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Abstract

This study is concerned with the challenge of automatically
segregating a target speech signal from interfering background
noise. A computational speech segregation system is presented
which exploits logarithmically-scaled amplitude modulation
spectrogram (AMS) features to distinguish between speech and
noise activity on the basis of individual time-frequency (T-F)
units. One important parameter of the segregation system is
the window duration of the analysis-synthesis stage, which de-
termines the lower limit of modulation frequencies that can be
represented but also the temporal acuity with which the segre-
gation system can manipulate individual T-F units. To clarify
the consequences of this trade-off on modulation-based speech
segregation performance, the influence of the window duration
was systematically investigated.
Index Terms: speech segregation, ideal binary mask, amplitude
modulation spectrogram features, temporal resolution

1. Introduction
Despite substantial research efforts that focused on the devel-
opment of noise reduction algorithms over the past decades,
the improvement of speech intelligibility in noisy conditions re-
mains a challenging task [1, 2]. Assuming a priori knowledge
about the target speech and the interfering noise, it is possible
to construct an ideal binary mask (IBM) which separates the
time-frequency (T-F) representation of noisy speech into target-
dominated and masker-dominated T-F units. The IBM has been
shown to significantly improve speech perception in noisy con-
ditions [3, 4, 5]. The IBM produces intelligible speech when a
resolution of about 12 - 16 frequency channels is used [4, 6]. At
the same time, the manipulation of individual T-F units should
be performed with a temporal resolution of at least 15ms, in
order to produce significant speech reception threshold (SRT)
improvements [3].

Unfortunately, the IBM is not available is practice and,
hence, needs to be estimated based on the noisy speech. In this
regard, the aforementioned requirements regarding the spectral
and temporal resolution determine the bandwidth and the win-
dow size with which an estimated binary mask (EBM) should
be obtained. In contrast to IBM processing, where the T-F ma-
nipulation can be performed at an arbitrarily high temporal reso-
lution (e.g. on a sample-by-sample basis [3]), algorithms which
try to derive an EBM typically operate on window durations
between 20ms [7] and 90ms [8].

This work was supported by EU FET grant TWO!EARS, ICT-
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Several previous studies have employed the extraction
of amplitude modulation spectrogram (AMS) features with
linearly-scaled modulation filters [7, 9, 10, 11]. Recently, it
has been shown that a speech segregation system based on
logarithmically-scaled AMS features, inspired by auditory pro-
cessing principles, is superior to the linear AMS feature rep-
resentation and can estimate the IBM with high accuracy [12].
One critical parameter is the window duration in the AMS fea-
ture representation. Modulation-based processing commonly
involves longer analysis windows to fully resolve a period of
low-frequency modulations within a single analysis window
(e.g. 250ms to analyze one period of 4Hz modulations). This
seems important for the ability to estimate speech-dominated T-
F units, since it is known that low-frequency modulations are
important for speech perception in the presence of stationary
background noise [13]. In addition, a longer analysis window
may also improve the accuracy of the EBM, since more in-
formation can be extracted from the noisy speech. However,
a longer analysis window will introduce temporal smearing,
which, in turn, may limit the effectiveness of manipulating in-
dividual T-F units.

Furthermore, many computational segregation systems ex-
ploit contextual information, either implicitly through the use
of delta features [7, 9], or explicitly, by incorporating a spectro-
temporal integration stage [10, 12, 14]. However, the interaction
between the window duration and the spectro-temporal integra-
tion stage and its impact on speech segregation performance has
not yet been clarified.

The goal of the present study is, therefore, to investigate
the influence of the window duration on computational speech
segregation based on auditory-inspired modulation features.
Specifically, the interaction between window duration, estima-
tion accuracy of the EBM and predicted speech intelligibility is
analyzed. Moreover, the influence of a spectro-temporal inte-
gration stage is examined. The estimation accuracy of the EBM
is measured using a technical classification measure (the hit rate
minus false alarm rate). In addition, the predicted intelligibility
of the reconstructed target speech is evaluated using the short-
time objective intelligibility (STOI) metric [15].

