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 DATABASE Open Access 

FLAVIdB: A data mining system for knowledge discovery in 
flaviviruses with direct applications in immunology and vac-
cinology 

Lars Rønn Olsen1,4, Guang Lan Zhang1, Ellis L. Reinherz1,2,3, Vladimir Brusic1,3,§ 

Abstract 
 
Background 
The flavivirus genus is unusually large, comprising more than 70 species, of which more than half are 
known human pathogens. It includes a set of clinically relevant infectious agents such as dengue, West 
Nile, yellow fever, and Japanese encephalitis viruses. Although these pathogens have been studied exten-
sively, safe and efficient vaccines lack for the majority of the flaviviruses. 

Results 
We have assembled a database that combines antigenic data of flaviviruses, specialized analysis tools, 
and workflows for automated complex analyses focusing on applications in immunology and vaccinology. 
FLAVIdB contains 12,858 entries of flavivirus antigen sequences, 184 verified T-cell epitopes, 201 verified 
B-cell epitopes, and 4 representative molecular structures of the dengue virus envelope protein. FLAVIdB 
was assembled by collection, annotation, and integration of data from GenBank, GenPept, UniProt, IEDB, 
and PDB. The data were subject to extensive quality control (redundancy elimination, error detection, and 
vocabulary consolidation). Further annotation of selected functionally relevant features was performed by 
organizing information extracted from the literature. The database was incorporated into a web-accessible 
data mining system, combining specialized data analysis tools for integrated analysis of relevant data cate-
gories (protein sequences, macromolecular structures, and immune epitopes). The data mining system in-
cludes tools for variability and conservation analysis, T-cell epitope prediction, and characterization of neu-
tralizing components of B-cell epitopes. FLAVIdB is accessible at cvc.dfci.harvard.edu/flavi/ 

Conclusion 
FLAVIdB represents a new generation of databases in which data and tools are integrated into a data min-
ing infrastructures specifically designed to aid rational vaccine design by discovery of vaccine targets. 

Background 
 
More than 70 known viral species belong to the flavivirus 

genus. The flavivirus genus can be divided into three 

clusters, fourteen clades, and 70 species [1]. The clusters 

are based on host-vector association: mosquito-borne, 

tick-borne, and no-vector viruses. The members of 

flavivirus clades share >69% pairwise nucleotide se-

quence identity, while members of individual species 

share >84% identity [1]. More than half of these single-

stranded RNA viruses are known human pathogens [2]. 

The most important human pathogens among flaviviruses 

are West Nile virus (WNV), dengue virus (DENV), Tick-

borne encephalitis virus (TBEV), Japanese encephalitis 

virus encephalitis virus (JEV), and yellow fever virus 

(YFV). Flaviviruses pose a significant global public 

health threat since they are responsible for hundreds of 

millions of human infections each year. Hailed as one of 

the most successful vaccines ever developed, the live 

attenuated YFV vaccine [3-4]  however often induces 

severe adverse effects [5], thus leaving room for signifi-

cant improvements. Safe and efficient JEV and TBEV 

vaccines have also been developed, although these have 

limited global application due to high production prices 

[6]. To date, successful vaccines against DENV, WNV, 

and a range of other emerging flavivirus pathogens have 

proven elusive.  

 

Because of the high sequence similarity between the 

flavivirus species, the analysis of antigenic diversity, 

both intra- and inter-species, offers important insights in 

potential cross-reactivity, cross-protection following in-

fection or immunization, and clues for understanding the 

factors that determine disease severity. Cross-reactivity 

and cross-protection is particularly relevant in the case of 

DENV, due to issues relating to severe consequences of 

secondary infection. While the factors that lead to severe 

dengue disease are unclear, it was proposed that it is re-

lated to misdirected immune responses including anti-

body dependent enhancement (ADE) [7] as well as 

exaggerated and partially misdirected T-cell responses 

[8]. 
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Sequencing efforts in recent years have produced a large 

