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Abstract

The lithium-air (or Li-O2) batteries have received wide attention as an enabling technol-

ogy for a mass market entry of electric vehicles due to a potential capacity much higher

than current Li-ion technology. The technology is a relatively new battery concept pro-

posed in 1996, and the current research still focuses on developing an understanding of

the reactions inside the battery. This thesis is dedicated to increase this understanding

and use the knowledge to improve the performance of the battery, and the work span

from detailed investigation of the atom positions to the proposal of a system used to

manage a full size electric vehicle battery.

An automated differential electrochemical mass spectrometer (DEMS) was built to in-

vestigate the relationship between current and the consumption and release of gases,

which is important to identify and quantify degradation reactions. The setup was used

to characterize our carbon-based reference system as well as new ionic liquid-based elec-

trolytes.

Electrochemical impedance spectroscopy (EIS) has been used extensively to describe

reaction mechanisms inside the battery; the origin of the measured overpotentials; and

the onset potential for electrochemical degradation. It was confirmed that the rapid

potential loss near the end of discharge could be explained by an increase in the charge

transport resistance; that the initial Li2O2 oxidation at 3.05 V was blocked by the for-

mation of an SEI layer; and that the voltage increase during charge was primarily due

to the formation of a mixed potential between competing oxidation reactions needed to

maintain a constant current.

The knowledge about impedance spectroscopy was used to propose and investigate a

novel battery management tool to estimate the state of charge and the state of health

of a Li-O2 battery system better than any other method available.

Finally, calculations were made to support that an open system configuration is a real-

istic option in terms of air purification, if H2O and CO2 levels at 1 ppm are allowed.
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Resumé

Lithium-luft (eller Li-O2) batterier har f̊aet stor opmærksomhed, fordi de med en po-

tentiel kapacitet mange gange større end nuværende Li-ion batterier, kan være med

til at sikre et kommercielt gennembrud for elbiler. Li-O2 batteriet er et relativt nyt

koncept, der første gang blev demonstreret i 1996. Denne afhandling fokuserer p̊a at

udbygge forst̊aelsen af hvad der sker inde i batteriet og anvende denne forst̊aelse til at

forbedre batteriet. Arbejdet spænder fra et detaljeret studie af de atomare positioner

til udviklingen af et system, der kan bruges til at styre elbil-batterier i fuld skala.

I projektet blev der bygget et automatiseret differentielt elektrokemisk massespektrom-

eter (DEMS) for at undersøge sammenhængen mellem den strøm, der løber fra batteriet

og den mængde gas, der optages eller afgives. Dette er vigtigt for at kunne identificere

og kvantificere eventuelle degraderingsreaktionerne i batteriet. Opstillingen blev brugt

til at karakterisere vores kulstof-baserede reference system og nye elektrolytter baseret

p̊a ioniske væsker.

Elektrokemisk impedans spektroskopi (EIS) er blevet anvendt i vid udstrækning til

at beskrive reaktionerne inde i batteriet; årsagen til det m̊alte overpotentiale; og ved

hvilket potentiale den elektriske degradering begynder. Det blev bekræftet at det hur-

tigt faldende potentiale i slutningen af afladningen kan forklares med en stigning af

ladningsoverførselsmodstanden, at Li2O2 oxideringen starter ved 3.05 V, men blokkeres

med det samme af et lag af kemiske degraderingsprodukter fra reaktioner mellem Li2O2

og elektrolytten, og at stigningen i spænding gennem opladningen primært skyldes et

blandet potentiale mellem forskellige oxidative reaktioner, der aktiveres for at opretholde

en konstant strøm i takt med at overfladen dækkes af degraderingsprodukter.

Den opbyggede viden om impedansspektroskopi blev brugt til at udvikle og teste en

ny metode til at bestemme batteriets ladningstilstand og helbred. Metoden viste sig at

være markant bedre end de eksisterende løsninger.

Endelig blev der foretaget en række beregninger, der viste, at et åbent Li-O2 system

til rensning af H2O and CO2 til et niveau under 1 ppm er et realistisk alternativ til at

benytte en oxygen tank.
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Chapter 1

Introduction

1.1 Abandoning fossil fuels

Fossil fuels are still, by far, the most common source of energy in the world, constituting

79 % of the total energy production [1], but the renewable share of the energy production

is increasing. The transition is motivated by two main factors: energy security and

climate change mitigation. The dependence on oil and gas import has led to Chinese

involvement in Sudan, American involvement in the Middle East and an escalation

of the international crisis between Russia and the European countries. As the global

energy demand is expected to increase by 1.1 % each year until 2040, there is a political

incentive to decrease the amount of imported energy [2]. The latest IPCC report states

that it is extremely likely that the increase in global temperature and sea-level is caused

by the increase in CO2 and other greenhouse gasses like CH4 and N2O, and that the

costs of a business-as-usual approach will be severe - both in terms of finance and human

well-being [3]. These combined factors result in large investments in renewable energy

sources. 144 countries have defined policy targets to increase the share of renewable

energy, and especially China has invested massively in renewable energy sources since

2011. The global amount of renewable energy sources amounted to 19 % of the total

energy production in 2012, increasing by approximately 1 % each year [1].

Most renewable energy sources produce electricity from sun or wind energy. This means

that energy is produced when the sun is shining and when the wind is blowing, and, as

that does not necessarily match the demand of energy, this creates a massive storage

need. A number of different storage methods exist with different advantages and disad-

vantages in terms of capacity, power, mobility and price. As an example, pumped hydro

is the most cost-effective way of storing large amounts of electrical energy, but it requires

1
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huge capital costs and the presence of appropriate geography. On the other hand, bat-

teries are relatively expensive per stored kWh, but very useful for mobile applications

as the energy density is high and the unit size is very flexible.

1.1.1 Non-fossil transportation

Today, much attention is being devoted to developing green transportation, as this

accounts for 63.7 % of the global oil consumption (2012) [4]. Gasoline has a very

high energy density of approximately 12.3 kWh/kg, and the challenge is to develop

competitive energy storage methods with sufficiently high energy density. Different

technologies like batteries, fuel cells and bio-diesel are currently being investigated. All

technologies have benefits and drawbacks, and it is unlikely that any of the technologies

will be able to solve the future challenge of non-fossil transportation alone. Looking at

the use of batteries in transportation, Li-ion batteries have been implemented in different

electric cars during the last 10 years. The driving ranges of economy cars lie between 80

km and 160 km, and it is forecasted that this driving range cannot improve by more than

a factor of 2-3 using conventional battery technologies. This means that conventional

battery technologies will not be able to match the driving range of gasoline cars, which is

currently considered critical to enable a full transition to non-fossil transportation. The

need for better mobile energy storage has strongly motivated research in other battery

systems such as lithium-sulfur and lithium-oxygen batteries.

1.2 Batteries

A battery is an electrochemical cell that converts stored chemical energy into electrical

energy. It was first invented by Alessandro Volta in 1800 and has since then become a

common power source for many household and industrial applications. There are two

types of batteries: primary batteries (disposable batteries), which are designed to be

used once and discarded, and secondary batteries (rechargeable batteries), which are

designed to be recharged and used multiple times. Batteries come in many sizes, from

miniature cells used to power hearing aids and wristwatches to battery banks the size

of buildings that provide backup power for telephone exchanges and data centers or act

as frequency stabilization units in the power grid.

The wireless revolution that has dominated the western world in the late 00’s has been

powered by batteries, and especially the rechargeable lithium ion batteries. Lithium

batteries were initially proposed by M. S. Whittingham [5] in the 1970s and important

contributions have been made by John B. Goodenough among others [6]. The Li-ion
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battery was commercialized by Sony in 1991 and many improvements have been made

since then. The current state Li-ion battery has the largest capacity of all commercialized

secondary batteries, and they are found everywhere. Globally, the annual production

of battery cells is astonishing 20 billion cells. Tesla alone is expected to use 0.3 billion

cells in 2015.
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Figure 1.1: Ragone plot comparing the specific energy and specific power of different
battery systems [7] and [8].

Many types of commercial secondary batteries exist. Figure 1.1 shows a Ragone plot of

the most common chemistries like Lead-acid (Pb-H), Nickel Metalhydrate (NiMH) and

different Li-ion based chemistries. Comparing with the 12.3 kWh/kg energy density of

gasoline, it is clear that significant improvements are needed. The energy density can

be improved in two ways: by increasing energy (potential) or by increasing capacity

(decrease weight or volume per charge). The first strategy is exemplified by lithium

nickel manganeseoxide (LNMO), where the potential is increased from 3.6 V to 4.7 V by

substituting 25 % of the manganese with nickel, and the second strategy is exemplified

by lithium nickel manganese cobaltoxide NMC, where more lithium can be extracted per

transition metal. The Li-ion batteries are, however, limited by a heavy framework, and

disruptive technologies are needed to obtain decisive improvements in energy density.

Recently, the Li-air battery has been investigated heavily as such a disruptive technology.

1.2.1 Gold rush of the giant leap

The non-aqueous lithium-air (or Li-O2) battery is a relatively new battery concept

proposed by Abraham et al. in 1996 [9]. Compared with a lithium-ion battery, the

lithium-air battery is an open system that allows oxygen from the atmosphere (or from

an oxygen storage tank) to solute in the electrolyte and reduce at the positive cathode

to form lithium peroxide (Li2O2) during discharge. This makes it possible to avoid
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heavy transition metals in the cathode and use lighter elements like carbon instead,

which reduces the total battery weight significantly. Theoretically, and disregarding

support materials and electrolyte, the energy density of the Li-O2 battery is 3.8-11.7

kWh/kg depending on whether the oxygen is included in the calculation or not [10].

This is comparable to gasoline and, if realizable, exceeding the improvements seen in

the previous 150 years since Gaston Planté discovered the Lead-Acid battery in 1859.

Figure 1.2: Comparison between the specific energy density of different battery tech-
nologies. It is seen that the theoretical energy density of the Li-air battery is signifi-
cantly larger than all other rechargeable battery systems. The practical energy density

is however somewhat smaller [11].

Figure 1.2 shows a comparison of the Li-O2 chemistry with other battery technologies

currently investigated. The Li-air battery received only little attention until Peter Bruce

made experiments with his group demonstrating rechargeability [12]. This demonstra-

tion opened up the technology and initiated a competitive race in the scientific commu-

nity to publish results as fast as possible. IBM started up the Battery 500 project to

develop an EV Li-air battery with a driving range of 500 miles, and research groups all

over the world started up Li-O2 battery activities. Figure 1.3 shows an overview of the

number of published scientific papers within Li-air batteries.
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Figure 1.3: Number of publications on lithium-air batteries. The numbers are based
on a Google Scholar search using allintitle: (lithium-air OR Li-air OR lithium-O2 OR

Li-O2).
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In early experiments using carbonate solvents in the electrolytes, it was observed that the

cell voltage rose almost immediately to above 4 V during charge. This was incorrectly

interpreted as a high Li-O2 kinetic overpotential for charging, and has led to a strong

focus on electrocatalysis in the literature. However, as will be pointed out in Chapter 4,

this rapid rise was instead related to electrolyte decomposition that formed carbonate

and carboxylate products rather than Li2O2 during discharge. Once formed, they do

not oxidize electrochemically until 4 V.

In general, many publications within the field of Li-O2 batteries are misinterpreted at

best, because of an insufficient characterization of the involved mechanisms. Some of

the most prominent results are the application of carbonate electrolytes, catalysts in the

positive electrode and capacity limited cycling, and today many of these measurements

and publications have been proven wrong.

A detailed review of the current state of research is found in the recent book The Lithium

Air Battery: Fundamentals by Imanishi et al. [13] and a condensed version is presented

in the excellent review by Luntz et al. [14] from 2014.

