimate the feasibility and understand

the limitations of single-channel studies.

Location and Mobility
A number of applications ranging from urban planning, to

traffic management, to containment of biological diseases rely on

the ability to accurately predict human mobility. Mining location

data allows extraction of semantic information such as points of

interest, trajectories, and modes of transportation [160]. In this

section we report the preliminary results of an exploratory data

analysis of location and mobility patterns.

Location data was obtained by periodically collecting the best

position estimate from the location sensor on each phone, as well

as recording location updates triggered by other applications

running on the phone (opportunistic behavior). In total we

collected 7 593 134 data points in 2012 deployment in the form

(userid, timestamp, latitude, longitude, accuracy). The best-effort

nature of the data presents new challenges when compared with

the majority of location mining literature, which focuses on high-

frequency, high-precision GPS data. Location samples on the

smartphones can be generated by different providers, depending

on the availability of the Android sensors, as explained in

developer.android.com/guide/topics/location/strategies.html. For

this reason, accuracy of the collected position can vary between a

few meters for GPS locations, to hundreds of meters for cell tower

location. Figure 8A shows the estimated cumulative distribution

function for the accuracy of samples; almost 90% of the samples

have a reported accuracy better than 40 meters.

We calculate the radius of gyration rg as defined in [38] and

approximate the probability distribution function using a gaussian

kernel density estimation, see Figure 8B. We select the appropriate

kernel bandwidth through leave-one-out cross-validation scheme

from Statsmodels KDEMultivariate class [161]. The kernel density

peaks around 102 km and then rapidly goes down, displaying a

fat-tailed distribution. Manual inspection of the few participants

with rg around 103 km revealed that travels abroad can amount to

Figure 9. Diversity of communication logs. Diversity is estimated
as the set of unique numbers that a person has contacted or been
contacted by in the given time period on a given channel. We note a
strong correlation in diversity (Pearson correlation of 0:75, p%0:05),
whereas the similarity of the sets of nodes is fairly low (on average
SsT~0:37).
doi:10.1371/journal.pone.0095978.g009
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such high mobility. Although we acknowledge that this density

estimation suffers due to the low number of samples, our

measurements suggest that real participant mobility is underesti-

mated in studies based solely on CDRs, such as in [38], as they fail

to capture travels outside of the covered area.

Figure 8C shows a two-dimensional histogram of the locations,

with hexagonal binning and logarithmic color scale (from blue to

red). The red hotspots identify the most active places, such as the

university campus and dormitories. The white spots are the

frequently visited areas, such as major streets and roads, stations,

train lines, and the city center.

From the raw location data we can extract stop locations as

groups of locations clustered within distance D and time T [162–

165]. By drawing edges between stop locations for each

participant, so that the most frequent transitions stand out, we

can reveal patterns of collective mobility (Figure 8D).

Call and Text Communication Patterns
With the advent of mobile phones in the late 20th century, the

way we communicate has changed dramatically. We are no longer

restricted to landlines and are able to move around in physical

space while communicating over long distances.

The ability to efficiently map communication networks and

mobility patterns (using cell towers) for large populations has made

it possible to quantify human mobility patterns, including

investigations of social structure evolution [166], economic

development [67], human mobility [37,38], spreading patterns

[57], and collective behavior with respect to emergencies [60]. In

Figure 10. Weekly temporal dynamics of interactions. All calls and SMS, both incoming and outgoing, were calculated over the entire dataset
and averaged per participant and per week, showing the mean number of interactions participants had in a given weekly bin. Light gray denotes
5pm, the time when lectures end at the university, dark gray covers night between 12 midnight and 8am. SMS is used more for communication
outside regular business hours.
doi:10.1371/journal.pone.0095978.g010

Figure 11. Daily activations in three networks. One day (Friday) in a network showing how different views are produced by observing different
channels.
doi:10.1371/journal.pone.0095978.g011
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Figure 12. Face-to-face and online activity. The figure shows data from the 2013 deployment for one representative week. Online: Interactions
(messages, wall posts, photos, etc.) between participants on Facebook. Face-to-Face: Only the most active edges, which account for 80% of all
traffic, are shown for clarity. Extra Info. F2F: Extra information contained in the Bluetooth data shown as the difference in the set of edges. Extra
Info. Online: Additional information contained in the Facebook data.
doi:10.1371/journal.pone.0095978.g012

Figure 13. Network similarity. Defined as the fraction of ties from one communication channel that can be recovered by considering the top k
fraction of edges from a different channel. Orange dashed line indicates the maximum fraction of ties the network accounts for. The strongest 10% of
face-to-face interactions account for w50% of online ties and *90% of call ties, while 23:58% of Facebook ties and 3:85% of call ties are not
contained in the Bluetooth data. Between call and Facebook, the 10% strongest call ties account for v3% while in total w80% of Facebook ties are
unaccounted. All values are calculated for interactions that took place in January 2014.
doi:10.1371/journal.pone.0095978.g013
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this study, we have collected call logs from each phone as (caller,

callee, duration, timestamp, call type), where the call type could be

incoming, outgoing, or missed. Text logs contained (sender,

recipient, timestamp, incoming/outgoing, one-way hash of con-

tent).

In the 2012 deployment we collected 56 902 incoming and

outgoing calls, of which 42 157 had a duration longer than zero

seconds. The average duration of the calls was SdT~142:04s,

with a median duration of 48:0s. The average ratio between

incoming and outgoing calls for a participant was rin=out~0:98. In

the same period, we collected 161 591 text messages with the

average ratio for a participant rin=out~1:96.

We find a Pearson correlation of 0:75 (p%0:05) between the

number of unique contacts participants contacted via SMS and

voice calls, as depicted in Figure 9. However, the similarity

s~jNcall\Ntextj=jNcall|Ntextj between the persons a participant

contacts via calls (Ncall ) and SMS (Ntext) is on average SsT~0:37,

suggesting that even though participants utilize both forms of

communication in similar capacity, those two are, in fact, used for

distinct purposes.

Figure 10 shows the communication for SMS and voice calls

(both incoming and outgoing, between participants and with the

external world) as a time series, calculated through the entire year

and scaled to denote the mean count of interactions participants

had in given hourly time-bins in the course of a week. Also here,

we notice differences between the two channels. While both clearly

show a decrease in activity during lunch time, call activity peaks

around the end of the business day and drops until next morning.

In contrast, after a similar decrease that we can associate with

commute, SMS displays another evening peak. Also at night, SMS

seems to be a more acceptable form of communication, with

message exchanges continuing late and starting early, especially on

Friday night, when the party never seems to stop.

We point out that the call and SMS dynamics display patterns

that are quite distinct from face-to-face interactions between

participants as seen in Figure 5. Although calls and SMS

communication are different on the weekends, the difference is

not as dramatic as in the face-to-face interactions between the

participants. This indicates that the face-to-face interactions we

observe during the week are driven primarily by university-related

activities, and only few of these ties manifest themselves during the

weekends, despite the fact that the participants are clearly socially

active, sending and receiving calls and messages.

In Figure 11, we focus on a single day (Friday) and show

activation of links between participants in three channels: voice

calls, text messages, and face-to-face meetings. The three networks

show very different views of the participants’ social interactions.

Online friendships
The past years have witnessed a shift in our interaction patterns,

as we have adapted new forms of online communication.

Facebook is to date the largest online social community with

more than 1 billion users worldwide [167]. Collecting information

about friendship ties and communication flows allows us to

construct a comprehensive picture of the online persona.

Combined with other recorded communication channels we have

an unparalleled opportunity to piece together an almost complete

picture of all major human communication channels. In the

following section we consider Facebook data obtained from the

2013 deployment. In contrast to the first deployment, we also

collected interaction data in this deployment. For a representative

week (Oct. 14–Oct. 21, 2013), we collected 155 interactions (edges)

between 157 nodes, yielding an average degree SdT~1:98,

average clustering ScT~0:069, and average shortest path in the

giant component (86 nodes) SlT~6:52. The network is shown in

the left-most panel of Figure 12. By comparing with other channels

we can begin to understand how well online social networks

correspond to real life meetings. The corresponding face-to-face

network (orange) is shown in Figure 12, where weak links, i.e.

edges with fewer than 147 observations (20%) are discarded.

Corresponding statistics are for the 307 nodes and 3 217 active

edges: SdT~20:96, ScT~0:71, and SlT~3:2. Irrespective of the

large difference in edges, the online network still contains valuable

information about social interactions that the face-to-face network

misses—red edges in Figure 12.

A simple method for quantifying the similarity between two

networks is to consider the fraction of links we can recover from

them. Sorting face-to-face edges according to activity (highest first)

we consider the fraction of online ties the top k Bluetooth links

correspond to. Figure 13A shows that 10% of the strongest

Bluetooth ties account for more than 50% of the Facebook

interactions. However, as noted before, the Bluetooth channel

does not recover all online interactions—23:58% of Facebook ties

are unaccounted for. Applying this measure between Bluetooth

Figure 14. Personality traits. Violin plot of personality traits. Summary statistics are: openness mO~3:58, sO~0:52; extraversion mE~3:15,
sE~0:53; neuroticism mN~2:59 sN~0:65; agreeablenes mA~3:64 sA~0:51; conscientiousness mC~3:44 sC~0:51. Mean values from our
deployment (red circles) compared with mean values reported for Western Europe (mixed student and general population) [170] (orange diamonds).
doi:10.1371/journal.pone.0095978.g014
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and voice calls (Figure 13B) shows a similar behavior, while there is

low similarity between voice calls and Facebook ties (Figure 13C).

Personality traits
While the data from mobile sensing and online social networks

provide insights primarily into the structure of social ties, we are

also interested in the demographics, psychological and health

traits, and interests of the participants. Knowing these character-

istics, we can start answering questions about the reasons for the

observed network formation; why are ties created and what drives

their dynamics? For example, homophily plays a vital role in how

we establish, maintain, and destroy social ties [168].

Within the study, participants answered questions covering the

aforementioned domains. These questions included the widely

used Big Five Inventory [135] measuring five broad domains of

human personality traits: openness, extraversion, neuroticism,

agreeableness, and conscientiousness. The traits are scored on a 5-

point Likert-type scale (low to high), and the average score of

Figure 15. Correlation between personality traits and communication. Data from the 2013 deployment for N = 488 participants, showing
communication only with other study participants. Extraversion, the only significant feature across all networks is plotted. The red line indicates mean
value within personality trait. Random spikes are due to small number of participants with extreme values. E) Pearson correlation between Big Five
Inventory personality traits and number of Facebook friends Nfs, volume of interactions with these friends Nff , number of friends contacted via voice
calls Nc and via SMS Ns. *: pv0:05, **: pv0:01, ***: pv0:001.
doi:10.1371/journal.pone.0095978.g015

Measuring Large-Scale Social Networks with High Resolution

PLOS ONE | www.plosone.org 19 April 2014 | Volume 9 | Issue 4 | e95978

XXI



questions related to each personality domain are calculated. As Big

Five has been collected for various populations, including a

representative sample from Germany [169] and a representative

sample covering students mixed with the general population from

Western Europe [170], we report the results from the 2012

deployment in Figure 14, suggesting that our population is

unbiased with respect to these important traits.

Following the idea that personality is correlated with the

structure of the social networks, we examine how the Big Five

Inventory traits relate to the communication ego networks of the

participants: number of Facebook friends, amount of communi-

cation with these friends, number of people ever contacted over

voice calls or SMS. We only consider communication within the

study, in the 2013 deployment for N = 488 participants for whom

complete and longitudinal data was available. It is worth noting

that participants answered the questions very early in the

semester, and that we anecdotally know that a vast majority of

the friendships observed between participants are ‘new’ in that

they are between people who met when they started studying.

Thus, we mainly observe the effect of personality on the network

structure, not the other way around. The results are consistent

with the literature, where Extraversion was shown to be

correlated with number of Facebook friends [171]. Extending

this result, Figure 15 depicts the correlation between Extraversion

and number of Facebook friends (structural network) Nfs (Figure

15A), volume of interactions with these friends (functional

network) Nff (Figure 15B), number of friends contacted via voice

calls Nc (Figure 15C), and number of friends contacted via SMS

Ns (Figure 15D). In Table 15E, we show the (Pearson) correlation

between all five traits and the aforementioned communication

channels, reporting only significant results. The values of

correlation for Extroversion are consistent across the networks,

and are close to those reported in [171,172] (*0:2). Following

the result from Call & Text Communication Patterns Section,

where we showed that the communication in SMS and call

networks are similar in volume, however have limited overlap in

terms of who participants contact, both those channels show

similar correlation with Extraversion. Here, we only scratched the

surface with regard to the relation between personality and

behavioral data. The relation between different behavioral

features, network structure, and personality has been studied in

[173–176]. By showing the impact of Extraversion on the

network formed with participants inside the study is consistent

with values reported for general populations, we indicate that

within the Copenhagen Networks Study, we capture a true social

system, with different personalities positioned differently in the

network.

