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Resumé 

Jod er et essentielt grundstof for alle pattedyr. Derfor er det vigtigt at undersøge, 

hvorledes jod opfører sig og transporteres i miljøet. 
129

I, en langlivet radioisotop af 

jod (1.5710
7
 år), udledes hovedsageligt til miljøet fra nukleare oparbejdningsanlæg 

(især Sellafield i Storbritannien og La Hague i Frankrig), som udgør unikke 

punktkilder med udslip til havet, som er velegnede til sporstofundersøgelser af jod i 

miljøet. Undersøgelser af kemiske former (speciering) af 
129

I benyttes ikke kun for 

at studere jods geokemiske kredsløb, men også for at undersøge processer i miljøet. 

Denne afhandling præsenterer metoder udviklet til kemisk analyse af speciering af 
129

I i miljøprøver og biologiske prøver (dvs. havvand, aerosoler, og tang), såvel som 

anvendelser til at undersøge processer i miljøet og det geokemiske kredsløb for 

stabilt 
127

I i havet, atmosfæren og tang. 

Baseret på tidligere erfaring blev en metode med nedbrydning med persulfat 

oxidation udviklet yderligere for at konvertere organisk jod til uorganiske former i 

naturlige vandprøver. Denne ny metode har vist sig at være effektiv og pålidelig til 

nedbrydning af organisk jod, og har været anvendt med succes til at bestemme 
129

I i 

naturlige vandområder og perkolat indeholdende organisk jod. 

En metode er udviklet til analyse af speciering af 
129

I og 
127

I i aerosoler indsamlet på 

luftfiltre af polypropylen. Sekventiel ekstraktion med vand og NaOH-opløsning 

blev brugt til at udvinde vandopløseligt jod (WSI) og NaOH opløselig jod (NSI), og 

alkalisk foraskning blev brugt til rester af uopløseligt aerosol jod (RII). WSI blev 

yderligere adskilt i iodid og iodat ved hjælp af anionbytningskromatografi. 

Parametre, såsom mængden af udvaskningsmidler, udvaskningstid, foraskningstid 

og temperatur, og tilsætning af jodbevarende reagenser, der kan påvirke stabiliteten 

af jodformer og kemisk udbytte af jodformer under kemisk separation, blev 

undersøgt med henblik på at opnå nøjagtige resultater af 
129

I-former i aerosoler. 

Analyseresultaterne af de samlede og forskellige kemiske former for 
129

I i 

aerosolprøver viser, at den udviklede metode er pålidelig til præcis angivelse af 
129

I 

og 
127

I i aerosoler. 

Fordeling af kemiske former (iodid og iodat) af 
129

I og 
127

I i prøver af havvand fra 

det centrale Arktis, Grønlands kyster, danske kyster og kysten ved Fukushima i 

Japan blev undersøgt. For både 
129

I og 
127

I er iodat den fremherskende form i 

havvand i det centrale Arktis og ved Grønlands kyster, mens iodid er den 

fremherskende form for 
129

I og 
127

I i danske kystfarvande. Et særligt 

fordelingsmønster af iod-former blev observeret i prøver af havvand fra kysten ved 

Fukushima, hvor I
-
/IO3

-
 atomforholdet for 

127
I var i intervallet 0.07-0.27, hvilket 
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afspejler dominerende mængder af iodat i havvand, mens forholdene for 
129

I angiver, 

at iodid er den dominerende form . Disse resultater viser, at sammensætningen af 

jod-former afhænger af kilden til jod (nukleare oparbejdningsanlæg og nukleare 

ulykker), transportveje (langs kysten og i åbent område på havet) og biogeokemiske 

processer. Den bemærkelsesværdig store mængde 
129

I i det Arktiske Ocean i 2011 

medfører, at Arktis virker som en sekundær kilde af 
129

I med udstrømning til 

sydligere have, såsom Grønlandshavet og det vestlige Atlanterhav, samt til 

atmosfæren og det arktiske økosystem. 

Aerosolprøver indsamlet to steder (Risø, Danmark, nær kysten, og Tsukuba Japan, 

170 km sydvest for Fukushima Dai-ichi atomkraftværket) i løbet af foråret 2011 

(kort efter Fukushima atomulykken) og vinteren 2014 blev analyseret for jod-

former af 
129

I og 
127

I herunder opløselige og uopløselige former. Resultaterne viser, 

at koncentrationer og kemiske former af 
129

I og 
127

I i aerosoler er stærkt relateret til 

kilder og transportveje for luftmasser, og at 
129

I fra Fukushima bidrog med under 6% 

af den samlede mængde 
129

I i atmosfæren over Nordeuropa under ulykken. 

Kemiske former af 
129

I og 
127

I i tang (Fucus serratus og vesiculosus) indsamlet i 

danske kystområder i 2014 blev bestemt, herunder vandopløselig jod (iodid, iodat 

og opløselig organisk jod) og vanduopløselig jod. Mulige mekanismer for optag af 

jod i tang i naturlige marine systemer blev undersøgt ved at kombinere data for 

kemiske former af jod i prøver af vand og tang indsamlet samtidigt. 
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Abstract 

Iodine is well known as an essential nutrient element for mammals. It has evoked 

extensive interests in investigation of its behaviours and transportation processes in 

various environmental components. 
129

I, a long-lived radioisotope of iodine 

(1.5710
7
 years), is predominantly discharged to the environment from nuclear 

reprocessing plants (especially Sellafield in United Kingdom and La Hague in 

France), providing a unique point source for environmental tracing studies. 

Speciation analysis of 
129

I can be used not only for studying the geochemical cycle 

of iodine, but also for investigating various environmental processes. This thesis 

presents the methods developed for chemical speciation analysis of 
129

I in 

environmental and biological samples (i.e. seawater, aerosols, and seaweed), as well 

as its applications for tracing environmental processes and investigating 

geochemical cycle of stable 
127

I in ocean, atmosphere and seaweed. 

Based on the previous work, a persulfate oxidation decomposition method was 

further investigated for converting organic iodine to inorganic forms in natural 

water samples. This method was proved to be efficient and reliable for decomposing 

organic iodine, and has been successfully applied for determination of 
129

I in natural 

waters and leachates containing organic iodine species.  

A method has been established for speciation analysis of 
129

I and 
127

I in aerosol 

samples collected on polypropylene filter. Sequential extraction using water and 

NaOH solution was employed to extract water-soluble iodine (WSI) and NaOH 

soluble iodine (NSI), and alkaline ashing for residue insoluble aerosol iodine (RII). 

WSI was further partitioned to iodide and iodate using anion exchange 

chromatography. Parameters, such as amount of leaching agents used, leaching time, 

ashing time and temperature, and addition of iodine protecting reagent that might 

influence stability of iodine species and chemical yield of iodine species during 

chemical separation, were investigated in order to obtained accurate results of 
129

I 

species in aerosol. The results on the analysis of total and different species of 
129

I in 

real samples demonstrate that the developed method is reliable for accurate 

determination of 
129

I and 
127

I species in aerosol samples.  

Distributions of chemical species (iodide and iodate) of 
129

I and 
127

I in the seawater 

from the central Arctic, Greenland coast, Danish coast and offshore Fukushima, 

Japan were investigated. Iodate for both 
129

I and 
127

I is the predominant form for the 

seawater in the central Arctic and Greenland coast, whereas iodide is the major 

specie of 
129

I and 
127

I in Danish coast. A distinct distribution pattern of iodine 

species was observed in Fukushima offshore seawater, where the I
-
/IO3

-
 atomic 
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ratios for 
127

I were in the range of 0.07-0.27 reflecting a dominant iodate in the 

seawater, but the I
-
/IO3

-
 ratios for 

129
I indicated that iodide is the major iodine specie. 

These investigations demonstrate that variation of iodine species is dependent on 

origins of iodine (nuclear reprocessing plants and nuclear accident), transportation 

pathways (along the coast and open area of ocean) and biogeochemical processes. 

The remarkably increased 
129

I inventory in the Arctic by 2011 suggests that it may 

acts as a secondary source of 
129

I that outflows to the downstream seas, such as the 

Greenland Sea, and the western Atlantic Ocean, as well as to the atmosphere and 

the Arctic ecosystem.  

Aerosol samples collected at two locations (Risø, Denmark, a coastal site, and 

Tsukuba Japan, about 170 km southwest of the Fukushima Dai-ichi nuclear power 

plant) during spring 2011 (shortly after the Fukushima nuclear accident) and winter 

2014 were analyzed for iodine species of 
129

I and 
127

I including soluble and 

insoluble iodine. The results indicate that the concentrations and species of 
129

I and 
127

I in aerosols are strongly related to the sources and pathways of air masses, and 

that Fukushima-derived 
129

I only contributed less than 6% of total 
129

I in the 

northern Europe during the accident period. 

Chemical species of 
129

I and 
127

I in seaweed (Fucus Serratus and Vesiculosus) 

collected in Danish coastal areas in 2014 were determined including water-soluble 

iodine (iodide, iodate and soluble organic iodine) and water insoluble iodine. In 

combination of iodine species in seawater simultaneously collected with seaweed, 

possible mechanism of iodine uptake by seaweed was explored in natural marine 

system.  
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1. Introduction 

The discovery of iodine could be traced back to two centuries ago by chemist, Bernard 

Courtois, in 1811 when he treated seaweed ash. Afterwards, iodine was identified and 

isolated firstly from brown algae (Laminaria sp.) [1]. The content of iodine is only 1.4 

mg kg
-1

 in the Earth’s crust, about 60 μg L
-1 

in the oceans, and up to 1% in dry mass in 

kelps. Iodine has 37 isotopes but only one stable isotope, and most of radioisotopes of 

iodine are short-lived with half-life of several days. In 1960, physicist John H. 

Reynolds discovered that certain meteorites contained an isotopic anomaly in the form 

of an overabundance of 
129

Xe, and inferred the occurrence of a decay product of long-

lived radioactive iodine-129 [2].
 129

I, with a half-life of 1.57 ×10
7
 years, is the longest-

lived radioisotope of iodine, and continuously being produced in the atmosphere 

primarily by reactions of xenon with cosmic rays, and in the Earth primarily by 

spontaneous fission of 
238

U (Table 1.1) [3]. Since the advent of nuclear age, 

considerable amount of anthropogenic 
129

I as a fission product of uranium and 

plutonium has been released into the environment mainly from nuclear weapon testing, 

nuclear reprocessing plants and nuclear accident, which immensely overwhelmed the 

natural 
129

I signal.  

Table 1.1 Production reactions of 129I 

Atmosphere 129Xe
    𝐶𝑜𝑠𝑚𝑖𝑐 𝑟𝑎𝑦𝑠   
→           129I 

Earth 238U
    𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑓𝑖𝑠𝑠𝑖𝑜𝑛    
→                  129I 

Meteorites and the Moon Te + n/p → 129I 

Ba + n/p → 129I 

Nuclear reactors or bomb 235U
    𝑓𝑖𝑠𝑠𝑖𝑜𝑛    
→       129I 

239Pu
  𝑓𝑖𝑠𝑠𝑖𝑜𝑛    
→      129I 

Duo to the high fission yield of 
129

I (0.7% per fission for 
235

U) and high accumulation 

of iodine in thyroid of mammals, initial interests in investigations of 
129

I results mainly 

from the radioactive hazards to human and transportation pathways of this nuclide in 

the ecosystem [4, 5]. With the development of detection techniques for 
129

I and 

increased 
129

I level in the environment, interests extended to geological dating and 

environmental tracing in various compartments [3, 6]. 
129

I has been successfully 

applied as a tracer for studying transportation and exchange of water masses, 

movement of air mass, investigating geochemical cycle of stable iodine, and 

reconstructing level and distribution of short-lived 
131

I [7-10].  

As a highly mobile radionuclide, 
129

I is of particular importance in nuclear waste 

disposal. Migration behaviors, bioavailability, short-term and long-term consequences 

of 
129

I are not only related to its total concentration, but also remarkably dependent on 
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its chemical species. The existing limited data have shown different ratios of 
129

I/
127

I 

for the different chemical species of iodine in water, soil, sediment, and precipitation 

[11-13], implying that the species of anthropogenic 
129

I in the environment is different 

from those of stable iodine. In addition, the reported difference of concentration 

factors between 
127

I and 
129

I by vegetation and seaweed is also attributed to the 

speciation variation in soil and seawater where these plants grow [14, 15]. Therefore, 

knowledge on the chemical species of 
129

I is a key issue for safety assessment of 

radioactive waste repositories, and for estimation of human exposure through multiple 

pathways [16]. Moreover, speciation analysis of 
129

I exhibits a unique potential in 

investigating species transformation of stable iodine in order to understand the 

environmental processes such as oceanographic, hydrological and atmospheric 

processes [11, 17, 18].  

Accordingly, accurate and robust determination of 
129

I species in various 

environmental samples is necessary to meet the extensive requirements. Due to the 

low level of 
129

I and numerous iodine species present in the nature, speciation analysis 
129

I is rather difficult and thus hinders the investigations and applications. The 

development of high sensitive accelerator mass spectrometry (AMS) provide a good 

opportunity to determine low-level 
129

I, and enables us to establish new methods on 
129

I speciation analysis, and to explore transportation pathways, processes and 

conversion among species for radioactive 
129

I as well as stable iodine. 

1.1 Sources, level and radioactive hazard of 
129

I in the environment 

Level of 
129

I in the environment depends on its release from the human nuclear 

activities. The main sources of 
129

I in the environment are listed in Table 1.2.  

Table 1.2 Major sources of 129I in the environment by 2009 [15, 19-21] 

Source  129I, kg 

Nature Hydrosphere 80 

 Atmosphere 0.0005 

 Lithosphere 170 

Nuclear weapon testing Atmosphere 50-150 

Nuclear accident Chernobyl, 1986 6 

 Fukushima, 2011 1.2 

Spent nuclear fuel reprocessing La Hague, France 4200 in liquid, 75 kg to air 

 Sellafield, United Kingdom 1490 in liquid, 180 kg to air 

 Marcoule, France 140  

 Hanford reservation, USA 274  

 Savannah River Site, USA 41  

 Mayak, Russia 160  

 Seversk, Russia 35  

 Zhelesnogorsk, Russia 21  

Spent nuclear fuel  14400 
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On the earth, the naturally produced 
129

I was estimated to about 250 kg with a 

production rate of 4.2×10
6 

atoms cm
-2

 s
-1 

[22], which results in an initial ratio of 
129

I/
127

I of 1.5 ×10
-12 

in marine system of the pre-nuclear age [23]. Since the 1940s, 

continuous and enormous releases of 
129

I mainly from nuclear weapons testing, nuclear 

accidents, and spent nuclear fuel reprocessing have drawn attention and been 

monitored regularly related to environmental hazards. Of these sources, more than 

95% of 
129

I in the environment was discharged into atmosphere and marine from the 

two European nuclear fuel reprocessing plants (NFRPs), at Sellafield in United 

Kingdom and La Hague in France [17, 24]. Such huge release of 
129

I has elevated 

environmental 
129

I/
127

I ratios by 4-6 orders of magnitude from the pre-nuclear level 

(see Fig. 1 in Paper I), especially in the Europe [9, 25]. However, the influence of 

these two major sources to the environmental level of 
129

I is not so significant in the 

Asian and North America, especially in the southern hemisphere, where 
129

I mainly 

originates form atmospheric nuclear testing with 
129

I/
127

I ratios ranging from 10
-11 

to 

10
-9 

[15, 26-30]. In some heavily contaminated areas, for instance, Savana River Site 

in USA, the 
129

I concentrations in groundwater were observed up to 37 Bq L
-1

 (2.64 

×10
16 

atoms L
-1

) at present, which are 5-6 orders of magnitude higher than those in 

seawater in the English Channel (2× 10
11 

atoms L
-1

) [17] and 9-10 orders of magnitude 

higher than those in precipitation at the United States continent (2.5× 10
7 

atoms L
-1

) 

[28]. A comprehensive picture (Fig. 1.1) well depicts the global distribution of 
129

I.  

 

Figure 1.1 Global distribution of 129I in the continent constructed by analysis of river and lake water collected 

over the world. White circles indicate sampling locations. Red squares and numbers correspond to nuclear 

reprocessing centers. Yellow triangle corresponds to the Chernobyl accident (Adopted from [5]). 
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Despite such huge amount of 
129

I released, radioactive hazard of 
129

I at present 

environmental level is still very low and can be negligible. It is recommended by the 

International Commission on Radiological Protection (ICRP) that the general 

population dose limits is 1.0 mSv per year [31]. The low energy beta emissions from 
129

I do not present a significant external radiation exposure because they barely 

penetrate through the outer layer of skin (Table 1.3). The low energy gamma and X-

ray emissions from 
129

I also present limited penetrating external exposure. Most of 

iodine (>80%) in human body is primarily accumulated in thyroid. The uptake of 
129

I 

to the thyroid is in practice a major path for internal exposure of 
129

I. Hou et al. (2009) 

has estimated that the equilibrium annual dose equivalent to the thyroid is about 1 mSv 

y
-1

 for an adult on a basis of 
129

I/
127

I ratio of 10
-6

 in thyroid and an assumption of 10 

mg stable iodine taken from food [16]. This calculation is based on the internal 

exposure of 
129

I. However, as stated above, the 
129

I/
127

I ratios varied from 10
-7

 to 10
-11

 

in the most of the current environment, implying the radioactive hazards at present 

could be negligible. It is worthy to note the continuous release of 
129

I from the nuclear 

fuel reprocessing and large amount of 
129

I in the spent nuclear fuel (14400 kg, Table 

1.2) as a potential source, which may increase the risk of exposure to high level of 
129

I 

in the future. Therefore, it is of much concern for long-term monitoring on the level 

and distribution of 
129

I.  

Table 1.3 Principal radiation emission of 129I [32, 33] 

Maxium Beta Energy 0.152 MeV (100%) 

Gamma ray 0.040 MeV (7.5%) 

Kα1 X-ray 0.030 MeV (37%) 

Kα2 X-ray 0.029 MeV (20%) 

Kβ X-ray 0.034 MeV (13.2%) 

L-1 internal conversion Electrons 0.034 (10.7%) 

Maximum range of beta in air 23 cm 

 

1.2 Iodine species and transformation 

Ocean is a major source of iodine. Iodine in the ocean can be emitted to the 

atmosphere as volatile gaseous iodine or fine liquid drops by sea-spray, such as 

molecular iodine and iodocarbons [34, 35], which participate in photochemical 

processes and formation of new nuclei in the air. Being in gaseous forms, atmospheric 

iodine could transport long distance and deposited to the land by precipitation and 

aerosol particles. Iodine in soil is transferred to vegetation, and further taken up by 

human and animals [36]. Partial iodine in the terrestrial system is translocated back to 

the ocean via rivers and runoff, meanwhile iodine deposited on the ground can be 

emitted to the atmosphere in gaseous form through biological activities, such as 
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vegetation and soil microorganism [37].  

1.2.1 Iodine species (
129

I and 
127

I) in the environment 

In water systems. Iodine in ocean mainly exists in the form of inorganic, organic and 

particulate iodine [38-41]. Numerous studies on the marine geochemistry of dissolved 

iodine have focused on the distribution and transformation of iodide, iodate and 

soluble organic iodine [42-44]. Distribution of iodine species is greatly variable in 

water systems. Generally, iodate is the predominant specie in open sea, while the 

thermodynamically unfavorable iodide is also present in oxygenated water, especially 

in the surface layer and coastal area [39, 45]. Organic iodine is a minor part in open-

ocean but found ubiquitously in coastal waters, constituting up to 40% of total 

dissolved iodine [41]. The concentration of soluble organic iodine is associated with 

marine suspended matter, showing a decrease trend from up to 127 ng kg
-1

 in the 

surface to 1 ng kg
-1

 below the euphotic zone [41]. This is attributed to biologically 

mediated iodination of organic molecules and indirect biologically mediated formation 

of soluble organic iodine (e.g. HOI and I2 formed through iodate reduction or iodide 

oxidation could react with humic substances through abiotic mechanisms) [46-48]. 

Concentrations of iodine in rivers, lakes, groundwater and precipitation are generally 

much lower than that in seawater and greatly variable, but generally in the range of 

low μg L
-1

 to tens of μg L
-1

 depending on the source of iodine. In these fresh waters, 

iodine species are strongly linked to the redox conditions and biological activity. It is 

becoming increasingly apparent that organically bound iodine represents a significant 

fraction in these iodine pools [41, 47, 48]. For examples, Gilfedder et al. (2008) have 

reported that organic iodine is the dominant specie in the Mummelsee lake, accounting 

for in average 85±7% of the total iodine [49]. In the same work, much higher iodide 

was observed in the hypolimnion, and the formation of iodide was attributed to 

decomposition of biological materials from the sediments and diffused into the upper 

water column.  

Only few works on the 
129

I species in seawater have been reported, such as in the 

North Sea, Baltic Sea, North Atlantic Ocean, and offshore Fukushima, Japan [17, 20, 

50-52]. These investigations showed that distribution of 
129

I species (mainly iodide and 

iodate) is distinct from that of stable iodine, which is remarkably influenced by their 

sources. For instance, in the North Sea, the ratios of iodide to iodate were found to be 

0.1-0.5 and 0.5-1.6 for 
127

I and 
129

I, respectively, in open area, whereas these ratios 

increased to 0.6-1.3 and 0.8 -2.2, respectively, in coastal waters [17]. In the anoxic 

Baltic Sea, the distribution of 
129

I
-
/
129

IO3
-
 ratios shows more variable than the 

127
I

-

/
127

IO3
- 
[52]. Lehto et al. (2013) reported that the fraction of iodide for 

129
I was slightly 

higher than 
127

I in the waters of lakes and rivers in Finland [53]. Such a difference 
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between 
129

I species and 
127

I species has been successfully applied to trace marine 

currents and to investigate geochemical cycle of stable iodine. In comparison with 

species of stable iodine, the variation of 
129

I
-
 and 

129
IO3

- 
in the North Sea revealed 

redox rate and processes between iodide and iodate during water exchange. Reduction 

of iodate to iodide is relatively fast in the European continental coast during 

transportation of 
129

I from La Hague but slow in the open sea, while oxidation of 

iodide to iodate seems an insignificant process [17]. 

In the atmosphere. Iodine species in the atmosphere is important, which determine the 

transport of iodine from oceanic source to the continents, influence the oxidizing 

capacity of the atmosphere through the catalytic destruction of ozone, and play a key 

role in formation of ultrafine aerosol particles [35]. Ocean provides the main source of 

iodine to the atmosphere through volatile species of iodine including monohalogenated 

organic compounds such as methyl iodide (CH3I), ethyl iodide (C2H5I), and propyl 

iodide (1- and 2-C3H7I), more active polyhalogenated compounds such as 

chloroiodomethane (CH2ICl), bromoiodomethane (CH2IBr), and diiodomethane 

(CH2I2), and I2. These compounds photodissociate rapidly in the atmosphere to 

generate iodine atoms and various iodine oxides (IOx) [35]. Through direct trapping 

and nuclei formation effect, gaseous iodine is accumulated in aerosol particles at the 

low ng m
-3

 level. In aerosols, iodine exists mainly in the form of iodide, iodate, organic 

iodine and insoluble iodine probably bound to different components [54, 55]. For 

instance, soluble organic iodine (SOI) is found the most abundant fraction accounting 

for approximately 70% of total soluble iodine over Western Pacific Ocean, Eastern and 

Southern Indian Ocean, and Prydz Bay, coastal Antarctic [56]. 

Reports on 
129

I species in the atmosphere are rather scarce. In precipitation collected in 

Denmark, iodide was observed as the predominant form of 
129

I accounting for 50-99% 

of total 
129

I, while, iodate is the dominant species for 
127

I, accounting for 43-93% of 

total 
127

I [11]. This work showed that data on speciation of 
129

I and stable iodine could 

provide valuable information on sources and cycling process despite the complicated 

atmospheric chemistry of iodine. However, no speciation analysis of 
129

I in aerosol can 

be found due to lack of available analytical methods.  

In the soil and sediment. Distribution of iodine species in soil and sediment is an 

integrated consequence of soil pH, Eh, composition and interaction with 

microorganisms. Iodine was found in soil and sediment in forms of iodide, iodate, 

organically bound iodine and those associated with oxides and hydroxides of iron and 

manganese. Of these, a number of experimental observations suggested organically 

bound iodine is a significant fraction [57, 58]. It is reported that the soluble inorganic 

iodine as the minor form can be sequestered by soil organic substances, such as humic 
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acid and fulvic acid [59, 60]. Mobility of iodine species in soil follows the order of I
-
> 

IO3
-
> organic iodine; and for organic iodine, LMW > HMW > particulate organic 

iodine (LMW, low molecular weight; HMW, high molecular weight) [61-63].  

129
I species have been investigated in various soil and sediment samples. Because 

129
I 

was derived from different sources, and its species showed large variation compared to 

stable iodine. A relatively higher percentage of 
129

I was observed in water-soluble (39-

49%), exchangeable (7-20%), and residue (25-70%) fractions in the soils collected 

from a region closed to the WAK reprocessing plant in Germany [64]. Whereas, water-

soluble and exchangeable fractions of 
129

I were less than 10% in IAEA-375 soil (top 

soil to a depth of 20 cm, collected on the field of the collective farm “Staryi Vishkov”, 

Novozybkov district, Brjansk region, Russia in July 1990 [65]), soil from Denmark, 

oxic sediment from the Barents Sea and anoxic sediment from Helvik Fjord, Norway 

[66, 67]. Iodine associated with soluble humic and fulvic acids accounts for 37-60% of 

total 
129

I in these sample and those from Savannah river site [68], even higher up to 

80-90% in Chinese loess [30], and 60-80% in a lake sediment from Sweden [69].  

In the biological system. Some organisms have the ability to uptake and accumulate 

iodine with concentration factor of iodine as high as 10
4 

(e.g., Laminaria digitata). In 

seaweed, it was observed that iodine is present as inorganic ions (iodide and iodate), 

and associated forms with mono- and di-iodotyrosine (MIT, DIT), phloroglucinols and 

phenols, phlorotannins, phlorotannins, fatty acids, terpenes, polysaccharide [70], and 

distribution of chemical species of iodine in seaweed differs from specie to specie. For 

instance, up to 92% of total iodine was found in the water-soluble fraction in 

Laminaria Japonia, and 61-93% of the water-soluble iodine is mainly present as 

iodide [71]. Organic iodine in the seaweed was observed mainly bound to proteins, 

and less associated with pigments and polyphenol, and iodine is almost not associated 

with polysaccharides (such as fucoid and cellulose) [72]. After enzymatic hydrolysis of 

the protein, Shah et al. (2005) determined MIT and DIT in Wakame using size 

exclusive chromatography coupled with ICP-MS [73] and reported the highest 

concentrations of MIT and DIT of 900 and 400 ng g
-1

 in Kombu, respectively, but 

much lower in other species of seaweed [74, 75]. However, no speciation analysis of 
129

I in biological samples has been reported up to now.  

1.2.2 Transformation of iodine species 

Despite many factors are known affecting transformation of iodine species in water, 

such as pH, Eh, dissolved oxygen, redox reagents (e.g. Fe
2+

, H2S), biological activity, 

and light, the conversion mechanism among iodine species is still not well understood. 

In a redox cycle, iodate and iodide are interconverted, and this is the most pronounced 
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effect for iodine speciation in oxygenated seawater. The possible mechanisms 

responsible for iodine species transformation are briefly summarized below.  

Reduction of iodate to iodide. 

1) Tsunogai and Sase (1969) have proposed that iodate reduction in surface water 

might be intermediated by nitrate reductase which is presented in various kinds of 

organisms (like phytoplankton). Reduction of iodate could be an assimilatory process 

inside the cell or a dissimilatory process at the cell wall [38]. This proposed 

mechanism is supported by field measurements in the Weddell Sea [76] and in batch 

culture of different marine phytoplankton species at both ambient and elevated iodate 

levels [77-79].  

2) Microbial respiration was also suggested as a pathway of iodate reduction to iodide, 

with an evidence of iodide-accumulating bacteria isolated from marine sediment [80, 

81].  

3) Through observations of the iodate-iodide redox behavior in surface water in the 

North Sea, Spokes and Liss (1996) proposed that iodide can be photochemically 

produced through iodate reduction and the organic matter is essential for iodide 

photoproduction [82].  

4) In addition, reductants, such as bisulfides and thiols (e.g. glutathione), which exist 

under anoxic conditions could be responsible for abiotic reduction of iodate [83, 84]. 

5) Decomposition of organic matter might release iodine as iodide form or reduce 

iodate through the formation of reductive sulfide, especially at the sediment-water 

interface [85-87]. 

6) A recent work reported that Antarctic diatoms (diatoms, dinoflagellates and 

prymnesiophytes) can facilitate the reduction reaction of iodate to iodide and iodide 

levels peaked at the end of the stationary growth phase, and suggested that the iodide 

production mechanism is connected to cell senescence [88].  

Oxidation of iodide. The investigation on the mechanism of iodide oxidation in 

seawater is relatively spare. It was suggested that the oxidation of iodide to iodate is an 

extremely slow process under the prevailing conditions in seawater [43]. The oxidation 

is biologically catalyzed by vanadium-based haloperoxidases in marine macroalgae to 

allow hydrogen peroxide to convert iodide through molecular iodine to iodate [42, 89]. 

However, only one direct evidence was provided that the fungus Caldariomyces 

fumago oxidizes iodide to iodate via the enzyme chloroperoxidase [90]. Oxidation of 



 

9 

 

iodide in soil water could be mediated by terrestrial enzyme systems, and unlikely to 

involve the iodine/molecular iodine couple [91]. 

Transformation of inorganic iodine to organic iodine. Interconversion reactions 

between inorganic iodine and organic iodine are variable with local redox conditions. 

In waters with low oxygen concentrations, transformation of iodide and iodate to 

organic iodine is expected weak due to the absence of intermediate, HIO and I2, which 

cannot be maintained at significant levels in seawater [48]. In sulphidic waters, organic 

iodine compounds could be converted to organic sulfur compound via nucleophilic 

displacement of iodide by sulphide and/or bacterial decomposition of organic matter to 

release iodide [48, 86]. In waters containing high oxygen levels, both organic iodine 

and iodide may be formed probably via reactive intermediates such as I, or HOI, which 

are probably formed by photochemical processes and/or by hydrogen peroxide from 

marine plankton extracellularly. In soil and sediment, inorganic iodine can be fixed by 

soil organic matter, such as humic acid, fulic acid [58, 92], but this process is reversely 

mediated by bacteria to release soluble inorganic iodine to soil water [60, 93]. 

Conversion of iodine species in the atmosphere. In the atmosphere, species 

transformation among iodocarbons, iodine oxides, gaseous inorganic iodine (I2 and 

HIO), particulate iodine is primarily proceeded by phytochemical reaction, interaction 

with oxygen, ozone, nitrogen oxides, hydrogen oxides and other possible occurring 

gaseous metal iodine (e.g, (CH3)Hg
+
) [35].  

1.3 Analytical methods for 
129

I and its species 

1.3.1 Total 
129

I 

Aparting from direct measurement without sample preparation (e.g., gamma 

spectrometry, INAA), iodine isotopes, 
129

I and 
127

I in water, solid and air samples have 

to be separated from sample matrix and prepared to appropriate form for instrumental 

measurement. The analytical methods and required sample size are strongly dependent 

on the level of 
129

I and sample type. Chemical preparation for 
129

I determination can be 

summed up as three steps, pretreatment of sample, separation of iodine from sample 

matrix and further purification of iodine from interferences, and then detection of 
129

I 

can be carried out by appropriate instruments (Fig. 1.2).  
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Figure 1.2 Chemical procedures for determination of 129I in environmental and biological samples measurement. 

X and γ Spec is X-ray and gamma spectrometry, NAA is neutron activation analysis, LSC is liquid scintillation 

counter, and AMS is accelerator mass spectrometry. 

Sample preparation. Large volume of fresh water samples (1-10 L) can be evaporated 

to small volume for easily handling under protection of alkaline and reductant, such as 

KHSO3 and KOH to prevent iodine loss via formation of I2. This method is time-

consuming [94, 95], meanwhile it is also not suitable for saline water.  

The presence of organic iodine in liquid sample could cause underestimation of 
129

I 

concentration, because it is hardly extracted by solvent extraction (e.g CHCl3). 

Therefore, ultraviolet (UV) irradiation, acid digestion, oxidation by H2O2 or K2S2O8, 

and reduction with sodium biphenyl (C12H10Na) were utilized to decompose organic 

iodine to convert it into inorganic ionic forms (iodide and iodate) [96-99]. After 

transforming all iodine species to iodide, iodine in water can be separated by anion 

exchange in two ways, batch method and column method. Iodide adsorbed on strong 

basic anion exchange resin can be eluted with 5-6% NaClO or 2 mol L
-1

 NaNO3 
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solution. The chemical yields of iodine are 50-70% for the batch method, and 80-99% 

for the column method depending on water volume [94, 100-102]. 

Separation of iodine from solid samples is more difficult than aqueous samples. 

Combustion using tube furnace is commonly used to release iodine as gaseous iodine 

(I2) from solid samples, being oxidized in oxygen flow under high temperature (800-

1000˚C) and trapped with alkaline solution [103-106]. This method generates a 

satisfactory chemical yield of more than 95% and low analytical background of 
129

I. 

However, low iodine chemical yields of 40-60% are obtained when treating solid 

samples containing high organic substance. In order to improve the recovery of iodine 

during combustion of organic matter, catalysts, such as vanadium oxide (V2O5) and 

platinum wire were used [54, 107]. Due to the limitation on specific equipment and its 

capacity for sample size, combustion method is not suitable for all kinds of solid 

samples. In such cases, alkaline leaching, ashing and fusion are alternative methods. 

The main principle is that iodine in solid samples can be dissolved in alkaline solutions.  

Solid samples can be decomposed or melted in alkaline media under high temperature 

(400-700˚C) and iodine is released from the sample matrix and kept in the mixture 

under protection of alkaline reagents, such as NaOH. Iodine in the alkaline extracts 

and leachate is then further treated as aqueous sample. Compared to combustion using 

tube furnace, the chemical yield of alkali leaching or alkali fusion is slightly lower, 

about 50-90% related to sample type [15, 94, 108-111]. Microwave digestion based on 

the principle that sample enclosed in a sealed digestion tank can be decomposed 

rapidly by acid in high temperature and high pressure produced by microwave heating 

is a feasible method for trace metal analysis and has been used to treat samples for 
129

I 

analysis. High chemical yield of iodine  (>90%) using microwave digestion under  

acidic condition and no iodine loss inside the Teflon digestion canister were reported 

[112, 113]. Microwave digestion is obviously very effective due to its shorter 

preparation times and higher automation, but also restricted to small sample sizes. 

Other methods such as acid distillation [114-116] are rare to use due to either 

inconvenient procedure or low recovery of iodine. 

Chemical separation and purification of iodine. After sample pretreatment, iodine in 

eluents, leachates or trap solutions needs to be separated and purified to get rid of the 

sample matrix and eliminate the interference, in order to obtain an appropriate form for 

measurement. The most conventional method is solvent extraction based on the higher 

solubility of molecular iodine in organic solvent than that in water. Typically, in a 

proper separation funnel, 
127

I carrier, 
125

I tracer, HNO3 and reductant (such as H2SO3, 

NH2OH·HCl, NaHSO3) are sequentially added to 10 -1000 ml of aqueous solution to 

reduce all iodine forms to iodide. Iodide is oxidized to I2 by addition of NaNO2 or 

H2O2, which is extracted into organic phase of CCl4 or CHCl3 by shaking the funnel. 
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The molecular iodine dissolved in organic solvent is reduced again and back-extracted 

into water phase. This extraction and back-extraction procedure is repeated once. 

Iodide in the back-extracted solution is precipitated as AgI by addition AgNO3. This 

method is easy to operate and has been carried out for several decades, but is incapable 

to analyze samples with low 
129

I/
127

I ratios (< 10
-12

), because addition of stable 
127

I 

carrier introduces additional 
129

I and impairs the detection limit of 
129

I. Recently, a 

carrier-free method was established based on AgI-AgCl coprecipitation. Using this 

method, an AMS target containing 5.0 μg iodine can be used for analyzing samples 

with 
129

I/
127

I > 10
-12

, and that for samples with 
129

I/
127

I < 10
-13

 more than 25 μg iodine 

is needed [29, 117].  

1.3.2 Separation techniques for speciation analysis of 
129

I 

Speciation analysis of 
129

I is of particular important to access its short-term and long-

term consequences, migration behaviors, and bioavailability. Generally, analytical 

methods for 
129

I speciation are similar to those for stable iodine, while due to 

extremely low concentration of 
129

I in the environmental samples, relatively large 

sample size is normally required. In addition, some 
127

I species, such as iodide, iodate, 

CH3I, MIT, DIT, etc, can be determined directly by chromatographic techniques (ion 

chromatography, HPLC, GC) coupled to detection techniques (UV spectrophotometry, 

ICP-MS, AES) [118], and can also be directly measured by XANES and EXAFS 

spectrographic techniques when their concentrations are sufficiently high [119]. A 

detection limit of 4×10
-9

 g L
-1

 for 
129

I has been reported by on-line introduction of 

analyte via the gas phase in ICP-MS with hexapole collision cell [120]. However, the 

level of 
129

I is normally in range of 10
-12

 to 10
-15

 g L
-1

 in environmental water, 

therefore impossible to be determined by direct detection techniques. This implies that 

speciation analysis of 
129

I requires considerable separation of iodine species, 

enrichment of iodine in fractions and finally determined by highly sensitive analytical 

instrument, e.g. AMS.  

Anion exchange chromatography is a commonly used method to separate iodide and 

iodate based on different affinities of anions on resin (Table 1.4) [121]. Usually, a 

strong anion exchange resin, AG 1-×4 (Cl
-
 form), is purified with NaClO solution to 

decrease the background of iodine, and then converted to NO3
-
 with 2 mol L

-1
 NaNO3 

[122]. Sample solution is loaded onto a chromatographic column packed with the 

transformed resin. Due to the different affinity of iodine forms, iodide is adsorbed on 

the resin, while iodate flow out to the effluent. Iodide on the column is then eluted 

with 2 mol L
-1

 NaNO3 or 5% NaClO. The fractions of iodate and iodide are prepared 

using the same procedure for the total 
129

I. However, elution efficiency of iodide is 

variable with eluting conditions, such as eluting solution and flow rate, which may 
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underestimate iodide concentration. Therefore, radioactive 
125

I or 
131

I is often used to 

monitor chemical yield of iodide during the chromatographic separation. This method 

has been widely applied for analysis of seawater, fresh water samples [17, 53] and 

extracts from soil and sediment. It is worthy to mention that for large volume of 

seawater, the competence of chloride with iodide may deteriorate adsorption efficiency 

of iodide, even causing a breakthrough of iodide from the resin column. In such case, 

sufficient amount of resin packed in the column of high height/diameter ratio has to be 

used.  

Table 1.4 Relative selectivity of main anions on the strong basic anion exchange resin [123]. 

Counterions Relative Selectivity for AG 1 Counterions Relative Selectivity for AG 1 

OH- 1.0 BrO3
- 27 

I- 175 NO2
- 24 

HSO4
- 85 Cl- 22 

ClO3
- 74 HCO3

- 6.0 

NO3
- 65 IO3

- 5.5 

Br- 50 HPO4
- 5.0 

CN- 28 F- 1.6 

HSO3
- 27   

In order to in-situ separate iodine species in seawater, an AgI-AgCl selective 

coprecipitation method without addition of iodide carrier is developed recently [124]. 

In this method, iodide is separated from seawater and other iodine species by 

coprecipitation of AgI with Ag2SO3, AgCl, and AgBr by addition of only 100 mg L
-1

 

Ag
+
 and 0.3 mmol L

-1
 NaHSO3 at pH 4.2-5.5. The separation efficiency of iodide was 

more than 95%, and crossover between 
129

IO3
-
 and 

129
I

-
 fractions is less than 3%. In 

addition, a selective oxidation method is primarily established for isolation of iodide 

from iodate in seawater and fresh water [125]. In this method, iodide in water samples 

is selectively oxidized to I2 by a certain concentration of NaClO solution at pH 4-5, 

which is extracted by CHCl3 and separated from iodate. 

Sequential extraction is an analytical process that chemically leaches iodine out of soil, 

sediment and sludge samples. The purpose of sequential “selective” extraction is to 

mimic the release of the selective iodine species into solution under various 

environmental conditions. Generally, iodine species in solid samples include water-

soluble, exchangeable, carbonates, oxides of iron and manganese associated iodine, 

organically bound iodine and residue, which are extracted with water under room 

temperature, 1 mol L
-1

 NH4Ac-HAc at pH 7 under room temperature and pH 5, 0.04 

mol L
-1

 NH4OH HCl in 25% (v/v) HAc at pH 2 under 80˚C, 3 mol L
-1

 NaOH and 5% 

NaClO under 85˚C, as well as decomposed by combustion or other techniques 

mentioned above [12], respectively. Iodine in these fractions is further separated by 
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solvent extraction or carrier free coprecipitation method [30] depending on the 
129

I 

concentrations in the samples. Inorganic ions, i.e. iodide and iodate in water extracts 

can be identified and separated using anion exchange chromatography. Organic iodine 

can be further divided into eight humic acids fractions and ten fulvic acids fractions by 

combining with XAD-8 resin [126]. Although sequential extraction has been 

successfully applied to separate inorganic and organic iodine from seaweed for stable 
127

I,  report on 
129

I speciation in biological samples is, so far, not available.  

A measurement of air-borne iodine species was performed at the island of Foehr in 

April 2002 [127], in which 18% of the 
129

I was particle-bound >0.1 μm, 43% inorganic 

and 40% organic 
129

I in particle <0.1 μm. A denuder coated with α-cyclodextrin is 

available for molecular iodine (I2) with collection efficiency of 95%, which might have 

the potential to be applied on the 
129

I [128, 129].  

1.3.3 Techniques for 
129

I determination 

As a β decay radionuclide with X- (characteristic X-rays with an energy of 29.8 keV) 

and γ-ray (39.6 keV) emitting simultaneously (Table 1.3), 
129

I can be measured by 

radiometric methods, such as X and γ-ray spectrometry, liquid scintillation counting. 

Neutron activation analysis is also a radiometric method by activated 
129

I to 
130

I in 

neutron flux to obtain much lower detection limit. The rapid development of mass 

spectrometry makes it an effective tool for 
129

I measurement. Both radiometric and 

mass spectrometric methods have their features and application fields. Table 1.5 lists 

the detailed information of these techniques for 
129

I measurement.  
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Table 1.5 Features of different techniques for measurement of 129I. 

Instruments conditions Interference 

Detection limit 

Analyzing Time Cost Popularity Ref. 
129I , atoms 

129I/127I ratio, 

atom/atom 

X and γ-ray 

Spectrometry 

a high purity 

germanium (HPGe)  

 1.4 ×1013 10-5-10-6 > 20 h Cheapest not very popular [130] 

LSC   0.7×1013 10-5-10-6 > 20 h Cheapest Very popular for nuclear 

fission product monitoring 

[131] 

LIFS   2×109 

molecules m-3 

for 129I2 

-   Not popular [132] 

NAA  82Br  10-10 > 48 h middle Popular before 2000; not 

popular now 

[94, 105] 

TIMS Pure NaI solution  4.7 ×108 2 ×10-8  Expensive Not popular [133] 

GC-MS derivation of iodine to 

4-iodo-N,N-

dimethylaniline 

 10.3 ppt - ~ 25 min middle for Speciation, not popular  

[128, 134] 

ICP-MS collision cell with 

oxygen as reaction gas 

129Xe+ and 127IH2+ 0.4 ppt 1.5 ×10-8 1-5 min middle Popular [120, 135, 

136] 

AMS   103Rh4+ and 52Cr2+ for 
129I5+; 97Mo3+ for 129I4+; 
86Sr2+ and 43Ca+ for 
129I3+ 

5000 2 ×10-14 30 min Expensive Very popular for 

environmental samples 

[137, 138] 
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1.4 Objectives of this research 

The first goal of this thesis is to develop methods for separation of different species of 

iodine in various environmental samples. The second goal is to investigate the sources, 

transportation pathways and conversion among various iodine species in the ocean, 

atmospheric and biological systems by speciation analysis of 
129

I and stable 
127

I in 

environmental and geological samples using the developed methods. This work would be 

implemented in the following tasks. 

1) To develop methods for chemical speciation analysis of 
129

I and stable 
127

I in seawater, 

aerosol and seaweed, focus on the effective extraction, identification and separation of 

different species of iodine from various sample matrix, as well as preparation of 

appropriate targets for measurement of 
129

I and 
127

I. 

2) To investigate water current movement in the Arctic, Greenland and Danish coast, and 

offshore Fukushima, to identify the sources and transport pathways of iodine in the 

atmosphere, as well as to explore uptake and metabolism of iodine in seaweed by 

employing anthropogenic 
129

I and its speciation as environmental tracer.   
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2. Experimental section 

2.1 Materials 

2.1.1 Chemicals and equipment 

Stable iodine carrier (
127I

), in the form of iodine crystal with low 
129

I level, was obtained 

from Woodward Company (Colorado, USA). 0.40 g 
127

I carrier in the form of solid iodine 

crystal was dissolved gently in a mixed solution comprised of 0.5 M NaOH and 0.02 M 

Na2S2O5, and diluted with water to 200 mL, which gives a 
127

I concentration of 2.0 mg 

mL
-1

. 
125

I tracer in iodide form and without reductant in the solution was purchased from 

PerkinElmer Corporate (Waltham, USA). A working solution of 
125

I
-
 was prepared by 

dilution with water to radioactivity of 500 Bq mL
-1

. Two 
129

I standards with 
129

I/
127

I ratios 

of 1.13810
-10

 and 9.95410
-12 

were prepared by diluting a 
129

I standard solution (NIST 

SRM 4949c standard, National Institute of Standards and Technology, Gaithersburg, USA) 

with 
127

I carrier. 1000 μg mL
-1

 of 
127

I
-
 standard solution (purchased from CPI international, 

California, USA) was used as calibration standard for determination of 
127

I by ICP-MS 

after appropriate dilution with deionized water and 1% ammonia. Silver powder (100 

mesh, Sigma-Aldrich Co., Missouri, USA) and niobium powder (325 mesh, Alfa Aesar, 

Massachusetts, USA) from Alfa Aesar (Karlsruhe, Germany) were used to prepare AgI 

targets for AMS measurement of 
129

I. Anion exchange resin (AG14, 50-100 mesh) and 

chromatography columns were obtained from Bio-Rad Laboratories Inc. (Hercules, 

California, USA). 

All other chemical reagents, including nitric acid (HNO3), ammonia (NH3·H2O), sodium 

hydroxide (NaOH), sodium hypochlorite (NaClO), sodium nitrate (NaNO3), potassium 

disulfite (K2S2O5), potassium persulfate (K2S2O8), used in the experiments were of 

analytical grade and prepared using deionized water (18.2 MΩ·cm). 

An ICP-MS instrument (Thermo Fisher, X Series II) was used for determination of 
127

I in 

solution, which was equipped with Xt cone and operated under normal mode at Risϕ 

campus, Technical University of Denmark. Two AMS systems were used in this work for 

determination of 
129

I, one is a 3 MV AMS facility operated by Xi’an AMS center, 

Institute of Earth Environment, China, and another one is a 5MV AMS facility, operated 

by Scottish Universities of Environmental Research Center, Glasgow, United Kingdom. 

A well-type NaI gamma spectrometry (Canberra Inc., Connecticut, USA) was used to 

measure 
125

I in energy range of 3.3-58.5 keV for calculation of chemical yield. All other 

equipment, including balance (Mettler Toledo, Greifensee, Switzerland), centrifuge 
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(Eppendorf, Germany), oven (Memmert, Bavaria, Germany), furnace (Carbolite, 

Derbyshire, UK), combustion furnace (Carbolite, Derbyshire, UK) were available at 

Division of Radioecology, Center for Nuclear Technology, Technical University of 

Denmark.  

2.1.2 Samples 

Samples used in this thesis include seawater, lake water, seaweed, sediment and aerosols 

for method establishment and environmental tracing investigations (Fig. 2.1). The detailed 

sampling information of these samples is listed below.  

2.1.2.1 Seawater 

All the seawater samples were filtered by 0.45 μm cellulose membrane (MCE membrane 

0.45 UM S-Pak Grid, 47 mm, VWR), and stored in polyethylene bottles in dark prior to 

analysis for iodine isotopes (
129

I and 
127

I) and their species (iodide and iodate). 

The central Arctic. The seawater samples were collected by CTD rosette from the central 

Arctic during the Polarstern expedition ARK-XXVI/3 in August 5-October 7, 2011 [139]. 

Twelve water profiles from the polar mixed layer to Atlantic water layer (10-800 m) in 

the central Arctic were analyzed for 
127

I, 
129

I and their species (Paper III). The sampling 

locations stretch over the southeastern Eurasian Basin, North Polar, Makarov Basin, and 

northern Canada Basin (Fig. 2.1 c).  

Greenland coast. Upper layer seawater samples (2 m depth below the water surface) from 

Greenland shelf of 60-75˚N were collected by the Greenland Institute for Natural 

resources and the National Institute for Aquatic Resources, DTU Aqua in the Arctic 

Monitoring and Assessment Program (AMAP) during August and September 2012. The 

temperature and salinity were measured on board for stations 1-6.  

Denmark coast. Surface seawater samples were collected from six Denmark coastal sites, 

covering west coast of Jutland (Hvid Sande and Agger Tange), the Great Belt (Nyborg 

and Klint), bottom of the Roskilde Fjord and Bornholm at the southern Baltic Sea.  



 

19 

 

 

Figure 2.1. Map showing all the sampling stations in this thesis. Seventeen upper layer seawater samples (diamond in 

red) were collected from the Greenland coastal areas during August-September 2012 (a). Six surface seawater 

samples and six seaweed samples (hollow diamond in violet) collected from Denmark coastal areas in October 2014 

(b). Twelve depth profiles of seawater samples (dots in red) were collected from the central Arctic during August- 

October 2011 (c) and four depth profiles seawater samples from offshore Fukushima in June 2011 (d). Eight aerosol 

samples (hollow triangle in black) were sampled at Risø, Denmark during March-May 2011 and December 2014 (b), 

and four aerosol samples from Tsukuba, Japan in March 2011 (d). One lake water sample (cross in black) was 

obtained from the Gundsømgle Lake in Roskilde in July 2012 (b). One sediment core samples (star in black) was 

collected from Rømø, Denmark in August 2012 (b). The nuclear reprocessing plants (a) and the Fukushima Dai-ichi 

nuclear power plant (d) are indicated by radioactivity symbols. 
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Offshore Fukushima. Depth profile seawater samples were collected from offshore 

Fukushima during the research cruise organized by American scientists 3-17 June 2011 

using the research vessel Kaimikai-O-Kanaloa of the University of Hawaii [140]. The 

samples were stored in dark at ambient temperature prior to analysis. The four sampling 

stations are 40-530 km away from Fukushima Dai-ichi nuclear power plant (FDNPP).  

2.1.2.2 Aerosols 

Risø, Denmark. The aerosol samples were collected using a polypropylene filter (0.45 

m, Type G-3, PTI, Germany) equipped to an in-house aerosol collector (Fig. 2.2b) at 

Risø campus, Technical University of Denmark, Denmark (55˚41.77ʹN, 12˚05.39ʹE). Of 

these, seven aerosols were sampled during March to May 2011, and one during 8-15th 

December 2014. The samples were put into plastic bags and stored in dark.  

Tsukuba, Japan. Four aerosol samples were collected on the rooftop of a building at the 

National Institute for Environmental Studies (NIES) at Tsukuba (36°02′56″N, 

140°07′06″E), Japan, located about 170 km southwest of the FDNPP (Fig. 2.2d). The 

aerosol was sampled using 0.45 m quartz fiber filter.  

 

Figure 2.2 Aerosol sampler (left for external view and right for internal view) at Risø campus of Technical University 

of Denmark, Roskilde. 

2.1.2.3 Seaweed (Fucus) 

Seaweed samples were collected simultaneously with seawater at the same sites during 

October 2014 (Fig. 2.1b). Two species of brown algae, Fucus vesiculosus from Kilnt and 

Fucus serratus from the other five locations were collected. The fresh seaweed were 

rinsed carefully with local seawater and kept in plastic bags. The samples were stored in 
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refrigerator at -20˚C. Prior to analysis, the samples were thaw at room temperature and 

then ground to fine slurry using a grinder for speciation analysis of 
129

I.  

2.1.2.4 Other samples 

One lake water sample was collected from Gundsømgle Lake (55°43'37.00"N, 

12°11'45.00"E) at Roskilde on 29 July 2012. One sediment core was collected using a 

plastic collecting tube (Φ10cm100cm length) from Rømø, Denmark (55°10"422ʹ N, 

8°34"416ʹ E) in August 2012 and stored in a refrigerator at -20˚C, and sliced to 2-5 cm 

intervals. 

2.2 Determination of total 
129

I 

2.2.1 Water samples 

Labeling natural organic matter with 
125

I. In order to investigate decomposition 

efficiency of organic iodine in water samples, 
125

I was grafted onto natural organic 

substances extracted from lake water. The organic matter was obtained by evaporating 

1000 mL Gundsømgle lake water to about 5 mL. The concentrated lake water was 

adjusted to pH 6.5 using 3 M HNO3 first and spiked with 2 mL 
125

I
-
 tracer (110 kBq mL

-1
, 

prepared on 27th June 2012). 0.5 mL 0.1 mol L
-1

 Chloramine-T solution was added to the 

solution and the iodination was implemented at room temperature for 30 min. The 
125

I 

labeled solution was diluted using deionized water to 
125

I radioactivity of 500 Bq mL
-1

, 

and ready for use. The labeled organic 
125

I in this solution was extracted by chloroform 

for separation from the remaining inorganic 
125

I to calculate its fraction of total 
125

I, which 

accounts for 65.5% of total 
125

I. 

Decomposition of organic matter with persulfate salt. K2S2O8 to a final concentration of 

1-50 mg g
-1

, and 1 mg 
127

I carrier and 
125

I (500 Bq) labeled organic matter were added to 

100 mL lake water sample. The solution was mixed and covered with watch glass for 

refluxing, and heated on hot plate to 60˚C and cultured for 0.5-20 h. After cooling down 

to room temperature, the decomposed water is treated using solvent extraction using 

CHCl3 as described in the following section 2.4. The chemical yield of organic iodine 

(
125

I) was calculated by comparing the counts difference between organic 
125

I spiked and 

organic 
125

I remained in aqueous phase after extraction against organic 
125

I spiked, as 

shown in Equation 1.  

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑖𝑜𝑑𝑖𝑛𝑒 =
𝐼𝑠𝑝× 

125 65.5%− 𝐼𝑎𝑞 
125

𝐼𝑠𝑝× 
125 65.5%

                  Equation (1) 
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Wherein, 
125

Isp is the counts of 
125

I spiked to sample; 65.5% is the fraction of labeled 

organic 
125

I in the used 
125

I tracer solution; 
125

Iaq is the counts of organic 
125

I remained in 

aqueous phase after chloroform extraction, i.e., non-decomposing organic iodine. 

2.2.2 Solid samples 

Two methods were used to extract iodine from solid samples: combustion and alkaline 

ashing. In this study, the aerosol samples were analyzed using both methods. Sediment 

samples were analyzed using the combustion method, and seaweed sample was treated 

with alkaline ashing method. Prior to analysis, aerosol samples were cut into small pieces 

(2×2 mm), and the frozen sediment was thaw at room temperature.  

Table 2.1 Program temperature of combustion furnace for iodine separation. 

Step Temperature, ˚C Status Duration, min Combustion gas 

1 RT to 160  Heating 30 O2, Air 

2 160  Dwell 20 O2, Air 

3 160 - 250  Heating 20 O2, Air 

4 250  Dwell 10 O2, Air 

5 250 - 300  Heating 20 O2, Air 

6 300  Dwell 20 O2, Air 

7 300 - 350  Heating 20 O2, Air 

8 350  Dwell 20 O2, Air 

9 350 - 400  Heating 30 O2, Air 

10 400  Dwell 30 O2, Air 

11 400 - 800  Heating 40 O2 

12 800  Dwell 30 O2 

Total   290  

 

0.2-0.5 g aerosol sample (quartz filter) or 0.5-1.0 g sediment in dry mass were weighted 

to quartz boat, and 500 Bq of 
125

I was added to the sample. The sample was combusted in 

pyrolysis furnace following the temperature protocol in Table 2.1 to release iodine from 

the matrix. The released iodine was trapped in 0.4 mol L
-1

NaOH-0.05 mol L
-1 

KHSO3 

solution. An aliquot of 6 g trap solution was taken to measure 
125

I using a NaI detector to 

calculate chemical yield of iodine during combustion. 1.0 mL of trap solution was 

reserved in a plastic tube for determination of stable iodine (
127

I) using inductively 

coupled plasma mass spectrometry (ICP-MS). Iodine in the remaining trap solution was 

further separated by solvent extraction for measurement of 
129

I, as described in the 

following section 2.4. For aerosol samples collected on polypropylene filter paper, except 

increasing temperature slowly, small sample size (< 0.5 g) and low gas flow of air and 
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oxygen (< 0.2 mL min
-1

) were used to avoid rapid inflammation of air filter that may 

result in explosion.  

Iodine in aerosol samples on polypropylene filters and seaweed was isolated by alkaline 

ashing. 1.0-3.0 g aerosol filter or 1.0-2.0 g ground seaweed was weighted into porcelain 

crucible. 10-30 mL of 1 mol L
-1

 NaOH solution, 1 mL of 1 mol L
-1 

KHSO3 and 500 Bq 
125

I were added and mixed well with the sample. The sample was placed in an oven for 

drying completely at 80˚C. To prevent cross contamination during alkaline ashing, the 

crucible with dried sample was capped firmly with aluminum foil that was pierced a hole 

in diameter of about 1 cm
2
. The samples were put into Muffle furnace for ashing. The 

temperature was increased to 350˚C at ramp rate of 5˚C min
-1

 and kept for 2h, then raised 

to 500-700˚C at the same rate and dwelled for 1-4 h. After cooling down to room 

temperature, the residue remained in crucible was ground to fine powder using a glass rod 

and leached with deionized water on hotplate at 70˚C for 20 min. The leachate was 

separated from residue by filtration through a quantitive filter paper (Munktell OOK, 

Sweden). 
125

I in the leachate was measured using NaI Gamma detector for calculating 

chemical yield of iodine in the alkaline ashing procedure. 1.0 mL of the leachate was used 

to measure 
127

I using ICP-MS, and the remaining leachate was used to further separate 

iodine for 
129

I measurement.  