1.3 About this work

1.3.1 The aims of the project

Early in this project, it was clear that a careful study of the electrochemistry and funda-

mental reaction mechanisms was needed to ensure that we could distinguish the wanted

electrochemistry from the unwanted. This changed my work from developing new cath-

ode materials to developing a stable test system and reliable methods to characterize the

fundamental electrochemical mechanisms inside the Li-O2 battery. The focus has thus

been to understand the formation and removal of Li2O2, and the undesired degradation

reactions.

Today, no one knows if Li-O2 batteries will ever be commercially viable because of

the significant degradation, but as an employee at Haldor Topsøe A/S, it was also

important to assess the viability in a system perspective, which has been done under the

assumption that the challenge of degradation is solved or at least significantly reduced.

The assessment focuses on air purification in an open Li-air battery system and battery

management using an impedance based State-of-Charge (SoC) determination.
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1.3.2 Outline of the thesis

The contents of this thesis are divided into seven chapters. The research results of the

project are reported in Chapters 4, 5 and 6, and the work presented in those chapters

has been carried out by me unless otherwise stated. This work resulted in two published

peer-reviewed publications, two submitted publications and one publication draft. The

five manuscripts are attached as appendices to the thesis. In addition to this, four

appendices have been attached, including work that has been of significant importance

to the project, without being a subject for publication. The thesis has been written as

an independent work and the papers have been attached to support the discussions and

conclusions presented.

2 Theory

This chapter focuses on the working principle of the Li-O2 battery and a brief introduc-

tion to the theoretical foundation of electrochemical impedance spectroscopy (EIS).

3 Experimental

This chapter focuses on the manufacturing of cathodes, the basic working principles of

the differential electrochemical mass spectrometry (DEMS) and electrochemical impedance

spectroscopy.

4 Overpotentials and degradation

This chapter presents the work on explaining the fundamental reaction mechanisms in

the Li-O2 battery. Methods like EIS, DEMS, TEM and absorption measurements give

important contributions to this work. This chapter is closely related to Paper I and

Paper II.

5 Screening for new electrolytes

This chapter presents work on finding a new electrolyte by testing promising ionic liquids

(IL) with DEMS. This chapter is closely related to Paper IV.

6 Commercializing Li-air batteries

This chapter presents a novel method to increase the accuracy of the state of charge

determination in a Li-O2 battery and work on air-purification of the inlet air in an open

Li-air battery. This chapter is closely related to Paper III.

7 Summary and outlook

The four main results of the work are summed up and six suggestions to future work

are presented.
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Chapter 2

Theory

2.1 The lithium-oxygen battery
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Figure 2.1: Schematic of the overall Li-battery working principle.

Figure 2.1 shows a highly simplified sketch of how lithium batteries work by moving Li+

ions through the electrolyte from the negative electrode to the positive electrode during

discharge and vice versa during charge. The two electrode materials absorb, store and

release Li+ ions at two different chemical potentials, and the difference between these

chemical potentials gives the open circuit cell voltage (OCV)

OCV = −∆G
−	−

zF
(2.1)

where ∆G
−	−

is the change in Gibbs free energy of the reaction, z is the charge number (1

in Li-batteries), and F is the Faraday constant. The battery is discharged by connecting

the two materials electrically through an external circuit. This allows electrons to move

from the negative electrode to the positive electrode with an energy corresponding to

the voltage difference multiplied by the elementary charge. The energy of the electrons

can be used in the external circuit to power a laptop or another electrical device. The

9
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battery is charged by applying a potential between the two electrodes greater than the

equilibrium potential. This forces electrons to move from the cathode to the anode,

which reverses the entire reaction. In Li-ion batteries the two electrode materials are

crystaline intercalation materials, where lithium is stored inside the crystal. In Li-O2

batteries, the electrodes are different, as both electrodes grow (shrink) during reduction

(oxidation).
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Figure 2.2: Li-air battery discharge electrochemistry.

The actual mechanism of the Li-O2 battery depends on the choice of electrolyte. This

can be aqueous, aprotic (water-free) or solid. The aprotic system has received most

attention in literature due to the problems with ohmic losses, rechargeability and low

energy density observed in the other systems. For this reason, only the aprotic system is

considered in this work. Figure 2.2 shows the ideal electrochemistry of the aprotic Li-air

battery. The battery is open to allow oxygen inside the battery. The oxygen diffuses

to the positive electrode, where it is reduced to form Li2O2. During charge, the Li2O2

is oxidized and oxygen is released. The Li+ ions move between the two electrodes to

balance the charge and, on the negative electrode, lithium is soluted/plated to keep a

constant number of Li+ ions in the electrolyte.

2.1.1 New definitions for lithium-oxygen batteries

Rechargeability. The most important characteristic of the Li-O2 battery at the cur-

rent state is rechargeability, and because the system is fundamentally different from

the Li-ion battery, the general definitions do not apply. In Li-ion batteries, the two

electrodes are balanced such that any degradation involving either lithium or one of

the electrode materials would directly affect the capacity of the battery. All current

state Li-O2 batteries use a massive excess of both lithium and electrolyte, which means
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that electrochemical degradation can occur without being detected in the electrochem-

ical measurements. This has led to the four definitions of rechargeability adapted from

Luntz et al.[14]:

1. the yield of Li2O2 relative to that anticipated from the current and ideal cathode

reaction 2(Li+ +e−) + O2 → Li2O2 during discharge is YLi2O2 = 1.00, i.e., no other

products are formed during discharge either on the cathode or in the electrolyte,

e.g., no LiOH, Li2CO3, LiF, carboxylates, etc

2. during discharge, the electrochemical current consumes only O2, (e−/O2)dis =

2.00, and during charge, all electrochemical current evolves O2, (e−/O2)cha = 2.00

3. no parasitic gas evolution (H2, CO2, etc.) occurs during the discharge-charge cycle

4. all O2 consumed during discharge (ORR) is released during charge (OER) so that

OER/ORR = 1.00

If all requirements are met, then the Li-O2 battery is perfectly rechargeable. In addition,

a long calendar life is necessary, and this requires that all thermal parasitic chemical

reactions between components of the battery are minimal or at least self-limiting, e.g.,

between Li metal or Li2O2 and the electrolyte.

Normalization of battery capacity. Another important characteristic is the theo-

retical capacity and normalization. Li-O2 batteries do not have a fundamental limit to

the capacity in the same way as Li-ion batteries. Instead, the choice of normalization

should be chosen such that it captures the limiting factor of the battery. It is generally

accepted in the literature, that the growing, insulating Li2O2 layer causes cell death

due to a blocking of electrons to the surface when the thickness reaches approximately

5 nm, and together with the BET area, this could give an estimate of the theoretical

capacity. As suggested by Meini et al., this number should, however, be adjusted not

to count in the micropore surface area, as they show that the capacity scales with the

non-micropore surface area rather than the full BET area [15]. Reza et al. have likewise

shown that the binder blocks the micropores [16].

Figure 2.3a shows the correlation between carbon loading and discharge capacity to 2.6

V using a current of 130 mA/gC. The correlation is clear, which suggests a normalization

to the carbon mass is appropriate for this system. Figure 2.3b shows how much elec-

trochemical oxidation has occurred during charge at a given potential. The monotonic

increase shows that a normalization to the mass is also appropriate during charge. The

red points in the two graphs are the same measurements. They have been discarded due
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Figure 2.3: Left: Measurements of discharge capacity as a function of the carbon
loading. Some cells started charging at potentials below 2.85 V indicating that degra-
dation products formed during discharge are oxidized at these low potentials. Such
cells are marked in red and are considered as outliers. The reason could be small leaks
or insufficient drying of the cathodes or the Swagelok cells. A linear fit through (0,0)
shows a capacity of 678 mAh/gC, independent of the carbon loading. Right: The ca-
pacity of cells charged to different voltages compared to the average capacity of 678

mAh/gC.

to differences in the discharge and charge curves that indicate the presence of impurities

in the cathode.

2.2 Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) is central in this thesis and is used ex-

tensively in Paper I, Paper II and Paper III. This section is used to highlight and explain

the theory relevant to the Li-O2 system, and a basic understanding of EIS is assumed.

For additional information on the basic theory, the educational book chapter by Allen

Bard [17] (Chapter 10) and the thorough book Electrochemical Impedance Spectroscopy

by Mark Orazem and Bernard Tribollet [18] are recommended.

EIS has been used to describe the fundamental mechanisms of the Li-O2 battery by a

few other groups. The most thorough studies are presented by Adams et al. [19], Landa-

Medrano et al. [20] and Bardenhagen et al. [21]. In addition to these publications, a

number of groups have used EIS to characterize the capacity loss, hysteresis and pore

clogging in Li-O2 batteries among others [22–25] and Metha et al. have presented an

initial modeling study presenting fundamental consideration, but without good experi-

mental data to validate the model [26].

2.2.1 Correlation between overpotential and impedance

The ultimate goal of fundamental investigations such as EIS is to predict or improve

certain performance parameters. It is therefore very interesting to relate the impedance
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measurement to the change in overpotential. The impedance is defined as the derivative

of the iv-curve:

Z(i) =
∂v

∂i
=
∂η

∂i
, (2.2)

where v is the potential, i is the current density and η is the overpotential. Therefore,

the impedance is linked closely to the Tafel plot, which has previously been used to

describe reaction mechanisms in Li-O2 batteries [27–30]. From the Tafel equation, the

overpotential is seen to be proportional to log(i) at large overpotentials (|η| � RT/nF),

but as our batteries contain a porous cathode, this ideal behaviour is not valid. The

consequences of a porous electrode have been investigated by Lasia [31] and show that

the Tafel slope will increase at higher currents. This is in line with our measurements

as well as previous Li-O2 battery measurements by Viswanathan et al. [27] and Adams

et al. [19] on porous electrodes. To describe the measurements better

η = |v −OCV| = c1 · ic2 (2.3)

is applied as an empirical model, when Equation (2.2) is used to compare the measured

impedance with the overpotential. OCV is the open circuit potential, and c1 and c2 are

constants.
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Figure 2.4: The plateau voltage dependence on current density (red dots) from 10
µA (9 µA/cm2) to 5 mA (4.4 mA/cm2). Equation (2.3) is fitted to the data (red line),
which is then differentiated (black line) and compared with the total resistance (black
dots) measured with impedance. Three representative discharge curves show how the
plateau voltage is determined. The impedance and current density have been weighed

by the carbon mass of each electrode. Reprint from Paper I.

Figure 2.4 from Paper I exemplifies the dependence between impedance and overpo-

tential. The overpotential measurements are fitted to Equation (2.3) and differentiated

according to Equation (2.2) to obtain the impedance. Comparing with the measured

impedances, it is seen that the correspondence is not perfect in this system.
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2.2.2 Modeling Li-O2 battery impedance
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Figure 2.5: Equivalent circuit diagrams used to model most of the impedance mea-
surements. It consists of three Voigt elements (parallel connected resistor with a con-
stant phase element, CPE) and a serial resistance. The contributions to the impedance
can be attributed to either the anode (Z1) or the cathode (Z2 and Z3). The impedance

is described in Equation (2.4). Reprint from Paper I.

The measured impedance response can, to a first approximation, be described using an

equivalent circuit model consisting of three Voigt elements (parallel connected resistor

with a constant phase element (CPE)) connected in series. The impedance of the Voigt

elements is adopted from Hirschorn et al. [32], and the total impedance, Z(ω), is thus

given by

Z(ω) = Rs +
∑
i=1..3

Ri

1 + (jω)niQiRi
, (2.4)

where ω is the angular frequency, and Ri, Qi and ni are parameters in Voigt element i.

R is the DC resistance, and Q and n are parameters of the CPE. If n = 1, the CPE is a

capacitor, and even if n is between 0.7 and 1, a pseudocapacitance, C∗, can be calculated.

