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ABSTRACT 

Upward expectations of future electric vehicle (EV) growth pose the question about the future 

load on the electricity grid. While the literature on demand side management of EV charging has 

focused on technical aspects and considered EV-owners as utility maximizers, this study looks at 

the neglected psychological dynamics of EV-owners facing charging decisions and interacting 

with the supplier. This study represents these dynamics by proposing a behavioral framework of 

utility maximization under myopic loss aversion within an ultimatum two-player game 

framework. The EV-owner and the electricity supplier are the two players, the EV-owner faces 

three decisions (i.e., whether to postpone the charging to off-peak periods, which discount to 

request to the supplier for off-peak charging, which discount to accept for supplier-controlled 

charging), and there are two contract durations where the EV-owner decides daily (short-term) or 

weekly (long-term). The experimental analysis included six treatment conditions from the 

combinations of the three decisions with the two contract durations, and results showed that: (i) 

EV-owners perform charging choices not as pure utility maximizers, but are affected by myopic 

loss aversion resulting from monetary considerations as well as the ultimatum game with the 

supplier; (ii) EV-owners are open towards centralized smart-grid strategies optimizing the load 

on the grid from a system optimum perspective; (iii) the frequency of charging decisions (daily 

versus weekly contract) favors on the one hand utility maximization behavior of EV-owners and 

induces on the other hand myopia with a favorable cost minimization for the supplier.     
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INTRODUCTION 

While the market penetration of electric vehicles (EVs), including battery electric vehicles 

(BEVs), plug-in electric vehicles (PEVs), and plug-in hybrid electric vehicles (PHEVs), has been 

negligible so far because of high unit costs, limited driving range, and lack of recharging 

infrastructure, upward expectations exist for a future rapid EV growth following battery 

technology innovation and governmental commitment to EV promotion through investments, 

legislation, and taxation policies (e.g., 1, 2). While studies predict market shares around 4%-10% 

for BEVs and PHEVs by 2020 as reasonable (e.g., 2, 3, 4), demand assessments suggest 

dominant market shares for EVs and PHEVs by 2030-2050 in both Europe and the U.S. (e.g., 4, 

5, 6, 7). In Denmark, the future demand for EVs is estimated between 48% and 72% for new car 

buyers (5). In Belgium, a market share of 44% for BEVs and PHEVs could be attained by 2030 

(4). In Iceland, EVs are expected to achieve between 48% and 93% of the total vehicle fleet by 

2030 (6). In the U.S., EVs are estimated to achieve a market share exceeding 20% by 2030 and 

reaching 70%-80% by 2050 (7).  

The future EV growth is expected to significantly load the electricity power grid. Even 

modest EV shares (20-25% of the total vehicle fleet) are expected to increase the electricity load 

by roughly 30% (8). Home EV charging is very important for the demand side management 

(DSM) of the electricity load, because both home charging availability relates to a higher 

likelihood of EV purchase and charging times occur off-peak overnight (7). Nevertheless, a 

major challenge in home EV charging is the scheduling to avoid congestion on the electricity 

grid. A recent survey in California has in fact showed that most EV charging is likely to start at 

7pm during weekdays, namely during the seasonal peak electricity demand period (9). DSM of 

EV charging in a smart grid by encouraging EV-owners to change their charging patterns in 

response to changes in the electricity prices is viewed as a possible solution to avoid grid 

overload at demand peak hours and to delay the need for investments in increasing the grid 

capacity (10). 

An ample body of research has addressed DSM from the economic and the logistic 

perspective. Economic studies focused on comparing smart and regular grid charging strategies 

while considering potential demand scenarios, centralized versus decentralized supplier 

electricity control, technological solutions for vehicle-to-grid (V2G) communication, time-of-use 

(TOU) pricing schemes and mobility patterns. Economic evaluations showed that cost savings 

for the customers and the suppliers are achieved with smart EV charging: smart charging grids in 

Finland produced benefits of 227 EUR per vehicle per year (11); shifting charging from peak to 

off-peak in the U.S. generated savings ranging from $1.1 billion to $5.1 billion per year (12); 

price-responsive charging strategies in Singapore turned estimated losses of 1000 SGD per 

vehicle per year into estimated profits of 21-130 SGD (13). Logistic studies concentrated on the 

optimization of EV charging from the system perspective while considering TOU pricing 

schemes, mobility patterns, and supplier’s degree of system control, and controlling for 

constraints related to battery storage capacity and penalties for unserved driving needs: agent-

based micro-simulation models estimated electricity prices varying with mobility behavior and 

optimal charging costs (14) and analyzed electricity demand considering EV potential demand 

and price schemes (15); optimization algorithms proposed efficient EV charging scheduling 