2.3 Speciation analysis of 
129

I and 
127

I 

2.3.1 Separation of iodide and iodate from water samples 

Separation of iodate and iodide from water samples was performed using anion exchange 

chromatography as previously reported [17, 121]. An anion exchange column of 20-30 

cm height and 10 mm diameter was packed with AG 1×4 resin (Cl
-
 form, 50-100 mesh, 

Bio-Rad Laboratory, California, USA). To purify and convert resin from Cl
-
 form to NO3

-
 

form, the resin column was washed successively with 50 mL of 5% NaClO solution, 30 

mL of de-ionized water, 30 mL 0.15 mol L
-1

 KHSO3 solution, 2 mol L
-1 

NaNO3 and 50 mL 

deionized water at a flow rate of 2 mL min
-1

. 2 drops of 0.5 mol L
-1

 AgNO3 was added to 

the effluent to check if chloride in resin was completely replaced by NO3
-
. If white 

precipitate (AgCl) occurs, the column was washed again with more 3 mol L
-1

 HNO3 until 

no white precipitate forms, then rinsed with deionized water until the pH of the effluent 

was about 6.  

Depending on the concentrations of 
129

I in water samples, 100-600 mL water sample 

spiked with 500 Bq 
125

I
-
 was loaded onto the column at a flow rate of 2 mL min

-1
, on 
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which iodate passed through the column due to its low affinity with anion exchange resin, 

while iodide was absorbed onto the resin. The column was then washed with 30 mL of 0.2 

mol L
-1

 NaNO3 and 30 mL water. The effluent and the two washes were combined as the 

iodate fraction. 2.0 mL of this solution was transferred to a vial for ICP-MS measurement 

of 
127

I, and the remaining solution was used for separation of iodate by solvent extraction. 

60 mL of 5% NaClO solution and 30 mL of 3 mol L
-1

 HNO3 were sequentially used for 

eluting iodide from the column at a flow rate of 1 mL min
-1

. The chemical yield of iodide 

during chromatographic separation was obtained by measurement of 
125

I in 6.0 mL of the 

eluate using NaI gamma spectrometry. 1.0 mL of iodide fraction was transferred to a vial 

for the ICP-MS measurement, and the remaining solution is used for separation of iodide 

by solvent extraction. 

2.3.2 Separation of iodine species in aerosol samples 

Iodine in aerosol was extracted sequentially using deionized water and sodium hydroxide 

solution for water-soluble and NaOH soluble iodine, respectively, followed by alkaline 

ashing and water leaching to separate insoluble iodine. Inorganic iodine species, iodide 

and iodate in the water leachate were further separated using anion exchange 

chromatography, and water-soluble organic iodine was obtained by the difference of total 

water-soluble iodine and the sum of iodide and iodate.  

Extraction of water-soluble iodine and separation of iodate and iodide. 0.2-3.0 g of 

aerosol filter (corresponding to 60-900 m
3
 air) was cut to pieces (about 2×2 mm) and put 

into a beaker with 5-30 mL deionized water. The mixture was agitated on a magnetic 

stirrer at 600 rpm at room temperature (~20˚C) for 15 min-5 h to leach water-soluble 

iodine. The leachate was vacuum filtered through 0.45 μm membrane (MCE membrane 

0.45 UM S-Pak Grid, 47 mm, VWR). The remaining aerosol on filter was rinsed twice 

with two aliquots of 10 mL deionized water under stirring. The two washes were filtered 

and combined with the leachate as water-soluble fraction. The remaining aerosol on the 

filter and the MCE membrane were used for subsequent NaOH leaching.  

One-third of the water leachate was used for measurement of total water-soluble iodine 

isotopes (
127

I and 
129

I), and the remaining two-third for speciation analysis of water-

soluble iodine (
127

I and 
129

I). Separation of iodide and iodate from water leachate of 

aerosols was carried out by anion exchange chromatography method as described in 

section 2.3.1 with small modification. A small column of 15 cm in height and 7 mm in 

diameter was packed with strong base anion exchange resin (AG 1×-4, converted to NO3
-
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form and purified by NaClO rinsing to remove excessive iodine in the resin). 10 mL of 

0.2 mol L
-1

 NaNO3 and 10 mL deionized water were used to rinse the column sequentially. 

Iodide absorbed on the column was then eluted using 30 mL 5% NaClO and 10 mL 3 mol 

L
-1

 HNO3 sequentially. 1-10 mL of water leachate, iodate and iodide fractions depending 

on the iodine concentration in the fractions were taken out for measurement of 
127

I by 

ICP-MS, and the remaining solution were used to further separate iodine for 
129

I 

measurement. 

Separation of NaOH soluble iodine in aerosol. The remaining aerosol on filter together 

with the MCE membrane was immersed into 5-40 mL of 0.5 mol L
-1

 NaOH solution. The 

suspension was agitated for 30 min-5 h at a certain temperature (20, 45 and 60˚C 

measured by a probe) on a magnetic stirrer, and the beaker was covered by watch glass 

during leaching. After cooling down to room temperature, the leachate was filtered 

through a 0.45 μm MCE membrane. The remaining aerosol on the filter was rinsed twice 

using two aliquots of 10 mL of 0.5 mol L
-1

 NaOH solution. The two washes were 

combined with NaOH leachate, which is used for measuring NaOH soluble iodine 

isotopes. 1 mL of NaOH leachate was reserved for measurement of 
127

I by ICP-MS, and 

the remaining leachate was used for further separation of iodine for 
129

I measurement. The 

residue on the filter and MCE membrane for filtration were transferred to a porcelain 

crucible for alkaline ashing.  

Separation of insoluble iodine and total iodine in aerosol filter. The residual aerosol 

after NaOH leaching was analyzed using alkaline ashing method or combustion method 

as described in section 2.2.2. 5-10 mL of 1-2 mol L
-1

 NaOH solution, 0-3 mL of 1 mol L
-1

 

KHSO3 and 500 Bq 
125

I
-
 solution were added and mixed to the aerosol samples. The 

blended sample was dried at 80 ˚C, and burnt at 350˚C for 2h, then raised to 500-700˚C 

and maintained for 1-4 h.  

Decomposition of organic iodine in water and NaOH leachate. As stated in section 2.2.1, 

500 Bq 
125

I
-
 and 1.0 mg 

127
I carrier were added to the leachates (water and NaOH 

leachate), then K2S2O8 was added to a final concentration of 30 mg g
-1

. The mixture was 

heated at 60˚C overnight with watch glass covered for refluxing to decompose organic 

iodine in the leachate and convert them to inorganic iodine. It was observed that the 

yellow NaOH leachate turned to colorless after K2S2O8 decomposition.  

2.3.3 Separation of iodine species in seaweed 
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Iodine species in seaweed were extracted using deionized water for water leachable iodine, 

followed by alkaline ashing for water insoluble iodine.  

Extraction of water-soluble iodine and separation of iodate and iodide. 2.0 g ground 

slurry of seaweed sample was taken into a beaker and 30 mL deionized water was added 

to the sample. The mixture was stirred using magnetic stirrer at 600 rpm at room 

temperature (~20˚C) for 1 h. The leachate was vacuum filtered through a 0.45 μm MCE 

membrane. Due to the presence of leached seaweed algin, the leachate is sticky, resulting 

in a slow filtration process. The remaining residue was rinsed twice with two aliquots of 

10 mL deionized water. The two washes were filtered and combined with the leachate as 

water-soluble fraction. The remaining seaweed residue and the filter paper were used for 

subsequent alkaline ashing.  

After being diluted for 20-fold, 0.4 mL and 2.0 mL of the diluted water leachate were 

taken for measurements of 
127

I and 
129

I, respectively. 10 mL of the diluted solution was 

further treated with anion exchange chromatography for separation of iodide and iodate as 

described in section 2.3.1 with a small chromatographic column (15 cm in height and 7 

mm in diameter). 1.0 mL of iodate and iodide fractions were taken out for measurement 

of 
127

I by ICP-MS, and the remaining solution were used for further separation of iodine 

by solvent extraction for 
129

I measurement. 

Alkaline ashing of water insoluble iodine in seaweed. The seaweed residue after water 

leaching was treated by alkaline ashing for separation of water insoluble iodine. 10 mL of 

1.0 mol L
-1

 NaOH solution, 0.5 mL of 1.0 mol L
-1

 KHSO3 and 500 Bq 
125

I
- 
solution were 

added and mixed well with the sample. The same separation procedure as that for total 

iodine in seaweed (Section 2.2.2) was used for separation of insoluble iodine in seaweed. 

2.4 Separation of iodine from water samples and iodine fractions for 
129

I 

measurement 

The original seawater samples and prepared solutions including all the separated iodine 

fractions in Section 2.3, were transferred to appropriate separation funnels. 1.0-2.0 mg of 
127

I carrier and, 500 Bq of 
125

I
-
 tracer (if not added in previous steps) and 1.0-2.0 ml of 1.0 

mol L
-1

 potassium bisulfate (KHSO3) solution were added to the funnel, and then the pH 

of the solution was adjusted to 1-2 using 3 mol L
-1

 HNO3 to convert all iodine species to 

iodide. With addition of 20-50 mL chloroform (CHCl3) and 2-5 mL 1.0 mol L
-1

 NaNO2, 

iodide was oxidized to I2 and extracted to CHCl3 phase by appropriate shaking. The 

CHCl3 phase (pink color) was transferred to a new separation funnel. The CHCl3 



 

27 

 

extraction procedure was repeated to completely extract iodine in the water phase to 

CHCl3 phase. All CHCl3 phases were combined and transferred using 30 mL deionized 

water to the separation funnel. 0.2 mL 0.05 mol L
-1

 KHSO3 solution was added to the 

funnel to reduce I2 in chloroform phase to iodide and back-extracted iodine into water 

phase. This extraction and back extraction were repeated once for further purification. 

The separated iodine (in iodide form) in a small volume (5-7 ml) was transferred to a 

centrifuge tube, and precipitated by addition of 1.0 mL of 0.5 mol L
-1

 AgNO3 solution to 

form AgI precipitate. The AgI precipitate was separated using centrifugation at 3000 rpm 

for 3-5 min, and washed in sequence using 10 mL 3 mol L
-1

 HNO3 and two aliquots of 10 

mL deionized water to remove possibly formed Ag2SO3 and Ag2SO4 which are soluble in 

acidic solution. The precipitate was transferred to a 1.5 mL centrifuge tube. 
125

I in the 

precipitate was measured using a NaI gamma detector for calculating the chemical yield 

of iodine. The prepared AgI precipitate in small tube was dried at 70˚C, weighed exactly 

and stored in a desiccator for AMS measurement of 
129

I. 

2.5 Measurement 

2.5.1 Measurement of 
125

I by NaI well-type gamma spectrometry  

For calculation of chemical yield of iodine in the analytical procedure, 
125

I was counted 

by NaI gamma spectrometry (Cabrera, USA) in energy range of 3.3-58.5 keV (cover X-

rays and γ ray of 
125

I). The chemical yield (Y) can be calculated as the following equation.  

Y=
(𝑐𝑜𝑢𝑛𝑡𝑠 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒−𝑏𝑙𝑎𝑛𝑘 𝑐𝑜𝑢𝑛𝑡𝑠)×𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

𝑐𝑜𝑢𝑛𝑡𝑠 𝑜𝑓 𝐼125  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑−𝑏𝑙𝑎𝑛𝑘 𝑐𝑜𝑢𝑛𝑡𝑠
 × 100%                    Equation (2) 

2.5.2 Determination of 
127

I by ICP-MS 

All aliquots reserved for determination of 
127

I was diluted by a factor of 1-20 and prepared 

in 1% NH3·H2O media (v/v). Cesium (CsNO3 solution) was added to a final concentration 

of 2.0 μg L
-1

 as internal standard to normalize ionization efficiency of iodine in ICP-MS 

measurement. For measurement of 
127

I in ash leachates of aerosol samples, standard 

addition method was employed by spiking iodine standard solution (NaI, NIST, USA) of 

2 μg L
-1

 to the sample solutions. 
127

I in the diluted solution was measured by ICP-MS 

(Thermo Fisher, X Series II) using Xt cone under normal mode. Prior to analysis, rinsing 

of the ICP-MS instrument was switched to alkaline medium from acid medium by using 

water and 1% NH3·H2O in sequence, and tuned for maximum sensitivity of iodine and 

cesium using a quality control solution containing 2.0 μg L
-1

 I
-
 and 2.0 μg L

-1
 Cs

+
 in 1% 

NH3·H2O. The typical operation parameters for measurement of iodine are summarized in 
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Table 2.2. It is important to note that these parameters need to be optimized each time 

when the instrument is initialized. The detection limit of the method for iodine in the 

diluted solution was calculated as 3 times of the standard division of the blank to be 0.02 

µg L
-1

. 

2.5.3 Determination of 
129

I by AMS 

Target preparation. The prepared AgI precipitates were mixed with silver powder in 

mass ratio of 1:2 or niobium powder in mass ratio of 1:3 using a home-made stain steel or 

copper stick. Homogeneous mixing between AgI and conductive material (Ag or Nb 

powder) is crucial for assuring stability of iodine ion current among the runs of AMS 

measurement. The well-mixed sample was pressed into a copper holder using a set of 

pressing tool and a pressure machine (Fig. 2.3). The pressed targets were stored in 0.5 mL 

tube and then put into desiccator until measurement.  

 

Figure 2.3 Picture of pressing tool for target preparation in the SUERC AMS lab, UK. The yellow component (the 

right most one) is the copper holder. 

AMS measurement for 
129

I. 
129

I in the targets of most samples was measured by a 5 MV 

accelerator mass spectrometry (AMS) (NEC, Wisconsin, USA) at Scottish University 

Environmental Research Center, UK, total 
129

I and its species in seawater were 

determined using a 3 MV AMS (HVEE, Amersfoort, Netherland) in Xi’an AMS Center 

[141, 142]. The main parameters are summarized in Table 2.2 [142, 143]. Fig. 2.3 shows a 

diagram of the AMS system at the Xi’an AMS Center, consisting of six main components. 

50 sample targets were loaded on the carousel of ion source, comprising 5 standards, 5 

instrumental blanks (Nb or Ag in this study) and 40 unknowns and procedure blanks. 

Negative ions of iodine are sputtered out from the holder by Cs
+
 beam and extracted to 

the injector, where the ions are pre-accelerated and 
129

I and 
127

I ions are selected. 

Generally, ionization efficiency in the range of 5-8% can be obtained. The interferences to 

negative 
129

I ions, such as molecules as 
128

TeH
-
 and 

127
IH2

-
, can be suppressed by 
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analyzing mass and energy with a 54˚ electrostatic analyzer and a 90˚ bouncer magnet in 

the injector, the isobar 
129

Xe
-
 could not formed in the ion source. The negative ions are 

injected into the tandem accelerator, where they are firstly accelerated in the positive 

potential of the terminal. The selected ions with masses of 129 and 127 are injected 

sequentially into the accelerator system by switching the bouncer voltage [18] at a 

frequency of 100 Hz. The injection time of ions are 9 ms for mass 129 and 100 μs for 

mass 127. When reaching the terminal, electrons are stripped off by Ar gas for converting 

iodine negative ions to multiply charged positive ions, such as I
+
, I

2+
, I

3+
, I

4+
, I

5+
, I

6+
 , I

7+
 

etc. The stripping yield of I
5+ 

is measured to be 3.6% to 3.8% in the Xi’an AMS when the 

voltage was set to 2.5 mV. These are repelled from the positive terminal and a second 

acceleration takes place by repulsion back to ground potential. After exit of the 

accelerator tube, +5 charge state iodine ions were selected by the 115˚ magnetic analyzer 

according to the magnetic rigidity. Stable iodine (
127

I) is measured as current by Faraday 

cup immediately after the magnetic analyzer. 
129

I
5+

 ion from the magnetic analyzer is 

further separated by a 65˚ electrostatic analyzer for energy analysis with an energy 

resolution of E/ΔE and a 30˚ magnetic analyzer for mass analysis. 
129

I
5+

 is finally counted 

by gas ionization detector. The typical operation parameters of AMS are summarized in 

Table 2.2. 

 

Figure 2.4 Schematic diagram of the Xi’an tandem AMS facility, where 1 is the Cs+ sputter negative ion source, 2 is 

the low-energy (35 keV) injector with beam blanking unit and Q-snout, 3 is the 3 MV tandetron with Ar gas stripper 

and acceleration tube containing combined magnetic and electrostatic suppression, 4 is the high-energy analyzing 

system with magnetic-electrostatic-magnet analyzers, 5 is the gas ionization chamber detectors and 6 is the control 

system [106]. 
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Procedure blanks were prepared using the same procedure as the samples, and 

instrumental blanks were prepared by directly precipitating iodine as AgI in the 
127

I 

carrier. The measured 
129

I/
127

I atomic ratios in the instrumental and procedure blanks are 

(1.3-3.5)×10
-14

 and <5×10
-13

, respectively. The procedure blank is 1-2 orders of 

magnitude lower than that observed in the samples analyzed in this work. The measured 
129

I/
127

I ratios were corrected against standards with ratios of 1.138×10
-10

 and 9.952×10
-12

 

prepared from the NIST 4949C and 
127

I carrier. The analytical precisions for the 
129

I/
127

I 

ratio were obtained to be 1.7-2.0 % in 
129

I standards and less than 5% in the samples.  

2.6 Acquisition of environmental data 

Chlorophyll-a concentrations in the central Arctic were acquired from NASA (National 

Aeronautics & Space Administration, www.nasa.gov).  

Backward trajectories computed by means of the NOAA HYSPLIT model [144] were 

used to trace the transport pathways of the air collected in this work. The mid-point of the 

aerosol sampling period on a given day was selected as the trajectory arrival time input to 

HYSPLIT on that day. The global data are given on a latitude-longitude grid (2.5 degrees) 

at 17 pressure levels (18 sigma levels). The time resolution of the data is 6 h.   

http://www.nasa.gov/
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Table 2.2 Typical operational parameters of ICP-MS and AMS. 

ICP-MS AMS 

Type Thermo X Series II Ion source Cs sputter negative ion source 

RF power 1200 W Selected charge state +5 

Plasma gas flow, L min-1 13 Stripper gas Argon 

Auxiliary gas flow, L min-1 1 Interference 97Mo4+ for 129I5+ 

Nebulizer gas flow, L min-1 0.95 129I standards (129I/127I 

ratio) 

NIST 4949B, diluted with iodine carrier 

(Woodward iodine) 

Level 1: 1.138 10-10 

Level 2: 9.954 10-12 

Expansion pressure, mbar 1.5-2.5 Typical background 

(129I/127I ratio) 

(0.9-5)  10-13 

Analysis pressure, mbar 5.3  10-8 Detector Faraday cup for 
127I 

Gas ionization chamber 

detectors for 129I 

Numbers of replicate runs 3 Producer HVEE NEC 

Isotopes 127I 133Cs Operator Xi’an AMS 

center 

SUERC AMS laboratory 

Standard NaI (CPI 

international, USA), 

0-100 μg L-1 

CsCl, 2 μg L-1 Type 3MV 5 MV 

Typical background, 

cps 

(2.5-4)  103 10-100 Voltage for 129I, MV 2.5 3.5 

Typical sensitivity, cps per μg L-1 (1-2)  104 (5-10)  104 Numbers of runs 6 5-12 

Sweeps 700 700 Duration per run, min 5 1-5 

Dwell time, ms 25 15 Conductive material in 

holder 

Niobium (325 

mesh, Alfa Alsa, 

USA) 

Silver (100 mesh, 99.95%, 

Assure) 

Acquisition duration, s 30 30 Holder material Copper Aluminum and copper 

Separation AMU 0.02 0.02    
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3. Results and discussion 

This thesis mainly comprises two parts, methodology development and tracing 

application of total 
129

I and its speciation in the environment. The K2S2O8 oxidation 

method was further improved for decomposition of organic iodine in various water 

samples based on the previous work. Methods for speciation analysis of 
129

I, including 

pyrolysis and alkaline ashing for separation of total iodine and insoluble iodine, were 

developed using sequential extraction, anion exchange chromatography and mass 

spectrometry detection for aerosols collected on quartz filter and polypropylene filter 

paper (Paper II and V). The influence of aerosol collecting filter type on the analytical 

methods was discussed.  

The second part focuses on environmental tracing applications of 
129

I and 
127

I, as well as 

transformation of iodine species in various environmental systems, including marine 

water, atmosphere, and seaweed. Level, distribution, sources and conversion of total 
129

I 

and 
127

I and their species in surface and deep seawater from the Central Arctic (Paper III), 

around Greenland, Danish coast, offshore Fukushima (Paper IV), aerosols from Risø, 

Denmark (Paper VI) and Tsukuba, Japan (Paper V), as well as seaweed (Fucus 

versiculosis and Fucus serratus) from the Danish coastal areas were summarized and 

discussed below. 

3.1 Methodology development 

3.1.1 Persulfate oxidation for decomposition of organic iodine in water samples 

Iodine in marine water exists predominantly as dissolved iodate, iodide, and a minute 

amount of organic iodine [39]. Total 
129

I is generally separated from water samples by 

solvent extraction with reduction and oxidation of iodine. While in coastal water, estuary 

water, lake and river water and precipitation, significant proportion of organic iodine up 

to 90% of total iodine might occur [55]. Since organic iodine cannot be extracted by 

organic solvent, total 
129

I concentration might be underestimated using the conventional 

solvent extraction without considering decomposition and conversion of organic iodine to 

inorganic form. Therefore, organic iodine in water samples has to be decomposed prior to 

solvent extraction of iodine in the samples containing significant amount of organic 

iodine. For this purpose, persulfate oxidation method (K2S2O8) was developed to degrade 

the organic iodine in the previous study [97]. Nevertheless, this method needs further 

validation for natural organic iodine. Employing organic 
125

I as tracer (by labeling organic 

matter extracted from lake water using radioactive 
125

I, as described in section 2.2.1), the 
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crucial parameters affecting the decomposition efficiency of organic iodine in waters, 

including the pH of initial sample, concentration of K2S2O8 used, and decomposition time 

were investigated and summarized below. The established method was validated using 

NaOH leachate of sediment with high-content organic iodine.  

Influence of K2S2O8 concentration. The optimal chemical yield of organic iodine of 95.8% 

was obtained with 10 mg g
-1

 of K2S2O8 compared to that of 72.6% with 1.0 mg g
-1

 K2S2O8 

(Fig. 3.1). The chemical yield of organic iodine includes the iodine recoveries in two 

steps: K2S2O8 decomposition and solvent extraction, implying an even higher chemical 

yield to 97.7% in the oxidation decomposition step if considering the extraction yield of 

98%. A slightly lower chemical yield was observed when the concentration of K2S2O8 

was higher than 10 mg g
-1

, which might be attributed to the high salinity in the 

decomposed solution, resulting in low recovery of iodine in the solvent extraction step. 

For the lake water from the Gundsømgle Lake, 10 mg g
-1 

K2S2O8 is sufficient to 

decompose organic iodine. Considering the water samples with much higher organic 

iodine, it is advisable to use 30 mg g
-1 

K2S2O8.  

 

Figure 3.1 Effect of the concentration of K2S2O8 on chemical yield of organic iodine (left axis, red) and pH values 

before and after potassium persulfate degradation (right axis, blue; dot line, initial pH; solid line, final pH). 100 mL 

of the lake water was treated with K2S2O8 to a final concentrations of 1-50 mg g-1 at 60˚C for 20 h. 1 mg 127I carrier 

was added for solvent extraction by CHCl3. 

The initial and final pH values were measured immediately after K2S2O8 completely 

dissolved and 20 hours decomposition, respectively (Fig. 3.1). A slightly decrease trend 

of the initial pH values was observed with the final concentrations of K2S2O8 increasing, 

indicating the K2S2O8 immediately degrades once added to water. After 20 h 

decomposition, the final pH values decreased dramatically from 8.6 to 1.53 with the 
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K2S2O8 concentrations increased from 1.0 mg g
-1 

to 10 mg g
-1

. The variation of pH values 

is a consequence of decomposition of K2S2O8, which is also related to the decomposition 

efficiency of organic iodine. Although iodine is easily lost in acid medium by forming 

volatile molecular iodine (I2), the high chemical yield of iodine during the oxidation 

reaction demonstrates that no visible amount of iodine was lost. This might be explained 

that organic iodine is oxidized to high valence of iodate by K2S2O8, which is stable in 

acidic media.  

The principle of K2S2O8 for decomposition of organic iodine in aqueous samples is that 

persulfate is a strong inorganic oxidant, which degrades in water forming the persulfate 

radical (HSO4∙), which is an active oxidizing agent [145]. The persulfate oxidation 

method has been proved effective to convert organic carbon and organic nitrogen to 

inorganic ions for determination of total carbon and nitrogen [146, 147]. Ammonium 

persulfate has been successfully applied in the determination of urinary iodine for 

removal of interference substance [148]. 1 mL of 1 mol L
-1

 ammonium persulfate was 

added to 200 μL urinary sample (corresponding to 5 mol/L), which is digested at 90-95˚C 

for 30 min. The concentration of persulfate used for urinary sample (5 mol/L) is much 

higher than that for natural water samples in this work (30 mg/L corresponding to 0.1 

mol/L) due to the different content of organic matter.  

Effect of the initial pH of sample solution. The optimal chemical yield of iodine (93.5%) 

was obtained when initial pH of sample solution was 7.41, while lower chemical yields 

(79.5-87.4%) at the other pH conditions (Fig. 3.2) were observed. When adjusting pH to 

acidic conditions (pH 1 and 4) by adding nitric acid, it is possible iodine was lost because 

of the  formation of volatile I2. When the solutions were adjusted to higher pH (10 and 13), 

the slightly lower chemical yields of iodine might be attributed to the insufficient 

decomposition of organic iodine by K2S2O8. Although initial pH of solution could affect 

chemical yield of organic iodine, more than 80% of organic iodine was effectively 

converted to inorganic iodine in the pH range of 1-13. This demonstrates that K2S2O8 can 

be used directly to treat organic iodine in natural waters, and it is better to adjust solution 

pH to neutral for the acid and alkaline waste samples. 
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Figure 3.2. Effect of sample initial pH on decomposition efficiency (left red axis) and final pH value (right blue axis). 

The sample initial pH values were adjusted with HNO3 or NaOH solutions. 100 mL of the original lake water was 

treated with K2S2O8 to a final concentrations of 30 mg g-1 at 60˚C for 20 h. 1 mg 127I carrier was added for solvent 

extraction by CHCl3. 

Effect of decomposition time. The effect of decomposition time on the chemical yield of 

organic iodine was investigated at two concentrations of K2S2O8, 10 and 30 mg g
-1

 (Fig. 

3.3). It was observed that more than 90% of organic iodine can be decomposed after 5 h 

for 10 mg g
-1

 K2S2O8 and 2 h for 30 mg g
-1

 K2S2O8. Extending the decomposition time 

would not impair the chemical yield of iodine. The final pH was closely related to the 

decomposition time (Fig. 3.3). Only slight decline of final pH values were found within 5 

h, which was followed by a large decrease of pH to 2.44 after 20 h of decomposition. This 

indicates the complete degradation of potassium persulfate requires longer time, but 

organic iodine could be decomposed to inorganic iodine from the beginning of K2S2O8 

degradation. However, in order to ensure sufficient decomposition of organic iodine, long 

decomposition time is still necessary. Due to no iodine loss observed during the oxidation 

decomposition, it is recommended that the K2S2O8 oxidation can be carried out overnight. 

In the cases of fast analytical procedure, organic iodine can be effectively degraded to 

inorganic iodate in 5 h with addition of 10 mg g
-1 

K2S2O8, and for only 2 h with addition 

of 30 mg g
-1

 K2S2O8.
 

0

2

4

6

8

10

12

14

0%

20%

40%

60%

80%

100%

1.00 3.99 7.41 10.00 13.00

F
in

a
l 

p
H

 

C
eh

m
ic

a
l 

y
ie

ld
 

Initial pH 

Chemical yield of organic iodine Final pH



 

36 

 

 

Figure 3.3. Effect of decomposition time on chemical yield of organic iodine (top) and final pH value (bottom). 10 

mg g-1 and 30 mg g-1 of K2S2O8 are represented by square in blue andtriangle in red , respectively. 100 mL of the 

original lake water was treated with K2S2O8 to a final concentrations of 10 and 30 mg g-1 at 60˚C for 0.75-20 h. 1 mg 
127I carrier was added for solvent extraction by CHCl3. 

Validation of the decomposition method. As shown above, up to 97.7% of organic iodine 

can be converted to inorganic iodine by K2S2O8 decomposition. In order to confirm 

organic iodine in aqueous samples with high content of organic matter can be completely 

decomposed at the optimal experimental conditions, organic iodine leached from 1.0 g 

sediment from Rømø, Denmark by 100 mL 0.5 mol L
-1

 NaOH was used for direct solvent 

extraction and K2S2O8 decomposition. The content of organic matter in the sediment is 

about 13% of the total mass roughly estimated from the ignition loss.  

The concentration of organic 
129

I in the sediment is (11.5 ± 0.9)  10
9
 atoms g

-1
, which is 

calculated by the difference between the total 
129

I and 
129

I in the residual insoluble iodine 

after NaOH leaching. Total iodine in the original sediment and the residual iodine was 

separated by conventional combustion method (see section 2.2.2). The results (Table 3.1) 
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showed that the organic 
129

I concentration was measured to be 5.7  10
9
 atoms g

-1
 without 

K2S2O8 decomposition of the sediment leachate. This indicates only 50% of iodine in the 

NaOH leachate was extracted by chloroform extraction. After K2S2O8 decomposition, a 

good agreement was obtained between the measured 
129

I concentration and the calculated 

value. This result confirms the established method using K2S2O8 oxidation could 

completely decompose organic iodine to inorganic iodine.  

Table 3.1. The concentration of organic matter associated 129I ( 109 atoms g-1) in the NaOH leachate of sediment 

with and without K2S2O8 oxidation decomposition.The decomposed leachates were further separated by solvent 

extraction and measured by AMS. 

Replicate 
129I in the NaOH 

leachate 

Without K2S2O8 

decomposition 

With K2S2O8 

decomposition 
129I Percentage 129I Percentage 

1 

11.5 ± 0.9 a 

6.2 ± 0.5 54.3% 12.3 ± 1.0 107.0% 

2 5.7 ± 0.4 49.7% 12.8 ±1.0 111.0% 

3 5.3 ± 0.4 45.8% 11.8 ± 0.9 102.3% 

Average   5.7 49.90% 12.3 106.80% 

a. This data were obtained from three replicates. 

Recommended procedure for decomposition of organic iodine in natural water samples 

using K2S2O8. Taking 100 mL water samples as an example, the procedure for 

decomposition of organic iodine using K2S2O8 is recommended as the following.  

I. Take 100 mL filtered water samples or solutions to an appropriate size beaker; 

II. Add 30 mg K2S2O8 (solid) into the water to a final concentration of 30 mg g
-1

; 

III. For determination of total 
129

I, add 500 Bq 
125

I tracer and 1-2 mg 
127

I carrier (in 

the case that solvent extract is used for separation of iodine for 
129

I determination); 

IV. Stir the solution with a glass rod until K2S2O8 is completely dissolved. Cover the 

beaker using a watch glass for refluxing; 

V. Put the beaker on a hot plate and heat at 60˚C. Stir the solution occasionally in the 

first few hours, and then keep heating overnight; 

VI. After cooling down, inorganic iodine in the decomposed solution is extracted by 

solvent extraction for determination of total 
129

I, or treated by AgI-AgCl co-

precipitation (in this case, no 
127

I carrier should be added before digestion).   

It is worthy to note that after K2S2O8 decomposition, there may be some K2S2O8 remained 
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in the solution. In the following reduction of iodate using reductant, the residual K2S2O8 

might consume the added reductant. Hence, more reductant (4 mL 1 mol L
-1

 KHSO3) is 

required for the treated 100 mL water compared to the original water sample (0.5-1 mL of 

1 mol L
-1

 KHSO3).  

3.1.2 Determination of 
129

I and 
127

I and their species in aerosols 

Method for speciation analysis of 
129

I and 
127

I in aerosols was established by coupling 

sequential extraction with mass spectrometry detection (Paper II and V), allowing to 

quantitative determination of water-soluble iodine (iodide, iodate), NaOH soluble and 

residual insoluble iodine for 
129

I and 
127

I in aerosols. 

Determination of total 
129

I in aerosols. Atmospheric aerosol can be collected on many 

different types of filter papers. The most commonly used filter paper materials are quartz 

fiber, glass fiber, cellulose and polypropylene. In this study, we have analyzed aerosol 

samples collected on quartz fiber filter and polypropylene filter for determination of 
129

I 

and its species. The results show that high chemical yield of iodine can be obtained for 

aerosol on quartz fiber filter using combustion (95.9%) and for polypropylene filter using 

alkaline ashing with addition of K2S2O5 (85.7%) (Table 3.2). 

Table 3.2 Chemical yields of iodine using combustion, alkaline ashing and alkaline ashing with K2S2O5. 

Method Filter type Chemical yield, % 

Combustion Quartz 95.9 ± 4.8 

Combustion Polypropylene 65.1 ± 3.2 

Alkaline ashing Polypropylene 62.3 ± 2.5 

Alkaline ashing + K2S2O5 Polypropylene 85.7 ± 4.3 

Selection of method for separation of total 
129

I from aerosol samples is strongly dependent 

on filter types. 
129

I can be separated from aerosol filter by three methods, NaOH leaching, 

combustion and alkaline ashing [54, 149, 150]. Due to the complexity of iodine species in 

aerosols, NaOH leaching cannot ensure to completely extract 
129

I from aerosol, which 

likely gives rise to underestimate the total 
129

I concentration. Combustion is an excellent 

method to separate iodine from solid samples, but it is suffered from the influence of 

organic matter. Rapid combustion of organic matter in a tube furnace could cause eruptive 

loss of iodine in trap solution, resulting in low chemical yield of iodine (65.1%). 

Furthermore, the capacity to treat large sample size is greatly limited by the narrow 

combustion tube and rapid burning of organic substances (< 0.5 g polypropylene filter 

paper). Alkaline ashing method normally has high capacity for large sample size. While 
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due to the formation of volatile iodine forms, the chemical yield of iodine is relative low 

(62.3%) [150]. The addition of a reductant, K2S2O5, could effectively avoid the formation 

of volatile iodine and prevent iodine from loss during ashing (see detail in Paper II). 

From the point of sample preparation view, the filter materials for collecting aerosol can 

be classified into two groups, the inorganic mineral filter (such as quartz and glass fiber) 

and organic filter paper (such as cellulose and polypropylene). For the first group, 

combustion method is suitable to achieve high chemical yield of iodine. Alkaline ashing 

with addition of K2S2O5 is applicable to separate iodine in aerosol collected on organic 

filter papers.  

Influence of filter type on stability of iodine species during extraction. Stability of 

iodine species is pivotal in speciation analysis. However, there are only few experimental 

investigations on the conditions causing iodine species changing. During leaching for 

water-soluble iodine species including iodide, iodate and soluble organic iodine, 

interconversion among dissolved iodine species was observed with increased leaching 

time (Fig. 3.4). The ratios of iodide to iodate in water leachate decreased from 14.6 within 

1 h leaching to 12.4 after 2 h leaching. The declined I
-
/IO3

-
 ratio in water leachate might 

be attributed to oxidation of iodide to iodate during water leaching, which is likely related 

to photo degradation of polypropylene filter paper (Paper II).  

 

Figure 3.4. Variation of iodine species in water leachate with extracting time. 
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Oxidation of iodide to iodate was not observed during water leaching for aerosol on 

quartz fiber filter, for which only iodide was present in water leachate (Paper V). This 

likely indicates that the stability of iodine species strongly depend on filter materials. 

Baker et al. (2000) has observed that inorganic iodine concentrations in water leachate of 

aerosols decrease with extended leaching time when using ultrasonic-assistant extraction; 

they attributed this to conversion of iodide to organic iodine species on cellulose filter 

[151]. Xu et al. (2010) also observed significantly decreased recoveries of iodide spiked 

into cellulose filter from 87% for 5 min leaching to only 18% when extending the 

leaching time to 1 h, but no variation of iodide recovery when spiked to glass microfiber 

filter [152]. In consideration of stability of inorganic iodine species, organic filter 

(polypropylene used in this work and cellulose) shows a stronger influence than inorganic 

fiber filter (quartz and glass filters). Therefore, leaching time has to be strictly controlled 

to avoid the transformation of iodine species. 

Recommended analytical procedure and analytical performance. In order to develop a 

reliable method for speciation analysis of 
129

I and 
127

I in aerosols collected on 

polypropylene filter paper, we have optimized the crucial parameters affecting the 

analytical performance, including the amount of leaching reagent, leaching time for water 

leaching and NaOH leaching, stability of iodine species during water leaching, NaOH 

leachcing temperature, ashing time, ashing temperature and amount of K2S2O5 (Paper II). 

For the aerosol sample collected in Risø, Denmark, 1 g and 3 g were sufficient for 

determination of total 
129

I and 
129

I species, respectively. The optimal analytical procedure 

is recommended in Fig. 3.5. 

The detection limits of 0.007 ng m
-3

 for 
127

I and 7.1 ×10
6
 atoms (1.5 fg) for 

129
I were 

obtained. The results (see Table 3 in Paper II) show that the sum of all species including 

water-soluble iodine, NaOH soluble iodine and insoluble iodine is in good agreement 

with total iodine concentration, as revealed by the ratios of sum to total iodine in the 

range of 97% to 107% for both 
127

I and 
129

I. This confirms the reliability of the presented 

method for speciation analysis of 
129

I and 
127

I in aerosol samples.  
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Figure 3.5. Schematic diagram of optimized analytical procedure using sequential extraction, chromatography 

separation and mass spectrometry techniques for speciation analysis of 127I and 129I in aerosols. TI is for total iodine, 

WSI for water-soluble iodine, NSI for NaOH soluble iodine, and RII for residual insoluble iodine.  
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3.2 Environmental tracing application of 
129

I and 
127

I species 

3.2.1 Speciation of 
129

I and 
127

I in marine water 

A main part of the thesis has been devoted to the investigations of 
129

I and 
127

I, as well as 

their species in seawater from a variety of oceans and seas, including the central Arctic 

(Paper III), Greenland and Danish coast, as well as offshore Fukushima (Paper IV).  

3.2.1.1 The central Arctic 

Depth profile seawater samples (0-800 m) were collected and analyzed for investigations 

of 
129

I and its species. The sampling depth covers two layers of the central Arctic, the 

polar mixed layer (PML, 0-50 m deep and salinity range of 31-34 psu), and warm Atlantic 

Water Layer (AWL) at depth ranging between 200 and 800 m (34.5<Salinity<34.8). 

Vertical profiles of total 
129

I and 
127

I. The vertical distributions of the concentrations of 
127

I and 
129

I, and 
129

I/
127

I atomic ratios are shown in Fig. 3.6. The concentrations of 
127

I in 

the PML ranged from 40 μg L
-1

 at station 2 over the Mendeleyev-Alpha Ridge to 54 μg L
-

1
 at station 12 in the southeastern Eurasian Basin, with an average level of 48.20 μg L

-1
. In 

the AWL, 
127

I concentrations were elevated to an average of 56.80 μg L
-1

 and relatively 

constant. In contrast to 
127

I, a significant decrease of 
129

I concentrations from a range of 

(48.20-72.58) ×10
8
 atoms L

-1
 in the PML to (2.89-29.79) ×10

8 
atoms L

-1
 at 200-500 m and 

(5.09-28.79)×10
8 

atoms L
-1

 at 700-800 m in the AWL in the water columns of the 

Eurasian and Makarov Basins. The
 129

I concentrations in the PML at stations 1 and 2 over 

the Mendeleyev-Alpha Ridge and north of Canada Basin were about 50-fold lower than 

other stations. The 
129

I concentration at station 1 in the north Canada Basin increased from 

1.36 ×10
8 

atoms L
-1

 in the PML to 18.24 ×10
8 

atoms L
-1

 at the depth of 250 m, and then 

decreased to 6.31 ×10
8 

atoms L
-1

 at 370 m depth. The 
129

I/
127

I atomic ratios varied from 

6×10
-10

 in the Canada Basin to 311×10
-10

 in the southern Eurasian Basin. The vertical 

distribution pattern of 
129

I/
127

I ratios is similar with 
129

I concentrations because of the 

weak variability of 
127

I.  

The measured 
129

I concentrations of 10
8
-10

10 
atoms L

-1
 in the central Arctic seawater 

collected in 2011 is 3-5 orders of magnitude higher than the level of pre-nuclear era (10
5 

atoms L
-1

 for 
129

I concentration, or ca. 10
-12 

for 
129

I/
127

I ratio) [153], and 1-2 orders of 

magnitude higher than the global fallout level of the post-nuclear era (ca. 10
-10 

for 
129

I/
127

I 

ratio) [15, 27]. In the eastern Eurasian Basin (station 12), the concentration of 
129

I in the 

PML seawater during mid-1990 measured to be approximately 12×10
8 

atoms L
-1

 [154, 
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155], was raised by five-fold to about 65×10
8 

atoms L
-1

 in late 2000s [156], and by six-

fold up to 72.58×10
8 

atoms L
-1

 in 2011 in this work. About 4-fold increase in 
129

I 

concentrations are found in the AWL seawater from 1995 (5×10
8 
atoms L

-1
) [156] to 2011 

(22×10
8
 atom s L

-1
). These dramatically increases in 

129
I levels in the PML and AWL 

demonstrate that the high discharge of 
129

I from the reprocessing plants at Sellafield and 

La Hague since early 1990s has flowed into the Arctic Ocean with the water current 

flowing along the European continent and the Arctic marginal seas [24, 154, 155, 157-

161]. Not only for the Eurasian and Makarov Basins, the increase of 
129

I concentration at 

surface layer (station 1) in the Canada Basin from 0.510
8 

atoms L
-1

 in 1995 [160] to 

1.3610
8 

atoms L
-1

 in 2011 indicates that 
129

I has intruded the surface layer of Canada 

Basin with a very slow rate (Paper III). 
 

 

Figure 3.6 Vertical distribution of the concentrations of total 127I and 129I, and the 129I/127I ratios in the twelve water 

depth profiles from the central Arctic. 
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Vertical profiles of chemical species of 
129

I and 
127

I. Distribution of iodate and iodide for 

both 
129

I and 
127

I observed in the twelve water depth profiles showed that iodate is the 

predominant specie in all depth profiles for both 
129

I and 
127

I (Figs. 3.7 and 3.8). Similar 

to the distribution pattern of total 
127

I, the concentrations of 
127

IO3
-
 in the PML seawater 

varied from 22.83 μgL
-1

 at station 2 over the Alpha Ridge to 50.70 μg L
-1

 at station 12 in 

the Eurasian Basin, which increased by about 1.2 times (44.16-62.96 μg L
-1

) in the top of 

AWL at 200-250 m depth and kept almost constant to 800 m. While a decline trend of 
127

I
-
 from the surface to the AWL was observed and distinct from the distributions of both 

total 
127

I and 
127

IO3
-
. 

127
I

-
 concentrations of 0.71-11.48 μg L

-1
 in the deep layer were 2-8 

times lower than those (9.62-14.35 μg L
-1

) in surface water. 

Wide concentration ranges of 
129

I species were observed in the PML, (0.82-50.29) ×10
8 

atoms L
-1

 for 
129

IO3
-
 and (2.88-35.38) ×10

8 
atoms L

-1
 for 

129
I

-
, respectively, in which 

27.7%-45.3% of total 
129

I is in the form of iodide. The depth profiles of 
129

IO3
-
 show the 

same trend as total 
129

I. Except the two stations (1 and 2) locating at the Mendeleyev-

Alpha Ridge and the Canada Basin, the concentrations of 
129

IO3
-
 decreased from 25-50 

×10
8 
atoms L

-1
 in the PML to lower than 29 ×10

8 
atoms L

-1
 in the AWL. Same as the total 

129
I,the maximum of 

129
IO3

-
 appears at the upper AWL (250 m) in the Mendeleyev-Alpha 

Ridge (9×10
8 

atoms L
-1

 at station 2) and the Canada Basin (17.8×10
8 

atoms L
-1

 at station 

1). The vertical distribution of 
129

I
-
 concentrations exhibit a decline trend for most of the 

sampling stations, except the station 1 in the Canada Basin where a 
129

I
-
 peak was found at 

244 m.  

The molecular ratios of iodide to iodate for both 
129

I and 
127

I in all PML waters were 

considerably higher than those in the AWL water, suggesting that higher iodide level was 

present in the surface layer. 
129

I
-
/
129

IO3
-
 ratios ranged from 0.05-0.73 were generally 

higher than 
127

I
-
/
127

IO3
-
 ratios (0.02-0.62), but no correlation was found between them (see 

Fig. S-2 in Paper III). This might be attributed to the different sources of 
129

I and 
127

I.  

Transformation among iodine species. Speciation analysis of 
129

I and 
127

I in the central 

Arctic shed lights on the transformation of iodine species in high latitude and deep ocean 

(Paper III). 

1) In the PML of the basin interiors, the extremely weak variation of I
-
/IO3

-
 ratios for 

both 
129

I and 
127

I suggests oxidation of iodide and reduction of iodate are slow 

processes.  



 

45 

 

2) In the PML over the ridges, apparently high I
-
/IO3

-
 ratios for both 

129
I and 

127
I 

demonstrate that reduction of iodate might occur in the central Arctic. This is most 

likely associated with the input of high nutrient and exuberant biological activities, 

but less related to photochemical reactions due to the shading overlying thick sea-

ice.  

3) In the AWL, variation of 
129

I
-
/
129

IO3
-
 from 0.28 in the Eurasian Basin to 0.07 in the 

Canada Basin reveals that iodide is oxidized to iodate in deep-ocean. 

 

Figure 3.7 Vertical distribution of the concentrations of 127I- and 127IO3
-, and the 127I-/127IO3

- ratios in the twelve water 

depth profiles from the central Arctic. 
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Figure 3.8 Vertical distribution of the concentrations of 129I- and 129IO3
-, and the 129I-/129IO3

-ratios in the twelve water 

depth profiles from the central Arctic. 
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3.2.1.2 Greenland coast 

Variation of total 
129

I and 
127

I, as well as their species in the seventeen seawater samples 

collected around the Greenland are shown in Figs. 3.9 and 3.10. To facilitate the 

discussion, samples were classified to four groups as northeast (stations 1-6), southeast 

(stations 7-11), southwest (stations 12-15) and northwest (stations 16 and 17) of 

Greenland waters taking the Denmark Strait and Davis Strait as boundaries for east and 

west coasts, respectively (Fig. 3.11). 

Distribution of total 
129

I and 
127

I in the Greenland coastal waters. The 
127

I 

concentrations showed relatively homogeneous distribution except at a few points in 

northeast coast and southwest coast of the Greenland with slightly lower 
127

I 

concentrations (Fig. 3.9). The concentrations of 
129

I showed an apparently higher level in 

northeast coast with maximum value of 27.0710
8 

atoms L
-1

 than those in the west with 

16.6510
8 
atoms L

-1
. The observed highest 

129
I/

127
I ratio in the northeast was 111.4010

-10
 

compared to that of 66.5110
-10

 in the west coast. Unexpectedly, the southeast Greenland 

coastal water show lower 
129

I level than the southwest Greenland coast. 

The average 
129

I/
127

I ratio of 7110
-10 

in the Greenland coast in 2012 is more than one 

order of magnitude higher than those in North Atlantic Ocean ((1.82-5.45)10
-10

) in 2010 

[50], and about two times higher than that in the Irminger Sea in 2010 [162] and falls 

within the range of the Central Arctic ((6-311)10
-10

) during 2011. In contrast to ten years 

ago (2001-2002), the current Greenland 
129

I level has increased about 30 times compared 

to the simulation data from Orre et al. [163], and is also significantly higher than the 

Irminger Sea and Labrador Sea in 2001 [163, 164], while still 20 times lower than the 

concentrations of 
129

I in the Norwegian coastal current water [158]. At the northwest 

Greenland coast, the 
129

I/
127

I atomic ratio of (7-15)10
-10 

has been observed in seaweed 

sample collected in August 1997. Based on the assumption that the 
129

I/
127

I ratio in 

seaweed is same as that in seawater, it can be calculated that the concentration of 
129

I in 

the northwest Greenland seawater would be in a range of (2-4)10
8 

atoms L
-1

 if taking 

the
127

I concentration of 60 μg L
-1 

[122]. This level has increased to (7.7-18.6)10
8 

atoms 

L
-1

 in the west Greenland coast by 2012. Proximity to the latitude of 72˚N, the 
129

I 

concentration has increased by a factor of 2-9 from 1997 to 2012.  
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Figure 3.9 Variation of the concentrations of total 129I and 127I, as well as the 129I/127I ratios in the Greenland coastal 

seawater. 
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Figure 3.10 Variation of the concentrations of 129I and 127I species, as well as the 129I/127I ratios for iodide and iodate 

in the Greenland coastal seawater. 
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Figure 3.11 Map showing the seventeen sampling sites in the Greenland shelf area, surface water currents and main 
129I sources (Sellafield and La Hague) (Compiled from [165-167]). Purple lines are the currents. Red lines show 

outflow of 129I from Sellafield (UK) and La Hague (France). Red dot lines at the Denmark Strait, the southern tip of 

Greenland and the Davis Strait are used to separate the four Greenland coastal regions, northeast, southest, southwest 

and northwest. Abbreviations are defined as follows: EGC, East Greenland Current; WGC, West Greenland Current; 

NCC, Norwegian Coastal Current; NAC, North Atlantic Current; NAW, North Atlantic Water; EIW, East Icelandic 

Water; NICC, North Icelandic Coastal Current; RAW, Return Atlantic Water.  

The variation of 
129

I in the east coast with high level in the north and low value in the 

south reveals the surface water current flowing southward. East Greenland coastal water 

is mainly derived from the Arctic Ocean water transported by East Greenland Current 
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(EGC) (Fig. 3.11). The EGC carries the 
129

I-rich cold Polar Water (PW) from the Arctic 

Ocean and the temperate returned North Atlantic Current water (RAW), transports 

southward through the Fram Strait and Denmark Strait along the east coast of Greenland, 

and mixes with the North Irminger Current (NIC) water on the west of Irminger Basin 

[166, 168-170]. Much lower level of 
129

I/
127

I ratios at station 1 (the northernmost location) 

and station 7 (proximate to the Irminger Sea) reflects the water exchange process between 

the EGC with Greenland Sea water and the Irminger Sea water, respectively. The highest 
129

I concentration was found at the Denmark Strait (65-71˚ N) and the lowest in the 

southeast. This might be related to current convection, for which the 
129

I-rich intermediate 

Atlantic water layer (AWL) of the Arctic Ocean ascends to the surface layer in the 

Denmark Strait and then descend back to deeper layer. This finding is consistent with the 

previous investigation in the Greenland Sea and Denmark Strait and also supported by the 

model simulation [9, 163]. 

In the west Greenland coast, an apparently decreasing trend of the 
129

I concentrations 

from south to north was observed. This indicates the surface circulation in the West 

Greenland is dominated by the northward West Greenland Current (WGC). The 

significantly low 
129

I concentrations at the stations 16 and 17 might imply that as the 

WGC reaches the Fylla Bank (66˚ N), only a small fraction of WGC passes over the 

Davis Strait and continues northward, while a significant branch of the WGC turns 

westward and joins the Labrador Current on the Canadian side [166]. It was reported that 

the WGC water mass are formed in the western Irminger Basin, where the East Greenland 

Current and the Irminger Current meet and flow southward side by side [171]. This 

implies that 
129

I in the WGC should be a mixing consequence of the 
129

I-rich EGC with 

the 
129

I-poor Irminger water. However, a higher level of 
129

I in the southwest was 

observed compared to those in the southeast. This discrepancy might be explained that 

either 1) the 
129

I-rich Denmark Strait overflow water [164] upwellings in the southwest 

Greenland coast and thus contribute high 
129

I; or that 2) the EGC might be located beneath 

the NIC in the southeast Greenland shelf (< 500 m), and rise up to the surface once 

flowing into the west Greenland shelf. A reported depth profile of 
129

I (0-3000 m depth) 

in the Labrador Sea margin (station 23 in the reference [164]) didn’t show any upwelling 

from the 
129

I-rich Denmark Strait overflow water in deep layer (2000-3000 m). The 

second conjecture still needs evidence from 
129

I depth profile data or other hydrological 

information on the shelf area, but there is no available information so far.  

Distribution of 
129

I and 
127

I species. Iodate was observed as the predominant specie for 

both 
129

I and 
127

I in all the Greenland waters. The concentrations of 
127

IO3
-
 varied from 
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26.45 μg L
-1

 at the east Greenland coast close to the latitude of 72˚ N (station 2) to 53.36 

μg L
-1

 at downstream of the Denmark Strait (station 7), accounting for more than 80% of 

total 
127

I. The coast water on the northeast Greenland contained lower 
127

IO3
-
 

concentrations than southeast and west of Greenland, and the highest 
127

IO3
-
 occurred at 

southeast Greenland (Fig. 3.10). The concentrations of 
127

I
-
 varied from 4.32 μg L

-1
 at 

station 1 (73˚N, 13 ˚W) to 11.18 μg L
-1

 at the northeast Greenland proximate to the shore 

(station 4) (Fig. 3.10). 

The concentrations of 
129

IO3
-
 varied from 4.4910

8
 atoms L

-1
 at station 2 on the northeast 

Greenland to 17.0410
8
 atoms L

-1
 at station 8 at the downstream of the Denmark Strait, 

accounting for 29-95% of total 
129

I. The 
129

I
-
 concentrations varied from 1.5110

8
 atoms 

L
-1

 in the northwest Greenland water (Baffin Bay) to 9.0610
8
 atoms L

-1
 at station 4 in the 

Denmark Strait, which resulted in high 
129

I
-
/
127

I
-
 ratios ((58.18-271.73)10

-10
). 

129
I

-
 

showed a decline trend from the east Greenland to the west. The 
129

I/
127

I atomic ratios for 

iodide were much higher than those for iodate, especially at stations 1 and 2.  

 

Figure 3.12 Distributions on the molecular ratios of iodide to iodate for 129I and 127I (parenthesis) in Greenland 

coastal surface water. 
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The I
-
/IO3

-
 molecular ratios north of the Denmark Strait (stations 1-6) were higher than 

those in the other locations (stations 7-17) by 1.6 for 
127

I and 2 times for 
129

I , respectively 

(Fig. 3.12). The I
-
/IO3

-
 ratios for 

127
I ranged from 0.10 on the southeast Greenland to 0.30 

in the east of Denmark Strait. The I
-
/IO3

-
 ratios for 

129
I were below 0.73 in most of waters, 

while much higher ratios (0.95-1.64) were observed at the stations 1, 2 and 9. The lowest 
129

I
-
/
129

IO3
-
 ratio of 0.24 was found at the southeast Greenland coast and the highest ratio 

value of 1.64 at station 2 between Jan Mayen and East Greenland, the only location where 
129

I
-
 was the major specie of 

129
I. The 

129
I

-
/
129

IO3
-
 ratios were much higher than the 

127
I

-

/
127

IO3
-
 ratios by a factor of approximately 2.5 for most of the sampling locations. At the 

stations 1, 2 and 9, the 
129

I
-
/
129

IO3
-
 ratios were up to 7.77 times higher than the 

127
I

-
/
127

IO3
-
 

ratios. Considering all the samples, there was no significant correlation between 
127

I
-

/
127

IO3
-
 and 

129
I

-
/
129

IO3
-
. However, if the three abnormally high I

-
/IO3

-
 ratios were 

excluded (stations 1, 2 and 9), 
129

I
-
/
129

IO3
-
 was significantly positively correlated with 

127
I

-

/
127

IO3
-
 with a correlation efficient of 0.9 (Fig. 3.13). 

Distribution of dissolved inorganic iodine species has been reported globally. The 

variation of iodide to iodate ratios (
127

I
-
/
127

IO3
-
) of surface waters exhibits a maximum in 

the tropical and subtropical area, and a decline trend towards the Polar Regions ([50] and 

references therein). Compared to the southeast and west Greenland with a mean 
127

I
-

/
127

IO3
-
 ratios of 0.14, the northeast Greenland water can be characterized by low 

127
IO3

-
 

and high 
127

I
-
 concentrations with an average 

127
I

-
/
127

IO3
-
 ratio of 0.23. As stated in the 

section 3.2.1.1 and in Paper III, the 
127

I
-
/
127

IO3
-
 ratios in the central Arctic varied from 

0.20 to 0.57 in the sub-surface waters (10-25 m), which was close to those in the northeast 

Greenland waters but apparently higher than the other Greenland waters. The elevated 
127

I
-
 concentrations in the surface water of northeast Greenland likely imply the influence 

of the Polar water with high 
127

I
-
/
127

IO3
-
 ratios. A value of 0.09 for 

127
I

-
/
127

IO3
-
 ratio has 

been reported by Waite et al. (2006) at an adjacent area (northwest of Iceland) [172], 

which was 2.5-fold lower than the value in the northeast Greenland but close to those in 

the southeast and west of Greenland waters. Therefore, 
127

I species clearly show that the 

northeast Greenland coastal water mainly origins from the polar water, while the water in 

southeast and west of the Greenland is the mixed water masses between the polar water 

and the northern Atlantic water.  

On the pathway that 
129

I was transported from the source points to the Greenland sea, Hou 

et al. (2007) and He et al. (2013) reported 
129

I
-
/
129

IO3
-
 ratios of 0.10-0.50 and 0.15-2.01 for 

127
I and 

129
I respectively in the North Sea, northeast Atlantic Ocean [17, 50]. The I

-
/IO3

-
 

ratios observed in the Greenland coast, 0.10-0.30 for 
127

I and 0.24-1.64 for 
129

I, fell within 
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the range. However, distinct from 
127

I species distribution, the 
129

I
-
/
129

IO3
-
 ratios of 0.95-

1.64 at stations 1, 2 and 9 in the northeast Greenland were markedly higher than the other 

locations with ratio of 0.24-0.73. This might be attributed to the coastal water with high 
129

I
-
/
129

IO3
-
 ratios flowing away from the shore. In consideration of iodine species in the 

source water, i.e. the Arctic water (see section 3.2.1.1 and Paper III) and the northern 

Atlantic Ocean [50], no 
129

I
-
/
129

IO3
-
 ratios exceed 0.8. This implies the significant fraction 

of iodide at these stations was produced locally, likely related to contribution of the fresh 

water from the melting ice during summer time.  