body of flavivirus molecular data enabling advanced data 

analyses for rational vaccine design. Primary databases 

such as GenBank [9] contain comprehensive collections 

of nucleotide sequence data. Protein sequence data are 

available from UniProt knowledgebase [10] which offers 

curated, high quality protein data. A number of dedicated 

flavivirus databases are available such as Flavitrack [11] 

and the NIAID Virus Pathogen Database and Analysis 

Resource (ViPR) (www.viprbrc.org). Both Flavitrack and 

ViPR provide access to curated sequence data and they 

include a selection of sequence analysis tools. Particu-

larly ViPR offers an abundance of useful analysis tools 

such as sequence similarity search, multiple sequence 

alignment (MSA), single nucleotide polymorphism 

(SNP) analysis, and construction of phylogenetic trees, 

neatly organized in their workbench analysis environ-

ment. However, data mining for vaccine target discovery 

requires complex database search requests and often a 

combination of several different tools (for example, pre-

diction of epitopes is often preceded by extensive conser-

vation and variability analysis) integrated in data mining 

systems for automated knowledge extraction and knowl-

edge discovery.  

 

To aid the analysis of immunological properties and dis-

covery of vaccine targets in the flaviviruses, we con-

structed the FLAVIdB – a database of Flavivirus spp. 

that contains information on protein sequences, immu-

nological data, and structural data. These data are inte-

grated into a modular extensible infrastructure that en-

ables detailed analysis of sequences and their antigenic 

properties through application of data mining techniques 

[12]. The tools can be applied individually or by using 

predefined workflows designed for discovery of vaccine 

targets. 

 

Methods 

Data collection 

The sequence data for FLAVIdB were extracted from 

primary sources GenBank,  GenPept [9] and UniProt 

[14]. The raw data were downloaded for species in the 

Flavivirus genus (NCBI taxonomy ID: 11051), and sub-

sequently transformed into an XML format. Data module 

of experimentally determined B- and HLA class I and II 

T-cell epitopes was populated with data extracted from 

IEDB [15] as well as additional epitope data retrieved 

from the literature. The epitope data were enriched with 

data from binding assays, neutralization assays, and cross

-protective properties. Macromolecular structure data 

from protein data bank (PDB) [16] was also extracted for 

the envelope proteins of DENV. The content of 

FLAVIdB is searchable using keyword search and is 

available for download by users. The main purposes of 

FLAVIdB are data integration, data mining, and knowl-

edge extraction for applications in immunology and vac-

cinology. The overall framework of the system is shown 

in Figure 1. 

 

 

 

Data cleaning 

Sequences that had duplicate entries were merged into 

single entries to minimize data redundancy. In the pri-

mary sources some of the available sequences were well-

annotated, some had incomplete annotations, whereas 

others lacked annotation altogether. The NCBI GenPept 

protein reference sequences served as templates for anno-

tation of viral protein sequences. For quality control, of 

existing protein annotations and the addition of missing 

annotations, query sequences were aligned to the appro-

priate reference sequence using MAFFT MSA tool [17]. 

Sequence fragments shorter than 23 amino acids were not 

included in the database. The threshold 23 was chosen 

because it is the length of the shortest protein naturally 

occurring in the Flavivirus proteome (the 2K peptide). 

Existing positional annotations were compared to the 

MSA and corrected when needed. The missing positional 

annotations were generated from MSA positions and 

included in FLAVIdB records. 

 

Data enrichment 

Journal publications corresponding to the strain entries 

were extracted from PubMed (www.ncbi.nlm.nih.gov/

pubmed) when available. Semi-automated extraction of 

articles was performed to retrieve information missing in 

the GenBank entries, but otherwise available. Manual 

checking was necessary because of limited extent of  

Figure 1: Summary of the structure of FLAVIdB. Users can access 

FLAVIdB through the interactive interface for direct access to data or tools, 

or through static interface and predefined workflows. Workflows use a 

predefined process to access data and tools and to produce a report. 