As discussed in detail by Jamnik et al. [33], this capacitance is typically a double layer

capacitance related to the process, and by comparing with reference values, it is possible

to estimate the surface area contributing to the process. The pseudocapacitance is

calculated from the equivalent circuit parameters according to Hirschorn et al. [32]:

C∗ = Q1/n

(
RΩR

RΩ +R

)(1−n)/n

, (2.5)

RΩ is the DC resistance at the investigated frequency. As discussed by Zoltowski et al.,

the pseudocapacitance of a CPE element is not well defined [34], which means that the

surface area obtained using C∗ might vary slightly from the actual surface area, but the

order of magnitude, and relative changes are still valid.

The surface area of the flat lithium anode and the porous cathode are in the range

of 1 cm2 and 1 m2, respectively. The capacitance at the lithium metal surface in an

organic electrolyte is typically 10-20 µF/cm2 as reported by Aurbach et al. [35, 36] and

the capacitance of XC72 is 12.6 F/g in an organic aprotic electrolyte as reported by
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Figure 2.6: (a) The relative change of the cathode capacitance as a layer of Li2O2

or Li2CO3 is deposited. The dotted line represent a different scenario, where a 8 nm
thick layer grows along the surface. In this case ’8 nm’ on the x-axis correspond to a
full surface coverage. (b) Sketch of different relevant scenarios for the Li-O2 battery

and the equivalent capacitance.

Barbieri et al. [37]. From this, it is calculated that the capacitances should be in the

range of 10 µF and 25 mF for the anode and cathode, respectively. Furthermore, the

capacitance is expected to change during discharge as the dielectric Li2O2 is deposited.

The relative permittivity εr of Li2O2 has been measured to be 30-35 by Gerbig et al.

and Dunst et al. [38, 39]. Using a value of 30 to calculate the capacitance of the Li2O2

layer in series with a typical electrode-electrolyte capacitance of 20 mF, a Li2O2 layer

of 5 nm will halve the cathode capacitance. This is shown in Figure 2.6a. A similar

calculation has been made for the Li2CO3 interface layer between the cathode and the

Li2O2. Using the relative permittivity of Li2CO3 of 4.9 measured by Young et al. [40],

the capacitance will be halved with a layer thickness of 0.8 nm.

The analysis of the change in capacitance will be an important part of the discussions

in Chapters 4 and 6, and, though simplified, the approach to growth of both Li2O2

and degradation products shown in Figure 2.6 serve as a good description of the actual

change in capacitance during discharge and charge.





Chapter 3

Experimental methods

3.1 Cell configuration

Most of the work described in this work is performed using a specific combination of

components as shown in Figure 3.1. It is, intentionally, made as close to the reference

system used by McCloskey et al. described in [41] to enable a direct benchmarking and

mutual exploitation of the results obtained in the two laboratories. The measurements
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Figure 3.1: Schematic illustration of the reference system used in this thesis.
The battery is made of a lithium metal anode, a polymer or glass fiber separa-
tor, a porous cathode made of XC72 carbon black and PTFE binder. The elec-
trolyte is 1 M bis(trifluoromethane)sulfonimide lithium salt (LiTFSI) dissolved in 1,2-

dimethoxyethane (DME). The Swagelok cell is described further in Section 3.1.1.

were made with an 11 mm diameter lithium metal anode (HongKong Wisdom Tech

Company), two 12.7 mm diameter Celgard 2500 separators or one 12.7 mm Whatman

glass fiber separator, a 10 mm diameter porous cathode made of XC72 carbon black

and PTFE binder on a 316SS stainless steel 150 mesh, and 60-90 µL of 1 M LiTFSI in

DME electrolyte depending on the choice of separator. Details of the cathode and the

electrolyte are found in Sections 3.1.2 and 3.1.3, respectively.

17
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3.1.1 The Swagelok cell
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Figure 3.2: Left: Sketch of the 10 mL Swagelok cell. Right: Picture of the individual
parts of the 10 mL Swagelok cell.

The cell configuration used to test Li-O2 batteries was improved throughout the project.

Pictures and descriptions of the four cell generations are found in Appendix A. Figure

3.2 shows the current generation; a Swagelok-type cell with a head-space volume of 10

mL. The volume has been chosen based on a maximum expected capacity of the tested

batteries of 5 mAh, which corresponds to 2 mL O2 at 1 bar, and as the initial head-space

pressure was typically 1.8 bar, the change in oxygen partial pressure during discharge did

not exceed 10 %. The battery components are stacked in the cell between 316SS anode

and cathode tips that were sealed against a fused silica tube using FFKM Kalrez o-rings

(KZ6375, M-Seals). A 1/16′′ tee with M4 thread mounted on the cathode tip enabled

connection of a gas inlet and a gas outlet to allow gases to be fed to and swept away

from the cell. Two DESO quick connects ensured an easy connection to the gas system,

while maintaining an airtight cell during the electrochemical test. The cell design has

proven very robust, but it is important to stress that the precision requirements are

significant, as the tolerance on the inner diameter of the glass tube is 50 µm. Typical

leak rates was 0.2 - 20 mbar/h, with most leak rates in the range 5 - 10 mbar/h. This

means that a 10 % change in pressure (180 mbar) from the leak alone is not reached

until after at least 9 hours in all cells, which is sufficient for most measurements.

The gas inside the Swagelok cell can be changed between argon (purity 6.0, Air Liq-

uid) and oxygen (purity 6.0, Air Liquid) using a Labview controlled automated setup

described in Appendix A.
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Figure 3.3: (a) Picture of an XC72 cathode. and SEM image of an XC72 cathode.
(b) SEM image of the sprayed mixture of carbon and PTFE

3.1.2 The XC72 cathode

Figure 3.3 shows a picture of an XC72 cathode and a SEM image of the sprayed mixture

of carbon and PTFE. The cathodes were prepared by air-spraying a carbon/PTFE

dispersion onto a 316SS 150 mesh (WestCoast, Esbjerg, Denmark). The slurries were

prepared by sonicating a carbon black powder (Vulcan XC72, Cabotcorp, GA) and

PTFE (60 wt% dispersion in water, Sigma Aldrich) in a 3:1 wt/wt ratio in a 20:80

isopropanol/water mixture. Figure 3.4 shows how a Badger model 350 air-sprayer with

a heavy nozzle was used to uniformly coat the dispersion onto the SS mesh. The SS mesh

was rinsed in acetone several times prior to cathode preparation. Prior to cutting 10

mm diameter cathodes from the carbon-coated SS mesh with a Heavy Duty Disc Cutter

(MTK-T-06, MTI Corporation), the mesh was allowed to air-dry for 3-4 h. All cathodes

were dried 12 h in vacuum at 120 ◦C, washed twice in pure 1,2-dimethoxyethane (DME)

inside a glovebox, followed by a second drying under vacuum for 10 min. Depending on

the scope of the experiment, the carbon loading of each cathode was varied between 1

mg and 5.6 mg, but typical loadings were in the range 4.7 mg - 5.6 mg.
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Figure 3.4: (a) Picture of air-sprayed carbon/PTFE dispersion on SS316 mesh and
(b) the SS316 mesh after punching out air electrodes.
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3.1.3 Electrolyte

1M LiTFSI in 1,2-dimethoxyethane. DME was purchased from Novolyte (Purolyte

electrolyte grade) and LiTFSI (purity 99.9 %) was purchased at Sigma Aldrich. The

electrolytes were mixed every 1-2 months to ensure a low level of water impurities. Prior

to the mixing, the LiTFSI salt was dried under vacuum at 200 ◦C in 12 h and DME was

dried using 4Å molecular sieves (Sigma Aldrich) for several days. The content of water

was not measured directly, but the electrolyte was used in microelectrode experiments,

were any water present would be detected immediately.

Ionic liquids. A total of six ionic liquids (IL) and the corresponding two lithium salts

were tested as described in Paper IV. The ILs were purchased from Solvonic and Sigma

Aldrich in purities between 98.5 % and 99.9 % and used as received from the suppliers.

The electrolyte salts were dried prior to preparing the electrolye. LiTFSI (purity 99.9 %,

Sigma Aldrich) was dried in vacuum for 12 h at 180 ◦C and Lithium bis(fluorosulfonyl)

imide (LiFSI, purity 99.9 % Suzhou Fluolyte) was dried in vacuum for 12 h at 80 ◦C.

Electrolytes with lithium salt concentrations of 0.3 M were prepared by mixing the

appropriate ratio of salt and ionic liquid and stirring at room temperature in order to

get homogenous electrolyte solution. Occasionally, the stirring was continued for several

hours to ensure solution of the salt.

3.2 Differential electrochemical mass spectrometry

Differential electrochemical mass spectrometry (DEMS) is an essential measurement

when characterizing the discharge and charge of Li-O2 batteries, and metal-O2 batteries

in general, as the method is able to determine the e-/O2-ratio and the OER/ORR value,

which are key in defining rechargeability as discussed in Section 2.1.1. The high sensi-

tivity of the mass spectrometer enable detection of even small amounts of gas evolved

and, by using a suitable setup, it is possible to get accurate quantitative measurements

of the O2 consumption (evolution) from the reduction of O2 (oxidation of Li2O2) during

discharge (charge) and CO2 and H2 from degradation reactions.

The method was originally proposed by Bruckenstein et al in 1971 [42]. They col-

lected gaseous electrochemical reaction products in a vacuum system through a teflon

membrane and detected the gases by mass spectrometry. Peter Bruce et al. reported

measurements of the evolved oxygen gas during charge of a Li-O2 battery using a similar

setup in 2006 [12]. The setup was refined significantly for analysis of the gas consumption

and release in lithium-oxygen batteries in 2011 by Bryan McCloskey and Alan Luntz
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Figure 3.5: Schematic illustration of the DEMS setup. The circled letters are used
to refer to specific parts of the setup in the text.

from the IBM group [41], and has provided important insight to the current under-

standing of the degradation in lithium-oxygen batteries. Since then, five to ten research

groups have acknowledged the importance of this measurement and built a system in

their own lab.

I have been responsible for building such a system in our lab. Of that reason, I

have included pictures of the experimental setups I have constructed in Appendix A

and details of calibrations and reference measurements are included in Appendix B.

The DEMS system is illustrated in Figure 3.5. Six normally closed magnetic valves

(SCG256A003NVMS 24VDC from OEM Automatic Klitsø A/S) a , b , c , i , k

and l enable automatic control of how the gases are flowing, two pressure transducers

(DMP 331i, BD Sensors) d and j monitor the pressure inside the setup, and e is an

automatic 2-position 6-way valve (EHC6WE, VICI) that enable sampling from a special

low-volume Swagelok cell g . The Swagelok cell is easily attached to the setup using

quick connects (SS-QM2-B-100 and SS-QM2-D-100, Swagelok) f and h . The mass

spectrometer (Omnistar GSD320-C, Pfeiffer Vacuum) m is used to analyze the gases

from the Swagelok cell and the vacuum pump n is used to clean the system before each

sample collection from the Swagelok cell.
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3.2.1 Typical operation

As already discussed, the three important characteristics to look for in a DEMS mea-

surement are the e-/O2-ratio, the OER/ORR value and the identification of other gases

than oxygen. To obtain these results, two modes of operation are used:
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Figure 3.6: Schematic illustration of the DEMS setup in open (left) and closed (right)
configuration. Volumes relevant for calculating the gas evolution and consumption are

shown in red and green color.

Pressure mode. This method is always used in discharge, and in some cases during

charge. The change in gas pressure is measured and related to the amount of oxygen

consumed or released. This implies an assumption that oxygen is the only gas consumed

or evolved. The pressure mode is performed in the configuration shown in Figure 3.6

(left).

