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ABSTRACT

This paper presents a novel machine-hearing system that exploits
deep neural networks (DNNs) and head movements for binaural
localisation of multiple speakers in reverberant conditions. DNNs
are used to map binaural features, consisting of the complete cross-
correlation function (CCF) and interaural level differences (ILDs),
to the source azimuth. Our approach was evaluated using a local-
isation task in which sources were located in a full 360-degree az-
imuth range. As a result, front-back confusions often occurred due
to the similarity of binaural features in the front and rear hemifields.
To address this, a head movement strategy was incorporated in the
DNN-based model to help reduce the front-back errors. Our experi-
ments show that, compared to a system based on a Gaussian mixture
model (GMM) classifier, the proposed DNN system substantially
reduces localisation errors under challenging acoustic scenarios in
which multiple speakers and room reverberation are present.
Index Terms: Binaural source localisation, deep neural networks,
head movements, machine hearing, reverberation

1. INTRODUCTION

Human listeners usually have little difficulty in localising multiple
sound sources in reverberant environments, even though they must
decode a complex acoustic mixture arriving at each ear [1]. In con-
trast, such adverse acoustic environments remain a challenging task
for many machine localisation systems, even those employing more
than two sensors, such as a microphone array [2].

The auditory system is able to exploit two main cues to deter-
mine the azimuth of a sound source in the horizontal plane: interau-
ral time differences (ITDs) and interaural level differences (ILDs).
Based on similar principles, binaural sound localisation systems us-
ing the ear signals of an artificial head have shown promising lo-
calisation performance [3, 4, 5, 6]. Such machine systems typi-
cally localise sounds by estimating the ITD and ILD in a number
of frequency bands, and employing statistical models such as Gaus-
sian mixture models (GMMs) to map binaural cues to corresponding
sound source azimuths. In order to increase the robustness of bin-
aural localisation systems in adverse conditions, multi-conditional
training (MCT) can be performed. This introduces uncertainty of
binaural cues into the statistical models, allowing them to accom-
modate to the influence of multiple sound sources and reverbera-
tion [4, 5, 6, 7].

Many previous binaural hearing systems have restricted localisa-
tion of sound sources to the frontal hemifield. However, if this con-
straint is relaxed then ITD and ILD cues are often not sufficient to
uniquely determine the location of a sound [8]. Due to similarity of

these cues in the front and rear hemifields, front-back confusions of-
ten occur if sound localisation is performed in the full 360◦ azimuth
range. This problem has been noted in previous machine listening
studies, such as [6]. Human listeners, however, rarely make front-
back confusions because they also use information gleaned from
head movements to resolve ambiguities [9, 8, 10]. This has inspired a
few machine localisation systems to incorporate head movement. In
[11] cross-correlation patterns were averaged across different head
orientations in an attempt to remove front-back ambiguity when lo-
calising sounds in anechoic conditions. In [6], head movements were
combined with MCT to achieve robust performance of sound locali-
sation in reverberant conditions. The information gleaned from head
movements was combined at the statistical model level. In [12], the
effectiveness of different head movements was evaluated in a real-
istic acoustic environment that included multiple speakers and room
reverberation. Rotating the head towards the target sound source
was found to be the best strategy for minimising localisation errors,
an observation that was also found in human sound localisation [13].

This paper presents a novel machine-hearing system that ex-
ploits deep neural networks (DNNs) and head movements for robust
localisation of multiple speakers in reverberant conditions. DNNs
[14] have recently been shown to be very effective classifiers, lead-
ing to superior performance in a number of speech recognition and
acoustic signal processing tasks. Here, DNNs are used to map bin-
aural features (obtained from a cross-correlogram) to the source az-
imuth. More specifically, entire cross-correlation functions are used
as features (rather than just the time lag of the largest peak) since
they provide rich information that can be exploited by the classifier.
A similar approach was recently used by [15] for a binaural segre-
gation task. However, their approach assumed that the target source
was fixed at zero degrees azimuth, and therefore did not specifically
address source localisation.

