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Longest Common Extensions in Trees
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Abstract. The longest common extension (LCE) of two indices in a
string is the length of the longest identical substrings starting at these
two indices. The LCE problem asks to preprocess a string into a compact
data structure that supports fast LCE queries.
In this paper we generalize the LCE problem to trees and suggest a few
applications of LCE in trees to tries and XML databases. Given a labeled
and rooted tree T of size n, the goal is to preprocess T into a compact
data structure that support the following LCE queries between subpaths
and subtrees in T . Let v1, v2, w1, and w2 be nodes of T such that w1

and w2 are descendants of v1 and v2 respectively.
– LCEPP (v1, w1, v2, w2): (path-path LCE) return the longest common

prefix of the paths v1  w1 and v2  w2.
– LCEPT (v1, w1, v2): (path-tree LCE) return maximal path-path LCE

of the path v1  w1 and any path from v2 to a descendant leaf.
– LCETT (v1, v2): (tree-tree LCE) return a maximal path-path LCE of

any pair of paths from v1 and v2 to descendant leaves.
We present the first non-trivial bounds for supporting these queries.
For LCEPP queries, we present a linear-space solution with O(log∗ n)
query time. For LCEPT queries, we present a linear-space solution with
O((log logn)2) query time, and complement this with a lower bound
showing that any path-tree LCE structure of size O(n polylog(n)) must
necessarily use Ω(log log n) time to answer queries. For LCETT queries,
we present a time-space trade-off, that given any parameter τ , 1 ≤ τ ≤ n,
leads to an O(nτ) space and O(n/τ) query-time solution. This is com-
plemented with a reduction to the the set intersection problem implying
that a fast linear space solution is not likely to exist.

1 Introduction

Given a string S, the longest common extension (LCE) of two indices is the
length of the longest identical substring starting at these indices. The longest
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common extension problem (LCE problem) is to preprocess S into a compact
data structure supporting fast LCE queries. The LCE problem is a basic prim-
itive in a wide range of string matching problems such as approximate string
matching, finding exact and approximate tandem repeats, and finding palin-
dromes [?, ?, ?, ?, ?, ?]. The classic textbook solution to the LCE problem on
strings combines a suffix tree with a nearest common ancestor (NCA) data struc-
ture leading to a linear space and constant query-time solution [?].

In this paper we study generalizations of the LCE problem to trees. The goal
is to preprocess an edge-labeled, rooted tree T to support the various LCE queries
between paths in T . Here a path starts at a node v and ends at a descendant of
v, and the LCEs are on the strings obtained by concatenating the characters on
the edges of the path from top to bottom (each edge contains a single character).
We consider path-path LCE queries between two specified paths in T , path-tree
LCE queries defined as the maximal path-path LCE of a given path and any
path starting at a given node, and tree-tree LCE queries defined as the maximal
path-path LCE between any pair of paths starting from two given nodes. We
next define these problems formally.

Tree LCE Problems. Let T be an edge-labeled, rooted tree with n nodes. We
denote the subtree rooted at a node v by T (v), and given nodes v and w such
that w is in T (v) the path going down from v to w is denoted v  w. A path
prefix of v  w is any subpath v  u such that u is on the path v  w. Two
paths v1  w1 and v2  w2 match if concatenating the labels of all edges in
the paths gives the same string. Given nodes v1, w1 such that w1 ∈ T (v1) and
nodes v2, w2 such that w2 ∈ T (v2) define the following queries:

– LCEPP (v1, w1, v2, w2): (path-path LCE) return the longest common match-
ing prefix of the paths v1  w1 and v2  w2.

– LCEPT (v1, w1, v2): (path-tree LCE) return the maximal path-path LCE of
the path v1  w1 and any path from v2 to a descendant leaf.

– LCETT (v1, v2): (tree-tree LCE) return a maximal path-path LCE of any
pair of paths from v1 and v2 to descendant leaves.