DEMS. This method is primarily used during charge. Evolved gases are detected by

flushing the Swagelok cell with argon, and collect the gas in a chamber VMS, that is

analyzed with the mass spectrometer. By comparing the M/Z intensity of the mass

spectrum with reference measurements, it is possible to calculate the composition (and

thereby the amount) of each gas. In the DEMS measurement, the cell is charging in

the configuration shown in Figure 3.6 (right). In this period, the magnetic valves c ,

i and k are open to remove all gases in the gas system. Just before sampling, i

is closed and a is opened. The sampling is made by turning e to the open position

and then back to the closed position. The charge continues while the sampled gas is

analyzed with the mass spectrometer by opening l . Only small amount of gas evolves

between each sampling (0.1% - 1%), so the main content of the sampled gas is argon.

The natural occurring 36Ar isotope is used as a reference, as it constitute 0.333% of the

argon gas, which is in the same range as the oxygen that needs to be detected through

the charge.
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3.3 Physical characterization

The cathode has been investigated using a number of physical characterization meth-

ods including transmission electron microscopy (TEM), scanning electron microscopy

(SEM), BET, X-ray diffraction (XRD) and quantification of Li2O2 in the cathode using

quantitative optical absorption spectroscopy. The project has focused mostly on the ab-

sorption technique and TEM characterization and the experimental section is therefore

limited to these two measurement techniques.

3.3.1 Quantitative optical absorption spectroscopy

The amount of Li2O2 was determined at different stages of charge, using a spectrophoto-

metric measurement. After electrochemical test of a Li-O2 battery, the cell was purged

with argon and transferred to a glovebox. The cell was carefully disassembled and the

cathode was extracted. Each cathode was washed with 1,2-dimethoxyethane (BASF)

dried using 4 Å molecular sieves (Sigma-Aldrich), and the cathodes were subsequently

dried in vacuum. The cathodes were taken from the glovebox and immediately put into

a 4 mL 0.063-0.07 % TiOSO4 aqueous solution and the colored oxidized Ti-complex was

seen immediately. The reactions occurring are

Li2O2 + 2H2O → 2LiOH + H2O2 (3.1)

Ti(IV)OSO4 + H2O2 + 2H2O → 4H+ + H2Ti(VI)O4 + OSO4−
4 (3.2)

H2Ti(VI)O4 absorbs strongly at 408 nm. The solutions were left to react for 15-30 min

and to remove carbon particles, which otherwise would interfere with the spectropho-

tometric measurement, samples were centrifuged and the supernatant was extracted

yielding a clear colored liquid that was characterized using a Shimadzu UV-3600 Phar-

maSpec with 1nm resolution and medium scan in absorbance mode. Further details on

the model is found in Paper II.

3.3.2 TEM

The goal was to study the Li2O2 deposits in the discharged battery as well as the

catalysts that most people thought would be necessary in 2011 [43–45]. As described

in Section 1.3.1, it was subsequently found that catalysts only make things worse in

Li-O2 batteries because of an increased degradation rate in the battery, and the TEM

studies shifted the focus almost entirely towards the Li2O2 morphology and growth.

The literature contains very nice studies of this. The most prominent ones are the
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identification of toroidal shaped Li2O2 particles made up of pancake like crystals [46],

and the in situ charging of Li2O2 particles [47]. In addition to these publications, a

few nice selected area electron diffraction (SAED) studies have been made to reveal the

structural information on the nanometer scale [48–50].

The study of Li2O2 is challenging because it is both air- and beam-sensitive, and typ-

ical high-resolution techniques are not applicable. Furthermore, it has been shown by

Aetukuri et al. that the large toroidal shaped particles are only formed in the presence

of water impurities, and thus not interesting from a commercial point of view. This

means that the challenge is to identify and investigate thin layers of Li2O2 with a thick-

ness of only a few nanometers located on top of a carbon substrate. The experimental

procedure is described below.
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Figure 3.7: SEM images of (a) plain SS316 TEM grid and (b)-(c) two magnifications
of SS316 TEM grid coated with XC72 carbon black and PTFE.

The TEM sample was made by spraying a stainless steel SS316 TEM grid in the same

way as the ordinary cathodes, described in Section 3.1.2. Figure 3.7 shows SEM images

of such a coat. The TEM grid was discharged galvanostatic together with an ordinary

cathode with the typical current density of 130 mA/gC. Comparing the discharge ca-

pacity with the cathode weight, approximately 20 wt% of Li2O2 is expected compared

to carbon and PTFE binder.

The samples were examined in the FEI Tecnai G2 at DTU CEN in HR-TEM mode

operated at 200kV. Imaging was performed at varies magnifications. The electron en-

ergy loss spectroscopy (EELS) acquisition was tuned by the Gatan tune and alignment

software yielding an energy resolution of about 2.1eV measured as the FWHM of the

zeroloss peak. The EELS was in this session only used as a qualitatively fingerprint in

order to verify the presence of lithium in the sample. The samples were briefly screened

at low magnification (for overview), and 3 areas were inspected further with EELS,

selected area electron diffraction (SAED) and higher magnification.
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3.4 Electrochemical impedance spectroscopy

The electrochemical characterization of the batteries has been a central part of the work

presented in this thesis and in Paper I, Paper II and Paper III. Most measurements have

been performed using Bio-Logic MPG-2 and VMP3 potentiostats with EIS capability. In

the DEMS measurements, however, a Gamry Reference-600 was used. Several standard

techniques like OCV mapping, galvanistatic and potentiostatic discharge and charge,

and cyclic voltammetry have been used extensively and in a wide current and SoC

window. Typically, only the first cycle is investigated, because subsequent cycles will be

affected by the degradation occurring during the first cycle.

EIS measurements were conducted in galvanostatic (GEIS) and potentiostatic (PEIS)

mode, and with and without a current load depending on the purpose of the measure-

ment. More than five thousand spectra have been measured to continuously push the

boundary of what was possible to probe with the technique. In Chapter 4, Paper I and

Paper II, the focus is the discharge and charge mechanisms and thus it was beneficial

to draw a current to investigate the processes under relevant conditions as discussed

previously by Adams et al. [19]. In these measurements, the impedance was measured

at currents between 15 µA (13 µA/cm2) and 1 mA (0.88 mA/cm2) with an alternating

current (AC) amplitude of 10% of the direct current (DC) level. To investigate the

charge with a rapid increase in potential, it was however necessary to use another ap-

proach. After charging to the desired potential in galvanostatic mode, the potential was

kept an a 10 mV AC amplitude was superimposed in a PEIS measurement. This stabi-

lized the system significantly and enabled the more detailed investigation of the charge

impedance presented in Paper II. In Paper III, the focus is an accurate determination of

the double layer capacitance of the air-electrode. Since gradients inside the battery will

affect this measurement, it was desired to do these measurements at OCV. In general

EIS measurements were performed at frequencies between 10 mHz and 20 kHz, and in

some cases a wider interval. 15 points per decade is used to enable a proper fitting of

the data using equivalent circuit fitting.

Three electrode measurements were performed in the group using an EL-CELL to con-

firm the assumptions of which processes belonged to which electrode, but the majority

of measurements were performed in simple 2-electrode Swagelok cells. In the 2-electrode

cell, variations to the battery was used to identify the electrode specific reactions. Among

these tests were: (i) measuring impedance at open-circuit voltage (OCV) in argon at-

mosphere to prevent the oxygen reduction/oxidation, (ii) using a symmetrical cell of

two pre-discharged cathodes, and (iii) testing a different cathode. In the symmetrical

cell, the anode/cathode reactions are oxidation/reduction of Li2O2 which remove any

lithium metal-related contributions from the EIS measurement. Both cathodes in the
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symmetrical cell initially discharged 0.25 mAh in separate cells before they were com-

bined in a new cell. The cathodes were rinsed with DME after the individual discharge

to remove the electrolyte-salt before the cathodes were used in the symmetrical cell.

The symmetrical cell was tested in O2 gas and was made without exposing the cathodes

to air at any point.

The equivalent circuit fits are made using the scipy optimizer fmin slsqp using the soft-

ware package RAVDAV 0.9.7 [51].



Chapter 4

Overpotentials and degradation

This chapter focuses on the reference system with an XC72 cathode and is closely related

to Paper I and Paper II. A number of physical and electrochemical measurements will

be presented to qualify the discussion of the discharge and charge mechanisms and how

they affect the overpotential. All measurements were performed using a system with an

XC72 carbon black cathode, DME/LiTFSI electrolyte and lithium anode as described

in Section 3.1. The system has been chosen because it is widely studied and show low

degradation compared to other Li-O2 systems. It has been characterized extensively in

previous publications from 2011 to 2013 by McCloskey et al. [28, 41, 52–56], and these

measurements will be used to supplement the discussion. The measurements have been

conducted at DTU Energy and Haldor Topsøe A/S in Denmark and at IBM Almaden

Research Center in California.

4.1 Physical characterization

4.1.1 X-ray diffraction

X-ray diffraction provides a simple identification of Li2O2 in the discharged cathode.

The method has mistakenly been used in literature to prove the absence of degradation

product, which is not possible, since the degradation products are not necessarily crys-

talline. In our group we have primarily used the method to study the growth of Li2O2.

Figure 4.1 (left) shows an XRD spectrum of a discharged XC72 cathode. The six major

Li2O2 peaks and the peaks from the PTFE binder are clearly visible and indicate that

the primary reaction is the formation of Li2O2. Figure 4.1 (right) shows an in-situ study

of an XC72 cathode in a capillary cell performed by Storm et al. [57]. In this study, they

were able to observe a linear increase in the peak area of the 100 diffraction peak during

27
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discharge with low uncertainty and thereby assess the amount of crystalline Li2O2 in

the sample to supplement measurements like the absorption measurements described in

Section 3.3.1.
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Figure 4.1: (Left) Ex-situ XRD measurement performed by sealing powder from a
discharged cathode in a 0.7 mm diameter capillary inside the glovebox without expos-
ing the powder to ambient air. The data is acquired using a Regaku Advance X-ray
Diffractometer with Cu-Kα radiation (λ =0.15418 nm). (Right) In-situ diffraction pat-
terns for the discharge of a capillary battery showing the appearance of four diffraction
peaks of Li2O2 and the ones of the SS wire (*). The current density changes through
the measurement from 3 µA (blue) to 4 µA (red) and 6 µA (light blue). Adapted from

[57] with permission.

4.1.2 Differential electrochemical mass spectrometry

As already discussed in Section 2.1.1, it is important to quantify the consumption and

release of oxygen and other gases during discharge and charge, and the DEMS systems

at DTU Energy and at IBM Almaden research laboratory has been essential to the

presented work. The measurements shown in this section has been conducted at DTU

Energy.
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Figure 4.2: The SoC dependence of the e-/O2-ratio during discharge and charge.
The values are averages of six batteries tested at currents in the range of 100-200

mA/g carbon.
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Figure 4.2 shows how the e-/O2-ratio depends on SoC. The values are averages of six

measurements like the ones presented in Figure B.5 in Appendix B and the error-bars

indicate one standard deviation. During discharge, the error-bars are small and hidden

behind the symbols. It is seen that the process is a 2.0 e-/O2 process during the entire

discharge with very small deviations. During charge, however, the e-/O2-ratio increases

during the entire charge ending at 3.5 e-/O2 at the end of charge. It is also noted that the

standard deviation of the e-/O2-ratio increases significantly in charge-mode, indicating

that the exact electrochemistry may change between measurements depending on small

variations in current density or other parameters. The e-/O2-ratio during discharge and

charge and the OER/ORR value based on the performed measurements are shown in

Table 4.1 with the corresponding values obtained by McCloskey et al. [56]. It is seen

that all key parameters are well within one standard deviation.

OER/ORR (e-/O2)dis (e-/O2)cha

DTU 0.78 ± 0.05 1.99 ± 0.02 2.62 ± 0.12
IBM, [56] 0.78 2.01 2.59

Table 4.1: Comparison between DEMS measurements performed at the setup built
at DTU Energy and values reported by McCloskey et al. at IBM [56].