A binaural sound localisation model that exploits DNNs and
head rotations is described in detail in Section 2. Section 3 de-
scribes the evaluation framework and presents a number of source
localisation experiments. Section 4 presents localisation results and
compares our DNN-based approach to a baseline method. Section 5
concludes the paper.

2. SYSTEM

2.1. Binaural feature extraction

An auditory front-end was employed to analyse binaural ear signals
with a bank of 32 overlapping Gammatone filters, with centre fre-
quencies uniformly spaced on the equivalent rectangular bandwidth
(ERB) scale between 80Hz and 8 kHz [16]. Inner-hair-cell pro-



cessing was approximated by half-wave rectification. Afterwards,
cross-correlation between the right and left ears was computed inde-
pendently for each frequency channel using overlapping frames of
20ms duration with a shift of 10ms. The cross-correlation function
was further normalised by an auto-correlation function at lag zero
and evaluated for time lags in the range of ±1.1ms.

Two features, ITDs and ILDs, are typically used in binaural lo-
calisation systems [1]. ITD is estimated as the lag corresponding to
the maximum in the cross-correlation function. ILD corresponds to
the energy ratio between the left and right ears within the analysis
window, expressed in dB. In this study, instead of estimating the
ITDs, the entire cross-correlation function was used as localisation
features. This approach was motivated by two observations. First,
computation of the ITD involves a peak-picking operation which
may not be robust in the presence of noise. Second, there are system-
atic changes in the cross-correlation function with source azimuth (in
particular, changes in the main peak with respect to its side peaks).
Even in multi-source scenarios, these can be exploited by a suitable
classifier (see also [17]).

When sampled at 16 kHz, the cross-correlation function with a
lag range of ±1.1ms produced a 37-dimensional binaural feature
space for each frequency channel. This was supplemented by the
ILD, forming a final 38-dimensional (38D) feature vector. Similar
feature sets were also used in [15] for binaural speech segregation.

2.2. DNN-based localisation

DNNs were used to map the 38D binaural feature set to correspond-
ing azimuth angles. A separate DNN was trained for each frequency
channel. The DNN consists of an input layer, 8 hidden layers, and
an output layer. The input layer contained 38 nodes and each node
was assumed to be a Gaussian random variable with zero mean and
unit variance. Therefore the 38D binaural feature input for each fre-
quency channel was first Gaussian normalised, before being fed into
the DNN. The hidden layers had sigmoid activation functions, and
each layer contained 128 hidden nodes. The number of hidden nodes
was heuristically selected as more hidden nodes add more computa-
tion and did not improve localisation accuracy in this study. The
output layer contained 72 nodes corresponding to the 72 azimuth
angles in the full 360◦ azimuth range (5◦ steps) considered in this
study. The “softmax” activation function was applied at the output
layer.

The neural net was initialised with a single hidden layer, and
the number of hidden layers was gradually increased in later training
phases. In each training phase, mini-batch gradient descent with
a batch size of 256 was used, including a momentum term with
the momentum rate set to 0.5. The initial learning rate was set to
0.05, which gradually decreased to 0.001 after 10 epochs. After the
learning rate decreased to 0.001, it was held constant for a further 5
epochs. At the end of each training phase, an extra hidden layer was
added before the output layer, and this training phase was repeated
until the desired number of hidden layers was reached (8 hidden lay-
ers in this study).

Given the observed feature set xt,f at time frame t and fre-
quency channel f , the 72 “softmax” output values from the DNN
for frequency channel f were considered as posterior probabilities
P(k|xt,f ), where k is the azimuth angle and

∑
k P(k|xt,f ) = 1.