The speciation of 
129

I and 
127

I off the Greenland seems to support our conjecture that the 

EGC transports beneath the NIC in the southeast Greenland shelf, and ascends to the 

surface as the WGC in the southwest Greenland. The low I
-
/IO3

-
 ratios for both 

129
I and 

127
I at the stations 7, 10 and 11 reflect the surface water originates from the Irminger Sea, 

while slightly higher I
-
/IO3

-
 ratios for both 

129
I and 

127
I at stations 12-15 reflect the of the 

underneath EGC upwelling to the surface layer on the shelf of the southwest Greenland. 

This speculation is supported by model simulation [173], which has predicted upwelling 

occurs west of the shelf banks, caused by wind and tidal motions. As mentioned above, 

further depth profiles of 
129

I and other hydrological data is favorable for further 

investigation of the transportation of water current off Greenland.  

 

Figure 3.13 Relationship of 127I-/127IO3
- with 127I-/127IO3

- in the Greenland coast current. The left was plotted for the 

sewater samples from all the stations, and the right one was plotted without samples from stations 1, 2 and 9.  

Transfer factor of 
129

I and its species. Transit time and transfer factor are used to 

evaluate the transportation of 
129

I from its source points to a given sampling location 

[122]. Amount of 
129

I discharged from Sellafield and La Hague to marine environment 
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has been well documented and used for calculation of the transfer factor from these two 

point sources to Greenland coast.  

If assuming: 

1) The I
-
/IO3

-
 ratio is 0.60 in the original marine discharge waste based on speciation 

analysis of 
129

I in the English Channel [17] and this ratio didn’t change 

significantly with time. 

2) Organic iodine is not considered due to its low content in open sea.  

3) The transit time has been estimated to be 7-10 years and 9-14 years using 
137

Cs, 
99

Tc and 
129

I in time series seawater and seaweed from La Hague to east and west 

of Greenland, respectively and two years delay from Sellafield to the Greenland 

coast [122, 165, 166, 174].  

With the 
129

I amount discharged from the nuclear reprocessing plants and transit time of 

water from source point to the sampling sites, transfer factor can be calculated as a 

quotient between observed concentration in water (ng·m
-3

) at the given sampling site and 

an annual discharge rate (ton·yr
-1

) t years earlier [122]. The results are listed in Table 3.3. 

The transfer factors varies from 0.63 to 1.45 ng m
-3

 (ton yr
-1

)
-1

, which agrees well with 1.2 

ng m
-3

 (ton yr
-1

)
-1

 calculated by 
129

I in seaweed in 1997 from reprocessing plant to the 

northwest Greenland [122]. The transfer factor on the northwest Greenland coast (0.63 

ng·m
-3

 (ton·yr
-1

)
-1

 is lower by a factor of 2 than that value reported by Hou et al. (2000). 

This might be explained that 1) The 
129

I concentrations in seawater might be 

overestimated about 20% due to the overestimation of 
127

I concentration of 60 μg L
-1

 in 

seawater (51 μg L
-1

 measured in this work), and that 2) annual variation of water current 

may also contribute the uncertainty.  

It is noticeable that transfer factors of iodide are slightly lower than total 
129

I, while iodate 

are significantly higher than total 
129

I and iodide. This probably implies that iodide was 

oxidized to iodate during transportation. It has been suggested that oxidation of iodide in 

open sea/ocean is a very tardy process. On time scale of years, the oxidation of iodide to 

iodate seems visible, which was also reported in previous studies [50].   
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Table 3.3 The transfer factor of 129I and its species. 

Greenland 
Transit time, years Discharge amount, kg 

Transfer factor of 129I, ng·m-3 (ton·yr-1)-1 

Total iodine Iodide Iodate 

La Hague Sellafield Total 129I 129Iodide 129Iodate Aver SD Aver SD Aver SD 

Northeast 7 9 303.93 113.97 189.96 1.45 0.34 1.41 0.26 1.92 0.79 

Southeast 8 10 326.65 122.50 204.16 0.86 0.42 0.67 0.45 1.62 0.79 

Northwest 12 14 337.29 126.48 210.81 0.63 0.20 0.41 0.22 1.18 0.50 

Southwest 10 12 276.36 103.64 172.73 1.23 0.18 0.84 0.07 2.28 0.43 
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3.2.1.3 Danish coast 

Total iodine in the Danish coastal seawater. The 
127

I concentrations in the Danish coastal 

seawater samples varied from 15.05 μg L
-1

 at Bornholm to 57.26 μg L
-1

 at Agger Tange, 

which was positively correlated with the water salinity ranging from 8.4 to 37.1 psu 

(Table 3.4). A descending trend of the 
129

I concentrations were observed from 34.94 ×10
10 

atoms L
-1

 at Agger Tange to 0.55 ×10
10 

atoms L
-1

 at Bornholm, and the 
129

I/
127

I ratios 

decreased from 128.72 ×10
-8 

to 7.74×10
-8

. About 6000 kg 
129

I has been discharged from 

La Hague and Sellafield to the English Channel and the Irish Sea, respectively, which was 

carried by water current and transported northward along the western coast of European 

continent. The decrease of the 
129

I concentrations in the Danish coastal areas apprently 

reflects the source-dependent 
129

I signal from the North Sea to the Baltic Sea across the 

Skagerrak and Kattegat and via the Great belt and the Sound (Fig. 2.1b). However, lower 

concentrations of 
129

I and 
127

I were found at Hvid Sande than those at the downstream 

location Agger Tange. It is suggested that the collected seawater in Hvid Sande is the 

outflow water from the Ringkøbing Fjord, where water exchange might frequently happen 

between the North Sea and the fjord. This conjecture was confirmed by the much lower 

salinity (14.1‰) than that (37.1 ‰) found at Agger Tange.  

It has been reported that the 
129

I concentrations in seawaters collected in 2000 were 

observed to be 19.9 ×10
10 

atoms L
-1

 at Agger Tange, 3.11 ×10
10 

atoms L
-1

 at Klint and 

0.28 ×10
10 

atoms L
-1

 at Bornholm [175]. Our results suggest that the 
129

I level in the 

Danish coasts in 2014 has an overall increase by a factor of 1.5-2.0 compared to those 14 

years ago. This temporal variation in 
129

I concentrations might be ascribed to 1) the 

magnitude of water mixing between terrestrial runoff water and the water in the North Sea 

and Baltic Sea was different for the two sampling periods; 2) the amount of 
129

I 

discharged from the NRPs has increased. However, the former explanation is unlikely due 

to the overall elevation in 
129

I concentrations for the three sampling sites. Considering the 

transit time of 2 years from La Hague and 4 years from Sellafield to Danish coast [122], 

the 
129

I concentrations in the Danish coastal seawater in 2000 reflect the amount of 
129

I 

discharged in 1998, when the two nuclear reprocessing plants (NRPs) discharged about 

360 kg of 
129

I to the marine. Therefore, the increased 
129

I concentrations might indicate 

that the amount of 
129

I discharged from the major European NRPs has likely further 

enhanced in 2012 compared to 1998. However, it should be mentioned that 
129

I as well as 

other radionuclides are not continuously and uniformly discharged from the reprocessing 

plants, and the water samples collected at a time point might only reflect the discharges at 
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a specific period from the reprocessing plant, not a whole year. The high 
129

I level 

observed in the samples collected in 2014 might not represent the 
129

I discharge in whole 

year of 2012 from La Hague and 2010 from Sellafield.  

Iodine speciation in the Danish coastal seawater. Variations of iodide and iodate for 

both of 
129

I and 
127

I showed similar trends as total iodine (Fig. 3.14). The concentrations 

of 
127

I species were found to be 14.26-42.10 μg L
-1

 for 
127

I
-
 and 2.12-15.89 μg L

-1
 for 

127
IO3

-
. The 

129
I

-
 concentrations varied from 0.55×10

10
 atoms L

-1
 to 30.29×10

10
 atoms L

-1
, 

and 
129

IO3
- 
concentrations from 0.04×10

10
 atoms L

-1
 to 6.23×10

10
 atoms L

-1
. The 

129
I/

127
I 

ratios for iodide in seawater from 8.10×10
-8

 to 151.80×10
-8

 were higher than those for 

iodate of 3.84-82.73×10
-8 

(Table 3.4). It is apparent that in all the analyzed seawater 

samples, iodide was the predominant form, and gave rise to the ratios of iodide to iodate 

of 2.1-10.9 for 
127

I and 3.0-22.1 for 
129

I (Fig. 3.15). The I
-
/IO3

-
 ratios for 

129
I were about 

1.7 greater than those for 
127

I. Such iodine speciation pattern is well consistent with those 

found in the North Sea, where the I
-
/IO3

-
 ratios increase from the open sea to the coastal 

areas, and the I
-
/IO3

-
 ratios for 

129
I were higher than those for 

127
I [17]. The more reductive 

waters as characterized by the higher I
-
/IO3

-
 ratios were found at Hvid Sande, Roskilde 

Fjord and Bornholm with I
-
/IO3

-
 ratios of 6.7-10.9 for 

127
I and 14.2-22.1 for 

129
I, 

compared to the other three samples sites with lower  I
-
/IO3

-
 ratios less than 3.6 for 

127
I

-

/
127

IO3
-
 and 4.9 for 

129
I
-
/
129

IO3
-
. These results show that the seawater in the Baltic Sea and 

the fjord areas is more iodine-reductive than the Skagerrak, Kattegat and the North Sea, as 

observed in the earlier studies [17, 51, 52]. In addition, the different ratios of I
-
/IO3

-
 for 

129
I and 

127
I also reflected that the equilibrium between 

129
I and 

127
I has not been reached.  

As stated in section 2.1, the formation of iodide results from many biological mediated 

and abiotic processes, such as biological activities of algae and bacteria, decomposition of 

organic matter associated iodine, chemical reactions with reductants in anoxic waters, etc. 

In the six Danish coastal locations, the highest I
-
/IO3

-
 for both iodine isotopes was 

observed at the Roskilde Fjord, and similar high ratio at Hvid Sande (Ringkøbing Fjord) 

(Fig. 3.15), which is likely dominated by the degradation of iodine-containing organic 

matter (organic molecular expressed as CHONI), such as debris of dead organisms, by a 

reaction in the following equation [86]. 

CHONI + SO4
2-

  CH4 + CO + H2S + NOx + 2I
-                        

Equation (3) 
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The two fjords are relatively shallow with depth of 2-5 m in most places, which forms a 

favorable condition for reduction of iodate at the water-sediment interface to release 

iodide as a predominant proportion in these waters.  

At the Bornholm coast where the surface water originates from the Baltic Sea mainly 

constituting of fresh water runoff and precipitation, the higher I
-
/IO3

-
 ratio, might be 

dominated by abiotic chemical reduction of iodide due to lack of oxygen in this area [176], 

and subordinately related to the decomposition of organic matter due to the depth of the 

Baltic Sea (55 m in average).  

Biological activity of macroalgae, phytoplankton and bacteria [78, 177, 178] might be the 

major reason for the conversion of iodate to iodide in the other three locations (Agger 

Tange, Nyborg and Klint) with I
-
/IO3

-
 ratio of 2.1-3.2 for 

127
I and 3.0-4.9 for 

129
I.  

 

Figure 3.14 Concentrations of iodine isotopes (127I and 129I) and their species (iodide and iodate) in the seawater 

samples from the Danish coasts in 2014. The samples are ranked according to the water current from the North Sea 

to the Baltic Sea. 
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Figure 3.15 The atomic ratios of iodide and iodate for 127I (blue) and 129I (red) in seawater samples from six Danish 

coastal locations. 
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Table 3.4 Analytical results of 127I and 129I and the species in seawater and seaweed from Danish coasts during 14-27th October, 2014 a. 

Location Salinity

, 

psu 

127I concentration, μg L-1 129I concentration, ×1010 atoms L-1 129I/127I atomic ratio, ×10-8 

Seawater Total iodine Iodide Iodate Total iodine Iodide Iodate Total iodine Iodide Iodate 

Hvide Sande 
14.1 

27.13 ± 

0.53 

27.18 ± 

0.47 3.06 ± 0.06 9.81 ± 0.19 9.65 ± 0.18 

0.67 ± 

0.01 76.29 ± 2.07 74.93 ± 1.91 

45.91 ± 

1.27 

Agger Tange 
37.1 

57.26 ± 

1.42 

42.10 ± 

1.02 

15.89 ± 

0.32 

34.94 ± 

0.65 

30.29 ± 

0.52 

6.23 ± 

0.12 

128.72 ± 

4.00 

151.80 ± 

4.50 

82.73 ± 

2.30 

Nyborg 
18.3 

31.54 ± 

0.53 

25.66 ± 

0.63 8.15 ± 0.22 4.08 ± 0.07 3.35 ± 0.06 

0.91 ± 

0.02 27.30 ± 0.68 27.54 ± 0.83 

23.58 ± 

0.76 

Klint 
22.5 

30.65 ± 

0.57 

20.06 ± 

0.45 9.69 ± 0.19 4.59 ± 0.10 3.58 ± 0.07 

1.21 ± 

0.03 31.60 ± 0.92 37.59 ± 1.08 

26.37 ± 

0.76 

Roskilde 

Fjord 
15.2 

37.51 ± 

0.68 

36.36 ± 

0.71 3.35 ± 0.15 2.14 ± 0.06 2.05 ± 0.04 

0.09 ± 

0.00 12.02 ± 0.40 11.89 ± 0.31 5.85 ± 0.29 

Bornholm 
8.4 

15.05 ± 

0.26 

14.26 ± 

0.25 2.12 ± 0.10 0.55 ± 0.01 0.55 ± 0.01 

0.04 ± 

0.00 7.74 ± 0.23 8.10 ± 0.22 3.84 ± 0.21 

a. The analytical uncertainties are given in 1σ. 
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3.2.1.4 Offshore Fukushima 

The Fukushima nuclear accident happened on 11
th

 March 2011 and released a large 

amount of radioactive pollutants to the environment, especially to the local regions. In 

order to estimate how much 
129

I has been released and evaluate the influence of 
129

I to the 

adjacent environment, four water depth profiles from the offshore Fukushima were 

analyzed for measurement of total 
129

I and its species (Paper IV).  

Distribution and source of 
129

I in the seawater offshore Fukushima. Depth profiles of 
129

I concentrations in all the sampling locations showed a decline trend from the depth of 

10 m to 400 m (see Figs. 1 and 2 in Paper IV). The highest 
129

I concentration was 

observed to be 62 × 10
7 

atoms L
-1

 at station 31 (about 40 km away from the FDNPP), 

which is about 4 times greater than those ((14-16) × 10
7 

atoms L
-1

) in the other three 

locations (11, 14 and 22 at the depth of 20 m). Low 
129

I concentrations at the depth of 400 

m were observed to be (0.77-1.9) × 10
7 
atoms L

-1
 at the stations 14 and 11, about 260 km 

and 530 km away from the FDNPP, respectively. The 
127

I concentrations in all the 

seawater samples are quite constant within a range of 54-60 μg L
-1

. Similar to the 

distribution of the 
129

I concentrations, the 
129

I/
127

I ratios varied from 22 × 10
-10

 at the 

depth of 10 m at the station 31 to 0.26 × 10
-10

 at the depth of 400 m format the station 14. 

The measured 
129

I concentrations as high as 6×10
8 

atoms L
-1

 in the seawater offshore 

Fukushima are much higher than the global fallout level of about 2 × 10
7 
atoms L

-1
 in the 

surface water from the Japan Sea and the Pacific Ocean before the Fukushima accident 

[179, 180]. However, the 
129

I level in the offshore Fukushima seawater is 1-4 orders of 

magnitude lower than those observed in the other locations of this study (the central 

Arctic, the Greenland coast and the Danish coast) (Table 3.5), the latter of which have 

received a large amount of 
129

I released from Sellafield and La Hague. This implies the 

Fukushima-derived 
129

I only has a significant influence to the local environment and is 

almost negligible if compared to the European marine environment and the Arctic Ocean.  

Table 3.5 129I concentrations and 129I/127I ratios in the central Arctic, Greenland and Denmark coastal areas, and 

offshore Fukushima. 

Locations Depth, m Sampling date 129I, ×108 atoms L-1 129I/127I ratios, × 10-10 

Central Arctic 10-50 Aug-Oct, 2011 1.4-72 6-311 

 199-800 Aug-Oct, 2011 2.9-29.0 10.6-106.6 

Greenland coast 0 Aug-Sep, 2012 17-27 32-110 

Denmark coast 0 Oct, 2014 55-3500 774-12872 

Offshore Fukushima 10-20 June, 2011 1.4-6.2 5.5-22.0 

 90-400 June, 2011 0.08-1.07 0.26-4.15 
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In combination with the well-documented 
137

Cs radioactivity in the seawater samples and 

atmospheric aerosol samples, the sources of 
129

I in the surface water from offshore 

Fukushima are suggested to be mainly from the direct liquid discharges from the 

Fukushima 1FDNPP to the sea, as well as the atmospheric deposition. Both the 

Fukushima-derived 
129

I and global fallout contributed 
129

I to the subsurface water offshore 

Fukushima.  

Inorganic speciation of 
129

I and 
127

I in seawater offshore Fukushima. The 

investigations on species of 
129

I and 
127

I showed a distinct distribution pattern between 

iodide and iodate (See Fig. 3 in Paper IV). For all the analyzed seawater, iodate is the 

predominant species of 
127

I with iodide/iodate ratios of 0.07-0.27, which is in good 

agreement in the surface seawater in open sea, such as the seawater from Greenland coast 

(0.10-0.25) and the central Arctic (0.22-0.28). In contrast, 
129

I is predominantly present in 

the form of iodide with 
129

I
-
/
129

IO3
-
 ratios of 2.9-8.7. The decrease of 

129
I

-
/
129

IO3
-
 ratios at 

station 31 from 8.7 at the depth of 10 m to 2.3 at the depth of 120 m might indicate 

different water mixing processes in the investigated area.  

The significant proportion of 
129

I
-
 in the seawater pointed to a possibility that radioactive 

iodine released by the Fukushima accident was in the form of iodide. This finding is not 

only applied to distinguish the Fukushima-derived 
129

I from other 
129

I sources, but also 

essential for designing effective ways to decontaminate the radioactive materials from the 

environment and to prevent further resuspension of the contaminated materials. 

Amount of 
129

I discharged to the sea from the Fukushima nuclear accident. Based on 

the constant 
131

I/
137

Cs ratio (17.6) in the studied seawater and 
129

I/
131

I atomic ratios (26.6 

± 7.5) from the 1FDNPP, as well as the deposition proportion of Fukushima-released 
137

Cs in the Ocean and land, 
129

I released from the Fukushima accident was estimated to 

1.2 kg (Paper IV). This released amount of 
129

I has remarkable contribution to the Japan 

Sea and further to the Pacific Ocean.  

3.2.2 Speciation of 
129

I and 
127

I in aerosols 

Level and source of 
129

I and 
127

I in aerosols from Risø, Denmark and Tsukuba, Japan. 

Two time series of aerosol samples from Risø, Denmark and Tsukuba, Japan during 

Fukushima accident, respectively, were analyzed for total 
129

I and 
127

I, as well as their 

species (Paper V and VI). The 
129

I/
127

I ratios in the aerosols from Denmark in the order of 

10
-7

 were one order of magnitude lower than those from Japan in the order of 10
-6

 (Table 

3.6) during March-May 2011.  
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Table 3.6 Concentrations of 127I and 129I and 129I/127I ratios in the aerosols from Risø, Denmark and Tsukuba, Japan. 

Location Sampling period 127I, ng m-3 129I, ×105 atoms m-3 129I/127I ratios, × 10-8 

Risø, Denmark 31 March-2 May, 2011 1.0-2.5 11-73 17.8-85.7 

 8-15 December, 2014 2.4 97 86.8 

Tsukuba, Japan 15-22 March, 2011 3.7-28.4 2124-5208  175-827 

Considering the meteorological parameters (wind direction, wind speed and precipitation), 

the concentrations of 
129

I in the aerosols from Risø were closely related to the wind 

direction. The westerly wind brought higher 
129

I concentrations into the aerosols than the 

easterly wind. Back trajectories analysis during our sampling period indicate that the high 
129

I concentrations in the aerosol originated from the secondary emission of the heavily 

contaminated seawater in the North Sea that has received a large amount of 
129

I 

discharged from Sellafield and La Hague reprocessing plants since 1960s (see Figs. 2 and 

3 in Paper VI). 

The remarkably elevated 
129

I level in the Tsukuba aerosols is attributed to the atmospheric 

release of 
129

I from the Fukushima nuclear accident. Back trajectories analysis clearly 

shows that the north wind is prevailing during 15-23 March, 2011 (Fig. 3.16). The 

sampling site, Tsukuba, locating about 170 km southwest of the Fukushima nuclear power 

plant, was just right at the downwind area of the FDNPP.  

 

Figure 3.16 Back trajectories at Tsukuba, Japan (red star) during 15-23 March 2011, clearly showing the 129I was 

transported from the upwind Fukushima Dai-ichi nuclear reprossing plant (radioactivity lable) to the sampling 

location. 
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Contribution of the Fukushima-derived 
129

I to the European atmosphere. The release of 

radioactive substances from the Fukushima nuclear accident has elevated the 
129

I level in 

the local air by two orders of magnitude compared to the pre-accident 
129

I level [181]. In 

order to clarify the influence of the Fukushima accident on the 
129

I level in Europe, time 

series of the 
131

I radioactivity measured in our aerosol samples from Denmark was used to 

reconstruct the contribution of Fukushima-derived 
129

I [182]. The mean 
129

I/
131

I atomic 

ratio in the aerosols derived from Fukushima accident was estimated to be 16.0 ± 2.2 

(Paper V). Based on these data and assuming the 
129

I/
131

I ratios did not change during 

long-distance transportation, the concentrations of Fukushima-derived 
129

I in aerosol in 

the European atmosphere was reconstructed with a highest concentration of 0.63×10
5
 

atoms m
-3

 during 30-31 March 2011 (Fig. 3.17). Compared to the measured 

concentrations of 
129

I (11-97 ×10
5
 atoms m

-3
) in the aerosols from Denmark shortly after 

the Fukushima nuclear accident, the amount of Fukushima-derived 
129

I accounts for less 

than 6% of the total 
129

I in Denmark. It is observed that the Fukushima-derived 
131

I 

concentrations declined rapidly, which resulted in a slightly decreased 
129

I concentration 

in the European atmosphere (Fig. 3.17). Although the Fukushima accident released a 

significant amount of 
129

I to the local atmosphere, its contribution to European 

atmosphere is almost negligible and considerably overwhelming by the NRPs-derived 
129

I. 

 

Figure 3.17 131I radioactivities (red solid line), 129I concentrations (blue solid line) in the aerosols from Risø, 

Denmark after the Fukushima accident [182]. The Fukushima-derived 129I concentrations (blue dot line) are 

reconstructed based on the 131I radioactivities and the 129I/131I atomic ratio of 16.0 ± 2.2 deduced from the 

Fukushima-sourced aerosol samples [183]. 
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Species of 
129

I and 
127

I in aerosols. Interestingly, the distribution patterns of iodine 

species for 
129

I in the aerosols collected from the two locations were obviously different 

(Fig. 3.18 and Fig. 3.19). In the aerosols from Risø, Denmark, water-soluble iodine was 

the least abundant species accounting for 6-30%. Whereas, 42-60% of 
129

I was water-

soluble iodine in the aerosols from Tsukuba, Japan. The concentrations of the NaOH 

soluble iodine (NSI) in the aerosols from both the locations were essentially similar 

counting for 28-42% in Denmark and 32-44% in Japan. A large difference in the 

percentage of residual insoluble iodine (RII) was observed for two sets of aerosols. 

This discrepancy in distribution of 
129

I species in the aerosols might be attributed to the 

sources and initial species of 
129

I. 
129

I in the aerosols from Denmark mainly originates 

from atmospheric release of the European nuclear reprocessing plants and re-emission 

from the heavily contaminated seawater in the North Sea and Kattegat (Paper VI). For the 

aerosols from Japan, atmospheric release from the FDNPP accident was the major source 

of 
129

I (Paper V). Since the aerosols in Tsukuba were collected shortly after the accident 

and transported a short distance (about 170 km from the FDNPP), the association 

processes of the Fukushima-released 
129

I with atmospheric particles, especially in the 

form of water-soluble iodine specie, were different from those in Denmark. However, 

there is only scarce knowledge available on the initial iodine species in aerosols. Iodide is 

found the predominant 
129

I in the seawater offshore Fukushima, which likely implies the 

Fukushima released 
129

I might be mainly in the form of inorganic iodide (Paper IV). The 

initial 
129

I species in the aerosols from Risø, Denmark might be mainly in the form of 

molecular iodine or iodocarbons, which is a consequence of biological activities, 

especially the iodine metabolism of brown seaweed in the coastal seawater [184].  
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Figure 3.18 Distribution of iodine species (iodide, iodate, NSI for NaOH soluble iodine and RII for residual insoluble 

iodine) for 129I in aerosol samples from Risø, Denmark. 

 

Figure 3.19 Distribution of iodine species (iodide, iodate, NSI for NaOH soluble iodine and RII for residual insoluble 

iodine) for 129I in aerosol samples from Tsukuba, Japan. 
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Iodide is the predominant specie of water-soluble iodine in all the studied aerosol samples. 

Only less than 3% of total iodine exists as iodate and water-soluble organic iodine, which 

were observed in a few Danish aerosol samples. This is consistent with the 
129

I species in 

the four aerosol samples collected soon after the Chernobyl accident at Oak Ridge, 

Tennessee, and similar to those for natural 
127

I in the aerosol [185, 186]. However, this is 

contradictory with those observed in those marine aerosols that enriched in the form of 

iodate [187]. These results indicate that the dissolved inorganic iodine species might be 

closely related to the formation processes of aerosols. It is worthy to note that iodide can 

be found in all the aerosol samples regardless of the geographical locations. Early 

modelling work predicted that aerosol iodate may be a by-product of the production of 

higher iodine oxides and is believed to be the only stable iodine species, while iodide 

becomes negligible due to transformation into gaseous iodine [188, 189]. This work 

suggested that formation of iodide in aerosol might be related to the reductant in the air, 

such as SO3 and disulfites (Paper VI).  

NSI in the aerosols is likely organic bound iodine. It has been reported that a significant 

proportion of aerosol organic matter is humic-like substances (HULIS) [190]. It was 

observed that the alkaline extractable HULIS accounts for 42-74% of total HULIS in 

aerosols [191]. Due to the readily association of iodine with HULIS, as observed in soil 

and sediment [126], the large fraction of NSI is believed to be mainly HULIS bound 

iodine (Paper II and VI). RII might be associated with inorganic components such as 

metal oxides and minerals. This might explain the large difference in the RII fractions 

between the aerosols from Denmark and from Japan. 
129

I in the European environment 

has participated in the cycling in various compartments, such as land, terrestrial rivers, 

and thus incorporated into the oxide and minerals in soil. Suspension of fine soil particles 

might contribute the insoluble iodine into atmospheric aerosols. For the aerosol from 

Japan, 
129

I released from the Fukushima accident was shortly associated to aerosol, 

therefore might be not effectively bound with minerals.   
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3.2.3 Speciation of 
129

I and 
127

I in seaweed 

To explore metabolic activity of iodine in seaweed, species of iodine isotopes in the 

seaweed and ambient seawater were simultaneously investigated, including iodide and 

iodate in seawater and water leachable iodine (iodide and iodate) and non-leachable 

residual iodine in seaweed samples (Table 3.4 and 3.7).  

Total iodine in seaweed. Despite the same genus of Fucus (brown seaweed), iodine 

concentrations varied significantly depending on the iodine concentrations in seawater as 

well as species of Fucus (Table 3.7 and Fig. 3.20). In Fucus vesiculosus, the iodine 

concentrations ranged from 47.22 μg g
-1

 to 167.95 μg g
-1

 in fresh seaweed and 192.20-

549.46 μg g
-1

 in dry mass [122], which is nearly one order of magnitude lower than that in 

Laminaria digitata (up to 1% of dry mass) [192]. The 
129

I concentrations in the seaweed 

samples collected in the Danish coastal seawater were measured to be (2.19-108.61)10
10

 

atoms g
-1

 in fresh seaweed, corresponding to (8.90-355.32)10
10

 atoms g
-1

 in dry mass. 

The 
129

I/
127

I ratios in Fucus were observed in a range of (9.77-133.92)×10
-8 

(Table 3.7), 

which is similar to the 
129

I/
127

I ratios in seawater, proving Fucus an good bio-indicator to 

trace radioactive 
129

I in the environment. Similar as seawater samples (section 3.2.1.3), 

the measured 
129

I/
127

I ratios in seaweed samples collected in 2014 increased by a factor of 

1.1-2.0 compared to those collected during 1998 and 1999 with 
129

I/
127

I ratios of 4.93 ×10
-

8
, 9.12×10

-8
 and 37.5×10

-8
 in seaweed collected at Bornholm, Roskilde Fjord and Klint, 

respectively [122].  

The results of 
129

I and 
127

I in the seaweed and seawater (Fig. 3.21) show that the 
129

I/
127

I 

ratios in seaweed are systematically higher than those in seawater by a factor of 1.1-1.3 

except for Hvid Sande, where the largest discrepancy by a factor of 1.8 was observed in 

the 
129

I/
127

I ratios for seaweed and seawater. Such a difference on the 
129

I/
127

I ratios 

between seaweed and seawater at all the sampling sites can be attributed to their different 

response rates. 
129

I/
127

I ratio in seawater reflects a transient level of 
129

I in the sampling 

location at the time of sampling, while 
129

I/
127

I ratio in seaweed is an integrated level of 
129

I in a period of seaweed growth related to the metabolic cycle of seaweed. The lower 
129

I level in seawater likely implies a decrease of 
129

I released from La Hague and 

Sellafield when sampling compared to the previous period. As discussed in section 3.2.1.3, 

the large difference of 
129

I/
127

I ratios in seawater between Hvide Sande and Agger Tang is 

a consequence of fast water exchange between the North Sea and the Ringkøbing Fjord. 

However, no significant difference was observed in  the 
129

I/
127

I ratios for seaweed from 

the two locations. Seaweed, therefore, is more representative to monitor long-term 
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variation of pollutants than seawater. Furthermore, it is promising to explore the 

metabolism of iodine in seaweed in the natural environment utilizing the discrepancy of 
129

I/
127

I ratios between seawater and seaweed. 

Iodine speciation in seaweed. Chemical species of iodine in seaweed were separated to 

water leachable iodine including iodide, iodate and water-soluble organic iodine (WSOI) 

and non-water-leachable residual iodine (RI). Because iodide is the only detectable water-

soluble iodine specie in seaweed investigated, only iodide and RI were presented in Table 

3.7. The concentrations of 
127

I species were found to be 5.11-17.48 μg g
-1

 for iodide and 

43.84-164.65 μg g
-1

 for RI. 
129

I was predominantly in the RI fraction with the 

concentrations of 1.96-112.6910
10

 atoms g
-1

. The 
129

I/
127

I ratios for iodide and RI in 

seaweed were not statistically distinct from the total 
129

I/
127

I ratios, which might imply an 

isotopic equilibrium of iodine in all components of seaweed (Table 3.7). This might also 

suggested a rapid exchange and metabolic process of iodine in seaweed. 

Iodide in Fucus serratus accounted for 7.2-16.1% for 
127

I and 6.8-14.0% for 
129

I. While 

Fucus vesiculosus collected from Klint showed a higher fraction of water-soluble iodide 

of 22.7% for 
127

I and 19.7% for 
129

I compared to that of Fucus serratus collected at other 

locations (Fig. 3.22). It has been reported that the water leaching rates of iodine in 

different seaweed vary considerably from 9 % in red algae up to 99% in Laminaria 

japonica (brown seaweed) [71].  
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Table 3.7 Analytical results of 127I and 129I and their species in seaweed from the Danish coasts during 14-27th October, 2014 a. 

Location 127I concentration, μg g-1 b 129I concentration,×1010 atoms g-1  129I/127I atomic ratio, ×10-8 

 

Total iodine Iodide Residual iodine I-/T Total iodine Iodide Residual iodine I-/T Total iodine Iodide Residual iodine 

Hvide Sande 121.05 ± 6.19 8.72 ± 0.09 110.03 ± 5.64 7.2% 76.84 ± 1.03 5.23 ± 0.31 65.57 ± 1.91 6.8% 133.92 ± 7.08 126.57 ± 7.54 125.71 ± 7.42 

Agger Tange 167.95 ± 8.60 17.48 ± 0.19 164.65 ± 8.46 10.4% 108.61 ± 1.46 10.92 ± 0.62 112.69 ± 3.15 10.1% 136.43 ± 7.22 131.78 ± 7.57 144.39 ± 8.45 

Nyborg 93.91 ± 4.79 8.21 ± 0.10 91.23 ± 4.67 8.7% 14.77 ± 0.24 1.08 ± 0.06 15.34 ± 0.42 7.3% 33.19 ± 1.78 27.75 ± 1.60 35.48 ± 2.06 

Klint 64.87 ± 3.34 13.96 ± 0.16 53.59 ± 2.74 21.5% 12.49 ± 0.20 2.41 ± 0.14 9.71 ± 0.30 19.3% 40.63 ± 2.19 36.34 ± 2.18 38.23 ± 2.29 

Roskilde Fjord 107.76 ± 5.52 17.33 ± 0.18 99.31 ± 5.08 16.1% 7.07 ± 0.12 0.99 ± 0.06 6.08 ± 0.16 14.0% 13.85 ± 0.75 12.09 ± 0.71 12.92 ± 0.74 

Bornholm 47.22 ± 2.42 5.11 ± 0.06 43.84 ± 2.24 10.8% 2.19 ± 0.06 0.20 ± 0.02 1.96 ± 0.08 8.9% 9.77 ± 0.57 8.06 ± 0.63 9.43 ± 0.63 

a. The concentrations of iodine are reported in fresh seaweed.  

b. Only iodide species in seaweed was presented because it is the only detectable iodine species in water leachate and iodate and soluble organic iodine 

in water extract of seaweed were not detectable.  

 

Figure 3.20 Concentrations of iodine isotopes (127I and 129I) and the species (water-soluble iodine, i.e. iodide and residual iodine) in Fucus serratus and 

vesiculosus from the Danish coasts in 2014. 
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Figure 3.21 129I/127I ratios in seawater and seaweed simultaneously collected from the Danish coast in October 2014. 

The fact that only iodide was observed in the water leachate of Fucus serratus and 

vesiculosus for both 
129

I and 
127

I, agree well with the previous reports on chemical species 

of iodine in seaweed [72, 75, 193-195]. Utilizing sequential extraction coupled to neutron 

activation analysis, HPLC-ICP-MS, and X-ray absorption spectroscopy (XAS), it was 

observed that iodide ion is present as the predominant water-soluble inorganic iodine in 

various seaweed, especially in Laminaria japonica, Kombu, and Wakame [193, 194]. Hou 

et al. (1997 and 2000) has analyzed ten seaweed species for iodide, iodate and WSOI and 

suggested less than 5% of water-soluble iodine occurs as iodate, while the distribution of 

iodide and WSOI were seaweed species-dependent [72, 193]. For Laminaria digitata, 

iodide is the only dominant species of iodine [195]. Although WSOI in forms of 3-iodo-

tyrosine (MIT) and 3,5-diiodo-tyrosine (DIT) have been detected by HPLC-ICP-MS, it 

only accounts for less than 0.5% of total iodine [75]. The result in this work in 

combination with the previous studies shows that iodide might be ubiquitously present in 

seaweed and play an important biological role for seaweed, such as acting as an anti-

oxidant against oxidative stress (e.g. O3, H2O2) [195]. 

More than 80% of iodine in seaweed investigated in this work is non-water-leachable, 

likely reflecting the associated forms of iodine with biomacromolecules in seaweed. A 

variety of iodinated compounds have been found in brown seaweed, such as MIT, DIT, 

phenolics (phloroglucinol, phlorethol, fucol, Fucophlorethol, fuhalol and eckol), fatty acid, 

tepenes and polysaccharides [70, 72]. With exception of water leachable iodine, most of 

organic iodine in seaweed (65.5%) were observed to associate with high molecular weight 

organic matter that participate in metabolism of brown seaweed, especially protein in 
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Sargassum kjellanianum [72]. However, the information on biomolecules bound iodine in 

seaweed is so rare that its biological role is not clear so far.  

 
Figure 3.22 Distribution of iodine species (water-soluble iodine and residual iodine) in seaweed for 127I (left) and 129I 

(right). Numbers are the percentage of water-soluble iodine in total iodine. 

Uptake of 
129

I and 
127

I by brown seaweed from seawater. The degree of element 

accumulation in organism is generally expressed as concentration factor (CF) that defined 

as a ratio between concentration per unit mass of organism (wet mass) and concentration 

per unit mass of sea water (IAEA, 2004). Excluding the two samples from Hvid Sande and 

Klint because of the influence of fast water exchange between seawater and fjord outflow 

water and different seaweed species, the average concentration factors (CFs) of iodine in 

Fucus serratus are estimated from the measured values in other locations to be 2955 for 
127

I and 3500 for 
129

I in fresh seaweed (Table 3.8). Lower CFs in Fucus vesiculosus were 

found to be 2116 and 2721 for 
127

I and 
129

I, respectively, indicating that enrichment 

abilities to iodine vary among seaweed species. The reported CFs of iodine are 1484 L kg
-1

 

in Fucus vesiculosis and 2226-3361 L kg
-1

 in Fucus serratus on wet matter basis [196], 

which are comparable with the values measured in this work. The greater uncertainty is 

attributed that the seawater iodine concentrations in the literatures was not real measured 

values, instead an assumed constant value of 60 μg L
-1

 was used for estimation of 

concentration factor. 

 As stated above, the discrepancy of CFs between the two isotopes is attributed to the 

relatively lagging response of seaweed to the change of 
129

I/
127

I ratios in seawater. 

Seaweed reflects an integrated iodine level in a period before sampling related to the 

metabolism cycle of seaweed. However, 
129

I/
127

I ratios in seawater is rapidly variable due 
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to the different sources of 
129

I and stable 
127

I and water masses mixing especially in the 

coastal areas. 

Table 3.8 Concentration factors of 129I and 127I in Fucus serratus and versiculosis. 

Location Specie CF-127I, L kg-1 CF-129I, L kg-1 

Hvide Sande Fucus serratus 4462 ± 244 7832 ± 182 

Agger Tange Fucus serratus 2933 ± 166 3108 ± 71 

Nyborg Fucus serratus 2977 ± 160 3620 ± 87 

Klint Fucus versiculosis 2116 ± 115 2721 ± 75 

Roskilde Fjord Fucus serratus 2873 ± 156 3308 ± 107 

Bornholm Fucus serratus 3138 ± 169 3963 ± 148 

For the four sampling locations, where no fast water exchange and the same seaweed 

species, the concentrations of 
127

I and 
129

I in the seaweed are highly positively correlated to 

the total concentrations of 
127

I and 
129

I in the seawater. Moreover, similar positive 

correlations were also observed between the total iodine in seaweed and the concentrations 

iodate and iodide in seawater (Fig. 3.23a and b). The concentration factors of both 
129

I and 
127

I in the seaweed were found to be unchanged with the I
-
/IO3

-
 ratios of 2-22 in seawater 

(Fig. 3.23c). These results suggest that iodine enrichment ability of seaweed is strongly 

dependent on seaweed species, not influenced by the iodine concentration and iodine 

species in the seawater.  

The positive correlations between iodine species (iodide and iodate) in seawater and total 

iodine concentrations in seaweed for both iodine isotopes are slightly lower but still 

significant. The results indicate that both iodide and iodate might be assimilated by the 

Fucus species investigated in this work. The mechanism of iodine enrichment in seaweed 

has continuously attracted interest of researchers in the past decades, in which selection of 

the iodine species by seaweed for uptaking is one of the key issue, but still remain 

ambiguous. Laboratory incubation experiments of seaweed slurry or tissue disc traced by 

radioiodine, such as 
125

I and 
131

I suggested that only iodide can be taken up by a brown 

alga (Ascophyllum nodosumt) [197-200]. This proposal has been widely accepted and used 

for establishing mechanism model of iodine in seaweed [199, 201]. However, the 

investigation in the past decades continuously questioned this statement, and some 

contrary results have showed that iodate can be also assimilated in the seaweed by intact or 

culturing living macroalgae (Hizikia fusiforme, Sargassum sagamianum and Chondrus 

ocellatus), although a lower concentration factor compared to that for iodide was measured 

[177, 202]. Our investigation in the natural marine environment provides indirect evidence 

that seaweed (Fucus serratus and versiculosis) can assimilate both iodide and iodate from 

seawater. Because the iodide-dominant seawater from the only four sampling locations 
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could not represent the ordinary marine environment, where iodate is the dominant specie 

of iodine, further investigations on extensive sampling areas are needed to confirm our 

observation. 

 

 

Figure 3.23 Plots of total iodine concentrations in Fucus serratus against the concentrations of total iodine and iodine 

species in seawater for 127I (a) and 129I (b) from the four sampling sites excluding Hvid Sande and Klint (blue dash line) 

because of fast water exchange between the North Sea and the Rindsted fjorde and different seaweed specie (Fucus 

vesiculosus). Plot of iodine species in seawater against the concentrations factors of seaweed (c).  

Transformation of iodine species and iodine metabolism in seaweed. To explore the 

metabolism mode of iodine in seaweed, a concept of iodine species related concentration 

factor (SCF) is introduced and defined as:  

SCF=
Concentration of iodine species in 𝐹𝑢𝑐𝑢𝑠 (atoms 𝑘𝑔−1 or mg 𝑘𝑔−1)

Concentration of total iodine in seawater (atoms  𝐿−1 or mg 𝐿−1)
                 Equation (4) 

SCFs in Fucus serratus collected at the four locations were calculated (Fig. 3.23). It is 

interesting that the SCFs vary with the I
-
/IO3

-
 ratios in seawater (Fig. 3.24). The SCFs of 

labile inorganic form, i.e. iodide, showed a strongly positive correlation with the I
-
/IO3

-
 

ratios in seawater (r>0.90), while a negative correlation of SCFs of water non-leachable 

iodine in seaweed with the I
-
/IO3

-
 in seawater were observed. These results in combination 

with the relatively constant the 
129

I/
127

I ratios among all iodine species in seaweed suggest 
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that iodine species in seaweed may interconvert, and the response of different iodine 

species in seaweed to the variation of iodine species in the seawater is different. The 

water-soluble iodide shows a relatively rapid and direct response to the iodine in seawater. 

The increased SCFs of iodide in seaweed with the increased I
-
/IO3

-
 ratios in seawater is 

likely attributed that water non-leachable iodine in seaweed, presumably in the form of 

biomacromolecular associated iodine (e.g. protein) [71, 202] is deiodinated and release 

iodine in the form of iodide under the investigated ambient seawater condition [72, 203]. 

This might shed a light on the investigation on mechanism of iodine uptake from seawater 

and accumulation in the cells of seaweed  

 

 Figure 3.24 Speciation concentrations factors of seaweed iodide to seawater total iodine (I-
F/TIW) and seaweed 

insoluble residual iodine to seawater total iodine (RIF/TIW) as functions with iodine species in seawater expressed as 

ratio of iodide to iodate for 127I (in red) and 129I (in blue).  

Over 80% of iodine in Fucus serratus and vesiculosis exists as water insoluble iodine 

considered to be bound with biomacromolecular, which is apparently distinct from that 

reported in Laminaria digitsta in which most of iodine exists as water-soluble iodide [195]. 

The proposed mechanism of iodine uptake in Laminaria digitsta [199, 201] might be 

therefore not suitable for other genus of brown seaweed. Based on the results in this work, 

a possible iodine metabolism process is speculated for Fucus (Fig. 3.25). Iodide that 

transferred into seaweed through cell wall might be either accumulated directly or oxidized 

to I2 or HIO, which act as intermediates in the specie transformation. Iodate uptake might 

be related to the reaction with iodide to form intermediates that participate in the 

subsequent cycling of iodine in seaweed, which need more intensive research works. To 

the ambient seawater, iodide is released, while molecular iodine is formed under oxidation 

stress such as ozone and hydrogen peroxide and released to the marine boundary layer [44]. 

The formation of volatile iodocarbons might be a consequence of breakdown products of 

biomolecule associated iodine such as carbohydrates, polyphenols and proteins.  
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Figure 3.25 A proposed mechanism of iodine uptake and transformation in Fucus. RI is water non-leachable residual 

iodine species presumably as biomolecule associated forms. IPO is iodoperoxidase. 
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4. Conclusions and perspectives 

4.1 Conclusions 

Based on the overall work presented in this thesis, the following conclusions on 

methodology development for speciation analysis of 
129

I in environmental samples, and 

environment tracing applications of 
129

I species in the marine environment and atmosphere 

can be drawn out. 

1. Pretreatment of water samples or leachates of solid sample by the addition of K2S2O8 to 

a final concentration of 30 mg g
-1

 under heating at 60˚C overnight can significantly 

decompose organic iodine (>97.7% of chemical yield) and convert it to inorganic forms. 

The formation of active oxidant persulfate radical (HSO4∙) by K2S2O8 degradation 

might play a key function on decomposition of organic iodine.  

2. A method for speciation analysis of 
129

I and 
127

I in aerosol samples has been established, 

allowing to quantitatively determine water-soluble iodine (iodide, iodate), NaOH 

soluble and residual insoluble iodine. The detection limits are 0.007 ng m
-3

 for 
127

I and 

7.1 ×10
6
 atoms (1.5 fg) for 

129
I. Stability of iodine species during analysis is related to 

the matrix materials of the aerosol filter. Due to photochemical oxidation of iodide on 

polypropylene filter, transformation of inorganic iodine species occurs when extending 

water leaching time. Alkaline ashing with addition of K2S2O5 as iodine-protected 

reagent can significantly reduce the loss of iodine in the ashing step, providing a 

reliable method for determination of total 
129

I in aerosol samples, especially a large size 

of aerosol collected on organic filter materials. For aerosol collected on quartz and 

glass fiber filter, iodine can be effectively separated by combustion method with high 

chemical yield (96%).  

3. The depth profiles of chemical species of 
129

I and 
127

I in the central Arctic provides a 

potent tool to understand the water circulation and marine iodine recycle. 1) In the 

polar mixed layer, only a small fraction of the 
129

I-rich Atlantic water moved to the 

North Pole along the Eurasian side of the Lomonosov Ridge, but significant fraction of 

this water current flows into the Makarov Basin. 2) The sharp stratification of 
129

I 

concentrations in the depth profiles indicates very limited vertical exchange between 

the PML and AWL. 3) Reduction of iodate in the polar mixed layer over the ridges and 

basin margins was significant, which might be related to the relatively high nutrients 

and active biological activities resulting from influx of the Atlantic water current. 4) 

Speciation analysis of 
129

I and 
127

I in the depth profile seawater confirms that oxidation 

of iodide back to iodate can occur with conversion rate of about 2 nmol L
-1

 year
-1

 in the 

Atlantic water layer of the central Arctic. 5) The inventory of 
129

I in the upper 800 m of 

the central Arctic is estimated to be 1457 kg by 2011, in which 68% of 
129

I is in the 
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Eurasian Basin. Such high amount of 
129

I implies the central Arctic acts as a secondary 

source of 
129

I to the downstream seas and the Arctic atmosphere. 

4. The distribution of 
129

I in the east Greenland seawater show higher 
129

I level on the 

north of Denmark Strait and lower level on the southeast, suggesting the East 

Greenland current originating from the central Arctic transports southwards and mixed 

with the 
129

I-poor Irminger current water in the southeast. The 
129

I concentrations in the 

west Greenland coast water showed a northwards decreased trend, implying the West 

Greenland Current is the dominant source of 
129

I in this water. Iodate was the 

predominant form in the Greenland waters for both 
129

I and 
127

I, and higher ratios of 

iodide to iodate were observed in northeast Greenland water compared to the southeast 

and west Greenland waters, which might be attributed to the outflow of the Greenland 

coastal seawater.  

5. The 
129

I concentrations in the Danish coastal waters in 2014 was elevated by a factor of 

1.5-2 compared to those in late 2000s, which implies the amount of 
129

I discharged 

from the two European NRPs might be increased around 2012 in comparison to the 

release during later 2000s. Iodide is the predominant specie for 
129

I and 
127

I in these 

coastal waters, which is consistent with the previous investigations. The formation of 

iodide in the investigated locations is dominated by different processes, such as 

degradation of iodine-rich organic matter for the Roskilde Fjord and Hvid Sande, 

abiotic chemical reduction of iodate for Bornholm, and biological activities for the 

other three sampling locations.  

6. Direct liquid discharge and atmospheric deposition from the FDNPP accident elevated 

the 
129

I concentrations up to 610
8
 atoms L

-1
 in the near-surface water in offshore 

Fukushima. The total amount of 
129

I released to sea was estimated to 1.2 kg. Despite 

much lower than the enormously discharged 
129

I from the European NRPs, this amount 

of 
129

I can remarkably influence the level of 
129

I in the Pacific Ocean, and thus can be 

applied to trace the Pacific Ocean currents. 
129

I in the Fukushima offshore seawater 

dominantly present as iodide, is completely distinct from 
127

I species that mainly exists 

in the form of iodate. This implies the main form of iodine in the liquid waste of 

FDNPP as well as the atmospheric fallout from the accident might be mainly iodide, 

which is important for studying the pollution and transferring behavior of radioiodine 

after the nuclear accident.  

7. The 
129

I/
127

I ratios in the aerosol samples collected in Tsukuba, Japan (170 km 

southwest to the FDNPP) immediately after the Fukushima accident increased to the 

order of 10
-6

, about one order of magnitude higher than in Denmark aerosols. 

Atmospheric release of 
129

I from the European NRPs and secondary emission from the 

heavily contaminated seawater in the North Sea and Kattegat are the main sources of 
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129
I in the aerosols from Denmark. Based on the measured Fukushima-derived 

131
I in 

the Danish aerosols and the directly Fukushima-influenced 
131

I/
129

I ratio in the Japanese 

aerosols, the Fukushima-derived 
129

I immediately after accident contributed only less 

than 6 % of total 
129

I to the European atmosphere. This is negligible to the 
129

I level and 

inventory in the European environment due to the considerable amount of 
129

I released 

from Sellafield and La Hague nuclear fuel reprocessing plants. Iodide is the dominant 

form (>97%) of the water-soluble iodine in the aerosols. The formation of iodide might 

be attributed to atmospheric reductants, such as reductive SO3 and disulfites. The 

dominant species of iodine in aerosols from Denmark are NSI and RII, accounting for 

up to 80% of total iodine, NSI might predominantly be organic matters associated 

iodine, such as HULIS, while RII is likely associated with inorganic components such 

as metal oxides and minerals.  

8. In the brown seaweed (Fucus serratus and Fucus vesiculosus), iodide was observed the 

only detectable water-soluble iodine for both 
129

I and 
127

I. More than 80% of iodine in 

seaweed was water non-leachable iodine, likely associated with biomacromolecule. 

Concentration factors of both 
129

I and 
127

I by seaweed were found to be neither relevant 

to total iodine concentrations in seawater, nor affected by the iodine species in seawater 

with different I
-/
IO3-

 
ratios. Nevertheless, the variation of speciation concentration 

factor in seaweed with iodine species in seawater suggests the response of water-

soluble iodine is fast to the seawater, and iodine species interconversion may readily 

occurs between the soluble and insoluble iodine species in seaweed. 

4.2 Perspectives 

Speciation analysis of 
129

I has exhibited its potent applications on water movement tracing 

in marine environment, geochemical recycling of iodine in the atmosphere and 

biochemical exchange in the biosphere. Currently, available methods on 
129

I species are 

only focused on water, soil and air samples. Although this study has preliminarily 

exploited the water-soluble 
129

I and insoluble 
129

I in seaweed, large unknowns on 

bimolecular associated 
129

I species are still unraveled. Further extension of speciation 

analytical procedure is pivotal to study transfer behaviors of iodine and tracing application.  

The existing investigations on species of 
129

I and 
127

I mainly focus on the European NRPs-

influenced oceans and seas, such as the North Sea, Baltic Sea, the Atlantic Ocean, and the 

Arctic Ocean, and very few in other areas. The released 
129

I from the Fukushima nuclear 

accident provide a unique opportunity to investigate water currents in the Pacific Ocean 

and its marginal seas. Only sparse data on 
129

I species in other environmental media, such 

as soil, vegetation, atmospheric particles have been reported, primarily hindered by the 

limited available analytical methods and ultra-low level of 
129

I concentrations in the 
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environment. With the development of speciation analytical methods, environmental 

tracing studies is promising to be broaden to these fields. Furthermore, intensive studies on 

speciation of 
129

I and 
127

I also greatly require extensive observations in a vast spatial scope 

and long time series for various compartments.  
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Summary. 129I, a long-lived radionuclide, is important in
view of geological repository of nuclear waste, and environ-
mental tracing applications related to diverse natural processes
of iodine. The environmental behaviors and bioavailability of
129I are highly related to its species. A number of methods
have been reported for speciation analysis of 129I in a variety
of environmental samples. These methods have been applied
in many researches, including conversion processes of iodine
species in marine and terrestrial systems, migration and re-
tention of iodine in soil and sediment, geochemical cycling
of iodine, as well as studies on atmospheric chemistry of
iodine. This article aims to review these methods and their
applications in environmental research.

1. Introduction
129I (T1/2 = 1.57×107 yr) in the current environment orig-
inates mainly from human nuclear activity (more than
6000 kg) and to a minor extent from natural process (about
250 kg) [1, 2]. Regarding the anthropogenic sources, more
than 95% of 129I was released from reprocessing plants of
spent nuclear fuel [2]. Atmospheric nuclear weapons testing
during 1940’s–1980’s only contributes about 3% of 129I [3],
and 1.3–6 kg from the Chernobyl accident in 1986 and
1.2 kg from the Fukushima accident in 2011 [4, 5] consti-
tute a minor contribution. Besides these sources, radioactive
waste dumping and repository, for example approximate
13 600 kg of 129I in Yucca Mountain repository and Hanford
reservation (USA) [3], in which 129I was captured and stored
in the untreated spent fuel, is a potentially important source
of 129I to the environment in the future.

Releases of large amount of anthropogenic 129I into the
environment have resulted in an elevation of its level by
2–6 orders of magnitude compared to the pre-nuclear era.
Due to the long half-life of 129I, high volatility of iodine,
accumulation of iodine in human thyroid and lower sensi-
tivity of radiometric methods for 129I measurement, early

*Author for correspondence (E-mail: xiho@dtu.dk).

researches on 129I (before 1980s) mainly focused on environ-
mental hazard of anthropogenic 129I released from nuclear
facilities, accidents, as well as nuclear weapons testing. With
the development of high sensitive measurement methods,
especially accelerator mass spectrometry (AMS), increased
applications of 129I in environmental tracing have been im-
plemented to provide knowledge on geochemical cycling of
stable iodine [6, 7], transport and exchange of water masses
in ocean [2, 8–11], atmospheric behavior and process of io-
dine [12], and volcano fluid migration [13]. Furthermore,
natural 129I has been used as geochronometer on timescale
of 2 to 80 million years, for dating brines incorporated in
salt domes [14–16], pore water of sediment and hydrocar-
bons [17] and groundwater [18].

As a mobile radionuclide, 129I is one of the important
radionculides in nuclear waste disposal. The migration be-
havior of 129I in the environment is determined by its species,
while many parameters, such as pH, redox potential (Eh)
and medium components are important factors affecting its
speciation. In order to understand the migration of radioio-
dine in radioactive waste repositories on long-term scale,
to remediate radioactive contamination in the environment
and nuclear facilities, as well as to estimate the transfer of
radioiodine among environmental media and from environ-
ment to humans, speciation analysis of 129I in environmental
samples has to be implemented. This can also provide in-
sight into various environmental processes of stable iodine
species, such as the geochemistry cycle and atmospheric
chemistry of stable iodine. A critical review on speciation
analysis of 129I has been published in 2009 [19], since then
some new methods have been developed and applications of
129I speciation analysis have quickly increased in the past
years. This article aims to review the present progress on an-
alytical methods and their applications; some perspectives
on the potential applications of speciation analysis of 129I are
highlighted.

1.1 Level and distribution of 129I in the environment
129I distributes unevenly in the environment, the 129I/127I
atomic ratios range from 10−12 in samples of pre-nuclear era
up to 10−4 in the highly contaminated samples, depending
on its sources (Fig. 1) [20]. Atmospheric nuclear weapons
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Fig. 1. Global distribution of 129I/127I ratios in shallow seawater, rivers
and lakes (adopted from [20] with copyright permission from AGU).

testing has elevated the 129I/127I atomic ratio from 10−12 to
10−11 ∼ 10−9, and the huge contribution of the reprocessing
plants and nuclear accident further raised the 129I/127I ratios
to 10−9 ∼ 10−6. According to the source and distribution, 129I
in the environment can be sorted into three categories.

1.1.1 Natural 129I level of pre-nuclear era

In the samples of pre-nuclear era, such as deep sediment
and soil, 129I originates from the natural processes. When
the naturally generated 129I reaches equilibrium with 127I, it
leads to a steady-state 129I/127I isotope ratio (Table 1) [14,
15, 17, 21–25]. A value of 1.5×10−12 is regarded as the
initial ratio of 129I/127I in marine system based on the meas-
urement of marine sediment and seaweed collected before
1940 [25]. In terrestrial system, since 127I concentration (i.e.

Table 1. Natural level of 129I in samples of pre-nuclear age.