We assume that the output of the queries is reported compactly as the end-
point(s) of the LCE. This allows us to report the shared path in constant time
per edge. Furthermore, we will assume w.l.o.g. that for each node v in T , all the
edge-labels to children of v are distinct. If this is not the case, then we can merge
all identical edges of a node to its children in linear time, without affecting the
result of all the above LCE queries.

We note that the direction of the paths in T is important for the LCE queries.
In the above LCE queries, the paths start from a node and go downwards. If we
instead consider paths from a node going upwards towards the root of T , the
problem is easier and can be solved in linear space and constant query-time by
combining Breslauer’s suffix tree of a tree [?] with a nearest common ancestor
(NCA) data structure [?].

Our Results. First consider the LCEPP and LCEPT problems. To answer an
LCEPP (v1, w1, v2, w2) query, a straightforward solution is to traverse both paths
in parallel-top down. Similarly, to answer an LCEPT (v1, w1, v2) query we can



traverse v1  w1 top-down while traversing the matching path from v2 (recall
that all edges to a child are distinct and hence the longest matching path is
unique). This approach leads to a linear-space solution with O(h) query-time
to both problems, where h is the height of T . Note that for worst-case trees we
have that h = Ω(n).

We show the following results. For LCEPP we give a linear O(n) space and
O(log∗ n) query-time solution. For LCEPT we give a linear O(n) space and
O((log log n)2) query-time solution, and complement this with a lower bound
stating that any LCEPT solution using O(n polylog(n)) space must necessarily
have Ω(log log n) query time.

Next consider the LCETT problem. Here, the simple top down traversal does
not work and it seems that substantially different ideas are needed. We first
show a reduction from the set-intersection problem, i.e., preprocessing a family
of sets of total size n to support disjointness queries between any pairs of sets.
In particular, the reduction implies that a fast linear space solution is not likely
assuming a widely believed conjecture on the complexity of the set-intersection
problem. We complement this result with a time-space trade-off that achieves
O(nτ) space and O(n/τ) query time for any parameter 1 ≤ τ ≤ n.

All results assume the standard word RAM model with word size Θ(log n).
We also assume the alphabet is either sorted or is linear-time sortable.

Applications. We suggest a few immediate applications of LCE in trees. Con-

sider a set of strings S = {S1, . . . , Sk} of total length
∑k
i=1 |Si| = N and let T

be the trie of S of size n, i.e., T is the labeled, rooted tree obtained by merg-
ing shared prefixes in S maximally. If we want to support LCE queries between
suffixes of strings in S, the standard approach is to build a generalized suffix
tree for the strings and combine it with an NCA data structure. This leads to
a solution using O(N) space and O(1) query time. We can instead implement
the LCE query between the suffixes of strings in S as an LCEPP on the trie T .
With our data structure for LCEPP , this leads to a solution using O(n) space
and O(log∗ n) query time. In general, n can be significantly smaller than N ,
depending on the amount of shared prefixes in S. Hence, this solution provides
a more space-efficient representation of S at the expense of a tiny increase in
query time. An LCEPT query on T corresponds to computing a maximal LCE
of a suffix of a string in S with suffixes of strings in S sharing a common prefix.
An LCETT query on T corresponds to computing a maximal LCE over pairs of
suffixes of strings in S that share a common prefix. To the best of our knowledge
these queries are novel one-to-many and many-to-many LCE queries. Since tries
are a basic data structure for storing strings we expect these queries to be of
interest in a number of applications.

Another interesting application is using LCE in trees as a query primitive
for XML data. XML documents can be viewed as a labeled tree and typical
queries (e.g., XPath queries) involve traversing and identifying paths in the tree.
The LCE queries provide simple and natural primitives for comparing paths and
subtrees without explicit traversal. For instance, our solution for LCEPT queries
can be used to quickly identify the “best match” of a given path in a subtree.



2 Preliminaries

Given a node v and an integer d ≥ 0, the level ancestor of v at depth d, denoted
LA(v, d) is the ancestor of v at depth d. We explicitly compute and store the
depth of every node v, denoted depth(v). Given a pair of nodes v and w the
nearest common ancestor of v and w, denoted NCA(v, w), is the common ances-
tor of v and w of greatest depth. Both LA and NCA queries can be supported
in constant time with a linear space data structures, see e.g., [?,?,?,?,?,?,?,?]