A wider current range from 5 µA/gC to 2.5 mA/gC is explored in Paper I, and it is

found that the e-/O2-ratio and OER/ORR-ratio are rather independent of the applied

current density at currents above 25 µA/gC.

4.1.3 Absorption measurements

The amount of Li2O2 remaining in the cathode during discharge and charge was quan-

tified using absorption measurements of a Ti-complex oxidized by H2O2 formed when

submerging the tested cathodes with Li2O2 (and possibly LiO2) in an aqueous solution

as described in Section 3.3.1 and in Paper II.

Figure 4.3a shows the oxygen evolution (blue line) and the Li2O2 removal (red line)

as the cathode is charged. The oxygen evolution is determined based on the DEMS

measurements presented in Figure 4.2 and the Li2O2 removal is based on the optical

absorption measurements. The O2 evolution and, in particular, the deviation from the

theoretical value is in accordance with measurements presented by McCloskey et al.

[52], and suggests the presence of electrochemical degradation reactions, especially at

potentials above 3.5 V. The Li2O2 is, however, disappearing more rapid than expected

from the electrochemistry, suggesting a significant chemical degradation. Figure 4.3b

shows the amount of chemical and electrochemical reactions in different potential inter-

vals, and it is clear that the chemical degradation is most significant in the potential
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Figure 4.3: (a) Measurement of O2 evolution using DEMS (blue) and Li2O2 removal
(either chemical or electrochemical) using absorption measurements (red). The dotted
line correspond to a pure 2 e-/O2 oxidation of Li2O2 with no chemical degradation. (b)
The amount of Li2O2 oxidation with and without gas evolution and electrochemical
degradation. Values are normalized such that the sum of the electrochemical reactions
(Blue and green) equals the relative change in capacity in each interval and sum up to

1 for a full charge.

ranges 2 V – 3.1 V and 3.3 V – 3.5 V. This effect is somewhat more pronounced than

previously reported [52].

4.1.4 Scanning electron microscopy

Scanning electron microscopy (SEM) was performed primarily as a preparation for the

TEM measurements, as it is a quick and easy way to get an overview of the sample. A

poor coating was used for this measurement to expose both carbon and stainless steel.
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Figure 4.4: SEM images and EDS spectra of (a) a pristine and (b) a discharged
cathode. Low vacuum mode was used to prevent charging of the samples.

Figure 4.4 shows low magnification SEM images and EDS analysis of a pristine and a

discharged cathode. The structure of the cathode material was very different on the two

samples, which is probably because the discharged cathode has been pressed inside the

battery. The EDS-analysis showed clear differences between the two samples. First, the

discharged cathode contained more oxygen than the pristine cathode, which is expected

in a discharged cathode containing Li2O2. Second, the tested cathode showed a higher



Chapter 4. Overpotentials and degradation 31

ratio of fluorine and sulfur, which is probably due to a slight amount of residual LiTFSI

salt, that was not washed out completely. The ratio between Fe, Cr, Ni and Mn matches

the content of the 316 stainless steel mesh used as support for the carbon powder.

The EDS-analysis is associated with significant uncertain since carbon and oxygen are

only emitting low energy x-rays that are easily reabsorbed before reaching the surface,

and, in addition to this, the structure is very irregular. This means that the EDS analysis

should be seen as a qualitative method rather than a quantitative one. Knowing this, it

is, however, still interesting to consider the numbers briefly and compare them with the

expected amounts of Li2O2. The EDS measurements detects 20 wt% of oxygen and 2

wt% of sulfur in the discharged cathode, as seen in Figure 4.4b. Oxygen is only expected

from the LiTFSI salt and Li2O2, and both oxygen and sulfur constitutes 22 wt% of the

LiTFSI salt. According to the EDS data, this means that the sample contain of 18 wt%

of Li2O2 (as 2 wt% is in the LiTFSI) and 9 wt% LiTFSI (2 wt% LiTFSI divided by 22

wt% sulfur in LiTFSI). This is very close to the expected value of 20 wt% Li2O2 in the

discharged cathode.

4.1.5 Transmission electron microscopy
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Figure 4.5: TEM measurements performed on a discharged TEM grid prepared with
XC72 carbon black as described in Section 3.3.2. The measurements were performed at
Tecnai G2 at the Technical University of Denmark, operated in TEM mode at 200kV.

Figure 4.5a and 4.5b show TEM images in two magnifications of a specimen in a dis-

charged cathode prepared directly on a TEM grid as described in Section 3.3.2. Figure

4.5c shows an EELS spectrum of this area and Figure 4.5d shows the measured SAED

pattern of this area. Figure 4.5e shows the analysis of the diffractogram and reveals

three large peaks marked with black circles which correspond to scattering of carbon

black, as identified in Figure C.2 in Appendix C. In addition to this, smaller peaks are

clearly revealed, which are expected to be related to Li-structures. No bulk Li-phase was
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identified, but it is important to note that the exact position of the peaks may deviate

significantly from the bulk phases when the crystals are in the nano-scale. The presence

of Li-phases is further substantiated by the EELS spectrum, where the lithium, carbon

and oxygen signals are all identified. Figure 4.5f shows the spectrum of the lithium peak

after subtraction of an exponential background estimation made just before the peak.

In conclusion, lithium-species and carbon were detected both by EELS and electron

diffraction in three investigated areas having particle morphologies resembling carbon

black particles, i.e. particles of about 20-50 nm. This means that the lithium-species

must be located within the carbon particles, and this is an indication of the expected

layer-growth of Li2O2. It is also noted that we did not see any big particles in the sam-

ple, and even though the absence of particles is not a proof, it is a good indication that

our system does not contain water impurities, as discussed by Aetukuri et al. [58]. We

have further measurements in preparation using an optimized EELS/EFTEM method,

described in Ref. [59], to pinpoint the location of Li-species to confirm or reject the

presence of the expected Li2O2 layer of only a few nanometers on the carbon black

particles.

4.2 Electrochemical characterization of the system
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Figure 4.6: (a) Measurement of OCV through a 250 µA (220 µA/cm2) discharge
and charge. The steep voltage transients occur when the battery is allowed to relax at
OCV. Reprint from Paper I. (b) Cyclic voltammetry between 2.0 V and 4.6 V with a

scan rate of 0.5 mV/s.

Figure 4.6a shows the OCV measured as a function of the state of charge in a full

discharge-charge cycle at 250 µA (220 µA/cm2, 130 mA/gC). The battery was allowed

to relax to OCV by interruption of the current a number of times during both discharge

and charge, which is seen as steep voltage transients in Figure 4.6a. The relaxation

criteria was a change in cell voltage of less than 1 mV/h or a relaxation time of 15

h. The initial OCV was 3.2 V. The OCV decreased to 2.85 V after a short period of

discharge and stayed at this value during the entire discharge - also after reaching the

2.0 V cutoff at sudden death. During charge, the OCV was 2.85 V, but it increased
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slightly toward the end of charge where it reached 3.2 V. Figure 4.6b shows a cyclic

voltammogram between 2.0 V and 4.6 V with a scan rate of 0.5 mV/s. The first thing

to notice is the asymmetry of the measurement, suggesting that the discharge and charge

mechanism is not a single reversible redox reaction. It seems like two processes occur

during discharge with onset potentials of 2.75 V and 2.3 V respectively. During charge, a

small peak is identified at around 3.1 V and several bumps are found in the curve as the

potential is increased further. The measurement agree with previous results published

by McCloskey et al.[41].
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Figure 4.7: (a) Differential capacity plot (dQ/dV) of a typical charge. Each peak
represents an electrochemical reaction. Reprint from Paper II. (b) Differential capacity
plot of the initial part of the charge following a constant current of 130 mA/gC discharge
to 2.0 V, 2.2 V, 2.5 V or 2.6 V, which was maintained at 150 min before charging. The
measurement labeled 2.0 V – 0 min was charged immediately after reaching 2.0 V.

Reprint from Paper II.

Figure 4.7a shows a differential capacity plot (dQ/dV ) of a typical charge curve. The

peaks correspond to voltage plateaus in the charge curve and thereby different processes.

This is in line with the cyclic voltammetry measurement shown in Figure 4.6b, and from

the differential capacity, eight electrochemical processes can be identified at 3.05 V, 3.3

V, 3.4 V, 3.5 V, 3.85 V, 4.2 V, 4.3 V and 4.5 V. Figure 4.7b shows how the onset potential

of the process at around 3.05 V increases with the depth of discharge and the exposure

time at low potentials. Analysis of 10 charge measurements following a discharge to

2.6 V show a capacity corresponding to 540 ± 80 µmolLi2O2/gC below 3.15 V. This

corresponds to 4.3 % of the total discharge capacity or approximately one monolayer as

calculated in Paper II.

4.3 Electrochemical impedance spectroscopy

The results presented in this section are selected among more than five thousand impedance

spectra. A wide range of current densities, potentials and techniques have been inves-

tigated and the measurements included are chosen to substantiate the discussion of the

discharge and charge mechanisms presented in Section 4.4, 4.5 and 4.6.
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4.3.1 Discharge to sudden death at 250 µA

EIS measurements from the first discharge at 250 µA (220 µA/cm2) are shown in Fig-

ure 4.8a-d. The spectra were measured while drawing a current, which means that the

SoDs shown in Figure 4.8 and Table 4.2 are approximate values. Three arcs are dis-

tinguished in the Nyquist plot in Figure 4.8a. They were almost constant in the first

part of the discharge but changed as the potential decreased near the end of discharge.

The three identified impedance contributions are labeled Z1, Z2, and Z3, and, on the

basis of a fit to the equivalent circuit given in Equation (2.4), the corresponding peak

frequencies, resistances and pseudocapacitances are given in Table 4.2 from two of these

measurements.
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Figure 4.8: Nyquist-plot (a and b) and Bode-like plot (c and d) of impedance mea-
surements during a 250 µA (220 µA/cm2) constant current discharge. The approximate
SoDs are shown in (e) and in the legend of (a and b). Three processes are identified and
named Z1, Z2, and Z3. The three corresponding peak frequencies are within the grey
intervals marked in (c and d) at all current densities and SoDs investigated. Reprint

from Paper I.

It is seen that R1 is constant through the discharge, whereas R2 and R3 increase, and

C∗3 decreases. The decrease of C∗3 and increase of R3 through the discharge, could be a

blocking of the cathode surface. The magnitudes of the pseudocapacitances indicate that

Z1 originates from an anode process, and Z2 and Z3 originate from cathode processes.

The cathode blocking and identification of reaction processes in the impedance spectra

are discussed further in Section 4.4.

The peak frequencies changed between different current densities and close to sudden

death. In all of our measurements, however, f1 was between 100 Hz and 10 kHz, f2 was

between 2 Hz and 100 Hz, and f3 was between 20 mHz and 1 Hz. These intervals are
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shown in Figure 4.8b and 4.8d, and the clear separation helps in identifying the different

impedance contributions.

4.3.2 Discharge to sudden death at 20 µA

We decreased the discharge current to 20 µA (18 µA/cm2) to increase the stability of

the system during the impedance measurements, see Figure 4.9. When comparing this

with the previous discharge at 250 µA presented in Figure 4.8, it is important to note

that both the capacity and the polarization resistance are significantly larger in the 20

µA discharge.

1 

2 

10 

11 

12 

13 

15 

14 

4 

3 

5 

8 

6 

7 

9 

16 

17 

18 

1 2 10 11 12 13 15 14 4 3 5 8 6 7 9 16 17 18 24 21 22 23 20 19 

Template used to crop directly in LaTex with trim-command 

1100 Ω 

700 Ω 

1900 Ω 

1200 Ω 

4500 Ω 

2900 Ω 

1 2 3 

Equivalent circuit  

Rs-(RQ)1-(RQ)2-(RQ)3 

Figure 4.9: Resistances and normalized pseudocapacitances determined from EIS
measurements in a 20 µA (18 µA/cm2) constant current discharge to 2.2 V using
Equation (2.4). Nyquist plots are shown at three representative stages and the corre-
sponding SoDs are marked with circles on the voltage profile. R2 and C∗

2 could not be
determined well at the end of discharge and are thus greyed out. Reprint from Paper

I.