under system optimization or user utility maximization (e.g., 16, 17).  
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The major limitation in the aforementioned model lies in their focus being technical 

rather than socio-technical. EV-owners are assumed to be utility maximizers when facing long-

term charging decisions, without stated-preference (SP) or revealed-preference (RP) surveys 

supporting this assumption. Psychological dynamics of EV-owners facing short-term versus 

long-term charging decisions and interacting with the supplier are neglected, as the only 

psychological aspects concern social etiquette (18) and resource replenishing behavior (19). This 

study contributes to the body-of-knowledge concerning EV charging by addressing these 

dynamics that are relevant to the DSM contract selection and, as the results show, are 

fundamental to the development of realistic agent-based and optimization models not affected by 

common psychological biases. This study addresses three key decisions by EV-owners: (i) 

whether to postpone the charging to off-peak periods; (ii) which discount to request to the 

supplier for off-peak charging; (iii) which discount to accept for supplier-controlled charging 

instead of own volitional control. Moreover, this study considers these decisions within two 

contract durations: (i) a daily contract where EV-owners may adapt their charging decision on 

the basis of immediate off-peak mobility needs; (ii) a weekly contract where EV-owners make a 

charging decision for a fixed time period. In a user-controlled system, EV-owners feel volitional 

control and a user utility maximization solution is obtained, while in a supplier-controlled system 

a system optimum solution can be reached. Accordingly, the contract selection requires 

bargaining between EV-owner and supplier, during which the EV-owner considers satisfaction 

related to volitional control, possible discounts proposed for off-peak charging, ability to reach 

an agreement based on the supplier’s acceptance of the discount, and potential losses for 

unforeseen mobility needs during off-peak periods.  

With the intention to represent EV-owners’ charging decisions under these conditions, 

this study presents a novel behavioral framework of utility maximization under myopic loss 

aversion (MLA) in the context of an ultimatum game (UG). MLA combines the two concepts of 

loss aversion and mental accounting that lead individuals to risk averse behavior in short-term 

decisions (20). A UG is a sequential bargaining zero-sum game between two players (the 

proposer and the responder) bargaining over sharing a sum of money: the proposer presents a 

proposal about the sharing of the money, and the responder accepts or rejects the proposed shares 

(21). The behavioral framework leads to empirical stated-preference experiments covering six 

treatment conditions from the combinations of the three decisions with the two contract durations 

and verifying the manifestation of myopic behavior related to either the evaluation of the 

monetary gains or the participation in the bargaining. The novelty of the behavioral framework is 

not restricted to EV charging decisions: (i) while previous studies on MLA considered a single 

individual, this is the first study exploring MLA within a two-player UG and hence investigating 

MLA as related not only to the individual’s gains or losses, but also to the individual’s 

cautiousness in the proposal because of the need to consider the responder’s strategy (22); (ii) 

while previous studies on MLA considered only monetary decisions, this is the first study 

researching MLA for time-based decisions and hence looking into mental accounting for time as 

possibly similar to the one for money (23). 

The paper is structured as follows. The next section presents the proposed behavioral 

framework. The following sections introduce the experimental design and illustrate the results of 

the three experiments on EV charging decisions. The last section draws conclusions and suggests 

policy implications. 
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BEHAVIORAL FRAMEWORK 

This study proposes a novel behavioral framework involving utility maximization under MLA in 

the context of a UG.  

MLA combines the two concepts of loss aversion and mental accounting, where loss 

aversion is the tendency of individuals to be more sensitive to losses than gains and mental 

accounting is the cognitive activity that individuals perform to evaluate alternatives and take 

decisions (20). In the literature, MLA refers typically to the way individuals evaluate a sequence 

of long-term risky investments that can also be evaluated in the short-term (20, 24): myopic 

individuals evaluate the investments independently and reject them if each risky investment is 

separately unattractive, while non-myopic individuals evaluate the sequence in its entirety and 

reject the investments only if the aggregated net return is unattractive (24). Accordingly, MLA 

implies that individuals reach different decisions according to the problem framing. Lessening 

MLA requires limiting evaluation frequency (i.e., the time horizon for investment evaluation) 

and increasing decision flexibility (i.e., the individual has more ability to adjust the decision).  

A UG is a sequential bargaining zero-sum game where the proposer and the responder are 

two players who bargain on sharing a sum of money: the proposer decides how the money is 

shared between the two players, and the responder decides to accept or reject the proposed shares 

(21). Accepting implies that each player earns the agreed share, while rejecting entails no 

earnings for both players. The classical game theory prediction for the bargaining equilibrium 

solution is that the responder accepts any positive share, regardless of its amount, since this 

positive share is better than the zero earning associated to the rejection (ceteris paribus), while 

the proposer expects the responder to act as a rational utility maximizer by offering the smallest 

positive share. The actual observation of empirical evidence suggests that the amounts proposed 

and rejected are affected by additional factors such as emotions, feeling of fairness, sense of 

punishment, sense of reciprocity and, to a lesser extent, demographic and cultural variables (e.g., 

25, 26).  