Perspectives

We expect that the amount of data collected about human

beings will continue to increase. New and better services will be

offered to users, more effective advertising will be implemented,

and researchers will learn more about human nature. As the

complexity and scale of studies on social systems studies grows,

collection of high-resolution data for studying human behavior will

become increasingly challenging on multiple levels, even when

offset by the technical advancements. Technical preparations,

administrative tasks, and tracking data quality are a substantial

effort for an entire team, before even considering the scientific

work of data analysis. It is thus an important challenge for the

scientific community to create and embrace re-usable solutions,

including best practices in privacy policies and deployment

procedures, supporting technologies for data collection, handling,

and analysis methods.

The results presented in this paper—while still preliminary

considering the intended multi-year span of the project—clearly

reveal that a single stream of data rarely supplies a comprehensive

picture of human interactions, behavior, or mobility. At the same

time, creating larger studies, in terms of number of participants,

duration, channels observed, or resolution, is becoming expensive

using the current approach. The interest of the participants

depends on the value they get in return and the inconvenience the

study imposes on their lives. The inconvenience may be measured

by decreased battery life of their phones, annoyance of answering

questionnaires, and giving up some privacy. The value, on the

other hand, is classically created by offering material incentives,

such as paying participants or, as in our case, providing

smartphones and creating services for the participants. Providing

material incentives for thousands or millions of people, as well as

the related administrative effort of study management, may simply

not be feasible.

In the not-so-distant future, many studies of human behavior

will move towards accessing already existing personal data. Even

today we can access mobility of large populations, by mining data

from Twitter, Facebook, or Flickr. Or, with participants’

authorizations, we can track their activity levels, using APIs of

self-tracking services such as Fitbit or RunKeeper. Linking across

multiple streams is still difficult today (the problem of data silos),

but as users take more control over their personal data, scientific

studies can become consumers rather than producers of the

existing personal data.

This process will pose new challenges and amplify the existing

ones, such as the replicability and reproducibility of the results or

selection bias in the context of full end-user data control. Still, we

expect that future studies will increasingly rely on the existing data,

and it is important to understand how the incomplete view we get

from such data influences our results. For this reason, we need

research testbeds—such as the Copenhagen Networks Study—

where we study ‘deep data’ in the sense of multi layered data streams,

sampled with high temporal resolution. These deep data will allow us

to unlock and understand the future streams of big data.
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Abstract

Understanding how people interact and socialize is important in many contexts from disease control to urban planning.
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and non-important links, as well as how to highlight important social interactions. Applying the Bluetooth signal strength
parameter to distinguish between observations, we demonstrate that weak links, compared to strong links, have a lower
probability of being observed at later times, while such links—on average—also have lower link-weights and probability of
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Introduction

Recognizing genuine social connections is a central issue within

multiple disciplines. When do connections happen? Where do they

take place? And with whom is an individual connected? These

questions are important when working to understand and design

urban areas [1,2], studying close-contact spreading of infectious

diseases [3–5], or organizing teams of knowledge workers [6–9]. In

spite of their importance, measuring social ties in the real world

can be difficult.

In classical social science the standard approach is to use self-

reported data. This method, however, is only practical for

relatively small groups and suffers from cognitive biases, errors

of perception, and ambiguities [10]. Further, it has been shown

that the ability to capture behavioral patterns via self-reported

data is limited in many contexts [11]. A different approach for

uncovering social behavior is to use digital records from emails and

cell phone communication [12–19]. Although such analyses have

improved our understanding of social ties, they have left many

important questions unanswered—are electronic traces a valid

proxy for real social connections? Eagle et al. [20] began to answer

this question by including a spatial component as part of their

data, using the short range (*10m) Bluetooth sensor embedded in

study participants’ smartphones to measure physical proximity.

Their results show that proximity data closely reflects social

interactions in many cases. But since it is easy to think of examples

where reciprocal Bluetooth detection does not correspond to social

interaction (e.g. transient co-location in dining hall) the question

remains, which observations correspond to actual social connec-

tions and which are just noise?

Multiple alternatives have been proposed to Bluetooth for

sensor-driven measurement of social interactions, each with

particular strengths and weaknesses [21–31]. For example, Radio

Frequency Identification (RFID) badges have short interaction

ranges (1{4m) and measure only face-to-face interactions, thus

solving many of the resolution problems posed by Bluetooth

[30,31]. This approach, however, confines interactions to occur

within specific areas covered by special radio receivers and

requires participants to wear custom radio tags on their chests at

all times—unlike Bluetooth which is ubiquitous across many types

of modern electronic devices.

Our investigation digs into the role of Bluetooth signal

strength, using a dataset obtained from applications running

on the cell phones of 134 students at a large academic

institution. Each phone records and sends data to researchers

about call and text logs, Bluetooth devices in nearby proximity,

WiFi hotspots in proximity, cell towers, GPS location, and

battery usage [32]. In addition, we combine the data collected

via the phones with online data, such as social graphs from

Facebook for a majority of the participants. The study

continuously gathers data, but in this paper we focus on

Bluetooth proximity data gathered for 119 days during the

academic year of 2012–2013. Specifically, we focus on the

received signal strength parameter and propose a methodology

that applies signal strength to distinguish between social and

non-social interactions. We concentrate on the signal param-

eter because it is present in a majority of digitally recorded

proximity datasets [30,32,33] and in addition, it also suggests a

rough estimate for the distance between two devices. Applying

the method on our data, we compare the findings to a null

model and demonstrate how removing links with low signal

strength influences network structure. Moreover, we use

estimated link-weights and an online dataset to validate the

friendship-quality of removed links.
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Materials and Methods

Dataset
We distributed phones among students from four study lines

(majors), where each major was chosen based on the fraction of

students interested in participating in the project. This selection

method yielded a coverage of w93% of students per study line,

enabling us to capture a dense sample of the social interactions

between subjects. Such high coverage of internal connections

within a social group, with respect to the density of social

interactions combined with the duration of observation, has not

been achieved in earlier studies [20,30].

The data collector application installed on each phone

follows a predefined scanning time table, which specifies the

activation and duration of each probe. Proximity data is

obtained by using the Bluetooth probe. Every 300 seconds

each phone performs a Bluetooth scan that lasts 30 seconds.

During the scan it registers all discoverable devices within its

vicinity (5{10m) along with the associated received signal

strength indicator (RSSI) [34]. Recorded proximity data is of

the form (i, j, t, s), denoting that person i has observed j at time

t with signal strength s. Only links between experiment

participants are considered, comprising a dataset of

2 183 434 time ordered edges between 134 nodes, see Table 1

for more information. Data collection, anonymization, and

storage was approved by the Danish Data Protection Agency,

and complies with both local and EU regulations. Written

informed consent was obtained via electronic means, where all

invited participants digitally signed the form with their

university credentials. Along with the mobile phone study we

also collected Facebook graphs of the participants. Not all

users donated their data since this was voluntary, however we

obtained a user participation of *88% (119 users and 1018

Facebook friendships). For the missing 12% of users, we

assume they do not share any online friendships with the bulk

of participants.

Identifying links
Independent of starting conditions, the scanning framework

on one phone will drift out of sync with the framework on

other phones after a certain amount of time, thus the phones

will inevitably scan in a desynchronized manner. This

desynchronization can mainly be attributed to: internal drift

in the time-protocol of each phone, depletion of the battery,

and users manually turning phones off. To account for

irregular scans, we divide time into windows (bins) of fixed

width and aggregate the Bluetooth observations within each

time-window into a weighted adjacency matrix. The complete

adjacency matrix is then given by:

W~ W (Dt1), W (Dt2), . . . , W (Dtn)
� �

, where each link is weighted

by its signal strength and where Dti indicates window number

i. These matrices generally assume a non-symmetric form, i.e.

person A might observe B with signal strength s while person B
observes A with strength s’, or not at all. The scanning

frequency of the application sets a natural lower limit of the

network resolution to 5 minutes. If we are interested in the

social dynamics at a different temporal resolution we can

aggregate the adjacency matrices and retain entries according

to some heuristic (e.g. with the strongest signal). Depending on

the level of description (monthly, weekly, daily, hourly, or

every 5 minutes) the researcher must think carefully about the

definition of a network connection. Frameworks for finding the

best temporal resolution, so called natural timescales have for

specific problems been investigated by Clauset and Eagle [35],

and Sulo et al. [36]. In this paper, however, we are interested

in the identification and removal of non-social proximity links,

so aggregating multiple time-windows is not a concern here.

Henceforth we solely work with 5 minutes time-bins.

The Bluetooth probe logs all discoverable devices within a

sphere with a radius of 5–10 meters—walls and floor divisions

reduce the radius, but the reduction in signal depends on the

construction materials [37]. Blindly taking proximity observa-

tions as a ground truth for social interactions will introduce

both false negative and false positive links in the social

network. False negative links are typically induced by

hardware errors beyond our control, thus we focus on

identifying false positive links. We therefore propose to identify

non-social or noisy proximity links via the signal strength

parameter. The parameter can be thought of as a proxy for the

relative distance between devices, since most people carry their

phones on them, it in principle also suggests the separation

distance between individuals.

Previous work has applied Bluetooth signals to estimate the

position of individuals [38–41] but studies by Hay [42], and

Hossein et al. [43] have revealed signal strength as an unsuitable

candidate for accurately estimating location. However, the

complexity of the problem can greatly be reduced by focusing

on the relative distance between individuals rather than position.

In theory, the transmitted power between two antennae is

inversely proportional to the distance squared between them

[44]. Reality is more complicated, due to noise and reflection

caused by obstacles.

We use the ideal result as a reference while we perform

empirical measurements to determine how signal strength depends

on distance. Two devices are placed on the ground in a simulated

classroom setting, where we are able to control the relative

distance between them. The resulting measurements are plotted in

Fig. 1A. As is evident from the figure, there is a large variance in

the measured signal strength values for each fixed distance.

However, as both phones exhibit the same variance we can

exclude faulty hardware; further, environmental noise such as

interference from other devices, or solar radiation can also be

dismissed since there appear no daily patterns in the data. But we

observe multiple bands or so-called modes onto which measure-

ments collapse. Ladd et al. [33] noted a similar behavior for the

received signal strength of WiFi connections, both are phenomena

caused by non-Gaussian distributed noise. The empirical mea-

surements form a foundation for understanding signal variance as

Table 1. Data overview.

Total Average pr. time-bin

Nodes (Users) 134 17.32

Edges (Dyads) 2 183 434 62.50

Time-bins 34 272 -

Average clustering 0.85 0.26

Average degree 103.51 2.41

Statistics showing the number of total (aggregated) and average values of
network properties. Time-bins span five minutes and cover the entire 119 day
period, including weekends and holidays. For the average values we only take
active nodes into account, i.e. people that have observed another person or
been observed themselves in that specific time-bin. Network properties are
calculated for the full aggregated network and as averages over each temporal
network slice.
doi:10.1371/journal.pone.0100915.t001
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a function of distance, but they were performed in a controlled

environment. In reality, there are a multitude of ways to carry a

smartphone: some carry it around in a pocket, others in a bag. Liu

and Striegel [45] investigated how these various scenarios

influence the received signal strength—their results indicate only

minor variations, hence we conclude that the general behavior is

similar to the measurements shown in the figure. Further, social

interactions are not only limited to office environments, so we have

re-produced the experiment outdoors and in basement-like

settings; the results are similar.

Bi-directional observations yield at most two observations

per dyad per 5-minute time-bin, we can average over the

measurements (Fig 1B), or take the maximal value (Fig 1C).

Fig. 2 shows the distributions of signal strength for each

respective distance. For raw data, Fig. 2A, we observe a

localized zero-distance distribution while the 1, 2, and 3-m

distributions overlap considerably. Averaging over values per

time-bin smoothes out and compresses the distributions, but

the bulk of the distributions still overlap (Fig. 2B). Taking only

the maximal signal value into account separates the distribu-

tions more effectively (Fig. 2C). The reasoning behind

choosing the maximal signal value is that phones are physically

at different locations and we expect the distance to be

maximally reflected in the distributions.

Thus, by thresholding observations on signal strength, we

can filter out proximity links that are likely to be further away

than a certain distance. By doing so we are able to emphasize

links that are more probable of being genuine social

interactions, while minimizing noise and filtering away non-

social proximity links. From the behavioral data we count the

number of appearances per dyad and assign the values as

weights for each link. Link weights follow a heavy-tailed

distribution, with a majority of pairs only observed a few times

(low weights), a social behavior that has previously been

observed by Onnela et al. [15]. Based on their weight we

divide links into two categories: weak and strong. A link is

defined as ‘weak’ if it has been observed (on average) less than

once per day during the data collection period, remaining links

are characterized as ‘strong’. An effective threshold should

maximize the number of removed weak links, while minimiz-

ing the loss of strong links. Fig. 3 depicts the number of weak

and strong links as a function of threshold value. We observe

that, as we increase the threshold, the number of weak links

decreases linearly, while the number of strong links remains

roughly constant and then drops off suddenly. Taking into

account both the maximum-value distance distributions

(Fig. 2C) and link weights (Fig. 3), we choose the value

({80 dBm) that optimizes the ratio between strong and weak

links. In a large majority of cases, this corresponds to

Figure 1. Bluetooth signal strength (RSSI) as a function of distance. A: Scans between two phones. Measurements are per distance
performed every five minutes over the course of 7 days. Mean value and standard deviation per distance are respectively m0~{45:13+1:56 dBm,
m1~{77:48+4:15 dBm, m2~{82:03+4:57 dBm, and m3~{85:49+2:75 dBm. B: Average of the values in respective time-bins. Summary statistics
are: m

avg
0 ~{45:13+1:20 dBm, m

avg
1 ~{77:46+2:90 dBm, m

avg
2 ~{81:99+3:17 dBm, and m

avg
3 ~{85:45+1:88 dBm. C: Maximal value per time-bin.