The posteriors were then integrated across frequency to yield the
probability of azimuth k, given features of the entire frequency range
at time t

P(k|xt) =

∏
f P(k|xt,f )∑

k

∏
f P(k|xt,f )

. (1)

Sound localisation was performed for a signal chunk consisting of T
time frames. Therefore the frame posteriors were further averaged
across time to produce a posterior distribution P(k) of sound source
activity

P(k) = 1

T

t+T−1∑
t

P(k|xt). (2)

The target location was given by the azimuth k that maximises P(k)

k̂ = argmax
k

P(k) (3)

Previous studies [6, 5, 7] have shown that MCT features can
increase the robustness of localisation systems in reverberant multi-
source conditions. Here, the DNNs were trained on binaural MCT
features created by mixing a target signal at a specified azimuth
with diffuse noise at three different signal-to-noise ratios (SNRs)
(20 dB, 10 dB and 0 dB). The diffuse noise consisted of 72 uncor-
related, white Gaussian noise sources that were placed across the
full azimuth range (360◦) in steps of 5◦. Both the target signals
and the diffuse noise were spatialised by using an anechoic head
related impulse response (HRIR) measured with a Knowles Elec-
tronic Manikin for Acoustic Research (KEMAR) dummy head [18].
This approach was used in preference to adding reverberation dur-
ing training, since previous studies (e.g., [5]) suggested that it was
likely to give a classifier that performed well across a wide range of
reverberant conditions.

2.3. Localisation with head movements

In order to reduce the number of front-back confusions, the DNN
localisation model employs a hypothesis-driven feedback stage that
triggers a head movement if the source location cannot be unam-
biguously estimated [12, 6]. A signal chunk is used to compute an
initial posterior distribution of the source azimuth using the trained
DNNs. In an ideal situation, the local peaks in the posterior distri-
bution correspond to the azimuth of true sources. However, due to
early reflections and the similarity of binaural features in the front
and rear hemifields, phantom sources may also be apparent as peaks
in the azimuth posterior distribution. In this case, a random head
movement within the range of [−30◦, 30◦] is triggered to solve the
localisation confusion. Other possible strategies for head movement
are discussed in [12].

A second posterior distribution is computed for the signal chunk
after the completion of the head movement. Assuming that sources
are stationary before and after the head movement, if a peak in the
first posterior distribution corresponds to a true source position, then
it will appear in the second posterior distribution and will be shifted
by an amount corresponding to the angle of head rotation. On the
other hand, if a peak is due to a phantom source, it will not occur
in the second posterior distribution. By exploiting this relationship,
potential phantom source peaks are identified and eliminated from
both posterior distributions. After the phantom sources have been
removed, the two posterior distributions were averaged to further
emphasise the local peaks corresponding to true sources. The most
prominent peaks in the averaged posterior distribution were assumed
to correspond to active source positions. Here the number of active
sources was assumed to be known a priori.

3. EVALUATION

3.1. Binaural simulation

Binaural audio signals were created by convolving monaural sounds
with HRIRs or binaural room impulse responses (BRIRs). An HRIR
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Fig. 1. Schematic diagram of the virtual listener configuration. Ac-
tual source positions were always between −60◦ and 60◦, but the
system could report a source azimuth at any of 72 possible azimuths
around the head (open circles). Black circles indicate actual source
azimuths in a typical three-talker mixture (in this example, at −50◦,
−30◦ and 15◦). All azimuths were used for training. During testing,
head movements were limited to the range [−30◦, 30◦] as shown by
the shaded area.

catalog based on the KEMAR dummy head [18] was used for sim-
ulating the anechoic training signals. The evaluation stage used the
Surrey BRIR database [19] to simulate reverberant room conditions.
The Surrey database was captured using a Cortex head and torso
simulator (HATS) and includes four room conditions with various
amounts of reverberation. Table 1 lists the reverberation time (T60)
and the direct-to-reverberant ratio (DRR) of each room. Binaural
mixtures of multiple competing sources were created by spatialising
each source signal separately before adding them together in each of
the two binaural channels.

Table 1. Details about the room characteristics of the Surrey BRIR
database [19] used in this study.