Consider an individual facing the decision between a first option having cost c at time t 

and a second option having cost (c – g) at time (t + Δt), and hence having a potential gain g from 

the second option. The gain is potential because the individual is the proposer in a UG where the 

other player (the responder) earns the cost paid: the individual proposes a value g for choosing 

the second option, and the responder decides whether to accept or reject the proposal. From the 

proposer perspective, the acceptance implies a cost (c – g) and hence a gain g, while the rejection 

entails no gain and a default saving s. From the responder perspective, the acceptance implies 

lower revenue by the amount g with respect to the rejection. Given the UG, the individual faces 

two decisions: (i) whether to present the proposal to the responder; (ii) if presenting the proposal, 

which amount g to propose. Thus, the individual perceives two contrasting motivations towards 

proposing on the one hand a higher amount, as a higher proposal implies a higher expected gain, 

and on the other hand a lower amount, as a higher proposal entails also a lower acceptance 

probability θ of the responder. Moreover, in the case the responder accepts and the individual 

postpones the decision by Δt, a probability α exists that an unforeseen event occurs at an extra 

cost e equal to (g + s) for the individual.  

Accordingly, there are four possible outcomes from the decision of the individual to 

present the proposal, the decision of the individual about the amount g, the acceptance 

probability θ of the responder, and the occurrence probability α of an unforeseen event:  
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 the individual does not present the proposal, and hence experiences cost c and default 

saving s at time t; 

 the individual proposes an amount g that is rejected by the responder, and hence 

experiences cost c and default saving s at time t; 

 the individual proposes an amount g that is accepted by the responder and no unforeseen 

occurs, and hence experiences cost (c – g) and extra saving g at time (t + Δt); 

 the individual proposes an amount g that is accepted by the responder but an unforeseen 

event occurs, and hence experiences cost (c – g + e) and no saving at time (t + Δt). 

The behavioral framework assumes that the individual maximizes the utility U(g): 

      1 1U g g s e g               (1) 

where the first term represents the utility from the gain g given the responder acceptance of the 

proposal and the non-occurrence of the unforeseen event, the second term represents the utility 

from the saving given the responder rejection of the proposal, and the third term represents the 

disutility (hence the negative sign) from the extra cost for the occurrence of the unforeseen event.  

The acceptance probability θ of the responder depends on the amount g proposed by the 

individual and it is assumed without loss of generality to have a uniform distribution: 

0

0

for g c

c g
for g c

c






 
 



        (2) 

Intuitively, the probability θ is inversely related to the proposed amount g in its being higher for 

lower values of g, it is equal to 0 when the proposed amount g is equal or higher than the cost c, 

since the responder will never accept not to earn anything, and it is equal to 1 when the proposed 

amount g is equal to 0, since the responder will always accept to earn the full cost c. 

Given the expression of the acceptance probability θ, the individual maximizes the 

utility:  
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      (3) 

Notably, this expression shows the trade-off for the individual facing the decisions of presenting 

the proposal and eventually choosing the amount g: the incentive for the individual to demand a 

higher amount g in order to maximize the utility is compensated by the higher chance of 

rejection of the proposed amount. 

Consider now that the individual repeats N decisions and might exhibit myopic loss 

averse behavior possibly related to either the evaluation of gains and losses over the N decisions 

or the cautiousness in the bargaining with the responder. Given that the behavioral framework 

represents utility maximizers under MLA within an ultimatum game, there are four boundary 

conditions: (i) non-myopic behavior without UG framework; (ii) non-myopic behavior within the 



Gebeyehu M. Fetene, Sigal Kaplan, Alexander C. Sebald, and Carlo G. Prato 7 

UG framework; (iii) myopic behavior without UG framework; (iv) myopic behavior within the 

UG framework. 

The first boundary condition implies that the individual has a degree of loss aversion λ 

(24) and the responder accepts any proposed amount g (θ = 1). Accordingly, the individual 

maximizes the utility: 

        1 1U g g e g g e                    (4) 

The non-myopic individual maximizes the utility by proposing always the maximum possible g 

equal to c, and is indifferent for g equal to (1 - α)eλ / (α + λ - αλ). 