The mean value and standard deviation per distance are: mmax
0 ~{44:41+1:11 dBm, mmax

1 ~{75:09+3:24 dBm, mmax
2 ~{79:25+3:47 dBm, and

mmax
3 ~{83:88+2:00 dBm: The measurements cover hypothetical situations where individuals are far from each other and on either side of a wall.

doi:10.1371/journal.pone.0100915.g001
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interactions that occur within a radius of 0{2 meters—a

distance which Hall [46] notes as a typical social distance for

interactions among close acquaintances.

Removing links
This section outlines various strategies for removing non-

social links from the network. Fig. 4A shows an illustration of

the raw proximity data for a single time-bin, a link is drawn if

either i?j or j?i. Thickness of a link represents the strength of

the received signal. For the thresholded network (Fig. 4B) we

remove links according to the strength of the signal (where we

assume the weaker the signal the greater the relative distance

between two persons). To estimate the effect of the threshold

we compare it to a null model, where we remove the same

number of links, but where the links are chosen at random,

illustrated in Fig. 4C. To minimize any noise the random

removal might cause, we repeat the procedure n~100 times,

each time choosing a new set of random links, with statistics

averaged over the 100 repetitions. As a reference, to check

whether thresholding actually emphasizes social proximity

links, we additionally compare it to a control network, where

we remove the same amount of links, but where the links have

signal strengths above or equal to the threshold, Fig. 4D. This

procedure is also repeated n times. In a situation where there

are more links below the threshold than above, we will remove

fewer links for the latter compared to the other networks.

Results

Network properties
Now that we have determined a threshold for filtering out non-

social proximity links, let us study the effects on the network

properties. Thresholding weak links does not significantly influ-

ence the number of nodes present (N ) in the network (Fig. 5A),

while the number of links (M ) is substantially reduced (Fig. 5B).

On average we remove 2:38 nodes and 32:18 links per time-bin.

Social networks differ topologically from other kinds of networks

by having a larger than expected number of triangles [47], thus

clustering is a key component in determining the effects of

thresholding. Fig. 6 suggests that we are, in fact, keeping real social

interactions: random removal disentangles the network and

dramatically decreases the clustering coefficient, while threshold-

ing conserves most of the average clustering. Calculating the

average ratio (SScTT=ScNTT) between clustering in the thre-

sholded (ScTT) and the null networks (ScNT) reveals that cT on

average is 2:38 larger. These findings emphasize that a selection

process based on signal strength greatly differs from a random one.

Link evaluation
Sorting links by signal strength and disregarding weak ones

greatly reduces the number of links, but do we remove the correct

links, i.e. do we get rid of noisy, non-social links? The fact that

clustering remains high in spite of removing a large fraction of

Figure 2. Distributions of signal strength for the respective distances. A: Raw data. Measurements from both phones are statistically
indistinguishable and are collapsed into single distributions, i.e. there is no difference between whether A observes B or vise versa. B: Average of
signal strength per time-bin. C: Maximal value of signal strength per. time-bin.
doi:10.1371/journal.pone.0100915.g002
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links is a good sign, but we want to investigate this question more

directly. To do so, we divide the problem into two timescales; a

short one where we consider the probability that a removed link

might reappear a few time-steps later, and a long where we

evaluate the quality of a removed link according to certain

network properties. Let’s first consider the short time-scale. We

assume that human interactions take place on a time-scale that is

mostly longer than the 5-minute time-bins we analyze here. Thus,

if a noisy link is removed, the probability that it will re-appear in

one of the immediately following time-steps should be low, since

no interaction is assumed to take place. Howbeit, we expect the

probability to be significantly greater than zero, since even weak

(non-social) links imply physical proximity. Similarly, if we

(accidentally) remove a social link, the probability that it will

appear again should be high, since the social activity is expected to

continue to take place.

Let us formalize this notion. Consider a link e that is removed at

time t, the probability that the link will appear in the next time-

step is p(tz1De,t). Generalizing this we can write the probability

that any removed link will appear in all the following n time-steps

as:

p(tz1, . . . ,tznDt)~

no: links removed at t present at tz1\ . . .\tzn

no: links removed at t

ð1Þ

Fig. 7A illustrates that thresholded links in subsequent time-steps

are observed less frequently then both null and control links. To

compare with the worst possible condition, we compare data from

each thresholded time-bin with the raw data from the next bin

(where the raw data contains many weak links). In spite of this, we

observe a clear advantage of distinguishing between links with

weak and strong signal strengths. If we look at values for tz1, the

first subsequent time-step, the probability of re-occurrence in the

thresholded network is about 12% lower than for the null model,

and as we look to later time-steps, the gap widens.

A different set of social dynamics unfolds on longer timescales

where the class schedule imposes certain links to appear

periodically, e.g every week. Here we determine impact of

removing links in two ways. First, we use total link weights and

second, we use online friendship status. Friends meet frequently;

we capture this behavior by using the total number of observations

of a certain dyad to estimate the weight of a friendship (again,

counted in the raw network). Thus, we evaluate the quality of a

removed links by considering its total weight compared to the

weight of other links present in the same time-bin. However, since

multiple links are removed per time-bin we are more interested in

the average,

qt~
Avg: weight of removed links at t

Avg: weight of all links present at t
ð2Þ

This estimates, per time-bin, whether removed links on average

have weights below, close to, or above the mean. Note that the

measure is intended to estimate the quality of removed links and is

therefore not defined for bins where zero links are removed.

Fig. 7B indicates difference in link selection processes. Choosing

links at random (null network) removes both strong and weak links

with equal probability, thus on average this corresponds to the

mean weight of links present. Compared to null, the thresholded

network removes links with weights below average, indicating that

removed links are less frequently observed and therefore also less

likely to be real friendships. The control case displays an

diametrical behavior, on average, it removes links with higher

weights.

Figure 3. Number of links per type as a function of threshold
value. Links are classified as weak if they are observed less than 120
times in the data, i.e. links that on average are observed less than once
per day—otherwise they are classified as strong. Grouping students
into study lines, reveals that links within each study line have an almost
uniform distribution of weights while links across study lines are
distributed according to a heavy-tailed distribution. A threshold of {80
dBm (gray area) removes 1159 weak and 387 strong links and classifies
97:6% of inter-study line links as weak and 86:7% of intra-study line
links as strong.
doi:10.1371/journal.pone.0100915.g003

Figure 4. Networks. A: Raw network; shows all observed links for a specific time-bin. Thickness of a link symbolizes the maximum of the received
signal strengths. B: Thresholded network, we remove links with received signal strengths below a certain threshold, where dotted lines indicate the
removed links. C: Null model; with respect to the previous network we remove the same amount of links, but where the links are chosen at random.
D: Control network, a similar amount of links with signal strength above or equal to the threshold are removed.
doi:10.1371/journal.pone.0100915.g004
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The second method to evaluate the link-selection processes

compares the set of removed links with the structure of an online

social network, i.e. if a removed proximity link has an equivalent

online counterpart. We estimate the quality by measuring the

fraction of removed links with respect to those present at time t.

qFB
t ~

no: of FB links removed at t

no: of FB links present at t
ð3Þ

The quality measure is essentially a ratio, i.e. it can assume values

Figure 5. Network statistics. Properties are highly dynamic but on average we observe 17:32 nodes and 62:50 links per time-bin. A: Number of
nodes N as a function of time. Only active nodes are counted, i.e. people that have observed another person or been observed themselves. Dynamics
are shown for two weeks during the 2013 spring semester, clearly depicting both daily and weekly patterns. Data markers are omitted to avoid visual
clutter. On average thresholding removes 3:06 nodes during weekends and holidays, and 2:38 during regular weekdays. B: Number of links M as a
function of time. 10:60 links are on average removed during weekends/holidays, and 32:21 are removed during weekdays.
doi:10.1371/journal.pone.0100915.g005

Figure 6. Average clustering. Only active nodes, i.e. nodes that are part of at least one dyad contribute to the average, the rest are disregarded.
Average clustering is calculated according to the definition in [48]. Since social activity in groups larger than two individuals results in network
triangles, the fact that clustering is not significantly reduced by thresholding (compared to the null model) provides evidence that we are preserving
social structure in spite of link removal.
doi:10.1371/journal.pone.0100915.g006
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0ƒqFB
t ƒ1 depending on the fraction of links that are removed.

Bins with zero Facebook friendships are disregarded since they

contain no information regarding the online social network.

Fig. 7C shows that random removal (null network), on average,

removes *43% of online friendships, while the thresholded

network removes *33%, a 10 percent point difference. For

comparison, the control network removes *44% of the online

links. Further, redoing the analysis for a dataset comprised only of

users for which we have both proximity and online data for, does

not significantly alter the results.

Facebook links are not necessary good indicators for strong

friendships, but are more likely to correspond to real social

interactions. In spite of this, both Fig. 7B and C support that

distinguishing between strong and weak proximity links tends to

emphasize real social interactions: on average thresholded links

have lower edge weights and remove fewer Facebook friendships

compared to both the null-model and the control.

Discussion

The availability of electronic datasets is increasing, so the

question of how well can we use these electronic clicks to infer

actual social interactions is important for effectively understanding

processes such as relational dynamics, and contagion. Sorting links

based on their signal strength allows us to distinguish between

strong and weak ties, and we have argued that thresholding the

network emphasizes social proximity links while eliminating some

noise.

Simply thresholding links based on signal strength is not a

perfect solution. In certain settings we remove real social

connections while noisy links are retained. Our results indicate

that the proposed framework is better at identifying strong links

than removing them. A trend which the link-reappearance

probability, link-weights, and online friendship analysis support.

Compared to the baseline we achieve better results than just

assuming all proximity observations as real social interactions. But

determining whether a close proximity link corresponds to an

actual friendship interaction is much more difficult. Multiple

scenarios exist where people are in close contact but are not

friends, one obvious example is queuing. Each human interaction

has a specific social context, so an understanding of the underlying

social fabric is required to fully discern when a close proximity link

is an actual social meeting. This brings us back to the question of

how to determine a real friendship from digital observations (cf.

[10]). Close proximity may not be the best indicator of friendship;

call logs, text logs, and geographical positions are all factors which

coupled with information from the Bluetooth probe could give us a

better insight into social dynamics and interactions.
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The minute-by-minute interactions within large, densely connected social sys-

tems are in a constant state of flux. While there has been impressive progress

on understanding complex networks over the past decade, little is known about

the regularities governing the micro-dynamics of such social networks. Here,

we show that high-resolution data allow us to observe social gatherings di-

rectly. On the shortest time-scale, we find that gatherings are fluid, with mem-

bers coming and going, but organized via a stable core of individuals. Cores

exhibit a pattern of recurring meetings across weeks and months, each with

varying degrees of regularity. Taken together, these findings provide a pow-

erful simplification of the social system as a whole, resulting in a vocabulary

for quantifying the complexity of social life. Using this theoretical framework,

we demonstrate that, in analogy to human mobility, social behavior can be

predicted with high precision.
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Networks provide a powerful mathematical framework for analyzing the structure and dy-

namics of complex systems (1–3). The study of sociality among groups of humans has deep

roots in the social science literature (4, 5) and community detection is a central component of

modern network science, where communities have been found to be organized hierarchically as

well as highly overlapping (6–9). Until this point, community detection in dynamic networks

has required complex mathematical heuristics (7,10,11). Based on a unique dataset of social in-

teractions across densely connected networks of physical proximity, telecommunication, as well

as geolocation for a freshman class (∼ 1 000 individuals) at a large university (12), we show

that with high-resolution data describing social interactions, community detection becomes un-

necessary. When time slices are shorter than the turnover rate, gatherings of individuals can be

observed directly and without ambiguity (Fig. 1A-B). A simple matching across time slices then

reveals the temporal development of each community (Fig. 1C and supporting material section

S2).

Dynamically evolving gatherings represent a completely new object for quantitative study.