Sample Location Year of 129I/127I Age Refs.
collection ratio (Ma)

(×10−12)

Pore waters Blake Ridge in the Atlantic Ocean 0.17 50 [17]
Springs Clear Lake area, California 0.03–1.78 40–80 [15]
Pore waters Peru Margin 0.14–0.99 9–54 [25]
Fore arc fluids North Island of New Zealand 0.05–1.5 0–75 [25]
Crater lake fluids Copahue, Argentina 0.70 [21]
Crater lake fluids White Island, New Zealand 0.28 [21]
Volcanic fluids Central America 0.50–0.80 15–25 [22]
Algae Novaya Zemlya 1931 3.69 [25]
Algae White Sea 1938 1.35 [25]
Algae Hokkaido 1883 1.40 [25]
Algae Miyagi 1904 1.87 [25]
Algae Hokkaido 1883 0.55 [25]
Deep sea water Gulf of Mexico 1990 1.40 [25]
Deep sea water Nankai(deep water) 2000 1.49 [25]
Groundwater Great Artesian Basin, Australia 0.4–7.1 [14]
Loess (63.5 m depth) Loess Plateau, China 20 [24]

about 2 μg g−1 in most of soil) is 1–2 orders of magnitude
lower compared to that in marine system, a higher natural
129I/127I ratio with 20×10−12 was observed in deep soil at
Loess Plateau, China [24]. After isolating from surface envi-
ronment, the 129I/127I ratio in the sample decreases with the
radioactive decay of 129I, which forms the basis of geological
dating using 129I.

1.1.2 The present environmental background level of 129I
from global fallout

The environmental background level refers to 129I concen-
trations or 129I/127I ratios in background areas without direct
contamination from nuclear facilities, 129I in such environ-
ment only originates from global fallout of weapons testing
and long distance dispersion of releases from reprocessing
plants. The environmental background level of 129I varies
spatially and temporally in relation to the sources, and dif-
fers vastly with sample types because of different enrich-
ment factors of iodine. In the present environment, back-
ground 129I/127I ratios range from 10−11 to 10−8 in the north-
ern hemisphere [20, 26], which are higher than those in the
southern hemisphere and the equator area. This is because
most of nuclear weapons testing and other nuclear activities,
including nuclear fuel reprocessing, have been carried out in
the middle latitude of the north hemisphere [27].

1.1.3 Elevated environmental level in contaminated areas
directly influenced by nuclear activities

In highly contaminated areas, such as vicinity of nuclear
reprocessing plants, nuclear weapons testing and nuclear ac-
cident sites, as well as radioactive waste repository sites,
129I/127I ratios of 10−8 ∼ 10−4 in the environment have been
reported [28–30].

1.2 Chemical species of 129I and 127I

Once anthropogenic 129I is discharged to environment, like
stable 127I, it forms diverse species through complicated
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Table 2. Major species of iodine in the environment.

Ecosystem Main species of iodine Examples Refs.

Hydrosphere Inorganic ions I−, IO3
− [31]

Water soluble organic iodine Humic substance associated iodine [33]

Atmosphere Particle associated iodine, I−, IO3
−, organic iodine [32]

i.e. aerosol
Gaseous organic iodine CH3I, CH2I2, CH3CH2I, CH2ICl
Molecular iodine I2 [36]
Radical/activated iodine IO, OIO, HOI [37]

Geosphere Inorganic ions I−, IO3
−

(soil and Organic matter (humic substances) Humic acid, fulvic acid and humin [34, 35]
sediment) Sequentially extracted species Water soluble, exchangeable, carbonate, [30, 38]

organic bound, oxides and residue

Biosphere Inorganic ions I−, IO3
− [39–41]

(seaweed, Low molecular weight organic Triiodothyronine (T3),
tissues) iodine Tetraiodothyronine (T4), I-amino-acid

Biological macromolecules Algin, fucoidan, protein, polyphenol,
bound iodine pigment

chemical and physical processes and reactions with the sur-
rounding media. In general, iodine exists in inorganic and
organic forms in the environment (Table 2). In water, soil,
sediment, and aerosol samples, I− and IO3

− are the major in-
organic species [31, 32], while humic substances associated
iodine is the major organic form of iodine in soil, sediment
and natural water [33–35]. In atmosphere, molecular iodine
(I2), HI, HIO, as well as some short-lived radicals of iodine
(OIO, IO, etc.) occur as inorganic form [36, 37]. Plenty of
volatile organic iodine compounds occur in the atmosphere,
mainly as alkyl iodide, e.g. CH3I, CH2I2, etc. Meanwhile,
some iodine in the air also exists in particle (aerosol) as-
sociate form [32]. Sequential extraction is often used for
fractionation of iodine in soil and sediment to separate io-
dine into water soluble, exchangeable, carbonate, organic
bound, oxides and residue fractions [30, 38]. This informa-
tion is important to elucidate various transfer processes of
iodine in the geosphere. In the biosystem, a few work on
127I speciation of biomaterials were reported [39–41]; how-
ever, speciation study of 129I in biomaterials has not yet been
reported.

2. Recent progress in analytical methods of 129I
and its speciation

2.1 Determination of total 129I

Due to the extremely low concentration of 129I in envi-
ronmental samples (< 10−16 g/g), its determination involves
great effort on sample pretreatment, pre-concentration and
purification, as well as sensitive measurement. Fig. 2 shows
a schematic procedure for determination of 129I in three
types of samples. The performance of the pre-treatment and
separation methods is strongly related to matrix type, sample
size, and iodine concentration (Table 3).

Although water samples were generally treated by either
direct solvent extraction or precipitation with carrier, organic
matter associated iodine present in water always leads to un-
derestimation of 129I concentration since organic iodine can

not be separated by solvent extraction or precipitation. In
order to convert organic iodine to inorganic form, ultravio-
let (UV) irradiation [42], combustion [43, 44] and alkaline
digestion [33] have been used. However, these methods are
either tedious and time consuming (> 24 h) or lack the abil-
ity to treat a large volume of sample. A simple and highly
effective way to decompose organic iodine has been re-
cently reported [45]. In this method, a strong oxidant, potas-
sium persulfate (K2S2O8) was utilized in a concentration of
30 mg L−1 to decompose organic matter at 60◦ for 20 h, re-
sulting in a decomposition of more than 95% of organic
iodine in more than 500 mL water. It is generally quite hard
to isolate iodine from organic liquid, e.g. crude oil. A reduc-
ing reagent sodium biphenyl (C12H10Na) has been utilized to
release iodine by breaking covalent halogen bonds, resulting
in 60–90% chemical yield of iodine [46, 47].

Oxidizing combustion [48, 49], alkaline leaching, alka-
line ashing/fusion, microwave assisted acid digestion and
acid distillation have been reported to separate iodine from
a variety of solid samples, as summarized in review art-
icle [50].Vanadium oxide (V2O5) as a catalyst has been used
to improve the combustion efficiency, especially for the ma-
terials containing high organic matter [51]. A commercial
furnace equipped with four combustion tubes (Raddec Py-
rolyser) has been modified and applied to separate iodine
with high efficiency [52]. Alkaline fusion/ashing followed
by water leaching has been a choice for separating iodine
from solid samples due to its low-cost, while compared to
combustion method, it is time-consuming and gives rela-
tively lower recovery of iodine [53–55]. Formation of silica
acid in the acidification of leachate of fused soil, sediment
and rock, makes the following treatment, such as solvent ex-
traction, difficult to handle. Acid digestion has been rarely
used because of its major disadvantages consisting of in-
complete decomposition of sample matrices, application of
high risk HClO4, relatively time consuming process, and
difficulty to treat large-sized samples (> 5 g) [56–58]. Mi-
crowave assisted acid digestion is apparently an alternative
method to improve the efficiency of acid digestion for sep-
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Fig. 2. Schematic diagram of an-
alytical procedures for 129I in en-
vironmental samples. LIFS: Laser
Induced Fluorescence Spectrome-
try; X and γ Spec.: X and γ ray
Spectrometry; LSC: Liquid Scin-
tillation Counting; NAA: Neutron
Activated Analysis; ICP-MS: In-
ductively Coupled Plasma Mass
Spectrometry; GC-MS: Gas Chro-
matography Mass Spectrometry;
TIMS: Thermal Ionization Mass
Spectrometry; AMS: Accelerator
Mass Spectrometry.

Table 3. Comparison of sample pretreatment and iodine separation methods for 129I measurement in environmental samples.

Sample type Method Mass/ Chemical yield Time Refs.
volume consuming

Pretreatment methods
Fresh water UV radiation with HNO3 and H2O2 < 50 mL NA > 3 h [42]
Fresh water NaOH digestion with assistant of ethanol and − NA > 24 h [33]

ultrasonication
Lake water K2S2O8 > 500 mL 95% 24 h [45]
Crude oil Sodium biphenyl (C12H10Na) > 100 mL 60–90% 48 h [46, 47]
Seawater, freshwater Anion exchange chromatography–column method − 80–98% 2–4 mL/min [61, 78]
Leachate, milk Anion exchange chromatography-batch method 1–20 L 50–87% 12 h [79]
Soil, sediment, thyroid, halite, Oxidizing combustion, trapping iodine with < 0.1–500 g > 95% 3–5 h [48, 49]
lignite, solid waste NaOH/NaHSO3 solution
Vegetation, soil, meteorites, NaOH and Na2O2 ashing/fusion, plus hot water < 1–500 g 50–90% 1–5 h [53–55]
lunar rock, solid waste leaching
Uranium ores, solid waste Acid digestion using HF or HNO3 < 500 g 43–83% < 5 h [56–58]
Glass, rock, lichen Microwave assistant digestion using TMAH or HNO3 0.5–1 g 90% < 1 h [59, 60]

Separation methods
Seawater, freshwater, leachate Solvent extraction using CCl4 or CH3Cl < 2 L 40–100% 30 min [93]
Leachate Direct precipitation using AgNO3 (2 mg carrier) 50 mL 70–95% < 10 min [62]
Seawater Silver adsorption (carrier free) < 100 mL < 30% 24–48 h [63, 64]
Water, leachate AgI – AgCl coprecipitation (carrier free) < 50 mL 70–80% < 15 min [24]

aration of iodine [59, 60]. However, the low capacity and
cross contamination of samples using the same digestion
containers are the major shortages, which highly restrict its
application in 129I determination.

Solvent extraction and precipitation/coprecipitation have
been reported to separate iodine from leachate, trap solution,
eluate, as well as environmental water samples. Solvent ex-
traction using CCl4 or CHCl3 is the most commonly used
method to extract iodine from aqueous solution based on

the high solubility of I2 in these organic solvents. Chem-
ical yield of iodine is related with sample volume, iodine
concentration and salt content [61]. This method is easy to
operate, but environmentally unfriendly and difficult to oper-
ate on board during expedition. Moreover, addition of carrier
to sample with low iodine concentration is not favored when
analyzing the samples with ultra-low 129I/127I ratios [24],
such as pre-nuclear geological samples. Direct precipitation
of iodine as AgI is an alternative method for iodine sepa-
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ration, which requires sufficient amount of iodine present
in the solution to form AgI precipitate, usually more than
0.5 mg of iodine, leading normally to a recovery of 70–95%
for iodine [62]. Notably, anions, such as Cl−, Br−, SO4

2−,
SO3

2−, S2− interfere with the separation of iodine and are
co-precipitated with iodide, therefore need to be removed
before measurement.

Silver metal absorption [63, 64] and coprecipitation of
AgI with Ag2O [65] have been reported to separate carrier
free iodine from water. However, low recovery of less than
30% for iodine and low capacity of less than 100 mL are
the main drawbacks. Based on coprecipitation of AgI with
AgCl, a new method for separation of trace amount of carrier
free iodine has been reported recently [24]. In this method,
all iodine species are firstly converted to iodide, which could
be implemented by a procedure of decomposition of organic
iodine followed by reduction of high valence states of iodine
to iodide using sulfite at pH < 2. Chloride was then added
into the prepared solution (leachate, trap solution or eluate),
and AgNO3 was added to co-precipitate iodine as AgI-AgCl.
The precipitate was washed with HNO3 and deionized wa-
ter to remove Ag2SO3 and Ag2SO4 in the preciptiate. An
overall recovery up to 70–80% could be obtained [24]. If
high concentration of chloride is present in samples, no more
chloride was added, and NH3·H2O in appropriate concentra-
tions are used to wash the excessive AgCl out to a small
mass of precipitate. This method has been applied in speci-
ation analysis of 129I in loess profile [66].

For environmental water samples of large volume, iodine
is normally pre-concentrated and separated using anion ex-
change chromatography. In this method, all species of iodine
are first converted to iodide, the treated sample is loaded on
to an anion exchange chromatographic column; iodide ab-
sorbed on the column is eluted using 2.0 mol/L NaNO3, and
further separated using solvent extraction after addition of
iodine carrier, or directly co-precipitated with chloride as
AgI-AgCl.

Gamma and X-ray spectrometry, liquid scintillation
counting (LSC), neutron activiation analysis (NAA), gas
chromatography mass spectrometry (GC-MS), inductively
coupled plasma mass spectrometry (ICP-MS) and accel-
erator mass spectrometry (AMS) can be used for meas-
urement of 129I [43, 52, 67–74]. These methods have been
presented, compared and reviewed elsewhere [19, 50]. Of
these methods, AMS is the most sensitive measurement
technique, and the only method for analysis of samples with
129I/127I atomic ratios lower than 10−10.

2.2 Speciation analysis of 129I

A number of methods have been established for specia-
tion analysis of stable iodine, including high performance
liquid chromatography hyphenated with inductively coupled
plasma mass spectrometry (HPLC-ICP-MS) and gas chro-
matography mass spectrometry (GC-MS) [75, 76]. Direct
detection techniques including XANES and EXAFS [77]
have also shown potential for speciation analysis of iodine
in samples with high level of iodine. However, an extremely
low concentration of 129I in the environment makes the appli-
cation of these techniques impossible. Therefore, speciation
analysis of 129I has to be implemented by first separation of

different species of iodine in the samples followed by deter-
mination of 129I in each fraction. An overview of methods for
129I speciation analysis in environmental samples have been
published in 2009 [19]. A remarkable progress on speciation
analysis of 129I has been achieved in the past few years, and
is reviewed below.

Anion exchange chromatography for water and other li-
quid samples, sequential extraction for soil and sediment
and multiple stages filtration for atmospheric samples are
the major approaches for speciation analysis of 129I. Some
modifications on these methods have been made aiming to
improve chemical yield of iodine and purity of separated io-
dine species, as well as to eliminate cross contamination of
different species of iodine. In water samples, iodine occurs as
iodide (I−), iodate (IO3

−) and soluble organic iodine (SOI).
Anion exchange chromatography has been used to separate
these species from aqueous solution by column and batch
methods [61, 78, 79], which is based on the high affinity of
iodide on the strong basic anion exchange resin, wherein the
affinity of iodate is very low. The content of organic iodine
can be obtained by the difference between total iodine and
total inorganic iodine [33, 78]. Salinity influences capacity of
the resin for iodide retention due to competitive adsorption
of other anions, such as Cl− and Br−, with iodide on func-
tional group of resin. To avoid loss of iodine during loading,
a long column or less volume of water is used when analyzing
high salinity water samples. For seawater with salinity of 35,
less than 400 mL water can be treated with an anion exchange
(e.g. AG 1-×4, 50–100 mesh) column of 10 mm∅× 200 mm
without measurable loss of iodide during loading. In open sea
water, organic iodine is normally minor, while in fresh wa-
ter and coastal seawater it might account up to 90% of total
iodine [31]. In this case, non-anion organic iodine may flow
through thecolumn along with iodate, and someanion organic
iodine retained on the column or eluted to iodide fraction, re-
sulting in overestimation of concentrations of stable iodate
and iodide (127 IO3

− and 127I−). To solve this problem, 127 I− and
127IO3

− can be measured by HPLC-ICP-MS, while organic
129I can be removed during solvent extraction separation be-
cause organic iodine does not follow the inorganic iodine in
the cycle of extraction and back extraction of iodine (Fig. 3).

For speciation analysis of 129I in soil and sediment, con-
ventional sequential extraction procedure has to be modified
considering the volatility of iodine in acidic solution and
presence of oxidants. For example, H2O2-HNO3 solution
under heating is often used to decompose organic matter for
separation of organic associated elements. In this medium,
the released iodine will be converted to I2, resulting in com-
plete loss of iodine through volatilization of gaseous I2 from
the solution. Thus, NaOH or TMAH solution has been uti-
lized in the modified procedure to extract organic matter
from soil and sediment [66]. Recently, a method to separate
iodine associated humic acid and fulvic acid has been re-
ported [34], which is implemented by extracting both forms
of organic iodine with 5% tetramethylammonium hydroxide
(TMAH) and then separating humic acid from the leachate
by precipitation under acidic conditions. Another proced-
ure has also been applied to extract 129I associated with
different types of humic substances by successive extrac-
tion using alkaline, glycerol and citric acid–alkaline system
(Table 4) [80]. In this procedure, water extractable colloid,
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Fig. 3. Diagram of analytical pro-
cedure for speciation analysis of
129I in water.

ten fulvic acids and eight humic acids were obtained. In
general, the sequential extraction procedure is carried out
manually, which does not reflect the real situation in na-
ture. An automatically dynamic solvent extraction system
using soil column has been reported for speciation analy-
sis of plutonium and americium in soil and sediment [81],
which is also potentially useful for extraction of 129I species
in soil and sediment. In seaweed, iodine is present in the
form of both inorganic ions and biological macromolecules.
Hou et al. [39] proposed a procedure for speciation analy-
sis of stable iodine in seaweed, by separating water soluble
iodide, iodate, and various biological macromolecules, in-
cluding algin, fucoidan, protein, polyphenol, and pigment
from fresh seaweed [41]. However, speciation analysis of
129I in vegetation has not yet been reported. This situation
might be changed by modifying the methods for speciation
analysis of 127I in vegetation, combining sensitive determin-
ation methods of 129I.

Chemical species of iodine in air are much more com-
plicated. In general, iodine exists in three categories, i.e.
particulate associated iodine (in forms of iodide, iodate, or-
ganic iodine), inorganic gaseous iodine (I2, HI, HIO, etc.),
and organic gaseous iodine (CH3I, CH3CH2I, CH2IBr, etc.).
Although anthropogenic 129I can provide a unique approach
in atmospheric research, analytical method for speciation
analysis of atmospheric 129I is still limited [82, 83]. So far,
iodine species in air are often sampled by an air sampler
equipped with sequentially connected filters and cartridges
driven by a vacuum pump, a glass fiber filter for aerosol,
followed by a charcoal cartridge for gaseous iodine with
collection efficiency of approximately 94% [84, 85]. Efforts
on determination of specific species of 129I in atmosphere
have also been made by selectively collecting I2 from air
using a denuder coated with α-cyclodextrin. A collection ef-
ficiency of 95% for I2 has been obtained [36]. This method
has been utilized for analysis of 129I2 in air by modifying the
system to improve the sampling capacity and extending the
sampling time. Field investigation of 129I2 concentration in
air based on this method is expected in combination with
highly sensitive AMS measurement of 129I.

Besides anion exchange chromatography, another two
practical analytical methods have been proposed for separat-
ing iodine species from water. Hou et al. [86] have reported
a simple procedure to separate iodide from water samples
using solvent extraction and selective oxidation of iodide
to I2 using NaClO. In the conventional solvent extraction
procedure, the sample has to be acidified to pH < 2 for oxi-
dizing iodide to I2 using NaNO2 or H2O2, or reducing iodate
to I2 using NH2OH·HCl. However, iodide and iodate can
react with each other at pH < 2 to form I2, which makes the
separation of iodine species impossible. NaClO is a strong
oxidant and has been widely used to oxidize iodine to high
oxidation state (IO3

− or IO−
4 ). By controlling the amount and

concentration of NaClO added to the water sample and pH
value at 4–8, iodide can be quantitatively oxidized to I2 and
extracted into the organic phase, while iodate and organic io-
dine remain in water phase. This approach has been success-
fully applied for speciation analysis of 129I in both seawater
and fresh water. The separation of iodide and total inor-
ganic iodine just takes less than one hour per sample (< 1 L),
which significantly improves the separation efficiency, and
is useful for in situ separation as well as emergency analy-
sis of short-lived radioiodine. However, this method is only
suitable for water with high iodine concentration or with
addition of 127I carrier, because the recovery of iodine in sol-
vent extraction process is very low for normal environmental
water samples in which iodine concentration is low.

A rapid method using single step coprecipitation has
been reported for selective precipitation of iodide from sea-
water for speciation analysis of 129I [86, 87]. This method
takes the feature of different solubility products of AgI
(Ksp = 8.52×10−17), AgIO3 (Ksp = 3.17×10−8) and AgCl
(Ksp = 1.77×10−10) to selectively precipitate iodide from
seawater while leaving iodate in the solution. By controlling
pH of the seawater, the amount of NaHSO3 and Ag+ added
to the seawater, iodide can be quantitatively precipitated as
AgI, while only less than 3% iodate is co-precipitated. Salin-
ity does not affect the precipitation of iodide, but the amount
of iodate (as AgIO3) cross-over to AgI-AgCl co-precipitate
increases with the decreased salinity, therefore this method
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Table 4. Procedure for speciation analysis of iodine (129I or 127I) in solid samples.

Sample type Fraction Subfraction Extraction procedure Refs.

Soil and Water soluble Water, RT a, 1 h, sample pH. [19, 30, 34, 38]
sediment Exchangeable 1 M NH4Ac-HAc, 20 ◦C, 2 h, sample pH; or 1.0 M NaAc
for both in 25% HAc (v/v), 20 ◦C, 1 h, pH 4.
129I and 127I Carbonate 1 M NH4Ac-HAc, 20 ◦C, 2 h, pH 5.

Metal oxides 0.04 M NH2OH·HCl and 0.01 M NaHSO3 in 25%
HAc (v/v), 80–100 ◦C, 6 h, pH 3.

Residue Combustion, 650 ◦C, 3 h or NaOH fusion, 550 ◦C, 8 h.
Humic substance 5% TMAH, RT, 4 h, pH 14.
Humin and minerals Combustion, 650 ◦C, 3 h or NaOH fusion, 550 ◦C, 8 h.

Soil for Fulvic acids FA1 Step 1: 1 M HCl, RT, 1 h, pH 1–2. Centrifuge, FA1 in [80]
both 129I (FA) and humic supernatant;
and 127I acids (HA) Step 2: Load FA1 onto 15 mL XAD-8 resin, back-eluted

with 0.1 M NaOH and water, then acidify to pH 1.0
and add HF to a final concentration of 0.3 M HF.

FA2 Step 3: Adjust pH to 7 with 1 M NaOH, 0.1 M NaOH,
N2 atmosphere, RT, overnight; 6 M HCl, RT, 12 h, pH 1.
Centrifuge, FA2 in supernatant; FA2 is processed in by the
same method as FA1 (step 2)

. Step 4: Combine FA1 and FA2 fractions and purify with
a third XAD-8 column. Then pass through a H+-saturated
cation exchange resins to remove the cation.

HA1 Step 5: 0.1 M KOH under N2 purging, KCl attaining
a concentration of 0.3 M K+. 6 M HCl, centrifuge, HA1
in supernatant; 0.1 M HCl/0.3 M HF, stir overnight; wash
with Milli-Q water.

FA 3–10 and HA 2–5 Step 6: repeat steps 1–5 for another four times.
HA 6,7 Dry the soil residue, 1 : 1 (v/v) glycerol in de-gassed

Milli-Q water, 20 h; repeat this step for HA7.
HA 8 0.5 M citric acid, N2 atmosphere, 20 h; NaOH.

Water Water, 3 days; spiral-wound 1 kDa SOC 1812 cartridge;
extractable an Amicon 8400 stirred-cell ultrafiltration unit with a 1 kDa
colloid regenerated cellulose filter at 275 kPa.

Seaweed Water soluble Water, RT, 3 h. [39]
for 127I Soluble organic 40 mg/mL Bi3+, 8 mg/mL S2−; N2H4·H2SO4,

40 mg/mL Bi3+, 8 mg/mL S2−.
I− Precipitate after adding 40 mg/mL Bi3+, 8 mg/mL S2−.
IO3

− Precipitate after adding N2H4·H2SO4, 40 mg/mL Bi3+,
8 mg/mL S2−.

Water non- Residue.
soluble
residue

Seaweed Biological Algin Boiling deionized water; ethanol to 30%. [41]
for 127I macromolecules Fucoidan Boiling deionized water; ethanol to 70%.

Protein Acetone for three times; 1% CaCl2 and 0.5% caffeine;
tris-HCl (pH 8.0) containing 0.1% SDB and 0.05% NaN3,
48 h; (NH4)2SO4.

Polyphenol Ethanol, PVPP column chromatography.
Pigment Acetone, RT, 2 h; water.

a: RT refers to room temperature.

is not suitable for the speciation separation of iodine in fresh
water and low salinity water. Since a large amount of chloride
is also precipitated, which has to be removed from AgI pre-
cipitate prior to AMS measurement, this can be implemented
by washing the co-precipitate with diluted NH3·H2O because
AgI is not soluble in diluted NH3·H2O, while AgCl is highly
dissolved in NH3·H2O, even in 5% NH3·H2O. The concentra-
tion of 129IO3

− can be obtained by the difference of 129I− and
total inorganic 129I, which is obtained using the same method
but converting all inorganic iodine to iodide before addition of
Ag+. This procedure is rapid, simple, and suitable for in situ
separation, especially on board ship during expedition.

GC-MS, conventionally employed for speciation analysis
of 127I, has been modified and used for 129I in high-level up to
a concentration of 2.3×108 molecule m−3 of 129I2 in air [72].
Zhang et al. [43] reported a method for determination of io-
dide, iodate and organic iodine in groundwater using chem-
ical separation and derivation of iodine combined with GC-
MS measurement, in which total iodine was separated by
combustion method to convert all iodine to gaseous I2 that
was trapped into water. 129I concentrations in the trap solu-
tion (for total iodine) and original water (for total inorganic
iodine) were measured by first reducing all inorganic iodine
to iodide, followed by derivation of iodide to 4-iodo-N,N-
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Table 5. List of available 129I standard materials. a

Standard code Matrix/material Sampling location/type 129I concentration 129I/127I ratio Value Refs.
Bq g−1 b at/at type c

NIST SRM 4949C 0.01 M NaOH 3451 ± 22 NA CV
NIST SRM 3231 0.5% TMAH Level I NA (0.981 ± 0.012) × 10−6 CV
(High Level) Level II NA (0.982 ± 0.012) × 10−8 CV
NIST SRM 3230 0.01 mol/L NaOH Level I NA (4.920 ± 0.062) × 10−10 CV
(Low Level) 0.006 mol/L Na2SO3 Level II NA (0.985 ± 0.012) × 10−12 CV

Blank NA (16 ± 5) × 10−15 CV
IAEA 418 Mediterranean sea water Mediterranean Sea (3.2 ± 1.3) × 10−7 Bq L−1 NA CV
NIST SRM 4357 Ocean Sediment Irish Sea (6–12) × 10−6 NA IV
NIST SRM 4359 Seaweed Radionuclide Irish coast and White Sea (14.8–15.1)× 10−6 NA IV [95]
IAEA 375 Soil (0–20 cm) Brjansk, Russia (1.3–2.1)× 10−6 1.27 × 10−7 IV&LV [96, 97]
IAEA 414 Mixed Fish Irish Sea and North Sea (8–12) × 10−6 NA IV [98]
IAEA 437 Soft tissues of mussels Mediterranean Sea (0.8± 0.1) × 10−6 NA LV [99]

(Mytilusgalloprovincialis)
NIST SRM 2709 Soil San Joaquin (4.9± 1.3) × 10−9 1.8 × 10−10 LV [100]
IAEA 446 Seaweed Baltic Sea (130 ± 20) × 10−6 NA

a: Data are from certificates of the standard issued by National Institute of Standard and Technology (NIST, www.nist.gov) and International Atomic Energy Agency
(IAEA, www.iaea.org), as well as literatures cited in the table.

b: The values in italics are given as range of values.
c: Certified value (CV); Information value (IV); Literature value (LV).
NA: Not available.

dimethylaniline and measured by GC-MS. 129I concentration
in iodide form was measured by GC-MS after direct deriva-
tion of iodide. The concentration of 129I in iodate was calcu-
lated by the difference of total inorganic and iodide forms.
Organic 129I concentration was calculated as the difference
between the total 129I and total inorganic 129I (iodide-129
plus iodate-129). The detection limits of the method for
iodide-129 and iodate-129 were 10.3 ng 129I/L [43]. Due to
the high detection limit, this method can be only used for
analysis of high-level waste samples.

Laser induced fluorescence spectroscopy (LIFS) has po-
tential to directly measure gaseous molecular iodine (I2).
In this method, 129I2 and 127I2 are excited by laser to emit
fluorescence signals of different wavelengths, the intensi-
ties of the signals corresponding to I2 concentration for 129I
and 127I, respectively. A detection limit of this method of
8.6×10−13 g m−3 or 4.0×109 atoms m−3 for 129I2 has been
reported [70], which is one order of magnitude higher than
that of GC-MS [72]. This technique is supposed to be used
to on-line monitor 129I2 that is released during dissolution of
spent nuclear fuel from a reprocessing plant [88, 89]. How-
ever, so far the technique is still at laboratory level, and its
application in the measurement of 129 I2 in real samples has not
yet been reported.

2.3 Carrier, chemical yield tracer and standards

To improve the chemical yield of 129I in chemical separation
and to obtain sufficient amount of iodine for measurement of
129I, stable iodine (127I) is normally added as carrier. How-
ever, the carrier might contain some levels of 129I impurity,
which introduces extra 129I to the sample, resulting in high
analytical uncertainty. Therefore, 129I level (129I/127I ratio)
in carrier should be as low as possible. An iodine reagent
produced by Woodward Inc. (USA) has been widely used
as iodine carrier in 129I analysis due to its low 129I/127I ratio
down to 2×10−14 [90]. However, elevated 129I/127I ratios (to
10−13) in this reagent have also been observed, which might
be attributed to a contamination of the reagent by anthro-
pogenic 129I from the air during the storage in laboratory

where high 129I level exists in atmosphere, such as in the Eu-
ropean laboratories [19]. Therefore, it is necessary to assay
129I level in the iodine reagent prior to use.

As a key issue in chemical separation, chemical yield of
129I is important for the determination of 129I, which is of-
ten monitored by gravimetric method [91] and radioisotopic
tracers 131I or 125I [56, 92–94]. Gravimetric method can only
be used when highly excessive amount of stable iodine car-
rier is added to the samples prior to separation. The obvious
disadvantage of this method is that only a final yield can be
measured after iodine is separated, purified, and converted to
precipitate form, e.g. AgI. Yields of iodine in each step and
iodine in the solution are not measurable. These drawbacks
can be overcome by use of radioisotopes of iodine as yield
tracer. Due to the suitable half-lives and gamma rays emis-
sion that can be easily measured by gamma spectrometry, 131I
(T1/2 = 8.02 days) or 125I (T1/2 = 59.4 days) has been applied
as yield tracer by addition to the solution and equilibrated with
iodine isotopes (129I and 127I) in the original samples through
redox reactions. However, it has been reported that 131I tracer
normally contains some amount of 129I, because 129I can be
produced during the production of 131I by neutron-induced
fission of 235U and neutron activation of Te isotopes [94], con-
sequently 131I is not suitable as a chemical yield tracer of 129I,
especially for the determination of low-level 129I. 125I is there-
fore recommended. It is worthy to mention that the species
of 125I in tracer solution should be checked when it is used as
a tracer for speciation analysis of 129I.

Table 5 lists the commercially available 129I standard ma-
terials, as well as the certified reference materials with re-
ported 129I values. A series of 129I standards solutions with
129I/127I ratios ranging from 10−6 to 10−12 are commercially
available from the National Institute of Standard Technol-
ogy, USA (NIST), which can be used as calibration stan-
dard for 129I measurement. 129I standard solution with high
129I/127I ratio up to 10−4 is also available from NIST, which
can be used for the analysis of sample with high 129I con-
centration using radiometric methods. The early standards
of 129I were often prepared from this standard solution by
sequential dilution using 127I carrier for AMS and RNAA
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measurement of 129I. A certified reference material of natural
seawater for 129I, IAEA-418, has been issued by the IAEA
and is commercially available. A few standard reference ma-
terials of soil, sediment, fish and seaweed with information
values of 129I concentration and/or 129I/127I ratio or reported
129I level in literatures are also commercially available [95–
100]. Although these standards include seawater, sediment,
seaweed, soil, and biological tissue, they still can not sat-
isfy the analytical requirement for a large number of com-
plex environmental and geological samples. In addition, no
standard reference material is provided with 129I speciation
information is available.

3. Applications of 129I speciation in
environmental research

Once anthropogenic 129I is released to the environment, it
disperses from the source, incorporates in various environ-
mental media and participates in various environmental pro-
cesses. Major pathways of these processes include the emis-
sion of gaseous organic and inorganic iodine compounds
into the atmosphere from nuclear facilities and from the
oceans where anthropogenic 129I was discharged to, con-
version of iodine species in the atmosphere, deposition of
iodine species from the atmosphere to the lands, uptake and
accumulation of iodine in living organisms, and adsorption
and association of iodine to the components of soil and
sediment [101]. Accurate assessment of these processes ne-
cessitates consideration of the speciation of iodine [102].

In this article, recent applications of 129I speciation in
various environmental processes are reviewed. In hydro-
sphere, speciation analysis of 129I and 127I has been applied
to study conversion mechanism of iodine species in Euro-
pean seas [2, 10] and in groundwater at Savannah River Site
(SRS) [103]. In soil and sediment, the main factors control-
ling migration and retention of iodine can be also investi-
gated by speciation analysis of 129I. Transfer of atmospheric
iodine could be elucidated by wet and dry deposition of
129I, in which 129I was used as an atmospheric tracer for air
masses movement. The feasibility of utilizing 129I to trace
organic carbon cycling has been proposed by speciation an-
alysis of 129I in estuary water. Although no application of 129I
speciation analysis on the biosystem has been reported, great
potential exists for studies on elaboration of metabolism
mechanism of iodine in organisms.

3.1 Conversion of iodine species in water system

Iodine species can be used to investigate the environmental
behavior and geochemical cycle of iodine. Despite the fac-
tors affecting transformation of iodine species in water sys-
tems are known, such as pH, Eh, dissolved oxygen concen-
tration, concentration of reductant (e.g. Fe2+, H2S), biolog-
ical activity and light, the conversion mechanism of iodine
is still not well understood. Reduction of iodate to iodide,
for instance, is a thermodynamically unfavorable process,
while iodide is often measured in coastal and surface wa-
ter in the ocean. Many investigations have been carried out
to explore the iodide formation in the ocean by speciation
analysis of stable iodine [104, 105]; however, it is difficult
to identify the newly produced forms from the previously

existing species, consequently offering no explanation of
the conversion pathways and processes. Anthropogenic 129I
discharged from reprocessing plants at La Hague (France)
has been successfully applied as tracer to study mechanism
of iodine species conversion in the English Channel, North
Sea and Baltic Sea [2, 78, 106, 107]. The chemical specia-
tion analysis of 129I and 127I in surface water of the North
Sea showed a significant increase of I−/IO3

− ratio for both
129I and 127I in the water at the Dutch coast and German
Bight compared to those in the English Channel, demon-
strating a fast iodate reduction to iodide at the Dutch coast.
Nevertheless, the oxidation of iodide to iodate in the open
sea presented a slow process based on the relatively stable
I−/IO3

− ratio [2]. Baltic Sea shows a distinct pattern of io-
dine species. 129IO3

−/127IO3
− ratio in Baltic seawater was

much higher than 129I−/127I− ratio, but close to the level in
the Kattegat. This was attributed to the fact that both 127I and
129I in iodate in the Baltic Sea water originated from the Kat-
tegat [78, 107]. Most of iodate in the Kattegat seawater was
reduced to iodide when transported to the Baltic Sea, consid-
ering that iodine mainly occurs as iodide in the anoxic water
of the Baltic Sea. As a consequence, 129I−/127I− ratio in the
Baltic Sea is much lower than that in the Kattegat and the
North Sea. The water in the Kattegat is a mixture of high 129I
water from the North Sea and low 129I water from the Baltic
Sea [106, 107].

It has been proposed that many processes are related to
the conversion of iodine species in seawater, such as biologi-
cal process involving microorganism and seaweed [32, 108],
chemical process involving reductive substance indicated by
low Eh value in the water like Baltic Sea water [2], as well as
photochemical process [37]. A high ratio of iodide/iodate in
the surface water compared with the deep water observed in
the Arctic Sea showed that the biological process might be
the main reason causing the reduction of iodate, where the
Eh of seawater from the deep sea and surface are the same
(unpublished data). Furthermore, a significantly high corre-
lation between the iodide/iodate ratio and concentration of
chlorophyll in seawater was observed in the Arctic seawater,
which also confirmed that the reduction of iodate to iodide in
the Arctic Sea is a biologically controlled process. Although
many investigations have proposed that the biological pro-
cess might be the major process for the conversion of iodine
species in seawater, but it is still not clear how iodate was
transformed to iodide through organisms.

Besides studies on ocean system, 129I speciation also has
a potential application to explore the origin of iodine in
terrestrial water system. Unfortunately, only few data was
available for 129I speciation in lake water [109].

In addition to natural systems, the speciation analysis of
iodine showed significant implication for remediation and
protection of groundwater in some specific areas. Investiga-
tions on speciation of 129I and 127I in groundwater at Savan-
nah River Site (SRS) have been conducted. At this site, 129I
had been released to the environment as waste during op-
eration of a spent nuclear fuel reprocessing plant between
1955 and 1988, which contaminated surrounding ground-
water. Results showed that equilibrium of 129I with stable
127I was reached with 129I/127I ratios of 0.03 for I−, IO3

−

and organic iodine within decadal time. The fast conversion
among iodine species in groundwater system at SRS was
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proposed to be related to the significantly changed chem-
istry of down-gradient groundwater affected by the strongly
acidic waste. Iodine transportation in SRS groundwater from
upstream to downstream was highly pH-dependent through
transforming iodine species from iodide to iodate or organic
iodine [110, 111], which confirmed again the fast conver-
sion among the three iodine species. Compared to fresh
water, the relatively high fraction of iodate (27.3%) and or-
ganic iodine (23.9%) were also regulated by chemical and
biological factors, other than pH and Eh, in the studied sys-
tem [43]. From the point of environmental remediation at
SRS, by injecting base solution, 129I could be converted
to iodate form, which is easily adsorbed on soil and sedi-
ment [111].

3.2 Migration and retention of iodine in soil and
sediment

Migration and bioavailability of iodine are of high concern
not only because iodine is a micronutrient to humans and ra-
dioiodine (131I and 129I) is high hazard to thyroid, but also
due to the implication for disposal of radioactive waste. Io-
dine species in soil and sediment is the main factor controlling
the processes of retention, mobilization and transportation of
iodine in the environment. Fractionation analysis of 129I in
loess profile of Chinese loess plateau [66] has showed simi-
lar 129I/127I ratios in organic and leachable phases, implying
that organic associated iodine might be also mobile. Even
though the organic associated and leachable iodine consti-
tutes for 80–90% of the total iodine for both 129I and stable
iodine and are more labile than those in oxides and residue
phases, rapid decrease of 129I/127I ratios with depth indicated
downwards transportation of iodine is a slow process for all
fractions. In the loess profile, 129I mainly originated from
global fallout; the leachable 129I including water soluble, ex-
changeable and carbonate iodine, accounts for 12–19% of
total 129I, while higher percentage of water soluble 129I might
occur in soil with specific source of 129I. Speciation analysis
of 129I and 127I in soil contaminated by a small reprocess-
ing plant release has shown that 2.5–4% of 127I and 38–49%
of 129I were in water soluble form [112]. In Chernobyl ac-
cident contaminated soil, different concentration but still as
high as 10–20% of 129I was in water soluble and exchangeable
form [30]. These results indicated that a large portion of 129I
compared to 127I occurs as readily mobile iodine that can be
taken up and accumulated by plants, and subsequently trans-
ferred to humans. Different soil-to-vegetation transfer factors
as indicator of bioavailability of natural 127I (0.006–0.27) and
anthropogenic 129I (0.01–1.05) have been reported [26, 113].
In contrast to 127I, large fraction of water soluble 129I and
transfer factors of 129I represent higher risks of radioactive
iodine.

It has been proposed that the presence of organic matter fa-
cilitates the retention of iodine in soil and sediment. Mobility
of iodine species follows the order of I− > IO3

− > organic
iodine; and for organic iodine, LMW > HMW > particu-
late organic iodine (LMW, low molecular weight; HMW, high
molecular weight) [43, 110, 111, 114]. High level of organic
iodinehas been observed in the lake sedimentcollected in cen-
tral Sweden accounting for 47–95% and 57–82% for 129I and
127I, respectively [38]. For relatively readily mobile inorganic

iodine ions in soil and sediment, I− and IO3
−, incubation ex-

periments have shown that 72–77% of the newly introduced
129I− or 129IO3

− was irreversibly sequestered into the organic
rich riparian soil [114], and they can be retarded presumably
by forming covalent bonds with surface organic carbon bind-
ing sites [43]. When iodine occurs in highly mobile organic
species, such as the organic-colloidal form and organic 129I
with low molecular weight, retention of iodine by soil organic
matter might be moderated, and remobilization of 129I associ-
ated organics and oxides in the soil might happen during soil
erosion and storm run-off [35, 80].
It is well known that most of the iodine in soil and sed-
iment combines with humic substances, including humic,
fulvic acid and humin, which significantly influence iodine
mobility [35, 115]. Investigation on organic iodine in differ-
ent soils and sediments showed diverse distribution patterns
in humic, fulvic acid and humin, which are related to the
surrounding circumstances. It has been observed that in soil
samples 37–50% of iodine isotopes (both 129I and 127I) are
associated with humic acid, about 10% with fulvic acid, and
3–15% with humin and residues. In lake sediment, different
distributions of iodine species (129I and 127I) were observed
for oxic and anoxic sediments. In an oxic lake sediment, it
was observed that 31%, 10% and 21% of 129I and 21%, 8%
and 43% of 127I were associated with humic acid, fulvic acid
and humin, respectively; while in an anoxic sediment 5%,
44% and 12% of 129I and 30%, 16%, and 42% of 127I were
associated with humic acid, fulvic acid and humin, respec-
tively. The fraction distribution of iodine isotopes in the oxic
sediment is similar to that in soil, but different from that in
anoxic sediment, indicating that association of iodine with
soil and sediment is circumstance dependent. This result is
useful to assess iodine retention and transfer in the environ-
ment, especially at dumping sites of radioactive waste.

3.3 Dispersion of iodine in atmosphere

Atmospheric chemistry of iodine is important for geochem-
ical cycle of iodine, primary particle formation, and de-
pletion of ozone in the stratosphere [116]. Iodine emission
from oceanic and terrestrial systems are major sources of
iodine in the atmosphere [117], while due to the compli-
cated atmospheric iodine chemistry, the processes are still
not well understood related to the speciation conversion,
interaction among iodine species and with atmospheric com-
ponents, and transport pathway. Atmospheric 129I originat-
ing from gaseous releases and re-emission of 129I from the
seas to where 129I has been discharged from the spent nuclear
fuel reprocessing plants can take part in all atmospheric
processes, such as speciation transformation, association to
aerosol and capture in precipitation, as well as final deposi-
tion to earth surface. Few studies have been conducted using
129I species as atmospheric tracer to elucidate these chemical
and physical processes.

Wet deposition is the dominant pathway to transfer io-
dine from atmosphere to land and ocean. The concentration
of 129I in precipitation over Europe ranges between 108 and
1010 atoms L−1 with significant spatial and temporal varia-
tions [118–120]. Compared to the 129I concentration in USA
with a range of (0.07–0.67) × 108 atoms L−1 [121], Euro-
pean atmosphere with 2–3 orders of magnitude higher 129I
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has been strongly influenced by the 129I discharges from
the two European nuclear reprocessing facilities. This de-
duced annual wet deposition of about 60 g 129I in Sweden
and Denmark, which accounts for less than 1% and 0.05%
of the total annual gaseous and liquid discharges from the
Sellafield and La Hague Facilities, respectively [122]. Large
variation of 129I concentration in precipitation in Europe has
been attributed to different sources of moisture and precip-
itation rate. For instance, in northern Europe, Norway and
Germany receive the rain influenced directly by the North
Sea with strong 129I contamination, while the precipitation
in Italy and Spain is mainly from the West Atlantic Ocean
containing much less 129I [118]. According to the correla-
tion between 129I and the source of air masses, it should be
feasible to utilize 129I to trace the sources and pathway of air
masses.

By speciation analysis of 129I and 127I in a time series of
precipitation collected from Risø, Denmark during 2001–
2006 [123], it has been observed that the concentrations of
total 129I in precipitation were (2.8–56.3) × 108 atoms L−1,
which was in the same range as those in Norway ((16–
41) × 108 atoms L−1, in 2003) and Sweden ((10–57) ×
108 atoms L−1, during 2001 to 2002). 50–99% of 129I in the
precipitate was in the form of iodide, while iodate was the
major species of 127I, accounting for 43–93% of total 127I.
By comparing seasonal variation of 129I concentrations and
129I/127I ratios with the discharge history of 129I from the
reprocessing plants to marine and atmosphere, it was con-
cluded that 129I in the northern Europe mainly originated
from the re-emission of 129I from the sea, especially the near-
shore area of the North Sea and the Norwegian Sea. This
conclusion has also been confirmed by speciation analy-
sis of 129I and 127I in atmosphere in Foehr, Germany [124],
where 15% of 127I and 18% of 129I were associated with par-
ticles (> 0.1 μm), 45% of 127I and 43% of 129I in inorganic
gaseous form and about 40% for both 127I and 129I in organic
gaseous form. The 129I/127I ratios in these iodine species
were significantly different, following the order: particle-
bound iodine (8.4×10−7) > organic iodine (3.1×10−7)
> inorganic fraction (1.2×10−7). Distribution of iodine
species in the atmosphere also indicated that 129I at Foehr
was dominated by local source, while global aerosol was just
of minor importance [124].

129I concentration in aerosol collected at Seville, Spain
in 2001 has been reported to be (1.8–19.3) × 104 atoms m−3,
which showed a less influence by emissions from repro-
cessing plants than that in north Europe [125]. Although
2–3 orders of magnitude higher 129I concentrations of (40–
930) × 104 atoms m−3 [126] in aerosol collected at Vienna,
Austria in the same year were observed compared to that
in the southern Europe (Spain), the influence of air emis-
sion of 129I from reprocessing plant was also not evident.
Even in northern Europe, for instance Sweden, only liquid
discharge of 129I from the reprocessing plants to the seas
is a dominant impact, instead of gaseous source [127]. The
previous works only focus on the horizontal transportation
of atmospheric 129I, vertical dispersion of 129I in differ-
ent altitudes has not yet been well investigated. A recent
investigation showed an influence of altitude on the con-
centrations of 129I and 129I/127I ratios [128], about one order
of magnitude lower 129I concentrations (104 atoms m−3) at

high altitude areas (Sonnblick and Zugspitze, eastern Alps,
about 3000 m ASL) was observed in contrast to about
105 atoms m−3 in lower altitude station (Vienna, Austria,
202 m ASL). This might be attributed to the source term
of 129I at different altitude, because less 129I from repro-
cessing air emission and re-emission from seawater can be
injected to high altitude atmosphere. Furthermore, clouds
scavenging and precipitation are possible ways to reduce
129I concentration in the high altitude. Temporal variation of
129I at Sonnblick and Zugspitze was related to the sources
of air masses. Highest 129I concentrations were observed
to be (7.6 ± 0.3) × 104 atoms m−3 during 23rd February to
1st March at Sonnblick, and (7.5 ± 0.8) × 104 atoms m−3

during 1st–7th May at Sonnblick. Using back trajectory an-
alysis, the sources of 129I at both sites were elucidated.
Sonnblick and Zugspitze were influenced mainly by air
masses from southeast Europe and northwest Europe, re-
spectively, which contacted with surface of Mediterranean
Sea and Baltic Sea separately before they arrived at the two
locations. This indicated that even at high altitude, atmo-
spheric 129I to some extent originated from the air from the
sea surface.

In recent years, it has been proposed that emission of mo-
lecular iodine (I2) from seaweed to the atmosphere might be
an important pathway of iodine from marine system to at-
mosphere [129]. The 127I2 concentrations have been reported
to be 0.03–1.05 ng m−3 at the west coast of Ireland dur-
ing August 2002 and 0.29–1.23 ng m−3 at Mweenish Bay,
Ireland during August and September 2007. High emission
of I2 from the seas is important for the formation of pri-
mary nuclei as precursor, as well as for the depletion of
ozone in stratosphere [72, 130]. For 129I2, a concentration of
2.33×108 molecule m−3 has been measured in Mainz, Ger-
many using GC-MS by collecting a large volume of air in
a few weeks [72]. Although 129I2 is an ideal tracer for in-
vestigation of iodine cycle in atmosphere, the state of art of
techniques for measurement of 129I2 is not satisfactory, either
unavailable sampling or low sensitive detection that hinder
this application. It is therefore expected that better under-
standing of 129I2 emission from marine system and mech-
anism of molecular iodine formation can be conducted by
advanced sampling and high sensitive AMS measurement
techniques.

Besides molecular iodine, a number of gaseous organic
iodine compounds, as well as inorganic forms of iodine and
radicals of iodine were also observed in atmosphere [102].
The life-time of these organic forms in the atmosphere
ranges from several days (CH3I, CH3CH2ICl) to several min-
utes (CH2I2) [32], determining the residence time and reac-
tion rate of iodine in atmosphere. A recent work suggested
that the marine phytoplankton is the predominant source
of organic iodine by analysis of gaseous organic iodine in
marine boundary layer of southern Atlantic Ocean compar-
ing with chlorophyll-a on the ocean surface [32]. However,
no 129I in individual volatile organic compounds has been
reported, which is mainly attributed to the extremely low
concentration of gaseous 129I and lack of appropriate separa-
tion and preconcentration techniques.

Many efforts have been made to investigate the marine
geochemical cycle of iodine, while the iodine cycle in ter-
restrial systems was still poorly understood due to its com-
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plex environmental chemistry and low natural abundance. It
has been suggested that iodine in the terrestrial environment
mainly originates from ocean by long distance transporta-
tion as gaseous iodine and particle-associated species, but
a recent investigation showed that emission of iodine to at-
mosphere from terrestrial vegetation and soil is in a magni-
tude similar to the oceanic source strength [131]. Based on
the different source terms of 129I and 127I in the environment,
speciation analysis of 129I and 127I in the terrestrial system
might provide useful information to further understand this
process. The major challenges are separation and concen-
tration of iodine species from air to be able to measure 129I
species in the environment.

3.4 Dissoluble organic iodine as an analog tracing
cycling of dissoluble organic carbon

As stated above, a large propotion of iodine associates with
organic matter in natural water systems. It has been observed
that organic 129I accounts for approximately 40 to 75% of
the total 129I in fresh and coastal marine waters. The 129I/127I
ratios in dissolved organic iodine (DOI) as a function of
salinity showed similar variation with values of δ13C and
δ14N in dissolved organic matter in the upper estuary, while
129I/127I ratios in iodide and iodate did not show this fea-
ture [33]. Therefore, DOI has the potential to be a proxy
indicator of terrestrial dissolved organic carbon (tDOC) in
coastal areas. Besides, 129I level has been elevated by more
than two orders of magnitude by anthropogenic releases
since 1940s. Dissolved organic 129I was also proposed as
a geochronometer for short-term processes (about 50 years)
to date the tDOC [33].

3.5 Biogeochemical cycle of iodine

In order to understand biogeochemical cycle of iodine and
estimation of radiation risk of radioactive iodine to human
and to the ecosystem, it is crucial to investigate biolog-
ical and environmental behaviors of iodine [101]. Iodine
is highly concentrated in marine plants, especially brown
seaweed. The mechanism of iodine uptake and enrichment
in seaweed from seawater is proposed to be one of facili-
tated diffusions, involving oxidation of the charged iodide to
the hydrophobic compounds HIO and elementary iodine by
a haloperoxidase in the cell wall, requiring low levels of hy-
drogen peroxide [108]. However, after passing through the
cell wall, iodine retention and its associated forms in cells
is still not clear. Information on biological macromolecule
bound iodine, such as protein, polyphenol, polysaccharide,
small organic molecular associated iodine such as amino
acids, T3 and T4, and inorganic iodine ions can help us to
understand the mechanism of iodine uptake and release in
marine and terrestrial organism, such as seaweed and ter-
restrial vegetation [39]. However, few works on speciation
analysis of 129I in biological samples have been reported due
to the difficulties in separation of different 129I bound bi-
ological macromolecules. Hou et al. [39, 41] have reported
a biochemical method for separation of inorganic iodine
species and macromolecule associated iodine in seaweed.
This method might be utilized for 129I speciation analysis
with some modifications for investigating the biogeochemi-
cal cycles of iodine.

3.6 129I and its speciation in the Fukushima accident

The Fukushima accident in 2011 has released some amount
of 129I to the atmosphere and ocean. A dispersion model
has suggested that 42% of 129I was attached to aerosol,
and the remaining 58% of 129I in gaseous forms [132].
This distribution of 129I was deduced from a measure-
ment of 129I deposited in soil in vicinity of Savannah River
Plant [133]. However, 131I measured in atmosphere dis-
persed from Fukushima accident to European countries
presents a different distribution of species. The measured
data of 131I in many European stations showed that 10–30%
of 131I in atmosphere was associated to aerosols, and more
than 70% of 131I was in gaseous forms [134]. The difference
between the two sets of data may be ascribed to the differ-
ent source of 129I. More recently, speciation analysis of 129I
and 127I in seawater offshore Fukushima has shown that most
of 129I (> 60–90%) in seawater is in iodide form, while io-
date is the dominate species of 127I. It has been estimated
that a total 1.2 kg of 129I has been released to the environ-
ment, in which 0.35 kg of 129I was directly discharged to the
sea, and 0.68 kg of 129I released to the atmosphere was de-
posited in the Ocean [5]. The migration of 129I released from
Fukushima accident is still not clear so far, further investi-
gation on 129I and its speciation will be of benefit to precise
estimation of radioactive risk of radioiodine released during
nuclear accident.

4. Conclusions and prospects

Analytical techniques of 129I speciation have been advanced
in recent years, including denuder sampling for molecu-
lar iodine (I2), selective coprecipitation separation of carrier
free 129I, and GC-MS measurement of 129I species. They will
promote the application of 129I speciation in environmen-
tal processes in the near future. Some standard materials of
129I are commercially available but still limited and could
not satisfy the requirement of quality insurance for numer-
ous types of environmental samples; moreover, no standard
material is available for 129I species.

Applications of 129I as environmental tracer have been ex-
panded from measurement of total 129I to speciation analysis
of 129I. 129I speciation analysis has been applied in the fields
of hydrosphere, geosphere and atmosphere to elucidate geo-
chemical cycling of iodine, transfer and retention of iodine
in various reservoirs, as well as conversion mechanism of io-
dine species. The major progress and potential applications
include:

1. In marine system, the source, distribution, transport path-
ways and species of 129I and 127I in the English Chan-
nel, North Sea, Baltic Proper, Kattegat and Skagerrak
Basins have been investigated, providing further know-
ledge on conversion process, mechanism and rate of io-
dine species, as well as iodine circulation in the ocean.

2. In geosphere, mobility and retention of iodine in soil and
sediment were investigated by 129I speciation analysis,
using the modified sequential extraction procedure. Io-
dine in soil and sediment mainly associates with organic
matter, mainly humic substances. Different distribution
of iodine in humic substances (humic acid, fluric acid
and humin) of soil, oxic and anoxic sediments indicated
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that association of iodine with organic matter is related
to their redox conditions. Immobilization of iodine in
organic matter may be temporal if iodine is present in
organic-colloidal form or low molecular weight organic
iodine. These studies have significant implications on en-
vironmental remediation, especially at highly radioiodine
contaminated sites, and assessment of immobilization
and remigration of iodine in soil and sediment.

3. 129I has been applied to trace the source and pathways
of air masses. With applications of 129I speciation analy-
sis in atmosphere, it is expected that complicated atmo-
spheric chemistry of iodine can be studied, for instance,
explaining the probable reactions and transportation of
iodine in atmosphere.

4. Due to the importance of low dose radioiodine exposure
to human and enrichment of iodine in ecosystem, it is
expected that 129I speciation in organisms and biologi-
cal macromolecules will have a potential application to
investigate biogeochemical cycling and biological behav-
iors of iodine in the future.

5. Analysis of 129I and its speciation in the Fukushima ac-
cident can provide valuable information to retrospect the
release of radioactive iodine in the nuclear accident and
to predict the effect of this accident.

The current applications of 129I speciation are still limited
and mainly focus on inorganic 129I species in marine water,
soil and sediment. No application of speciation of 129I in bi-
ological materials has been reported. With development of
speciation analysis techniques for 129I in bio-materials, it is
expected that the application of 129I speciation can improve
our understanding on the complicated biological processes
of iodine in the environment.
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Varga, Z.: A new reference material for radionuclides in the mus-
sel sample from the Mediterranean Sea (IAEA-437). J. Radioanal.
Nucl. Chem. 283, 851–859 (2010).

100. Schmidt, A., Schnabel, C., Handl, J., Jakob, D., Michel, R., Synal,
H. A., Lopez, J. M., Sulter, M.: On the analysis of iodine-129
and iodine-127 in environmental materials by accelerator mass
spectrometry and ion chromatography. Sci. Total Environ. 223,
131–156 (1998).

101. Amachi, S.: Microbial contribution to global iodine cycling:
volatilization, accumulation, reduction, oxidation, and sorption of
iodine. Microb. Environ. 23, 269–276 (2008).

102. Hu, Q. H., Moran, J. E., Gan, J. Y.: Sorption, degradation, and
transport of methyl iodide and other iodine species in geologic
media. Appl. Geochem. 27, 774–781 (2012).

103. Zhang, S. J., Du, J., Xu, C., Schwehr, K. A., Ho, Y., Li, H.-P.,
Roberts, K. A., Kaplan, D. I., Brinkmeyer, R., Yeager, C. M.,
Chang, H. S., Santschi, P. H.: Concentration-dependent mobility,
retardation, and speciation of iodine in surface sediment from
the Savannah River site. Environ. Sci. Technol. 45, 5543–5549
(2011).

104. Wong, G. T. F., Cheng, X.: Dissolved inorganic and organic io-
dine in the Chesapeake Bay and adjacent Atlantic waters: Spe-
ciation changes through an estuarine system. Mar. Chem. 111,
221–232 (2008).

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 09.06.15 13:20



540 L. Y. Zhang and X. L. Hou

105. Schwehr, K. A., Santschi, P. H.: Sensitive determination of io-
dine species, including organo-iodine, for freshwater and sea-
water samples using high performance liquid chromatography
and spectrophotometric detection. Anal. Chim. Acta 482, 59–71
(2003).