Finally, the suffix tree of a tree [?,?,?] is the compressed trie of all suffixes
of leaf-to-root paths in T . The suffix tree of a tree uses O(n) space and can be
constructed in O(n log log n) time for general alphabets [?]. Note that the suffix
tree of a tree combined with NCA can support LCE queries in constant time for
paths going upwards. Since we consider paths going downwards, we will only use
the suffix tree to check (in constant time) if two paths are completely identical.

We also need the following three primitives. Range minimum queries: A list
of n numbers a1, a2, . . . an can be augmented with 2n + o(n) bits of additional
data in O(n) time, so that for any i ≤ j the position of the smallest number
among ai, ai+1, . . . , aj can be found in O(1) time [?]. Predecessor queries: Given
a sorted collection of n integers from [0, U), a structure of size O(n) answering
predecessor queries in O(log logU) time can be constructed in time O(n) [?],
where a predecessor query locates, for a given x, the largest y ≤ x such that
y ∈ S. Finally, Perfect hashing: given a collection S of n integers a perfect hash
table can be constructed in expected O(n) time [?], where a perfect hash table
checks, for a given x, if x ∈ S, and if so returns its associated data in O(1)
time. The last result can be made deterministic at the expense of increasing the
preprocessing time to O(n log log n) [?], but then we need one additional step in
our solution for the path-tree LCE as to ensure O(n) total construction time.

3 Difference Covers for Trees

In this section we introduce a generalization of difference covers from strings to
trees. This will be used to decrease the space of our data structures. We believe
it is of independent interest.

Lemma 1. For any tree T with n nodes and a parameter x, it is possible to
mark 2n/x nodes of T , so that for any two nodes u, v ∈ T at (possibly different)
depths at least x2, there exists d ≤ x2 such that the d-th ancestors of both u and
v are marked. Furthermore, such d can be calculated in O(1) time and the set of
marked nodes can be determined in O(n) time.

Proof. We distinguish between two types of marked nodes. Whether a node v is
marked or not depends only on its depth. The marked nodes are determined as
follows:

Type I. For every i = 0, 1, . . . , x−1, let Vi be the set of nodes at depth leaving
a remainder of i when divided by x. Because

⋃
i Vi = T and all V ′i s are

disjoint, there exists r1 ∈ [0, x− 1] such that |Vr1 | ≤ n/x. Then v is a type I
marked node iff depth(v) = r1 mod x.



Type II. For every i = 0, 1, . . . , x − 1, let Vi be the set of nodes v such that
bdepth(v)/xc leaves a remainder of i when divided by x. By the same argu-
ment as above, there exists r2 ∈ [0, x − 1] such that |Vr2 | ≤ n/x. Then v is
a type II marked node iff bdepth(v)/xc = r2 mod x.

Now, given two nodes u and v at depths at least x2, we need to show that
there exists an appropriate d ≤ x2. Let depth(u) = t1 mod x and choose d1 =
t1+x−r1. Then the d1-th ancestor of u is a type I marked node, because its depth
is depth(u)−d1 = depth(u)− (t1 +x−r1) = depth(u)− t1−x+r1, which leaves
a remainder of r1 when divided by x. Our d will be of the form d1+d2x. Observe
that regardless of the value of d2, we can be sure that the d-th ancestor of u is a
type I marked node. Let v′ be the d1-th ancestor of v, bdepth(v′)/xc = t2 mod x
and choose d2 = t2 + x − r2. The (d2x)-th ancestor of v′ is a type II marked
node, because b(depth(v′)−d2x)/xc = bdepth(v′)/xc−t2−x+r2, which leaves a
remainder of r2 when divided by x. Therefore, choosing d = d1 +d2x guarantees
that d ≤ x−1+x(x−1) < x2, so the d-th ancestors of u and v are both defined,
the d-th ancestor of u is a type I marked node, and the d-th ancestor of v is a
type II marked node.