Figure 2: Process of population of the FLAVIdB database with data. The 

cylinders indicate data repositories and rectangles indicate the manual and 
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standardized fields, nomenclature, and terms in primary 

sources.  

 

Basic search tools 

Keyword search 

Beyond the basic utility of keyword search, FLAVIdB 

also offers options for filtering data based on species, 

pathology (disease outcome or fatal/non-fatal), proteins, 

strain type (wild type, laboratory strain, or vaccine 

strain), entry type (complete proteomes or partial pro-

teomes), and host. The data retrieval function also serves 

as a tool for selection of subsets of sequences for com-

parative analyses. 

 

Sequence similarity search 

Sequence similarity search of the FLAVIdB can be per-

formed using the basic local alignment search tool 

(BLAST) algorithm [18] through an integrated BLAST 

module within the FLAVIdB. We recommend that inte-

grated BLAST tool is used with the default parameters, 

while for advanced users there is an option to set differ-

ent values for parameters such as E value, word size, 

substitution matrix, and gap cost. 

  

Basic analysis tools 

Multiple sequence alignment 

The MSA can be performed for three or more sequences 

in FLAVIdB using the MAFFT tool [17]. The output is 

color coded for easy visualization of variations, matches, 

and gap insertions in the alignment. The search interface 

enales a selection of pre-defined subsets by virus type or 

subtype, pathology, individual protein,  strain type (wild 

type, laboratory, or vaccine), size (complete or partial), 

or host of isolation. Furthermore, MSA can be performed 

on selected results from BLAST search. 

 

Sequence conservation and variability metrics 

FLAVIdB is equipped with the tools for sequence con-

servation and variability analysis. Variability analysis can 

be performed on entries grouped by protein and further 

narrowed down by virus type or subtype, and by host of 

isolation. The variability analysis at amino acid level is 

based on calculation of Shannon entropy [19] at each 

position in a MSA. The entropy is calculated using the 

formula: 

 

 
 

where H is the entropy, x is the position in the MSA, i 

represent individual amino acids at position x, I is the 

number of different amino acids on position x, and Pi is 

the frequency of the given amino acid. Conservation of a 

position, x, is defined by the frequency of the consensus 

amino acid. 

 

Block entropy analysis 

To accommodate conservation and variability analysis of 

T-cell epitopes, we developed a new entropy measure-

ment method, specifically designed for the analysis of 

short peptides, 8-11 amino acids in length. This approach 

is based on calculation of entropy for each overlapping 

window (block) of 8-11 amino acids in length in a given 

MSA of homologous proteins. Then, entropy and conser-

vation is calculated for the peptides, rather than individ-

ual residues. Since T-cell epitopes are recognized as pep-

tides and not as individual residues, this approach pro-

vides a more representative image of the conservation of 

linear epitopes. For class I T-cell epitopes, the size of the 

window ranges between 8 and 11 amino acids [20] while 

class II epitopes are typically 13-20 amino acids long 

with a binding core of minimum 9 amino acids long [21-

22]. The results of block entropy analysis are displayed 

with traditional entropy analysis to further clarify the 

peptide diversity and its relationship to individual amino 

acid diversity. 

 

Species classification 

FLAVIdB enables classification of newly acquired se-

quences that belong to species of flaviviruses. Classifica-

tion of species to unassigned strains is performed using 

the BLAST algorithm [18] in combination with the 

knowledge of phylogenetic traits of the genus flavivirus 

reported in [1]. Because its main purpose is the analysis 

of antigenic properties of viruses, FLAVIdB has nucleo-

tide sequence data for each of the protein entries in the 

background and not searchable by keywords or by 

browsing. For species classification, we use the similarity 

rule defined in [1]. The nucleotide sequence similarity 

search is performed in FLAVIdB using BLAST algo-

rithm, after which the query is compared to the highest 

scoring match. If the pairwise identity of query and 

match is 84% or greater, the query is considered of the 

same species as its match. Species classification can only 

be performed on full (or nearly full) viral genome se-

quences. Since some proteins are far less variable than 

others, submitting a single gene sequences could give 

ambiguous or incorrect results. 

