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Abstract—The large scale integration of wind generation in
existing power systems requires novel operational strategies
and market clearing mechanisms to account for the variable
nature of this energy source. An efficient method to cope
with this uncertainty is stochastic optimization which however
requires high-quality forecasts in the form of scenarios. The
main goal of this work is to release a public dataset of
wind power forecasts to be used as a reference for future
research. To that extent, we provide a complete framework
to describe wind power uncertainty in terms of single-valued
and probabilistic predictions as well as scenarios representing
the spatio-temporal dependence structure of forecast errors.
The applicability of the proposed framework is demonstrated
with a small-scale stochastic unit commitment model.

I. INTRODUCTION

The economic and environmental benefits from the growth
of wind power have been important in recent years. However,
wind power generation is highly variable and only partly
predictable. This uncertainty poses new challenges both to
system operators and wind power producers, considering that
the balancing of forecast errors in real-time requires the
activation of expensive reserves that increase systems costs
and induce financial losses to the market players. Hence,
the efficient wind power integration requires novel decision-
making processes for the operation of the power system and
re-design of the current market structure in order to account
for the stochastic nature of this generation technology.

The existing setup of the European electricity markets
involves two trading floors, the forward (day-ahead) and the
real-time (balancing) market, which are cleared sequentially.
The day-ahead market is settled 12 to 36 hours before
actual power delivery, based on deterministic predictions for
the uncertain parameters of the power system, e.g., wind
generation. When the uncertainty reveals and the deviations
from the day-ahead schedule are known, the real-time market
is cleared in order to maintain the system balance.

This market architecture serves the requirements of a
power system based on conventional generation where dis-
patch decisions need to be planned ahead and the balancing
operation is driven by discrete disturbances that cannot be
predicted in advance, e.g., outages of generators or transmis-
sion lines. However, the efficiency of this market design is
disputed as the shares of intermittent renewables increase.

In order to account for the flexibility needs of the power
system and take advantage of the - even partial - predictabil-

ity of wind power, stochastic optimization models are gain-
ing increased attention. In this context, [1] and [2] propose
a joint clearing of the day-ahead and balancing markets cast
as a two-stage stochastic programming problem. In a similar
vein, [3] and [4] formulate a stochastic unit commitment
model for the co-optimization of generation schedules and
reserve requirements, while [5] proposes stochastic opera-
tional strategies for reserve activation. Nevertheless, stochas-
tic programming presents a significant challenge regarding
the uncertainty modeling in terms of scenarios, since their
quality affects considerably the outcome of these models.

Most of the existing wind power prediction tools produce
deterministic forecasts [6], which provide only a single
value about the expected wind power. Recent research has
also focused on probabilistic predictions [7], [8], giving
the overall probability distribution of the power output and
enabling the estimation of the marginal uncertainty, i.e., the
probability distribution of prediction errors. However, proba-
bilistic forecasts are still unable to model the development of
these errors in space and in time. To capture this information,
it is necessary to generate scenarios that respect both the
spatial [9] and the temporal [10] interdependence structure of
the forecast errors. These scenarios are suitable to be used in
a stochastic optimization framework as previously discussed.

The purpose of this paper is to provide a methodological
framework that describes the stochastic processes pertaining
to wind power at different locations and forecast lead times.
Wind power uncertainty is characterized in the form of point
forecasts, probabilistic predictions as well as spatio-temporal
scenarios of short-term wind power production. The main
objective of this work is to release a dataset that can be used
as a reference for studies that require advanced forecasting
products; similarly to the IEEE test systems which are widely
used by power system engineers as a basis for demonstrating
the interest of their ideas.

The rest of the paper is organized as follows: Section
IT describes the forecasting methodologies to produce point
and probabilistic predictions as well as spatio-temporal wind
power scenarios. In Section III, these methods are applied to
a case study using real wind power data and the applicability
of this framework is illustrated in a small-scale stochastic
unit commitment model. Finally, Section IV provides some
relevant conclusions and suggestions for further work.



II. WIND POWER MODELING AND FORECASTING
METHODOLOGIES

This section provides an outline of the methodology used
to generate different types of wind power forecasts. Single
valued predictions (point forecasts) are produced using a
Support Vector Regression (SVR) approach. Based on these
point predictions, nonparametric probabilistic predictions are
issued and their marginal distributions are retrieved. Finally,
spatio-temporal wind power scenarios are obtained using
Monte-Carlo sampling techniques.