The total number of marked nodes is clearly at most 2n/x, and the values
of r and r′ can be determined by a single traversal of T . To determine d, we
only need to additionally know depth(u) and depth(v) and perform a few simple
arithmetical operations. ut

Remark. Our difference cover has the following useful property: whether a node
v is marked or not depends only on the value of depth(v) (mod x2). Hence, if a
node at depth at least x2 is marked then so is its (x2)-th ancestor. Similarly, if
a node is marked, so are all of its descendants at distance x2.

4 Path-Path LCE

In this section we prove the following theorem.

Theorem 1. For a tree T with n nodes, a data structure of size O(n) can be
constructed in O(n) time to answer path-path LCE queries in O(log∗ n) time.

We start with a simple preliminary O(n log n)-space O(1)-query data struc-
ture which will serve as a starting point for the more complicated final imple-
mentation. We note that a data structure with similar guarantees to Lemma ??
is also implied from [?].

Lemma 2. For a tree T with n nodes, a data structure of size O(n log n) can be
constructed in O(n log n) time to answer path-path LCE queries in O(1) time.

Proof. The structure consists of log n separate parts, each of size O(n). The k-th
part answers in O(1) time path-path LCE queries such that both paths are of
the same length 2k. This is enough to answer a general path-path LCE query in
the same time complexity, because we can first truncate the longer path so that
both paths are of the same length `, then calculate k such that 2k ≤ ` < 2k+1.
Then we have two cases:



1. The prefixes of length 2k of both paths are different. Then replacing the
paths by their prefixes of length 2k does not change the answer.

2. The prefixes of length 2k of both paths are the same. Then replacing the
paths by their suffixes of length 2k does not change the answer.

We can check if the prefixes are the same and then (with level ancestor
queries) reduce the query so that both paths are of the same length 2k, all in
O(1) time.

Consider all paths of length 2k in the tree. There are at most n of them,
because every node u creates at most one new path LA(v,depth(v) − 2k)  v.
We lexicographically sort all such paths and store the longest common extension
of every two neighbours on the sorted list. Additionally, we augment the longest
common extensiones with a range minimum query structure, and keep at every
v the position of the path LA(v,depth(v) − 2k)  v (if any) on the sorted
list. This allows us to answer LCEPP (LA(u,depth(u)− 2k), u,LA(v,depth(v)−
2k), v) in O(1) time: we lookup the positions of LA(u,depth(u) − 2k)  u and
LA(v,depth(v) − 2k)  v on the sorted list and use the range minimum query
structure to calculate their longest common prefix, all in O(1) time. The total
space usage is O(n), because every node stores one number and additionally
we have a list of at most n numbers augmented with a range minimum query
structure.

To construct the structure efficiently, we need to lexicographically sort all
paths of length k. This can be done in O(n) time for every k after observing
that every path of length 2k+1 can be conceptually divided into two paths of
length 2k. Therefore, if we have already lexicographically sorted all paths of
length 2k, we can lexicographically sort all paths of length 2k+1 by sorting pairs
of numbers from [1, n], which are the positions of the prefix and the suffix of a
longer path on the sorted list of all paths of length 2k. With radix sorting, this
takes O(n) time. Then we need to compute the longest common extension of
ever two neighbours on the sorted list, which can be done in O(1) time by using
the already constructed structure for paths of length 2k. Consequently, the total
construction time is O(n log n). ut

To decrease the space usage of the structure from Lemma ??, we use the
difference covers developed in Lemma ??. Intuitively, the first step is to apply
the lemma with x = log n and preprocess only paths of length 2k log2 n ending at
the marked nodes. Because we have only O(n/ log n) marked nodes, this requires
O(n) space. Then, given two paths of length `, we can either immediately return
their LCE using the preprocessed data, or reduce the query to computing the
LCE of two paths of length at most log2 n. Using the same reasoning again with
x = log(log2 n), we can reduce the length even further to at most log2(log2 n)
and so on. After O(log∗ n) such reduction steps, we guarantee that the paths
are of length O(1), and the answer can be found naively. Formally, every step is
implemented using the following lemma.