 

Advanced analysis tools 

Prediction of MHC class I binders 

Prediction of peptide binding affinity to MHC class I is 

performed using the neural network and weight matrix 

based prediction algorithm; NetMHC 3.2 [23].  Epitope 

prediction in FLAVIdB is available for the following 

HLA alleles: HLA-A*0201, HLA-A*0301, HLA-

A*1101, HLA-A*2402, HLA-B*0702, HLA-B*0801, 

and HLA-B*1501, since NetMHC 3.2 predictions for 

these alleles were independently validated and assessed 

as highly accurate [24]. 

 

Prediction of MHC class II binders 

Prediction of peptide binding affinity to MHC class II is 

performed using NetMHCIIpan 2.1 [25] for the alleles 

HLA-DRB1*0101, HLA-DRB1*1101, HLA-

DRB1*0401, and HLA-DRB1*0701 for which prediction 

of binding affinities were independently validated and 

assessed as highly accurate [26]. 

 

(1) 
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Virus 

Species 

Abbre-

viation 

Full proteome Partial 

proteome 

Total 

entries 

T-cell 

epitopes 

B-cell 

epitopes 

Struc-

tures 
Dengue 1 DENV1 1209 1085 2294 112 23 1 

Dengue 2 DENV2 835 1781 2616 295 49 1 

Dengue 3 DENV3 565 1665 2230 97 40 1 

Dengue 4 DENV4 103 606 709 90 24 1 

Japanese 

encephalitis 
JEV 67 1238 1305  14  

Kunjin KUNV 3 103 106    

Kyasanur forest 

disease KFDV 2 100 102    

St. Louis 

encephalitis SLEV 5 234 239  1  

Tickborne 

encephalitis TBE 34 620 654  8  

West Nile WNV 177 1361 1538 34 38  

Yellow fever YFV 26 389 415 23 5  

Table 1A: Most common Flavivirus species in FLAVIdB including their common species abbreviation, number of full proteome sequences, partial proteome 

sequences, total number of entries, number of T-cell and B-cell epitope entries (note that some epitopes overlap strains and species), and the number of pro-

tein structures. 