On the basis of a fit using Equation (2.4), the resistance and pseudocapacitance param-

eters of Z1, Z2, and Z3 are presented in Figure 4.9 and summarized in Table 4.2. The
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parameters of Z1 were constant through the entire discharge, and the change of param-

eters related to Z2 and Z3 are divided into three parts as indicated in Figure 4.9: (1)

At 0% - 40% SoD, only negligible change was observed, (2) at 40% - 80% SoD, R2 and

R3 increased 2-3 times, and C∗2 and C∗3 decreased by 95%, and (3) at 80% - 100% SoD,

R3 increased to 14.1 kΩ (more than 10 times the initial value), the pseudocapacitances

stayed at 5% of the initial value, and the voltage dropped. Parameters related to Z2

could not be determined in the last part of the discharge because of the overlap with

Z3.

At 20 µA, the average relative Kramers-Kronig deviation at frequencies from 1 mHz to

10 Hz was typically 0.5% at the plateau, increasing near sudden death to 2% at 2.2 V.

4.3.3 Supporting EIS measurements
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Figure 4.10: Bode-plot and Nyquist-plot of supporting EIS measurements. All mea-
surements are fitted to the equivalent circuit listed in the plot and the fitted parameters
are listed in the plot (resistance in blue and pseudocapacitance in red). Left: Potentio-
static EIS measurement at OCV of a cell in Argon atmosphere. Middle: Potentiostatic
EIS measurement of a symmetrical cell at 0 V with an amplitude of 5 mV. The cell is
made of two cathodes that have been discharged in separate cells with a lithium anode
at 250 µA (220 µA/cm2). Right: Galvanostatic EIS measurement from a 250 µA (220
µA/cm2) discharge with an AvCarb P50 carbon cathode. Adapted from Paper I.

Figure 4.10 shows three supporting EIS measurements; An EIS measurement at OCV of

a cell in argon atmosphere, an EIS measurement a cell with a different carbon cathode

and an EIS measurement of a symmetrical cathode-cathode cell at 0 V. All measurements

are fitted to the equivalent circuit listed in each plot and the fitted parameters are also

listed in the plot (resistance in blue and pseudocapacitance in red).

Figure 4.10 (left) shows a potentiostatic EIS measurement at OCV with 5 mV amplitude

of a fresh battery in argon atmosphere before exposure to oxygen. The purpose was to

investigate reactions not related to oxygen reduction, and it is seen that Z1 and Z2

were also present in the absence of oxygen. The low frequency tail could be modeled

with a capacitor, C3, which means that no charge transfer reaction is present for this

process. The spectrum was modeled with the equivalent circuit R-RQ-RQ-RQ-C. The

capacitance C3 was 18.3 mF, and the pseudocapacitances C∗1 and C∗2 were 1.2 µF and
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0.2 mF, respectively. The presence of Z2 suggests that this process is not related to

oxygen reduction.

Figure 4.10 (middle) shows a potentiostatic EIS measurement of a symmetrical cell

at OCV with 5 mV amplitude. The purpose was to eliminate contributions from the

lithium anode in the EIS spectrum. The cell was made of two cathodes that had been

discharged 1 hour in separate cells with a lithium anode at 250 µA (220 µA/cm2). The

spectrum was modeled with a R-RQ-Q circuit. The CPE element was chosen instead

of a capacitor to describe the low frequency tail, because the slope was -0.74 in the

Bode plot, rather than -1 in the case of a capacitor. The pseudo-capacitance of the low

frequency tail was 2.1 mF and the resistance and pseudo-capacitance of the RQ circuit

was 27 Ω and 4.3 µF, respectively.

Figure 4.10 (right) shows a GEIS measurement on a cell with an AvCarb P50 carbon

paper cathode prepared as described in [54]. The purpose was to investigate cathode

specific contributions to the impedance. Both Z1 and Z3 had similar parameter values

compared to XC72, whereas Z2 was very small.

4.3.4 Charge at 250 µA

In Figure 4.11, we present typical EIS measurements during a charge. To limit the

complexity of the analysis, impedance measurements are only made at voltages below

4.2 V to avoid the major decomposition reactions observed at higher potentials using

DEMS. In this measurement, the 4.2 V limit corresponded to 60% SoC.

Three impedance contributions are identified. The parameters obtained using equivalent

circuit fitting on the green (0.03 mAh) and black (0.42 mAh) spectra with Equation (2.4)

f1 [Hz] f2 [Hz] f3 [Hz] R1 [Ω] R2 [Ω] R3 [Ω] C∗
1 [mF] C∗

2 [mF] C∗
3 [mF]

Discharge at 250 µA

0.16 mAh 733 5.4 93·10−3 96 56 145 2.3·10−3 0.53 10.2
0.51 mAh 605 3.4 184·10−3 94 92 188 2.8·10−3 0.45 4.0

Discharge at 20 µA

0.5 mAh 470 1.15 5.5·10−3 109 50 1007 3.1·10−3 2.8 19.3
1.9 mAh 464 1.12 9.9·10−3 107 158 2131 3.2·10−3 0.6 2.0
2.3 mAh 479 1.1·10−3 114 14097 2.9·10−3 0.8

Charge at 250 µA

0.03 mAh 678 9.6 267·10−3 65 166 497 3.6·10−3 76·10−3 1.0
0.42 mAh 983 14.0 19·10−3 255 105 700 0.6·10−3 99·10−3 9.0

Table 4.2: Peak frequencies, resistances and pseudo-capacitances from selected
impedance fit. The expected capacitances for the full anode and cathode are 10 µF
and 25 mF, respectively. Typical values of n are n1 = 0.77, n2 = 0.86 and n3 = 0.78.
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Figure 4.11: Nyquist (top) and Bode-like (bottom) plots of EIS measurements made
during a 250 µA (220 µA/cm2) constant current charge. The charge followed a discharge
similar to that shown in figure 4.8e with a discharge resistance extrapolated to 3 kΩ
at 2.0V. The SoCs are shown as circles in the inset graph with the voltage profile.
The 0.03 mAh and 0.42 mAh measurement were modeled using (2.4) and the obtained

parameters are found in Table 4.2. Reprint from Paper I.

are given in Table 4.2. The three contributions are in the same frequency ranges as seen

during discharge. The polarization resistance (R1 + R2 + R3) was almost constant

in the range 500 Ω - 1000 Ω, but the peak frequencies and the relative magnitude

of the different impedance-contributions changed. Looking at the pseudocapacitances,

C∗1 decreased from 3.6 µF to 0.6 µF, and C∗3 increased from 1.0 mF to 9.0 mF. This

suggests that the active cathode area is increasing and that the active area of the anode

is decreasing during charge. It is further noted that C∗3 is almost the same in the end of

charge and in the beginning of the discharge (10.2 mF). Finally, it is noted that R1 was

almost constant until 3.7 V, after which it suddenly increased. This supports that the

lithium anode surface is deactivated by the formation of the solid electrolyte interface

(SEI) layer - possibly due to oxygen crossover.

To investigate the charge process further, EIS was measured at 11 different potentials

during the initial charge from 3.10 V to 3.60 V. Figure S5 in the Supporting Informa-

tion of Paper II shows a typical measurement, with the equivalent circuit fit and the

determination of the resistance, RLi2O2, and the pseudocapacitance. Both parameters

are related to the charge transfer through Li2O2 and Li2O2 oxidation. Figure 4.12a

shows the cathode resistance at selected voltages during charge, as determined by EIS.

It is seen that the resistance increases from 3.10 V to 3.30 V, decreases at 3.33 V, in-

creases until 3.50 V, and decreases again at 3.60 V. The resistance and corresponding

pseudocapacitances at the marked cross section are shown in Figure 4.12b for all 11
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Figure 4.12: (a) The resistance related to Li2O2 oxidation and charge transfer through
Li2O2, determined using EIS at different potentials. The current decreases during the
measurement. Reprint from Paper II. (b) Resistance and capacitance from charge after
the current has decreased to 50 % of the initial current. Guide lines have been inserted

to illustrate the stepwise increases in the resistance. Reprint from Paper II.

potentials. It is seen that both the resistance and the pseudocapacitance change step-

wise as a function of potential. The resistance increases monotonic until 2.27 V, then

it drops and continues a second monotonic increase from 3.33V to 3.50 V after which it

drops. The pseudocapacitance is high at 3.10 V, decreases at 3.20 V, increases at 3.33

V and decreases again at 3.60 V. When keeping the potential at 3.10 V, it was observed

that the capacitance decreased 60 % from 0.7 mF/gC to 0.28 mF/gC. During this EIS

measurement, the current decreased and Li2O2 is removed, and as both changes are

expected to increase the capacitance, it clearly suggests that compounds are deposited

during this initial charge, which is in line with the absorption measurements presented

in Section 4.1.3.

4.4 Identification of processes during discharge

From Sections 4.3 and 4.2, it is seen that three impedance contributions were present

during discharge and they are referred to as Z1, Z2 and Z3. The five key findings

were that (i) the impedance did not change at the discharge plateau, (ii) Z2 and Z3

increased near sudden death, (iii) C∗3 decreased significantly just before sudden death,

(iv) pseudocapacitances related to Z1, Z2 and Z3 were typically 3 µF for C∗1 , 0.1-3 mF

for C∗2 , and 1-20 mF for C∗3 , and (v) the OCV was always 2.85V during discharge.

The results support previous findings by Adams et al. and Landa-Medrano et al. [19, 20]

that Z1 originates from the anode and that Z2 and Z3 originate from the cathode. In

addition to this, our results show that Z3 is a combination of the charge transfer reac-

tion of oxygen reduction and the electronic transport through the Li2O2, whereas Z2

is a cathode-specific process that is not related to the oxygen reduction. The assign-

ment of anode and cathode features in the EIS is substantiated by the following three

observations.
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First, the full capacitance at the lithium anode surface is expected to be in the range

of 10 µF as discussed in Section 3.4, whereas the capacitance of the XC72 electrode is

expected to be 25 mF. If only part of an electrode is active during the EIS measurement,

the capacitance will be lower. As reported, C1 was typically 3 µF, whereas C∗2 and C∗3

were in the range of 0.1 mF - 20 mF. Furthermore, the cathode capacitance per active

surface area calculated by Adams et al. was in the same range as C∗3 [19].

Second, the careful parameter study performed by Adams et al. [19] shows that relevant

cathode processes have peak frequencies below 10 Hz, which correspond with f2 and f3 in

our study, whereas the peak frequency of the anode process is 1 kHz, which corresponds

to f1 in our study.

Third, Z1 did not change during discharge, whereas Z2 and Z3 increased significantly

close to sudden death. Both electrodes change during the measurement. On the lithium

anode, Younesi et al. have previously shown that an SEI layer is forming in a combi-

nation of chemical and electrochemical reactions [60], but as shown by McCloskey et

al. [27] this is affecting neither the electrochemistry nor the measured impedance. On

the other hand, the cathode is covered with an insulating layer of mainly Li2O2 dur-

ing discharge, and an increase in charge transfer resistance is typically captured in EIS

measurements.

Ascribing Z3 to oxygen reduction and electronic transport through Li2O2 is based on two

observations: (i) Z3 is the only process related to oxygen reduction, as both Z1 and Z2

are present in argon, and (ii) R3 was the largest resistance during the entire discharge,

both when the cathode was limited by reaction kinetics at the discharge plateau and by

electronic conduction at sudden death.