Lemma 3. For a tree T with n nodes and a parameter b, a data structure of
size O(n) can be constructed in O(n) time, so that given two paths of length at
most b ending at u ∈ T and v ∈ T in O(1) time we can either compute the
path-path LCE or reduce the query so that the paths are of length at most log2 b.



Proof. We apply Lemma ?? with x = log b. Then, for every k = 0, 1, . . . , log b
separately, we consider all paths of length 2k log2 b ending at marked nodes. As
in the proof of Lemma ??, we lexicographically sort all such paths and store the
longest common extension of every two neighbours on the sorted list augmented
with a range minimum query structure. Because we have only O(n/ log b) marked
nodes, the space decreases to O(n). Furthermore, because the length of the paths
is of the form 2k log2 b (as opposed to the more natural choice of 2k), all lists can
be constructed in O(n) total time by radix sorting, as a path of length 2k+1 log2 b

ending at a marked node can be decomposed into two paths of length 2k logb

ending at marked nodes, because if a node is marked, so is its (x2)-th ancestor.
Consider two paths of the same length ` ≤ b ending at u ∈ T and v ∈ T .

We need to either determine their LCE, or reduce the query to determining the
LCE of two paths of length at most log2 b. If ` ≤ log2 b, there is nothing to
do. Otherwise, first we check if the prefixes of length log2 b of both paths are
different in O(1) time. If so, we replace the paths with their prefixes of such
length and we are done. Otherwise, if ` ≤ 2 log2 b we replace the paths with
their suffixes of length `− log2 b ≤ log2 b and we are done. The remaining case is
that the prefixes of length log2 b are identical and ` > 2 log2 b. In such case, we
can calculate k such that 2k log2 b ≤ `− log2 b < 2k+1 log2 b. Having such k, we
cover the suffixes of length `− log2 b with two (potentially overlapping) paths of
length exactly 2k log2 b. More formally, we create two pairs of paths:

1. LA(u,depth(u)− 2k log2 b) u and LA(v,depth(v)− 2k log2 b) v,
2. LA(u,depth(u) − ` + log2 b)  LA(u,depth(u) − ` + log2 b + 2k log2 b) and

LA(v,depth(v)− `+ log2 b) LA(v,depth(v)− `+ log2 b+ 2k log2 b).

If the paths from the first pair are different, it is enough to compute their LCE.
If they are are identical, it is enough to compute the LCE of the paths from
the second pair. Because we can distinguish between these two cases in O(1)
time, we focus on computing the LCE of two paths of length 2k log2 b ending at
some u′ and v′. The important additional property guaranteed by how we have
defined the pairs is that the paths of length log2 b ending at LA(u′,depth(u′)−
2k log2 b) and LA(v′,depth(v′)− 2k log2 b) are the same. Now by the properties
of the difference cover we can calculate in O(1) time d ≤ log2 b such that the
d-th ancestors of u′ and v′ are marked. We conceptually slide both paths up
by d, so that they both end at these marked nodes. Because of the additional
property, either the paths of length 2k log2 b ending at LA(u′,depth(′u)−d) and
LA(v′,depth(v′)− d) are identical, or their first mismatch actually corresponds
to the LCE of the original paths ending at u′ and v′. These two cases can be
distinguished in O(1) time. Then we either use the preprocessed data to calculate
the LCE in O(1) time, or we are left with the suffixes of length d of the paths
ending at u′ and v′. But because d ≤ log2 b, also in the latter case we are done.

ut
We apply Lemma ?? with b = n, log2 n, log2(log2 n), . . . terminating when

b ≤ 4. The total number of applications is just O(log∗ n), because log2(log2 z) =
4 log2(log z) ≤ log z for z large enough5. Therefore, the total space usage becomes

5 This follows from limz→∞
log2(log2 z)

log z
= limz→∞

4 log(log2 z)
ln z

= limz→∞
8

ln z
= 0.