Species Abbr-

eviation 

Entries  Species Abbrevia

-tion 

Entr-

ies 

Murray Valley 

encephalitis virus 

MVEV 70  Cacipacore virus CPCV 5 

Powassan virus POWV 69  Kumlinge virus KVE 5 

Alkhurma hemorrhagic 

fever virus 

AHFV 36  Tamana bat virus TAB 4 

Omsk hemorrhagic fever 

virus 

OHFV 35  Aroa virus AROAV 4 

Kokobera virus KOKV 33  Banzi virus BANV 4 

Ilheus virus ILHV 22  Greek goat encephalitis virus GGE 4 

Louping ill virus LIV 21  Royal Farm virus RFV 4 

Mosquito flavivirus MBV 21  Uganda S virus UGSV 4 

Usutu virus USUV 19  Dakar bat virus DAKV 4 

Aedes flavivirus MBV 18  Israel turkey 

meningoencephalomyelitis virus 

ITV 4 

Tembusu virus MBV 15  Koutango virus KOUV 4 

Deer Tick virus DTV 14  Naranjal virus NJLV 4 

Rocio virus ROC 10  Ntaya virus NTAV 4 

Langat virus LGTV 9  Sal Vieja virus SVV 4 

Sepik virus SEPV 9  Bouboui virus BOUV 3 

Edge Hill virus EHV 9  Potiskum virus POTV 3 

Karshi virus KSIV 8  Spanish Sheep encephalitis virus SSE 3 

Zika virus ZIKV 8  Bukalasa bat virus BBV 3 

Entebbe bat virus ENTV 7  Carey Island virus CIV 3 

Alfuy virus ALFV 7  Cowbone Ridge virus CRV 3 

Gadgets Gully virus GGYV 7  Jutiapa virus JUTP 3 

Bagaza virus BAGV 6  Negishi virus NIV 3 

Wesselsbron virus WESSV 6  Phnom Penh bat virus PPBV 3 

Modoc virus MODV 6  Sokoluk virus SOKV 3 

Montana myotis 

leukoencephalitis virus 

MMLV 6  Stratford virus STRV 3 

Bussuquara virus BSQV 6  Yokose virus YOKV 3 

Saboya virus SABV 6  Nounane virus NOUV 2 

Kamiti River virus KRV 5  Chaoyang virus CYV 2 

Kedougou virus KEDV 5  Turkish Sheep encephalitis virus TSEV 2 

Apoi virus APOV 5  Batu Cave virus BCV 2 

Rio Bravo virus RBV 5  Ngoye virus NGOV 2 

Iguape virus IGUV 5  Yaounde virus YAOV 2 

Jugra virus JUGV 5  Calbertado virus CAV 1 

Kadam virus KADV 5  New Mapoon virus NMV 1 

Meaban virus MEAV 5  San Perlita virus SPV 1 

Saumarez Reef virus SREV 5  Sitiawan virus SV 1 

Spondweni virus SPOV 5  T'Ho virus MBV 1 

Tyuleniy virus TYUV 5  Wang Thong virus WTV 1 

Table 1B: Less common 

Flavivirus species in FLAVIdB 

including their common species 
abbreviation and total number of 

entries. 
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Characterization of shared neutralizing components 

of B-cell epitopes (BBscore) 

In DENV, it is essential that antibody based vaccines 

afford broad neutralization across all four serotypes. The 

tool for B-cell epitope analysis in FLAVIdB is based on 

comparative analysis of known B-cell epitopes together 

with comparison of corresponding binding and neutrali-

zation assay data. Features shared by neutralizing epi-

topes against all four serotypes are extracted and pre-

sented on 3D models of the envelope protein. Further-

more, users can map these shared features onto any enve-

lope protein sequence in FLAVIdB. At present, structural 

data for the envelope protein is only publically available 

(in the pdb database) for dengue, West Nile, Japanese 

encephalitis, Langat, Omsk hemhorraghic fever, and yel-

low fever viruses. Useful amounts of experimentally vali-

dated epitopes and corresponding biochemical/functional 

assay data are only available for DENV and WNV. Thus, 

the BBscore tool is currently limited to the analysis of 

DENV and WNV. The output of this analysis can auto-

matically improve both the breadth and depth of charac-

terization of neutralizing properties of antigenic sites on 

surface proteins as more epitopes and assay data becomes 

available in primary sources such as the IEDB [15].  

 

Results and Discussion 

Database content  

As of June 2011, FLAVIdB contains 12,858 entries, with 

sequences from 87 flavivirus species consisting of 65 

classified species and 24 provisional or unclassified 

species (see Table 1) 

The first release of the database (June, 2011) has 3,120 

complete proteome sequences and 9,738 partial 

sequences. Each proteome entry was annotated as its 

individual protein (or in some cases, protein fragment) 

constituents. Each entry contains protein sequences along 

with additional annotations describing various strain 

information (see Table 2). 

 

Each entry was given a shorthand nomenclature, 

sequence name and source strain identifier. The 

nomenclature contains information about species, host, 

country (ISO code), strain name, isolate name, clone 

name, and year of collection. An example of a FLAVIdB 

nomenclature is: 

 

DENV1|Human|TH|NIID2|133|02-20|2002 

 

An entry with this nomenclature represents a DENV type 

1 isolated from a human host, at geographic location 

Thailand, in year 2002, with the specific strain NIID2, 

isolate 133, clone 02-20. 

 

For the repository of experimentally determined B-cell 

epitopes, each entry (only applicable to DENV in the 

current release) describes positions in protein sequence, 

species, serotype, publication reference, and data from 

binding assays and neutralization assays. For the 

repository of experimentally determined T-cell epitopes, 

each entry is described by location in protein, epitope 

sequence, HLA restriction, and publication references. 