 The second boundary condition differentiates from the first only in generalizing the 

expression of the probability θ, thus the individual maximizes the utility: 
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1

1
1

c g g c g
U g g s e g

c c c

s e
g g e

c c

  

    
    

 
    

    
       

 

   (5) 

Notably, the utility formulation implies that the higher is the degree of loss aversion λ, the lower 

is the expected maximized value of the utility function, ceteris paribus, since the loss aversion 

affects only the disutility from the occurrence of the unforeseen event.  

 The third boundary condition entails that the individual has a myopic behavior and the 

responder accepts any proposed amount g (θ = 1). Considering each occurrence v of the 

unplanned event over the N decisions, the individual maximizes the utility: 

     
0

[ 1 ( ) ( ) ]
N

vN v

v

U g a N v g v e g 



          (6) 

where the parameter β corresponds to the degree of loss aversion λ if (N – v)g – v(e – g) < 0, and 

1 otherwise.  

 The fourth boundary condition corresponds to the most generic expression where not 

only the individual has a myopic behavior, but he also participates to the UG, thus maximizing 

the utility: 

     
0

[ 1 ( ) ( ) ]
N

vN v

v

c g Ngs
U g a N v g v e g

c c
 



 
      

 
    (7) 

Last, the behavioral framework differentiates between proposer-controlled and 

responder-controlled environments. In the former environment, the individual has full 

information and control over the two options, and the probabilities θ and α represent respectively 

the aforementioned acceptance probability of the responder and the occurrence probability of the 

unforeseen event. Accordingly, it is possible to interpret the behavior of the individual as risk 

averse, neutral or prone. In the latter environment, the individual is aware of the first option, but 

the responder controls the second option in terms of time Δt and cost (c – g). Accordingly, it is 

possible to interpret the behavior of the individual as ambiguity averse, neutral, or prone, as the 

probability θ represent the value of letting the control to the responder rather than selecting the 

only known option. 
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EMPIRICAL ANALYSIS 

The experimental analysis focused on testing the proposed behavioral framework in the context 

of EV charging decisions. Specifically, the underlying hypothesis was that EV-owners are not 

purely utility maximizers, but they are utility maximizers under MLA within a UG framework: 

the EV-owner is the proposer who faces N decisions about postponing the charging from the 

peak hour t to the off-peak hour (t + Δt) and proposing a discount g on the charging cost c to the 

responder; the electricity supplier is the responder with probability θ of accepting the discount g; 

an unplanned trip occurring before the completion of the postponed charging is the unforeseen 

event with probability α of occurring and extra cost e for a taxi.   

Experimental design 

The experiment was conducted with the Z-tree program (27) at the Centre for Experimental 

Economics (CEE) of the University of Copenhagen among a sample of 147 individuals recruited 

within the CEE registered panel. In terms of socio-demographics, 42.2% of the participants were 

women, the average age was 26.7 years, and the average monthly income was 1430 USD. In 

terms of education, 25.9% of the participants had a Bachelor degree and 66.7% had a Master 

degree. In terms of employment, 21.1% of the participants were unemployed, 38.1% were 

students, 29.9% were students with also an employment, and 10.9% were employees. The 

participants had previously participated in 2.8 experiments on average.  

An SP experiment was designed to investigate utility maximization under MLA within a 

UG framework. Since SP experiments are susceptible of incentive compatibility bias associated 

to respondents not bearing the consequences of their choices, and since associating hypothetical 

decisions with actual transactions is known to mitigate this bias (28), the experiment involved 

actual monetary gains for the participants according to their decisions. Participants earned tokens 

during the experiment and converted them to cash after its conclusion. They were informed that 

the compensation would vary between 10 USD, representing a show up fee, and 87 USD, 

representing the total possible earnings from optimal choices. Participants actually earned 

between 17 and 51 USD for an average earning of 28 USD in an average duration of 50 min, 

above the hourly wage for a student job varying between 20 and 24 USD. 

Participants were instructed to assume to be EV-owners with home EV charging 

availability and battery charging time equal to 2 hours. Socio-demographic information was 

collected, but they were given the same income (110 tokens per day) and mobility pattern in 

order to avoid biases deriving from heterogeneity in value-of-time and travel activity during peak 

and off-peak hours. Participants were informed that the car battery empties every day at 6pm 

when they return home from their mandatory and non-mandatory daily activities, and requires 

charging before the next mandatory trip the following day at 9am.  