O(n log∗ n) and, by iteratively applying the reduction step, for any two paths
of length at most n ending at given u and v we can in O(log∗ n) time either
compute their LCE, or reduce the query to computing the LCE of two paths of
length O(1), which can be computed naively in additional O(1) time.

To prove Theorem ??, we need to decrease the space usage from O(n log∗ n)
down to O(n). To this end, we create a smaller tree T ′ on O(n/b) nodes, where
b = log∗ n is the parameter of the difference cover, as follows. Every marked node
u ∈ T becomes a node of T ′. The parent of u ∈ T in T ′ is the node corresponding
in T ′ to the (b2)-th ancestor of u in T , which is always marked. Additionally,
we add one artificial node, which serves as the root of the whole T ′, and make
it the parent of all marked nodes at depth (in T ) less than b2. Now edges of T ′

correspond to paths of length b2 in T (except for the edges outgoing from the
root; we will not be using them). We need to assign unique names to these paths,
so that the names of two paths are equal iff the paths are the same. This can be
done by traversing the suffix tree of T in O(n) time. Finally, T ′ is preprocessed
by applying Lemma ?? O(log∗ n) times as described above. Because its size of
T ′ is just O(n/b), the total space usage preprocessing time is just O(n) now.

To compute the LCE of two paths of length ` ending at u ∈ T and v ∈ T , we
first compare their prefixes of length b2. If they are identical, by the properties
of the difference cover we can calculate d ≤ b2 such that the d-th ancestors of
both u and v, denoted u′ and v′, are marked, hence exist in T ′. Consequently, if
the prefixes of length `− d of the paths are different, we can calculate their first
mismatch by computing the first mismatch of the paths of length b(` − d)/b2c
ending at u′ ∈ T ′ and v′ ∈ T ′. This follows because every edge of T ′ corresponds
to a path of length b2 in T , so a path of length b(` − d)/b2c in T ′ corresponds
to a path of length belonging to [` − d − b2, ` − d] in T , and we have already
verified that the first mismatch is outside of the prefix of length b2 of the original
paths. Hence the first mismatch of the corresponding paths in T ′ allows us to
narrow down where the first mismatch of the original paths in T occurs up to b2

consecutive edges. All in all, in O(1) time plus a single path-path LCE query in
T ′ we can reduce the original query to a query concerning two paths of length
at most b2.

The final step is to show that T can be preprocessed in O(n) time and space,
so that the LCE of any two paths of length at most b2 can be calculated in
O(b) time. We assign unique names to all paths of length b in T , which can be
again done by traversing the suffix tree of T in O(n) time. More precisely, every
u ∈ T such that depth(u) ≥ b stores a single number, which is the name of the
path of length b ending at u. To calculate the LCE of two paths of length at
most b2 ending at u ∈ T and v ∈ T , we proceed as follows. We traverse both
paths in parallel top-down moving by b edges at once. Using the preprocessed
names, we can check if the first mismatch occurs on these b consecutive edges,
and if so terminate. Therefore, after at most b steps we are left with two paths
of length at most b, such that computing their LCE allows us to answer the
original query. But this can be calculated by by naively traversing both paths in
parallel top-down. The total query time is O(b).

To summarize, the total space and preprocessing time is O(n) and the query
time remains O(log∗ n), which proves Theorem ??.



5 Path-Tree LCE

In this section we prove the following theorem.

Theorem 2. For a tree T with n nodes, a data structure of size O(n) can be
constructed in O(n) time to answer path-tree LCE queries in O((log logn)2)
time.

The idea is to apply the difference covers recursively with the following lemma.

Lemma 4. For a tree T with n nodes and a parameter b, a data structure of
size O(n) can be constructed in O(n log n) time, so that given a path of length
` ≤ b ending at u ∈ T and a subtree rooted at v ∈ T we can reduce the query in
O(log log n) time so that the path is of length at most b4/5.