Fig. 1C illustrates the dynamics. Each node is part of only a single gathering per time step,

but may switch affiliations between co-existing gatherings. It is due to this gradual turnover

that community detection has proven difficult in many other settings. Individuals participat-

ing in multiple groups create a highly overlapping structure, which is difficult to untangle (9)

(Fig. 1A-B). The gatherings we discover, are broadly distributed in both size and duration, cap-

turing meetings ranging from small cliques to large aggregations, and from short encounters on

the order of minutes to prolonged interactions lasting many hours. We find that small groups

tend to have shorter meetings while large groups have a typical duration of 1-2 hours. Since

we are studying a population which works in the same physical location, we separate gather-

ings into work and recreation, where work-related gatherings may be driven by shared sched-

ules. Partitioning gatherings according to location, we find 9 915 on-campus (work) and 13 872
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Figure 1: Properties of gatherings. (A) The network formed by physical proximity within
one day (green), 60-minute (orange), and 5-minute temporal aggregation (blue). (B) Cor-
responding adjacency matrices sorted according to connected components. Groups are di-
rectly observable for short time-slices, but become overlapping as more time is aggregated in
each bin. (C) Illustration of gathering dynamics. Gatherings change gradually with mem-
bers flowing in and out of social contexts, participation in a gathering is given by at least
one co-presence link. (D) Real world gatherings have soft boundaries, with nodes organized
into a stable core with periphery nodes of lower participation levels. Node-size corresponds
to participation. (E) The stability of gatherings as a function of duration. Global stability
is defined as

∑tdeath
tbirth

J(gt, G)/(tdeath − tbirth), where J denotes the Jaccard similarity and G is
the aggregated network of slices (G = gbirth ∪ · · · ∪ gdeath) while local stability is defined as∑tdeath−1

tbirth
J(gt, gt+1)/(tdeath − tbirth − 1).
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off-campus (recreation) gatherings. Comparing work/recreation campus statistics, we find that

recreational meetings tend to be smaller but last considerably longer, illustrating that the context

of meetings can influence their properties (see supporting material sections S3 and S4). Unlike

the typical community detection assumption of binary assignment to social contexts (13), we

find that real world gatherings have soft boundaries (Fig. 1D), with some members participating

for the total duration of the gathering, while others participate only briefly. We quantify this

tendency in Fig. 1E where we investigate the stability of gatherings as a function of their dura-

tion. In terms of local stability (black line), which measures average turnover of nodes between

subsequent network slices, we see that gatherings tend to be highly stable between time slices.

When we compare each time slice to the aggregated network (global stability, gray line), we

find that ≈ 70% of all nodes are present in each slice. Both trends are largely independent

of meeting duration. Comparing global to local stability, we see that high similarity between

consecutive slices combined with a fixed global stability for any meeting duration implies the

existence of stable cores. These cores consist of individuals who are present throughout the

entirety of the meeting.

We now turn our attention to these stable cores and identify repeated appearances across the

full duration of our dataset (section S4). We find a total of 7 320 such temporal communities.

The number of appearances per core is a heavy tailed distribution; some cores appear only once,

while the most active ones can appear multiple times per day over the full observation period

(section S4.2). In the following, we focus on the temporal patterns of recurring gatherings, so

we restrict our dataset to cores that, on average, are observed more than once per month. In

analogy with gatherings, an important heterogeneity in our dataset is the split between work

cores, which are mainly observed on campus, where meetings may be driven by externally im-

posed schedules and recreation cores, which are primarily observed elsewhere. Fig. 2A shows a

clear difference between how individuals engage and spend time with respect to varying social
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Figure 2: Cores summarize social contexts for individuals. (A) The distributions of work and
recreational core membership, inset shows participation across both categories. Participation in
recreational cores reveals that individuals typically participate in only one or two recreational
contexts, although the tail of the distribution show some individuals with more gregarious be-
havior. The distribution of work cores is localized, with an average of 2.74 ± 1.85 work cores
per individual, mainly reflecting participation in classes or group work. (B) Coordination prior
to meetings, defined as ct = 1/N

∑N
n=1 a

n
t /ã

n
t , where ant is the individual activity of person n

in time-bin t, compared to an individual baseline denoted by the average activity ãnt . More co-
ordination is required to organize meetings during weekends than during weekdays, and larger
meetings do not require additional coordination per participant. (C) Ego view of communities;
we observe overlapping and hierarchically stacked structures. (D) The temporal complexity
of participation for the cores in panel C. Time runs on the x-axis and each horizontal row of
data corresponds to activation of a core. Gray and purple regions correspond to public holidays
and weekends, respectively. We summarize information within this panel using time-correlated
entropy (14).
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contexts. Cores leave traces in other data channels that emphasize these differences. One such

trace is coordination behavior, which we can explore by studying how call and text-message

activity increases in the time leading up to a meeting. For each individual, we count the number

of calls and texts within a hourly time-bin and compare to a null model based on typical hourly

calling patterns for each participant. In this telecommunication network, we see clear evidence

of coordination prior to meetings, which is accentuated during weekends when we expect meet-

ings to be less schedule-driven (Fig. 2B). We also find that meetings require the same amount

of prior communication per person regardless of the size of the gathering (Fig. 2B). In terms

of network structure, we find that cores are highly overlapping, and large cores contain rich

inner structure with hierarchically nested sub-cores (section S4.3). Here, however, we focus on

cores from the perspective of individuals; Fig. 2C shows an ego-perspective. In Fig. 2D, we can

observe the temporal patterns of core participation from late January to late April for the ego-

network shown in Fig. 2C. The participation patterns are complex, displaying regularity mixed

with randomness.

Cores provide a powerful simplification of the complexity of dynamic networks. A core

represents a social context, and for an individual, the full set of cores provides a vocabulary for

quantifying social life. With access to detailed mobility data Song et al. (14) made the highly

surprising discovery that human mobility patterns contain great potential for predicting future

locations based on past behavior. Below we show that—using high resolution data on social

interactions encoded as cores—we are able to demonstrate how our social interactions allow

for even higher levels of predictability than our mobility behavior. Given a sequence of social

contexts, we can use the time-correlated entropy (14) to construct a measure of the complexity

for each person in our dataset. In order to incorporate the full complexity of social encounters in

the calculation, we include cores with any number of appearances as well as dyadic cores. The

time-correlated entropy quantifies the amount of uncertainty within a data sequence, accounting
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Figure 3: Geospatial and social predictability. (A) The distributions of entropy and pre-
dictability for social and location patterns. We find that overall social patterns tend towards
lower entropy than geospatial traces, resulting in higher predictability. The fact that our
location-predictability is lower than previously found (14) is connected to a number of factors.
For example, our location data is based on GPS rather than cell towers and has significantly
higher precision (15) (see section S5). (B) The average daily normalized mutual information
between social and location sequences. Notice a significant drop on weekends. (C) The av-
erage daily entropy of location sequences, which increases on Friday and Saturdays, indicates
increased geographical exploration on those days. (D) The average daily entropy of social
engagements. The entropy is reduced on weekends, indicating a simpler pattern of social en-
gagements, in agreement with Fig. 2A. In panels B-D we use the time-uncorrelated entropy to
quantify the behavioral complexity.
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for both for frequency and ordering of states and simultaneously provides an upper bound of

the predictability based on routines in their social life. Fig. 3A shows the distribution of entropy

and predictability. Social activity in our population is characterized by low temporal entropy,

resulting in an average routine-based predictability limit of approximately 80%.

The core-representation allows us to examine existing results on predictability based on

routine in location data (14) in the light of social patterns. Fig. 3A shows the distributions of

entropy and predictability, calculated separately for the sequence of social states and spatial

locations, respectively. Comparing social and location traces leads to a number of interesting

findings. Firstly, we find that the social behavior tends to be more predictable and routine-driven

than geospatial behavior. Secondly, the overall level of social and geospatial predictability is

not correlated for individuals (p-value= 0.85 and section S5.3). Thus, highly routine driven

location sequences do not imply predictable social behavior or vice versa. Thirdly, while the

overall element of routine in a social or geospatial trajectory is not correlated for an individual,

predictability in both contexts is closely related to daily and weekly schedules (16). During

the week, our social and location behavior is correlated; we tend to meet the same people in the

same places. This correlation between our social and location behavior is reduced on weekends.

In Fig. 3B, we use the average (uncorrelated) normalized mutual information between daily

social and geolocation traces to illustrate this behavior. The mutual information is a measure of

how much knowing one variable reduces uncertainty about the other. Interestingly, we find that

location-entropy increases during weekends, indicating a more exploratory behavior (Fig 3C).

During that same time-period, social traces become simpler and more predictable (Fig 3D),

consistent with Fig. 3A and previous work (17). Thus, in our population, periods of geospatial

exploration are associated with social consolidation.

Up to now, prediction has implied understanding future behavior based on past routine. We

now demonstrate how the social cores effectively summarize information in the underlying net-
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Figure 4: Features of social meetings. (A) Illustration of null models. Starting from co-located
nodes in the daily graph, we select nodes (1) chosen randomly and (2) found using breadth first
search (BFS) in a daily graph. (B) Social prediction using incomplete cores to predict arrival of
remaining core-members. The strong increase compared to the BFS model emphasizes that full
cores are needed for prediction, not just pairwise friendships. The ability to predict is tested on a
month where cores have not been inferred. Error bars are calculated over n = 100 independent
trials.

work by proposing a completely new kind of prediction, based on the cohesion of the social

fabric itself. It is a well established fact that there is a correlation of spatial patterns between in-

dividuals that share a social tie (18–21). Pairs of traces, however, do not contain information that

reveal at which times two location traces overlap, making it non-trivial to use this information

for prediction. Cores provide such a temporal signature—an incomplete set of core members

implies that the remaining members will arrive shortly. We illustrate this phenomenon on cores

of size three. Given that two members of a core are observed, we measure the probability that

the remaining member will arrive within one hour. To avoid testing on scheduled meetings, we

only consider weekends and weekday evenings and nights (6pm-8am), where meetings are not

driven by an academic schedule. Furthermore, we test on a month of data that has not been

used for identifying cores. We now compare social prediction using cores to two null models

(Fig. 4A). In the first, random, null model we create reference groups by randomly choosing

groups of nodes from a daily graph. For the second null model, we form reference groups by

performing a breadth first search (BFS) on the daily graph of interactions. But while Fig. 4B

shows that ∼ 50% of cores are predictive, both the random and the BFS reference groups fare

poorly. By requiring that nodes share social connections, as well as a spatial location, the BFS
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null model demonstrates that that it is not simply pairwise friendships that are predictive. The

reason we are able to predict the arrival of final group member, is that the social context requires

all core members to be present.

Within the existing literature, incorporating a temporal dimension dramatically complicates

the mathematical description of complex networks (22). Here, we find the opposite. By ob-

serving social gatherings at the right time scale, when the temporal granularity is higher than

the turnover rate, a simple matching across time slices reveals dynamically changing gatherings

with stable cores that can be matched across time, providing a strong simplification of the social

dynamics. These cores manifest in other data channels, such as through coordination behavior,

and provide a finite vocabulary, which dramatically simplifies individuals’ social activity. As a

demonstration of the saliency of the description, we use the cores to a) quantify predictability

within the social realm and b) allow for a new kind of non-routine prediction, based solely on

the signal encoded in the core representation. Our work provides a first quantitative look at

the rich patterns encoded in the micro-dynamics of a large system of closely interacting indi-

viduals, characterized by a high degree of order and predictability. The work presented here

provides a new framework for describing human behavior and hints at the promise of our ap-

proach. We have focused on predictability, but we expect our work will support better modeling

of processes in social systems, from epidemic modeling to urban planning, as well the science

of team performance and public health.
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S1 Summary of main results

Figure S1 illustrates our main findings. Social groups display a complex temporal behavior,
with dynamics spanning multiple time-scales. Typically, incorporating the temporal dimen-
sion drastically complicates the mathematical description of complex networks such that
community detection methods require sophisticated mathematical heuristics to disentangle
the web of interactions. By observing social interactions at the right time scale—when
the temporal granularity is higher than the turnover rate—we can directly observe social
gatherings. Figure S1a-c shows social networks obtained using three temporal-windows of
increasing size. While daily and hourly windows of aggregation obscure social relations
(Fig. S1a-b), a micro-level description directly reveals the fundamental structures. Applying
a simple mathematical matching scheme across time-slices reveals dynamically evolving
gatherings with soft boundaries and stable cores (Fig. S1d). Unlike the typical community
detection assumption of binary assignment, it is clear that some members participate for the
total duration of the gathering, while others only participate briefly (Fig. S1d). Matching
cores across longer time-scales allows us to observe dynamics that unfold over weeks and
months. Cores provide a strong simplification of the social dynamics (Fig. S1e), and are
manifested throughout other data channels such as coordination behavior via call and
text messages. To demonstrate the saliency of our description we use the social contexts
provided by cores to quantify the predictability of social life and give a proof of concept of
a new type of non-routine prediction.

Figure S1: Summary of main findings. a-c, Network slices obtained by slicing the social dynamics
using varying temporal windows (1 day (green), 1 hour (orange), and 5 minutes (blue)). Below,
adjacency matrices colored in agreement with networks, and sorted according to component size. d,
Gatherings have soft boundaries. The size of each node represents the level of participation. e, Cores
simplify social dynamics and provide a context for social interactions.

The remainder of this document is organized as follows. Section 2 describes the dataset,
Section 3 explains the details of how gatherings are constructed, and describes their basic
statistics, including a discussion of dyads. Section 4 shows how cores are extracted and
goes into detail on their temporal behavior, as well as the sub-core structures. In Section
5 we provide full details regarding the routine-based geospatial prediction as well as the
social context prediction presented in the main text. Section 6 provides background on our
model for purely social prediction and, finally, Section 7 discusses background information
regarding the coordination leading up to meetings.
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S2 Data

We consider a dataset from the Copenhagen Networks Study. It spans multiple years
and measures with high resolution: physical interactions, telecommunications, online
social networks, and geographical location. In addition, the dataset contains background
information on all participants (personality, demographics, health, politics). These data
are collected for a densely connected population of approximately 1 000 students at a large
European university. Data is collected by running custom built applications installed on
1 000 smartphones (Google Nexus 4). Full details can be found in Ref. [1].