106. Yi, P., Aldahan, A., Hansen, V., Possnert, G., Hou, X. L.: Iodine
isotopes (129I and 127I) in the Baltic Proper, Kattegat, and Skager-
rak Basins. Environ.Sci.Technol. 43, 903–909 (2011).

107. Hansen, V., Yi, P., Hou, X. L., Aldahan, A., Roos, P., Possnert, G.:
Iodide and iodate (129I and 127I) in surface water of the Baltic Sea,
Kattegat and Skagerrak. Sci. Total Environ. 412–413, 296–303
(2011).

108. Küpper, F. C., Carpenter, L. J., McFiggans, G. B., Palmer, C. J.,
Waite, T. J., Boneberg, E. M., Woitsch, S., Weiller, M., Abela, R.,
Grolimund, D., Potin, P., Butler, A., Luther, G. W., Kroneck,
P. M. H., Meyer-Klaucke, W., Feiters, M. C.: Iodide accumulation
provides kelp with an inorganic antioxidant impacting atmo-
spheric chemistry. Proc. Nat. Acad. Sci. (PNAS) 105, 6954–6958
(2008).

109. Lehto, J., Räty, T., Hou, X. L., Paatero, J., Aldahan, A., Poss-
nert, G.,Flinkman, J., Kankaapää, H.: Speciation of 129I in sea,
lake and rain waters. Sci. Total Environ. 419, 60–67 (2012).

110. Kaplan, D. I., Roberts, K. A., Schwehr, K. A., Lilley, M. S., Brink-
meyer, R., Denham, M. E., Diprete, D., Li, H. P., Powell, B. A.,
Xu, C., Yeager, C. M., Zhang, S. J., Santchi, P. H.: Evaluation of
a radioiodine plume increasing in concentration at the Savannah
River site. Environ. Sci. Technol. 45, 489–495 (2011).

111. Otosaka, S., Schwehr, K. A., Kaplan, D. I., Roberts, K. A., Zhang,
S. J., Xu, C.,Li, H. P., Ho, Y. F., Brinkmeyer, R., Yeager, C. M.,
Santchi, P. H.: Factors controlling mobility of 127I and 129I species
in an acidic groundwater plume at the Savannah River Site. Sci.
Total Environ. 409, 3857–3865 (2011).

112. Schmitz, K., Aumann, D. C.: A study on the association of two
iodine isotopes, of natural 127I and of the fission product 129I, with
soil components using a sequential extraction procedure. J. Ra-
dioanal. Nucl. Chem. 198, 229–236 (1995).

113. Deitermann, W. I., Hauschild, J., Robens-Palavinskas, E., Au-
mann, D. C.: Soil-to-vegetation transfer of natural 127I, and of
129I from global fallout, as revealed by field measurements on
permanent pastures. J. Environ. Radioact. 10, 79–88 (1989).

114. Xu, C., Zhong, J., Hatcher, P. G., Zhang, S. J., Li, H., Ho, Y.,
Schwehr, K., A., Kaplan, D., Roberts, K. A., Kimberly, A., Brink-
meyer, R., Yeager, C. M., Santchi, P. H.: Molecular environment
of stable iodine and radioiodine (129I) in natural organic matter:
Evidence inferred from NMR and binding experiments at environ-
mentally relevant concentrations. Geochim. Cosmochim. Acta 97,
166–182 (2012).

115. Yamaguchi, N., Nakano, M., Takamatsu, R., Tanida, H.: Inorganic
iodine incorporation into soil organic matter: evidence from io-
dine K-edge X-ray absorption near-edge structure. J. Environ.
Radioact. 101, 451–457 (2010).

116. Carpenter, L. J.: Iodine in the marine boundary layer. Chem. Rev.
103, 4953–4962 (2003).

117. Baker, A. R., Tunnicliffe, C., Jickells, T. D.: Iodine speciation and
deposition fluxes from the marine atmosphere. J. Geophys. Res.
106, 28743–28749 (2001).

118. Buraglio, N., Aldahan, A., Possnert, G., Vintersved, I.: 129I from
the nuclear reprocessing facilities traced in precipitation and
runoff in northern Europe. Environ. Sci. Technol. 35, 1579–1586
(2001).

119. Persson, S., Aldahan, A., Possnert, G., Alfimov, V., Hou, X. L.:
129I Variability in precipitation over Europe. Nucl. Instrum.
Methods B 259, 508–512 (2007).

120. Keogh, S. M., Aldahan, A., Possnert, G., León Vintró, L., Mit-
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ABSTRACT: A new analytical method has been developed for speciation
analysis of 127I and 129I in aerosols collected on polypropylene (PP) filter
paper. Iodide, iodate, NaOH soluble iodine, and insoluble iodine were
separated from aerosols using sequential extraction, chromatography
separation, and alkaline ashing and measured using inductive coupled
plasma mass spectrometry (ICP-MS) for 127I and accelerator mass
spectrometry (AMS) for 129I. Parameters affecting the leaching efficiency
and stability of iodine species, such as leaching time and temperature,
amount of alkaline reagent for ashing, ashing temperature and time, and
iodine protective agent, were investigated and optimized. It was observed
that long time water leaching would change inorganic iodine species due to
photochemical oxidation of iodide on the PP filter surface. NaOH leaching
can only extract less than 60% of iodine from the studied aerosol filters even
under heating, implying that total 129I in aerosol might be underestimated
by NaOH leaching. The addition of a reductive agent significantly reduced the loss of iodine during alkaline ashing from more
than 35% to 4%, efficiently improving the separation efficiency of iodine in aerosols. Speciation analysis of 129I and 127I in aerosol
samples collected at Risø, Denmark using the developed method shows that the measured values of total 129I and 127I are in good
agreement with the sum of all iodine species for each isotope, confirming the reliability of the proposed method. Similar
distribution patterns between 129I and 127I species show that iodine is enriched in NaOH leachable and insoluble species and
depleted in water-soluble species, as observed in all aerosol samples.

Atmospheric chemistry of iodine plays a key role in the
formation of primary nuclei of air particles1,2 and ozone

depletion3,4 linking to Earth’s radiation budget and climate
regulation.5 Transformation and interaction of iodine species in
gaseous phases and aerosol particles consist of the complicated
but important processes of iodine chemistry in the atmosphere.
Speciation analysis of iodine in aerosol provides direct and
critical information for understanding these chemical processes
of iodine in the atmosphere, including its origination, transfer
pathway, and interconversion.
A number of investigations on speciation analysis of stable

iodine in aerosol have been carried out in order to study the
atmospheric process of iodine related to particles.6−8 However,
due to the difficulties in identification of iodine sources in
aerosols by measurement of the only stable 127I, the
atmospheric chemical process of iodine is still not well
understood. 129I, a long-lived radioisotope of iodine (half-life
1.57 × 107 years), was released to the environment mainly from
nuclear reprocessing plants (NRPs) with small fractions from
nuclear weapons testing and nuclear accidents,9,10 providing a
unique tracer with specific point source function for
investigation of atmospheric chemistry of iodine. Because of
the ultralow level of 129I in the atmosphere (<107 atoms/
m3),11−14 speciation analysis of 129I in aerosols is still a

challenge, and no method on this issue has been reported so
far.
For speciation analysis of stable iodine in aerosol,15−17 iodine

is often extracted using water under ultrasonic assistance and
subsequently quantified as iodide and iodate and water-soluble
organic iodine using chromatography (ion chromatography and
high performance liquid chromatography) in combination with
ICP-MS quantifictation.16,17 However, it was observed that
ultrasonification might change the original species of iodine in
aerosol by reactions of inorganic iodine ions with cellulose filter
paper and forming new organic iodine species.6 This is
confirmed by a significant decrease in chemical yield of iodide
under ultrasonic extraction from 87% for 5 min to 18% for 60
min.18 In contrast, efficient extraction of soluble iodine from an
aerosol filter, especially for a hydrophobic filter (e.g.,
polypropylene filter), is also critical in obtaining a reliable
result of iodine species in aerosol. However, these issues were
not well addressed in the previous investigations.
Most of the studies on speciation analysis of iodine in aerosol

only focused on the water-soluble fraction,15,17 without
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sufficient information on iodine species in the water insoluble
fraction, which might account for a major proportion19,20 and is
important for the atmospheric chemistry of iodine. Alkaline
leaching using NaOH-Na2SO3, microwave-assisted acid diges-
tion, pyrolysis, and alkaline ashing have been used for the
extraction of total iodine from aerosol samples.14,18,19,21,22

Among these methods, acid digestion with pressure or
microwave assistance might cause iodine loss, due to the
formation of volatile molecular iodine and hydrogen iodide,
which are chemically active and easily react with the materials
of the canister, such as Teflon. Meanwhile, the limited volume
of the digestion canister is incapable of treating an adequate
amount of the filter for speciation analysis of 129I. So far, almost
all the reports on the determination of total 129I in aerosols
employed alkaline leaching at room temperature for 1−2
days,12,13,22 but no data confirms a complete extraction of total
iodine from aerosol by this method. Only few works on
determination of total and water insoluble 127I in aerosol were
implemented using instrumental neutron activation analysis
(INAA),20 which do not need to decompose the sample.
Pyrolysis was proposed to separate total or insoluble iodine
from aerosol on quartz and a cellulose filter.19 However, our
preliminary experiment shows that it is not well suited for filters
of organic materials (e.g., polypropylene) because of rapid
burning of organic materials at high temperatures, causing a low
iodine recovery (<60%). Alkaline ashing is a cost-efficient
method for decomposition of a large size sample for separation
of iodine, but low chemical yield of iodine (ca. 60%) for aerosol
on polypropylene filter was reported.21

This work aims to develop an effective method for speciation
analysis of 129I and 127I in aerosol samples, including iodide,

iodate, and organic iodine in the water-soluble fraction, as well
as alkaline soluble iodine and insoluble iodine. The parameters
for water leaching, stability of iodine species during leaching,
reagents, and parameters for separation of total and insoluble
iodine on a PP aerosol filter are investigated to obtain reliable
results of iodine species (129I and 127I) in aerosol samples.

■ EXPERIMENTAL SECTION

Chemical Reagents and Standards. The 127I carrier
(solid I2 crystal with low 129I level) was obtained from
Woodward Company (Colorado, USA), which was dissolved in
a 0.4 mol/L NaOH-0.05 mol/L Na2S2O5 solution. The 129I
standard solution (NIST-SRM-4949c) was purchased from the
National Institute of Standard Technology (Gaithersburg, MD,
USA). 125I in the form of iodide was purchased from
PerkinElmer Corporate (Waltham, USA). All other chemical
reagents are of analytical grade and prepared using deionized
water (18.2 MΩ·cm).

Aerosol Sampling. The aerosol samples were collected on
a polypropylene filter (Type G-3, PTI, Germany). Six sheets of
filter paper of 44 × 55 cm2 (corresponding to ca. 80 g for each)
were equipped on an in-house aerosol collector (air flux ca.
2000 m3/h), and the filters were changed 1−2 times per week.
The collected aerosols on filters were put into plastic bags and
stored in the dark until analysis. Two aerosol samples collected
at Risø, Denmark (55°41.77′N, 12°05.39′E) in 2011 were
analyzed in this work.

Separation of Iodine Species from Aerosol. Iodine in
aerosol was extracted sequentially using deionized water and
sodium hydroxide solution for water-soluble and NaOH soluble

Figure 1. Schematic diagram of analytical procedure for determination of 127I and 129I species in aerosols. TI for total iodine, WSI for water-soluble
iodine, NSI for NaOH soluble iodine, and RII for residual insoluble iodine.
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iodine, followed by alkaline ashing and water leaching of ash for
insoluble iodine. Iodide and iodate in the water leachate were
further separated using anion exchange chromatography, and
water-soluble organic iodine was obtained by the difference of
total water-soluble iodine and the sum of iodide and iodate.
Figure 1 schematically shows the diagram of the separation
procedure for speciation analysis of iodine isotopes (129I and
127I).
Extraction of Water-Soluble Iodine and Separation of

Iodate and Iodide. An aerosol filter of 0.2−3.0 g
(corresponding to 60−900 m3 air) was cut to pieces (about 2
× 2 mm) and put into a beaker with 5−30 mL of deionized
water. The mixture was stirred using a magnetic stirrer at 600
rpm at room temperature (∼20 °C) for 15 min−5 h to leach
water-soluble iodine. The leachate was vacuum filtered through
a 0.45 μm membrane (MCE membrane 0.45 UM S-Pak Grid,
47 mm, VWR). The remaining aerosol on the filter was rinsed
twice with two aliquots of 10 mL deionized water under
stirring. The two washes were filtered and combined with the
leachate as the water-soluble fraction. The remaining aerosol on
the filter and the MCE membrane were used for subsequent
NaOH leaching.
One-third of the water leachate was used for measurement of

total water-soluble iodine isotopes (127I and 129I) and the
remaining two-thirds for speciation analysis of water-soluble
iodine (127I and 129I). An anion exchange chromatography
method modified from Hou et al.23,24 was used for the
separation of iodate and iodide from water leachate of aerosol.
A column of 15 cm in height and 7 mm in diameter was packed
with strong base anion exchange resin (AG 1 × −4, NO3

−

form, 50−100 mesh, Bio-Rad, California, USA). The water
leachate spiked with 500 Bq of 125I− as a chemical yield tracer
was loaded to the column, on which iodate passed through the
column due to its low affinity with anion exchange resin, while
iodide was strongly adsorbed onto the resin. A total of 10 mL of
0.2 mol/L NaNO3 and 10 mL of deionized water were used to
rinse the column sequentially. The washes were combined with
the effluent for determination of iodate. Iodide absorbed on the
column was then eluted using 30 mL of 5% NaClO and 10 mL
of 3 mol/L HNO3 sequentially. The chemical yield of iodide
during chromatographic separation was obtained by measure-
ment of 125I in the eluate using NaI gamma spectrometry
(Canberra Inc., Connecticut, USA). A total of 1−10 mL of
water leachate, iodate, and iodide fractions depending on the
iodine concentration in the fractions were taken out for
measurement of 127I by ICP-MS, and the remaining solution
was used to further separate iodine for the 129I measurement.
Separation of NaOH Soluble Iodine in Aerosol. The

remaining aerosol on the filter together with the MCE
membrane was immersed into 5−40 mL of a 0.5 mol/L
NaOH solution. The suspension was stirred for 30 min−5 h at
a certain temperature (20, 45, and 60 °C measured using a
probe), and the solution was covered by watch glass for
refluxing. After cooling down to room temperature, the leachate
was vacuum filtered through a 0.45 μm MCE membrane. The
remaining aerosol on the filter was rinsed twice using two
aliquots of 10 mL of 0.5 mol/L NaOH solution. The two
washes were combined with NaOH leachate, which is used for
measuring NaOH soluble iodine isotopes. A total of 1 mL of
NaOH leachate was reserved for measurement of 127I by ICP-
MS, and the remaining leachate was used for further separation
of iodine for 129I measurement. The residue on the filter and

MCE membrane for filtration were transferred into a porcelain
crucible for alkaline ashing.

Separation of Insoluble Iodine and Total Iodine in
Aerosol Filter. The residual aerosol after NaOH leaching or
1.0 g of original aerosol sample in small pieces (about 2 × 2
mm) was weighted into a porcelain crucible. A total of 5−10
mL of 1−2 mol/L NaOH solution, 0−3 mL of 1 mol/L
K2S2O5, and 500 Bq 125I− solution were added and mixed. The
blended sample was dried at 80 °C, and the completely dried
sample was covered with aluminum foil with a 1 cm2 hole
pierced on it and put into a furnace. The temperature of the
furnace was raised to 350 °C at a ramp rate of 5 °C/min and
kept for 2 h, then raised to 500−700 °C at the same rate, at
which it dwelled for 1−4 h.
After cooling down to room temperature, the ash in the

crucible was ground to powder using a glass rod and leached
with deionized water on a hot plate at 70 °C for 20 min. The
leachate was separated from residue by filtration through a
quantitative filter paper (Munktell OOK, Sweden). 125I in the
leachate was measured using a NaI Gamma detector (Canberra,
Connecticut, USA) for calculating the chemical yield of iodine
in the alkaline ashing procedure. A total of 1 mL of the leachate
was used to measure 127I using ICP-MS, and the remaining
leachate was used to further separate iodine for 129I measure-
ment.

Decomposition of Organic Iodine in Water and NaOH
Leachate. A total of 500 Bq 125I− and 1.0 mg of 127I carrier
were added to the leachates (water and NaOH leachate), then
K2S2O8 was added to a final concentration of 30 mg/g. The
mixture was heated at 60 °C overnight with a watch glass cover
for refluxing to decompose organic iodine in the leachate and
convert them to inorganic iodine.25 It was observed that the
yellow NaOH leachate turned colorless after K2S2O8
decomposition.

Separation of Iodine in Each Fraction for 129I
Measurement. The prepared solutions including separated
iodide and iodate fractions, decomposed water and NaOH
leachates, water leachate from ashes of original aerosol filter,
and residue filter after water and NaOH leaching were
transferred to appropriate separation funnels. A total of 1.0
mg of 127I carrier, 500 Bq of 125I− tracer (if not added in
previous steps), and 1.0 mL of 1.0 mol/L KHSO3 solution were
added, and then the solution was adjusted to pH 1−2 using
HNO3 to convert all iodine species to iodide. With the addition
of an appropriate amount of 1 mol/L NaNO2, iodide was
oxidized to I2 and extracted by CHCl3. Iodine in the chloroform
phase was transferred to a new separation funnel and back-
extracted using KHSO3 solution. The CHCl3 extraction and
back extraction were repeated once for further purification. The
separated iodine (in iodide) in a small volume (5−7 mL) was
transferred to a centrifuge tube and precipitated as AgI by the
addition of 1.0 mL of 0.5 mol/L AgNO3 solution.

125I in the
precipitate was measured using a NaI gamma detector for
calculating the chemical yield of iodine. The AgI precipitate was
separated using centrifugation and dried at 70 °C for AMS
measurement of 129I.

Determination of 127I by ICP-MS and 129I by AMS. 127I
in all separated solutions was measured using ICP-MS
(Thermo Fisher, X Series II) as described elsewhere.24

129I in the prepared AgI precipitates was measured by a 5 MV
accelerator mass spectrometer (NEC, Wisconsin, USA) at
Scottish Universities Environmental Research Center, U. K., as
described in detail elsewhere.26 Procedure blanks were prepared
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using a blank filter (without aerosol) and the same procedure as
samples. The measured 129I/127I atomic ratios in the procedure
blanks are ∼5 × 10−13, 1−3 orders of magnitude lower than
that observed in the aerosol samples in this work.

■ RESULTS AND DISCUSSION

Water-Soluble Iodine. Volume of Water and Leaching
Time. The results (Table 1, group 1) show that the amount of
iodine leached using 5 mL of deionized water was about 14%
lower than those using 10 or 15 mL, and the latter two leached
a similar amount of iodine. The relatively lower leaching
efficiency of iodine using 5 mL of water might be attributed to
insufficient immersion of the aerosol filter in water. An
excessive amount of water will cause dilution of iodine in the
leachate, resulting in undetectable 127I species in the leachate by
ICP-MS. Given the volume of PP aerosol filter pieces, it is
recommended to use 10 mL of deionized water for less than 1 g
filter and a mass ratio of water to filter of 10 for more than 1 g
filter.
The amount of water leached iodine increased with the

leaching time extending from 15 min to 1 h and kept constant
afterward until 5 h (Table 1, group 2). A long leaching time
could guarantee complete leaching of iodine and better
repeatability. However, the extended leaching time will reduce
sample throughput and likely increase the risk of iodine species
transformation.
Stability of Iodine Species during Leaching. Maintaining

the species unchanged during the separation process is critical
for obtaining reliable results in speciation analysis. A
synchronous increase in the concentrations of iodide and
iodate was observed with extending the leaching time from 15
min to 1 h, which was followed by a slightly decreased iodide
concentration and increased iodate concentration but a
constant sum of iodide and iodate after 2 h (Figure 2). The
iodide/iodate molecular ratios decreased from 14.4 ± 0.2
within 1 h to 12.6 ± 0.2 for over 2 h leaching. This might be
attributed to oxidation of iodide to iodate in the water leachate
for long time leaching (≥2 h). However, such variation of
iodine species in water leachate was not observed for the
aerosols collected on the quartz filter even for a leaching time
up to 24 h.27

Baker et al.6 have observed that inorganic iodine concen-
trations in water leachate of aerosols using ultrasonic-assistant
extraction decrease with extended leaching time and attributed
this to conversion of iodide to organic iodine species on a
cellulose filter.6 Xu et al.18 also observed significantly decreased
recoveries of iodide spiked to aerosols on a cellulose filter from
87% to only 18% when leached time was extended from 5 min
to 1 h but no variation of iodide recovery when spiked to glass
microfiber filter.18 The stability of iodide during water leaching
of aerosols is therefore likely related to the filter type. In the
view of stability of inorganic iodine species, the organic filter
(PP used in this work and cellulose) shows a stronger influence
than the inorganic fiber air filter (quartz and glass filters), and
thus leaching time has to be strictly controlled to avoid the
transformation of iodine species.
It has been reported that the PP polymer is liable to

degradation when exposed to heat and UV radiation,28 which is
primarily a peroxide- and alkyl radical-mediated chain oxidation
process, forming oxidative products, e.g., free radicals
(Reactions 1−4):29

γ+ → •Initiation PPH PP (1)

+ →• •Propagation PP O PPO2 2 (2)

+ → +• •PPO PPH PPOOH PP2 (3)

Table 1. Influence of Experimental Parameters on Leaching Efficiency of Iodine

experimental parameters

category
group
number

mass of aerosol
filter, g

leachant volume,
mL

leaching
time, h

leaching temperature,
°C

water/NaOH soluble 127I, ng/
m3

amount of leaching water 1−1 0.2 5 0.5 RT 0.261 ± 0.010
1−2 0.2 10 0.5 RT 0.306 ± 0.013
1−3 0.2 15 0.5 RT 0.289 ± 0.014

water leaching time 2−1 1.0 20 0.25 RT 0.356 ± 0.009
2−2 1.0 20 0.5 RT 0.360 ± 0.010
2−3 1.0 20 1 RT 0.392 ± 0.017
2−4 1.0 20 2 RT 0.382 ± 0.012
2−5 1.0 20 3 RT 0.388 ± 0.009
2−6 1.0 20 5 RT 0.387 ± 0.017

NaOH leaching
temperature

3−1 1.0 40 4 20 0.564 ± 0.013
3−2 1.0 40 4 45 0.663 ± 0.011
3−3 1.0 40 4 60 0.646 ± 0.014

NaOH leaching time 4−1 0.2 20 0.5 45 0.549 ± 0.034
4−2 0.2 20 1 45 0.661 ± 0.021
4−3 0.2 20 2 45 0.659 ± 0.026
4−4 0.2 20 3 45 0.658 ± 0.031

Figure 2. Variation of iodine species in water extracts with extracting
time (see experimental conditions in group 2, Table 1).
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→•Termination 2PPO no radical products2 (4)

where PPH is polypropylene, PP• is free radical of
polypropylene, PPO2

• is peroxide radical, and PPOOH is
hydroperoxide.
In the microenvironment of the PP surface, the strongly

oxidative peroxides most likely convert iodide to iodate, as
demonstrated in the Reactions 5 and 6.

+ → +• − − •3PPO 2I 2IO 3PP2 3 (5)

+ → +− −3PPOOH 2I 2IO 3PPH3 (6)

Since the degradation is a thermally induced slow activation
process, and time and temperature dependent, it results in
oxidation of iodide after some time. In order to reduce
transformation of iodine species in aerosol on a PP filter, the
water leaching time is controlled within 1 h.
NaOH Soluble Iodine. Amount of NaOH and Leaching

Time. This procedure was the same as the water leaching
experiment; 10 mL of 0.5 mol/L NaOH solution was used for 1
g aerosol filter sample to get sufficient contact between leaching
solution and aerosol filter. The effect of leaching time on the
leaching efficiency of iodine using 0.5 mol/L NaOH (see Table
1, group 4) shows that the amount of leached iodine increased
when leaching time extended from 0.5 to 1 h, and then
remained constant when further extending leaching time to 3 h.
This indicates that a complete liberation of iodine with 0.5
mol/L NaOH solution can be achieved in 1 h.
Leaching Temperature. The amount of iodine leached using

0.5 mol/L NaOH (Table 1, group 3) increased with the
temperature rising from room temperature to 45 °C, but
remained constant when the temperature further increased to
60 °C. Considering the evaporation loss of leaching solution at
high temperature and partial dissolution of the cellulous
membrane used for filtration of the leachate in warm NaOH

solution, the leaching temperature at 45 °C was used for NaOH
leaching of aerosol filter.
Extraction of iodine from an aerosol filter using 0.5 mol/L

NaOH at room temperature have been often used for
determination of total 129I.12,13,22 Based on the above results,
129I concentrations in aerosols might be underestimated when
leaching at room temperature even without consideration of
NaOH insoluble iodine in aerosol.

Species of NaOH Soluble Iodine. No iodine species in the
NaOH leachate was identified because NaOH solution might
change the species of iodine during leaching. NaOH leaching is
often used to remove organic substances in fractionation
analysis of soil and sediment.30,31 This is based on the high
solubility of major organic substances in soil and sediment, such
as humic substances. The major organic substances in aerosol
include lipidic, saccharides, proteinaceous materials, and humic-
like substances (HULIS).32−34 Most of these organic
compounds have hydrophilic functional groups (e.g., carboxylic
acid, amino acid, aliphatic alcohol) in low molecular weight and
thus are water-soluble. HULIS found ubiquitous in aerosol are
termed so because of their similarity with terrestrial/aquatic
humic substances.35 It was observed that the alkaline extractable
HULIS accounts for 42−74% (expressed as carbon mass) of
total HULIS in aerosols.34 Because iodine is readily associated
with HULIS, especially active iodine species (e.g., I2 and HOI),
as observed in soil and sediment,36 the NaOH soluble iodine
species might be mainly HULIS bound iodine.

Separation of Total and Insoluble Iodine in Aerosols
on PP Filter. Pyrolysis using a tube furnace is most commonly
applied for extraction of total and insoluble iodine from solid
samples such as soil, sediment, and aerosol on a filter due to its
high efficiency.10,19,37 However, the conventionally used tube
furnace has a maximum capacity of 0.5 g PP aerosol filter that is
insufficient for speciation analysis of 129I. In addition, the rapid

Table 2. Influences of Various Parameters on Separation of Iodine from Aerosol Filter by Alkaline Ashing

experimental parameters

category
group
number

amount of aerosol
filter, g

NaOH conc.,
mol/L

NaOH
volume, mL

temperature
, °C

ashing
time, h

1.0 mol/L
K2S2O5, mL

iodine in ash
, %

iodine in
leachate, %

concentration of
NaOH

5−1 1.0 1 10 600 2 0 59.8 ± 0.7
5−2 1.0 2 10 600 2 0 55.8 ± 4.6

amount of NaOH 6−1 0.5 2 5 600 2 0 62.3 ± 0.6
6−2 0.5 2 7 600 2 0 64.4 ± 1.6
6−3 0.5 2 10 600 2 0 70.7 ± 3.5

ashing
temperature

7−1 0.5 2 5 500 2 0 53.7 ± 3.9
7−2 0.5 2 5 550 2 0 43.9 ± 4.0
7−3 0.5 2 5 600 2 0 62.3 ± 2.5
7−4 0.5 2 5 650 2 0 48.0 ± 6.1
7−5 0.5 2 5 700 2 0 43.1 ± 4.0

ashing time 8−1 1.0 1 10 600 1 1 92.8 ± 2.8 59.1 ± 4.5
8−2 1.0 1 10 600 2 1 96.1 ± 4.2 90.0 ± 3.8
8−3 1.0 1 10 600 3 1 91.5 ± 3.6 85.7 ± 0.1
8−4 1.0 1 10 600 4 1 89.3 ± 5.3 79.1 ± 10.3

effect of K2S2O5 9−1 1.0 1 10 600 2 0 65.0 ± 1.5 50.4 ± 2.1
9−2 1.0 1 10 600 3 0.1 85.8 ± 4.3 80.2 ± 4.0
9−3 1.0 1 10 600 3 0.2 86.3 ± 3.4 72.5 ± 3.7
9−4 1.0 1 10 600 3 0.3 91.1 ± 4.6 79.5 ± 4.0
9−5 1.0 1 10 600 3 0.5 92.5 ± 5.4 77.1 ± 3.9
9−6 1.0 1 10 600 3 0.7 95.7 ± 3.6 85.7 ± 4.3
9−7 1.0 1 10 600 3 1 90.3 ± 4.2 82.1 ± 1.5
9−8 1.0 1 10 600 3 2 86.2 ± 4.1 75.7 ± 6.0
9−9 1.0 1 10 600 3 3 87.6 ± 5.4 63.5 ± 9.7
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burning of PP filter produces large amount of gas, suddenly
increases the pressure in the combustion tube, and causes a risk
of extrusive loss of iodine during insufficient combustion, even
an explosion. Ashing is an alternative method to release iodine
from an aerosol filter without limitation on sample size, but it
has to be implemented in an alkali medium to prevent the loss
of iodine through forming volatile species of iodine during
ashing at high temperatures. Effects of the amount of NaOH,
ashing temperature and time, and protection reagent on the
extraction efficiency of iodine were investigated by spiking an
125I tracer on the PP filter (Table 2).
Effect of Amount of NaOH. The analytical results (Table 2,

group 5) show that although the leaching rate of iodine on the
aerosol filter using 10 mL of 1.0 mol/L NaOH (59.8%) for a
1.0 g PP aerosol filter is slightly higher than that using 10 mL of
2.0 mol/L NaOH solution (55.8%); the difference is not
statistically significant. For a 0.5 g PP filter, when the volume of
2.0 mol/L NaOH solution added to filter increased from 5 to
10 mL (corresponding to NaOH/filter mass ratios of 20−40
mmol/g), the leaching rate of iodine slightly increased from
62.3% to 70.7% (Table 2, group 6). The recovery of iodine in
the ash leachate is related to two aspects: the loss of iodine
during the ashing process and the leaching efficiency of iodine
from the ash. In aerosols as well as other environmental
samples, iodine may exist as inorganic iodide and iodate,
organic associated iodine, and mineral and oxide associated
iodine. These forms of iodine will be converted to molecular
iodine or other volatile iodine species when the temperature
increases in the atmosphere of oxygen. The addition of alkali
such as NaOH to the sample provides an alkaline medium,
which prevents the formation of volatile species of iodine (e.g.,
disproportionated reaction with I2); however, it also impairs the
combustion of iodinated organic compounds. To get an overall
better recovery of iodine in the ashing and leaching steps, the
amount of NaOH added has to be compromised. With the
consideration of the effect of high salt content in the leachate
on the ICP-MS measurement of 127I, 10 mL of 1 mol/L NaOH
solution is added to 1.0 g of PP aerosol filter, i.e. an NaOH/
filter mass ratio of 10 mmol/g.
Ashing Temperature. The experiments on influence of

ashing temperature (Table 2, groups 7 and 8) show that the
recoveries of iodine in the leachate increased from 43.9% at 550
°C to 62.3% at 600 °C, and then decreased to 43.1% with a
temperature increasing to 700 °C. The optimal ashing
temperature is 600 °C for separation of iodine from aerosols
on a PP filter. The lower recovery of iodine at higher
temperatures might be attributed to an increased loss of iodine
because of the formation of volatile iodine species and limited
protection function of NaOH at high temperatures. However,

the low recovery of iodine at lower temperatures might mainly
result from the insufficient combustion of organic substances
and retardation of iodine in the resulting carbon. Even at
optimal temperatures, the unsatisfactory iodine recovery in the
leachate might result from both the loss of iodine during ashing
due to defective protection of the NaOH medium and
association of iodine with insufficient combusted carbon.

Protection of Iodine from Loss during Ashing. The loss of
iodine during ashing might be caused by the oxidation of iodine
to volatile I2 at high temperatures. In order to prevent oxidation
loss of iodine during ashing, a reductant, potassium
metabisulfite (K2S2O5) was added to the aerosol filter, and
the results (Table 2, group 9) show a significant improvement
on iodine recovery, which increased from 65% in the absence of
K2S2O5 to 96% with the addition of a suitable amount of
K2S2O5. Such a protection function of the reductant was also
reported in analyzing protein samples for iodine.38 The loss of
iodine decreased with increased K2S2O5 amount and reached as
low as 4% of iodine loss when 0.7−1.0 mmol K2S2O5 was added
to 1 g of PP filter. Further addition of K2S2O5 decreased the
recovery of iodine in both ashing and leaching steps, especially
the latter one. This is probably ascribed to incomplete
combustion of the PP filter in the addition of excessive amount
of K2S2O5. The protection mechanism of K2S2O5 for iodine
during ashing might be explained by the fact that volatile iodine
species (e.g., I2) formed by oxidation of iodine species on a
filter during ashing can be rapidly reduced to stable iodide by
K2S2O5, while the rate of disproportionation reaction of I2 in a
NaOH medium is relatively slower, resulting in partial loss of
the formed volatile iodine species.

Ashing Time. The experiment (Table 2, group 8) shows that
although a high recovery of iodine of 93% was obtained for 1 h
of ashing, the iodine recovery in leachate is of only 59%,
indicating insufficient ashing of the sample. A total of 2−3 h
ashing produced a good recovery of iodine in the ashing step,
but the best recovery of iodine (>90%) was obtained for 2 h
ashing in both ashing and leaching steps. Further extending
ashing time to more than 4 h slightly reduced the iodine
recovery in both ashing and leaching steps.
Based on all these experiments, the optimal parameters for

ashing 1 g of PP filter are 10 mL of 1 mol/L NaOH and 1
mmol of K2S2O5 added as protection reagents and ashing at
600 °C for 2 h.

Analytical Performance. Detection Limit of the Method.
Procedure blanks were prepared through the entire analytical
procedure the same as the samples, and the resulted 127I
concentration and 129I/127I ratio are 4.3 ± 0.7 ng/g filter and
less than 5 × 10−13, respectively. The detection limit of 127I was
calculated as 3 times blank standard deviation (σ0) for a certain

Table 3. Analytical Results of 127I and 129I Species in Aerosols Collected from Risø, Denmark in 2011

sample
ID total iodine

water-soluble
iodine iodate iodide

NaOH soluble
iodine

residual insoluble
iodine

sum of iodine
species

sum/
total, %

127I concentration, ng/m3

AE015 2.027 ± 0.104 0.221 ± 0.011 ND 0.237 ± 0.012 0.638 ± 0.036 1.308 ± 0.087 2.168 ± 0.095 107.0
AE017 1.041 ± 0.055 0.316 ± 0.019 0.033 ± 0.024 0.283 ± 0.014 0.377 ± 0.027 0.343 ± 0.018 1.036 ± 0.037 99.5
129I concentration, × 105 atoms/m3

AE015 43.81 ± 1.28 5.55 ± 0.27 ND 5.91 ± 0.74 12.58 ± 0.46 27.51 ± 1.28 45.64 ± 1.39 104.2
AE017 11.31 ± 0.43 3.34 ± 0.11 ND 3.68 ± 0.24 3.36 ± 0.25 4.27 ± 0.74 10.97 ± 0.78 97.0
129I/127I atomic ratio, × 10−8

AE015 45.60 ± 2.70 52.85 ± 3.66 ND 52.50 ± 7.16 41.58 ± 2.79 44.36 ± 3.61
AE017 22.92 ± 1.48 22.30 ± 1.55 ND 30.43 ± 2.38 18.81 ± 1.93 26.28 ± 4.73
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amount of measurements, i.e. DL = 3σ0, is 2.1 ng/g filter (n =
5). Based on the typical parameters of aerosol sampling, 14 520
cm2 (corresponding to about 480 g) of aerosol filter used for
sampling at an air flow rate of 2000 m3/h for 72 h, i.e. 300 m3/g
filter; a corresponding detection limit of 0.007 ng/m3 air can be
obtained. This is sufficiently low for measurement of iodine in
the atmosphere, where its concentrations are usually in range of
0.1−25 ng/m3.7

For 129I, the detection limit estimated as 3 times the 129I/127I
ratio of the procedure blank was 1.5 × 10−12, corresponding to
129I of 7.1 × 106 atoms (1.5 fg) considering 1.0 mg of 127I
carrier was used for target preparation. The 129I/127I ratios of
(5−76) × 10−8 were measured in precipitation at the same
sampling location in Denmark.40 For the aerosols with a similar
129I/127I ratio as precipitation ((5−76) × 10−8) and 1 ng/m3 of
127I, and assuming the least abundant species accounts for 5% of
total 129I, at least 600 m3 of air (corresponding to 2.0 g aerosol
filter) is needed for speciation analysis of 129I. For the
background areas with 129I/127I atomic ratios of (1−10) ×
10−9, such as those in Asia and America,37,41 more than 30 000
m3 of air volume (corresponding to 100 g filter) is needed for
speciation analysis of 129I.
Speciation Analysis of 129I and 127I in Aerosol in Denmark.

Two aerosol samples collected at Risø, Denmark in 2011 were
analyzed using the established method for speciation analysis of
129I and 127I. The results (Table 3) show that the sum of all the
species including water-soluble iodine, NaOH soluble iodine,
and insoluble iodine is in good agreement with total iodine
concentrations, as revealed by the ratios of sum to total iodine
in the range of 97% to 107% for both 127I and 129I. This
confirms the reliability of the presented method for speciation
analysis of 129I and 127I in aerosol samples.
The total 127I concentrations in the aerosol samples vary

from 1.04 ng/m3 to 2.03 ng/m3. These values fall within the
typical range of iodine concentrations in aerosol from coastal
areas (0.3−21 ng/m3).7 The total 129I concentrations in the
aerosol samples vary from 11.3 × 105 atoms/m3 to 43.8 × 105

atoms/m3, which is consistent with the reported 129I
concentrations in the European aerosol samples of 0.07−79
× 105 atoms/m3.11,12,39 The measured 129I/127I atomic ratios
range from 22.9 × 10−8 to 45.6 × 10−8, which is comparable
with those in precipitation (5.04−76.5 × 10−8) collected at the
same location during 2001−2006.40 The variation of 129I
concentrations and 129I/127I ratios in the aerosols might be
attributed to different sampling dates and meteorological
conditions. A similar large variation was also observed in the
precipitation samples.40

Water-soluble, NaOH soluble, and insoluble iodine account
for 11−30%, 32−36%, and 33−65% of total 127I in the aerosols,
respectively. A similar distribution of 129I in the three fractions
was observed, corresponding to 13−30%, 29−30%, and 38−
63%, respectively. This pattern differs from the Fukushima-
derived 129I in aerosol collected in Japan, with 42−61% in water
leachate, 32−44% in NaOH leachate, and only 4−23%
insoluble 129I.27 This large discrepancy might be ascribed to
the different sources of 129I (nuclear reprocessing plants and
Fukushima nuclear accident, respectively). However, the
influence of filter matrix used for aerosol sampling cannot be
ruled out either. Iodine in aerosol particles may be strongly
bounded to the organic matrix of the filter during sampling and
storage, such as the PP filter used in this work compared to the

quartz filter used for aerosol sampling of Fukushima-derived
129I in Japan.27

Almost all reported total 129I data in aerosols were obtained
by extraction using 0.5 mol/L NaOH and 0.025 mol/L
NaHSO3 with the assistance of an ultrasonic bath.12,13,22

However, the large fraction of insoluble 129I and 127I up to 60%
of total iodine in aerosols observed in this work and our
previous work27 might imply an underestimation of 129I
concentrations when only NaOH leaching method is used. A
method of alkaline ashing with the assistance of K2S2O5
presented in this work or combustion might have to be applied
for reliable determination of total 129I and 127I in aerosol
samples.
Iodide is the predominant species of water-soluble iodine for

both 129I and 127I in the aerosol samples. The sum of iodate and
water-soluble organic iodine calculated by the difference
between water-soluble iodine and iodide is less than 3% of
total iodine and 10% of water-soluble iodine. This distribution
pattern is distinct from that reported by Gilfeder et al.17 They
observed that 83−97% of water-soluble iodine was present as
soluble organically bound iodine in the aerosols collected with
cellulose nitrate filter paper. The great inconsistency might be
attributed to the different sampling areas, and different sources
and formation processes of aerosols. The different methods for
leaching water-soluble iodine should not be ignored either. A
milder magnetic stirring method was utilized in this work
compared to the ultrasonification leaching for 20 min in their
work; the latter might increase the risk of transformation of
inorganic iodide to organic iodine.6

■ CONCLUSIONS
Based on the experiment and discussion above, the following
can be concluded:
The established analytical method allows for quantitative

determination of water-soluble iodine (iodide, iodate) and
NaOH soluble and residual insoluble iodine for 129I and 127I in
aerosols, with detection limits of 0.007 ng/m3 for 127I and 7.1 ×
106 atoms (1.5 fg) for 129I. The reliability of the proposed
method is confirmed by the good agreement between the sum
of all iodine species and total iodine. Transformation of
inorganic iodine species occurs during water leaching over 1 h,
which is suggested to be attributed to photochemical oxidation
of iodide on the organic aerosol filter.
Conventional NaOH extraction both at room temperature

and 45−60 °C would lead to underestimate the concentrations
of total 129I in aerosols. Alkaline ashing with the addition of
K2S2O5 as a protection reagent can significantly reduce the loss
of iodine in the ashing step, providing a reliable method for
determination of total 129I in aerosol samples, especially large
size samples and aerosol collected on filters of organic
materials. The speciation analysis of 129I and 127I in the aerosol
samples collected at Risø, Denmark shows that 129I in water-
soluble, NaOH soluble and insoluble species account for 13−
30%, 29−30%, and 38−63%, respectively, indicating the
commonly used NaOH leaching method for total 129I
determination in aerosol might underestimate the 129I level.
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(14) Loṕez-Gutieŕrez, J. M.; García-Leo ́n, M.; Schnabel1, C.;
Schmidt, A.; Michel, R.; Synal, H. A.; Suter, M. Appl. Radial. Isot.
1999, 51, 315−322.
(15) Baker, A. R.; Tunnicliffe, C.; Jickells, T. D. J. Geophys. Res. 2001,
106, 28743−28749.
(16) Baker, A. R. Environ. Chem. 2005, 2, 295−298.
(17) Gilfedder, B. S.; Lai, S. C.; Petri, M.; Biester, H.; Hoffmann, T.
Atmos. Chem. Phys. 2008, 8, 6069−6084.
(18) Xu, S.; Xie, Z.; Liu, W.; Yang, H.; Li, B. Chin. J. Anal. Chem.
2010, 38, 219−224.
(19) Gilfedder, B. S.; Chance, R.; Dettmann, U.; Lai, S. C.; Baker, A.
R. Anal. Bioanal. Chem. 2010, 398, 519−526.
(20) Tsukada, H.; Ishida, J.; Narita, O. Atmos. Environ. Part A Gen.
Topics 1991, 25, 905−908.
(21) Li, D.; Zhang, L.; Wang, X.; Liu, L. Anal. Chim. Acta 2003, 482,
129−135.
(22) Jabbar, T.; Steier, P.; Wallner, G.; Kandler, N.; Katzlberger, C.
Nucl. Instrum. Methods Phys. Res., Sect. B 2011, 269, 3183−3187.
(23) Hou, X.; Dahlgaard, H.; Rietz, B.; Jacobsen, U.; Nielsen, S. P.;
Aarkrog, A. Anal. Chem. 1999, 71, 2745−2750.
(24) Hou, X.; Aldahan, A.; Nielsen, S. P.; Possnert, G.; Nies, H.;
Hedfors, J. Environ. Sci. Technol. 2007, 41, 5993−5999.
(25) Dang, H.; Hou, X.; Roos, P.; Nielsen, S. P. Anal. Methods 2013,
5, 449−456.
(26) Xu, S.; Freeman, S. P. H. T.; Hou, X.; Watanabe, A.; Yamaguchi,
K.; Zhang, L. Environ. Sci. Technol. 2013, 47, 2010851−10859.
(27) Xu, S.; Zhang, L.; Freeman, S. P. H. T.; Hou, X.; Shibata, Y.;
Sanderson, D.; Cresswell, A.; Doi, T.; Tanaka, A. Environ. Sci. Technol.
2015, 49, 1017−1024.
(28) Wikipedia. http://en.wikipedia.org/wiki/Polypropylene.
(29) Makipirtti, S.; Bergholm, H. European Patent Office. 1995.8.16,
EP0667406 (A1), 1−43.

(30) Hou, X.; Fogh, C. L.; Kucera, J.; Andersson, K. G.; Dahlgaard,
H.; Nielsen, S. P. Sci. Total Environ. 2003, 308, 97−109.
(31) Englund, E.; Aldahan, A.; Hou, X.; Petersen, R.; Possnert, G.
Nucl. Instrum. Methods Phys. Res., Sect. B 2010, 268, 1102−1105.
(32) O’Dowd, C. D.; Facchini, M. C.; Cavalli, F.; Ceburnis, D.;
Mircea, M.; Decesari, S.; Fuzzi, S.; Yoon, Y. J.; Putaud, J. Nature 2004,
431, 676−680.
(33) Duarte, A. d. C.; Duarte, R. M. B. O. In Biophysico-Chemical
Processes Involving Natural Nonliving Organic Matter in Environmental
Systems; Senesi, N.; Xing, B.; Huang, P. M., Eds.; Wiley: Hoboken, NJ,
2009; pp 451−485.
(34) Feczko, T.; Puxbaum, H.; Kasper-Giebl, A.; Handler, M.;
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Abstract 

Speciation and cycling of iodine in high latitude and deep-ocean are not well 

investigated. Depth profile seawater samples collected from the central Arctic were 

analyzed for total 
129

I and 
127

I, as well as their iodide and iodate species. The sharp 

stratification of 
129

I concentrations in the depth profiles indicates very limited vertical 

exchange between the polar mixed layer and the Atlantic water layer. In the polar mixed 

layer, the highest 
129

I concentration (7210
8
 atoms/L) was observed in the marginal 

area compared to the interior of the Eurasian Basin, and a similar high 
129

I 

concentration was found in the Makarov Basin, which significantly declined in the 

Canada basin. These results indicate the 
129

I-enriched water from the Eurasian Basin 

moved to the Makarov Basin and from marginal side to basin interior, and only small 

fraction of 
129

I-enriched water moved to the Canada Basin, where it mixed with
 

129
I-depleted Pacific water. Iodate is the predominant species for both 

129
I and 

127
I in all 

water columns. The molecular ratios of iodide to iodate are 0.22-0.62 for 
127

I and 

0.47-0.73 for 
129

I in the polar mixed layer, whereas these ratios in the Atlantic water 

layer decreased dramatically to 0.02-0.07 for 
127

I and 0.07-0.28 for 
129

I. The 

observations in this work shed new lights on transformation of iodine species in high 

latitude and deep-ocean. The results show that reduction of iodate and oxidation of 

iodide in the polar mixed layer of the basin interior are rather slow. In contrast, 

relatively fast reduction of iodate to iodide in the polar mixed layer over the ridges and 

basin margins was found, which might be attributed to the relatively high nutrients and 

higher biological activities. In the Atlantic water layer of the Arctic Ocean, oxidation of 

iodide back to iodate occurred with conversion rate of about 2 nmol L
-1

 year
-1

. 
129

I 
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inventory in top 800 m of the Arctic Ocean is estimated to be about 1460 kg by 2011, 

which was increased 4-6 times compared to that before 2000.  

Keywords: 
129

I, speciation analysis of iodine, the Arctic Ocean, tracing study, current 

circulation 

1. Introduction 

The element iodine plays an essential role on human health as a constituent of thyroid 

hormone, and lack of dietary iodine will cause goiter. Ocean is considered as the major 

reservoir of iodine with a concentration of approximately 60 μg/L, and a source of 

terrestrial iodine through atmosphere transportation (Wong. 1991). Geochemical 

cycling of iodine in the environment is strongly dependent on iodine species that 

exhibit distinct environmental behaviors (Hu et al. 2012; Wong. 1991). In seawater, 

iodine mainly exists as iodate, iodide and dissolved organic iodine (Elderfield and 

Truesdale. 1980; Truesdale. 1994a; Wong and Cheng. 2001; Wong and Cheng. 2008). 

The dissolved inorganic iodine species are the predominant forms of iodine especially 

in open seas. The distribution of iodide and iodate differs in geophysical locations due 

to differences in the plankton community composition, physicochemical characteristics 

and climate conditions (He et al. 2013). It has been extensively studied for the 

formation of iodide in the oxygenated seawater, conversion mechanism and rate among 

iodine species and fluxes of iodine between oceans and atmosphere in tropical and 

temperate seas (Chance et al. 2010; Luther et al. 1995; Tian and Nicolas. 1995; 

Tsunogai and Sase. 1969; Wong and Cheng. 2001). Only few studies have focused on 

the distribution of iodine species in high latitude regions (Bluhm et al. 2011; Campos et 

al. 1999; Tsunogai and Henmi. 1971; Waite et al. 2006). However, there is no 

information on how iodine species are distributed and whether transformation among 

iodine species behavior differently in the harsh environment of the Arctic up to now.  

Due to the difficulties for distinguishing the origin of newly produced and converted 

iodine species, the conversion process of iodine species is still unclear. 
129

I is one of 

isotopes of iodine with long half-life of 1.5710
7 
years. As an important fission product 

with high fission yield (0.7%), 
129

I in the environment presumably originates from 

marine discharges from two nuclear reprocessing plants at Sellafield (UK) and La 

Hague (France) (Hou et al. 2007; Raisbeck et al. 1995). Speciation analysis of 

radioactive 
129

I provides an ideal approach on iodine cycling in various water systems 

(He et al. 2014; Hou et al. 2001; Hou et al. 2007; Hou et al. 2009; Lehto et al. 2012; Yi 

et al. 2012). Iodine is a conservative element that remains in seawater and can travel 

over long distances from the point of injection without removal from the water body to 

the seabed. 
129

I has been applied as an oceanographic tracer in recent years and 

successfully employed in the Atlantic, Pacific, Arctic and Indian Oceans, as well as the 

Nordic seas, Baltic Sea, etc (Alfimov et al. 2004; Edmonds et al. 2001; Michel et al. 
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2012; Povinec et al. 2010; Raisbeck and Yiou. 1999; Smith et al. 1998). Despite its 

significance on geochemical cycling of iodine, nevertheless, studies on speciation 

analysis of 
129

I in the environment is very limited, and less was applied to explore 

conversion of iodine species in water systems. Hou et al. firstly investigated 
129

I and 
127

I 

chemical species in the North Sea, and suggests that interconversion between iodate 

and iodide is a sluggish process in open sea (Hou et al. 2007). Yi et al. reported the 

distribution of iodide and iodate for both 
129

I and 
127

I in the Baltic Proper, Kattegat, and 

Skagerrak Basins, which suggested that effective reduction of iodate occurs in the 

waters of the Baltic Proper (Yi et al. 2012). Furthermore, 
129

I speciation in the North 

Atlantic Ocean shows a relation with its sources, environmental conditions and water 

residence time (He et al. 2013). However, none of these studies on speciation of 
129

I and 
127

I in the polar marine environment has been reported.  

In this study, we analyzed 12 water depth profiles collected from the Arctic Ocean 

during Polarstern expedition ARK-XXVI/3 on August-October 2011 for total of 
129

I 

and 
127

I, as well as their inorganic species, iodide and iodate, in order to depict a picture 

on the distribution of 
129

I and 
127

I species in the high latitude ocean as well as in deep 

ocean, and more importantly, to improve our understanding on water circulation and 

marine environmental chemistry in the central Arctic.  

2. Materials and analytical methods 

The seawater samples were collected by CTD rosette from the central Arctic Ocean 

during the Polarstern expedition ARK-XXVI/3 conducted by the Alfred Wegener 

Institute (AWI) in a period of 22 August - 22 September 2011. 12 water columns down 

to 800 m depth were sampled in the southeastern Eurasian Basin (EB), Makarov Basin 

(MB), and northern Canada Basin (CB) (Fig. 1). Hydrographic data, including salinity, 

potential temperature and dissolved oxygen concentrations are shown in Table S-1. All 

water samples were filtered through a 0.45 mm filter after collection, and 1 L 

subsample was sealed in polyethylene bottle and stored in dark until laboratory analysis 

in Technical University of Denmark. 

The sample preparation method used for iodine speciation was modified from our 

previous procedure (Hou et al. 2007). In brief, anion exchange chromatography method 

was used to separate iodide and iodate species from seawater. After addition of an 

appropriate amount of 
127

I carrier (Woodward Company, USA) and 
125

I tracer 

(PerkinElmer, Waltham, USA), 
129

I in the original seawater sample and fractions of 

iodide and iodate were first reduced to iodide form using KHSO3 in acidic media. 

Iodine was then oxidized by NaNO2 to I2 and extracted to chloroform phase. I2 in the 

CHCl3 phase was reduced to iodide and back-extracted into water phase. This 

extraction and back extraction were repeated once for further purification. Iodide in the 

final solution was precipitated as AgI. After mixing with niobium powder (325 mesh, 

Alfa Aesar, Karlsruhe, Germany), the AgI targets were measured for 
129

I by AMS (3MV, 
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HVEE, Netherland) at Xi’an AMS Center, China (Zhou et al. 2010). Procedure blank 

was prepared using the same procedure as samples, and measured to be less than 

510
-13

 for 
129

I/
127

I ratio, which is two orders of magnitude lower than samples. Overall 

analytical uncertainty for 
129

I is less than 5% and 10% for samples with 
129

I/
127

I atomic 

ratio of 1.010
-10

 and 1.010
-11

, respectively. Concentrations of 
127

I in seawater, iodide 

and iodate fractions were determined by ICP-MS (Thermo Fisher, X Series II) using Xt 

cone under normal mode (Hou et al. 2007). The detailed method is presented in the 

supporting information. 

3. Result 

Level and distribution of total 
127

I and 
129

I. The concentrations of 
129

I and 
127

I in 12 

water depth profiles are shown in Table 1. An apparent depletion of 
127

I by 

approximately 15% was observed in the polar mixed layer (PML, 0-50 m deep) 

compared to those in the Atlantic water layer (AWL, 200-800 m,) (Fig. 3 and Table 1). 
127

I concentrations in the PML ranged from 39.6-53.5 μg/L and showed a positively 

dependent on the salinity (R
2
=0.44 and p=0.03, Fig. S-1). While in the AWL, 

127
I 

concentrations elevated to an average of 56.80μg/L and kept relatively constant (55-60 

μg/L). The relative lower 
127

I concentration in the PML might be attributed to the 

dilution of seawater by relative fresh sea ice containing less 
127

I, this is supported by the 

relative lower and variable salinity in the PML (31-34 psu) compared to a relative 

constant salinity in the AWL (34.5-34.8 psu).  

The concentrations of 
129

I in the Arctic seawater show a large variation range of 

1.4-72.6  10
8 

atoms/L (Fig. 2). A similar trend for 
129

I/
127

I atomic ratios of up to 2 

orders of magnitude difference is also observed (Fig. 3), where the lowest
 129

I/
127

I ratio 

of 6.03 10
-10 

in the CB and the highest value of 310 10
-10

 in the EB occurred (Table 

2). In the PML, the highest 
129

I concentrations of (61.8-72.6)  10
8 
occurred

 
in the EB 

(sampling point No. 9, 10, 11, 12), which slightly decreased to (60.5-71.8)  10
8
 

atoms/L in the MB, and then significantly decreased to (1.4-11.8)10
8
 atoms/L in the 

CB. In the EB, the 
129

I concentrations slightly declined from the basin margin (station 

12) to the interior (stations 9-11) (Table 1, 2 and Fig. 2, 3). The depth profiles of 
129

I in 

the 12 sampling stations (Fig. 3) show that 
129

I concentrations dramatically decreased 

with the increased depth in the top 200 m (the PML) except station 1 in CB, but slightly 

decreased in 200-800 m (the AWL). The typical depth distributions of 
129

I in Eurasian, 

Makarov and Canada Basins (at the sampling stations 1, 5 and 12) are illustrated in Fig. 

4 and S-2. Within AWL, relative high 
129

I concentrations were observed in EB and 

Lomonosov Ridge compared to in the MB, the lowest concentration in the CB and 

Mendeleyev-Alpha Ridge. Meanwhile slightly higher values in the stations closed to 

the ridge than those in the basin interiors (Fig. 3). 

Distribution of 
127

I and 
129

I species. The results of speciation analysis of inorganic 
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iodine species, iodate and iodide (Table 1, 2 and Fig. 4, S-2) show that iodate 

(expressed as IO3
-
) is the predominant specie in all depth profiles for both 

129
I and 

127
I. 

Except 
127

I
-
 that enriched in the surface layer and depleted in deep layer, depth profile 

of 
129

I species (
129

I
-
 and 

129
IO3

-
) and 

127
IO3

-
 follow the patterns of total 

129
I and 

127
I, 

respectively. The average 
127

I
-
 concentration of 11.77 μg/L in the PML is approximately 

7 times higher than that in the AWL (1.61 μg/L in average). The distribution features for 
127

IO3
-
 and 

127
I

-
 are well consistent with those in the Pacific Ocean and the northwestern 

Mediterranean Sea (Huang et al. 2005; Tian and Nicolas. 1995). Wide concentration 

ranges of 
129

I species presented in the PML, (0.82-50.29) ×10
8
 atoms/L for 

129
IO3

-
 and 

(2.88-35.38) ×10
8
 atoms/L for 

129
I

-
, in which 27.7 - 45.3% of total 

129
I were 

129
I

-
 . 

Relative higher 
129

I
-
/
129

IO3
-
 molecular ratios compared to 

127
I

-
/
127

IO3
-
ratios in all water 

columns and a remarkable difference between the PML and the AWL (Fig. 5 and 6) 

were observed. There is no significant gradient in I
-
/IO3

- 
ratios in the PML ranging in 

0.22-0.62 for 
127

I and 0.48-0.73 for 
129

I, but it seems they were higher over the Alpha 

and Lomonosov Ridges and basin margin (stations 2 and 6) than those in the interior of 

basins in the PML. The of 
127

I
-
/
127

IO3
- 

molecular ratios in the AWL were relative 

constant and keep much low values of 0.02-0.07, while 
129

I
-
/
129

IO3
-
 ratios shows a 

remarkable decrease trend from the highest value of 0.28 in the EB to the lowest value 

of 0.07 in the CB. 

4. Discussion 

Sources of 
129

I in the central Arctic.  

The observed 
129

I level in the Arctic ((6-310)10
-10

 for 
129

I/
127

I ratios) is 1-2 orders of 

magnitude higher than the background environmental level of the post-nuclear era (ca. 