Participants faced the decision about whether to pay the amount c for EV charging at 

time t (6pm) or requesting a discount g to the supplier for postponing the charging by Δt, given 

that the electricity price depends on the charging hour. Participants entered a UG that was set up 

by allowing for the probability θ that the supplier accepts the discount g for postponing the EV 

charging to off-peak hours and hence reducing the grid load, and setting the acceptance or 

rejection of the amount g and time Δt by the supplier to be compared against randomly drawn 

threshold values. Participants were informed that, in the case that the supplier agrees with 

postponing the EV charging, there is a probability α that an unplanned trip will occur before the 

charging is completed and hence they will have to pay an extra cost e for a taxi ride. The 
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participants were also informed about general conditions: the supplier does not influence the 

occurrence probability α of the unplanned trip; charging days are independent and hence both 

probabilities θ and α do not depend from previous decisions of the same participant as well as 

decisions of other participants; daily earnings are independent and hence outcomes are 

unaffected by the ones of the same participants in previous days as well as the ones of other 

participants; decisions are taken individually with participants unaware of the decisions of their 

peers.   

Each participant took part in one of six treatment conditions resulting from the 

combinations of three decisions and two contract durations (24-25 participants per condition). 

The assignment to the treatments was completely randomized. The three decisions concerned (i) 

the willingness to postpone the charging time, (ii) the discount asked to the supplier for 

postponing the charging, and (iii) the willingness to accept supplier-controlled charging. The two 

contract durations were (i) daily, where the participants performed 24 decisions representing 24 

charging days, and (ii) weekly, where the participants performed only 3 decisions over the 24 

charging days (i.e., on days 1, 9 and 17) and each decision was valid for the next 8 charging 

days. The two contract durations were deemed suitable to elicit myopic versus non-myopic 

behavior because habitually MLA is tested for 1-day versus 3-day rounds (29). The information 

about the outcome and the corresponding daily earnings was different according to the contract: 

(i) 24 daily rounds were sent to participants in the daily contracts; (ii) both 3 weekly and 24 daily 

rounds were sent to participants in the weekly contract. Before starting the experiment, 

participants answered four control questions to make sure that the level of understanding of the 

experiment was uniform, and clarifications were given to the small minority not answering 

correctly to these questions.  

Experiment 1: Willingness to postpone the charging time 

Procedure 

Participants were requested to choose between charging upon arrival home at the peak hour t 

(6pm) or postponing the charging to off-peak hour (t + Δt). Charging at peak hour t costs c equal 

to 100 tokens (default saving s equal to 10 tokens), but it is risk-free because the supplier always 

accepts its maximum revenue and there is no possibility of unplanned trip. Postponing the 

charging to off-peak hour (t + Δt) costs (c – g) where the discount g is always 25 tokens 

regardless of the time Δt, and it is risky because the supplier may reject the proposal since the 

discount is available only in certain hours randomly selected by the supplier from a uniform 

distribution. A random number was drawn to simulate the acceptance or rejection by the 

supplier: if rejected, the participant was required to pay full price c and recharge at 6pm; if 

accepted, the occurrence probability α of an unplanned trip existed. The probability depends on 

the charging hour, with the occurrence risk increasing linearly by 2% every 15 minutes. 

Participants were fully informed about the occurrence probability α of an unplanned trip prior to 

making the decision and about the taxi fee being e equal to 35 tokens (i.e., the discount g plus the 

saving s). A random number, independent from the previous one, was drawn to simulate the 

occurrence or not of the unplanned trip. 

In this first experiment, the longer the participants postponed the charging hour, the more 

likely they were going to obtain the discount g in the negotiation with the supplier, but also the 

more likely they were going to need a taxi because of the higher occurrence probability of an 

unplanned trip. This experiment was administered to two groups with daily and weekly contract 
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conditions. Notably, in time-based decisions where respondents are asked to choose between a 

smaller immediate reward (i.e., the saving s of 10 tokens for immediate charging) or a larger 

delayed reward (i.e., the saving (g + s) of 35 tokens for postponed charging), a temporal 

discounting bias may lead to choosing the immediate reward (30). With the aim of lessening this 

bias and avoid temporal discounting, all the participants received their cash payments only at the 

end of the experiment.  

Results  

Table 1 presents the results of the experiment for the two contract conditions. Overall, results 

illustrate willingness to postpone the EV charging in order to obtain the proposed discount of 

25% while risking losses because of a possible unplanned trip before the charging was 

completed. Peak hour charging, corresponding to a sure saving of 10 tokens and zero probability 

of an unplanned trip, was chosen only in 63 days (5.7% of the charging days). 