The process related to Z2 is cathode specific and not related to oxygen reduction, as it

was present in argon, but almost absent in a measurement with P50 carbon paper. As

P50 is binder-free, this could indicate a degradation effect related to the PTFE binder.

A little surprising, Z2 was not present in the symmetrical cell measurement. This could

indicate that the parasitic reaction was chemically passivated during handling when

assembling the symmetrical cell.

The iv-curve presented in Figure 2.4 was made to ensure that all electrochemical pro-

cesses were captured in the impedance spectrum. This was indeed the case, since the

total impedance could account for the changes in the overpotential. Actually, the mea-

sured impedance seemed to overestimate the slope of the iv-curve, and the reason is

most likely a result of lower Li2O2 formation yields, and therefore more heterogeneous

discharge electrodeposits, at lower current densities as shown in a previous publica-

tion [52]. Lastra et al. and Mekonnen et al. [61, 62] have shown that an increase of
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Li2CO3-like inclusions in the Li2O2 layer can change the electrical conductivity using

DFT calculations, and such changes would also change the current dependence of the

impedance and explain the deviation.

4.5 Analysis of the overpotential during discharge

The measurements show that the electrochemistry was unchanged during the entire

discharge and they support the general understanding of tunneling being the dominant

charge transport mechanism through the Li2O2 layer at relevant current densities and

temperatures, which was initially proposed by Albertus et al. [29] and confirmed by

Luntz et al. [63] Furthermore, the discharge was initially occurring in the entire cathode,

whereas the increasing electronic transport through the growing Li2O2-layer passivated

large parts of the cathode during discharge.

The tunneling mechanism is supported by two observations. First, the impedance con-

tribution Z3 related to oxygen reduction and electronic conduction through Li2O2 was

constant at the discharge plateau and increased rapidly near sudden death, which is

characteristic for the tunneling barrier that depends exponentially on the Li2O2 layer

thickness, and second, the electrochemistry was unchanged during the discharge, as

shown by a constant 2 e-/O2 process and identification of the same three processes in

the impedance spectra at all SoDs.

The passivation of the cathode is observed in the pseudocapacitance C∗3 . At 20 µA, the

initial value is 21 mF. This is the expected value of the entire cathode, which means that

Li2O2 deposition is occurring in the entire cathode. The decrease in stage 1, as defined

in Figure 4.9, reflects Li2O2 formation, because the introduction of a dielectric material

in a capacitor changes the capacitance. In stage 2, the decrease is significant and cannot

be explained by the dielectric layer of Li2O2 alone. The decrease must therefore reflect

a reduction in active surface area. The cathode passivates when the critical thickness

of Li2O2 is reached and tunneling is no longer possible. In stage 3, the available surface

area is not sufficient to support the constant current, and the voltage drops to enable

conduction through the blocked parts of the electrode. This is seen as an increase in

cathode resistance. When fully discharged, the resistance is too large, and the current

cannot be supported within the cut-off limit of 2.2 V. This is in full agreement with

observations made by Luntz et al. using flat glassy carbon electrodes in electrolysis cells

[63].

Because of discussions in literature on the significance of oxygen diffusion in the elec-

trolyte, it is worth mentioning that the sudden death is not due to pore clogging and
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increased oxygen diffusion resistance. In a typical discharge, the average thickness of

Li2O2 is 0.5 nm - 1 nm based on the BET surface area of XC-72. This means that the

porosity and Damköhler number are almost unchanged during the entire discharge, and,

as stated by Wang et al. [64], such small changes will not give rise to the sudden death

behavior.

4.6 Reaction mechanisms and SEI layer formation during

charge

The charge of the Li-O2 battery is complicated. The DEMS and absorption measure-

ments described in Sections 4.1.2 and 4.1.3 show that both chemical and electrochemical

reactions occur during charge and the cyclic voltammogram and differential capacity plot

presented in Figures 4.6 and 4.7 both reveal a significant number of reactions. This sec-

tion will analyze the results further and propose detailed input to the charge mechanism,

degradation mechanisms and the potential increase.

4.6.1 Decreasing resistivity of Li2O2 in charge mode

It has been reported that the onset potential of Li2O2 oxidation on flat glassy carbon

electrodes is close to the equilibrium potential and that the charge transfer through the

Li2O2 decreases as the voltage increases from discharge mode to charge mode [63]. The

use of impedance spectroscopy makes it possible to confirm that this is also valid in

porous electrodes.
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Figure 4.13: Sketch of the reactions and SEI formation during charge of the Li-O2

battery. The potentials in the figure are the proposed onset potentials. Li2O2 oxidation
occurs at 3.05 V and an SEI layer is formed immediately on the freshly oxidized surface.
At 3.3 V – 3.5 V several reactions occur. Among these are gas evolution from the SEI

layer and oxidation of other Li2O2 surfaces. Reprint from Paper II.
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The change in resistivity in charge mode is identified by comparing the impedance at the

end of discharge with the resistance in the beginning of the charge. During charge, the

polarization resistance was 500 Ω at a current of 250 µA (220 µA/cm2), which is much

lower than the extrapolated value of 3 kΩ at 2.0 V during discharge. Furthermore,

it is seen from Figure 4.7b and similar measurements that the charge resistance had

only little dependence on the discharge current and depth of discharge, which suggests

that the charge is not limited by the same process as the discharge. Luntz et al. have

previously explained this by a reduction of the tunneling barrier because of a change in

the Fermi energy by experiments on flat glassy carbon electrodes in an electrolysis cell

[63].

4.6.2 Identification of Li2O2 oxidation at 3.05 V

It is argued that the process identified at 3.05 V is oxidation of Li2O2 based on three

observations. First, Figure 4.2 and Figure S2 in the Supporting Information of Paper

II, show that the e-/O2 ratio is between 2.0 (at 2V) and 2.1 (at 3.2 V) in the beginning

of the charge, which is exactly – or at least very close to – the expected value for Li2O2

oxidation. Second, Figure 4.7b shows how the onset potential of the process at around

3.05 V increases with the depth of discharge and the exposure time at low potentials.

To understand the shift, it is noted that DEMS measurements show that the e-/O2-ratio

is 2.0 during the entire discharge, and McCloskey et al. show that the Li2O2 yield is

independent of the depth of discharge [52]. This means that the thickness, and thereby

the conductivity, of the Li2O2 layer is the only parameter expected to change between

the measurements, and as the conductivity through the Li2O2 layer affects the onset

potential of the reaction, it suggests that the reaction is a surface reaction at the Li2O2

surface. Third, the onset potential at the investigated current densities ( 0.1 µA/cm2

real surface area) is 2.9 V – 3.0 V which corresponds well with the onset potential of

Li2O2 oxidation measured by Viswanathan et al. using flat glassy carbon electrodes.[27]

4.6.3 SEI layer formation

DEMS measurements show that all electrons come from the Li2O2 oxidation at the onset

of the charge, until 3.1 V. In this interval, it was found that 4.3 % of the Li2O2 was

oxidized electrochemically (Section 4.1.3) and in Figure 4.3b it is seen that another 4.6

% was removed without gas evolution. Since all electrons are accounted for by the gas

evolved, the reaction with no gas evolution must be chemical and it is interpreted as

the formation of an SEI layer based on three observations. First, the amount of degra-

dation is close to the amount of electrochemically oxidized Li2O2 in the initial part of
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the charge, and as this process does not continue, it suggests that an electrochemical

oxidation of Li2O2 exposes the surface such that the oxidation is followed by a chemi-

cal degradation of Li2O2, forming an SEI layer. Furthermore, the amount of oxidized

and chemically degraded Li2O2 both correspond to approximately one monolayer, which

suggest that the reaction occur on the entire surface of Li2O2. Second, the 60 % de-

crease in capacitance at 3.1 V suggests a significant deposition at this potential that

could be explained by the formation of an SEI layer. Third, the monotonic increase in

Li2O2 resistance until 3.3 V suggests a decrease of available surface area or an increased

electronic transport resistance. Both could be explained by a growing SEI layer.

4.6.4 Electrochemical degradation

Identification of the lowest potential without electrochemical degradation is important

to identify a safe-voltage limit. It is proposed that at least one of the three separate

processes identified in the differential capacity plot in the voltage range from 3.3 V to 3.5

V is an electrochemical degradation reaction as the e-/O2-ratio increases in this range.

Two observations suggest that the reaction occurs at 3.3 V, but further investigation is

needed to determine the onset potential definitively. First, EIS measurements show that

the pseudocapacitance increases and the resistance decreases at 3.3 V. A sudden change

like this suggests a new reaction pathway at this potential. Second, isotope measure-

ments presented by McCloskey et al. on an identical system show that CO2 evolution

occurs from the electrolyte-Li2O2 interface from 3.3 V.[28] As the CO2 evolution reac-

tion depends on the potential, it is likely that this reaction is the new reaction pathway

seen in the EIS measurements.

At around 3.6 V, the resistance decreases in Figure 4.12b and the pseudocapacitance

decreases. As discussed in previous sections, the relationship between impedance and

overpotential is not straight forward, but the significant decrease in impedance as the

voltage increases, is a strong indication of a shift in equilibrium potential caused by a

mixed potential established between different oxidation reactions to maintain the con-

stant current. The theory of a mixed potential is further substantiated by measurements

at higher potentials shown in Figure 4.11. The polarization resistance is almost constant

throughout the entire charge even though the charging potential increases. As shown

by DEMS and absorption measurements, the charging reaction is not a 2 e-/O2-process,

but rather a 2.5-3 e-/O2-process and parasitic electrochemical reactions are thus present

during the entire charge. This is in line with previous publications by McCloskey et

al. [28, 41, 52, 56], and keeping in mind that the OCV never exceeded 3.2 V during

charge, and no significant resistance increase was seen in the impedance spectra, it
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Figure 4.14: Illustration of the primary contribution to the voltage changes during
discharge and charge based on the discussions in Sections 4.5 and 4.6. Reprint from

Paper I.

suggests that a mixed potential between these competing electrochemical reactions was

established during charge to support the high current.

4.6.5 Mixed potential

It is noted that these results contradicts the theory proposed by Chen et al. suggest-

ing that the increase in charge overpotential occurs because the Li2O2 closest to the

electronically conducting part of the cathode oxidizes first [65]. If this was the case, an

increase of the charge resistance of at least an order of magnitude would be expected

to explain the voltage increase, but the resistance does not increase by more than a

factor of 2. Furthermore, after discharging under alternating O2 isotope atmospheres,

Li2O2 oxidation was found to preferentially occur at the Li2O2-electrolyte interface over

the Li2O2-cathode interface during the initial stages of charge, as shown in a previous

publication [55].

4.7 Summary of the fundamental characterization of over-

potentials and degradation

In this chapter, the electrochemistry of the Li-O2 system with a DME-LiTFSI electrolyte

and a XC72 carbon black cathode has been studied using wide a range of physical and

electrochemical characterization methods, including XRD, TEM, Li2O2 quantification

using absorption, DEMS and EIS. Based on these measurements, explanations to some

of the fundamental problems of the Li-O2 system, including the sudden death at the

end of discharge and the increase in potential during charge, has been proposed.

It was possible to assign the three identified contributions in the EIS spectra during

discharge to either the cathode or the anode. Only one of the two cathode processes

depended on the presence of oxygen. This indicates that this contribution was related
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to the Li2O2 formation. The other contribution was cathode specific and may reflect a

degradation reaction related to the PTFE binder. It was shown that the rapid potential

change near the end of discharge was due to an increase in polarization resistance,

primarily related to the charge transport through the Li2O2. This supports previously

published work by Luntz et al. [63], which states that the electronic transport through

Li2O2 at relevant current densities is governed by tunneling.