A. Support vector regression for short-term power predic-
tions

A powerful technique for forecasting applications is sup-
port vector regression (SVR), which is based on kernel
regression and belongs to the family of machine learning
methods. In case of wind power forecasting, the goal of the
SVR algorithm is to find a direct mapping of wind speed on
produced wind power. Let p, ; the actual wind power produc-
tion at time ¢ and location s, and Py ¢4 k|¢» Us,¢4k|¢ the wind
power and the speed forecasts respectively, issued at time
t with leading horizon hy = 1, ...k, ..., d. The SVR model
aims to find a prediction function § : R* x R" x R? — R
such that Py ke = G(Ts t4k|¢> ks s t)-

For a given set of training data
O1,01), ..., (05,v5)y ..., (Onyvn), Where 6; € O are
the input patterns and v; the corresponding output values,
the SVR algorithm finds a function g(#) whose deviation
from the actually obtained targets v; is less or equal to a
predetermined non-negative value €. This function should
be able to balance the complexity and the amount of
training errors according to the principle of Structural Risk
Minimization [11].

Assuming that g(0) is a linear function of the form g(6) =
(w,0) + b, w € ©,b € R, the mathematical formulation of
the optimization problem that SVR solves is

Sl + 03 (6 + €

min*
w,b,E,E e (1)
s.t.
v —(w,0;) —b<e+¢§ 2
(w,0;) +b—v; <e+¢& 3)

£ =0 “)

where ||w|| is the Euclidean norm defining the flatness of
the regression function and {-,-) the dot product in ©. It
holds that ||w||?> = (w,w). The slack variables &; and &;
are used in order to relax the constraints related to the e-
insensitive region, such as only the points that are located
outside this region are penalized [12].

The objective function (1) consists of two terms. The first
term, %||wl||?, represents the degree of complexity, i.e., the
flatness of the function. The second term, Y . (& + &),
corresponds to the tolerance for deviations larger than e.
The manually adjustable constant C' determines the trade-
off between these two properties of the function.

In cases where the dimensionality of w is much higher
than the number of observations as well as in order to extend

the SVR algorithm to non-linear functions, it is useful to
solve the dual formulation of the problem (1)-(4) [12]. This
dual problem is written as

1 - * *
max — 5 D i = ANy = A0, 6))
’ ij=1
—e> A+ AD)+ D vl =AY 5)
=1 =1
S.t.

Y= =0 (©)
=1
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The optimization variables of the dual problem are the
Lagrange multipliers A;, A} that correspond to constraints
(2) and (3) of the primal problem (1)-(4). If a point 6;
lies within the e-insensitive region the corresponding \; and
A7 are equal to zero. The SVR regression function can be
formulated as

9(0) =Y " (A = A)(0:.0) +b ®)
i=1

where 6 is the vector of the independent variables for
the new input points. It should be noted that the above
formulation does not require the explicit calculation of w
but only the dot products between the data.

In order to obtain a nonlinear regression function, the
training data 6, can be transformed usingamap ¥ : © — F.
Then, a linear regression function can be constructed in this
new feature space JF according to the procedure described
above. Given the property of the SVR algorithm that requires
only the calculation of the dot products between the data, a
kernel function K (¢,6") can be used in order to write the
dot product as (¥ (0), ¥(¢')) = K(6,0"). This implies that
there is no need to know the explicit form of any vector
in the transformed space, since the dot products can be
directly calculated by the chosen kernel. The optimization
problem that the SVR solves in the non-linear case is
identical to (5)-(7), where the the vectors 6; are replaced
with the transformed vectors W(6;). The manually adjustable
parameters that control the regression quality are the cost of
error C, the width ¢ and the kernel function K.

B. Probabilistic forecasts using nonparametric probabilistic
distributions

Probabilistic forecasts are considered in form of nonpara-
metric predictive densities, where the cumulative distribution
functions of wind power production are described by a set of
quantile forecasts. Being at time ¢ and for location s, write
fs7t+k|t the probabilistic forecast of the density function of
wind power production pg ¢4 at time ¢ + k£ and Fs,t+k|t
the corresponding cumulative distribution function. Given
that ﬁ;7t+k|t is a strictly increasing function, every quantile
(jiatq_ Kt with nominal proportion o, i.e., the predicted power
value which has probability «; to cover the observation, is
uniquely defined as

i) -1
Qginye = Foipnge(0a). )



Consequently, a nonparametric forecast Fj ;s can be as-
sembled as

Bpany = {éii’ﬁmo <a <o <a<..< 1} . (10)

In practical applications a continuous Fs,t+k|t function is
approximated by a smooth curve over the available quantile
forecasts, while the tails of the predictive distribution can
be modeled with exponential tails to reflect properly the full
range of possible outcomes [13].