TABLE 1  Willingness to Postpone the EV Charging Time  

 
Average charging hour including  

the risk-free option  

(average acceptable risk of an unplanned trip) 

Share of days with the risk-

free option of charging at 

6pm for a fee of 100 tokens 

Money earned 

Round 
Daily 

contract 

Weekly 

Contract 

Mann-

Whitney test 

 
Daily 

contract 

Weekly 

Contract 

Daily 

contract 

Weekly 

Contract 

1 
22:12 

(37.8%) 

22.07 

(33.8%) 
Z=0.596  18.2% 8.3% 14.0 18.0 

1-8 
11:42 

(46.2%) 

22:07 

(33.8%) 
Z=6.452 

***
 5.1% 8.3% 13.0 14.5 

9-16 
11:56 

(47.5%) 

23:10 

(41.4%) 
Z=2.382 

**
 1.7% 8.3% 13.0 14.0 

17-24 
11:54 

(47.2%) 

23:32 

(44.3%) 
Z=0.456  1.7% 8.3% 11.7 11.7 

all 
11:50 

(47.0%) 

22:56 

(40.0%) 
Z=5.670 

***
 3.0% 8.3% 12.5 13.3 

Note:
*
significant at the 0.10 significance level, 

**
significant at the 0.05 significance level, 

***
significant at the 0.01 

significance level. 

In this first experiment, the supplier’s acceptance rate depends on the EV-owner’s risk 

level. Utility maximization disregarding myopia and the “cautious player” property would lead 

to postponing the charging to 10.30pm, corresponding to a 27.8% risk of an unplanned trip and a 

27.8% supplier’s acceptance probability. Compared with utility maximization, the participants 

reflect a “cautious player” behavior, namely risk aversion to the possibility that the supplier 

might reject the proposal, which turns in risk proneness to the unplanned trip. Participants tried 

to be eligible for discount by postponing EV charging to a later hour while assuming higher risk 

of an unplanned trip. Compared to participants in weekly contracts, the participants in daily 

contracts showed myopia in taking higher risk aversion towards supplier rejection by both 

postponing more trips to off-peak hours and selecting later hours for EV charging. The total 

average gain of the daily contract is 305.20 tokens, versus 323.27 tokens for the weekly contract 

and 323.33 tokens for the optimal utility maximizer. These results suggest that participants in 

weekly contracts approximate utility maximization, while myopic participants in daily contracts 
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have sub-optimal behavior from their perspective, although favorable outcomes from the grid 

load perspective.   

Experiment 2: Acceptable discount for postponing the charging time  

Procedure 

Participants were requested to select the amount g for postponing the EV charging from the peak 

hour t (6pm) to the off-peak hour (t + Δt). As in the first experiment, charging at peak hour t 

costs c equal to 100 tokens and it is risk-free because the supplier always accepts its maximum 

revenue and there is no possibility of unplanned trip. In this second experiment, the off-peak 

hour (t + Δt) is always 11pm and the discount g is variable, hence the cost (c – g) depends on the 

decision of the participant.  

Off-peak charging bears two risks. The first risk is the rejection by the supplier who sets 

a random maximum value in order for the participant to be eligible for a discount. A random 

number was drawn to simulate whether the proposed g was lower or equal to the supplier’s 

threshold and hence the discount was accepted by the supplier, with saving (g + s) for the 

participant from the postponed charging. If the discount was rejected, the participant was 

required to pay full price c and recharge at 6pm. The second risk is the occurrence of an 

unplanned trip before the EV charging is completed that participants were informed to have 

probability α equal to 66.67% and cost e equal to 35 tokens. Notably, the occurrence probability 

α does not depend on the supplier, the proposed discount g, or the decisions of the other 

participants. A random draw, independent from the previous one, was drawn to simulate the 

occurrence or not of the unplanned trip. This experiment was administered to two groups with 

daily and weekly contract conditions. 

Results  

Table 2 presents the results of the experiment for the two contract conditions. Overall, results 

show willingness to postpone the EV charging to 11pm in exchange for a monetary gain while 

risking losses because of a 66.67% probability of occurrence of an unplanned trip before the EV 

was recharged. Peak hour charging was chosen only in 145 days (11.0% of the total charging 

days), although guaranteeing a saving s of 10 tokens and no risk of unplanned trip. The share of 

risk-free choices is higher in this second experiment than in the first. Also, although in the first 

experiment participants were willing to postpone the charging to 12am in the daily contract and 

to 11pm in the weekly contract for a discount equal to 25% of the charging fee, in this second 

experiment participants demanded a greater discount for their willingness to postpone the 

charging to 11pm. Given the random assignment of participants to the treatments and the same 

income and activity pattern, there is no reason for a systematic difference in the participants, and 

hence these findings suggest that either the participants assigned value to the perceived 

behavioral control over their choices or they were affected significantly by the probability of the 

unplanned trip. Given that participants agreed to supplier-controlled charging in the third 

experiment, the second reason seems more likely, also because in the first one the average risk of 

unplanned trip was assumed to be less than 50%, while the average risk was 66.67% in the 

second one. Aversion to high risk of unplanned trip might have led not only to a higher share of 

risk-free choices, but also a higher amount g for postponing to the same or earlier charging than 

in the first experiment, thus suggesting the importance of EV availability for mobility needs. 
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Compared to participants in weekly contracts, participants in daily contracts reflect a 