Proof. The first part of the structure is designed so that we can detect in O(1)
time if the path-tree LCE is of length at most b4/5. We consider all paths of
length exactly b4/5 in the tree. We assign names to every such path, so that
testing if two paths are identical can be done by looking at their names. Then,
for every node w we gather all paths of length b4/5 starting at w (i.e., w  v,
where w = LA(v,depth(v)−b4/5)) and store their names in a perfect hash table,
where every name is linked to the corresponding node w. This allows us to check
if the answer is at least b4/5 by first looking up the name of the prefix of length
b4/5 of the path, and then querying the perfect hash table kept at v. If the name
does not occur there, the answer is less than b4/5 and we are done. Otherwise, we
can move by b4/5 down, i.e., decrease ` by b4/5 and replace v with its descendant
of distance b4/5.

The second part of the structure is designed to work with the marked nodes.
We apply Lemma ?? with x = b2/5 and consider canonical paths of length i · x2
in the tree, where i = 1, 2, . . . ,

√
x, ending at marked nodes. The total number

of such paths is O(n/
√
x), because every marked node is the endpoint of at most√

x of them. We lexicographically sort all canonical paths and store the longest
common extension of every two neighbours on the global sorted list augmented
with a range minimum query structure. Also, for every marked node v and every
i = 1, 2, . . . , x, we save the position of the path LA(v,depth(v)− i · x2) v on
the global sorted list. Additionally, at every node u we gather all canonical
paths starting there, i.e., u v such that LA(v,depth(v)− i · x2) = u for some
i = 1, 2, . . . , x, sort them lexicographically and store on the local sorted list of u.
Every such path is represented by a pair (u, i). The local sorted list is augmented
with a predecessor structure storing the positions on the global sorted list.

Because we have previously decreased ` and replaced v, now by the properties
of the difference cover we can find d ≤ x2 such that the (`+d)-th ancestor of u and
the d-th ancestor of v are marked, and then increase ` by d and replace v by its d-
th ancestor. Consequently, from now on we assume that both LA(u,depth(u)−`)
and v are marked.

Now we can use the second part of the structure. If ` ≤ b4/5, there is nothing
to do. Otherwise, the prefix of length b`/x2c · x2 of the path is a canonical path
(because ` ≤

√
x ·x2), so we know its position on the global sorted list. We query

the predecessor structure stored at v with that position to get the lexicographical



predecessor and successor of the prefix among all canonical paths starting at v.
This allows us to calculate the longest common extension p of the prefix and
all canonical paths starting at v by taking the maximum of the longest common
extension of the prefix and its predecessor, and the prefix and its successor. Now,
because canonical paths are all paths of the form i·x2, the length of the path-tree
LCE cannot exceed p+x2. Furthermore, with a level ancestor query we can find
v′ such that the paths LA(u,depth(u)−`) LA(u,depth(u)−`+p) and v  v′

are identical. Then, to answer the original query, it is enough to calculate the
path-tree LCE for LA(u,depth(u)−`+p) LA(u,depth(u)−`+min(`, p+x2))
and the subtree rooted at v′. Therefore, in O(log log n) time we can reduce the
query so that the path is of length at most x2 = b4/5 as claimed.

To achieve O(n) construction time, we need to assign names to all paths of
length b4/5 in the tree, which can be done in O(n) by traversing the suffix tree
of T . We would also like to lexicographically sort all canonical paths, but this
seems difficult to achieve in O(n). Therefore, we change the lexicographical order
as follows: we assign names to all canonical paths of length exactly x2, so that
different paths get different names and identical paths get identical names (again,
this can be done in O(n) time by traversing the suffix tree). Then we treat every
canonical path of length i·x2 as a sequence of consisting of i names, and sort these
sequences lexicographically in O(n) time with radix sort. Even though this is not
the lexicographical order, the canonical paths are only used to approximate the
answer up to an additive error of x2, and hence such modification is still correct.

ut

We apply Lemma ?? with b = n, n4/5, n(4/5)
2

, . . . , 1. The total number of ap-
plications is O(log log n). Therefore, the total space usage becomes O(n log log n),
and by applying the reduction step iteratively, for any path of length n ending at
u and a subtree rooted at v we can compute the path-tree LCE in O((log log n)2)
time. The total construction time is O(n log log n).