In this manuscript we focus on detecting and tracking co-located groups of individuals
during a representative period of five months (roughly one semester), collected between
January 1st and June 1st of 2014. The Bluetooth sensor collects proximity data (⇠ 0�10 m)
of the form (i, j, t, s), where each interaction implies that person j has been in proximity of
person i at time t, where the devices observe each other with signal strength s [2]. Bluetooth
scans do not constitute a perfect proxy for face-to-face interactions. In fact multiple
scenarios exist where people in close proximity do not interact and vice versa, nevertheless
Bluetooth can successfully be applied in order to sense social networks [1–3]. Further,
our gathering/core-description naturally filters our spurious connections by considering
social structures that occur over across extended periods of time. Gatherings and cores are
identified in the proximity network, and the remaining communication channels are used
for validation purposes. In addition, we reserve proximity data from the month of May
for validation purposes. Table S1 shows statistics across the various data sources for 814
individuals, on whom we focus due to their high data quality.

Data source Total Unique

Bluetooth interactions 14 673 869 154 818
Call & text interactions 75 364 1 216
Geographic locations 18 603 072 -
WiFi access points 1 663 483 977 2 412 702

Table S1: Data overview from January 1st – June 1st. Bluetooth and call & text logs are summarized
for within-participant relations and do not include external interactions. The unique field denotes
the number of distinct observation of each quantity, e.g. number of uniquely observed links.

S2.1 Construction of temporal network slices

The data collection application triggers Bluetooth scans every five minutes from the time a
phone is turned on; for this reason, the collection of sensors does not follow a global schedule.
To account for this behavior we divide all temporal information into absolute time-windows,
� minutes wide. Within each temporal bin, we draw a unweighted undirected link between
two individuals if either i has seen j or vise versa.
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S2.2 Selection of time-scales

The scanning frequency of the application sets a natural lower limit of the network resolution
to 5 minutes, however, there is no such upper limit for aggregation. So-called natural
timescales have previously been investigated for specific networks with respect to their global
topological properties [4–6]. Here we consider the correlation between slices (or turnover
of nodes between slices) defined as C = |E�

i \ E�
i+1|/|E�

i [ E�
i+1|, where E�

i denotes the
set of edges that are observed in bin i with given temporal width �. According to Fig. S2
the average correlation decreases sharply as function of window-size, achieving maximum
correlation for small bins. Slicing network dynamics into short slices (high resolution) also
disentangles the network (Fig. S1), thus when time slices are shorter than the group’s
turnover rate, we can directly observe individuals’ group a�liations. Based on Fig. S2 we
chose a temporal width of 5 minutes, but windows of 10 minutes could have been chosen
without deterioration of results.

Figure S2: Average correlation between network slices, averaged across all time-bins. Inset shows
a closeup for the smallest bin-sizes. Calculated for proximity data form March 2014.

S3 Gatherings

In this section we describe how connected components in the proximity network are matched
across short timescales into dynamical ensembles, which we denote as gatherings. We then
present fundamental statistics on gatherings (size distribution, durations, stability, start/end
times), and analyze these properties in the light of on/o↵-campus behavior. Finally, we focus
on identifying repeated gatherings across longer timescales to infer dynamical communities.

S3.1 Detecting gatherings

In each temporal slice we identify connected components, i.e. nodes that are in close
physical proximity as social groups. Since dyadic relationships qualitatively di↵er from
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group relations [7, 8] we generally treat components of size two separately.

A gathering is defined as a group that is persistent across time. To identify gatherings
we apply agglomerative hierarchical matching, a widely used method, that merges groups
based on their mutual distance (defined below) [9, 10]. Each group is initially assigned to
its own cluster, then every iteration-step merges the two clusters with smallest distance
according to the single linkage criteria (min(di(ct, ct0))). This merge criterion is chosen
because it is strictly local and will agglomerate clusters into chains, a preferable e↵ect when
clustering groups across time. The clustering process is repeated until all groups have been
merged into a single cluster. Distance between groups is calculated using a modified version
of the Jaccard similarity:

d(ct, ct0) = 1 � |ct \ ct0 |
|ct [ ct0 |

f(�t, �), (S1)

where f(�t, �) is a term that denotes the coupling between temporal slices and �t = t0 � t
denotes the temporal distance between two bins (for consecutive bins �t = 1). The function
can assume any form, increasing or decreasing; we utilize it to model decay between temporal
slices, with the two most prominent forms being: exponential (exp (�� (�t � 1))), and
power-law (�t��), see Fig. S3. Thus, by definition the term assumes the value 1 (zero
decay) between two consecutive temporal slices. For computational reasons we only focus
on gatherings identified using exponential decay with � = 0.4, other decay parameters yield
similar results see SI Section S3.1.2.

a b

a b

Figure S3: Temporal coupling between two temporal slices as function of the decay parameter �.
By definition the decay is zero between consecutive slices (�t = 1). a, Exponential decay. b, Power
law decay.

S3.1.1 Partitioning the dendrogram

The method described above iteratively constructs a dendrogram where temporally localized
groups are hierarchically clustered. To extract meaningful social structures we need to
partition the dendrogram (Fig. S4). Modularity and partition density have previously been
applied for similar purposes [11,12], but these do not generalize well for temporal processes.
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Instead we consider the cluster stability with respect to local and global measures. Local
stability (⌘) is calculated from the average node-wise overlap between consecutive slices
(Fig. S5a), while global (�) is calculated from the average overlap between all slices and
the aggregated structure (Fig. S5b):

⌘ =

tdeath�1P
t=tbirth

J(gt, gt+1)

tdeath � tbirth � 1
, (S2)

� =

tdeathP
t=tbirth

J(gt, G)

tdeath � tbirth
, (S3)

where tbirth and tdeath are respectively the birth and death of the gathering, gt is a temporal
slice, G = gbirth [ gbirth+1 [ · · · [ gdeath is the aggregated structure, and J is the overlap
(J = |i\j|/|i[j|), defined as zero if the gathering has only existed for one time bin. Palla et
al. [13] applied a related measure to estimate the stationarity of communities. Varying the
partition threshold (Fig. S5c) we observe a maximum in both measures, indicating a regime
where gatherings are both temporally and globally stable. Threshold values of d � 1/2 are,
however, problematic since they merge gatherings that split into two equally sized parts
together with both parts, or vice versa. In this scenario, we find that the desirable behavior
is to declare the old gathering as ‘dead’ and identify two new gatherings as born. Therefore,
to achieve optimal stability and to avoid issues with unwanted merging we partition the
dendrogram at d = 0.49.

a b
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a b
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a b
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Figure S4: Illustration of constructed dendrogram, depicting distance (d) between groups identified
across 5 timebins. The tree is constructed using an exponential decay function with � = 0.4. Two
gatherings, orange and blue, are inferred by thresholding the tree, where all groups below or equal to
the threshold (d = 0.4) are merged.

S3.1.2 Temporal decay function

Here we investigate how robust the inferred gatherings are to perturbation of the �-parameter
and using an alternate decay form. To compare two set of gatherings (identified using
di↵erent �-values) we calculate the average maximal overlap between individual gatherings
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Aggregated

Local Global

a b

c

Figure S5: Stability mea-
sures of gatherings. a, Il-
lustration of the local sta-
bility measure, calculated
between consecutive slices.
b, Global measure calcu-
lated between each slice
and the aggregated struc-
ture. c, Global (�) and
local (⌘) stationarity of
gatherings as a function
of partition value d, av-
eraged over all gatherings
identified in January 2014.
Gatherings achieve optimal
stability around d ⇠ 1/2.

as

O��0 =
1

|G� |
X

i2G�

max
j2G�0

(J(i, j)), (S4)

where G� denotes the set of gatherings found using a specific value of �, and |G� | is the
number of gatherings. Overlap is calculated using Jaccard similarity, J = |i \ j|/|i [ j|,
where i and j are respectively gatherings from G� and G�0 . Figure S6 shows the overlap
matrix between identified sets of gatherings; in general it assumes overlap values above
0.76 for any choice of parameters. Indicating that the gatherings are robust to even large
perturbations.

S3.1.3 Gathering timescales

The outlined method identifies multiple gatherings, some only exist momentarily while
others are sustained for long time periods. One can easily imagine brief encounters between
good friends as being more meaningful than prolonged interactions between individuals
commuting to work; this therefore raises the question of which meetings are meaningful
and which are not.

Here we simply adopt the convention developed by the Rochester Interaction Record [14],
where meaningful encounters are defined as those lasting 10 minutes or longer. In order
to filter out spurious connections, we impose the requirement that a gathering must be
observed for at least 4 consecutive time slices to be represented in our statistics.
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Figure S6: E↵ect of de-
cay parameter on gather-
ing robustness, calculated
using Equation S4. Color-
bar shows average overlap
between two sets of gather-
ings, and never drops below
0.76, indicating the robust-
ness of the procedure with
respect to parameter pertur-
bations.

While dynamics on 20 minutes+ timescales describe the overall evolution of a gathering,
micro dynamics on 5-minute scales represent everyday events such as going to the bathroom.
Gatherings, therefore, might disappear and reappear within very short time-intervals
(Fig. S7a), in such cases we use imputation, see Fig. S7b.
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Figure S7: Gathering micro fluctuations. a, A gathering appears, disappears, and re-appears
moments later. b, If this occurs in rapid succession we treat the gathering as if is was present in bin
t3 with the same nodes as in bin t2.

S3.2 On- & o↵-campus gatherings

Gatherings are not geographically constrained and therefore free to occur anywhere, in this
section we focus on distinguishing between gatherings that occur on- and o↵-campus. We
do this by applying data acquired through the WiFi channel, where each mobile phone
scans for nearby wireless network access points (AP) every 5 minutes or less and logs their
unique identifier and name. The entire university campus is densely covered by wireless
networks and it is therefore highly unlikely that students located on campus will not see an
university AP. Because the names of campus APs follow a uncommon and standardized
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naming scheme we can infer when a student is close to a campus access point and use
this as a proxy of being on or o↵ campus. For each participant we construct a 5-minute
binned vector containing binary values 0 (not on campus) and 1 (on campus). Because
gatherings are an ensembles of people we perform majority voting across nodes for each
time-bin to determine whether the gathering was on campus or not in that specific time-bin.
Since gatherings are spatio-temporal entities, we also perform a majority voting across
all time-bins to achieve a hard split and determine whether a gathering mainly occurred
on- or o↵-campus. This yields 13 872 o↵- and 9 195 on-campus gatherings and with an
92.84% average agreement between votes. The primary reason for disagreement are mobile
gatherings traveling to or from campus (e.g. on a bus or walking).

S3.3 Gathering statistics

Gatherings show a broad distribution in both size and duration, see Fig. S8. Dividing
gatherings into on- and o↵-campus categories reveals that meetings occurring on university
campus are larger (Fig. S8c), but have considerably lower probability of lasting longer than 4
hours (Fig. S8d). This suggests that large meetings are mainly driven by the class schedule,
while meeting duration is determined by social context. Because meetings occurring outside
of campus often require increased coordination, our hypothesis is that once groups meet,
they will interact across longer periods of time for the meeting to pay o↵ with respect to
the organizational cost.

It is also interesting to consider the duration of each meeting as function of the total
number of nodes that participate in it. Figure S9a shows broad distributions of duration
across all sizes, however, both the mean and median are quite stable and reveal that small
gatherings on average have shorter durations compared to larger meetings. Further dividing
the data into on- and o↵-campus categories (Fig. S9b) shows that small meetings on and
o↵ campus are quite similar with respect to duration, while larger meetings tend to last
longer, provided that they occur o↵-campus.

Combining the statistics above with Eqs. (S2-S3) we can explore how gathering stability
depends on size and duration of meetings. Figure S10a reveals that the local churn between
consecutive time slices is quite constant, irrespective of size, indicating that there is a low
turnover of nodes between slices—on average much lower than predefined by the partition
threshold. For small gatherings, however, we observe finite size e↵ects due to the partition
threshold (see sec. S3.1.1). Global stability is lower, but also fairly independent of gathering
size. With respect to duration (Fig. S10b), local stability increases as meetings duration
increases, revealing that longer meeting have lower turnover of nodes between consecutive
slices. The global measure shows similar behavior. It achieves a slightly lower stability and
shows that gatherings are globally stable independent of duration. This combination of
a constant turnover between slices and a global stability suggests that gatherings contain
groups of highly interacting individuals, that are present throughout the entirety of the
meeting, while other individuals participate infrequently and are constantly being replaced.
Similar social structures have previously been observed in the social science literature where
the individuals have been defined as core members [15].

Finally we can look into specific temporal patterns with regards to when on and o↵
campus gatherings occur, i.e. in which 5 minute time-bins they first appear and later
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a b

dc

Figure S8: Statistical features of gatherings. Summarizing size and duration distributions for
all gatherings (panels a-b) and conditioned on o↵/on-campus meetings (c-d). a, Gathering size
distribution. b, Gathering duration distribution. c, Gathering size distribution for on- and o↵-campus
meetings. d, Gathering duration distribution, based on location (on/o↵-campus).