110
-10 

for 
129

I/
127

I ratios) (Oktay et al. 2001; Zhang et al. 2011). At the eastern EB 

(station 12), the concentration of 
129

I in the PML measured to be approximately 12×10
8
 

atoms/L in mid-1990 (Buraglio et al. 1999; Cooper et al. 1999), has raised by six-fold 

to about 65×10
8
 atoms/L in late 2000s(Smith et al. 2011), and up to 72.58×10

8
 atoms/L 

in 2011 in this work. About 4-fold increase in 
129

I concentrations are found in the AWL 

from 1995 (5×10
8
 atoms/L) to 2011 (22×10

8
 atoms/L) (Smith et al. 2011). Scientific 

explorations in the Arctic since 1980s indicated that the Arctic Ocean becomes one of 

major reservoirs of 
129

I (Alfimov et al. 2006; Josefsson. 1998; Smith et al. 1998). The 

source of 
129

I in the Arctic Ocean has been extensively established, including the 

nuclear weapon testing, Chernobyl nuclear accident and the nuclear reprocessing plants 

(especially Sellafield in United Kingdom and La Hague in France) (Alfimov et al. 2004; 

Beasley et al. 1998; Cooper et al. 1999; Josefsson. 1998; Smith et al. 1998). Of these, 

the two European NRPs, Sellafield in UK and La Hague in France, are the dominant 

source of 
129

I, from which about 6000 kg 
129

I has been discharged into the English 

Channel and the Irish Sea by 2009. A large fraction of the marine discharged 
129

I was 

transported to the North Sea and then further moved northwards by the North Atlantic 
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Current and Norwegian Coastal Current, finally entered into the Arctic Ocean through 

the Barents Sea and Fraim Strait (Alfimov et al. 2004; Hou et al. 2007; Smith et al. 

1998). Besides this source, the Fukushima nuclear accident took place in March 2011, 

six months before this Polarstern expedition, is probably a new contributor of 
129

I to the 

Arctic Ocean. A large amount of radioiodine was released to the environment (Xu et al. 

2015), which has been transported by the prevailing westerly wind cross the Pacific 

Ocean and further. Fukushima-derived 
131

I of 810 μBq/m
3 
in aerosol samples has been 

observed in Svalbard, the high arctic area (Paatero et al. 2012). Based on the reported 

Fukushima derived 
129

I/
131

I atomic ratio of 16.0 (Xu et al. 2015) and an average 
127

I 

concentration of 1 μg/m
3
, corresponding to a Fukushima derived

 129
I/

127
I atomic ratio of 

1.710
-11

 in the Arctic atmosphere. Compared with the measured 
129

I/
127

I atomic ratio of 

(6-310) 10
-10

 in the seawater of the PML in the central Arctic, the 
129

I signal from the 

Fukushima nuclear accident is negligible and greatly overwhelming by the reprocessing 

signal.  

129
I traced water circulation pathway in the central Arctic.  

In the PML, the 
129

I concentrations highest in the EB (sampling point No. 9, 10, 11, 12) 

and slightly lower in the MB dramatically decreased in the CB by a factor of more than 

5. This clearly shows the transport pathway of the water mass in the central Arctic. 

Reprocessing-derived 
129

I enter to the Arctic mainly through the Barents Sea and Kara 

Sea through the North Sea and Norwegian coast (Alfimov et al. 2004; Beasley et al. 

1998; Smith et al. 1998). In the EB, the slightly declined 
129

I concentrations from the 

basin margin (station 12) to interior (stations 9-11) (Table 1, Fig. 2 and 3) indicate that 

a fraction of Norwegian coast current and Norwegian Atlantic current carrying 

reprocessing-derived 
129

I was transported to the Laptev Sea and further gradually into 

the EB interior (Stations 12, 11, 10, and 9). The remarkably declined 
129

I at station 8 

indicates that only a small fraction of this water moved to the station 8 along the 

Eurasian side of the Lomonosov Ridge, and most of water carried high 
129

I moves to 

the MB, causing similar high 
129

I concentrations in the PML in the MB (station 4, 6 and 

7). The relative higher 
129

I concentration at station 4 (71.8 10
8
 atoms/L) compared to 

station 7 (65.4  10
8
 atoms/L) and station 5 (60.5  10

8
 atoms/L) indicate that the 

129
I 

enrich water from the EB first moved to the station 7 in the MB and then moved 

towards station 5 with dispersion to station 7. From marginal side of the MB, only 

small fraction of 
129

I-enriched water moved to the CB, where it mixed with
 129

I depleted 

Pacific water, resulting in a much lower 
129

I concentration in the PML in the CB. The 

lowest 
129

I concentration at station 1 might be attributed to that it located in the relative 

center part of CB, and the water circulation mainly along the Mendeleyev-Alpha Ridge 

and marginal area.  

The sharp stratification of 
129

I concentrations in the depth profiles indicates very limited 

vertical exchange between the PML and AWL. This agrees with the oceanographic 



 

7 

 

studies, which suggest that a thick advective layer of intermediate density (i.e. halocline) 

inhibits the interaction between the two layers (Rudels et al. 1996). The small variation 

of 
129

I and 
127

I in the AWL in the Eurasian and Makarov Basins suggests a sufficient 

vertical mixture/exchange of water in these areas. Within the AWL, the feature of 

relative high 
129

I concentrations in EB and Lomonosov Ridge compared to the MB and 

the lowest concentration in the CB and Mendeleyev-Alpha Ridge (Fig. 3) reflects the 

pathways of water currents and water circulation in the three major basins in the Arctic 

Ocean (Smith et al. 1998).  

Unlike to other station, the lowest 
129

I concentration in the Sampling station 1 in the CB 

was observed in the PML, and a peak value of 
129

I concentrations in the depth profiles 

occurs at upper AWL (244 m depth), which is comparable with the values observed in 

MB and Mendeleyev-Alpha Ridge in the same layer. This feature clearly indicates the 

formation pathway of the intermediate water in the east side of the CB through the MB 

margin. While the water in the PML in the CB should mainly from the Pacific ocean 

through the Bering Strait, which carrying much less 
129

I mainly weapons fall out 

derived
 129

I (Cooper et al. 2001). This finding agrees well with the previous report on 

transportation of 
129

I in the Arctic Ocean (Karcher et al. 2012; Smith et al. 2011; Smith 

et al. 1998), and also supported by the oceanographic evidence on water mixing 

between the Pacific water mass and Atlantic water mass (Rudels. 2012).  

In the PML of the northern CB, despite the presence of the front between Atlantic water 

and Pacific water locating over the Mendeleyev-Alpha Ridge (Rudels et al. 2004), 
129

I 

concentration increased at surface layer (station 1) from 0.510
8 

atoms/L in 1995 

(Smith et al. 1999) to 1.36 10
8 
atoms/L in 2011, indicating that 

129
I has intruded to the 

surface layer of CB with a very slow rate. This process might be implemented through 

two possible ways: 1) lateral mixing between the Atlantic and Pacific water masses; 2) 

vertical exchange of the 129I contained AWL water with the surface water. Whatever, 

the slow increase of 
129

I in the CB implies that this mixing process is rather limited.  

127
I and 

129
I speciation traced marine environmental chemistry in the central 

Arctic.  

Except along the Lomonosov and Mendeleyev-Alpha ridges (stations 2 and 6), 
127

I in 

the PML is mainly present in iodate with ratios of iodide to iodate of 0.22-0.35, 

generally below 0.30 (Fig.5). This agrees well with the reported values in the Arctic 

Ocean (with ratios of 0.23) in 2008 (He et al. 2013), and comparable with those in the 

open area of the North Sea (ratios of <0.30) in 2005 (Hou et al. 2007) (Table S-2). A 

high iodide level with 
127

I
-
/
127

IO3
-
 ratios of 0.41-0.62 was observed along the ridges 

(Fig. 5). There is no other iodine speciation information available over the ridges so far. 

High level of iodide is generally observed in inshore surface water (
127

I
-
/
127

IO3
-
 ratios > 

0.6) (Hou et al. 2007), where is considered to have higher biological activities. Similar 

to 
127

I, the major species of 
129

I was iodide in the PML, with 
129

I
-
/
129

IO3
-
 ratios 
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0.47-0.60 excluding the samples collected over the ridges. These 
129

I
-
/
129

IO3
-
 ratios falls 

within the range in the off-shore of the English Channel, but much lower than those 

found in the coastal area of the North Sea (Hou et al. 2007). A higher 
129

Iodide level 

with 
129

I/
129

IO3
-
 ratios of 0.64-0.73 was observed along the ridges. Insignificant change 

of iodine species for 
129

I and 
127

I was observed in the PML water in the central Arctic 

except the water over the ridges (Fig. 5 and 6). The resident time of the PML water in 

the Arctic was estimated to be about 5 years (Becker and Bjork. 1996), and transit time 

from the EB to the MB to be 1-3 years (Smith et al. 2011). The speciation results in this 

work suggest that the species transformation of iodine, including oxidation of iodide 

and reduction of iodate in the PML of the basin interior in the central Arctic Ocean is 

tardy.  

The concurrent elevation of iodide/iodate ratios for 
129

I and 
127

I observed over the 

ridges might suggest a fast reduction of iodate to iodide in local area. Although 

reduction of iodate to iodide is regarded as a thermodynamically unfavorable reaction, 

it can be observed widely in oxygenated seawater (Bluhm et al. 2011; Tsunogai and 

Sase. 1969; Waite et al. 2006; Wong and Cheng. 1998). Factors controlling reduction of 

iodate to iodide in oxygenated seawater have not fully understood so far. 

Multi-processes, including photochemically induced reduction in presence of organic 

matter, reactions with reductants (bisulfides and thiols such as glutathione), 

decomposition of sinking organism debris especially in water-sediment interface, 

phytoplankton growth and cell senescence, have been demonstrated to related to the 

reduction of iodate to iodine in seawater (Aldahan et al. 2007; Bluhm et al. 2011; 

Chance et al. 2010; Hird and Yates. 1961; Spokes and Liss. 1996; Zhang and Whitfield. 

1986). Despite photochemical reaction as an inducement, the central Arctic covered by 

thick sea-ice sheet hardly receives direct solar radiation even in summer time. 

Compared to other seas, no significant decrease in iodide proportion to total iodine was 

observed in the Arctic interior, which indicates photochemical process might not be key 

to induce iodate reduction in high latitude area. Reductive chemicals are normally 

present in anoxic seawaters, which could not be the case in the Arctic. Biological 

activity, therefore, might play an important role on reduction of iodate to iodide. The 

inflows of the Atlantic water along the continental margin and ridges (Fig. 1) can 

import heat and nutrients as showed by the higher concentrations of nitrate and 

phosphate (Fig. S-3), which promotes the primary production, such as phytoplankton 

and microalgae in the basin margin and ridge areas. This is confirmed by the enriched 

chlorophyll a concentrations over the ridges and basin margin but depleted in the basin 

interior in the central Arctic (Fig. S-4). Additionally, a significant negative correlation 

of salinity with 
127

I
- 

in the PML (R
2
=0.47 and p=0.02, Fig. S-1) might indicate 

formation of iodide is linked to the intrusion of freshwater, such as sea-ice melting that 

also provides nutrients to the mixed layer and facilitates phytoplankton bloom. It is 

therefore suggested that reduction of iodate to iodide in water over the ridges and basin 



 

9 

 

margin results from the biological activities. Since only two water samples were 

analyzed in these areas, more intensive studies are still needed for further confirmation.  

For the deep Arctic water, iodate for both 
129

I and 
127

I is the predominate species with a 

relative constantly low 
127

I
-
/
127

IO3
-
 ratios (0.02-0.07) in the AWL (Fig. 3 and S-2). This 

agrees well with those found in deep layer of the Pacific Ocean (
127

I
-
/
127

IO3
-
 ratios of 

less than 0.08) (Huang et al. 2005; Tsunogai and Henmi. 1971). Unlike 
127

I, 
129

I
-
/
129

IO3
-
 

ratios in the AWL exhibit a marked declining trend from the EB (0.28) to the CB (0.07). 

Data on 
129

I speciation in water depth profiles are rather scarce. Yi et al. have reported 

high 
129

I
-
/
129

IO3
-
 values of 0.4 - 44.9 in water columns from Skagerrak, Kattegat and the 

Baltic Sea (Yi et al. 2012) (Table S-2). In their work, effective reduction of iodate in the 

waters of the Baltic Proper is suggested the reason of high ratios of inorganic 
129

I 

species, attributing to the decomposition of organic matter and photochemically 

induced reactions. 

Currently, it is believed that iodide oxidation must happen in the deep-ocean, where 

almost all of the iodine is in the form of iodate (Truesdale. 1994b; Truesdale. 2008). 

However, no direct evidence has shown the oxidation of iodide to iodate at depth of 

oceans. 
129

I
-
/
129

IO3
-
 ratios are significantly declined from the EB to the CB in the AWL, 

but 
127

I
-
/
127

IO3
-
 ratios in this layer didn’t show dramatical change. This might indicates 

that 
129

I
- 

was oxidized to 
129

IO3
-
 in the AWL during water mixing and current 

movement. Transit time of the AWL water current from the EB to the Canada was 

estimated to be about 7-10 years (Smith et al. 2011). If taking 0.28 and 0.07 as the 

representative 
129

I
-
/
129

IO3
-
 ratios in the two basins, 21.7% and 6.5% of 

129
I should be 

iodide in these two basins respectively. An oxidation rate of iodide to iodate can be 

estimated to be 1.5-2.1% per year. Based on a 
127

I
-
 concentration of 15 μg/L (120 

nmol/L) as observed in the surface layer, the calculated oxidation rate is 1.8-2.5 nmol 

L
-1

 year
-1

 in the AWL. This oxidation rate is comparable with those reported in the deep 

water of the Southern Ocean with value of 3-6 nmol L
-1

 year
-1 

(Bluhm et al. 2011), but 

one order of magnitude lower than that in the deep waters of a Scottish Loch with an 

oxidation rate of 30 ± 10 nmol L
-1

 year
-1 

(Edwards and Truesdale. 1997). This suggests 

that the oxidation of iodide back to iodate is quite slow in the deep polar water. Since 

the residence time of the AWL water in the Arctic Ocean is about 35 years (Becker and 

Bjork. 1996), iodide in the downwelling water from the continental shelves can be 

sufficiently oxidized to iodate to reach equilibrium between iodide and iodate.  

Chemical oxidation of iodide is thermodynamically favored in oxygenated water 

through dissolved oxygen (Table S-1) (Wong. 1980), which might be predominantly 

responsible to the dominated iodate species in the AWL water in the central Arctic. 

Biologically catalyzed iodide oxidation has also been proposed as another process of 

the iodate production in seawater (Campos et al. 1996), among various biological 

species, the fungus Caldariomyces fumago and marine proteobacteria have been 

confirmed to oxidizes iodide to iodate via the chloroperoxidase enzyme and 
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extracellular enzyme (Amachi et al. 2005; Thomas and Hager. 1968).  

Although both 
127

I and 
129

I showed a similar higher iodide concentration in the PML 

compared to those in the AWL, there is no significant correlation between 
127

I
-
/
127

IO3
-
 

ratios with 
129

I
-
/
129

IO3
-
 in both layers (Fig. S-5). This might be attributed to the different 

sources of 
127

I and 
129

I, and a slow process to reach isotope equilibrium. 

Inventory of 
129

I in the central Arctic Ocean.  

Along with the increased discharges of anthropogenic 
129

I from Sellafield and La Hague, 

quantity of 
129

I retained in the Arctic Ocean has elevated significantly. In order to 

estimate 
129

I inventory in the central Arctic with a total area of 1.6410
6
 km

2
, it

 
is 

divided to three parts, the Eurasian, Canada and Makarov Basins, on the basis of typical 
129

I vertical profiles (Fig. 3). Depth distribution of 
129

I was established by performing 

curve fitting using the least-squares method based on the present and reported data with 

time correction (Smith et al. 2011), and the inventory of 
129

I was calculated by 

integrating these fitting functions at depth range of 0-800 m (See details in the 

supporting information, Table S-3 and Fig. S-5).  

Inventory of 
129

I resided in top 800 m of the central Arctic is estimated to be 1457 kg by 

2011(Table 3), which accounts for 25.6% of total marine discharge of the two European 

NRPs (5693 kg by 2009), almost equivalent to the total discharge from Sellafield and 

La Hague before 1994 (1426 kg). Due to large variation of 
129

I in the Arctic Ocean, 

especially over the ridge and in the basin interior, uncertainty of 
129

I inventory is as 

large as 24% for this estimation. Buraglio et al. have estimated a total inventory of 

2.710
27 

atoms of 
129

I (equivalent to 578.6 kg) in the central Arctic Ocean in 1996 

based on the assumptions with a depth of about 4100 m and a surface area of about 

6.610
6
 km

2 
(Buraglio et al. 1999). This corresponds to approximately 230 kg in the top 

800 m. Another estimation of the 
129

I inventory in the upper 1000 m of the central 

Arctic was 440 kg in 2001, corresponding to 350 kg in the top 800 m (Alfimov et al. 

2004). It is apparent that the inventory of 
129

I within a depth of 800 m in the central 

Arctic by 2011 has increased at least by a factor of 6 and 4 compared to those by 1996 

and 2001, respectively. The high inventory of 
129

I estimated in this work compared to 

the previous ones results from the remarkably increased discharges of 
129

I from the two 

European reprocessing plants since 1990. If considering the average transit time of 
129

I 

from Sellafield and La Hague to the central Arctic Ocean is 10 years, 4-6 times higher 

inventory of 
129

I in 2011 estimated in this work compared to those in 1996 and 2001 is 

well consistent with the about 4 times increased total 
129

I discharges from two European 

reprocessing plants by 2001 (3583 kg) compared to those by 1990 (847 kg).  

The EB and MB converged most of 
129

I in the central Arctic, accounting for 67.8% and 

22.2% respectively. More than half of 
129

I was found in the Atlantic Layer (835 kg). 

Only 10% of 
129

I entered into the CB, of which only 1% was detained in upper 200 m. 

It takes 10-15 years for 
129

I to reach the central Arctic from Sellafield and La Hague 



 

11 

 

(Orre et al. 2010; Smith et al. 2011). Water residence time in polar mixed layer and 

Atlantic water layer are about 5 years and 35 years, respectively (Becker and Bjork. 

1996). This implies, during the four decades discharges since 1966, the amount of 
129

I 

transported to the PML has been renewed for several times (>5 times), whereas
129

I in 

the AWL water was just exchanged 1-2 times in the Arctic Ocean. Consequently, the 

AWL of the Arctic Ocean acts as not only a major reservoir but also a buffer that 

postpone reprocessing discharged 
129

I into the downstream Nordic Seas and further to 

the North Atlantic Ocean along the Greenland continental slope. The constantly high 

discharge of 
129

I from two European reprocessing plants in the past 10-15 years has not 

arrived to the Arctic, which will continue to elevate the inventory of 
129

I in following 

ten years.  

5. Conclusion 

Vertical distribution of 
129

I in the Eurasian and Makarov Basins shows a different 

pattern from those in the CB, which is strongly associated with water mixing between 

the 
129

I-rich Atlantic-originated water and the 
129

I-poor Pacific-originated water. 

Speciation analysis of 
129

I and 
127

I in the water samples indicates iodide level in the 

PML is significantly higher than those in the AWL. Elevated iodide levels found in the 

PML water sampled over the Lomonosov and Mendeleyev-Alpha Ridges indicate 

reduction of iodate occurs with a strong relationship with abundant nutrients and active 

biological activities. A weak variation of I
-
/IO3

-
 between 

129
I and 

127
I reveals conversion 

of iodine species is rather slow in the PML. Oxidation of iodide back to iodate in deep 

ocean has been clearly demonstrated by the change of 
129

I
-
/
129

IO3
-
 in the AWL. This 

provides a direct proof for the regeneration of iodate in marine systems.  

The 
129

I inventory in the upper Arctic Ocean is estimated to be 1457 kg, 4-6 times 

higher than that before 2000s, makes the Arctic Ocean an important reservoir and a 

major source of 
129

I to the downstream and atmosphere.  

Supporting Information 

Supporting information described the details of methods for chemical speciation 

separation and instrumental measurement for 
129

I, 
127

I. The calculation of 
129

I inventory 

in the Arctic Ocean was also presented in detail. It includes three tables and six figures. 
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Table 1. Analytical results of 127I and 129I and their species in depth profile seawater from the central 

Arctic. 

Statio

n 
Description 

Depth 

[m] 

127I Conc, ppb 129I Conc, ×108 atoms/L 

Total iodine I- IO3
- Total iodine I- IO3

- 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1 
Canada 

Basin 

25 47.67 1.27 12.42 0.90 35.25 1.40 1.36 0.09 0.39 0.10 0.82 0.09 

244 56.90 1.51 1.26 0.09 55.63 2.20 18.24 1.05 1.68 0.24 17.72 1.58 

370 57.83 1.54 0.81 0.06 60.84 2.29 6.31 0.37 0.47 0.12 6.18 0.58 

2 

Mendeleyev

-Alpha 

Ridge 

25 39.55 1.05 14.20 1.03 22.83 0.90 11.79 0.70 4.97 0.57 7.80 0.68 

250 49.03 1.30 1.07 0.08 44.16 1.72 8.47 0.53 0.64 0.12 9.26 0.81 

400 57.58 1.53 0.71 0.05 56.87 2.27 2.89 0.18 0.15 0.10 2.88 0.27 

3 

250 59.22 1.57 0.81 0.06 58.41 2.34 17.45 1.01 1.28 0.18 17.21 1.51 

390 57.99 1.54 1.02 0.07 58.17 2.22 13.07 0.76 0.90 0.15 13.16 1.15 

800 59.09 1.57 0.99 0.07 57.54 2.37 5.09 0.31 0.36 0.10 4.47 0.41 

4 

10 48.75 1.30 11.16 0.80 41.78 1.68 71.78 4.10 28.26 3.02 47.53 4.23 

248 58.87 1.56 1.91 0.14 56.72 2.33 32.83 1.88 3.36 0.39 35.38 3.46 

500 59.17 1.57 1.42 0.10 56.89 2.31 29.79 1.71 3.12 0.37 28.91 2.58 

5 

Makarov 

Basin 

25 45.85 1.22 9.64 0.69 35.27 1.37 60.47 3.48 22.52 2.39 44.80 3.85 

250 52.76 1.40 1.71 0.13 46.32 1.81 22.09 1.27 2.06 0.25 18.32 1.59 

333 51.07 1.36 1.48 0.11 45.99 1.79 20.52 1.18 1.78 0.23 18.03 1.56 

800 50.40 1.35 1.67 0.12 45.56 1.78 14.68 0.85 1.20 0.18 14.31 1.27 

6 

250 57.78 1.53 1.36 0.10 52.56 2.09 21.10 1.22 1.87 0.24 19.45 1.68 

400 57.39 1.52 1.21 0.09 54.28 2.21 14.33 0.83 1.14 0.17 13.54 1.23 

800 58.35 1.55 1.01 0.07 51.07 2.07 13.72 0.79 1.13 0.17 14.40 1.43 

7 
Lomonosov 

Ridge 

10 44.53 1.18 14.35 1.04 34.73 1.39 65.24 3.74 29.52 3.11 40.53 3.61 

200 58.89 1.56 1.80 0.13 55.52 2.24 25.91 1.49 3.42 0.40 26.08 2.45 

266 58.36 1.56 1.70 0.12 50.98 2.05 22.86 1.32 2.59 0.31 21.62 1.91 

8 

Eurasian 

Basin 

25 51.01 1.37 13.45 0.95 45.45 1.80 48.20 2.75 13.35 1.46 25.08 2.21 

250 54.44 1.45 1.88 0.13 53.03 2.10 25.11 1.44 2.39 0.32 23.05 2.07 

278 53.81 1.43 1.53 0.11 49.40 1.94 22.49 1.29 2.32 0.32 21.61 1.95 

750 53.34 1.42 2.22 0.16 54.47 2.16 25.44 1.48 2.77 0.37 23.06 1.99 

9 

199 60.51 1.61 2.22 0.16 62.85 2.52 23.23 1.36 2.31 0.28 22.30 1.99 

263 60.70 1.62 2.00 0.15 62.96 2.53 21.00 1.21 1.99 0.25 19.46 1.70 

800 60.15 1.59 2.15 0.16 62.43 2.52 24.42 1.40 2.21 0.27 22.17 1.96 

10 

10 53.51 1.42 11.02 0.79 50.70 2.01 60.83 3.47 22.42 2.37 46.39 4.30 

200 58.79 1.58 1.73 0.13 59.21 2.44 20.52 1.20 1.83 0.23 21.77 2.21 

700 55.43 1.48 3.79 0.27 53.14 2.12 17.72 1.04 2.26 0.28 17.88 1.72 

11 

25 51.18 1.36 10.11 0.73 42.83 1.71 68.92 3.95 27.23 2.88 46.56 4.35 

200 56.92 1.51 11.48 0.83 50.82 2.04 20.22 1.18 1.86 0.23 20.52 2.10 

300 57.09 1.51 1.28 0.09 56.59 2.24 17.57 1.01 1.48 0.20 17.96 1.68 

800 57.88 1.54 1.76 0.13 58.43 2.38 19.27 1.11 5.42 0.60 18.53 1.86 

12 

24 51.79 1.37 9.62 0.70 41.78 1.72 72.58 4.14 28.94 3.05 50.29 4.56 

200 57.08 1.53 2.04 0.15 56.22 2.27 23.95 1.38 3.34 0.38 24.38 2.41 

400 57.11 1.52 2.13 0.15 56.83 2.24 22.34 1.31 5.44 0.60 19.23 1.66 

800 56.95 1.51 4.14 0.30 56.27 2.28 28.79 1.65 6.54 0.72 23.18 2.05 
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Table 2. Analytical results of 127I/129I atomic ratios and iodide/iodate molecular ratios in depth profile 

seawater from the central Arctic. 

Station Description 
Depth 

[m] 

129I/127I ratio, ×10-10 I-/IO3- 

Total iodine I- IO3
- 

127I 129I 
Mean SD Mean SD Mean SD 

1 Canada Basin 

25 6.03 0.45 6.55 1.78 4.91 0.56 0.352 0.469 

244 67.62 4.29 279.90 44.75 67.18 6.56 0.023 0.095 

370 23.01 1.48 122.75 32.17 21.41 2.16 0.013 0.076 

2 

Mendeleyev-Alpha 

Ridge 

25 62.88 4.07 73.80 9.99 72.03 6.88 0.622 0.637 

250 36.43 2.47 126.83 26.14 44.23 4.25 0.024 0.070 

400 10.59 0.71 43.44 28.57 10.70 1.10 0.013 0.051 

3 

250 62.15 3.97 331.21 53.20 62.16 6.00 0.014 0.074 

390 47.54 3.02 185.73 32.95 47.73 4.56 0.018 0.068 

800 18.17 1.20 76.71 22.16 16.39 1.64 0.017 0.080 

4 

10 310.62 19.57 534.01 68.85 240.02 23.43 0.267 0.595 

248 117.64 7.44 371.77 50.88 131.58 13.96 0.034 0.095 

500 106.21 6.73 462.79 63.51 107.21 10.51 0.025 0.108 

5 

Makarov Basin 

25 278.24 17.66 493.00 63.23 267.96 25.28 0.273 0.503 

250 88.34 5.59 254.12 36.56 83.45 7.95 0.037 0.112 

333 84.75 5.36 254.70 37.99 82.72 7.83 0.032 0.099 

800 61.44 3.91 152.24 25.23 66.25 6.42 0.037 0.084 

6 

250 77.05 4.89 290.20 42.51 78.09 7.43 0.026 0.096 

400 52.68 3.36 290.20 42.51 52.61 5.24 0.022 0.085 

800 49.62 3.15 199.38 32.25 59.50 6.40 0.020 0.079 

7 Lomonosov Ridge 

10 309.11 19.55 433.95 55.40 246.16 24.05 0.413 0.728 

200 92.82 5.87 401.02 54.63 99.08 10.14 0.032 0.131 

266 82.65 5.25 320.58 44.67 89.45 8.70 0.033 0.120 

8 

Eurasian Basin 

25 199.34 12.58 209.44 27.29 116.44 11.24 0.296 0.532 

250 97.29 6.16 268.08 40.22 91.70 9.00 0.035 0.104 

278 88.17 5.57 321.12 49.30 92.28 9.09 0.031 0.108 

750 100.60 6.45 262.27 39.71 89.30 8.49 0.041 0.120 

9 

199 80.98 5.20 219.08 30.80 74.86 7.32 0.035 0.104 

263 72.98 4.62 209.79 30.51 65.22 6.27 0.032 0.102 

800 85.67 5.41 216.32 30.92 74.91 7.29 0.034 0.100 

10 

10 239.84 15.09 429.41 54.95 193.03 19.45 0.217 0.483 

200 73.65 4.72 223.24 32.51 77.57 8.48 0.029 0.084 

700 67.42 4.35 126.01 17.98 70.99 7.40 0.071 0.126 

11 

25 284.11 17.95 568.36 72.86 229.36 23.32 0.236 0.585 

200 74.96 4.81 34.09 4.95 85.19 9.37 0.226 0.090 

300 64.91 4.11 245.27 36.93 66.97 6.81 0.023 0.083 

800 70.22 4.45 651.61 85.95 66.90 7.24 0.030 0.293 

12 

24 295.67 18.61 634.24 81.12 253.90 25.30 0.230 0.575 

200 88.53 5.63 345.84 47.01 91.48 9.76 0.036 0.137 

400 82.53 5.31 538.05 70.80 71.38 6.79 0.038 0.283 

800 106.63 6.73 333.32 43.98 86.91 8.46 0.074 0.282 
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Table 3. Inventory of 129I and its species in compartments of the central Arctic by 2011. 

Location 
Depth 

(m) 

Surface Area 

(×1011 m2) 

129I inventory 

(kg) 
Percentage of 129I in total inventory, % 

Eurasian Basin 0-200 m 20.83 450 ± 45 30.9 

200-800 m 20.83 538 ± 54 36.9 

Makarov Basin 0-200 m 8.48 157 ± 16 10.8 

200-800 m 8.48 166 ± 17 11.4 

Canada Basin 0-200 m 19.78 15 ± 2 1.0 

200-800 m 19.78 131 ± 13 9.0 

 
 

 
 

 
PML and Halocline, 0-200 m  

 
1457 ± 357 42.7 

AWL, 200-800 m  
 

622 ± 108 57.3 

Total in upper 800 m  
 

835 ± 145 100.0 
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Figure Captions 

Figure 1. Map showing the sampling locations of the 12 water depth profiles (red dots with black numbers) in the 

central Arctic Ocean. The circulation schematic diagram of Atlantic-origin water (yellow lines) was showed 

according to (Smith et al. 2011; Smith et al. 1999), which flows along the continental margin and Lomonosov and 

Alpha-Mendeleyev Ridges, and finally exits through the Fram Strait. The section contour indicated by the green 

dot line showed the topography of the Arctic Basin (below). 

Figure 2. Lateral distribution of concentrations of129I and 127I (in parenthesis) in seawater of the Polar mixed 

Layer. 

Figure 3. Depth profiles of 127I (top) and 129I (bottom) in the central Arctic. The PML has lower 127I concentration 

but much higher 129I concentration. The 129I concentrations in the Eurasian and Makarov Basin were significantly 

higher than those in the Canada Basin.  

Figure 4.Typical depth profiles of 127I (left) and 129I (right) in the three Arctic Basins, showing depletion of 127I in 

the surface layer, and 129I concentrations decrease with depth in the Eurasian and Makarov Basins, but peak value 

at 250m depth in the Canada Basin.  

Figure 5. Lateral distribution of iodide to iodate ratios for 127I (upper) and 129I (bottom) in seawater of the polar 

mixed layer. 

Figure 6.Depth profiles of iodide to iodate ratios for 129I and 127I in the central Arctic, showing the highest value at 

the Eurasian Basin margin, and the lowest at the Canada Basin and Mendeleyev-Alpha Ridge.  
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Figure 1. Map showing the sampling locations of the 12 water depth profiles (red dotswith black numbers) in the 

central Arctic Ocean. The circulation schematic diagram of Atlantic-origin water (yellow lines) was showed 

according to (Smith et al. 2011; Smith et al. 1999), which flows along the continental margin and Lomonosov and 

Alpha-Mendeleyev Ridges, and finally exits through the Fram Strait. The section contour indicated by the green 

dot line showed the topography of the Arctic Basin (below). 

 
Figure 2. Lateral distribution of concentrations of 129I and 127I (in parenthesis) in seawater of the Polar mixed 

Layer. 
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Figure 3. Depth profiles of 127I (top) and 129I (bottom) in the central Arctic. The PML has lower 127I concentration 

but much higher 129I concentration. The 129I concentrations in the Eurasian and Makarov Basin were significantly 

higher than those in the Canada Basin.  
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Figure 4. Typical depth profiles of 127I (left) and 129I (right) in the three Arctic Basins, showing depletion of 127I in 

the surface layer, and 129I concentrations decrease with depth in the Eurasian and Makarov Basins, but peak value 

at 250m depth in the Canada Basin.  
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Figure 5. Lateral distribution of iodide to iodate ratios for 127I (upper) and 129I (bottom) in seawater in the Polar 

mixed layer. 
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Figure 6. Depth profiles of iodide to iodate ratios for 129I and 127I in the central Arctic, showing the highest value 

at the Eurasian Basin margin, and the lowest at the Canada Basin and Mendeleyev-Alpha Ridge. 
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This supporting information describes the details of the analytical methods for chemical 

separation of different species of iodine and measurement for 
129

I, 
127

I. The estimation of 
129

I 

inventory in the central Arctic is also presented in detailed. It includes three tables and six 

figures. 

 

Methods  
Separation of inorganic iodine species.  

An anion exchange chromatography with a long column was applied for the separation of iodate and iodide to 

prevent breakthrough of iodide from the column due to high chloride concentration in the high salinity seawater 

samples. The experiment using 125I- spike showed that no iodide leakage occurred when 600 mL of seawater with 

a salinity of 35 psu was loaded onto a column 30 cm in height and 1 cm in diameter. All reagents in this work 

were analytical grade except when otherwise stated. 

600 mL of seawater was taken to a beaker and 2000 Bq 125I- was spiked, the sample was then loaded onto an anion 

exchange chromatography columns (AG 1×4, 50 mesh, Bio-Rad Laboratories Inc., Hercules, California, USA) 

which was transformed from Cl- type to NO3
- type using 2 M NaNO3. Iodate passed through the column due to its 

low affinity with anion exchange resin, while iodide was absorbed onto the resin. 30 mL of 0.2 M NaNO3 and 20 

mL of ultrapure water were used to wash the column in turn and integrated with the effluent. Iodide on the column 

was eluted with the addition of 100 mL of 5% NaClO and 30 mL of 3 M HNO3. The chemical yield of iodide was 

estimated by comparing 125I in eluate with the standard solution.  

Due to addition of HNO3, the iodide fraction was neutralized with concentrated NH3·H2O to pH 7 prior to 

ICP-MS measurement. 1 mL of the original seawater and the iodate and iodide fractions were diluted by factors of 

10-20 with 1% NH3·H2O for 127I measurement by ICP-MS (Thermo Fisher, X Series II) using Xt cone under 

normal mode (Hou et al. 2007). Cesium (CsNO3) was added the solutions to a final concentration of 2 ng/g as an 

internal standard to monitor the ionization efficiency of iodine. Iodine was separated from the original seawater 

and the iodate and iodide fractions by solvent extraction after addition of 2 mg 127I carrier (Woodward Company, 

Colorado, USA). Iodine as iodide in the extracted solutions was precipitated with 0.5M AgNO3 as AgI, which was 

then dried at 70℃ in an oven, mixed with niobium powder and pressed into copper target holders. The AgI target 
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was measured for 129I by AMS (3MV, HVEE, Netherland) at Xi’an AMS Center, China. Pentavalent iodine (I5+) 

was selected for the measurement of 127I by Faraday cup and 129I using gas ionization detector (Zhou et al. 2010). 

Directly pressed Nb powder was used to characterize the instrumental blank. Procedure blanks were prepared 

using the same procedure as the samples, and prepared as AgI targets for AMS measurement, 129I/127I values of 

less than 510-13 in the blanks (including iodide and iodate), which was 2 orders of magnitude lower than sample 

targets. 

Nutrient and Chlorophyll a data.  

The concentration of nutrients (nitrate and phosphate) in seawater samples in the central Arctic were measured 

with colorometric autoanalysis (Kattner and Ludwichowski. 2014) (Fig. S-3).. The concentration of chlorophyll a 

was obtained on the Arctic System Science Primary Production (ARCSS-PP) database 

(http://www.nodc.noaa.gov/cgi-bin/OAS/prd/accession/details/63065 ) (Fig. S-4).  

Mapping method.  

Free software Ocean Date view version 4 (ODV) was used to map the lateral and vertical profiles of iodine 

distribution and nutrients, as well as chlorophyll a distribution. For more information about ODV, see 

http://odv.awi.de/.  

Estimation of 
129

I inventory in the central Arctic. 

The raw data obtained in this work and from the data of Smith et al. (Smith et al. 2011) with time correction were 

plotted and performed curve fitting using software OriginPro 9 (Fig. S-6). The parameters for the fitting functions 

were listed in Table S-3. The fitting curves were shown in Fig. S-6. The fitting results were in a good agreement 

with the observations (r > 0.94). The functions were integrated with an online integral calculator 

(http://zh.numberempire.com/definiteintegralcalculator.php) to estimate the integral values in difference 

intervals, 0-200 m, 0-800 m. The inventory was estimated by multiplying the surface area of basins with the 

integrated values. 

 

Reference 
Hou X, Aldahan A, Nielsen SP, Possnert G, Nies H, Hedfors J. Speciation of I-129 and I-127 in seawater and 

implications for sources and transport pathways in the North Sea. Environ Sci Technol 2007;41:5993-9. 

Zhou WJ, Hou X, Chen N, Zhang LY, Liu Q, He CH et al. Preliminary study of radioisotope 129I application in 

China using Xi’an accelerator mass spectrometer. ICNS News 2010; 25: 8-23. 

Online integral calculator.http://zh.numberempire.com/definiteintegralcalculator.php. 

Alfred Wegener Institute (http://expedition.awi.de/expeditions).  

http://www.nodc.noaa.gov/cgi-bin/OAS/prd/accession/details/63065
http://odv.awi.de/
http://zh.numberempire.com/definiteintegralcalculator.php
http://zh.numberempire.com/definiteintegralcalculator.php
http://expedition.awi.de/expeditions
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Table S-1. Sampling information and physical parameters of seawater samples from the central Arctic in 2011. 

Data is obtained from the web page of the Alfred Wegener Institute (http://expedition.awi.de/expeditions). 

Station 
Latitude 

Longitude 

Station  

information 

Sampling Date 
Depth, 

m 

Salinity, 

psu 

Tpot, 
a 

°C 

O2 b 

[μmol/l] 

1 

 

83°22.75 N 

131°01.23 W 

Southern slope of the Alpha 

Ridge 

2011-09-02 25 30.23 -1.33 397.52 

244 34.49 -0.18 299.47 

370 34.83 0.64 297.95 

2 

 

85°03.70 N 

137°16 W 
Over the Alpha Ridge 

2011-08-31 25 29.83 -1.40 402.09 

250 34.66 0.24 290.79 

400 34.84 0.43 294.48 

3 

 

84°04.44 N 

164°13.08 W 

Over the Mendeleyev 

Ridge 

2011-09-06 250 34.77 0.59 299.21 

390 34.85 0.78 304.31 

800 34.87 0.04 304.91 

4 

 

84°42.17 N 

177°23.18 E 

The Makarov Basin side of 

the Mendeleyev Ridge 

2011-09-08 10 31.06 -1.62 399.16 

248 34.79 0.76 303.55 

500 34.84 0.57 310.01 

5 

 

86°51.63 N 

155°03.55 W 

In the southwest of the 

Makarov basin 

2011-08-29 25 31.90 -1.61 390.75 

250 34.78 0.75 301.75 

333 34.84 0.90 303.93 

800 34.87 0.03 308.50 

6 

 

84°49.35 N 

161°02.14 E 

In the southeast of the 

Makarov basin 

2011-09-09 250 34.84 1.05 303.86 

400 34.86 0.75 305.62 

800 34.87 -0.08 309.31 

7 

 

84°32.44 N 

145°04.70 E 

The Amundsen Basin side 

of the Lomonosov Ridge 

2011-09-10 10 28.26 -1.53 390.76 

200 34.81 0.92 306.32 

266 34.86 1.18 306.58 

8 
89°57.91 N 

136°44.78 E 

At the North Pole 

 (Amundsen Basin) 

2011-08-22~23 25 32.56 -1.72 354.71 

250 34.83 1.11 305.23 

278 34.87 1.28 305.98 

750 34.89 0.06 314.42 

9 
83°20.46 N 

124°52.28 E 

In the southeast of the 

Amundsen basin 

2011-09-13 199 34.81 1.09 302.22 

263 34.88 1.36 303.41 

800 34.89 -0.07 313.97 

10 
82°09.88 N 

119°08.18 E 

Over the Nansen-Gakkel 

Ridge 

2011-09-19 10 31.71 -1.65 383.13 

200 34.83 1.43 302.72 

700 34.89 0.17 311.59 

11 
80°38.30 N 

121°20.3 E 

In the south of the Nansen 

Basin 

2011-09-20 25 32.88 -1.66 376.15 

300 34.89 1.56 304.40 

800 34.89 -0.12 312.68 

12 
78°29.68 N 

125°46.09 E 

The Nansen Basin margin 

close to the Laptev Sea 

2011-09-22 24 32.89 -1.40 375.24 

200 34.86 1.17 308.64 

400 34.88 0.50 312.84 

800 34.88 -0.35 317.77 

a. Tpot, potential temperature; b. O2, dissolved oxygen concentration. 

  

http://expedition.awi.de/expeditions
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Table S-2. Molecular ratios of iodide to iodate for 129I and 127I in different water bodies 

NO Station Sampling date 
Depth 

(m) 

Iodide/Iodate Ratio 
Reference 

127I 129I 

1 
Central Arctic Ocean 

Aug-Oct, 2011 10-25 0.217 - 0.622 

0.469 - 

0.728 This study 

 

 

 

199-80

0 0.013 - 0.074 

0.051 - 

0.293 This study 

2 
North Sea 

Aug-Sep, 2005 surface 0.11 – 0.50 0.51 – 1.64 

(Hou et al. 

2007) 

3 

Skagerrak, Kattegat 

and Baltic Proper Aug, 2006 25-240 0.5 - 13.1 0.5 - 67 (Yi et al. 2012) 

 

Skagerrak, Kattegat 

and Baltic Proper April, 2007 30-300 0.1 - 33.1 0.4 - 44.9 (Yi et al. 2012) 

4 

Northern Atlantic 

Ocean  Oct-Nov, 2010 surface 0.06 - 0.25 0.14 - 0.70 (He et al. 2013) 

 

 

Table S-3.Functions and results of curve fitting by OriginPro 9 

Location Fitting 

Function 

Formula Adj. 

R-Square 

Eurasian 

Basin 

ExpDec1 y=17.26+64.71*exp(-0.007752*x) 0.940 

Makarov 

Basin 

ExpDec1 y=11.07+56.18*exp(-0.006256*x) 0.984 

Canada Basin Extreme y=1.70+17.86*exp(-(-exp(-z)-z+1), 

z=(x-265.90)*0.02323 

0.987 

 

 
Figure S-1. Correlation of salinity with total iodine and iodine species in the polar mixed layer of the Arctic 

Ocean.   
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Figure S-2. Depth profiles of 127I (left) and 129I (right) in the three Arctic Basins, showing depletion of 127I in the 

surface layer, and 129I concentrations decrease with depth in the Eurasian and Makarov Basins, but peak value at 

250m depth in the Canada Basin.  
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Figure S-3. Distribution of silicate, phosphate and nitrate at 20-25 m in the central Arctic Ocean. Data are 

available from (Kattner and Ludwichowski. 2014).  
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Figure S-4. Section of chlorophyll a concentration across the Eurasian Basin. Insert at the bottom shows the 

bathymetry of the sampling section. Sampling was conducted on July 2001. Data are available on Arctic System 

Science Primary Production (ARCSS-PP) database 

(http://www.nodc.noaa.gov/cgi-bin/OAS/prd/accession/details/63065 ).  

 

http://www.nodc.noaa.gov/cgi-bin/OAS/prd/accession/details/63065
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Figure S-5. Plot of 127I-/127IO3

- as a function of 129I-/129IO3
- in the polar mixed layer (PML) and the Atlantic water 

layer (AWL). 

 

 
Figure S-6. Depth profiles of 129I concentration in the central Arctic. Symbols are observed values and lines are 

the fitting curves for the three basins.  
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ABSTRACT: The Fukushima nuclear accident in March 2011 has released a
large amount of radioactive pollutants to the environment. Of the pollutants,
iodine-129 is a long-lived radionuclide and will remain in the environment for
millions of years. This work first report levels and inorganic speciation of 129I
in seawater depth profiles collected offshore Fukushima in June 2011.
Significantly elevated 129I concentrations in surface water were observed with
the highest 129I/127I atomic ratio of 2.2 × 10−9 in the surface seawater 40 km
offshore Fukushima. Iodide was found as the dominant species of 129I, while
stable 127I was mainly in iodate form, reflecting the fact that the major source
of 129I is the direct liquid discharges from the Fukushima NPP. The amount of
129I directly discharged from the Fukushima Dai-ichi nuclear power plant to
the sea was estimated to be 2.35 GBq, and about 1.09 GBq of 129I released to
the atmosphere from the accident was deposited in the sea offshore
Fukushima. A total release of 8.06 GBq (or 1.2 kg) of 129I from the Fukushima accident was estimated. These Fukushima-
derived 129I data provide necessary information for the investigation of water circulation and geochemical cycle of iodine in the
northwestern Pacific Ocean in the future.

■ INTRODUCTION

A nuclear accident at the Fukushima Dai-ichi nuclear power
plant (1FNPP), Japan, occurred in March 2011 due to failure of
the cooling system after the Tohoku earthquake and the
Tsunami on March 11, 2011. Hydrogen explosions occurred in
unit 1 on March 12 and unit 3 on March 14, and in the spent
fuel storage building in unit 4 on March 15, as well as an
internal explosion in reactor 3 on March 15, 2011.1−3

Significant quantities of radioactive materials were emitted to
the atmosphere from March 12 through 24, with estimated
atmospheric releases of 150−160 PBq (peta becquerels, or 1015

Bq) of 131I and 10−15 PBq of 137Cs.4−6 These radionuclides
were transported and deposited over large areas of the northern
hemisphere; radioisotopes of cesium and iodine have been
observed in the atmosphere over America, Europe, and Asia.
Fortunately, due to the dominant westerly wind, the radio-

nuclides were transported and deposited mainly in the Pacific
Ocean, with less than 20% of them deposited over the land of
Japan.1,6,7

The damage in the containment vessel of the reactor of unit
2 at the 1FNPP due to an internal hydrogen explosion caused a
leakage of highly contaminated water to the sea from March 25
to April 5.3,8,9 Large volumes of contaminated water were
produced during cooling of the reactors using fresh water and
seawater, and some of this water was intentionally discharged
directly to the sea April 4−20, 2011 to leave space for more
highly contaminated water. In addition, some contaminated
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groundwater was also directly discharged to the sea.2,8,10 This
direct discharge of contaminated water to the sea has
significantly elevated 137Cs and 131I concentrations in seawater
at the coast as well as offshore, starting from March 21 and
rapidly increasing from March 27, with peak values on March
30 (47 kBq/L of 137Cs) and on April 6 (68 kBq/L) at the
discharge point of the 1FNPP.9 Therefore liquid discharge
directly to the sea was another major source of radionuclides to
the environment, especially to the ocean.

137Cs and 131I, which were two major radionuclides released
from the Fukushima accident, have been intensively inves-
tigated. However, many other radionuclides have also been
released to the environment, especially through the liquid
discharge to the sea, because of high leaching efficiency of
radionuclides from the damaged fuel rod materials when
corrosive brine water was used to cool the reactor. Among
these radionuclides, 129I is a fission product with relative high
fission yields of 0.6%. However, few data on 129I from the
Fukushima accident have been reported, especially in the sea
surrounding Fukushima.

129I is a long-lived radioisotope of iodine with a half-life of
15.7 Ma. It is a soft beta-emitter with maximum beta-energy of
154 keV. Therefore, 129I is less radiologically harmful, and less
important in view of radiation protection. However, due to its
high solubility and the long residence time of iodine in the
ocean, 129I is an ideal oceanographic tracer for investigation of
water circulation in the ocean,11 and a useful environmental
tracer for the investigation of the interaction of atmosphere and
seawater, as well as for the biochemical cycle of stable iodine
through chemical speciation analysis of 129I.12,13 131I (t1/2 = 8
days) is the most harmful radionuclide from the nuclear
accident, due to its large release during the accident, and the
high uptake and enrichment in human thyroid. Its short half-life
prevents it from being well measured in the environment to
evaluate the radiation risk to humans exposed to the radioactive
contamination. The long-lived 129I provides a good analogue to
reconstruct levels and distribution of short-lived 131I in the
environment.14 In addition, iodine is highly concentrated in
seaweed, and some types of seaweed are popular seafood in
Japan and other Asian countries.15 129I discharged to the sea
will be concentrated in the seaweed and some sea fish,16 which
might cause an increased radiation to humans who consume
seafood from a highly contaminated area.
This work aims to investigate the levels and distribution of

129I in the sea offshore Fukushima by determination of 129I in
depth profiles of seawater, and to evaluate the source term and
budget of 129I by chemical speciation of 129I and 127I for iodide
and iodate in seawater profiles.

■ MATERIALS AND METHODS
Samples and Reagents. Seawater samples were collected

from offshore Fukushima during the research cruise organized
by American scientists June 3−17, 2011 using the research
vessel Kaimikai-O-Kanaloa of the University of Hawaii.3 The
samples were stored in dark at ambient temperature before
analysis. Of these samples, depth profiles from 4 sampling
stations with distances of 40−530 km from Fukushima Dai-ichi
nuclear power plant (Figure S-1 and Table S-1 in the
Supporting Information) were used for 129I.
All chemical reagents used were of analytical grade and all

solutions were prepared using deionized water (18.2 MΩ
cm−1). 129I standard (NIST-SRM-4949c), carrier free 125I
(Amersham Pharmacia Biotech, Little Chalfout, Buckingham-

shire, UK), 127I carrier (Woodward iodine, MICAL Specialty
Chemicals, New Jersey, USA), and Bio-Rad AG1-×4 anion
exchange resin (50−100 mesh, Cl form, Bio-Rad laboratories,
Richmond, CA, USA) were used in the experiments.

Analytical Methods for Determination of 129I Species.
Anion exchange chromatography was used for separation of
iodide, iodate, and total inorganic iodine from seawater. A
schematic diagram of the separation procedure is shown in
Figure S-2, and the separation methods are presented in the
Supporting Information. The detailed methods for speciation
analysis of 129I in seawater have been reported elsewhere.13

Filtered seawater (0.5−1 L) was transferred to a beaker, and
125I− was added. After loading the prepared solution to an anion
exchange column (AG1-×4 resin, NO3

− form), and washing
with 0.2 mol/L NaNO3, iodide on the column was eluted with
5% NaClO; effluent and wash were combined for iodate
separation. A 1.0 mL solution of the iodide fraction, the iodate
fraction, and the original seawater were taken to a vial for 127I
measurement using ICP-MS. Iodine in the remaining solutions
of the iodide and iodate fractions, as well as in the original
seawater, was separated using CHCl3 extraction based on
adjusting the oxidation state of iodine. The separated iodine
from each fraction in iodide form was used to prepare AgI
sputter target by adding AgNO3 solution for AMS measure-
ment of 129I.
Before extraction, the eluate of iodide from the anion

exchange column was also measured for 125I by gamma-
spectrometer to monitor chemical recovery of iodide during
column separation. This measurement is used to correct the
127I− and 129I− concentrations in seawater.12,13

An ICP-MS system (X Series II, Thermo, Waltham, MA)
equipped with an Xs- skimmer cone and standard concentric
nebulizer was used for the measurement of 127I. A 1.0 mL
portion of the separated fractions or the original seawater was
diluted to 20 mL using 1% ammonium solution, and spiked
with Cs+ (to 2.0 ppb) as internal standard. The detection limit
of the method for 127I was calculated as 3 SD of the procedure
blank to be 0.03 ng/mL.
The 129I/127I ratios in total iodine samples were determined

by AMS at the Vienna Environmental Research Accelerator
(VERA)17 and the University of Arizona AMS Laboratory, both
using a 3MV National Electrostatics Corporation AMS.18 The
129I/127I ratios in iodide and iodate samples were measured
using the 3 MV AMS facility at the Xi’an AMS center.19 The
machine backgrounds of the 129I/127I ratio are around (2−4) ×
10−14. Procedure blanks using the same procedure as the
samples were also prepared; the highest measured 129I/127I ratio
is 2.8 × 10−13, which is significantly lower than measured
129I/127I ratios in the samples. No seawater from uncontami-
nated deep ocean with 129I/127I close to preanthropogenic level
of 2 × 10−12 in marine environment has yet been analyzed.20

However, a 129I/127I ratio as low as 3 × 10−13 (or 5 × 105 atoms
for a target with 0.5 mg 127I) has been measured in a procedure
background sample, which was produced by addition of 127I
carrier to deionized water and separation of iodine and
measuring it using the same procedure and method as for the
samples analyzed in this work.21 The 129I levels for any species
presented in this work (>7.7 × 106 at/L for 129I concentration
in >0.5 L water or 2.6 × 10−11 for 129I/127I atomic ratio) are 1−
2 orders of magnitude higher than the procedure plank,
confirming that the applied method is well suitable for the
analysis of these samples.
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■ RESULTS AND DISCUSSION

Distribution of 129I in Seawater Offshore Fukushima.
In 4 seawater profiles offshore Fukushima, the highest
concentration of 129I up to 62 × 107 atoms/L was measured
in the surface water from the station 31 about 40 km from the
1FNPP (Table 1). In the other 3 stations (11, 14, and 22),
similar 129I concentrations of (14−16) × 107 atoms/L at depth
20 m were observed, which is slightly lower than that at station
No. 31 with the value of 20 × 107 atoms/L at the same depth
(Table 1). At station 31, the 129I concentrations decrease with
increasing depth to about (10−13) × 107 atoms/L in the depth
50−120 m (Figure 1). The decreasing 129I concentrations with
depth were observed at all stations. The lowest 129I

concentration of 0.77 × 107 atoms/L was observed at a
depth of 400 m at station 14, which is about 260 km offshore
Fukushima. A similar low 129I concentration of 1.9 × 107

atoms/L was measured at depth of 400 m at station 11 (the
most distant location 530 km from Fukushima). These values
are 30−80 times lower than that of the surface water at station
31. Relative lower concentrations of 129I in subsurface water
(50−400 m depth) from station 14 compared to those at
station 11 were measured, although station 11 is relatively far
from Fukushima (530 km) compared to station 11 (260 km),
these might be attributed to the pathway of water current as
well as the contaminated water plume in this area.
Relatively constant 127I concentrations of 55−61 μg/L were

observed in these seawater samples (Table 1). The distribution
of the 129I/127I ratios (Figure 2, Table 1) is the same as for the
129I concentrations; the highest 129I/127I ratio of 22 × 10−10 was
observed at the 10 m depth in station 31, while the lowest
129I/127I ratio is only 0.26 × 10−10 in the water from station 14
at a depth of 400 m (Figure 2).

Inorganic Speciation of 129I and 127I in Seawater
Profiles. In seawater, especially offshore and in the open sea,
iodine mainly exists as iodide and iodate and to a minor extent
as organic iodine,22,23 although a high fraction of iodine in
coastal and estuarine seawater and river and lake water was
observed in organic form,24 and increased level of organic
iodine was reported in some open sea waters.25 Two seawater
samples collected in the North Sea (open seawater) and
offshore Fukushima (surface water at station 31), respectively,
were analyzed for both total inorganic 129I and total 129I using a
method recently developed in our lab.26 In this method, organic
matter was first decomposed using K2S2O8 at pH 1−2 to
convert any organic associated iodine to inorganic form,
followed by solvent extraction after addition of 127I carrier. The
results showed no significant difference between total inorganic
129I and total 129I, confirming that negligible amount of 129I was
present in organic form in these open sea and offshore seawater

Table 1. Distribution of 129I, 127I, 129I/127I Ratios, and Speciation of 129I and 127I in Four Seawater Profiles Offshore Fukushima
Collected in June 2011a

iodide/iodate (mol/mol)

sampling station depth (m) total 129I concn (× 107 atoms/L) 127I concn (μg/L) 129I/127I (× 10−10 at/at) 129I 127I

11 400 1.89 ± 0.40 60.44 ± 1.29 0.66 ± 0.14 NM NM
11 200 4.46 ± 0.36 60.32 ± 1.30 1.56 ± 0.13 2.89 ± 0.47 0.074 ± 0.001
11 50 9.87 ± 0.65 55.53 ± 1.24 3.75 ± 0.26 6.01 ± 0.52 0.162 ± 0.004
11 20 15.63 ± 1.07 56.40 ± 1.08 5.84 ± 0.42 8.54 ± 2.11 0.173 ± 0.005
14 400 0.77 ± 0.09 61.64 ± 1.22 0.26 ± 0.03 NM NM
14 200 2.30 ± 0.16 58.68 ± 1.00 0.83 ± 0.06 NM NM
14 50 5.68 ± 0.38 54.60 ± 1.15 2.19 ± 0.15 3.61 ± 0.28 0.185 ± 0.004
14 20 14.75 ± 0.50 56.42 ± 1.21 5.51 ± 0.22 6.08 ± 0.78 0.181 ± 0.004
22 400 3.74 ± 0.34 61.38 ± 1.36 1.28 ± 0.12 NM NM
22 200 11.80 ± 1.12 60.05 ± 1.42 4.14 ± 0.40 NM NM
22 50 14.31 ± 1.20 57.88 ± 1.18 5.21 ± 0.45 3.74 ± 0.46 0.067 ± 0.002
22 20 16.14 ± 1.25 57.46 ± 1.08 5.92 ± 0.47 3.81 ± 0.71 0.115 ± 0.003
31 120 10.47 ± 0.76 55.23 ± 1.32 4.00 ± 0.30 NM NM
31 100 10.68 ± 0.87 54.20 ± 1.10 4.15 ± 0.35 2.28 ± 0.51 0.262 ± 0.007
31 90 13.61 ± 0.93 57.95 ± 1.18 4.95 ± 0.35 3.35 ± 0.34 0.235 ± 0.006
31 50 13.31 ± 0.49 53.83 ± 1.14 5.21 ± 0.22 3.77 ± 0.40 0.270 ± 0.007
31 20 20.70 ± 0.75 60.87 ± 1.21 7.17 ± 0.30 7.40 ± 1.33 0.194 ± 0.005
31 10 62.90 ± 2.72 60.40 ± 1.39 21.95 ± 1.08 8.74 ± 0.33 0.255 ± 0.008

aNM: not measured; the uncertainties shown in the table are 2σ analytical uncertainty. The distances from the sampling stations 31 (37.52° N,
141.44° E), 22 (38.00° N, 143.0° E), 14 (37.50° N, 144.00°E), and 11(37.50° N, 147.00° E) to the Fukushima NPP are about 40, 180, 260, and 530
km, respectively.