To prove Theorem ??, we need to decrease the space usage and the construc-
tion time. The idea is similar to the one from Section ??: we create a smaller
tree T ′ on O(n/b) nodes, where b = log log n is the parameter of the difference
cover. The edges of T ′ correspond to paths of length b2 in T . We preprocess T ′

as described above, but because its size is now just O(n/b), the preprocessing
time and space become O(n).

To compute the path-tree LCE for a given path of length ` ending at u and a
subtree rooted at v, we first check if the answer is at least b2. This can be done
in O(log log n) time by preprocessing all paths of length b2 in T , as done inside
Lemma ?? for paths of length b4/5. If so, we can decrease ` and replace v with
its descendant, so that both LA(u,depth(u)− `) and v are marked, hence exist
in T ′. Then we use the structure constructed for T ′ to reduce the query, so that
the path is of length at most b2. Therefore, it is enough how to answer a query,
where a path is of length at most b2, in O(log log n) time after O(n) time and
space preprocessing.

The final step is to preprocess T in O(n) time and space, so that the path-
tree LCE of a path of length at most b2 and any subtree can be computed in
O(b) time. We assign unique names to all paths of length b in T . Then, for every
u we gather the names of all paths u v of length b in a perfect hash table. To



calculate the path-tree LCE, we traverse the path top-down while tracing the
corresponding node in the subtree. Initially, we move by b edges by using the
perfect hash tables. This allows us to proceed as long as the remaining part of
the LCE is at least b. Then, we traverse the remaining part consisting of at most
b edges naively. In total, this takes O(b) time. The space is clearly O(n) and the
preprocessing requires constructing the perfect hash tables, which can be done
in O(n) time.

5.1 Lower Bound

In this section, we prove that any path-tree LCE structure of sizeO(n polylog(n))
must necessarily use Ω(log log n) time to answer queries. As shown by Pǎtraşcu
and Thorup [?], for U = n2 any predecessor structure consisting ofO(n polylog(n))
words needs Ω(log log n) time to answer queries, assuming that the word size is
Θ(log n). In the full version of this paper, we show the following reduction, which
implies the aforementioned lower bound.

Theorem 3. For any ε > 0, given an LCEPT structure that uses s(n) = Ω(n)
space and answers queries in q(n) = Ω(1) time we can build a predecessor struc-
ture using O(s(2U ε + n log |U |)) space and O(q(2U ε + n log |U |)) query time for
any S ⊆ [0, U) of size n.

By applying the reduction with U = n2 and ε = 1/2, we get that an LCEPT

structure using O(n polylog(n)) space and answering queries in o(log log n) time
implies a predecessor structure usingO(n polylog(n)) space and answering queries
in o(log log(n)) time, which is not possible.

6 Tree-Tree LCE

The set intersection problem is defined as follows. Given a family S = {S1, . . . , Sk}
of sets of total size n =

∑k
i=1 |Si| the goal is to preprocess S to answer queries:

given two sets Si and Sj determine if Si ∩ Sj = ∅. The set intersection problem
is widely believed to require superlinear space in order to support fast queries.
A folklore conjecture states that for sets of size polylogarithmic in k, supporting
queries in constant time requires Ω̃(k2) space [?] (see also [?]).

We now consider the LCETT problem. In the full version of this paper we
show that the problem is set intersection hard and give a time-space trade-off
as stated by the following theorems:

Theorem 4. Let T be a tree with n nodes. Given an LCETT data structure that
uses s(n) space and answers queries in q(n) time we can build a set intersec-
tion data structure using O(s(n)) space and O(q(n)) query time, for input sets
containing O(n) elements.

Theorem 5. For a tree T with n nodes and a parameter τ , 1 ≤ τ ≤ n, a data
structure of size O(nτ) can be constructed in O(nτ) time to answer tree-tree
LCE queries in O(n/τ) time.
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