 

Data quality 

The population of FLAVIdB was subject to a rigorous 

quality control. Approximately 500 sequence errors and 

artifacts (nonsensical characters, frameshift mutations 

rendering the protein sequences in question of no use to 

conservation and variability analysis) were detected and 

corrected or removed. More than 1,000 metadata terms 

used in primary sources were consolidated into approxi-

mately 200. To support data term consolidation, a library 

of all fields from all entries was created. The library was 

used for semi-automated consolidating the entry vocabu-

lary by merging redundancies such as “US”, “U.S.”, 

“United States of America”, “America”, etc., into the 

FLAVIdB convention: “USA” and the corresponding 

ISO code used in FLAVIdB nomenclature, “US”. The 

species classification error analysis led to the identifica-

tion and correction of 17 strains, and the classification of 

seven previously unclassified serotypes of DENV. Fur-

thermore, the entries were enriched by definition of addi-

tional metadata. The specific information includes: loca-

tion of collection, host of collection, time of collection, 

strain type (whether entry genome was derived from wild 

type, laboratory strain, or vaccine strain), pathology 

(whether infection led to disease and/or fatality) and 

comments on protein function (some mutant strains en-

code nonfunctional protein products). The differences 

between the available annotations in the primary data 

from external sources and the enriched data in FLAVIdB 

are shown in Table 3. 

Analysis tools 

FLAVIdB is equipped with several generic data analysis 

tools as well as three tools specifically developed for 

FLAVIdB: Block entropy analysis, BBscore, and viral 

species classifier (Table 4).   

 

Table 2: The data fields in each entry (the values are included if available). 

Field name Field content 

CVC accession Accession number unique to FLAVIdB 

GenBank ac-

cession 
Accession number unique to GenBank 

Species The Flavivirus species descriptor 

Type Serotype (only applicable to DENV) 

Host Host of collection 

Country Location of collection 

Year Time of collection 

Strain Strain name 

Isolate Isolate name 

Clone Clone name 

Nomenclature 

Short-hand representation of host, coun-

try (ISO code), year of collection, sero-

type (where applicable), strain, isolate, 

and clone name 

Strain type 
Information on whether strain is wild 

type, laboratory strain, or vaccine strain 

Pathology 
The morbidity and mortality associated 

with the virus 
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Workflows 

To accommodate rapid and extensive analysis without 

the need for local computation or moving data between 

individual analysis tools or different web servers, 

FLAVIdB includes pre-defined analysis workflows. A 

workflow is an automated process that takes a request 

from the user, performs complex analysis by combining 

data and tools preselected for common questions, and 

produces a comprehensive report [13]. These workflows 

demonstrate both the utility and flexibility of the data 

mining infrastructure in FLAVIdB. For the current re-

lease we have developed and implemented two data min-

ing workflows; a summary workflow and a query ana-

lyzer workflow. 

 

Summary workflow 

The summary workflow can be applied to all sequences 

in the database or to any defined subset thereof. The pur-

pose of this workflow is to summarize potential vaccine 

targets common to all entries within the FLAVIdB, or a 

subset of entries, such as summary analysis of one or 

more species within the FLAVIdB. The results of appli-

cation of each analysis tool are presented to the user in a 

single printable output report. The structure and compo-

nents of the summary workflow are presented in the 

flowchart in figure 3. The utility of the summary work-

flow is particularly important at the very beginning of 

research projects, or as an incremental analysis of exist-

ing projects upon the database update. 