Figure 1. Depth distribution of 129I concentration in 4 seawater
profiles (at stations 11, 14, 22, and 31; refer to Table S-1 and Figure S-
1 for precise locations) offshore Fukushima, error bars showing
analytical uncertainty.
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samples. It is therefore shown that the measured total inorganic
129I concentrations represent the total 129I in the seawater
measured in this work.
The analytical results of iodide, iodate, and total iodine for

both 129I and 127I (Table S-2) show a completely different
distribution of 129I compared to 127I in all seawater analyzed
(Figure 3). 129I is mainly in iodide form, with an iodide/iodate

molecular ratio up to 8.7 in surface water (< 20 m) and about
2−3 in subsurface water (> 50 m). However, iodate is the
dominant species of 127I, with a relative constant molecular
ratio of iodide/iodate of about 0.2 (range of 0.07−0.27) (Table
1). In the water profile at station 31, a trend of gradually
decreasing iodide/iodate ratios from 8.7 in the surface water (at
depth of 10 m) to 2.2 in subsurface water (at depth of 120 m)
is observed (Figure 3). 129I/127I ratios show a significantly
different distribution for iodide and iodate, with much higher
isotopic ratio for iodide compared to iodate (Table S-2). The

129I/127I ratios for iodide increase from 14 × 10−10 in the
subsurface water to 104 × 10−10 in the surface water at station
31, while 129I/127I ratios for iodate are more than 45 times
lower compared to those for iodide, only (0.04−0.31) × 10−10

(Table S-2).
The different distribution of 129I species compared to 127I can

be attributed to two reasons: (1) the different sources of 127I
and 129I; (2) relatively long time to reach equilibrium among
iodine oxidation states in the open sea. The ocean is the main
source of iodine (127I), which accounts for more than 80% of
iodine in the earth’s crust. Distribution of 127I species in
seawater depends on many parameters. In the open sea
(oxygenated seawater), iodine mainly occurs as iodate; iodide
concentrations might increase in the coastal water and surface
water by reduction of iodate through biological, chemical, and
photochemical approaches.22 Seawaters analyzed in this work
were collected from an open sea, and the measured iodide/
iodate ratios in these samples are typical values for the open
sea.22,27

Although the oxidation of iodide to iodate is a favored
process in view of chemical dynamics of redox reactions of
iodine in oxygenated seawater, investigation in the North Sea,
Nordic seas, and the Arctic has shown, however, that oxidation
of iodide to iodate in the open sea is a slow process,13 and
chemical species of 129I in offshore water and in the open sea
have not significantly changed during their transport from the
North Sea to the Norwegian Sea, and further to the Arctic,
which takes 1−4 years. The seawater investigated in this work
was collected June 9−15, about 2.5 months after direct liquid
discharges of contaminated water from 1FNPP. Therefore, the
dominant iodide species of 129I should result from its source, i.e.
that 129I was discharged to the seawater from the 1FNPP
mainly in iodide form. Chemical species of radioiodine in
neither the liquid discharges from the 1FNPP nor irradiated
fuel in the reactor have been reported. However, it has been
observed that radioiodine (131I, 123I, or 124I) in trap solution
thermally released from the irradiated uranium or tellurium is
mainly in iodide form (Syed M. Qaim, 2012, communication in
NRC-9, 2012). This might imply that radioiodine in the
contaminated water from the damaged reactor in 1FNPP might
be mainly in iodide form. The chemical species of radioiodine
in the precipitation of Fukushima are not yet available.

Source Terms of 129I in Seawater Offshore Fukushima.
There are 4 possible sources of 129I in the seawater offshore
Fukushima: (1) direct liquid discharges from 1FNPP to the sea;
(2) atmospheric fallout of 129I from Fukushima accident; (3)
runoff of 129I deposited on the land to the sea; (4) global fallout
of 129I.
In a seawater profile collected offshore Kushiro (42° N, 146°

E) before Fukushima accident in 2007, it has been observed
that the 129I/127I ratios decreased with increasing depth from
0.7 × 10−10 in surface water, 0.18 × 10−10 in depth of 500 m, to
<0.07 × 10−10 in the deeper water (> 1000 m), corresponding
to 129I concentration of 2 × 107 atoms/L in the surface water to
0.5 × 107 atoms/L at depth about 500 m, and then <0.2 × 107

atoms/L in deeper water (> 1000 m).28 Similar levels of 129I
concentrations of (0.8−2) × 107 atoms/L in surface and
subsurface (> 1000 m) have also been reported in two water
profiles collected from the Northwestern Pacific Ocean (35° N,
152° E and 31° N, 170° E) in 1997.29 Because there is no other
source of 129I in the Pacific Ocean except global fallout (and
possibly local fallout from the nuclear weapons testing at Bikini
and Enewetak atolls29) before the Fukushima accident, the 129I

Figure 2. Depth distribution of 129I/127I atomic ratios in 4 seawater
profiles (at stations 11, 14, 22 and 31; refer to Table S-1 and Figure S-
1 for precise locations) offshore Fukushima, error bars showing
analytical uncertainty.

Figure 3. Distribution of 129I and 127I species (iodide/iodate, mol/
mol) in seawater profile of station 31 (refer to Table S-1 and Figure S-
1 for precise location) offshore Fukushima, error bars showing
analytical uncertainty.

Environmental Science & Technology Article

dx.doi.org/10.1021/es304460k | Environ. Sci. Technol. 2013, 47, 3091−30983094



level in these waters should be a representative level of 129I in
the Pacific Ocean. The 129I level (for both 129I concentrations
and 129I/127I ratios) in the surface seawater (< 20 m) offshore
Fukushima analyzed in this work is 5−30 times higher than the
global fallout value, and 1.5−7 times higher in the subsurface
water (> 400 m). A significantly decreased 129I level with the
increased depth in the water columns, especially in the top 100
m, was observed (Figures 1 and 2). At station 31, more than 3
times higher 129I level at 10 m compared to at 20 m depth water
was measured, this might imply that 129I at surface (<10 m) is
even higher, and difference of the 129I concentration at surface
water comparing to the pre-accident level is even bigger that
just comparing with 20 m and 10 m depth water. Investigation
of 129I in seawater nearby the discharge point of nuclear power
plants in China (the Pacific Ocean) has shown no significant
influence of the operation of NPP on the 129I levels in the
seawater,30 and the 129I concentrations of (0.7−2.5) × 107

atoms/L in surface water collected in 2−10 km distance from
the discharge point of the NPP, corresponding to 129I/127I
ratios of (0.8−2.6) × 10−10. It can be assumed that there was no
significant influence of the operation of the Fukushima NPP on
129I levels in seawater before the accident. The elevated 129I
levels in the surface seawater offshore Fukushima can therefore
not be attributed to global fallout and the discharges from the
ordinary operation of the Fukushima NPP. However, the global
fallout contribution to the 129I levels in the subsurface waters
could not be ignored.
During the Fukushima accident in March 2011, huge

amounts of radionuclides including 150−160 PBq of 131I and
10−15 PBq of 137Cs were released to the atmosphere.4−6 The
half-lives of these radionuclides are very much different from a
few hours (e.g., 132I) to millions of years (e.g., 129I). For easy
discussion, all concentrations and ratios of the radionculides
discussed in this work (i.e., 137Cs, 131I, and 129I) are decay-
corrected to March 13, 2011, the beginning of the radioactive
releases from the nuclear accident at the Fukushima Dai-ichi
nuclear power plant, if not otherwise specified. It has been
estimated that a total of 5.6 PBq of 137Cs released to the
atmosphere has been deposited over Japan and the surrounding
ocean (130−150° E and 30−46° N),6 and a similar value of 5
PBq of 137Cs deposited in the Ocean surrounding Japan has
also been estimated by another group.5 This means that 30−
50% of 137Cs released to the atmosphere during the accident
was deposited in the ocean surrounding Japan, indicating the
deposition of radionuclides from the atmosphere to the ocean
is one of important sources of radionuclides in seawater
offshore Fukushima. Up to 77 Bq/L of 131I and 24 Bq/L of
137Cs were measured in seawater 30 km offshore Fukushima on
March 23, 2011; this is more than 104 times higher than the
background level of 1 mBq/L of 137Cs in the Pacific Ocean,8,9

indicating a notable contribution of atmospheric deposition
into the sea offshore Fukushima.
It is difficult to estimate the amount of radionuclide runoff

from the land to the Sea via rivers, because no sufficient data on
radionuclide concentrations in rivers are available. It has been
reported that iodine can be easily absorbed in soil components,
especially in the soil with high organic matter.31 It can be
estimated that only very small fraction of iodine deposited on
the lands can be quickly removed to the sea through rain and
river runoff. Considering that only 13% of radioiodine released
to the atmosphere was deposited on the land of Japan,7 the
runoff of 129I from the land to the sea would not be a significant
source of 129I in the seawater offshore Fukushima.

Direct liquid discharges of 3.5−4 PBq of 137Cs from 1FNPP
to the sea from 21 March to 30th April 2011 have been
estimated.5,9 Much higher releases of 137Cs of 27 PBq (12−41
PBq) have been estimated using a simple interpolation model
of sparsely observed data and relatively coarse horizontal
resolution,32,33 But a small release of 137Cs of only 0.94 PBq in
1−6 April 2011 was estimated by Japanese government.33

Therefore the direct discharge from 1FNPP to the sea is
another important source of 129I in the seawater offshore
Fukushima.
The seawater samples investigated in this work have also

been analyzed for 137Cs 34 using AMP (ammonium
molybdophosphate) preconcentration and gamma spectrome-
try measurement,35 and 0.01−1.1 Bq/L of 137Cs were measured
in these waters, i.e. 60−1100 times higher 137Cs concentrations
compared to the global fallout level, indicating its dominant
Fukushima source. The 129I/137Cs atomic ratios in the analyzed
seawater samples are calculated to be 0.41−0.62 in the top 50
m water column and 0.8−1.7 in subsurface seawaters (> 50 m)
at 4 stations. Cesium is considered to be a relatively
conservative element in oceans and 137Cs has been widely
applied as an oceanographic tracer for water circulation,36,37

although the residence time of 137Cs is much shorter than 129I
due to the shorter physical half-life of 137Cs and relatively
higher adsorption of 137Cs to the particulates (especially clay
minerals) suspending in the water column. The high 129I/137Cs
ratios in the subsurface water might be attributed to the fact
that a relatively high fraction of 129I in the subsurface seawater
originates from global fallout. Based on the fact that the 129I
concentrations in subsurface water measured in this work are
1.5−7 times higher than pre-accident values, it can be estimated
that 12−75% 129I in subsurface water of >400 m depth
originates from the global fallout. In addition, the higher
analytical uncertainty of 137Cs in subsurface water samples with
low 137Cs concentration also influences this value. By
measurement of soil samples collected around the 1FNPP, a
129I/131I atomic ratio of (26.6 ± 7.5) has been reported.38

Therefore 131I/137Cs atomic ratios in the surface water (<50 m
depth) offshore Fukushima can be derived to be 0.015−0.023,
or an activity ratio of 21−32. This values are close to the
measured 131I/137Cs activity ratio of about 17.8 in coastal waters
near the discharge point in the 1FNPP after March 25, 2011.8,9

Based on the estimated atmospheric releases of 131I (150 PBq)
and 137Cs (13 PBq), 131I/137Cs activity ratio in the atmosphere
released from the Fukushima accident can be calculated to be
11.5. Measurement of 131I and 137Cs in precipitation (rain and
dust) over Japan from March 18 to April 29 has resulted in
131I/137Cs activity ratios ranging from 3.2 to 500 with a median
of 15; the higher ratios occurred at downstream inland sites of
radioactive plume.39 The large variation of 131I/137Cs ratio
might also result from the different ratios of 131I/137Cs in
different reactors. The measured 131I/137Cs ratios in air samples
collected over Europe during March 22 to April 11, 2011 also
highly varied, with an average of 40−100 for aerosol samples.
Considering that only about 20% of 131I occurred in particle-
associated forms, the 131I/137Cs ratio in the atmosphere is likely
higher than 200.39 In addition, increased 131I/137Cs ratios with
sampling date from March 19, 2011 onward have been
observed in aerosols from the Fukushima area,40 indicating
that the radioactive cloud contained more radioiodine at the
beginning of the accident. This could be attributed to the
properties of higher volatility and longer residence time of
iodine in the atmosphere compared to 137Cs. In atmosphere,
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iodine exists in both gaseous and particle-associated forms,
while 137Cs is mainly in particle-associated form. Removal rate
of particles from the atmosphere by dry and wet deposition is
much higher than gaseous form of iodine due to less efficiency
of gaseous iodine capture to droplets. Consequently, residence
time of radioiodine in atmosphere is longer than 137Cs
(particle), and therefore decreased 137Cs concentrations
compared to 131I in the atmosphere or increased 131I/137Cs
ratios with the increased time after accident were observed in
the atmosphere or precipitation. The relatively high 129I/137Cs
ratios measured in surface seawater can therefore be attributed
to the contribution of the atmospheric deposition in the
seawater offshore Fukushima.
In summary, 129I in the surface water likely mainly originated

from the liquid discharges from the Fukushima 1FNPP to the
sea; however, the atmospheric deposition has also a visible
contribution, and in subsurface waters the contribution from
global fallout is not negligible.
Amount of 129I Discharged to the Sea from the

Fukushima Daiichi NPP. As described above, 129I in the
seawater offshore Fukushima has two major sources, i.e. direct
liquid discharge from 1FNPP, and the atmospheric deposition
subsequent to the accident. From March 21, 2011, 131I and
137Cs concentrations in coastal seawater samples collected at 3
sites at the discharge channel of 1FNPP and 10 km and 16 km
south of the 1FNPP, as well as at 8 sites 30 km off the
Fukushima coastline, have been monitored by the operator of
1FNPP, the Tokyo Electric Power Company (TEPCO), and
the Ministry of Education, Culture, Sports, Science and
Technology (MEXT). A quite constant activity ratio of
131I/137Cs of 17.6 has been observed in the seawater from all
coastal sites near to the 1FNPP from March 26, 2011, while
scattered and higher 131I/137Cs ratios of >28 have been
observed in the seawater from the sites 10 and 16 km south
of 1FNPP March 21−25, 2011. A large scatter of 131I/137Cs
ratios of 6−20 have been observed in seawater collected at 30
km offshore Fukushima before April 2.8,9 Similarly lower
131I/137Cs ratios of 3−18 have also been observed at sites >5
km from the coast of Fukushima before April 2.23 The large
scatter before March 25 in coastal sites and before April 2 at
sites offshore Fukushima can be attributed to the atmospheric
deposition from the Fukushima accident.8,9 Large variations in
the 131I/137Cs activity ratios in atmospheric and precipitation
samples have been observed in Japan as well as at far locations
in Europe after the Fukushima accident.39,40 This is attributed
to different ratios of 131I/137Cs from different reactors in the
1FNPP, as well as to different behaviors of 131I and 137Cs in the
atmosphere. 137Cs is mainly associated with particles, while
radioiodine can be in both gaseous and particle-associated
form,40 which cause different dispersion and deposition
patterns of 131I and 137Cs. Therefore the 131I/137Cs ratios vary
in seawater, to which the atmospheric deposition has a
significant contribution (together with liquid discharges). The
constant 131I/137Cs ratio (17.6) in the seawater collected from
the coastal sites within 16 km of the 1FNPP confirms that the
131I and 137Cs in seawater offshore Fukushima is dominated by
the direct liquid discharges from the damaged nuclear reactor 2
in the 1FNPP after March 25, 2011.8,9,33 Because of the same
chemical properties and environmental behaviors of 131I and
129I, the amount of 129I directly discharged to the sea from the
1FNPP can be estimated from the measured 131I/137Cs ratio,
and estimated amount of 137Cs directly discharged to the sea

from the 1FNPP. Here, we applied the estimated value of 3.5
PBq for direct liquid discharge of 137Cs to the sea,9 the amount
of 131I directly discharged the sea can be estimated to be 61.6
PBq. Based on these data and the measured 129I/131I atomic
ratio of (26.6 ± 7.5) for released radioiodine from the
1FNPP,38 the amount of 129I directly discharged to the sea from
the 1FNPP can be estimated to be 2.35 GBq (or 0.35 kg).
Of the total 150 PBq of 131I and 13 PBq of 137Cs released to

the atmosphere from the Fukushima accident,1,4 it has been
estimated that more than 80% of 137Cs has been deposited in
the ocean, 18% in Japanese land area, and only 1.9% was
deposited over land areas outside Japan.41 A similar percentage
of radionuclide deposition has been estimated by Morino et al.7

using a 3-dimensional chemical transport model; they reported
that 13% of 131I and 22% of 137Cs fell over the land of Japan,
19% 131I and 10% of 137Cs were deposited over the Ocean in
the area of 34−41° N and 137−145° E (700 km × 700 km),
and the rest was transported and deposited in other areas,
mainly in the Pacific Ocean. It can be estimated that about 120
PBq of 131I was deposited in the Ocean, mostly in the Pacific
Ocean; of this, 28.5 PBq of 131I was deposited in the sea area of
34−41° N and 137−145° E, mainly offshore Fukushima. Based
on the reported 129I/127I atomic ratio of 26.6,38 about 4.57 GBq
(0.68 kg) of 129I released to the atmosphere was deposited in
the Ocean, and about 1.09 GBq of 129I (0.16 kg) was deposited
in the sea area of 34−41° N and 137−145° E, most in the sea
offshore Fukushima. This estimation indicates that liquid
discharges from 1FNPP are the major source of 129I in the
sea offshore Fukushima, and the atmospheric deposition is the
minor source, accounting for about 32% of the total 129I.
If we assume the liquid discharges still remained in the 700 ×

700 km area offshore Fukushima and mainly in the top 50 m
water column, and it was homogeneously distributed in this
area, 129I concentration in the top 50 m seawater can be
calculated to be about 1 × 108 atom/L, or a 129I/127I isotopic
ratio of about 3.5 × 10−10. This value agrees relatively well with
the measured 129I concentration ((0.5−2) × 108 atoms/L) and
129I/127I ratios (2−7) × 10−10 in the surface water (10−50 m
depth) offshore Fukushima.
It has been estimated that Chernobyl accident released about

1.3−6 kg of 129I to the atmosphere.23,42 A total release of 1.2 kg
of 129I from the Fukushima accident estimated in this work is
comparable to that released from the Chernobyl accident.
However, the 129I released from Chernobyl accident was
deposited in the terrestrial area, mainly in European countries,
whereas 129I released from Fukushima accident was mainly
deposited to the ocean.
Reprocessing plants have released large amounts of 129I to

the environment, especially from the two European reprocess-
ing plants at La Hague (France) and Sellafield (UK), which
have discharged about 5200 kg of 129I to the sea and 440 kg to
the atmosphere (up to 2007).23 The 129I released from the
Fukushima accident accounts therefore to less than 0.3% of the
total 129I released from reprocessing plants. However, the 129I
from the European reprocessing plants has been mainly
discharged and transported to the European seas, and further
to the Arctic.11,13,42 The contribution of 129I from the
Fukushima accident to the Pacific Ocean is remarkable, as it
has influenced the total inventory of 129I in the Pacific Ocean.
The Fukushima-derived 129I will be therefore a useful tracer for
oceanographic research in this area.
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Chemical procedure for separation of 
129
I species  

0.5-1 L filtered seawater was transferred to a beaker; 
125

I solution (about 100 Bq, in NaI form) 

was added to the seawater.  The prepared solution was then loaded to an anion exchange column 

(AG1-×4 resin, NO3
-
 form, 1.0 cm in diameter and 15 cm length), the column was washed with 

50 mL 0.2 mol/L NaNO3, the effluent and wash were combined for iodate separation. The 

column was then eluted with 150 mL 5% NaClO and then 50 mL of 3M HNO3, and the eluate 

was combined for iodide separation.  

1.0 mL of solution of iodide fraction, iodate fraction and original seawater were taken into a vial 

for 
127

I measurement using ICP-MS. The remaining solution of iodate fraction (Efluent + washes 

of 0.2 mol/L NaNO3) or 200-500 mL of original seawater samples (for total 
129

I) was transferred 

to a beaker; 
125

I tracer (200 Bq), 0.5 mg 
127

I carrier, and 1M NaHSO3 solution were added. The 

solution was adjusted to pH 1-2 using 3 mol/L HNO3 to convert all iodine to iodide. The solution 

was then transferred to a separation funnel, 50 mL CHCl3 was added and then 1.0 mol/L NaNO2 



solution was added to oxidize iodide to I2 to be extracted to CHCl3 phase by shaking. I2 is then 

back-extracted to the water phase by add 5 mmol/L NaHSO3 solution. This extraction and back-

extraction steps were repeated once. The back-extracted aqueous phase was used for preparation 

of AgI target. 

The remaining solution of iodide fraction was transferred to a separatory funnel. After addition 

of 0.5 mg of 
127

I carrier, 3.0 mol/L HNO3 was added to adjust pH1-2. 50 mL of CHCl3 and 5 mL 

of 1 mol/L NH2OH⋅HCl solution were added to reduce iodate to I2 to be extracted to CHCl3 

phase by shaking.  I2 in CHCl3 phase was then back-extracted using 5mM NaHSO3 solution.   

0.5 mL of 1.0 mol/L AgNO3 solution was added to the back-extracted aqueous phases to 

precipitate iodide as AgI, which was separated using a centrifuge. The resulting AgI precipitate 

was dried at 70 °C and used for AMS measurement of 
129

I. 
125

I in the precipitate was counted 

using a NaI gamma-detector to monitor the chemical yield of iodine in the separation. Before 

extraction, the eluate of iodide from the anion exchange column was also measured for 
125

I by 

gamma-detector to monitor chemical recovery of iodide during column separation. This is used 

to correct 
127

Iodide and 
129

Iodide concentrations in seawater. 
1
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Table S-1   Distribution of  
129

I and 
127

I and the 
129

I/
127

I ratios in 4 seawater profiles offshore Fukushima 

   

Sampling station 

Depth 

m Sampling date Coordinate 

129
I conc., 10

7 
at/L 127

I conc., µg/L 129
I/

127
I, 10

-10
 at/at 

Value Uncertainty Value Uncertainty Value Uncertainty 

11 400 09/06/2011 37.50008° N, 147.0000° E 1.89 0.40 60.44 1.29 0.66 0.14 

11 200 09/06/2011 37.50008° N, 147.0000° E 4.46 0.36 60.32 1.30 1.56 0.13 

11 50 09/06/2011 37.50008° N, 147.0000° E 9.87 0.65 55.53 1.24 3.75 0.26 

11 20 09/06/2011 37.50008° N, 147.0000° E 15.63 1.07 56.40 1.08 5.84 0.42 

14 400 10/06/2011 37.50287° N, 143.9992°E 0.77 0.09 61.64 1.22 0.26 0.03 

14 200 10/06/2011 37.50287° N, 143.9992°E 2.30 0.16 58.68 1.00 0.83 0.06 

14 50 10/06/2011 37.50287° N, 143.9992°E 5.68 0.38 54.60 1.15 2.19 0.15 

14 20 10/06/2011 37.50287° N, 143.9992°E 14.75 0.50 56.42 1.21 5.51 0.22 

22 400 13/06/2011 37.99908° N, 142.9998° E 3.74 0.34 61.38 1.36 1.28 0.12 

22 200 13/06/2011 37.99908° N, 142.9998° E 11.80 1.12 60.05 1.42 4.14 0.40 

22 50 13/06/2011 37.99908° N, 142.9998° E 14.31 1.20 57.88 1.18 5.21 0.45 

22 20 13/06/2011 37.99908° N, 142.9998° E 16.14 1.25 57.46 1.08 5.92 0.47 

31 120 15/06/2011 37.51953° N, 141.4431° E 10.47 0.76 55.23 1.32 4.00 0.30 

31 100 15/06/2011 37.51953° N, 141.4431° E 10.68 0.87 54.20 1.10 4.15 0.35 

31 90 15/06/2011 37.51953° N, 141.4431° E 13.61 0.93 57.95 1.18 4.95 0.35 

31 50 15/06/2011 37.51953° N, 141.4431° E 13.31 0.49 53.83 1.14 5.21 0.22 

31 20 15/06/2011 37.51953° N, 141.4431° E 20.70 0.75 60.87 1.21 7.17 0.30 

31 10 15/06/2011 37.51953° N, 141.4431° E 62.90 2.72 60.40 1.39 21.95 1.08 

  

  



Table S-2  Chemical speciation of 
129

I and 
127

I in seawater offshore Fukushima 

 

 

 

 

 

 

 

Sampling 

station  

Depth 

m 

Iodate Iodide Iodide/Iodate, mol/mol 

127
I Conc, ppb 

129
I Conc, 

×10
7
 atoms/L 

129
I/

127
I ratio, 

×10
-10

, at/at 

127
I Conc, ppb 

129
I Conc, ×10

7
 

atoms/L 

129
I/

127
I ratio, 

×10
-10

 at/at 

129
I
 127

I 

Value Unc. Value Unc. Value Unc. Value Unc. Value Unc. Value Unc. Value Unc. Value Unc. 

11 200 54.21 0.83 1.15 0.12 0.045 0.005 4.03 0.04 3.32 0.42 17.37 2.19 2.89 0.47 0.074 0.001 

11 50 49.71 1.00 1.41 0.10 0.060 0.004 8.07 0.14 8.46 0.43 22.10 1.19 6.01 0.52 0.162 0.004 

11 20 48.76 0.72 1.64 0.39 0.071 0.017 8.42 0.18 13.99 1.03 35.02 2.68 8.54 2.11 0.173 0.005 

14 50 49.82 0.77 1.23 0.07 0.052 0.003 9.24 0.16 4.45 0.24 10.16 0.57 3.61 0.28 0.185 0.004 

14 20 51.25 0.88 2.08 0.19 0.086 0.008 9.28 0.14 12.67 1.14 28.76 2.64 6.08 0.78 0.181 0.004 

22 50 55.48 0.83 3.02 0.30 0.115 0.012 3.72 0.08 11.29 0.79 64.03 4.65 3.74 0.46 0.067 0.002 

22 20 52.24 0.77 3.35 0.52 0.135 0.021 6.02 0.13 12.79 1.35 44.80 4.82 3.81 0.71 0.115 0.003 

31 100 46.13 0.74 3.26 0.65 0.080 0.016 12.09 0.26 7.42 0.75 15.55 1.61 2.28 0.51 0.262 0.007 

31 90 50.09 0.77 3.13 0.23 0.132 0.010 11.75 0.21 10.48 0.73 18.81 1.35 3.35 0.34 0.235 0.006 

31 50 47.72 0.82 2.60 0.18 0.155 0.011 12.88 0.24 9.80 0.79 16.05 1.34 3.77 0.40 0.270 0.007 

31 20 45.87 0.82 2.46 0.41 0.113 0.019 8.89 0.14 18.24 1.21 43.24 2.94 7.40 1.33 0.194 0.005 

31 10 44.51 0.78 6.46 0.21 0.306 0.012 11.35 0.30 56.44 1.07 104.82 3.38 8.74 0.33 0.255 0.008 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S-1  Sampling stations of seawater profile collected offshore Fukushima in June 2011 

 

 

 

 

 



 
 

 

 

Fig. S-2  Schematic diagram of chemical procedure for speciation analysis of 129I and 127I. 
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ABSTRACT: Aerosol samples were collected from Tsukuba,
Japan, soon after the 2011 Fukushima nuclear accident and
analyzed for speciation of radiocesium and radioiodine to
explore their chemical behavior and isotopic ratios after the
release. Most 134Cs and 137Cs were bound in organic matter
(53−91%) and some in water-soluble fractions (5−15%),
whereas a negligible proportion of radiocesium remained in
minerals. This pattern suggests that sulfate salts and organic
matter may be the main carrier of Cs-bearing particles. The 129I
in aerosol samples is contained in various proportions as
soluble inorganic iodine (I− and IO3

−), soluble organic iodine,
and unextractable iodine. The measured mean 129I/131I atomic ratio of 16.0 ± 2.2 is in good agreement with that measured from
rainwater and consistent with ratios measured in surface soil samples. Together with other aerosols and seawater samples, an
initial 129I/137Cs activity ratio of ∼4 × 10−7 was obtained. In contrast to the effectively constant 134Cs/137Cs activity ratios (1.04 ±
0.04) and 129I/131I atomic ratios (16.0 ± 2.2), the 129I/137Cs activity ratios scattered from 3.5 × 10−7 to 5 × 10−6 and showed
temporally and spatially different dispersion and deposition patterns between radiocesium and radioiodine. These findings
confirm that 129I, instead of 137Cs, should be considered as a proxy for 131I reconstruction.

■ INTRODUCTION

After the Fukushima Dai-ichi nuclear power plant (FDNPP)
accident on March 11, 2011, a large amount of radioactive
substances were released into the atmosphere. The release
caused serious radioactive contamination in a large area of
eastern Japan. Among the released radionuclides, short-lived
radionuclides, such as 134Cs, 137Cs, and 131I are the major
concerns. In particular, 131I is regarded as one of the most
important radionuclides, because of its high fission yield and
high radiation risk to humans, especially to children. When it is
taken up through food and inhalation, it mainly concentrates in
the thyroid gland resulting in a high radiation risk. As 131I is
difficult to detect after several months because of its very short
half-life (8.02 days), assessment of radiation risk of 131I is only
possible using an initial ratio between 131I and other long-lived
radionuclides. Although 137Cs can be potentially considered as a
proxy for 131I,1 the different chemical properties and behaviors
in the environment of the two elements means that 137Cs may
not be a suitable proxy.2,3 In the Fukushima area, variations of a
few orders of magnitude in 131I/137Cs activity ratios have been
measured in the atmospheric samples collected in the early
stage of the accident.4−6 Thus, accurate reconstruction of 131I
most likely relies on calculations based on 129I measurement
and an initial 129I/131I ratio which is currently poorly known.

After the Chernobyl accident in 1986, a number of 129I/131I
ratios were estimated based on the measurements of different
environmental samples and theoretical calculations.7 Among
the wide range of 129I/131I ratios from 9 to 89, a mean ratio of
13.6 ± 2.8 estimated through analysis of the soil samples from
Belarus were considered to be the best estimate.1,2,7

Numerous measurements of the Fukushima-derived radio-
nculides in the worldwide environments have been recently
reported.4−6,8,9 However, these studies mainly focused on
radiocesium and other gamma-emitting nuclides including 131I.
Measurements of the long-lived 129I (t1/2 = 1.57 × 107 years)
are still relatively limited except for a few studies on soil,10,11

seawater,12−15 and rainwater.16 129I/131I isotopic ratios of 22.3
± 6.3 and 18.3 were estimated by analyzing 131I and 129I in 109
surface soil samples within 60 km from the FDNPP.10,11 A
similar ratio of 16 ± 1 was also obtained from the monthly
rainwater collected in Fukushima city during March 2011.16

Although these ratios overlap within the large uncertainty
estimates, as compared with studies after the Chernobyl
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accident, more measurements at Fukushima are required to
confidently assess the initial ratios of short and long-lived
radionuclides. For this purpose, the atmospheric samples
collected in the early stage of the accident are generally
considered to be the best estimate.
The chemical species of the radionuclides released into the

environment are not well-known.17 However, understanding
the chemical species of radionuclides is essential to evaluating
their formation process, behaviors in the environment, and
potential health impacts. In practice, such knowledge is helpful
in designing effective ways to decontaminate the radioactive
materials from the environment and to prevent further
resuspension of the contaminated materials. After the
Fukushima accident, few studies were focused on the speciation
of radiocesium. For instance, the sulfate aerosol (∼0.5 μm) was
considered as a potential transport medium of radiocesium.18 It
was also reported that the spherical Cs-bearing particles are

physically large (∼2 μm) and chemically water insoluble.19

However, to our knowledge, similar investigations have not
been done for radioiodine-bearing materials, except for one
study of inorganic iodine speciation in offshore seawater.12 In
this study, we analyzed speciation of both the radioiodine and
radiocesium of aerosol samples collected from Tsukuba, Japan,
soon after the Fukushima accident. We aim to update the
database of important and poorly known initial 129I/131I and
129I/137Cs ratios in addition to well-documented 134Cs/137Cs
ratio, and to provide basic knowledge to understand the
environmental behaviors and risks of the radiocesium and
radioiodine released from the nuclear accident.

■ MATERIALS AND METHODS

Aerosol samples were collected on the rooftop of a building at
the National Institute for Environmental Studies (NIES) at
Tsukuba (36°02′56″N, 140°07′06″E), Japan, located ∼170 km

Table 1. Speciation of 134Cs and 137Cs in Aerosols from Tsukuba, Japana

sample speciation 134Cs in the fraction (Bq) 134Cs species fraction (%) 137Cs in the fraction (Bq) 137Cs species fraction (%) 134Cs/137Cs

no. 1 total aerosol 8.24 ± 0.04 8.03 ± 0.04 1.03 ± 0.07
water leachate 0.432 ± 0.039 5 0.389 ± 0.030 5 1.11 ± 0.13
NaOH leachate 7.28 ± 0.37 88 6.90 ± 0.35 86 1.06 ± 0.01
residue 0.073 ± 0.008 1 0.077 ± 0.004 1 0.95 ± 0.12

no. 2 total aerosol 9.17 ± 0.46 9.19 ± 0.46 1.00 ± 0.07
water leachate 1.06 ± 0.06 12 0.988 ± 0.055 11 1.08 ± 0.09
NaOH leachate 5.14 ± 0.26 56 4.91 ± 0.25 53 1.05 ± 0.07
residue 0.080 ± 0.013 1 0.073 ± 0.005 1 1.10 ± 0.20

no. 3 total aerosol 3.95 ± 0.20 3.83 ± 0.19 1.03 ± 0.07
water leachate 0.479 ± 0.037 12 0.435 ± 0.029 11 1.10 ± 0.11
NaOH leachate 3.37 ± 0.17 85 3.49 ± 0.18 91 0.97 ± 0.07
residue 0.147 ± 0.019 4 0.128 ± 0.009 3 1.15 ± 0.17

no. 4 total aerosol 2.90 ± 0.15 2.67 ± 0.13 1.08 ± 0.08
water leachate 0.448 ± 0.034 15 0.379 ± 0.026 14 1.18 ± 0.12
NaOH leachate 1.99 ± 0.10 69 1.81 ± 0.009 68 1.09 ± 0.08
residue 0.062 ± 0.018 2 0.045 ± 0.005 2 1.37 ± 0.43

aCorrected to March 11th, 2011 at 14:46.

Table 2. Speciation of 127I and 129I in Aerosols from Tsukuba, Japan

sample speciation 127I (ng/m3)a 129I ( × 106atom/m3) 129I species fraction (%) 129I /127I ( × 10−6)

no. 1 IO3
− ND 2.04 ± 0.05 0.4

I− 28.4 ± 0.2 231.9 ± 4.9 44.5 1.75 ± 0.04
NaOH leachate ND 166.7 ± 4.9 32.0
residue ND 120.1 ± 3.5 23.1
sum 520.8 ± 27.6

no. 2 IO3
− ND 0.078 ± 0.002 0.03

I− 14.8 ± 0.1 142.8 ± 3.4 47.4 2.07 ± 0.05
NaOH leachate ND 133.4 ± 3.4 44.3
residue ND 24.8 ± 0.6 8.2
sum 301.1 ± 15.1

no. 3 IO3
− ND 0.089 ± 0.002 0.04

I− 10.8 ± 0.1 90.1 ± 2.6 42.4 1.78 ± 0.06
NaOH leachate ND 67.9 ± 1.7 32.0
residue ND 54.3 ± 1.4 25.5
sum 212.4 ± 10.7

no. 4 IO3
− ND 0.61 ± 0.02 0.3

I− 3.70 ± 0.04 142.2 ± 3.8 60.9 8.27 ± 0.24
NaOH leachate ND 80.4 ± 2.3 34.4
residue ND 10.4 ± 0.3 4.5
sum 233.6 ± 13.3

aND, not detectable.
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southwest of the FDNPP. The sampling details are listed in
Supporting Information (SI) Table S1. Samples used in this
study were collected during periods (local time) from 14:39
(March 15th) to 17:34 (March 15th), from 17:48 (March 15th)
to 8:48 (March 16th), from 9:08 (March 16th) to 17:08 (March
16th), and from 10:00 (March 22nd) to 11:10 (March 23rd) after
the cessation of the reactors at 14:46 of March 11th, 2011. In
this study, a small piece (20 × 50 mm2) was cut from the
original quartz fiber air filter (203 × 254 mm2).
Detailed experiments including chemical leaching and

extraction for cesium and iodine speciations, 134,137Cs detection
by gamma-ray spectrometer, 127I analysis by inductively coupled
plasma-mass spectrometer (ICP-MS), and 129I measurement by
accelerator mass spectrometry (AMS) are separately described
in the SI.

■ RESULTS AND DISCUSSION

Table 1 lists 134Cs and 137Cs activities as well as 134Cs/137Cs
activity ratios in both the bulk aerosol samples and different
fractions of aerosol samples. Table 2 shows 127I and 129I
concentrations, and 129I/127I atomic ratios in different species of
iodine separated from the aerosol samples. Table 3 summarizes
the Fukushima-derived radionuclide ratios.
Fraction of Radiocesium in Aerosols. The measured

activity in the aerosol samples for both 134Cs and 137Cs
scattered from 0.1 to 3.0 Bq/m3. In comparison with those
measured in the whole filter sample,6 the 134Cs and 137Cs
activities in sample No. 1 are 21−22% low, whereas those in the
other three samples agree within 5%. This discrepancy in
sample No.1 may suggest uneven distribution of the Cs-bearing
particles in the filter, which is consistent with the observation
by an imaging plate analysis.19 However, such a discrepancy
would not change the 134Cs/137Cs ratio, because isotopic

fractionation is insignificant. Therefore, the 134Cs/137Cs activity
ratios in the four samples are constant with a small variation
between 1.00 and 1.08, with an average of 1.04 ± 0.04. This
value is consistent with observations in whole filter and the
aerosol samples collected worldwide after the Fukushima
accident.6,9

134Cs and 137Cs have a similar fraction pattern (Figure 1a,b).
The NaOH leachate (organic-bounded Cs) consists of 56−88%
and 53−91% of the total 134Cs and 137Cs, respectively, whereas
the water leachate contains 5−15% of the total 134Cs and 5−
14% of the total 137Cs. The residue contains only 1−4% of the
total 134Cs and 1−3% of the total 137Cs. It should be noted that
the sum of all fractions of radiocesium in samples Nos. 1, 2, and
4 are lower than the radiocesium in total bulk aerosol samples
by 6−8%, 31−35%, and 14−16%, respectively (Table 1). The
difference in the sample No. 1 and 4 can be attributed to
analytical uncertainties, while the significantly lower value of
the sum of all fractions of radiocesium compared with that
measured for total radiocesium in sample No. 2 is beyond the
analytical uncertainty. This may be attributable to a process of
NaOH leaching. In sample No. 2, the volume of the first NaOH
leachate was significantly lower than that of the other samples
due to the evaporation of the leachate at 60 °C for 4 h.
Although cesium and iodine in the leachate should not be lost
during evaporation, the reduced volume of the leachate in this
sample might have caused a deviation of gamma spectrometry
measurement of 134Cs and 137Cs.
The mean 134Cs/137Cs activity ratios in water-soluble, NaOH

leachate, and residue fractions are 1.12 ± 0.04, 1.04 ± 0.05, and
1.14 ± 0.17, respectively. These values are consistent with those
of the total aerosols within the analytical uncertainties,
confirming no significant isotopic fractionation during

Table 3. Fukushima-Derived Nuclide Isotopic Ratiosa

aerosol

129I
(108 atom/m3)

131I
(107 atom/m3) 134Cs (Bq/m3) 137Cs (Bq/m3)

129I/131I
(atomic ratio)

134Cs/137Cs
(activity ratio)

129I/137Cs
(10−7 activity ratio)

no. 1 5.21 ± 0.27 3.30 ± 0.01 3.09 ± 0.16 3.01 ± 0.15 15.8 ± 0.8 1.03 ± 0.07 2.42 ± 0.17
no. 2 3.01 ± 0.15 2.18 ± 0.01 0.668 ± 0.034 0.670 ± 0.034 13.8 ± 0.7 1.00 ± 0.07 6.29 ± 0.45
no. 3 2.12 ± 0.11 1.11 ± 0.08 0.540 ± 0.027 0.523 ± 0.026 19.1 ± 1.7 1.03 ± 0.07 5.68 ± 0.41
no. 4 2.34 ± 0.13 1.51 ± 0.01 0.126 ± 0.006 0.116 ± 0.006 15.5 ± 0.9 1.08 ± 0.08 28.1 ± 2.1
mean ± sd. 16.0 ± 2.2 1.04 ± 0.04 10.8 ± 11.8
aData of 131I activity were from ref 6. 131I activity in sample No. 3 was estimated from measured 133I and extrapolated 133I/131I ratio (see text). All
131I, 134Cs, and 137Cs activities were corrected to March 11th, 2011 at 14:46.

Figure 1. Speciation of radiocesium and radioiodine in aerosol samples from Tsukuba, Japan. Note that the water leachate (iodate) is not visible due
to small fractions (see Table 2).
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processes of the aerosol formation and transport after the
accident.
The percentages of water-soluble 134,137Cs fraction are

comparable with those observed on the aerosol samples
collected in Vilnius, Lithuania during the 2 weeks after the
Chernobyl accident.20 It is also compatible with the qualitative
analysis of aerosol samples collected from Tsukuba, which
includes large spherical Cs-bearing particles containing Fe and
Zn that are water insoluble.19 By comparing the size
distribution of Cs-bearing particles also collected in Tsukuba,
it was suggested that the radiocesium is mainly associated with
sulfate salts such as ammonium sulfate and ammonium
bisulfate.18 As ammonium sulfate is chemically water-soluble,
it can be concluded that the water-soluble 134,137Cs observed in
this study might be associated with sulfate. In addition, a
coincidence in the size distributions of radiocesium activity and
mass of the thermal-organic carbon was also reported.18 This
caused the authors to “withhold a decisive conclusion that sulfate
aerosol is the only transport medium of radiocesium until the time-
series data for both the radionuclides and the aerosol chemical
components, if they exist, are reported”. Our results show that
NaOH solution leached 53−91% of total radiocesium, while
water-soluble radiocesium only accounted for <15% of total
radiocesium. These results clearly suggest that the sulfate salts
are only a minor carrier of radiocesium. Instead, the organic
substance is considered to be the dominated carrier of
radiocesium and to play a key role in the transport and
dispersion of radiocesium in the atmosphere. At present, the
detailed species of organic substances that were associated with
radiocesium, and the mechanism by which the organic-bounded
radiocesium species were formed, are not clear. However, the
relatively coarse vegetation-related organic particles abundant
in the spring season (March) might be responsible for the high
load of the organic particles in the atmosphere, which would
adsorb small radiocesium particles and form radiocesium
associated organic particles.
Speciation of 127I and 129I in Aerosols. The total 129I

concentrations in the aerosol samples varied from 2 × 108 to 5
× 108 atoms/m3. These values are more than 2 orders of
magnitude higher than those observed in the European
atmosphere from 1987 to 2008.21 It is also 2 orders of
magnitude higher than that observed in Tokaimura (1987−
1989), 160 km south of the FDNPP where a spent nuclear fuel
reprocessing plant is located.22 The highest value in this study
reaches into the upper range of highly contaminated environ-
ments of the reprocessing plants at Hanford, U.S.A., during the
period of 1986−2003.23

127I was only detectable in the iodide fraction. The measured
127I concentrations and 129I/127I atomic ratios varied from 3.7 to
28.4 ng/cm3 and from 1.7 × 10−6 to 8.3 × 10−6, respectively.
The 129I/127I ratios are 1−2 orders of magnitude higher than
those in the European atmosphere.21 The 129I/127I ratios in the
atmospheric fallout in Tsukuba from 1986 to 2005 have been
reported.24 The observed high 129I/127I ratios were 2−23 ×
10−8 in 1986−1992, while the low 129I/127I ratios were obtained
since 1993 (0.7−11 × 10−8). In Fukushima, 129I/127I atomic
ratios in surface soil before the accident were reported to be
below 3 × 10−8.10 Compared to these values, the 129I/127I ratio
in aerosol from Tsukuba in March 2011 is 1−2 orders of
magnitude higher than the baseline level for this region. Stable
127I in the aerosols originate from releases from both sea and
land. The 127I on land was accumulated by deposition from
both the atmosphere and natural weathering of the rocks;

however, deposition from the atmosphere is considered as the
major source to land proximal to the sea. Although 127I could
have been produced in the nuclear reactor and released with
129I, 131I, and other radioiodine during the Fukushima accident,
the total amount of 127I in the aerosol samples originating form
the reactor is considered negligible compared to the 127I that
originated from natural processes. It has been estimated that
about 0.68 kg 129I was released to the atmosphere during the
Fukushima accident,12 which is much higher than the other
source in the region. Therefore, the high 129I/127I ratios
observed in aerosols is attributed to the significant releases of
129I during the accident.
Among the 129I species (Table 2 and Figure 1c), water-

soluble iodide (I−) and NaOH leachable iodine account for
42−61% and 32−44%, respectively. Water-soluble iodate
(IO3

−) corresponds to only less than 0.5% of the total 129I in
the aerosols, whereas the residue fraction contains 4−23% of
the total 129I. The NaOH leachable iodine is normally
responsible for organic associated iodine, because the organic
matter in the aerosol, soil, and sediment is easily dissolved in
alkaline solution. The iodine in the residue might account for
those associated with oxides and/or minerals.25 This distribu-
tion pattern with 129I enriched in iodide and depleted in iodate
form is similar to that observed in four aerosol samples
collected soon after the Chernobyl accident at Oak Ridge,
Tennessee.26 It is also similar to those reported for natural 127I
in the aerosol.27 However, this pattern differs from that
reported for natural 127I in marine aerosols enriched in iodate.28

Such a discrepancy suggests different formation process for the
Fukushima-derived 129I compared to the natural 127I. The large
fraction of inorganic 129I-iodide in Tsukuba aerosols might be
attributed to a major form of 129I as 129I2 released from the
damaged nuclear reactor during the Fukushima accident. This
also agrees with the finding in the seawater samples from
offshore Fukushima, where most of 129I in the seawater is in the
form of iodide, while most of the 127I is in iodate form.12

However, the large fraction of 129I in the NaOH leachate
fraction (organic-bounded) might be attributed to the 129I2
released from the damaged reactors, which has a high reactivity
with the vegetation-related organic particles as mentioned
above, and consequently I2 is converted to organic associated
iodine in the atmosphere. A higher organic associated 127I in
aerosol samples has also been reported previously.29,30

129I/131I Ratio of Fukushima-Derived Radioiodine. The
129I/131I atomic ratios were calculated based on the particulate
131I radioactivity concentration measured in ref 6 and 129I
concentration measured in this work from the same sample. It
was found that the 129I/131I atomic ratios vary from 5 to 16
(decay-corrected to March 11th, 2011), and the lowest 129I/131I
atomic ratio of 5 was observed in the sample No. 3. Figure 2
shows temporal variations of the selected Fukushima-derived
radionuclides (radiocesium and radioiodine) in the Tsukuba air
samples of gaseous and particulate forms.6 It is evident that all
radionuclides except for the particulate 131I have a similar
pattern after the first radioactive plume on March 15. This
pattern is consistent with those observed at Oarai and Inage,
120 km and 220 km south of the FDNPP, respectively.4,5 In
Figure 4 in ref 6, with the exception of two outliers, temporal
variation of the 133I/131I ratios in Tsukuba and Inage coincides
with a curve that is consistent with a decay constant (λ133-λ131).
The sample No. 3 in this study, which is one of the two outliers,
has a significantly lower 133I/131I ratio than the corresponding
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value on the decay curve, indicating that the 131I activity
reported in the sample No. 3 might be anomalous. Particulate
133I and 129I, and gaseous 131I and 133I all show a simple
decrease, and other radionuclides such as 132Te and 134,137Cs are
also similar. Therefore, even though it may be theoretically
possible for a high 131I value due to resuspension of the
deposited material, the long-lived 129I data do not support this.
Therefore, taking the initial particulate 133I activity (15.5 ± 0.3
Bq/m3 on March 11th calculated from decay correction of the
measured 0.256 ± 0.005 Bq/m3 on March 16th) and the
extrapolated initial 133I/131I ratio (1.4 ± 0.1),6 the initial 131I
activity in sample No. 3 can be estimated to be 11.1 ± 0.8 Bq/
m3, which is nearly 4-fold lower than the reported value. On the
basis of this data, the 129I/131I atomic ratio in sample No. 3 can
be recalculated to be 19.1 ± 1.7 (Table 3), which overlaps with
the other samples within the uncertainties. Therefore, all
aerosol samples in this study result in an average 129I/131I ratio
of 16.0 ± 2.2 for the Fukushima-derived radioiodine, which
shows an effectively constant value from March 15th to 23rd,
2011.
In the Fukushima area, a 129I/131I atomic ratio of 22.3 ± 6.3

(decay-corrected to March 11, 2011) has been estimated from
27 surface soil samples collected around the FDNPP in April
2011.10 The best fitting of 131I and 129I data measured from 82
surface soil samples collected in June 2011 resulted in a slope of

18.3 (R2 = 0.85), which gives the 129I/131I atomic ratio (decay-
corrected on March 11, 2011).11 In addition, a 129I/131I atomic
ratio of 16 ± 1 was also obtained from a monthly rainwater
sample collected in Fukushima city in March 2011.16 In
comparison with these values, the estimated 129I/131I ratio from
four aerosol samples in this study is in good agreement with
that from rainwater and also consistent with that from soil
samples within the analytical uncertainty. The reliability of the
effectively constant 129I/131I ratio obtained from this study is
also supported by previous findings from other elements of
Fukushima-derived radionuclides that also have an almost
constant isotopic ratio (i.e., 133I/131I, 134Cs/137Cs, 136Cs/137Cs
and 129mTe/132Te).6,9

129I/131I ratios scattered largely among different environ-
mental samples collected shortly after the Chernobyl
accident.1,2,7,31 One 129I/131I ratio was reported to be 9 ± 4
for aerosols collected in Israel in May 5−18, 1986.31 The
rainwater samples showed 129I/131I ratios from 19 ± 5 in
Munich (May 5, 1986) to 35 ± 9 in Israel (May 3−4, 1986).
The 129I/131I ratios in soil samples largely scattered from 10 to
89.7 A mean ratio of 13.6 ± 2.8 were considered to be the best
estimate of the Chernobyl-derived radioiodine.7 Thus, it can be
seen that the Fukushima-derived 129I/131I ratio is comparable
with the Chernobyl-derived value.
Four reactors at FDNPP were damaged in succession due to

hydrogen explosions, core damage, and a major leak on the 13th

of March (15:36), 14th of March (11:01), 14th of March
(∼20:00) and 15th of March (6:14). The emission rates of
radionuclides certainly varied during different events. Thus, it
has been pointed out that the variation of 129I/131I ratios
measured in rainwater and soil samples may suggest the
radioiodine was released from multiple reactors with different
129I/131I ratios due to different operating histories.16 However,
our effectively constant 129I/131I ratio does not show any
temporal variation from March 15 to 23, which implies the
similar or indistinguishable 129I/131I ratio in the radioactive
substances released from the multiple reactors during the
FDNPP accident. In general, it is necessary to consider the
contribution of background 129I, including preaccident 129I
released from worldwide nuclear weapon tests and the spent
fuel reprocessing plants, if the radioiodine deposition is not
high. However, as the measured 129I/127I ratios in the 4 aerosol
samples are 1−2 orders of magnitude higher than the
background value reported in the environmental samples in
Japan before the Fukushima accident, the contribution of
background 129I to the estimated 129I/131I is negligible. Large
corrections for decay of 131I during the long time spans of the
emission and low 131I signal due to its rapid decay might also
contribute some uncertainties. Therefore, more analyses of the
time series of materials collected soon after each accident event
is needed to clarify detailed variation of the 129I/131I ratio
related to their specific sources (e.g., different damaged
reactors).