The quantile regression model employed in this work is
based on the methodology described in [14]. For a training
set of data (Ps. ¢4k, Ps,¢+k)» €ach quantile G is calculated
by a parametric function n(ﬁs7t+k‘t,,6(ai)), where 8% is
a vector of model parameters, estimated by solving the
following optimization problem

B = argmin Y po. (st = nfussie S (1D
i=1
In the above formulation p,, is the tilted absolute function
defined as

Pa; (1) = u(oy; — L(u < 0)). (12)

C. Spatio-temporal scenarios of wind power generation

Aiming to produce wind power scenarios that respect the
spatio-temporal interdependence structure of the forecast er-
rors, we employ an extended version of the method presented
in [10] and [9] which focus solely on the temporal and spatial
dependencies, respectively.

Denoting by ds and dj the number of locations and lead
times respectively, the overall dimension of the scenario
generation problem is d = ds X dj. Assuming that the
spatio-temporal dependence structure can be modeled by
a Gaussian copula, the covariance matrix ¥ € R%*? of
a d-dimensional standard normal random variable X; ~
Ng(0,3) fully captures the interdependence structure, for
all lead times and locations. Given the assumption of the
Gaussian meta-model, the diagonal elements of 3 are equal
to 1, while the off-diagonal elements represent the correla-
tion between the corresponding random variables.

Write Y ;, the random variable whose realization at time
t is defined as

Y;tlz = Es,t+k|t(ps,t+k)7 Vt, Vs, Vk (13)

and follows a uniform distribution, Y; ; ~ U [0,1]. Then,
a standard normal random variable X, ~ N (0,1) is
obtained using the following transformation

X =a! (Ys(fk)), Vt, Vs, Vk (14)
where ®~! is the inverse of the Gaussian cumulative dis-
tribution function. Applying this transformation into all uni-
form variables Ys(tk), for all the locations and lead times, one
obtains d standard Gaussian variables, whose multivariate
structure is described by X. The covariance matrix 3 is
estimated based on historical data (i.e., a training period with
t=1,...,T) using the following expression

7
r=) XX/ (15)
t=1

where

ot (Fsl,t+1|t(ps1,t+1))

ot (Fsl,t+dk|t(1951.,t+dk))
: (16)

! (Fsds a1t (Psa, ,t+1))

! (Fsds trdi |t (Psa, 7t+dk))

is the vector of previous measurements transformed through
the probabilistic forecast series issued at time ¢ and the probit
function ®~!. In practical applications the covariance matrix
can be adaptively estimated using a recursive estimation
method as discussed in [10]. In order to ensure that X is
a suitable covariance matrix of a unit multivariate Normal
variable, the following transformation is applied

=30 (00]) (17)

where o; is the vector of standard deviations and © denotes
the element-by-element division.

For the generation of a set of {2 spatio-temporal scenarios,
a multivariate Normal random number generator with zero
mean and covariance matrix X is used to draw {2 realizations
of X;. Then, for every lead time and every location, the

inverse probit function ® is applied to each element Xé“,;)

of X, in order to obtain §2 realizations of YS(“Z) as

Y = o(x%)) vs, vk, o (18)

Finally, the trajectories of wind power generation that respect
the predictive densities of the probabilistic forecasts are
obtained using the following transformation

A(w) _ -1 (w)
ps,t+k|t - Fs,t+k|t(Y;,k ) VS,V]@VQ}. (19)
III. CASE STUDY
A. Wind Data

The methodologies described in Section II for issuing
different types of wind power forecasts are applied using a
dataset of wind speed predictions from the European Centre
for Medium-range Weather Forecasts [15] combined with
publicly available wind power measurements provided by
the Australian Energy Market Operator [16]. Both datasets
contain information for the years 2012 and 2013. The wind
speed predictions are issued at 00:00 and 12:00 of each day
and they have an hourly resolution up to 72-hour ahead. The
wind power dataset contains measurements, with 5-minute
resolution, for 22 wind farms located in Western Australia.
For the purpose of this study, hourly wind generation is
obtained as the average production over the corresponding
5-minute intervals. All measurements are normalized by the
nominal capacity of the wind farm and hence they take
values in the unit interval.