Figure S9: Duration as function of gathering size. a, Violin plot shows the distribution of durations
as function of size, summarized across all gatherings. b, Box plot of the duration distributions
divided into on- and o↵-campus meetings.
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a b

Figure S10: Global and local gathering stability. a, Average stability as function of size, averaged
across all gatherings with a specific size. Full lines denotes mean, while shaded areas shows the
standard deviation of the mean. b, Average stability as function of duration, binned into one hour
wide bins. Fully drawn lines denote the mean, while shaded areas illustrates its deviation.

disappear. Figure S11a reveals that on-campus gatherings have increased probability of
occurring exactly on the hour, while o↵-campus meetings are evenly distributed—clearly
showing the e↵ect of the class schedule. A similar case is seen for the probability of dissolving
(Fig. S11b), where on-campus meetings mainly end on integer hour values.

a b

Time of hour Time of hour

Figure S11: Summary statistics of gathering temporal patterns, summarized for on- and o↵-campus
meetings. Red line denotes the uniform probability distribution for the case where all states are
equally probable. a, Probability of a gathering appearing, calculated from the first time-bin in which
we observe it. b, Probability of dissolving, i.e. the last time-bin where we observe a gathering.

S3.4 Temporal communities

So far each gathering only contains information about its local appearance, to gain a
dynamical picture we match gatherings across time. Due to soft boundaries, a strict
matching criteria is not a feasible method, since a person who coincidently walks past a
group might be included in it. Thus, we expect noise to be present in each gathering. To
mitigate this e↵ect we instead match gatherings according to the participation levels of their
constituent nodes. Counting the fraction of times a nodes has been present in the gathering
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we construct a normalized participation profile, see Fig. S12a. Again, gatherings are matched
according to their individual participation profiles using agglomerative hierarchical clustering.
Since nodes, however, no longer assume binary values but may assume participation levels
in the interval 0 < ni  1, we calculate distance based on a continuous version of the
Jaccard similarity:

D (Gi, Gj) = 1 �

NP
n=1

min (Gi, Gj)

NP
n=1

max (Gi, Gj)

, (S5)

where Gi is a vector containing node-wise participation values for gathering i, and N is the
total number of nodes in Gi [ Gj . The two functions max and min act piecewise on the
two vectors, and D(Gi, Gi) is defined as 1 between two gatherings that have zero overlap.
When merging clusters of gatherings (G) we apply the average linkage criterion and define
the average distance between them as

D(G, G0) =
1

|G||G0|
X

G2G

X

G02G0
D(G, G0), (S6)

where |G| denotes the cardinality of a set of gatherings. Other linkage criteria can also
be used, such as complete or Ward-linkage. Iteratively this method builds a dendrogram
with gatherings as leafs. Thresholding the tree partitions similar gatherings together into
communities. A community then consists of all nodes from its constituent gatherings, but
it also inherits their individual participation profiles. Thus we need a method to construct
a community participation profile from its subcomponents. This can be done using two
methods: weighted or unweighted, with the di↵erences illustrated in Fig. S12b. The
unweighted method takes into account the gathering participation profiles and calculates
the average, weighing each gathering equally:

C =
1

|G|
X

G2G
G. (S7)

The weighted version instead assigns each gathering a weight according to its lifetime (⌧life),
i.e. number of temporal bins it has been present:

Cweighted =
1P
⌧life,G

X

G2G
⌧life,GG. (S8)

Both measures comparatively construct similar dynamical communities and yield similar
overall statistics; we choose the the weighted version, because it is slightly less influenced
by noise.

S3.4.1 Optimal clustering partition

Applying hierarchical clustering to merge similar gatherings into communities again leaves
one open question: Which partition value is the optimal? Using a similar line of reasoning
to what we presented in in Sec. S3.1.1, we can argue that a threshold value of D = 0.49, is
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a b

Figure S12: Illustration of gathering participation profiles. a, Each vertical bar indicates the
overall fraction of time a node has spent in the gathering. Values are normalized according to the
total gathering lifetime. b, Illustration of how to construct a community participation profile based
on its constituent gatherings. Top figures depict two gatherings with unequal lifetimes. Bottom plots
illustrate the principles behind the unweighted and weighted methods. Bar colors indicate the role
each node plays in the community profile.

preferable. It is, however, possible to estimate the exact optimal threshold value, which we
can compare to our hypothesized guess. Applying a heuristic inspired by the Gap statistic
introduced by Tibshirani et al. [16], we compare the clustering according to a null model
distribution (for a comprehensive survey of methods see Milligan and Cooper [17]). Given
a total of m gatherings clustered into k clusters (communities): C1, C2, . . . , Ck we calculate
the within-dispersion measure as,

Wk =
kX

r=1

1

2|Cr|
X

i,j2Cr

Dij , (S9)

where Dij is defined in equation S5 and denotes the pairwise distance between gatherings i
and j that both belong to cluster Cr. Again | · | denotes the cardinality of a cluster, i.e.
the number of gatherings that are clustered in Cr. The factor 2 takes double counting
into account. Thus Wk is the accumulated within cluster sum of di↵erences around the
cluster mean. Applying the principles from Tibshirani et al. [16] we compare log(Wk) to
an expected value generated by a null model distribution of the data. The gap measure is
defined as

Gap(k) = 1/B
BX

b=1

log(Wkb) � log(Wk), (S10)

where B denotes the number reference data sets. The optimal number of clusters is then
the value of k for which log(Wk) falls furthest below the reference data curve, i.e. the value
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of k = k⇤ such that

k⇤ = argmin
k

{k|Gap(k) � Gap(k + 1) � s̃k+1}, (S11)

where s̃k = sk

p
(1 + 1/B) and sk is the standard deviation of log(Wkb) over the B synthetic

datasets. Each null model is constructed by assigning random participation values, chosen
from a uniform distribution, to random nodes, thus creating reference gatherings with
similar size distributions. According to Fig. S13 the gap statistic achieves a minimum,
indicating that the optimal place to cut the dendrogram is at distances of D = 0.50, in
good agreement with the previously stipulated value. A threshold value of D = 0.50 is,
however, problematic since it will cluster gatherings with 50% overlap. To avoid this issue
we cut our dendrogram at D = 0.49, merging 23 067 gatherings into 7 320 distinct dynamic
communities.

Figure S13: Estimating the optimal number of clusters using the gap measure, with the number of
clusters k being directly related to the threshold value D.

S3.5 Dyadic relations

Dyads are a special case of social relations and are hypothesized to be qualitatively di↵erent
from groups [7, 8], but the way we identify them is similar to the outlined framework in
Section S3.1. Since dyads can only be components of size two, tracking their evolution
is trivial, because we can apply a strict merge criterion, i.e. require 100% overlap. This
also applies in the case when tracking repeated appearances (dyadic cores) across the full
duration of the dataset. Thus, they only distinction between a gathering and a dyadic
gathering lies in the fact that size of the gathering will always be fixed, meaning if a dyad
evolves into a group (of any size larger than two) then we claim that the dyad in question
has ended and a new group relation has been initiated. In accordance with gatherings, we
require dyadic gatherings to be present for at least four consecutive bins (20 minutes) to be
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considered as meaningful. In total we observe 34996 dyadic gatherings and 4844 unique
dyads.

S3.5.1 Dyad statistics

Similar to group relations, dyadic gatherings produce a broad distribution of durations
comparable to the gatherings of groups (Fig. S14a). In addition, dyads also produce a
broad distribution of repeated appearances, see Fig. S14b, with a majority of gatherings
only being observed once, while others on average can appear multiple times per day.

a b

Figure S14: Statistical features of dyadic gatherings. a, The distribution of duration for dyadic
gatherings. b, The distribution of the number of appearances.

S4 Cores

In the previous section (see Fig. S10b) we found that certain individuals are present for a
majority of a gathering’s lifetime. In this section, we begin by describing how such cores
are extracted from temporal communities. Then, we describe the fundamental statistics of
cores (distribution of appearances, distribution of sizes, individual membership in cores,
subcore-statistics), as well as the key di↵erences between work- and recreational cores.
Finally, we study the temporal patterns and entropy of core-appearences.

S4.1 Extracting cores

Nodes within each community have varying attendance (see Fig. S12a), some are only
members for a limited time, while others interact over extended periods of time. Thus,
participation profiles show pronounced core structures, highlighting individuals that act as
‘generators’ of each community.

Consider the participation levels of individuals as ordered profiles (Fig. S15a), where
each bar denotes the fraction of time a node has has spent in a community relative to
the community’s total lifetime. A significant gap in this profile identifies core nodes. We
compare this to a participation profile generated by a random process (Fig. S15b), where
we pick a random participation level between 0 and 1 (for each node) from a uniform
distribution. The maximal gap in this random profile thus tells us whether the real gap is
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significant. We can estimate the average expected gap size and deviation by generating
many (N = 10 000) random participation profiles. Generalizing this notion to all sizes of
communities we evaluate how significant a gap is compared to the expected value generated
at random. The decision boundary in Fig. S16 divides gap sizes into two regions. If the
actual gap is greater than the average null-model gap µrandom plus one standard deviation
�random, we define the core to be significant. Thus, we only keep cores with gap sizes above
µrandom + �random. According to this criterion, we find that 7 146 out of the 7 320 (97.6%)
inferred communities display a pronounced core structure.

a b

Figure S15: Extracting cores from community participation profiles. Dark gray bars denote nodes
with participation levels above the maximal gap. a, Ordered participation profile for a community
composed of 15 individuals. b, Similar as in panel a but generated from a uniform random distribution.

Figure S16: Core selection boundary. De-
cision boundary calculated from N = 10 000
independent trials for each size. Black line de-
notes the mean max gap value while error bars
indicate the standard deviation.
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S4.2 Core statistics

Cores have a broad distribution of the number of appearances (Fig. S17a), ranging from cores
appearing only once to on average occurring multiple times per day. The size distribution
is also heavy-tailed (Fig. S17b).

To produce meaningful temporal statistics we henceforth focus on cores which on average
are observed more than once per month, this limits our focus to individuals that appear in
these. Fig. S18 shows the distribution of the number of cores each individual is part of; it
is a broad distribution with a majority of individuals partaking in few cores while a small
minority of users are extraordinary social and have more than 10 cores.

a b

Figure S17: Core statistics, where we focus on cores of size greater than two. a, Probability
distribution of the number of appearances per core. b, Size distribution. Inset shows raw numbers
for specific sizes.

S4.3 Subcores

Because cores span a wide range of sizes small cores can appear as subcores embedded
within larger ones, see example in Fig. S19a. In fact, our methodology allows for and
identifies highly overlapping and hierarchically stacked structures. We define a core to
be a subcore if, and only if, it is fully contained in the larger one. Figure S19b shows a
broad distribution in the number of subcores that are contained within individual cores,
with a majority of cores only containing one subcore, while other can contain more than
ten. There is of course a dependence on size, such that bigger cores have larger probability
of containing more subcores. Figure S19c quantifies this phenomenon by considering the
fraction of subcores that cores of size s contain.

S4.4 Work & recreational cores

In Sec. S3.2 we determined for each gathering whether it occurred on or o↵ campus.
For cores this distinction is not possible since cores consist of multiple gatherings that in
principle can occur both on or o↵ campus. Instead we count the number of times each
core appears on and o↵ campus and perform a majority voting. Cores that have a higher
frequency of on-campus meetings are denoted as work cores, while we call cores that appear
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Figure S18: Distribution
of the number of cores per
individual. Calculated for
users that appear in fre-
quently observed cores, i.e.
cores that on average are ob-
served more than once per
month. A minority of indi-
viduals partake in more than
10 cores, with the distribu-
tion being centered around a
mean value of ⇠ 5.
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Figure S19: Subcore structures and statistics. a, Illustration of overlapping and hierarchically
stacked core structures. b, The distribution of the number of subcores contained within individual
cores. c, Fraction of cores that contain 0, 1, 2, 3, 4, and 5+ subcores (sc) as function of core size.
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more frequently o↵-campus as recreational cores. In case of a tie, we label the core as
recreational. Figure S20a shows the voting schedule and indicates the split, while Fig. S20b
shows the waiting time probability between consecutive meeting events. For work cores
the waiting time probability shows clear signs of daily and weekly patterns, suggesting
that these cores may be driven by the class schedule. Recreational cores on the other
hand exhibit a more subtle pattern that slowly decays and is considerably higher during
nighttimes—suggesting that two fundamentally di↵erent mechanisms drive the activity
of the two groups. Splitting the number of cores per individual (Fig. S18) up into the
two categories yields the results shown in Fig. S20c-d, where users have a broad degree
of recreational cores, on average participating in 2.53, while the number of work cores is
more localized with an average value of 2.74. According to Fig. S20e-f individuals spend
more time in recreational cores than work cores, clearly depicting that context has great
influence on the properties of meetings.