2. Computational speech segregation
The segregation system consisted of a Gammatone-based anal-
ysis and synthesis stage. In the analysis stage, the noisy speech
was sampled at a rate of 16 kHz and decomposed into 31 fre-
quency channels using a Gammatone filterbank. The center
frequencies were equally spaced on the equivalent rectangular
bandwidth (ERB) scale between 80 and 7642Hz. The envelope
in each frequency channel was extracted by half-wave rectifi-
cation and further smoothed by a second-order low-pass filter



with a cutoff frequency of 1 kHz to roughly simulate the loss of
phase-locking in the auditory system towards higher frequen-
cies. Based on this auditory spectrogram-like representation,
a set of AMS features was extracted. A two-layer segregation
stage, as further described in Sec. 2.2, was trained to discrimi-
nate between speech-dominated and noise-dominated T-F units
by exploiting a priori knowledge about the AMS feature dis-
tribution corresponding to speech and noise activity [12]. This
segregation stage produced an EBM that was applied to the in-
dividual subbands of the noisy speech in the synthesis stage in
order to attenuate noise-dominated T-F units.

2.1. AMS feature extraction

Prior to the AMS feature extraction, each subband envelope was
normalized by its median computed over the entire sentence.
This normalization stage was shown to be crucial in order to
deal with effects of room reverberation, spectral distortions and
unseen signal-to-noise ratios (SNRs) [11, 12].

Each normalized subband was then analyzed by a modu-
lation filterbank, consisting of a first-order low-pass filter and
second-order band-pass filters whose center frequencies were
logarithmically spaced up to 1024Hz [12]. The bandpass fil-
ters were assumed to have a constant-Q factor of 1, inspired by
findings in auditory modeling [16]. The cutoff frequency of the
modulation low-pass filter fLP was set to the inverse of the win-
dow duration Tw, to ensure that at least one period of the mod-
ulation frequency was included in the analysis window. The
modulation power was measured for each frequency channel by
computing the root mean square (RMS) value within each time
window at the output of each modulation filter.

2.2. Segregation stage

In order to discriminate between speech-dominated and noise-
dominated T-F units, a two-layer segregation stage was em-
ployed, which consisted of a Gaussian mixture model (GMM)
classifier combined with a spectro-temporal integration stage
based on a support vector machine (SVM) classifier [12]. First,
a GMM classifier was trained for each individual frequency
channel f to model the AMS feature distribution of speech-
dominated and noise-dominated T-F units, denoted by λ1,f and
λ0,f . Given the AMS feature vector X (t, f) for a particular
time frame t and frequency channel f , the a posteriori proba-
bility of speech and noise presence was computed by

P (λ1,f |X (t, f)) =
P(λ1,f )P(X(t,f)|λ1,f )

P (X(t,f))
, (1)

P (λ0,f |X (t, f)) =
P(λ0,f )P(X(t,f)|λ0,f )

P (X(t,f))
, (2)

where the two a priori probabilities P (λ0,f ) and P (λ1,f ) were
computed by counting the number of feature vectors during
training. The EBM without spectro-temporal integration was
estimated by comparing the two a posteriori probabilities of
speech and noise presence for each individual T-F unit

M (t, f) =

{
1 if P (λ1,f |X (t, f)) > P (λ0,f |X (t, f))
0 otherwise.

(3)
In the second layer, the a posteriori probability of speech

presence P (λ1,f ) was considered as a new feature spanning
across a spectro-temporal integration window, and subsequently
learned by a SVM classifier [12]. The output of this second
classification layer represented the EBM with spectro-temporal
integration.
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Figure 1: MTF of the four different background noises and the
speech material from the TIMIT database.

2.3. Waveform synthesis

Before the EBM was applied to the noisy speech, a lower
limit β was incorporated. This flooring limited the amount of
noise attenuation, but reduced the impact of distortions (mu-
sical noise) caused by the binary processing [3]. A flooring
value of β = 0.1, corresponding to 20 dB attenuation, was
considered appropriate. This frame-based EBM was then inter-
polated to a sample-based EBM. Transitions in the EBM from
speech-dominated to noise-dominated units or noise-dominated
to speech-dominated units were smoothed by a raised-cosine
window [17]. Then, the sample-based EBM was applied to
the subband signals of the noisy speech. To remove across-
frequency phase differences, the weighted subband signals were
time-reversed, passed through the corresponding Gammatone
filter, and time reversed again [17, 18]. Finally, the target sig-
nal was reconstructed by summing up the weighted and phase-
aligned subband signals across all frequency channels.

3. Evaluation
3.1. Stimuli

Noisy speech was created by corrupting randomly selected male
and female sentences from the TIMIT corpus with one of four
different noise signals, from which a random segment was se-
lected for each sentence. The noise was switched on 250ms
before the speech onset and was switched off 250ms after
the speech offset. The following noise types were used: two
types of speech-shaped noise (SSN) (stationary ICRA1-noise
and non-stationary, speech-modulated ICRA5-noise; [19]), 8-
Hz amplitude-modulated pink noise and a recording of a crack-
ing oak tree with wind noise1. The noise signals were split in
two halves of equal size to prevent any overlap between the sig-
nals used during training and testing, which would result in an
overly optimistic segregation performance [20].