“cautious player” behavior in choosing the risk-free option in a higher share of days and being 

risk averse to the possibility that the supplier might reject their proposal. Namely, participants 

tried to be eligible for discount by requesting lower amounts for postponing their charging while 

assuming a 66.67% risk of an unplanned trip. The total average gain of the daily contract is 

264.50 tokens, compared to 304.50 tokens for the weekly contract and 425.50 tokens for the 

optimal utility maximizer, suggesting a much larger extent of the myopia leading to sub-optimal 

behavior from the EV-owner perspective and cost minimization benefit from the supplier 

perspective.  

TABLE 2 Acceptable Discount for Postponing the Charging Time to 11pm 

 

Average discount requested in tokens 

(including the risk-free option) 

 
Share of days with the risk-

free option of charging at 

6pm for a fee of 100 tokens 

Money earned 

Round 
Daily 

contract 

Weekly 

Contract 

Mann-

Whitney test 

 
Daily 

contract 

Weekly 

Contract 

Daily 

contract 

Weekly 

Contract 

1 38.0 33.8 Z = 0.367  11.1% 17.9% 13.0 14.3 

1-8 36.6 38.5 Z = -0.130  9.3% 17.9% 10.2 12.2 

9-16 34.6 39.7 Z = -2.139 
**

 17.6% 0.0% 10.7 13.2 

17-24 34.7 41.0 Z = -2.640 
***

 18.1% 3.6% 12.2 13.9 

all 35.3 39.7 Z = -2.788 
***

 15.0% 7.1% 11.1 13.1 

Note:*significant at the 0.10 significance level, **significant at the 0.05 significance level, ***significant at the 0.01 

significance level 

Experiment 3:  Acceptable discount for supplier-controlled charging 

Procedure 

Participants were requested to choose the amount g upon agreeing to supplier-controlled 

charging in which the supplier decides the optimal charging hour with the aim of optimizing the 

grid load. Participants could also opt for EV charging at peak hour t at the full cost c equal to 100 

tokens and hence do not experience any risk. Participants were informed that the supplier could 

charge their vehicle at 6pm, 11pm, or 3am, and could decide to let the supplier decide, thus 

reflecting their inconvenience due to the lack of behavioral control and the ambiguity associated 

with the supplier-controlled charging.  

The second option of agreeing to supplier-controlled charging bears two risks. The first 

risk is that the supplier rejects the proposal because the amount g is deemed unprofitable. The 

participants were informed that the supplier sets a random maximum value to be eligible for 

discount, and a random number draw simulated whether the proposed discount g is lower or 

equal to the supplier’s threshold. If it is lower or equal, then the discount is granted and the daily 

earnings are (g + s), otherwise the participants need to charge at 6pm at full price c. The second 

risk is that, when the supplier charges the EV at 11pm or 3am, there is an occurrence probability 

α of an unplanned trip before completion of the charging. This probability α did not depend on 

the supplier, the proposed discount g, or the decisions of other participants, but depended on the 

charging hour (the later is the charging hour, the higher is α). A random draw, independent from 
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the previous one, simulated the occurrence or not of the unplanned trip that implied a taxi fee e 

equal to (g + s) to annul every earning for the day. This experiment was administered to two 

groups with daily and weekly contract conditions. 

Results  

Table 3 presents the results of the third experiment for the two contract conditions. Results 

illustrate the willingness to concede control to the supplier over the scheduling of EV charging in 

exchange for a monetary amount g and hence to agree not to know about the charging hour and 

the probability of an unplanned trip. Peak hour charging was chosen only in 60 days (5.4% of the 

total charging days) regardless of the sure saving s of 10 tokens and the risk-free conditions. 

Practically, the participants were willing to wave their perceived behavioral control and deal with 

an ambiguous and ill-defined EV charging environment where the supplier has complete control. 

Interestingly, the share of risk-free charging days was similar to the first experiment and lower 

than the second one, reflecting the possibility that the participants hypothesized the risk of an 

unplanned trip being lower than 50%.  

Compared with the participants in weekly contracts, participants in daily contracts 

reflected higher “ambiguity aversion” in that they had a higher share of risk-free days and 

demanded higher amounts g for willing to accept an ambiguous supplier-controlled charging 

environment. The “ambiguity aversion” in this third experiment is a more dominant behavioral 

rule over the “cautious player” behavior observed in the previous two experiments. Also, the 

weekly contract produces a favorable outcome in terms of costs assumed by the supplier.  