 

 

Query analyzer workflow 

The query analyzer workflow is a useful tool for re-

searchers who need to rapidly analyze newly sequenced 

strains or previously uncharacterized sequences found in 

the database. The query analyzer workflow applies the 

existing data mining modules to the query in a predefined 

order and the analysis results are presented in a single 

printable output report. The first step is sequence selec-

tion – either directly from the database or the nucleotide 

sequence followed by species classification. The analysis 

is followed by parallel application of T-cell epitope, B-

cell epitope, and variability analysis, and the final step of 

report generation. The steps and tools involved in the 

Table 3: The results of the data enrichment. Direct parsing is performed by 

considering only information available in the dedicated fields in GenBank 

entries. GenBank does not have dedicated fields for the information marked 
with an asterisk (*), so some form of automated text mining was applied to 

extract this information. The lack of a dedicated field does not necessarily 

mean that information about strain type, pathology, or sequence annotation 

is not present in other fields (such as comments/notes) in the entries, but 

extraction was only possible to automate to a very limited extent without 

error and artifact propagation. 

Table 4: The sources of analysis tools integrated in FLAVIdB and URL for various standalone web servers. 

Figure 3: Flowchart of the summary workflow. Initially the user is 

prompted to select a data set, using a set of filter parameters and/or key 

word search of the entire database. Then, T-cell epitope prediction, and B-
cell epitope characterization are applied. 

  

Type of information 

          % of entries 

   Direct           Enriched 

  parsing          entries in 

  from GB        FLAVIdB 

Host of collection 49% 72% 

Location of collection 83% 96% 

Time of collection 53% 84% 

Strain type* 6% 72% 

Pathology* 0% 3% 

 Sequence annotation* 30% 100% 

Tool URL Reference 

BLAST blast.ncbi.nlm.nih.gov/Blast.cgi [18] 

MAFFT MSA www.ebi.ac.uk/Tools/msa/mafft/ [17] 

NetMHC 3.2 www.cbs.dtu.dk/services/NetMHC/ [23] 

NetMHCII 2.2 www.cbs.dtu.dk/services/NetMHCII/ [25] 

Species classification cvc.dfci.harvard.edu/flavi/HTML/species.php This paper 

Block entropy cvc.dfci.harvard.edu/flavi/HTML/tcell/ This paper 

BBscore cvc.dfci.harvard.edu/flavi/HTML/bcell.php This paper 
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query analyzer workflow are shown in the flowchart in 

Figure 4 

 

Application of summary workflow to DENV 

Application of the summary workflow to all four sub-

types of DENV revealed a pool of 333 T-cell epitope 

candidates, which can potentially be combined in a poly-

valent vaccine comprised of five synthetic dengue virus 

proteins. The analysis of B-cell epitopes revealed five 

conserved positions in the dengue virus envelope protein 

that are targeted in antibody-based neutralization. These 

results were generated by submitting all available DENV 

sequences to the FLAVIdB summary workflow, thus 

demonstrating the utility of the work flows in data min-

ing from for comprehensive identification of vaccine 

targets. Figure 5 shows the input submission screen and 

Figure 6 shows the conservation and variability of the 

DENV E protein and the block entropy part of the output 

report. 

 
Conclusion 
FLAVIdB is a comprehensive database of Flavivirus spp. 

antigens extracted from multiple external sources 

(GenPept and UniProt, epitope data from IEDB, and 

structural data from the PDB). The FLAVIdB data has 

been manually curated and enriched by the extraction of 

additional annotations available from the corresponding 

literature, ensuring high data quality and data complete-

ness. 

We have integrated the annotated data with the data min-

ing infrastructure consisting of data mining tools for   

discovery of vaccine targets. This infrastructure provides 

for an automated data mining platform, enabling extrac-

tion of higher level knowledge about T-cell epitopes and 

neutralizing B-cell epitopes in the flaviviruses. We have 

also defined and implemented two workflows where data 

mining tools have been arranged to rapidly and seam-

lessly extract knowledge from the data stored in the 

FLAVIdB. The query analyzer workflow enables analy-

sis of single sequences for vaccine targets, whereas the 

summary workflow summarizes vaccine targets across a 

larger data set. The modular structure of FLAVIdB can 

easily be modified for application to other viral patho-

gens, as well as integration of new analysis modules and 

workflows. 