An analysis of the broadband envelope fluctuations of all
four noise types and the speech material from the TIMIT corpus
is presented in Fig. 1, where the modulation transfer function
(MTF) is shown for various modulation frequencies [19, 21].
The envelope fluctuations of the ICRA-5 noise are concentrated
at low-frequency modulations with a peak around 4Hz, and the
general shape of the MTF is quite similar to the TIMIT speech
material. In contrast, the MTF of the stationary ICRA-1 noise
is pretty flat. Moreover, the cracking tree noise has strong con-
tribution both at low and high modulation frequencies, whereas
the MTF of the amplitude-modulated pink noise peaks at 8Hz.

1Recording taken from www.freesound.org/people/
klankbeeld/sounds/211776/



3.2. Model training

The GMM classifier described in Sec. 2.2 was trained with ran-
domly selected sentences from the training set of the TIMIT
corpus [22] that were corrupted with one of the four background
noises at −5, 0 and 5 dB SNR. As explained in Sec. 3.4, the
number of sentences involved in the training depends on the
AMS feature configuration (see Tab. 1). A local criterion (LC)
of −5 dB was applied to the a priori SNR in order to sepa-
rate the AMS feature distribution into speech-dominated and
noise-dominated T-F units. The SVM-based spectro-temporal
integration stage consisted of a plus-shaped integration win-
dow spanning across 8 adjacent frequency channels and 3 time
frames [12]. A linear SVM classifier [23] was trained with 10
sentences mixed at−5, 0 and 5 dB SNR. Afterwards, new SVM
decision thresholds were obtained that maximized the hit minus
false alarm (HIT - FA) rate [7] on a validation set of 10 sen-
tences mixed at −5, 0 and 5 dB SNR. A separate GMM and
SVM classifier was trained for each noise type.

3.3. Model evaluation

The segregation system was evaluated with 60 randomly se-
lected sentences from the testing set of the TIMIT corpus mixed
with the four different background noises at −5, 0 and 5 dB
SNR. The segregation performance was assessed by compar-
ing the EBM with the IBM. Specifically, the hit rate (HIT; per-
centage of correctly identified speech-dominated T-F units) mi-
nus the false alarm rate (FA; percentage of erroneously clas-
sified noise-dominated T-F units) was reported. In addition,
the predicted intelligibility of the reconstructed speech signal
was compared to the clean speech signal using the STOI met-
ric [15], which has been shown to correlate with subjectively-
measured speech intelligibility scores. For the STOI evaluation,
the 250ms noise-only segments at the beginning and the end of
each sentence were discarded.

Moreover, the segregation system was compared to an
short-time discrete Fourier transform (STFT)-based speech
enhancement algorithm in Sec. 4.2. Specifically, the log-
minimum mean square error (MMSE) noise reduction algo-
rithm2 [24] combined with the MMSE-based noise power esti-
mation algorithm2 [25] was used. The complete 250ms noise-
only segments before speech onset were used to properly ini-
tialize the noise power estimation.

3.4. Experimental setup

The segregation system was trained with AMS features based
on 7 different window durations Tw, as shown in Tab. 1. Ac-
cordingly, the cutoff frequency of the modulation low-pass filter
fLP varied between 4Hz and 256Hz. The frame shift was al-
ways set to Ts = Tw/4. As a result, the number of feature vec-
tors available during training was higher for the AMS features
with shorter window durations compared to longer window du-
rations. To compensate for this, the number of TIMIT sentences
used to train the GMM classifier was adjusted for window du-
rations above 32ms according to Tab. 1.

To investigate the influence of exploiting contextual in-
formation, two different segregation systems were trained: a
single-layer GMM-based segregation system and a two-layer
GMM-SVM segregation system including the spectro-temporal
integration stage, both of which are described in Sec. 2.2.