S4.5 Meeting regularity

Each core has a specific temporal pattern linked to it denoting the periods of time it has
been present, see Fig. S21a for an example. The information contained in each pattern can
be quantified using Shannon entropy [18], defined as

H = �
X

t

pt log2 pt, (S12)

where the sum runs over all temporal bins t and pt is the probability of observing a specific
core within given time-bin. For each core we aggregate its meeting patterns across the full
study duration into weekly 1-hour bins, then within each bin we calculate the probability of
observing the core. Entropy is calculated individually for cores using Eq. S12. According to
Fig. S21b there is clear di↵erences between the meeting patterns for work and recreational
cores. Further, the entropy distributions (Fig. S21c) reveal that recreational cores, on
average, have higher entropy and thus lower meeting regularity—indicating that they do
not meet within pre-scheduled temporal-bins.

S4.6 Ego viewpoint

So far we have mainly focused on the overall structural and dynamical features of cores, but
we can reverse the perspective and look at cores from the perspective of individuals. From
this perspective, each core provides a social context for the situation in which a person is
embedded, whether it is in a work, recreation, or other relation. Figure S22a shows the
involvement of a representative individual that is involved in multiple cores, producing
hierarchically nested and overlapping structures. The corresponding temporal pattern of
cores (Figure S22b) reveals a complex behavior.

S5 Predicting behavior from routine

In this section we describe the detailed analysis leading up to routine-based geographical
location and social context prediction presented in the main text.
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a b

c d
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rec.

Figure S20: Distinction between work & recreational cores. a, Excerpt of voting scheme depicting
the number of on- and o↵-campus meetings for each core. Gray line splits the area into work (above)
and recreation (below) categories. b, Inter event time distributions between consecutive meetings,
aggregated across all cores of similar class (work/recreation). Events are hourly binned and full lines
denote moving averages, calculated using 4-hour windows. c, Number of work cores per user. d,
Number of recreational cores per user. e, The distributions of how much time individuals, in total,
spend in cores with work and recreational context. The average individual spends approximately
38 hours in a work setting, and 120 hours in a recreational context during the period of study. f,
Cumulative probability distribution of data shown in panel e.
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a b c

Figure S21: Meeting regularity of cores. a, Example pattern for a single core, denoting the
probability of observing the core. Data is aggregated across all weeks into 1-hour wide bins. b,
Aggregated meeting patterns across all cores, showing the probability of observing work and recreational
cores. c, Distributions of meeting time entropy calculated across all cores and divided up into work
and recreation categories.

a b
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Figure S22: Ego-centric perspective of cores for a representative individual. a, Network perspective,
revealing overlapping and nested structures. b, Temporal dynamics of individual cores, colored
accordingly.

23

LXIX



Song et al. have used entropy, an information theoretic measure in order to estimate
the upper bound of the predictability of individuals’ mobility patterns [19]. We argue here,
that in analogy to geospatial behavior, human social life can be described by a temporal
sequence of ‘social states’. These can be used to quantify the predictability of social life.

Given a sequence of states for an individual i we can define entropy in two ways. First
we can think of predictability in a temporally uncorrelated sense with entropy defined as

Sunc
i = �

NiX

j

pj log2 pj , (S13)

where pj is the probability of observing state j and Ni is the total number of states observed
by person i. Eq. S13 captures the uncertainty of your location history without taking
the order of visits into account, thus discarding information contained in the daily, weekly
and monthly sequences of behavior. A more sophisticated measure that includes temporal
patterns is temporal entropy :

Stemp
i = �

X

T 0
i⇢Ti

p(T 0
i ) log2[p(T 0

i )], (S14)

where p(T 0
i ) is the probability of finding a subsequence T 0

i in the trajectory Ti. From the
entropy one can estimate the upper bound of predictability (⇧i) by applying a limiting case
of Fano’s inequality [19–21]:

Si = H(⇧i) + (1 �⇧i) log2(N � 1), (S15)

where H(⇧i) = �⇧i log2(⇧i) � (1 �⇧i) log2(1 �⇧i).

S5.1 Comparing with previous studies

In the main manuscript (Fig. 3a) we show that our ability to predict the location of
individuals has an upper bound of 71% which is significantly lower than the 93% reported
by Song et al. [19]. The main reasons behind this discrepancy are discussed below.

S5.1.1 Di↵erence in populations

Our study population is comprised of university students that (1) not necessary have a
single home/nightly location, (2) have a rich free time which they can utilize to explore
new locations, and (3) have multiple work locations due to classes being distributed across
a large university campus.

In contrast, Song et al. studied a sample of 50 000 individuals selected from a total
population of ⇠ 10 million anonymous mobile phone users. The users were chosen according
to (1) their travel patterns, where individuals had to visit more than two cell tower locations
during the observational period of three months and (2) their average call frequency which
had to be � 0.5 hour�1, e↵ectively selecting individuals with at minimum of 12 calls per
day.
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S5.1.2 Geospatial resolution

Previous studies have applied call detail records (CDR) as proxy for location, inferring the
position of individuals depending on which cell tower their mobile phone is connected to
during a call [19,22,23]. While the granularity of cell tower locations in cities is around 800
meters it can be on the order of kilometers in more rural areas [24]. Figure S23 illustrates
the e↵ect of using cell tower data for positioning, as it can cluster otherwise distinct places
together as one. Our location data on the other hand has a typical accuracy below 60
meters [1], enabling a more accurate spatial estimation.

Figure S23: Cell tower resolution of a city. Otherwise distinct places can be grouped together
under the same cell tower, coarse graining the geospatial position and increasing the probability of
guessing correct.

S5.1.3 E↵ects of binning

Song et al. [19] chose, because of data granularity, to segment their data into one hour
time-windows. Since our data has finer granularity, down to the minute scale, we can choose
a di↵erent resolution, but which is optimal?

We show in Fig. S24a that the finer we segment time, the better we are able to predict
your location in the next time-bin. By reducing temporal bin size it is possible to achieve
arbitrarily high levels predictability because segmenting data into finer time-windows
increases the number of bins, which in turn leads to respective states obtaining a higher
frequency of visits.

The bin-size a↵ects both temporal and uncorrelated entropy, however, so one hypothesis
is that it is still meaningful to consider the ratio between the temporally uncorrelated
entropy and the temporally correlated entropy. To investigate, we study on the ratio
Stemp

i /Sunc
i , evaluated across all individuals i. As is clear from Fig. S24b the ratio shifts

towards lower values for small windows, revealing that the choice of bin width has a greater
impact on temporal entropy. This suggests that predictability is greatly influenced by the
choice of time-window, as has also been noted by [21,25]. In short, considering the ratio
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Stemp
i /Sunc

i does not solve the binning problem. Ultimately this implies that the smaller
bins we apply the better we are at predicting. Because we currently are unaware of any
timescale that is fundamentally descriptive of human behavior, we chose to work with
temporal sequences in their natural form instead of segmenting them, predicting ‘next state’
rather than ‘state of next time bin’ (see Fig. S25).

a b

Figure S24: E↵ects of binning on predictability bounds. a, Predictability as function of window
size. Inset shows a close up for high values of predictability. Segmenting time into finer bins yields
higher bounds of prediction. b, Ratio between temporal and uncorrelated entropy values. As the size
of time-windows is narrowed the ratio shifts towards zero, indicating that Stemp ⌧ Sunc.

S5.2 Data for prediction

S5.2.1 Social vocabulary

We describe the social life of an individual based on the context provided by cores, where
we focus on individuals that appear in frequently observed cores (observed, on average, at
least once per month). In order to include the full social life of an individual we incorporate
the context provided by dyads as well as the the information contained in infrequently
observed cores. Note that if a core/dyad is only observed once then we denote it as a ‘noise’
state. In addition we construct one supplementary context: ‘alone’ denoting periods of
time where an individual is not socially active. Following Song et al. [19] we construct a
time-series of social contexts for each user. However, as noted above, we do not segment
the sequence into temporal bins, but keep it in its natural form, and predict ‘next state’
(illustrated in Fig. S25) for both geospatial and social prediction.

S5.2.2 Location vocabulary

In addition to social context, we also collect geographical traces for each user, enabling us
to reconstruct their mobility patterns. To infer context from raw location traces we use
the same definitions as Cuttone et al. [26], where a point of interest (POI) is a location of
relevance for a person, such as home, work, or a cinema. POIs are inferred by applying a
density based clustering algorithm [27], with a density grouping distance of 60 meters and
requiring stops to consist of at least two samples, meaning that a person must have spent a
minimum of 15 minutes in the same location.
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Figure S25: Time-series of states. Left part of the figure presents social states as they naturally
occur in a temporal sequence, with �t denoting a segmentation of the sequence within arbitrary sized
time-windows. Right panel illustrates the di↵erence in vocabularies, where the ‘natural’ sequence
focuses on the order of states, while ‘segmented’ also weights states according to their duration.

S5.2.3 Convergence of states

Figure S26 shows the distribution of the number of distinct social and geospatial states for
increasing windows of time. After 90 days both probability distributions converge, implying
that the number of states visited by users is saturated, indicating that we can uncover a
majority of states frequented by individuals. We, however, expect this saturation only to
be meta-stable, because the social networks change across adulthood [28].

a b

Figure S26: Distribution of the number of distinct states within a time window. a, Convergence of
the number of social social states, showing saturation after a time window of 90 days. b, Saturation
of visited locations, also convergence after 90 days.

S5.3 Prediction

Following Eq. S13-S15 we first calculate the respective entropies of the behavioral patterns
for each individual. We show in Fig. S27a that our social patterns have lower entropy than
our mobility. The figure shows that an average person approximately occupies 22 ⇡ 4 social
states and 2.52 ⇡ 6.25 location distinct states. We also find that humans are potentially
more predictable based on their social contexts than their past locations, see Fig. S27b.
Previous studies have found higher levels of predictability [19,29], see Sec. S5.1 for a full
discussion.

Fig. S28a shows the interrelation between Sunc
social and Sunc

location, surprisingly there is no
correlation between the two measures (Spearman correlation ⇢ = 0.053, p-value = 0.191),
indicating that humans can be highly predictable in a social sense but very unpredictable
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location-wise and vice versa. A similar lack of correlation is observed for Stemp (Spearman
correlation ⇢ = �0.008, p-value = 0.84), see Fig. S28b.

a b

Figure S27: Probability distributions of entropy and predictability. a, Distributions of temporal
and uncorrelated entropy for location and social behavior. As expected, temporal patterns contain
more information than just frequency of visits, and hence have a lower entropy. b, Predictability
distributions for uncorrelated and temporal patterns. On average, our social behavior is more
predictable than our geospatial behavior.

a b

Figure S28: Correlation between social and location entropy. a, Mutual dependence between
uncorrelated entropy for social and location states per individual. b, Correlation between temporal
entropies for social and location states.

S5.4 Temporal aspect of predictability

According to Fig. S28 there is no correlation between social and geospatial aspects of
human life, but this is measured in terms of overall dependence. In real life we have varying
degrees of predictability, a simple way of visualizing this is to look at the number of states
as function of time. According to Fig. S29a we have a low number of location states during
nights (resulting in low entropy) because we mainly sleep at a single location, while during
days and evenings our entropy is higher, in part because because we occupy more states.
Note that there is very little overlap between locations visited in each 8-hour bin, e.g.
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morning locations are di↵erent from day locations. On Fridays we visit more locations than
any other day, while during weekends we are more stationary. If we, however, consider the
total number of distinct visited places (Fig. S29b) we see that Fridays and Saturdays are
special because those days are used to explore new locations. Therefore, predicting location
during weekends based on routine is more di�cult, since we have higher entropy during
these periods. Our social behavior (Fig. S29c) resembles our mobility, where we socialize
mainly during the day and less during the night. Weekends are again special, interestingly
we here observe a drop in in the number of social states, because we are not required to
go to work or school. Fig. S29d shows that the number of social states decreases during
weekends, meaning our participants reserve weekends to socialize with a few selected friends.

a

b

c

d

Figure S29: Nested histograms showing the temporal aspects of predictability. Binned using daily
and 8-hour intervals (12 am - 8 am, 8 am - 4 pm, 4 pm - 12 am), outer bars (gray) denote days
while inner bars (white) denote 8-hour windows. Bars do not necessary add up, because one can have
an overlap of states between the 8-hour bins. All values are averaged across the student population.
a, Number of average observed locations per bin. b, Total number of visited distinct locations. c,
Average number of social states per time-bin. d, Total number of distinct social states.

We quantify the relation between social and geospatial traces by looking at the normalized
mutual information. Mutual information is a measure of the variables’ mutual dependence,
i.e. how much knowledge of one variable reduces uncertainty about the other. It is defined
as

I(X, Y ) =
X

x2X

X

y2Y

p(x, y) log

✓
p(x, y)

p(x)p(y)

◆
, (S16)

where p(x) is the probability of observing an individual in state x. It is symmetric
I(X, Y ) = I(Y, X) and nonnegative I � 0, and mutual information is zero if and only if p(x)
and p(y) are independent such that p(x, y) = p(x)p(y). Normalized mutual information is
defined as [30, 31]:

Inorm =
2I(X, Y )

H(X)H(Y )
, (S17)

where H(X) = �P
x2X p(x) log(p(x)) is the uncorrelated entropy of a behavioral pattern.