B. Application and results of the forecasting methodologies

In the present study, the data for year 2012 are used to
train the forecast models which are then applied on the data
from 2013 to produce a complete dataset of forecasts. For the



generation of point forecasts, the SVR method employing
the RBF kernel function is implemented using the open-
access package LIBSVM [17]. The range of the optimal
parameters for the SVR model follows the suggestions of
[18] for similar wind power forecasting applications and the
parameter selection is performed using k-fold cross valida-
tion. Finally, the parameters are selected according to the
minimum mean squared error (MSE) criterion [19]. For the
nonparametric forecasts, predictive distributions are given by
19 quantile forecasts with nominal proportions from 0.05 to
0.95 by 0.05 increments. The quantile regression model uses
as explanatory variables the single value predictions obtained
from the SVR model. All the computational models for the
quantile regression and scenario generation are developed
in open-source Python scripts which are publicly available
along with the final forecasting dataset at [20].

Figure 1 depicts an example of probabilistic predictions
along with the corresponding point forecasts and the actual
measurements. Figure 2 presents an example of space-time
scenarios of short-term wind power production for the same
episode as Fig. 1. The average of a high number of scenarios
generated with the proposed method would be equivalent to
the point predictions of Fig. 1, since they are the mean of all
possible outcomes. The quality of the generated wind power
forecasts is at the state-of-the-art level, as verified with a
number of error criteria, e.g., Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE).
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Fig. 1: Nonparametric probabilistic forecasts of wind power pro-

duction with nominal coverage rates of the prediction intervals 10,

20,..., and 90%, produced with quantile regression, accompanied

with the corresponding point forecasts and measurements.
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Fig. 2: Example of 10 spatio-temporal scenarios of wind power
production (for the same period and location as in Fig. 1).

C. Stochastic unit commitment model

In order to demonstrate the use of the wind power
forecasts on power system and electricity market studies, we
consider the following two-stage stochastic unit commitment
model, where the first stage represents the day-ahead sched-
ule and the second stage represents the real-time dispatch,
i.e, the decisions which can be modified once the uncertainty
is revealed. This optimization model is a mixed integer linear
programming problem (MILP) due to the binary variables
modeling the on/off status of the generators.

HlEin Z Z CiPi,t + Z Z ClSin,t + Z Z O{'SDzi,t
t 7 t 1 t 7
Y Y m | > (P, =Pl )
t w [

DI TS S cer] INCY
n n
S.t.
Generation constraints:
t
wir> Y Wir ViV @1
T=t—UT;+1
t
1- Uq ¢ Z Z Zi, Ty VZ7 % (22)
T=t—DT;+1
Yit — Zip = Uit — Wit—1, Vi,V (23)
Y +2ip <1, Vi,V (24)
Uq it Z Yi,t, V’L', Vit (25)
Uit > Zigy1, Vi, VE (26)

P+ < Pioa + 1m0+ RUi(uie1 + yir),

Vi, Vt, Yw 27
Pii1— wa,t,l <P;— wa’t + RD;(ui ¢ + 2it),
Vi, Vt, Yw (28)
P+ rﬁ,,t < PP (uip — zi441) + RDj - 24041,
Vi, Vt,Vw € Q (29)
Py —rD,, > P uiy, Vi,V Vw (30)
0 S RPN VELYE Yw 31
rB, S BPTT, WLV Yw (32)
Wy S W Vn, Vi (33)
WP < Wi, V0,V w (34)
Power system constraints- Day-ahead stage:
n2i S 27
AP+ W, =) ALy,
i d
+> A PR, v n (35)
l
FIPA = "B -8, vtV (36)
— U < FIPA < e, vV (37)



Power system constraints - Balancing stage:

ZAan' Tiwt — zwt)+LShe
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S
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lflhfdt < ZAM] it Vn, Vi Vw 41)

= - Ws _§DA §RT U
Where - = {-Pztaultvyltvzltv nt’ént’(snwhrzwt?
i
0 Lahed  WiET } is the set of the optimization variables.

The notation used here follows the one in [21]. Additional
symbols are: i) indices [ and ¢ denote the lines and the time
periods, ii) C°Y and CP denote the start-up and shut-
down costs, iii) CY and CP denote the energy sale and
purchase price in the balancing market, iv) UT and DT
denote the minimum up and down time, v) RU and RD
denote the ramping up and down rate, vi) binaries y, z and
u are equal to 1 if the unit is starting up, shuting down and
is online respectively, vii) fl denotes the power flow and
viii) A'?* denotes the mapping from set 1 into the set f.