2Matlab implementations were taken from the Voicebox toolbox
provided by M. Brookes: www.ee.ic.ac.uk/hp/staff/dmb/
voicebox/voicebox.html

Table 1: AMS feature settings.
Tw Ts fLP # dim. # sentences

256ms 64ms 4Hz 9 960
128ms 32ms 8Hz 8 480
64ms 16ms 16Hz 7 240
32ms 8ms 32Hz 6 120
16ms 4ms 64Hz 5 120
8ms 2ms 128Hz 4 120
4ms 1ms 256Hz 3 120

4. Experimental results
4.1. Effect of the window duration

The performance of the AMS-based segregation system is
shown in Fig. 2 as a function of the window duration for the
four different background noises. The top panel in each of the
four subplots shows the STOI improvement relative to the un-
processed noisy speech for the IBM as well as the EBM with
and without the SVM-based spectro-temporal integration stage.
In addition, the corresponding HIT - FA rates of the two EBM
systems are shown in the bottom panel.

It can be seen that the IBM produced the highest STOI im-
provements due to the availability of a priori information and
the performance increased monotonically with increasing tem-
poral resolution. Despite the fact that the HIT - FA rates of both
EBM systems almost continuously increased with increasing
window durations for all the noise types, the STOI improvement
showed a plateau for window durations between 32 − 64ms,
and the performance was lower for shorter and longer window
durations. Considering the ICRA-5 noise, there was a con-
siderable improvement in the HIT - FA rates when increasing
the window duration from 16ms to 32ms, which also led to a
larger STOI improvement.

Overall, the EBM system with the SVM-based spectro-
temporal integration stage produced substantially higher HIT -
FA rates, which was also reflected in larger STOI improve-
ments. In addition, the SVM-based integration of contextual in-
formation seemed to reduce the required window size. This was
most noticeable for the PSAM 8-Hz noise, for which the EBM-
GMM system with a window duration of 128ms, required to re-
solve a full period of 8Hz, produced the largest STOI improve-
ments. The same performance was obtained with the EBM with
the spectro-temporal integration stage using a window size of
32ms.

4.2. Comparison with noise reduction algorithm

Inspired by the analysis presented in [8], Fig. 3 shows the
sentence-based STOI predictions for the unprocessed noisy
speech in relation to the measured STOI improvement for the
following three systems: a) the EBM with the spectro-temporal
integration stage, b) the log-MMSE noise reduction algorithm
and c) the IBM. In addition, a least-squares fit is shown for each
noise type. Based on the analysis in the previous section, all
algorithms operated on a window size of 32ms.

As expected, the IBM-based system produced the largest
STOI improvements across all noise types. Also the EBM sys-
tem improved the predicted speech intelligibility, in particular
for conditions where the STOI values of the noisy speech were
below 0.7. Whereas the STOI improvements were moderate
for the IRCA-1 noise and the PSAM 8-Hz, a larger benefit was
observed for the ICRA-5 noise and the tree noise.
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Figure 2: STOI improvements for the IBM and two EBM sys-
tems along with their corresponding HIT - FA rates averaged
across all sentences and SNRs. The results are shown separately
for each of the four noise types.

The log-MMSE-based noise reduction system showed mi-
nor improvement for the ICRA-1 noise, presumably because
the stationary background noise could be reasonably well es-
timated. However, in case of the other non-stationary noises,
it appeared that the rapid fluctuations could not be predicted by
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Figure 3: STOI predictions for the EBM including the spectro-
temporal integration stage (top panel), log-MMSE noise reduc-
tion (middle panel) and IBM processing (bottom panel).

the noise estimation algorithm. As a consequence, the predicted
intelligibility improvements were around zero or even negative,
which is in line with previous studies [1, 2, 8]

5. Discussion and conclusion
The choice of a window duration in modulation-based speech
segregation constitutes a trade-off between the ability to re-
solve low-frequency modulations and the temporal resolution
with which the segregation system can manipulate individual
T-F units. This choice is only moderately affected by the modu-
lation content of the interfering noise. In general, a window size
of 32ms seems to represent a good compromise. It is conceiv-
able that the modulation analysis could be performed at multi-
ple time constants, as implemented in [26], and that the decision
about speech and noise activity is combined across various de-
cision streams based on different time constants.

The spectro-temporal integration stage effectively improves
the ability of the segregation system to analyze low-frequency
modulations by combining contextual knowledge about the
speech presence probability across neighboring T-F units,
thereby reducing the required window duration. However, a
high performance in terms of the frequently-used performance
metric, the HIT - FA rate, does not necessarily lead to improve-
ments in predicted speech intelligibility, if the T-F manipulation
is not performed with a sufficiently high temporal resolution.
Finally, the segregation system has been evaluated using a tech-
nical performance measure and model predictions. The next
step is to confirm these findings with behavioral listening tests.
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