 

The main purpose of FLAVIdB is to enable user to per-

form knowledge discovery from viral antigen data with 

particular emphasis on applications in immunology and 

vaccinology. Prediction and characterization of immuno-

genic epitopes is a critical step in identification and as-

sessment of potential vaccine targets. This process is not 

identical for different viruses. For example, in DENV it 

is essential that vaccines are designed to elicit cross-

protection to all four serotypes, due to complications in 

secondary infection by different subtypes. To analyze 

DENV vaccine targets, is it necessary to identify and 

compile a very precise and detailed information about 

antigenic sites which are conserved across all four sero-

types, perform a detailed analysis of antigenic diversity, 

and understand variants representation both in time and 

geographic spread. In FLAVIdB, the analysis tools are 

organized in the data mining workflows composed of 

preselected sets of tools applied to user defined data sets 

from FLAVIdB. With new knowledge accumulating, we 

plan to extend the tools and workflows so that precise 

and detailed analysis can be automated and brought di-

rectly to the virologist and vaccinologist workbench. 

 

FLAVIdB differs from existing dedicated flavivirus data-

bases since it offers novel analysis tools (BBscore, block 

entropy analysis, and flavivirus species classification) 

specifically developed for the analysis of immunological 

and vaccinological properties of flaviviruses. These tools, 

along with generic analysis tools, were implemented in 

the two workflows providing automated report genera-

tion. Furthermore, the sequence data in FLAVIdB is fully 

annotated with protein cleavage sites, T-cell and B-cell 

epitopes, which is only partially addressed in some of 

existing dedicated flavivirus sequence data resources. 

 

FLAVIdB represents a new breed of bioinformatics data-

bases that tightly integrates the content (data), analysis 

tools, and workflows to enable the automation of com-

plex queries, data mining, and report generation. These 

“new generation” immunological databases shift focus 

from retrieval and simple analyses, to complex analyses 

and extraction of high-level knowledge. We expect this 

database to serve as a template for the development of 

Figure 4: Flowchart of the steps in the query analyzer workflow. The query 

sequence is selected either from the database or submitted directly through 

the input window. If manual submission is used, the species is first classi-
fied using the species classification tool. T-cell epitopes are predicted and 

B-cell epitopes are characterized. Finally, a variability analysis is per-

formed for sequences related to the query. The combined results are pre-

sented in an output report. 
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Figure 6: A screenshot of the 

output report from the summary 

workflow applied to all four 
serotypes of DENV. The top 

graph shows conservation (blue 

line) and entropy (red line) for 

the DENV envelope protein, 

with the consensus amino acids 

sequence on the x-axis. The 

following table is a summary of 

binding assay data and neutrali-
zation assay data from IEDB. 

The bottom graph is the sum-

mary of the block entropy 

analysis. On the x-axis are the 

starting positions of each pep-

tide block analyzed and on the 

y-axis is the number of peptides 

required to achieve an accumu-
lated frequency of 99% within 

each given block. The lack of 

data from starting point 148-

158 is due to a high fraction of 

gaps on this position in the 

multiple sequence alignment. 

Figure 5: A screenshot of the 

user input page for the sum-

mary workflow. 
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advanced integrated bioinformatics infrastructure for 

vaccinology. The modular structure of FLAVIdB enables 

easy and straight-forward extension with new modules. 

The framework can be reused for building vaccine-

oriented databases of other pathogens such as influenza. 

 
List of abbreviations: 

ADE: Antibody dependent enhancement 

BLAST: Basic local alignment search tool 
DENV: Dengue virus 

HLA: Human leukocyte antigen 

IEDB: Immune epitope database 

JEV: Japanese encephalitis virus 

MHC: Major histocompatibility complex 

MSA: Multiple sequence alignment 

PDB: Protein databank 

SNP: Single nucleotide polymorphism 
TBEV: Tick-borne encephalitis virus 

YFV: Yellow fever virus 

WNV: West Nile virus 
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