The objective function (20) aims to minimize the expected
cost of power system which is made up of the day-ahead and
the balancing cost components. The day-ahead cost includes
the energy production, the start-up and the shut-down costs.
In real-time operation additional costs arise from the reserve
deployment, the wind spillage and the load shedding.

The set of Generation constraints (21)-(34) model the
technical limitations of the power generating units. In par-
ticular, constraints (21) and (22) enforce the minimum up
and down time, while constraints (23) - (26) represent the
commitment status of the conventional units. The set of con-
straints (27)- (28) and (29) - (30) specify the ramping and the
power production limits respectively, for each generator. Fi-
nally, constraints (31) - (32) ensure that dispatched reserves
are lower or equal to the reserve capacity limits of each
unit and constraints (33) - (34) limit the dispatched wind
production and the wind spillage to the wind farm capacity
and the realized wind power production respectively. The
set of Power system constraints includes the power balance
equations for the day-ahead (35) and the real-time (38)
operation. In addition, the power flow and the transmission
capacity limits of each line are modeled through constraints
(36) - (37) and (39) - (40) for the two stages respectively.
Constraint (41) ensures that the amount of load shed is
smaller than or equal to the actual load consumption.

The stochastic unit commitment model is applied to a
modified IEEE 14-bus system [22] shown in Fig. 3, which
includes four conventional generators and two wind farms.
The technical and the economic data of the system are given
in Tables I-V. The wind farms located at nodes 5 and 13
have installed capacity of 50 MW and 25 MW respectively
and their power production is modeled using a set of spatio-
temporal scenarios from the available dataset which present
minimal correlation in generation and forecast errors. The
value of lost load VIO is set to 2003/MWh while the cost
of wind curtailment VWS” is zero.

G - Conventional Generators
W - Wind Farms B3

Fig. 3: Network topology 14-bus power system

TABLE I: Generator data

Unit pmez pmin R+ R~ RU RD UT DT
MW] [MW] [MW] [MW] [MW/h] [MW/h] [h] [h]
Gl 60 12 50 50 60 60 3 2
G2 130 26 40 40 130 130 8 4
G3 170 34 30 30 120 120 8 4
G4 190 38 30 30 120 120 8 8

Figure 4 presents the production schedule of the units
for the 24 hours of the day. It can be observed that most
of the system demand is covered by Units 3 and 4, which
have the lowest production costs. Especially, Unit 4 is fully
dispatched during the whole day, apart from the first period
due to the ramping constraints. Units 2 and 3 serve mainly
the intermediate load of the system whereas Unit 1 is
dispatched only in periods 17-19 in order to cover the peak
demand. In addition, up and down regulation is provided by
Units 2 and 3 to cover any real-time imbalances. The amount
of dispatched wind power varies during the day according
to scenario forecasts, the technical constraints of the system
and the network topology. Table VI shows the day-ahead
and the expected balancing and total operating costs of the
power system. It should be noted that the expected balancing
cost is negative because of the down regulation needs arising
from the wind uncertainty.

600
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Fig. 4: Optimal generation schedule



TABLE II: Unit costs and initial state

TABLE IV: Distribution of system load

Unit C cv cb csU ¢sb Pini Uini Tini
[$MWh] [$/MWh] [$/MWh] [$]  [$] [MW] [0/1] [h]
Gl 35 37 34 500 250 0 0 -20
G2 25 27 24 1000 500 0 0 -20
G3 20 22 19 1400 600 0 0 20
G4 15 17 14 1500 700 0 0 -20
TABLE III: Load profile
Hour  System Demand Hour  System Demand

MW] MW]

1 355.754 13 430.768

2 340.531 14 426.022

3 332.853 15 421.638

4 330.656 16 419.929

5 332915 17 437.141

6 341.226 18 500.839

7 358.334 19 518.600

8 383.929 20 488.424

9 411.442 21 458.467

10 433.856 22 394.881

11 439.213 23 367.183

12 435.628 24 341.675

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a complete methodological frame-
work for the generation of different types of wind power
forecasts; namely point and probabilistic predictions as well
as spatio-temporal scenarios. This framework was applied to
real wind power measurements combined with state-of-the-
art wind speed predictions in order to produce a publicly
available dataset of high-quality forecasts. The applicability
of these products was illustrated in a stochastic unit commit-
ment model. Future work will focus on further improvement
of the forecasting products and their application in larger
scale decision-making problems.
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