According to Figure S30a our social and geospatial behaviors are correlated during the
week, where we tend to meet the same people in the same places. During weekends this
correlation between our social and location behavior is lower. Thus, while the geospatial
behavior during weekends becomes more unpredictable (Fig. S30b) our social patterns
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become simpler (Fig. S30c); consistent with Fig. S29 and previous work [32]. In our
population, periods of geospatial exploration are associated with social consolidation, a
non-trivial phenomenon which we exploit in the next section.

a b c

<S
c>

<S
L>

<N
M
I>

Figure S30: Relation between social and geolocation traces. a, Average normalized mutual infor-
mation per day, clearly depicting a di↵erence between weekdays and weekends. b, Average entropy
for geolocation patterns. c, Average entropy for social patterns.

S6 Social prediction

It has previously been shown that spatial behavior between individuals that share a social
tie is correlated [33–36]. But the onset of co-presence lacks a temporal signature, so while
the spatial traces overlap it is not generally possible to specify exactly when a friend is
predictive for an individual’s behavior. Cores, however, do provide such context. An
incomplete set of members provides a clue that a social interaction is about to occur (i.e. the
final group member is about to arrive).

We test this concept on cores of size three; thus provided we observe two members
we measure the probability of the last member arriving within the next hour. To avoid
testing the hypothesis on scheduled meetings we focus on weekday nights (6 pm - 8 am)
and weekends. This is the period where routine driven prediction is at its weakest. Further,
in order to avoid circularity, we evaluate the hypothesis on a test month (May 2014), during
which we have not identified gatherings.

S6.1 Null models

For evaluation purposes we compare cores to two reference models, both generated from
real world data. We segment interactions into undirected and unweighted daily graphs,
see Fig. S31a. The first null model, we which we denote random, constructs reference
groups by randomly drawing nodes from each daily graph. The second model utilizes a
breadth-first search in the daily graph to create reference groups starting from a randomly
chosen seed node by searching its local neighborhood. A new seed node is chosen if the
search is restricted to components with fewer than three members. BFS is a strict null
model and requires all nodes to have shared a physical interaction. We disregard reference
groups if they happen to be identical to a core.
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S6.2 Comparison

We test the hypothesis on a sample of 340 frequently occurring cores and 10 000 reference
groups for n = 100 independent trials. For 33 cores we never observe an incomplete set of
members during the month of May, therefore they cannot be used for prediction and are
disregarded.

As shown in Fig. S31b approximately 50% of cores are predictive, in stark comparison
to BFS reference groups, with the random null model performing even worse.

a Core nodes
Random nodes
BFS seed node
BFS nodes

b

Figure S31: Social prediction. a, Daily graph of interactions, illustrating cores and construction of
null models. b Percentage of socially predictive cores within each category. A group is predictive if it
at least once has correctly predicted the arrival of the missing individual. For the reference models
errorbars are calculated across n = 100 independent trials.

S7 Coordination of meetings

This section describes how we calculate the amount of coordination leading up to gatherings.
Prior to a meeting individuals might need to coordinate about when and where to meet.
This coordination can be conveyed through various means: (1) individuals can organize in
real time through electronic means, such as online social networks and mobile phones, (2)
they can verbally have scheduled meetings beforehand, i.e. at previous gatherings, (3) or
attend routine driven pre-scheduled meetings, arranged by an institution, e.g. the university.
We consider the coordination in the hours leading up to a meeting, measured in terms of
increased calling and texting activity. Because calling frequencies change over the course of
a day, and because individuals can have fundamentally distinct calling patterns [1, 37, 38],
we compare activity leading up to a meeting to hour-by-hour dynamic individual baselines,
defined as

ct =
1

N

NX

n=1

an
t

fan
t

, (S18)

where N it the number of individuals participating in the gathering, an
t is the activity of

person n, and fan
t is the baseline activity. The equation denotes increased coordination

levels t hours before a meeting. Because gatherings have a broad distribution of lifetimes
(Fig. S8), we restrict the calculation to individuals that participate in the first hour of the
meeting. According to Fig. S32a-b, meetings during the weekend require more coordination
than meeting during weekdays. This implies that weekend behavior is less scheduled,
emphasizing the problem of predicting behavior using traditional routine-based measures.
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In addition, Fig. S32c reveals that meetings, independently of size, require the same amount
of coordination per person, illustrating the validity of Fig. S32a for varying gathering sizes.

Weekend

Weekday

In
c
re

a
s
e

d
 c

o
o

rd
in

a
ti
o

n

Hours before meeting Hours before meetingHours before meeting

a b c

Figure S32: Increased coordination prior to a meeting. Calculated for all nodes participating in
the first hour of a gathering. a, Required amounts of coordination between nodes, depending on
when the gatherings meets. More coordination is required to organize meetings during weekends
(Friday 4 pm - Sunday) than during weekdays (Monday - Friday 4 pm). b, Further sub-dividing the
categories from panel a reveals that Fridays and Saturdays are special. c, E↵ect of size of the meeting
on coordination. On average it requires equal amounts of coordination, per person, to organize a
meeting, independent of the size of the group.
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Understanding scientific

collaboration

S
CIENTISTS often worry about their future. Where will our careers take us, which

paths of research should we focus on, and how should we secure the required

funding? As a consequence a lot of work has been devoted to quantifying sci-

ence; from forecasting the future impact of publications (Wang et al., 2013), predicting

the scientific success of individual researchers (Acuna et al., 2012; Sarigöl et al., 2014),

to understanding the measures which we use to quantify impact (Lehmann et al., 2006).

Contrary to popular belief of the individual genius, science in nowadays performed

in teams (Wuchty et al., 2007). For example, de Solla Price (1963) examined in his

famous book the change in team size in chemistry from 1910 to 1960 and projected

that by the 1980’s 0% of papers would be written by single authors. It did not go quite as

foretold, nonetheless teams increasingly dominate single author publications. In order

to gain a deeper understanding of science we, therefore, need to view research from

the perspective of groups. As such, recent studies have investigated how collaborations

arise and grow (Milojević, 2014), how teams succeed (Klug and Bagrow, 2014), and how

credit should be allocated between team members (Shen and Barabási, 2014).

Within multi-author publications there exists clear signs of mentorship (Malmgren

et al., 2010; Callaway, 2015). However, we still lack a quantitative understanding of such

chaperone bonds and, in general, how knowledge is passed down by between different

generations of scientists. Paper IV presents a study where we perceive teams as conduits

through which knowledge can be transferred between researchers. To quantify the

chaperone phenomenon we examine how scientists transition from junior to senior

status within the same scientific journal. Specifically, we ask whether the principal

investigator (PI) of a paper has previously published within the same venue as a junior

author; if so, is the PI of a paper more inclined to be listed again in the same role in

future publications within the same journal? Our results show that the magnitude of the

chaperone phenomenon varies depending on the branch of science. It is pronounced

for medical and biological sciences, more subtle for chemistry and physics, and in

the case of mathematics there is no clear effect of mentorship. Furthermore, having

previously been listed as a junior researcher in one of the multidisciplinary journals

such as Nature, Science, and PNAS, significantly enhances your chances of being listed

as PI. These findings document that scientific training plays a fundamental role in

acquiring the necessary experience, expertise and skills to publish in specific venues.
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In science, anecdotal evidence exists that high-achievers are often protégés of illustrious men-

tors 1–3. While projects like the mathematical genealogy document clear signs of such chap-

erone bonds between renowned scientists 4, we lack systematic quantitative evidence of the

role of apprenticeship in scientific publishing and, in general, of how scientific knowledge is

passed down between different generations of scientists 4, 5. Here we quantify the chaperone

phenomenon by considering how scientists transition to senior status within the same scien-

tific journal. We show that a scientist is unlikely to appear as senior author if she has not

published already in the same journal, and that this trend has become more pronounced in

the last decade. We illustrate that the chaperone phenomenon has different magnitude for

journals that belong to different branches of science, being more pronounced for medical

and biological sciences but more subtle for the natural sciences. These findings document the

fundamental role played by scientific training to acquire the necessary experience, expertise

and skills to publish in specific venues.
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In a letter addressed to Robert Hooke (1676), Isaac Newton famously stated: “If I have seen

further it is by standing on the shoulders of giants.”, indicating that his achievements have been pos-

sible only thanks to solid scientific foundations built and passed down to him by his predecessors.

Evidence of the fundamental role played by mentorship in science 5 is offered by the dynamics of

scientific multi author publications. Indeed, high impact works are often performed by collabora-

tive teams 6, 7, whose composition is usually heterogenous in terms of experience and age, with case

studies showing that experience 8, 9 and leadership 10 are important factors for achieving success.

Moreover, a recent study has highlighted that junior researcher tend to work on more innovative

topics but that they are in need of mentorship 11, 12. Thus teams are perfect conduits for senior

scientists to train younger colleagues. To quantify the chaperone effect in science, we examine

how the process manifests itself in multi-authored publications. We consider the publication his-

tory of researchers within a specific scientific journal (see SI for the author name disambiguation

procedure), asking: has the principal investigator (PI) of a paper published previously in the same

venue as a junior author? If so, is the PI of a paper more inclined to be listed again in the same role

in future papers in the same journal?

We consider 6.4 million papers published between 1960 and 2012 in 394 scientific journals;

covering the scientific fields of mathematics, physics, chemistry, biology, and medicine. In addi-

tion, we also include the top 3 multidisciplinary journals: Nature, Science, and PNAS. Only papers

that are labeled as academic in the ISI Web of Knowledge (Thomson Reuters) database are taken

into account. In addition, to make sure we are only dealing with original research we disregard

papers that have titles containing the terms: comment, reply, or retracted article. In our analysis,
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we assume that the PI is always listed last in a paper’s author list, a common practice in many sci-

entific fields 13, 14. Note, however, that our analysis is not affected if the author list of some papers

does not mirror seniority roles, as in the case of the alphabetical order. For each journal we divide

PIs into 3 categories: new denotes authors who have never published previously in that specific

journal, non-last are authors who have appeared before but only as junior (non-last) authors, and

finally last denotes authors previously listed as last author in the journal.

Figure 1 shows the fraction over time of the three categories of last-authors for the scientific

journal Nature. From 1990 to year 2000 the fraction of PIs that represent each category is largely

constant and last authors with no experience of publishing in the journal and last authors with pre-

vious last-author status are equally represented, and their number is twice that of junior authors.

Starting in year 2000, however, the fraction of PIs that are new to the journal, p(new), rapidly

declines to the advantage of last authors with previous experience as last authors. Thus, it becomes

increasingly rare to publish as the senior author in Nature without previous publishing experience

in the journal. To quantify the chaperone phenomenon, we study the relative magnitude of the

non-last→last in respect to new→last transition. To capture a genuine effect, we need to compare

the observed transitions with those occurring in a system where the ordering of author names is not

relevant 15. Therefore, we study the ratio c = p (non-last) /p (new) and compare it to crandom, the

ratio obtained in a null model where we randomly permute the order of author names in each pa-

per. We call c/crandom the of magnitude the chaperone effect, and the chaperon phenomenon occurs

when c/crandom > 1, i.e. when the transition non-last→last is more frequent than new→last in a

statistical significant way, capturing the tendency of authors to become PIs after having published
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as junior authors before. Having witnessed and gone through the entire publication process once,

increases the chances of publishing in similar journals again, since the author is familiar with their

inner workings.

Next we ask whether the amount of experience acquired through chaperone bonds differs

between scientific fields. First, we find that the chaperone phenomenon, within each discipline, is

stable over time (Figure 2), indicating that a constant amount of experience and training is required

to transition between junior and senior status. Because the level of apprenticeship is fairly stable,

we can collapse the distributions to quantify differences between fields. Figure 3 shows that the

chaperone phenomenon is pronounced for medical and biological sciences, while it is more subtle

for physics and chemistry. In the case of mathematics there is no clear sign that mentorship influ-

ences the transition between junior and senior levels. In fact there is a 114% difference between

the chaperone phenomena for mathematics and biology, reflecting the way science is performed

within each discipline. Incorporating multidisciplinary journals we see a clear relationship be-

tween having published in them as a junior researcher and the probability of publishing in them

as PI, clearly illustrating that experience provided by appropriate mentors is a considerable factor

of transitioning between junior and senior levels in these high impact journals. While we cannot

pinpoint which facet of experience that is most important to succeed, surrounding a young scientist

with experienced researchers will overall have a positive impact on her career.

4
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Figure 1: Probability of being listed as PI in Nature given previous publication history. The

last authors of all papers published each year in Nature are divided into three categories: new

authors, that have never published in Nature before, non-last authors, that have published in Nature

before only at junior level, and last authors, that have already previously published as last authors.

Mathematics Physics Chemistry

BiologyMedicine

Figure 2: Chaperone distributions for various fields as function of time. Dividing journals into

branches of science reveals that each field has a specific signature.
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Mathematics
Physics
Chemistry
Medicine
Biology
Interdisciplinary

Figure 3: Comparison of chaperone phenomenon between scientific fields. Distributions for

the past 12 years are collapsed into single distributions and enable us to compare separate sci-

entific fields. For the different disciplines we find 〈c/crand〉math � 0.71, 〈c/crand〉physics � 0.90,

〈c/crand〉chemistry � 1.08, 〈c/crand〉medicine � 1.28, and 〈c/crand〉biology � 1.52, while the effect for

interdisciplinary journals is 〈c/crand〉interdisc � 1.61. A Wilcoxon rank sum test, moreover, illus-

trates that the distributions are distinguishable p << 0.05.
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