Room A Room B Room C Room D
T60 (s) 0.32 0.47 0.68 0.89
DRR (dB) 6.09 5.31 8.82 6.12

Head movements were simulated by computing source azimuths
relative to the head orientation, and loading corresponding BRIRs
for the relative source azimuths. Such simulation is only approxi-
mate for the reverberant room conditions because the Surrey BRIR
database was measured by moving loudspeakers around a fixed
dummy head.

3.2. Experimental setup

During evaluation, the sound source azimuth was varied in 5 ◦ steps
within the range of [−60◦, 60◦], as shown in Fig. 1. Source loca-
tions were limited to this azimuth range because the Surrey database
only includes azimuths in the frontal hemifield. However, the system
was not provided with information that the azimuth of the source lay
within this range, and was free to report the azimuth within the full
range of [−180◦, 180◦]. Hence, front-back confusions could occur
if the system incorrectly reported that a source originated from the

rear hemifield.
The GRID corpus [20] was used in this study 1 to form one-

talker, two-talker, and three-talker acoustic mixtures. Each GRID
sentence is approximately 1.5 s long and of the form “lay red at G9
now” spoken by one of 34 native British-English talkers. The sen-
tences were normalised to the same root mean square (RMS) value
prior to spatialisation. For the two-talker and three-talker mixtures,
the additional azimuth directions were randomly selected from the
same azimuth range while ensuring an angular distance of at least
10 ◦ between all sources in a mixture. Each talker was simulated
by randomly selecting sentences from the GRID corpus, which were
different from the ones used for training. Each evaluation set in-
cluded 100 acoustic mixtures.

Three localisation systems were evaluated: i) a baseline system
based on GMMs as proposed in [6], which employed both ITDs and
ILDs; ii) the proposed DNN system trained without the ILDs (i.e.
with only the cross-correlation features); iii) the full DNN system
trained with both cross-correlation features and ILDs. The GMM
baseline system was trained using the same MCT features. The sec-
ond system was included in order to determine the role of interaural
timing vs. interaural level features in the proposed DNNs.

All three localisation models were tested with and without head
movement as described in Section 2.3. When no head movement was
used, the source azimuths were estimated from the entire duration of
GRID sentences. When head movement was used, a signal chunk
of 0.75 s long was taken to compute the first posterior distribution.
The rest of the signal from each sentence was taken to compute the
second posterior distribution after completion of the head movement.

The localisation performance was evaluated by comparing true
source azimuths with the estimated azimuths. The number of active
speech sources was assumed to be known a priori. For each binau-
ral mixture, the gross accuracy was measured for each sentence by
counting the number of sources for which the azimuth estimate was
within a predefined grace boundary of ±5◦.

4. RESULTS AND DISCUSSIONS

Table 2 lists gross localisation accuracy rates of all the systems eval-
uated for various sets of BRIRs in the Surrey database. When no
head movement was exploited, the full DNN system produced sub-
stantial improvement over the GMM baseline across all test condi-
tions. The improvement was particularly pronounced in the single-
speaker localisation task, with the DNN localisation accuracy ap-
proaching 100% in both Room A and Room C. Across all speaker
conditions the largest benefits were observed in Room B, where the
direct-to-reverberant ratio is the lowest.

When ILDs were not included, however, localisation perfor-
mance of the DNN system suffered greatly without head movement.
The performance drop was particularly pronounced in Room A and
B, where even the single-speaker localisation accuracy was below
80% (compared to +90% accuracy for all other systems). Analysis
of the types of produced errors suggests that this was largely due
to an increased number of front-back errors made by the DNN sys-
tem when ILDs were not included. Fig. 2 shows the front-back error
rates produced by each system with and without head movements
in the single-speaker localisation task. It is clear that without head
movements, the “DNN – No ILD” system made substantially more
front-back errors than the other two systems, especially in Rooms
A, B, and D where reverberation was strongest. This suggests the

1Note our previous studies used the TIMIT corpus [21]. The choice of the
corpus, however, did not have much effect on the performance of the binaural
localisation systems.