TABLE 3  Acceptable Discount for Supplier-Controlled Charging 

 Average discount requested in tokens 

Share of days with the risk-

free option of charging at 

6pm for a fee of 100 tokens 

Money earned  

in tokens per round 

Round 
Daily 

contract 

Weekly 

Contract 

Mann-

Whitney test 
 

Daily 

contract 

Weekly 

Contract 

Daily 

contract 

Weekly 

Contract 

1 32.9 32.9 Z = -0.056  10.0% 19.2% 20.5 15.2 

1-8 34.4 32.9 Z = 0.267  5.0% 19.2% 16.9 16.0 

9-16 38.2 38.0 Z = 0.152  5.6% 0.0% 14.5 17.2 

17-24 44.6 39.2 Z = 3.350 
*** 

2.0% 0.0% 19.4 15.1 

All 39.1 36.7 Z = 2.141 
**

 4.2% 6.4% 16.9 16.1 

Note:*significant at the 0.10 significance level, **significant at the 0.05 significance level, ***significant at the 0.01 

significance level 

CONCLUSIONS 

This study proposes a novel behavioral framework representing utility maximization under MLA 

in the context of a two-player UG and presents an application to represent the charging decisions 

of EV-owners. The EV-owners’ charging choice behavior is explored for three stipulated choices 

(willingness to postpone their charging to off-peak hours, requested discount fee for off-peak 

charging, and requested discount fee for accepting supplier-controlled charging) and two contract 

conditions (daily and weekly) by means of an SP experimental analysis.  
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A word of caution is warranted for result interpretation and policy implementation. 

Firstly, this study was conducted in laboratory conditions and although it controlled for incentive 

compatibility and temporal discounting biases, the conditions do not reflect the actual electricity 

costs and mobility needs. Secondly, this study assumes a stylized experimental design with 

population homogeneity in terms of value of time, mobility needs, battery charging preferences, 

car availability and size. Thirdly, this study was conducted with participants without prior 

experience as EV-owners or users, while a recent study shows that EV user experience results in 

attitudinal change in SP choice experiments (31). Last, the decisions in the experiment were 

taken individually and the participants were unaware of the decisions of their peers, while in 

reality word-of-mouth is a powerful market force. Therefore, the results should be viewed as an 

indicative or diagnostic tool rather than a statistical analysis of the prevalence of the identified 

themes across the population of potential EV-owners and cannot be readily extended for the 

purpose of demand analysis.  

Bearing these limitations in mind, this study provides valuable insights for decision-

makers and planners in the transportation and energy fields and these insights may be integrated 

into agent-based and optimization models relying on behavioral rules regarding EV-owners’ 

charging behavior.  

Firstly, the empirical results show high willingness of EV-owners to postpone charging 

hour from peak to off-peak hours as well as to concede control of the charging environment to 

the supplier. This finding indicates consumer openness towards centralized smart-grid strategies 

that can optimize the load on the electricity grid from a system optimum perspective. A discount 

of 25% on the full charging fee is deemed highly attractive for postponing the charging hour to 

off-peak period (between 11pm and 12am) while assuming between 40% and 47% of a risk of an 

unplanned trip with a cost of 35% of the charging fee. The requested discount for a supplier-

controlled environment in which the charging hour and the risk of an unplanned trip are 

unknown to the EV-owner varies between 35% and 40%, which indicates the value of 

inconvenience due to ambiguity.  

Secondly, the empirical results confirm the proposed behavioral model indicating that 

EV-owners take their decisions about EV charging hours according to utility maximization under 

MLA in the context of a UG. This behavior translates into risk aversion because of the MLA and 

the “cautious player” property, as well as the “ambiguity aversion” in the case of ill-defined 

supplier-controlled charging environment. This behavioral model could be considered to 

substitute the unrealistic and yet constantly used utility maximization in future agent-based and 

optimization models aiming at providing the system optimum electricity load.  

Last, the type of contract conditions and hence the frequency of charging decisions (daily 

versus weekly) is related to utility maximization under MLA in the context of a two-player UG 

and can be used to either encourage consumer’s utility maximization or supplier’s cost 

minimization. Participants in the weekly contracts approximate utility maximization (especially 

in the decision to postpone or not the charging), while the myopia of the participants in the daily 

contracts leads to sub-optimal behavior from the EV-owner perspective but also to favorable 

outcomes in terms of grid load from the electricity supplier perspective. Compared to 

participants in weekly contracts, participants in daily contracts were willing to postpone their 

charging to a later off-peak hour and requested lower compensation for postponing their 

charging hour, but in contrast they showed higher ambiguity aversion and requested higher 

compensation for supplier-controlled charging.     
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