Initial 129I/137Cs Ratio and Fractionation between
Cesium and Iodine. It is likely that the 129I/137Cs ratio in a
reactor should be a constant value, because the 129I and 137Cs
are both fission products with a fixed fission yield. In general,
the 129I/137Cs activity ratio in the released radioactive substance
reflects the operation history of the damaged reactors and the
chemical forms of the released radiocesium and radioiodine.
This ratio would remain constant if there is no significant
elemental fractionation between iodine and cesium during their
formation, migration, deposition, etc. An initial 129I/137Cs

Figure 2. Temporal variation of selected Fukushima-derived radio-
nuclides in aerosol samples from Tsukuba, Japan. Data of the
particulate 129I in (a) and 134,137Cs* in (b) are from this study and
those of the other radionuclides from ref 6. Note that unit of
radioactive concentrations for 129I is atoms/m3, while that for the other
nuclides is Bq/m3. The 129I/131I in (c) is atomic ratio, while the others
are activity ratios.
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activity ratio of 2.75 × 10−7 has been reported for the fourth
block of Chernobyl NPP at the time of that accident.1 Although
the 129I/137Cs activity ratios in soils with high fallout
radiocesium differed little from the Chernobyl source value,
the 129I/137Cs activity ratios in soils with lower radiocesium
from distances further from the damaged reactor were
significantly higher than the source value.1 This pattern can
be explained if the I/Cs ratio might have changed with the
dispersion of the plume, because 134,137Cs is mainly in particle
associated form, whereas 129,131I can be in both aerosol and
gaseous form. Even in the aerosols, the attached iodine might
be converted to gaseous form and be lost, and some gaseous
radioiodine might be attached to aerosols later. A similar
distribution pattern can be observed after the Fukushima
accident: that is, higher 131I/137Cs ratios in sites further away
have been reported compared to those in the site closer to the
Fukushima reactor.9 For example, a systematic review of the
available air and soil monitoring data both in the highly
contaminated areas of Japan and worldwide shows that the
mean 131I/137Cs activity ratio is 22.7 ± 3.7 (n = 1844) and 31.8
± 12.9 (n = 90) in soil and air, respectively, within 80 km from
FDNPP. The air samples showed 131I/137Cs ratios of 70.9 ±
63.5 (n = 234), 69.5 ± 26.9 (n = 457) and 77.1 ± 16.6 (n =
196) at distances of 80−2000 km (Japan), 2000−12 000 km
(Pacific Ocean) and >12 000 km (Europe), respectively.9 Even
at the short distance scale, an inhomogeneous spatial
distribution has been observed in surface soils within a distance
of <60 km from the FDNPP.32 The 131I/137Cs ratios show three
distinctive patterns. The first group locating in the south, and to
some extent southwest, of the FDNPP is characterized with an
increasing pattern of the activity ratio with increasing distance
from the NPPs. The second group includes the locations close
to the NPPs in the northwest direction, where the
contaminated soils are relatively rich in 131I. The third group
is from areas northwest to southwest of FDNPP and exhibits
nearly constant 131I/137Cs ratio regardless of the distance from
the NPPs.
Indeed, unlike the effectively constant 134Cs/137Cs and

129I/131I ratios observed in the environmental samples
contaminated by the Fukushima accident, the particulate
129I/137Cs activity ratios in the aerosol from Tsukuba scattered

largely from 2.4 × 10−7 to 2.8 × 10−6 with a mean value 1.1 ×
10−6 and standard deviation 1.2 × 10−6 (Table 3), suggesting
significant elemental fractionation between cesium and iodine
and/or source differences. Taking into account the fraction of
gaseous 131I,6 the total (particulate and gaseous) 129I/137Cs
activity ratios were estimated to be from 3.5 × 10−7 to 5.0 ×
10−6 (Figure 3). This range is similar to the wide variation of
131I/137Cs (8−1000), 132Te/137Cs (4−65), and 99Mo/137Cs
(0.14−12.3) in the Tsukuba atmospheric samples.6 The large
variations of the isotopic ratios of different elements was also
observed worldwide.9 Therefore, the largely variable 129I/137Cs
ratios in the Tsukuba atmosphere can be generally attributed to
elemental fractionation during the transport from the sources
with a fixed initial 129I/137Cs ratio. The measured 129I/137Cs
activity ratio in the aerosol in Tsukuba on the 15th of March
(the first radioactive plume) is 3.5 × 10−7. Within the analytical
uncertainties, this value is consistent with the 129I/137Cs activity
ratio of 4.4 × 10−7 for the effluent from Fukushima derived
from seawater.14 In fact, the atmospheric 131I/137Cs activity
ratios varied much wider compared with the limited data set of
129I/137Cs. For instance, the range of 131I/137Cs activity ratios
from Oarai, Tsukuba, and Inage are 0.2−100, 8−1000, and 10−
500, respectively.4−6 The 131I/137Cs ratio is apparently
negatively correlated with 137Cs activity concentration in each
locality. Although each location has slightly different 131I/137Cs
ratio distribution patterns, the lowest 131I/137Cs ratios are from
8 to 15 (mean 11 ± 2) for the peak releases (March 15/16 and
22/23) with a radiocesium radioactivity concentration of >3
Bq/m3. Taking into account the 129I/131I atomic ratio of 16.0 ±
2.2 discussed above, the mean atmospheric 129I/137Cs activity
ratio of the early stage of the accident observed in Oarai,
Tsukuba, and Inage would be (2.6 ± 0.5) × 10−7. Therefore,
based on these data sets, the initial Fukushima-derived
129I/137Cs activity ratio can be considered to be around 4 ×
10−7.
Figure 3 shows the 129I/137Cs activity ratio and 137Cs activity

concentration in the Tsukuba atmosphere from this study and
available surface soil samples within 60 km of the FDNPP.10,32

Overall, an inverse correlation between the 129I/137Cs activity
ratio and 137Cs activity concentration can be found for both the
aerosol and soil samples. In particular, there is a highly

Figure 3. Relationship between 129I/137Cs activity ratio and 137Cs activity concentration in aerosol samples from Tsukuba in this study and surface
soils within 60 km from the FDNPP in ref 10 and 32. The aerosol 129I used in the calculation of the 129I/137Cs activity ratio are sum of the particulate
and gaseous 129I which was estimated from the measured particulate 129I in this study and its percentage in the total 131I from ref 6. Numbers beside
the data points denote the distance (km) from the FDNPP.
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significant negative correlation between the 129I/137Cs ratio and
137Cs activity concentration in the limited aerosol samples.
Like the large variation of 129I/137Cs activity ratios in air, the

soil samples have 129I/137Cs activity ratios of 0.2−3 × 10−6.10,32

It has been found that the radiocesium activity concentrations
in the west, northwest, and north of the FDNPP are
significantly higher than those to the south of the FDNPP,
whereas the radioiodine shows an opposite distribution.9,33

This resulted in a different spatial distribution of 129I/137Cs
activity ratios in soil samples. As shown in Figure 3, the
129I/137Cs activity ratio in the south and southwest of the
FDNPP apparently has a negative correlation with the 137Cs
radioactivity concentration. The 129I/137Cs activity ratios
scattered from 3 × 10−7 to 2.5 × 10−6, apparently showing a
distance dependence. In comparison with the soil samples from
the southern and southwestern direction, no clear correlation
can be found for the soil samples from the west and northwest
of the FDNPP. The mean 129I/137Cs activity ratio is 4.6 ± 2.1 ×
10−7. Although the 129I/137Cs activity ratios in soil samples
show a geographic distribution at a short distance scale, the
samples closest to the FDNPP (<5 km) have 129I/137Cs activity
ratios of 3−10 × 10−7 with a mean 129I/137Cs activity ratio of
(5.2 ± 3.2) × 10−7.10,32 It can be seen that this value is
consistent with the initial 129I/137Cs activity ratio deduced from
the first radioactive plume on March 15/16 and from seawater.
This coincidence likely reflects the fact that the radioactive
deposition in the surface soil with low 129I/137Cs activity ratio
was from the peak release on March 15/16. Rainfall observed in
Fukushima Prefecture and adjacent areas from the evening of
March 15 to early morning of March 16 coincides with the
deposition of wet and dry deposition of the first peak release.
The relatively uniform 129I/137Cs activity ratios to the west and
northwest of the FDNPP suggest negligible elemental
fractionation, while the higher and variable 129I/137Cs activity
ratios observed in the south and southwest of the FDNPP are
most likely caused by the elemental fractionation during the
migration and deposition of the radioactive plume.
Therefore, the wide variation of 129I/137Cs and 131I/137Cs

activity ratios in the air and soil near the FDNPP suggests
significant fractionation can occur between radiocesium and
radioiodine at some sites, although negligible fractionation was
observed in soils distributed in the west and northwest of the
FDNPP. Sites with significant fractionation between iodine and
cesium could cause highly inaccurate reconstruction of 131I if
137Cs were used as a proxy at Fukushima. Instead, this study
demonstrates that the 129I/131I ratios observed in the aerosol
samples collected from the early stage of the Fukushima
accident are relatively constant, which implies that 129I is a
potentially more robust proxy for accurate reconstructions of
131I.11 Further work is needed to add observations covering the
early periods of the accident, if suitable air filters are available.
Also, further work is needed to verify the biodynamics of 129I
over the first year of postdepositional behavior, and to identify
spatially variable samples that can be used to reconstruct the
131I depositional history.
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S1. Materials and Experiments 28 

 The aerosol samples were collected on the rooftop of a building at the National Institute for 29 

Environmental Studies (NIES) at Tsukuba (36°02’56”N, 140°07’06”E), located about 170 km 30 

southwest of the FDNPP. Detailed sampling methods were described previously.
1
 In this 31 

study, a small piece (20 × 50 mm) of the quartz fibre filter was cut from the original one (203 32 

mm × 254 mm).  33 

 A procedure reported for the speciation of radiocesium and iodine in soil and sediment 34 

samples,
2
 was modified for analysis of aerosol samples in this work. A method reported for 35 

the speciation of 
129

I and 
127

I in rainwater samples,
3
 was referred for the separation of water 36 

soluble iodine fraction. Detailed procedures of chemical leaching and extraction, together 37 

with 
134,137

Cs detection by gamma-ray spectrometer, 
127

I analysis by inductively coupled 38 

plasma-mass spectrometer (ICP-MS), and 
129

I measurement by accelerator mass spectrometer 39 

(AMS), are described as follows. 40 

 41 

(1) Water leaching 42 

 After being measured for the total 
134,137

Cs activity, the aerosol was cut into small pieces, 43 

put into a beaker and 20 mL deionized water (18.2 MΩ·cm) was added. The mixture was 44 

stirred using a magnetic stirring apparatus under room temperature for 24 hours. The water 45 

leachate was separated from the residue by filtration. Another aliquot of 20 mL deionized 46 

water was added to the residue and stirred for 0.5 hours to wash the residue. The second 47 

leachate was filtered. The wash step was repeated once. The three water leachates were 48 

combined and measured for 
134,137

Cs activity. An aliquot of 1mL was reserved for 
127

I 49 

measurement. The aerosol residue combined with the filter was used for NaOH leaching.  50 

 After being measured for the 
134,137

Cs activity of water leachate, separation of inorganic 51 

iodine from water leachate was carried out. The water leachate, after the addition of 2000 Bq 52 

125
I tracer as iodide form, was loaded onto a strong basic anion exchange column with 10 cm 53 

height and 1 cm diameter. Based on the affinity properties of iodide and iodate with anion 54 

exchange resin, iodate can pass through the resin due to its low affinity with resin particles, 55 

while iodide will be absorbed onto the resin. 10 mL 0.2 M NaNO3 and 10 mL water were 56 

used to wash the column in the order and the washes were combined with the effluent. An 57 

aliquot of 5 mL was reserved for 
127

IO3
-
 measurement. 30 mL 1% NaClO and 10 mL 3 M 58 

HNO3 were used in order to elute the iodide from the column. The pH of the eluate was 59 

adjusted to neutral with NH3·H2O. 6 g of the eluate was taken out to measure the 
125

I counts 60 
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by a NaI detector to calculate the chemical yield of iodide. An aliquot of 1 mL was reserved 61 

for 
127

I
-
 measurement.  62 

 63 

(2) NaOH leaching 64 

 The aerosol residue, together with the filter after water leaching, was placed into a beaker. 65 

20 mL 0.5 M NaOH solution was added, and the suspension was heated to 60°C and stirred 66 

for 4 hours with a watch glass cover to prevent the loss of the solution during heating. After 67 

cooling down, the leachate was separated from the residue by filtration. Another aliquot of 20 68 

mL 0.5 M NaOH solution was added into the residue and the suspension was stirred under 69 

60°C for 0.5 hours to wash the residue. The second leachate was filtered when it was cooled 70 

down. This wash step was repeated once. The three NaOH leachates were combined and 71 

measured for 
134,137

Cs activity. An aliquot of 1mL was reserved for 
127

I measurement. The 72 

aerosol residue combined with the filter was ready for combustion. 73 

 74 

(3) Residue combustion 75 

 After the 
134,137

Cs determination for the residues, the aerosol residue together with filter 76 

was transferred into a quartz boat for separation of the remained iodine using combustion. 77 

2000 Bq of 
125

I tracer was added to monitor the chemical yield of combustion. The 78 

temperature was slowly increased to avoid rapid inflammation of the air filter that may result 79 

in an explosion. 35 mL trap solution (mixture of 0.4 M NaOH and 0.01 M K2S2O5) was used 80 

to absorb iodine released by the aerosol residue. An aliquot of 6 g trap solution was measured 81 

by a NaI detector for 
125

I counts to calculate the chemical yield of combustion. 1g of the trap 82 

solution was reserved for 
127

I measurement. 83 

 84 

(4) Measurement of 
134

Cs and 
137

Cs in total aerosol and species 85 

 The total aerosol sample was placed into plastic tubes (Φ 8 mm) and pressed with a rod to 86 

the bottom of the tube. 
134

Cs and 
137

Cs in the prepared samples were measured by gamma 87 

spectrometry equipped with a high purity germanium (HPGe) detector and Gennie 2000 88 

software, which were used for spectrum acquire and analysis at the Center for Nuclear 89 

Technologies, Technical University of Denmark (TUD) at Risø. The total uncertainty is made 90 

up of calibration uncertainty and statistic uncertainty. Cs isotopes in water leachate, NaOH 91 

leachate and aerosol residue in appropriate containers were also measured by gamma 92 

spectrometry.  93 



 S5

 94 

(5) Measurement of 
127

I in species 95 

 All fractions (leachate or trap solution) were diluted using deionized water by a factor of 1-96 

10 depending on the salinity of the solution. For 
127

I measurement, Cs
+
 as an internal standard 97 

was added to solutions to a final concentration of 2 ppb, and NH3·H2O was added to a final 98 

concentration of 1%.  
127

I in sample was measured by ICP-MS (Series XII, Thermo, USA) at 99 

the Center for Nuclear Technologies, Technical University of Denmark. 100 

 101 

(6) 
129

I extraction and precipitation 102 

 A certain amount of the diluted solution above was used for 
129

I preparation depending on 103 

129
I level in the fractions. 2 mg Woodward iodine (WWI, Woodward Company, USA) was 104 

added as a carrier. The solution was acidified to pH<2 using 3 M HNO3 after the addition of 1 105 

M K2S2O5 solution to convert all inorganic iodine to iodide, which was extracted with CHCl3 106 

after being oxidized to iodine using NaNO2. The extraction step was repeated to obtain a high 107 

recovery of iodine. Iodine in the CHCl3 phase was then back extracted to the water phase 108 

using K2S2O5 solution. This extraction and back extraction procedure was repeated once. The 109 

separated iodide was precipitated as AgI by the addition of 0.5 M AgNO3 as the procedure 110 

reported elsewhere.
4
 The AgI precipitate was dried at 70°C, ground to fine powder, mixed 111 

with silver powder (Aldrich, USA) in weight ratio of 1:2 for AgI to Ag powder, and pressed 112 

into a copper holder.  113 

 114 

(7) 
129

I measurement 115 

 The 
129

I were measured using 5 MV AMS (NEC Corporation, USA) at the Scottish 116 

Universities Environmental Research Center.
5
 The mixed AgI and Ag were pressed into an 117 

aluminum target holder with a 1 mm diameter and loaded into the ion source. Negative I
-
 ions 118 

were extracted by a Cs-sputtering ion source. Due to the low melting point of AgI, the ion 119 

source was adjusted to a relatively lower power. 3 MV was chosen as the terminal voltage and 120 

the I
5+

 was chosen for detection, which resulted in about 1 % ion transmission efficiency. The 121 

127
I
5+

 was detected using a Faraday cup mounted at the exit of the high-energy analyzing 122 

magnet, while 
129

I
5+

 was counted using ionization detector with 100 nm thick SiN detector 123 

window. Although the 
97

Mo
4+

, which were produced by dissociation of the injected MoO2
-
 124 

and had a similar magnetic rigidity (ME/q
2
) to 

129
I
5+

, may interfere with 
129

I
5+

, they can be 125 

completely separated from 
129

I
5+

 in the detector. The measured 
129

I/
127

I ratios were corrected 126 

against a standard material with 
129

I/
127

I ratios of 1.138×10
-10

, prepared by 
127

I addition to the 127 
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original NIST 4949B standard. The measured 
129

I/
127

I ratios in samples were 10
-12

-10
-10

, 128 

which are more than 1-2 orders of magnitude higher than that of the procedure blank (10
-13

). 129 

Due to possible memory effects in the ion source, care was taken to measure samples in 130 

sequence from low to high 
129

I/
127

I ratios. Repeat measurements of secondary standards 131 

indicated better than 2 % reproducibility.  132 

 133 
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 151 

Table S1. Comparison of 134Cs and 137 Cs measurements in NIES and TUD* 

Sample Volume Institution Filter size 134Cs 137 Cs 134 Cs/137Cs

Start Stop (m3) (mm x mm) (Bq/m3) (Bq/m3)

Month-day Time Month-day Time

No. 1 Mar 15 14:39 Mar 15 17:34 105 NIES 203 x 254 3.99±0.01 3.82±0.02 1.04±0.01

TUD 20 x 50 3.09±0.16 3.01±0.15 1.03±0.07

No. 2 Mar 15 17:48 Mar 16 08:48 540 NIES 203 x 254 0.661±0.006 0.648±0.007 1.02±0.01

TUD 20 x 50 0.668±0.034 0.670±0.034 1.00±0.07

No. 3 Mar 16 09:08 Mar 16 17:08 288 NIES 203 x 254 0.518±0.005 0.498±0.006 1.04±0.02

TUD 20 x 50 0.540±0.027 0.523±0.026 1.03±0.07

No. 4 Mar 22 10:00 Mar 23 11:10 906 NIES 203 x 254 0.124±0.002 0.117±0.002 1.06±0.02

TUD 20 x 50 0.126±0.006 0.116±0.006 1.08±0.08

*Activity was corrected to March 11, 2011 at 14:46. Data of NIES are from Ref.1 and TUD from this study.

Sample collection (2011)
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Abstract 

Speciation analysis of iodine in aerosols is an effective approach to understand the 

biogeochemical cycling of iodine in the atmosphere. Overall iodine species, including 

water soluble iodine species (iodide, iodate and water soluble organic iodine), NaOH 

soluble iodine and insoluble iodine have been measured in aerosols collected at Risø, 

Denmark during March-May 2011 (shortly after the Fukushima nuclear accident) and 

December 2014. The concentrations of total iodine are in ranges of 1.04-2.48 ng/m
3 
for 

127
I and (11.3-97.0)×10

5
 atoms/m

3 
for 

129
I, resulting in 

129
I/

127
I atomic ratios of 

(17.8-86.8)×10
-8

. The contribution of Fukushima-derived 
129

I (peak value of 6.3×10
4
 

atoms/m
3
) is estimated to be negligible (less than 6% of the total 

129
I) in the northern 

Europe. The concentrations and species of 
129

I and 
127

I in aerosols are found to be 

strongly related with their sources and pathways of the carrier air. The air from the 

ocean on the west contributed higher 
129

I concentration in aerosols compared to that 

from European continent on the east. The high 
129

I concentration in aerosols is 

attributed to the secondary emission of the heavily 
129

I-contaminated seawater in the 

North Sea to the west, rather than direct gaseous release of 
129

I from nuclear 

reprocessing plants. Water soluble iodine was found to be a minor fraction to total 

iodine for both natural 
127

I (7.8-13.7%) and 
129

I (6.5-14.1%) in ocean-derived aerosols, 

which increased to 20.2-30.3% for 
127

I and 25.6-29.5% for 
129

I in land-derived aerosols. 

Iodide was the predominant form in the water soluble iodine, accounting for more than 

97% of the water soluble iodine. NaOH soluble iodine seems to be independent on the 

source of aerosols. The significant proportion of 
129

I and 
127

I found in NaOH soluble 

fractions is likely bound with organic substances. In contrast to water soluble iodine, 
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however, the sources of air mass exerted distinct influences on insoluble iodine for both 
129

I and 
127

I, i.e. which enriched in oceanic air and depleted in land-ocean mixed air. 

Introduction 

Atmospheric chemistry of iodine has attracted increasing attention in recent years, not 

only because of its crucial role in geochemical cycling of iodine, but also due to the 

significant effects on tropospheric ozone depletion and formation of primary particles, 

which could indirectly influence global climate by regulating solar radiation (Carpenter 

2003; O'Dowd et al., 2002; Saiz-Lopez et al., 2012). However, most of the studies 

concentrated on laboratory smog chamber experiments and modeling prediction, 

apparently lack of filed and laboratory measurements on real atmospheric samples. 

Significant fraction of iodine exists in atmospheric particles, which makes aerosol 

become a potent tool to study atmospheric chemistry of iodine. Speciation analysis of 

iodine in aerosol, furthermore, could provide intensive knowledge on comprehensively 

understanding biogeochemical cycling of iodine.  

Most of work on iodine speciation of aerosol focused on water soluble iodine (WSI) in 

aerosols (Baker 2004; Baker 2005; Gilfedder et al., 2008). Early modelling work 

predicted that aerosol iodate may be a by-product of the production of higher iodine 

oxides and is believed to be the only stable iodine species, while iodide concentration is 

negligible due to transformation into gaseous iodine (McFiggans et al., 2000; Vogt et al., 

1999). However, this prediction went against with several observations, which showed 

significant magnitude of iodide and soluble organic iodine, together accounting for 

10%-100% of WSI in aerosol (Baker 2004; Baker 2005; Gabler and Heumann 1993; 

Wimschneider and Heumann 1995). An updated model was presented recently for 

better prediction primarily by elevating the proportion of iodide in aerosols (Pechtl et 

al., 2007). Only few works noticed water insoluble iodine in aerosol (Gilfedder et al., 

2010; Tsukada et al., 1987), which might be hardly converted back to gaseous iodine 

but enter into next cycle stage being deposited to the Earth’s surface. The existing 

observational data have suggested that the insoluble iodine is abundant in aerosol 

particles, representing 17-53% of total iodine (Gilfedder et al., 2010). However, there is 

no comprehensive investigation on iodine species in aerosol encompassing aqueous 

soluble and insoluble iodine species, which leaves a big vacancy for fully 

understanding interaction of iodine species both in aerosol as well as in gas-aerosol 

interface.   

A difficulty on investigation of geochemical cycling of iodine is identification of the 

source of natural iodine. Due to the discernible source terms, 
129

I, the only long-lived 

radioisotope of iodine (T1/2=15.7 Ma), has been proved to be a ideal geochemical tracer 
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and successfully applied in investigations of various environmental processes (Hou et 

al., 2007; Jabbar et al., 2012; Michel et al., 2012). Large amount of 
129

I has been 

released to the environment, predominantly from nuclear reprocessing plants (NRPs) 

with an amount of 6000 kg by 2009, especially the Sellafield (United Kingdom) and La 

Hague (France) (Hou et al., 2007; Raisbeck et al., 1995). In the present environment, the 

anthropogenic 
129

I is distributed unevenly in water, atmosphere and terrestrial systems 

(Hou et al., 2009b). To the atmosphere, explosions of nuclear bombs aboveground 

produced radioactive aerosols containing 
129

I that was ejected even to the stratosphere 

and mixed globally before back to troposphere. Larger particles remained in the 

troposphere for about 20 days and finally deposited to the earth’s surface (Tölgyessy 

1993). Gaseous releases from reprocessing plants and accidents are primary sources of 
129

I to local environment (Hou et al., 2009a; Xu et al., 2013). Re-emission of iodine from 

the marine boundary layer plays an important role to transfer 
129

I to the air (Englund et 

al., 2010b). As with stable iodine (
127

I), 
129

I participates in geochemical cycling and is 

attached with particles in various chemical species. Particulate 
129

I has been 

successfully applied to investigate transportation of air mass and monitor of radioiodine 

in nuclear activity zones as well as background areas without close-in 
129

I source 

(Englund et al., 2010b; Jabbar et al., 2012; Santos et al., 2005; Tsukada et al., 1987). 

Investigation on speciation analysis of 
129

I in aerosols is extremely scarce with only one 

our previous work (Xu et al., 2015), which didn’t focus on conversion among iodine 

species in aerosols.  

Here, we present the results of speciation analysis of soluble and insoluble stable 
127

I 

and radioactive 
129

I in aerosols collected at a coastal site in Denmark, in order to 

investigate the transformation mechanisms among the iodine species in aerosols and 

gas-aerosol exchange processes of iodine.  

Materials and methods 

Aerosol sampling  

Eight aerosol samples were collected using 0.45 μm polypropylene filter 

(www.pti-ficher.com) that was attached to an in-house aerosol collector at Risø campus, 

Technical University of Denmark, Denmark (55˚41.77ʹN, 12˚05.39ʹE) (Fig. 1). The 

sampling filter is normally replaced every week, but during the Fukushima nuclear 

accident, the changing frequency was increased to every 3-4 days. Seven aerosols were 

sampled during 31
st
 March - 2

nd 
May, 2011, shortly after the Fukushima accident on 11

th 

March, 2011. One sample was collected during 8-15
th

 December 2014. The samples 

were put into plastic bags and stored in dark until analysis. Sample information is listed 

in Table 1. 

http://www.pti-ficher.com/
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Speciation analysis of 
127

I and 
129

I in aerosols 

Separation of iodine species from aerosol. The aerosol samples were analyzed using a 

newly developed method (Zhang et al. submitted, 2015). In brief, iodine in aerosols 

was extracted sequentially using deionized water and sodium hydroxide solution for 

water soluble and NaOH soluble iodine (WSI and NSI) . Total iodine (TI) and residual 

insoluble iodine (RII) were separated by alkaline ashing from the original air filters and 

the residual filters after NaOH solution leachcing. Iodide and iodate in the water 

leachate were separated using anion exchange chromatography. Fig.1 shows a diagram 

of separation procedure for speciation analysis of iodine isotopes. 

Determination of 
127

I by ICP-MS and 
129

I by AMS. 
127

I in all fractions were diluted by 

a factor of 1-20 using ammonium to 1% NH3·H2O. Cesium was added to a final 

concentration of 2 ng/g as internal standard to monitor the ionization efficiency of 

iodine. For measurement of 
127

I in ash leachates of total iodine and insoluble fraction, 

standard addition method was employed. Iodine standard solution (NaI, NIST, USA) 

was spiked into the reserved aliquots and diluted to a final concentration of 2 ng/g. 
127

I 

in the diluted solution was measured by ICP-MS (Thermo Fisher, X Series II) using Xt 

cone under normal mode as described elsewhere (Hou et al., 2007). 
129

I was measured using a 5 MV accelerator mass spectrometry (NEC, Wisconsin, USA) 

at Scottish University Environmental Research Center, UK (Xu et al., 2013). The 

prepared AgI precipitates were mixed with silver powder (Sigma-Aldrich Co., USA) in 

mass ratio of 1:2 and pressed into copper holder using a manual pressure machine. The 

terminal voltage of 3.5 MV and I
5+ 

were chosen for detection of 
129

I. The measured 
129

I/
127

I ratios were corrected against a standard with 
129

I/
127

I ratio of 1.13810
-10

 

prepared by NIST 4949C and 
127

I carrier. The analytical accuracies for standards and 

samples are within 5%. The procedure blanks are 510
-13

, 1-3 orders of magnitude 

lower than that in the samples. All results were corrected for procedure blanks.  

Results  

The concentrations of total iodine in aerosols from Risø, Denmark ranged at 1.04-2.48 

ng/m
3
 (1.79±0.52 ng/m

3
 in average) for 

127
I and 11.3-73.0×10

5
 atoms/m

3
 ((43.65±18.88) 

×10
5
 atoms/m

3
 in average) for 

129
I, during March-May 2011 (Table 2). Total 

127
I 

concentration of 2.36 ng/m
3
 during 8-15 December 2014 fell within the range in 2011, 

while 
129

I concentration of 97.0×10
5
 atoms/m

3
 was about two times higher than the 

average value in 2011. Much lower values of 
129

I and 
127

I concentrations were observed 

during 18 April- 2 May compared to those before 18 April (Fig. 3), but 
129

I level didn’t 

show a synchronous variation with 
127

I concentrations. The results of 
127

I concentrations 

in the studied aerosols are compatible with those from an inland city, Regensburg, 

Germany and from some Pacific islands ((Gabler and Heumann 1993) and references 
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therein). 
129

I/
127

I atomic ratios in the investigated aerosols were (17.84-86.84)×10
-8

, 

which are virtually consistent with those found at Foehr island, north of Germany in 

April 2002 (Michel et al., 2012) and in southern Sweden during 1983-2008 (Englund et 

al., 2010b; Michel et al., 2012). However, the measured 
129

I concentrations and 
129

I/
127

I 

ratios are 1-2 orders of magnitude higher than those observed in Vienna, Austria during 

2001-2002, and at high altitude eastern Alps (2700 m) during 2001 (Jabbar et al., 2011; 

Jabbar et al., 2012). 

WSI in aerosols of year 2011 predominantly occurred as iodide for 
127

I ranging at 

0.12-0.33 ng/m
3
, and iodate concentrations of 0.02-0.03 ng/m

3
 were detectable in only 

two samples (AE11-12 during 4-7
th

 April and AE11-17 during 26
th

 April-2
nd

 May) 

(Table 1 and Fig. 4). The highest 
127

I
- 
concentration of 0.74 ng/m

3
 was observed in the 

aerosols collected in year 2014. No water soluble organic iodine was measured. Water 

soluble 
129

I shows a similar species pattern as 
127

I except iodate that was below the 

detection limit. Concentrations of 
129

I
- 

varied at (3.26-5.91)×10
5
 atoms/m

3
 with an 

average value of 4.41×10
5
 atoms/m

3
 in aerosol of 2011, while the value in the sample 

collected in 2014 (30.12×10
5
 atoms/m

3
) is about 8 times higher than those in 2011. 

Apparently high concentrations of iodine species in all aerosols samples is the NSI 

species with an average of 0.64±0.21 ng/m
3
 for 

127
I and (13.55±10.12)×10

5
 atoms/m

3
 

for 
129

I. The NSI are likely organically bound iodine, which can be soluble in NaOH 

solution, implying a large portion of iodine is associated with organic matter. RII is the 

dominant specie in aerosol samples for both iodine isotopes, with concentrations ranges 

of 0.34-1.66 ng/m
3
 for 

127
I and (4.27-39.94)×10

5
 atoms/m

3
 for 

129
I.  

Since there is no available standard reference material for measurement of iodine 

isotopes in aerosol, the ratios of sum of all species to total iodine in whole samples 

were calculated to be 85%-110%, confirming the reliability of the analytical results (Fig. 

5).  

Before 18
th

 April, the proportion of 
129

I and 
127

I species follows an order of RII > NSI > 

iodide, while for the samples in later April 2011 and winter 2014, the three iodine 

fractions for both 
129

I and 
127

I account for almost same proportion of total iodine (Fig. 

5). Compared to the former sampling period (31 March-18 April 2011), the most 

apparent feature in the latter sampling period is that the RII fraction dramatically 

diminished by 38.7% for 
127

I and 26.8% for 
129

I, which is accompanied by increasing 

iodide fraction in aerosol particles. Iodate, as the least abundant iodine specie (< 3%), 

was only determined in two aerosol samples for 
127

I, and no 
129

IO3
-
 was found. 

The 
129

I/
127

I ratios range in (15.56-102.36)×10
-8 

were observed for different iodine 

species in aerosols. Variation trends of 
129

I/
127

I atomic ratios in iodide, NSI and RII 

almost agree with those in total 
129

I/
127

I ratios that high values were found before 18 

April 2011 and December 2014 (Table 2). 
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Discussion 

Sources of 
127

I and 
129

I in aerosols 

Analysis of the variation of 
127

I and 
129

I concentrations in aerosols against the 

meteorological parameters (i.e. wind direction, wind speed and temperature) during the 

sampling period shows that wind direction has a dominant influence on iodine 

concentrations (Fig. 3). Back trajectory model analysis shows that 
127

I and 
129

I in the 

aerosol is directly controlled by the source and pathways of the carrier air (Fig. 6 and 

Fig S-1, S-2 in supplementary material). The relatively high 
127

I and 
129

I concentrations 

in aerosols was observed in early April 2011 and December 2014, when the air mass 

mainly transported from the Atlantic Ocean and the North Sea by prevailing westerly 

wind. While low concentrations of iodine isotopes were observed in aerosols collected 

in later April, when the air masses were dominated by prevailing easterly wind, which 

passed over the European continent and the Baltic Sea.  

Marine emission is a major source of iodine in the atmosphere, which generally results 

in higher 
127

I concentration in marine atmosphere than terrestrial atmosphere 

(Saiz-Lopez et al., 2012). During the sampling period of 11-14
th

 April, the westerly air 

mass was transported from a vast area of the northern Atlantic Ocean to the sampling 

site, which caused the highest 
127

I concentration in this aerosol sample. Whereas, the 

most area of the northern Atlantic ocean containing low 
129

I concentration in seawater 

(except the coastal water in the Norwegian Sea) (He et al., 2013) contributed low level 

of
 129

I to these relative air masses, and consequently to this aerosol sample.  

The highest 
129

I concentrations ((73-97)×10
5
 atoms/m

3
 ) were observed in aerosol 

samples collected in 4-7
th

 April 2011 and 8-15
th

 December 2014, when the air masses 

were transported from two directions, west/northwest and south/southwest (Fig. 6, 

Figure S-1 and S-2). The dominant south/southwesterly wind passed over the high 
129

I 

areas, i.e. the entire North Sea, as well as the sites of Cap de La Hague and Sellafield. 

Distinct from ocean-origin 
127

I, more than 95% of 
129

I in the environment was 

discharged from Sellafield and La Hague, which locate at west and southwest of 

Denmark, respectively. Only a small fraction of 
129

I in gaseous form (about 2-5 kg/year 

in the past 20 years) was released to the atmosphere, which was dispersed with air over 

a large area, especially in southern European (Ernst et al., 2003; Hou et al., 2007). 

However, large fraction of 
129

I (200-300 kg/year since 1995) in liquid form was 

discharged to the English Channel and Irish Sea, then transported by water current to 

the North Sea, to the Kattegat and the Baltic Sea with a small proportion, and further to 

the Artic along the Norwegian coast (Alfimov et al., 2004a; Buraglio et al., 1999; Hou 

et al., 2007; Raisbeck et al., 1995; Yi et al., 2012). Remarkably elevated 
129

I 

concentrations have been observed up to 10
10

-10
11 

atoms/L in the North Sea, 10
9
-10

10
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atoms/L in the Norwegian coastal seawater and the Kattegat, and 10
8
-10

9
 atoms/L in the 

Baltic Sea (Aldahan et al., 2007; Alfimov et al., 2004b; He et al., 2014; Hou et al., 2007; 

Michel et al., 2012; Yi et al., 2011). Besides air release to the atmosphere from the two 

reprocessing plants, iodine emitted from seawater especially in the North Sea, as well 

as the Kattegat through sea-spray and biological activity of macroalgae and microalgae 

(McFiggans 2005; O'Dowd et al., 2002) could significantly increase the 
129

I 

concentrations in the atmosphere as well as in the aerosol samples collected during 

these periods.  

The lowest 
129

I concentrations ((11-13)×10
5
 atoms/m

3
) were observed in aerosol 

samples collected in 18-26
th

 April and 26
th

 April-2
nd

 May. The back trajectory analysis 

(Fig. S-1) shows that in this period the air masses at the sampling site were mainly 

transported by easterly or northwesterly wind from the northeastern European continent. 

The lower terrestrial emission of iodine through the vegetation and microorganism 

compared to marine emission and the lower
 129

I level in the land of the northeastern 

Europe compared to that in the North Sea should be therefore the reasons of low 
129

I 

concentrations in these two aerosol samples. The much higher 
210

Pb level (249-253 

μBq/m
3
) (Table 1) in this period also reflected the aerosols mainly originated from the 

European continent. For the aerosol samples collected in 11-14
th

 and 14-18
th

 April, the 
129

I concentrations of (43-47) ×10
5
 atoms/m

3
 were measured, which is lower than the 

one collected in 4-7
th

 April (73×10
5
 atoms/m

3
) by a factor of 1.6, but about 4-fold 

higher than that in the aerosol samples derived from the northeastern European 

continent during 18
th

 April to 2
nd

 May. The back trajectory analysis clearly shows that  

the dominant air masses during the sampling periods were transported westerly, i.e. 

from the Atlantic Ocean but cross a narrow area of the northern North Sea (Fig. 4 and 

Fig. S-1). The secondarily high 
129

I concentrations in these aerosol samples should be 

attributed to the re-emission of 
129

I from the highly contaminated seawater in the North 

Sea. It can be therefore concluded that besides the direct air releases of 
129

I from the 

two European reprocessing plants, secondary emission of 
129

I from the highly 
129

I 

contaminated North Sea water is the dominant source of 
129

I in the aerosols collected in 

Denmark. This is also supported by other investigation on 
129

I concentrations in 

aerosols at European high altitude sites (Jabbar et al., 2012).  

However, such result could not be observed in precipitation samples collected in central 

Sweden during 1998-1999 (Buraglio et al., 2001). This might be attributed to the 

different incorporation processes of iodine into particles and precipitation. Gaseous 

iodine species, e.g. I2, CH2I2 emitted by abundant iodine-rich seaweed are dominant 

precursors for the formation of new particles, due to their relatively rapid photolysis to 

active iodine oxides (e.g. IO, OIO) (McFiggans 2005; O'Dowd et al., 2002; Saiz-Lopez 

et al., 2012). This implies iodine in aerosols may participate in aerosol formation, 
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which is sensitive to iodine source terms. Whereas, iodine in precipitation originates 

from washout process of gaseous iodine and particulate iodine in the air, which is 

primarily in the forms of polar iodine compounds (e.g. HI, HOI, IO, I
-
, IO3

-
, I2, 

unidentified organic iodine species) in H2O molecules during precipitation events 

(Buraglio et al., 2001; Gilfedder et al., 2007). In addition, aerosol samples were 

collected in a long time scale (3-7 days), reflecting an accumulated signal during the 

sampling period, while precipitation normally takes a short time, reflecting the 

formation processes related to cloud and rainfall. Therefore the real source terms of 

iodine isotopes in the precipitation might not be simply revealed by the back trajectory 

analysis. 

Species of 
129

I and 
127

I in aerosols 

WSI is virtually only present as iodide in the aerosols investigated, the sum of iodate 

and water soluble organic iodine calculated by the difference between WSI and iodide 

accounting for less than 3% of total iodine, which were only measured in two samples. 

Iodate was once considered to be the only WSI species in aerosol (Vogt et al., 1999), 

which is supported by an earlier field observation that iodate was found to be the 

dominant form in size-segregated aerosols in the tropical Atlantic (Wimschneider and 

Heumann 1995). However, the iodate-dominant feature could not be observed in other 

aerosol samples, e.g. the northwest Atlantic Ocean and the tropical atmospheric 

aerosols (Baker 2004; Baker 2005), where the iodide was predominated in aerosol 

phase, which agrees well with the observation in this work. Significant amount of 

soluble organic iodine accounting for 83-97% of WSI has been reported in aerosols 

collected at the Mace Head atmospheric research station on the west coast of Ireland 

(Gilfedder et al., 2008). Soluble organic iodine accounting for 4%-75% of WSI were 

also measured in aerosols collected in a cruise from the UK to the Falkland Islands in 

2003 (Baker 2005). This indicates that soluble organic iodine in aerosols might be 

related to the sampling areas, sources and formation processes of aerosols, as well as 

the analytical method used for speciation analysis (Zhang et al., submitted, 2015).  

It is not clear how iodide is formed in the atmosphere with presence of oxidants, i.e. 

oxygen and ozone. Current models predict a negligible iodide concentration in particle 

phase based on an assumption that the iodide in aerosols only origins from the low 

level of gaseous HI (McFiggans et al., 2000; Vogt et al., 1999). This work in 

combination with other previous results (Baker 2004; Xu et al., 2015) suggests that 

there should be other wealthy sources contributing iodide in the observed levels. It’s 

generally accepted that iodine atoms are photochemically produced by photolysis of 

gaseous iodinated compounds, and oxidized by ozone to reactive iodine oxides 

(Carpenter 2003; Saiz-Lopez et al., 2012; Vogt et al., 1999). The formation of iodide 

from iodine atoms and other reactive iodine compounds certainly relies on 



 

9 

 

electron-donors that are responsible for reduction of high valence of iodine species to 

iodide. It has been suggested that the global cycling of sulfur plays an important role on 

conversion of iodinated compounds to iodine atoms (Chatfield and Crutzen 1990). 

Therefore, it might be proposed that the formation of iodide is based on reduction 

reaction by sulfur compounds (Table 3, Equations 1-4). The reductive gaseous SO2 is 

formed by reactions of dimethyl sulfate (DMS) with hydroxide and nitrate, and 

associated with H2O to produce HSO3
-
 and SO3

2-
 (Equations 1 and 2). Iodine in the 

form of iodine atoms and other reactive species (not shown) can be reduced to I
-
 on 

gas-aerosol interface (Equation 3). Other iodine species in aerosols are also reduced by 

reductive sulfur compounds to iodide (Equation 4). The electron-donors are not limited 

to sulfur compounds, for example, nitrogen in the form of ammonia gas 

(NH3→NO2/NO3) (McFiggans et al., 2000; Saiz-Lopez and Plane 2004) and elemental 

mercury (Hg
0 
→ HgO/HgX, X is halogens I

-
, Br

-
, Cl

-
) (Lindberg et al., 2002; Simpson 

et al., 2007) are also available candidates responsible for formation of iodide.  

It can be observed that lower WSI (
129

I and 
127

I) was measured in marine sourced 

aerosols from the North Sea compared to the European continent sourced aerosols (Fig. 

4 and 5). This is well consistent with the conclusion drawn from the iodine speciation 

in the coastal aerosol samples in England (Baker et al., 2001), where the concentrations 

of total water extractable iodine in continent-origin aerosols were significantly higher 

than those in aerosols derived from ocean. 

A large proportion of 
129

I and 
127

I in the aerosol samples was observed in NaOH soluble 

form, which is consistent with the observation in the aerosols from Tsukuba, Japan 

collected shortly after the Fukushima nuclear accident in March 2011(Xu et al., 2015). 

The abundant NaOH soluble 
129

I (32%-44% of total 
129

I) in Fukushima-derived aerosols 

was attributed to coarse vegetation-related organic particles rich in the spring season. 

The measured NaOH soluble iodine (NSI) fractions of 
129

I and 
127

I in the whole 

sampling period in spring 2011 and winter 2014 are similar. This indicates that NSI is 

relative stable and less affected by the source and pathways of air mass compared to the 

WSI. NaOH leaching is often used to extract organic substance in fractionation analysis 

of soil and sediment (Englund et al., 2010a; Hou et al., 2003) based on the high 

solubility of major organic matter, such as humic substances. Organic compounds are 

important contributors in aerosols, such as lipidic, saccharides, proteinaceous materials 

(O'Dowd et al., 2004; Quinn et al., 2014). A significant part of atmospheric aerosol was 

found to be humic-like substances (HULIS), named as its considerable similarities in 

structural properties to humic and fulvic acids (Havers et al., 1998). Most of these 

organic compounds are water-soluble including the fulvic acids in HULIS, but a 

significant water-insoluble fraction of HULIS, humic acids, having more hydrophobic 

and acidic character and higher molecular weight, can be dissolved in alkaline medium 
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like NaOH solution (Feczko et al., 2007; Havers et al., 1998). Therefore, NaOH soluble 

iodine is suggested to be most likely associated with HULIS in aerosols. 

Besides NSI, RII in aerosols has been also less investigated (Gilfedder et al., 2010; 

Tsukada et al., 1987). The earliest report on insoluble iodine fraction in aerosol particles 

conducted by neutron activation analysis (NAA) showed that 27-58% of iodine was 

residual insoluble species in aerosols from Tokyo, Japan during 1983-84 (Tsukada et al., 

1987). Similar result of 17-53% of total iodine as insoluble species has been reported 

for aerosols from west coast of Ireland during 2007 and from a ship transect from 

China to Antarctica during 2005-2006 (Gilfedder et al., 2010). If taking the alkaline 

leachable iodine in aerosols into account, these results well agrees with our 

observations in aerosols at Risø, Denmark (Fig. 6). Less insoluble 
129

I fractions were 

reported to be 4-23% of total 
129

I in Fukushima-derived aerosol particles (Xu et al., 

2015). This discrepancy suggests different formation process of RII species for the 

NRPs-derived 
129

I in this study compared to Fukushima-derived 
129

I. Since 
129

I 

discharged from the NRPs has been presented in the European environment for about 

50 years, it has vastly participated in the geochemical cycling with natural 
127

I and has 

incorporated into various environment components. Whereas, the RII in 

Fukushima-derived aerosols likely primarily consists of fine explosive debris during 

sampling period of 15-22 March, 2011, immediately after the Fukushima nuclear 

accident.  

Iodine species in the residual insoluble fraction after water and NaOH leaching is also 

poorly understood at present. It’s possible that RII is derived from the suspended soil 

particles (Xu et al., 2013). However, speciation analysis of 
129

I in soil shows the 

residual iodine after NaOH leaching accounts for less than 10%, which is considered as 

mineral associated forms (Hou et al., 2003; Qiao et al., 2012). Soot and black carbon 

from combustion-related process are found in anthropogenic aerosols (Kondratyev et al., 

2006; Rose et al., 2006), while the aerosols collected in early April 2011 and winter of 

2014 were mainly marine aerosols with high RII. It has been reported that a relative 

large fraction of iodine in soil and sediment is associated with metal oxides (Hou et al., 

2003), the RII in aerosols might be the iodine associated with metal oxides and 

minerals originated from the suspension of fine inorganic particles. Gaseous iodine in 

atmosphere might interact with these inorganic particles and to be firmly bound. The 

higher RII in the marine-originated aerosols (Fig. 5) might imply that some marine 

components can stimulate the association of gaseous iodine with these inorganic 

particles. 

A significant positive correlation between 
127

Iodide and 
7
Be in aerosol samples (R=0.76, 

p=0.05) is observed (Fig. 7). 
7
Be (t1/2 =54 days) is produced in the stratosphere by 

cosmic rays reactions with oxygen and nitrogen and transported to the troposphere by 
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vertical mixing processes to be finally deposited onto the earth. The production of 
7
Be 

decreases with altitude in the troposphere because of the attenuation of the cosmic ray 

by interactions with atomic targets in the atmosphere (Turekian et al., 1983). This 

positive correlation might indicate the formation of iodide occur in air mass from 

higher altitude. No significant correlation between 
129

I
-
 and 

7
Be could be observed (Fig. 

6) confirms that 
129

I in the aerosol origins from atmosphere releases and secondary 

emission from contaminated seawater in the North Sea which is only present in lower 

layer of troposphere. The significant negative correlation of NSI for 
129

I with 
7
Be 

(R=0.73, p=0.06) likely reflects that association of iodine with organic matter occurs in 

low altitude, where organic matters liberated by biological activity from ocean and 

land. 

Fukushima-derived 
129

I signal in the European atmosphere 

The Fukushima Dai-ichi nuclear power plant accident on March 11, 2011 has released 

large amount of radioiodine to the atmosphere, primarily as 
131

I and 
129

I, which 

dispersed mainly eastwards across the Pacific ocean, American continent and Atlantic 

Ocean, and some fractions arrived to the European continent after 1-2 weeks (Clemenza 

et al., 2012; Leon et al., 2011; Manolopoulou et al., 2011; Pittauerová et al., 2011). The 
129

I concentrations have been reported in various environmental samples in Japan, such 

as soil, seawater, precipitation and aerosols (Buesseler et al., 2012; Hou et al., 2013; 

Muramatsu et al., 2015; Xu et al., 2013; Xu et al., 2015), in which the level of 
129

I in 

aerosols collected in Tsukuba, about 170 km to the Fumushima Dai-ichi NPP reached 

up to 5×10
8
 atoms/m

3
 (Xu, et al. 2015). While Fukushima-derived 

129
I in environmental 

samples outside Japan and Fukushima offshore seawater was less investigated, 
131

I and 

other gamma emitters such as 
134

Cs in the aerosol samples collected at Risø, Denmark, 

10 days after the Fukushima accident have been observed (Fig. 8) (Nielsen et al., 2011). 

The peak of 
131

I (763 μBq/m
3
 in aerosol) reached at 24-30

th
 of March 2011, then 

decreased to below detection limit for 
131

I in the middle of May. Based on the measured 
131

I radioactivity in the aerosol samples and a 
131

I/
129

I atomic ratio of 16.0±2.2 deduced 

from the aerosol samples collected at Tsukuba, Japan shortly after the Fukushima 

accident (Xu et al., 2015), the Fukushima-derived 
129

I signals in Denmark can be 

reconstructed (Fig. 8). The highest 
129

I concentration in the aerosols in Denmark 

originated from Fukushima accident can be estimated to be 6.3×10
4
 atoms/m

3
 on 30-31 

of March 2011, which approximately accounts for less than 6% of total 
129

I 

(1.1-9.7×10
6
 atoms/m

3
) in Denmark. Considering the significantly declined 

129
I levels 

in aerosols and precipitation in Japan for a few orders of magnitude and nearly down to 

the pre-accident level two years after the accident (Xu et al., 2013), the contribution of 

Fukushima-derived 
129

I signals to the 
129

I level and inventory in Europe is negligible 

compared to the considerable amount of NRPs-derived 
129

I in the European 
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atmosphere.  

Dry deposition flux of iodine isotopes 

Dry deposition fluxes of iodine can be estimated as Fd = Cd∙νd according to Baker et al. 

(Baker et al., 2001), where Fd is the flux (μg/m
2
/yr for 

127
I and atoms/m

2
/yr for 

129
I), Cd 

is the aerosol iodine concentrations in the atmosphere (ng/m
3
 for 

127
I and atoms/m

3
 for 

129
I), and νd is the deposition velocity (cm/s). Dependent on the size of particles, the 

deposition velocities are employed as 0.1 cm/s for fine particles (Aerodynamic 

diameter < 1 μm) and 1.5 cm/s for larger particles (Duce et al., 1991). The aerosol 

samples in this work were collected on a PP filter with pore size of approximately 0.45 

μm. According to the particle size distribution at Spieka-Neufeld, Germany, where 

received the atmospheric input of iodine from the North Sea and similar as the 

sampling site in this work, 67% of aerosol iodine was accumulated in particles larger 

than 1 μm and 33% in 0.45~1 μm particles(Gabler and Heumann 1993). Employing 

these parameters, dry deposition fluxes of iodine in Denmark can be estimated to be 

342-815 μg/m
2
/yr for 

127
I, and 0.4-3.2×10

12
atoms/m

2
/yr for 

129
I in the sampling period 

during 2011-2014. If the average values of 1.8 ng/m
3
 and 43.7×10

5
 atoms/m

3
 are used 

as the representative concentrations of 
127

I and 
129

I in aerosol, respectively during 2011, 

average dry deposition fluxes of iodine during 2011 would be 591μg/m
2
/yr and 

1.4×10
12 

atoms/m
2
/yr for 

127
I and 

129
I, respectively. The 

127
I deposition flux falls within 

the range of natural stable iodine deposition flux of 460-830μg/m
2
/yr observed at the 

north coast of Norfolk, United Kingdom (Baker et al., 2001). It is also comparable with 

that in southern Sweden, but higher than that in northern Sweden (Englund et al., 

2010b). The dry deposition flux of 
129

I for the aerosol samples collected in Sweden 

between 1983 and 2008 show a range of 0.33-6.6×10
11 

atoms/m
2
/yr in southern Sweden, 

and 0.008-1.6×10
11 

atoms/m
2
/yr in northern Sweden (Englund et al., 2010b), which are 

1-3 orders of magnitude lower than the deposition fluxes in this work. This is attributed 

to the sampling locations much further away from the major point sources of aerosol 
129

I. The wet deposition of 
129

I at the same sample site as this work was calculated to be 

(1.25±0.30)×10
12

atoms/m
2
/yr during 2001-2006 (Hou et al., 2009a), which is fairly 

consistent with the dry deposition flux of 
129

I, indicating the contribution of 
129

I transfer 

pathways are comparable via dry and wet deposition in the investigate area. However, 

it’s noted that the estimated dry deposition flux was based on only one-month data in 

spring and on the modeled deposition velocity, which might introduce large uncertainty 

because of the temporal variation of 
129

I in aerosols and particulate-size dependent 

velocity.   

Conclusions 
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Based on the analytical results on speciation analysis of 
129

I and 
127

I in aerosols 

collected in Denmark immediately after Fukushima accident and the discussion above, 

the follow conclusions can be drawn:  

1) Iodide is the dominant form (>97%) of the water soluble iodine in aerosol, its 

formation is related to atmospheric reductant, such as reductive SO3 and disulfites. 

The most dominant species of iodine in aerosols are NSI and RII, accounting for up 

to 80% of total iodine, NSI is predominantly bound with organic matters, such as 

HULIS, while RII might be associated with inorganic components such as metal 

oxides and minerals.  

2) The westerly-dominated air mass contributed high 
127

I concentrations from the 

Atlantic Ocean compared to the easterly air from the northeastern European 

continent. 
129

I in the aerosols in Denmark is mainly originated from the air releases 

of the European reprocessing plants, and secondary emission of 
129

I from seawater 

in the North Sea and Kattegat heavily contaminated by the marine discharges of 
129

I 

from two European reprocessing plants is another equally important source of 
129

I in 

the aerosol in Denmark.  

3) The contribution of Fukushima-derived 
129

I signals is only less than 6 % of total 
129

I 

to the European atmosphere immediately after the Fukushima accident, and 

negligible to the 
129

I level and inventory in European environment compared to the 

considerable amount of 
129

I released from Sellafield and La Hague nuclear 

reprocessing plants. 

Water insoluble iodine in aerosol primarily associated with organic compounds is 

crucial for investigation of geochemical cycling of iodine in the atmosphere due to its 

large fraction. This requires more intensive studies through extending observations on 

time series and extensive spatial range.  
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Table 1. Sampling information of aerosols collected at Risø, Denmark in 2011 and 2014. Data of 131I, 

7Be and 210Pb in the aerosol samples are adopted from the DTU Nutech report (Nielsen et al., 2011). 

The reference time was the mid-point of sampling period, and analytical uncertainties were 5% for 
131

I, 

within 1% for 7Be and 210Pb). 

Sample No Sampling date Air flux, 

m
3
 

Air flux, 

m
3
/h 

Weigh

t, g 

131
I, 

μBq/m
3
 

7
Be, 

μBq/m
3
 

210
Pb, 

μBq/m
3
 

AE11-1 31st Mar-4th Apr, 2011 88833 2757 72.5 205 1925  66  

AE11-2 4-7th Apr, 2011 64339 2751 79.2 218 1482  47  

AE11-3 7-11th Apr, 2011 55911 1744 79.5 147 1482  47  

AE11-4 11-14th Apr, 2011 27083 1096 70.9 110 2750  172  

AE11-5 14-18th Apr, 2011 48317 1505 77.9 58.3 2750  172  

AE11-6 18-26th Apr, 2011 101400 1593 80.8 20.9 4528  249  

AE11-7 26th Apr-2nd May, 2011 54600 1117 77.7 14.8 4027  253  

AE14-1 8-15th Dec, 2014 37917 2727 21.7 < D.L. 1499 54.9 
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Table 2.Analytical results of chemical species of 127I and 129I in aerosol collected from Risø, Denmark 

during spring 2011 and winter 2014. 

Sample  TI WSI Iodate Iodide NSI RII 

127I concentration, ng/m3     

AE11-1 1.187 ± 0.062 0.152 ± 0.002 ND 0.158 ± 0.008 0.34 ± 0.019 0.606 ± 0.042 

AE11-2 1.797 ± 0.116 0.141 ± 0.01 0.022 ± 0.012 0.119 ± 0.006 0.556 ± 0.037 0.977 ± 0.049 

AE11-3 1.927 ± 0.115 0.264 ± 0.004 ND 0.259 ± 0.013 0.813 ± 0.027 0.983 ± 0.05 

AE11-4 2.48 ± 0.129 0.258 ± 0.013 ND 0.276 ± 0.014 0.825 ± 0.049 1.664 ± 0.085 

AE11-5 2.027 ± 0.104 0.221 ± 0.011 ND 0.237 ± 0.012 0.638 ± 0.036 1.308 ± 0.087 

AE11-6 1.506 ± 0.112 0.305 ± 0.007 ND 0.327 ± 0.017 0.624 ± 0.033 0.585 ± 0.03 

AE11-7 1.041 ± 0.055 0.316 ± 0.019 0.033 ± 0.024 0.283 ± 0.014 0.377 ± 0.027 0.343 ± 0.018 

AE14-1 2.356 ± 0.127 0.618 ± 0.019 ND 0.739 ± 0.039 0.929 ± 0.057 0.802 ± 0.041 

129I concentration, ×105 atoms/m3     

AE11-1 28.57 ± 1.11 3.07 ± 0.08 ND 3.60 ± 0.43 8.33 ± 0.84 14.14 ± 0.64 

AE11-2 72.98 ± 5.64 4.72 ± 0.41 ND 4.63 ± 0.27 20.55 ± 1.43 39.94 ± 1.64 

AE11-3 25.60 ± 0.98 3.60 ± 0.15 ND 4.11 ± 0.72 10.80 ± 0.40 13.49 ± 2.83 

AE11-4 47.27 ± 1.55 4.78 ± 0.23 ND 5.27 ± 0.57 13.43 ± 1.24 30.26 ± 4.24 

AE11-5 43.81 ± 1.28 5.55 ± 0.27 ND 5.91 ± 0.74 12.58 ± 0.46 27.51 ± 1.28 

AE11-6 12.73 ± 0.42 3.26 ± 0.10 ND 3.26 ± 0.30 4.60 ± 0.49 5.91 ± 0.36 

AE11-7 11.31 ± 0.43 3.34 ± 0.11 ND 4.08 ± 0.24 3.36 ± 0.25 4.27 ± 0.74 

AE14-1 97.00 ± 3.01 26.85 ± 0.65 ND 30.12 ± 1.68 34.74 ± 0.80 39.01 ± 1.49 

129I/127I atomic ratio, ×10-8         

AE11-1 50.78 ± 3.31 42.73 ± 1.28 ND 48.04 ± 6.23 51.70 ± 5.98 49.19 ± 4.07 

AE11-2 85.70 ± 8.63 70.73 ± 8.06 ND 81.93 ± 6.36 78.03 ± 7.50 86.21 ± 5.62 

AE11-3 28.03 ± 1.99 28.82 ± 1.26 ND 33.49 ± 6.13 28.04 ± 1.40 28.94 ± 6.25 

AE11-4 40.21 ± 2.48 39.11 ± 2.72 ND 40.29 ± 4.84 34.34 ± 3.78 38.37 ± 5.72 

AE11-5 45.60 ± 2.70 52.85 ± 3.66 ND 52.50 ± 7.16 41.58 ± 2.79 44.36 ± 3.61 

AE11-6 17.84 ± 1.46 22.59 ± 0.89 ND 21.08 ± 2.24 15.56 ± 1.85 21.32 ± 1.69 

AE11-7 22.92 ± 1.48 22.30 ± 1.55 ND 30.43 ± 2.38 18.81 ± 1.93 26.28 ± 4.73 

AE14-1 86.84 ± 5.40 91.70 ± 3.55 ND 86.03 ± 6.63 78.84 ± 5.20 102.63 ± 6.51 

Analytical uncertainties were presented as 1σ.  
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Table 3. Possible pathways of formation of iodide by reduction of sulfur compounds 

No. Phase Reactions References 

1 Gas 

 

DMS + OH → SO2 

DMS + NO3 → SO2 

(Chatfield and Crutzen 1990) 

2 Gas/Aerosol 

 

SO2 + H2O → HSO3
- 

SO2 + H2O → SO3
2- 

 

3 Gas-Aerosol interface 

 

I + HSO3
- → I- + SO4

2- 

I + SO3
2- → I- + SO4

2- 

 

4 Aerosol HOI + HSO3
- / SO3

2- → I- + SO4
2- 

HOI + SO3
2- → I- + SO4

2- 

HOI2 + HSO3
- / SO3

2- → I- + SO4
2- 

HOI2 + SO3
2- → I- + SO4

2- 

(Saiz-Lopez et al., 2012) 
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Figure 1. Map showing the sampling site (red dot) at Risø, Denmark for aerosol collection. The two 

nuclear reprocessing plants, Sellafield (United Kingdom) and La Hague (France) are indicated as 

radioactivity labels. Yellow arrow and blue arrow show the westerly wind and easterly wind, 

respectively.  

 

 

 

Figure 2.Schematic diagram of analytical procedure for determination of 127I and 129I speciesin aerosols. 

TI for total iodine, WSI for water soluble iodine, RII for residual insoluble iodine and NSI for NaOH 

soluble iodine. 
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Figure 3. Variation of 127I concentrations (a), 129I concentrations (b), 129I/127I ratios (c) in aerosol, wind 

direction (d), wind speed (e) and temperature (f) during the sampling period. The historical 

meteorological data, including temperature, wind, precipitation were obtained from the observation 

station of Hangarvej in Roskilde, Denmark (55.594˚N 12.128˚E) based on 41 m ASL 

(http://www.wunderground.com).   

http://www.wunderground.com/
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Figure 4. Concentration of different species of iodine in aerosol samples for 127I (a) and 129I (b), 

indicating NSI and RII are major species of iodine, and iodide is the predominant specie of water 

soluble iodine species. 

 

 

Figure 5. Distribution of iodine species in aerosol samples for 127I (a) and 129I (b).   
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Figure 6. The 72 h (3 days) air mass back trajectories for starting altitudes of 0 m above ground level 

(AGL) calculated from the FNL database of the National Ocean and Atmospheric Administration 

(NOAA) and simulated by using the Hybrid Single-Particle Langrangian Integrated Trajectory 

(HY-SPLIT) model. 4-7 April 2011 (left) and 21-25 April 2011 (right).  
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Figure 7. Correlation of aerosol 7Be with iodine species including total 127I (a) and 129I (b), 127I-(c), 

129I-(d), NSI for 127I (e) and 129I (f), as well as RII for 127I (g) and 129I (h).  
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Figure 8. 131I radioactivity (red), 129I concentrations (blue) in aerosols from Risø, Denmark after the 

Fukushima accident (Nielsen et al., 2011). The Fukushima-derived 129I concentrations are calculated 

based on 129I/131I atomic ratio of 16.0±2.2 deduced from Fukushima-affected aerosol samples (Xu et al., 

2015).  
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Supplementary material 

The 72 h (3 days) air mass back trajectories for starting altitudes of 0 m above ground 

level (AGL) calculated from the FNL database of the National Ocean and Atmospheric 

Administration (NOAA) and simulated by using the Hybrid Single-Particle 

Langrangian Integrated Trajectory (HY-SPLIT) model.  

 

 

Figure S-1. Back trajectories from 4 April to 2 May, 2011  
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Figure S-2. Back trajectories from 8-15 December, 2014 
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