Table 2. Gross accuracy in % for various sets of BRIRs when localising one, two and three competing speakers.
Surrey Room A Surrey Room B Surrey Room C Surrey Room DSystem 1-spk 2-spk 3-spk 1-spk 2-spk 3-spk 1-spk 2-spk 3-spk 1-spk 2-spk 3-spk Mean

GMM 92.6 86.3 72.3 87.5 77.6 66.5 92.5 90.5 81.9 92.5 83.4 72.3 83.0
+ Head Movement 99.9 92.1 76.4 99.5 86.4 71.4 99.9 97.8 87.8 99.8 90.0 76.0 89.8
DNN – No ILD 77.0 67.6 63.9 75.2 65.2 62.4 93.8 74.5 69.1 81.6 66.6 61.5 71.5
+ Head Movement 98.6 87.8 73.5 97.7 85.8 71.8 99.8 94.7 81.5 97.5 80.9 67.2 86.4
DNN – Full 99.9 88.7 78.5 94.1 81.5 74.1 100.0 92.2 82.7 97.8 84.9 75.5 87.5
+ Head Movement 99.8 97.1 86.0 99.9 94.9 83.8 100.0 98.4 90.3 99.8 93.7 81.8 93.8

importance of ILDs in resolving front-back confusions in reverber-
ant conditions for the DNN system. Similar observations were also
reported for GMM-based localisation systems [4], but the effect was
not as detrimental as for the DNN-based system. When the ILDs
were included, the front-back errors produced by the DNN system
were substantially reduced even without head movements. As Fig. 2
shows, the front-back errors made by the “DNN – Full” system with-
out head movements was close to 0% in all room conditions except
Room B.
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Fig. 2. Front-back error rates produced by different systems with-
out head movements (shaded bars) and with head movements (white
bars) in different room conditions. The error rate numbers for the
white bars (with head movements) are displayed at the top of the
bars. The task was single-speaker localisation.

When the head movement strategy was used, the performance
of all the systems was considerably improved. As the white bars
in Fig. 2 clearly show, the front-back error rates were substantially
reduced for all systems. Most systems now made less than 1% front-
back errors. The improvement was particularly pronounced for the
“DNN – No ILD” system, which reduced the front-back error rates to
less than 1.4% in all room reverberations for the single-speaker task.
The benefit is clearly translated into overall localisation performance
improvement, with the average accuracies for the “DNN – No ILD”
system increased from 72% to 86%.

For the “DNN – Full” system the front-back errors were already
low for the single-speaker task, and the benefit of head movements
was more apparent in the two-speaker and three-speaker localisa-
tion conditions. Table 2 shows that in such conditions the improve-
ment due to exploitation of head movements was larger for the DNN-
based system than the GMM-based baseline system.

The overall localisation accuracy of the full DNN system is close
to 94%, and it consistently outperformed the GMM-based system

across all the testing conditions.

5. CONCLUSIONS

This paper presented a computational framework that combines deep
neural networks and head movements for robust localisation of mul-
tiple sources. The DNNs were able to exploit the rich information
provided by entire cross-correlation functions. It was also found
that including ILDs features produced significantly fewer front-back
confusion errors when evaluated in a full 360◦ azimuth range un-
der challenging acoustic scenarios, in which multiple speakers and
room reverberation were present. The use of head rotation further
increased the robustness of the proposed DNN-based system, which
substantially outperformed a GMM-based baseline system.

In the current study, the use of DNNs allowed higher-
dimensional feature vectors to be exploited for localisation, in com-
parison with previous studies [4, 5, 6]. This could be carried fur-
ther, by exploiting additional context within the DNN either in the
time or frequency dimension. The current study only employed the
cross-correlation and ILD features. It is possible to complement the
features used here with other binaural features, e.g. a measure of in-
teraural coherence [22], as well as monaural localisation cues, which
are known to be important for judgment of elevation angle [23, 24].
Visual features might also be combined with acoustic features in or-
der to achieve audio-visual source localisation.

Finally, a limitation of the current study is that sources were
assumed to be static. Future studies will relax this constraint and
address the localisation and tracking of moving sound sources within
the DNN framework.
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