In the initial part of the charge, it was shown that the impedance was low compared

to the end of discharge at sudden death, and that Li2O2 is oxidized already at 3.05 V,

but that this facile oxidation is limited to approximately one monolayer. Analysis of

the chemical degradation and the change in double layer capacitance indicate that the

Li2O2 surface reacts with the electrolyte to form a SEI layer as soon as the outermost

layer is oxidized. The resistance increases as the SEI layer blocks the surface and the

voltage increases to maintain the constant current.

Three reactions were identified between 3.3 V and 3.5 V. The interval is dominated

by Li2O2 oxidation with a small amount of electrochemical degradation and significant

chemical degradation of Li2O2. It is expected that the reactions in this region are a gas

evolving degradation reaction in the Li2O2-electrolyte interface and oxidation of another

Li2O2 crystal plane, possibly the O-rich (1-100) plane, among others.

As charging progressed, the voltage increased significantly, whereas the resistance and

OCV were almost unchanged, and DEMS measurements identified the presence of par-

asitic reactions. This suggests that the electrochemistry changed during charge and

that the voltage increase was due to a mixed potential of parasitic reactions and Li2O2

oxidation, established to support a constant current. This was further substantiated by

a sudden decrease in resistance between 3.5 V and 3.6 V.

Knowing the exact degradation mechanisms is crucial to improve the Li-O2 system.

From the measurements presented in this chapter, the immediate formation of an SEI

layer on the oxidized surface in the initial part of the charge is highlighted as a significant

problem that needs to be resolved before a viable Li-O2 battery can be developed, and an

analysis of the very first part of the charge might serve as a suitable screening parameter

in the search for better electrolytes.



Chapter 5

Screening for new electrolytes

The development of a stable electrolyte is perhaps the greatest challenge of making a

reversible Li-O2 system. Most electrolytes investigated are actually stable until at least

4.6 V in a pristine Li-O2 battery, but as shown in Paper II and by McCloskey et al. [41],

the presence of the discharge product Li2O2 enable alternative degradation mechanisms

with a lower onset potential. The continuous plating and stripping of lithium on the

negative electrode and Li2O2 on the positive electrode make the system very exposed to

degradation reactions, and a stable, flexible SEI layer that remains unchanged during

thousands of cycles is difficult to imagine if the electrolyte reacts with the Li2O2. More-

over, a suitable electrolyte for Li-O2 cells should have low volatility to avoid solvent

evaporation, high oxygen solubility and diffusivity to enable sufficient oxygen transport

to the air electrode, low viscosity, high conductivity and a wide electrochemical window.

Although many solvents have been investigated in this regard, none of them fulfill the

above mentioned requirements.
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Figure 5.1: Schematic diagram of the different cations and anions used to test IL
based electrolytes in Li-O2 batteries. Adapted from Paper IV.
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Ionic liquids (ILs) have been proposed by several researchers as suitable in electrolytes

for Li-O2 batteries because of their relatively high electrochemical and chemical stability

against ·O−2 radicals [66–76]. Ionic Liquids are a class of molten organic salts which are

liquid at temperatures around 100 ◦C or below. They are generally comprised by an

organic cation and an inorganic anion [77–81], and they have stimulated much interest

for a variety of chemical, physical and biological processes in past few decades due

to their remarkable and unique properties such as negligible volatility, thermal and

electrochemical stability, non flammability, tunable viscosity, high ionic conductivity

and superior hydrophobicity.

In 2005, Kuboki et al. presented the first results with an IL-based electrolyte in a Li-O2

system [67], and in the past few years, IL-based electrolytes have received significant

attention as safe and environmentally friendly in Li-O2 systems due to the nonvolatile

nature. [67, 69, 72, 82, 83]. Among the most promising ILs are Pyrrolidinium and

piperidinium based cations in combination with the bis(trifluoromethanesulfonyl)imide

(TFSI−) anion as reported by Lu et al. [84], and these ionic liquids have been the focus

of our investigations.

In this study, we investigate the rechargeability in a Li-O2 cell with ionic liquid elec-

trolytes based on N-alkylmethylpyrrolidinium (P13+ and P14+) and N-alkylmethylpipiridinium

(PP13+) cations in combination with the TFSI− anion prepared as described in Section

3.1.3. An additional number of ILs are included in Paper IV for comparison.

5.1 Investigation of ionic liquids

DEMS measurements were performed as described in Section 3.2 and the gas consump-

tion and gas evolution were quantified using both pressure measurements and mass spec-

trometry. Currents of 20 µA and 50 µA were applied with lower and upper potential

Solvent Salt OER/ORR (e-/O2)dis (e-/O2)ch CO2/ORR H2/ORRb

P14TFSI LiTFSI 0.628a 2.03 2.75 0.00 0.01
P13TFSI LiTFSI 0.617a 2.00 3.09 0.00 0.01
PP13TFSI LiTFSI 0.402a 2.09 4.03 0.03 0.18
P13FSI LiFSI 0.193a 2.51 3.40 0.04 0.02
DME LiTFSI 0.796 (0.663a) 1.99 2.62 0.08 0

Table 5.1: Differential Electrochemical Mass Spectrometry (DEMS) results of dif-

ferent ionic liquid and DME based electrolytes. aBased on charge to 4.2 V. bThe H2

intensities were not calibrated and can only be used to compare H2 evolution between
the different electrolytes.
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limits of 2.2 V and 4.2 V, respectively, and the cells were all tested at room tempera-

ture (21 ◦C- 24 ◦C). From the DEMS measurements of the IL-based electrolytes, the

following numbers were determined: (e-/O2)dis, (e-/O2)ch, OER/ORR, CO2/ORR, and

H2/ORR. The numbers are summarized Table 5.1 and the data for the DME-LiTFSI

electrolyte presented in Table 4.1 is included for comparison. As discussed in Section

2.1.1, these key characteristics are crucial to determine if a Li-O2 system is truly re-

versible [14].
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Adapted from Paper IV.

Figure 5.2 shows a comparison between the first galvanostatic discharge-charge cycle

of a DME-LiTFSI electrolyte and a P14TFSI-LiTFSI electrolyte and three important

features are noted. First, the discharge capacity of the two electrolytes are comparable

and the difference might be due to a difference in the current density. Second, the

charge voltage is not increasing as rapidly in the experiment with P14TFSI electrolyte

compared to the one with DME, and more than 15 % of the capacity is charged at a

voltage below 3.15 V with P14TFSI compared to only 4.3 % with DME as shown in

Section 4.2. Third, both electrolytes show e-/O2 ratios close to 2 during both discharge

and charge.
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Oxygen consumption (measured using pressure decay) during discharge and evolution
(measured using DEMS) during charge. (c) Gas evolution rates for O2, CO2, and H2.

Adapted from Paper IV.

Figure 5.3 shows a comparison between the first galvanostatic discharge-charge cycle of

electrolytes based on P14TFSI and PP13TFSI, respectively. PP13TFSI did not perform

as well as P14TFSI. At 50 µA, the battery based on PP13TFSI was not able to sustain

the current for long, showing a premature cell death, and only little oxygen was evolved

during charge. At a lower current of 20 µA, a capacity similar to P14TFSI at 50 µA was

obtained. Although the electron count per oxygen is near 2.09 during discharge, this

electrolyte showed poor reversibility with an OER/ORR ratio of 40 % and an (e-/O2)ch

ratio of 4, which is quite similar to result obtained by McCloskey et al. [56].

Figure 5.4a shows the first galvanostatic discharge-charge cycle curve for electrolytes

based on P13TFSI and P13FSI. It is immediately seen that the FSI gives a larger

discharge capacity than all of the other electrolytes, but the rechargeable capacity is very

low and the DEMS measurements show that the extra capacity is due to a significant

electrochemical degradation during discharge. During charge, P13FSI is showing an

initial 2 e-/O2 ratio, suggesting Li2O2 oxidation, but after charging approximately 10 %

of the full discharge capacity, the oxygen evolution decreases and the potential increases
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Adapted from Paper IV.

rapidly. P13TFSI show a behavior very similar to P14TFSI, but with a slightly higher

(e-/O2)ch of 3 during charge.

Figure 5.5 shows XRD measurements of discharged cathodes for pure IL and DME based

electrolytes. All cells were discharged to 2.2 V at a current of 20 µA. The six major

Li2O2 peaks are clearly visible in all samples except in the cathode tested with an FSI−

based ionic liquid. Most of the other peaks are from the PTFE binder.

Figure 5.6 shows the e-/O2 data through six cycles at 50 µA between 2.2 V and 4.2 V for

electrolytes based on P14TFSI and P13TFSI. It is seen that the amount of electrochem-

ical degradation reactions increases during both discharge and charge as the batteries

are cycled. This shows that even though the first cycle seems promising, the system is

not stable.
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Figure 5.6: Cycling behavior of Li-O2 batteries with P14TFSI and P13TFSI based
electrolytes. Adapted from Paper IV.

5.1.1 Comparison between ionic liquid and organic solvent

The measurements presented in Figure 5.2 and in Table 5.1, show that the P14TFSI and

DME are relatively close to each other in terms of electrochemical stability and discharge

capacity. It is also noted that a larger part of the reaction occur at low potentials using

the P14TFSI IL compared to DME. Due to the tunability of ILs, it therefore seems

likely that some IL-based electrolytes might be able to compete with organic solvents in

terms of stability, but the ILs often have a higher viscosity and a lower oxygen solubility,

which limits the discharge current, and this should of course be taken into account as

well.
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5.1.2 Choice of anion

From the measurements presented in Figure 5.4 and in Table 5.1, it is clearly seen that

the TFSI− anion is much better that the FSI−. The combination of DEMS and XRD

measurements suggests that only a small fraction of the discharge product in cells with

FSI− is Li2O2, whereas Li2O2 is the primary discharge product using TFSI−. We are

currently analyzing the measurements and collecting supporting data to determine the

underlying reasons for the difference. So far we are looking primarily at the oxygen

solubility, the amount of flourine in the anion and the size of the anion.

5.1.3 Choice of cation

From the measurements presented in Table 5.1, it is seen that all of the electrolytes

having a TFSI anion showed an e-/O2 ratio of approximately 2 during discharge, but

during charge, the different cations resulted in different electrochemistry. The PP13TFSI

showed an OER/ORR of 0.40 at 4.2 V, whereas P13TFSI and P14TFSI showed a value of

0.62 - 0.63, which is close to DME at 4.2 V. The amount of electrochemical degradation

is also different, from 4.0 e-/O2 in PP13TFSI to 2.8 e-/O2 in P14TFSI. We are currently

analyzing the measurements and collecting supporting data to determine the underlying

reasons to why PP13TFSI is less stable during charging than P13TFSI and P14TFSI.

One of the major differences may be the concentration of impurities such as water

as discussed below. We are also looking into the transport limitation in PP13TFSI

indicated by the low capacity at 50 µA.

5.1.4 Impurities

One of the problems with commercially available ILs is the purity. The ILs some-

time contain a significant amount of water that is difficult to remove, and which may

have a significant impact on the electrolyte stability. In aprotic Li-ion electrolytes like

ethylenecarbonate (EC), it has been shown that a change in impurity level from 0.09 %

to 0.021 % increased the oxidation potential with 0.6 V from 4.87 V to 5.50 V [85], and

it is likely that impurities will have a similar effect on the ionic liquids. From Figure 5.3c

it is seen that PP13TFSI is developing a significant amount of H2 during charge. The

values are not calibrated, but it is a clear indication of water in the sample. This could

therefore be the reason for the difference between the cations investigated. Looking at

the cycling experiment in Figure 5.6, an increase in the e-/O2 ratio is observed. In paper

V we saw a similar situation where impurities from the first cycle affected the following
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cycles. The increase in e-/O2 ratio during cycling agree well with results published by

Piana et al. [74] using P14TFSI based electrolytes.

5.1.5 Summary

A number of ILs have been tested with DEMS to investigate the electrochemical sta-

bility in the Li-O2 system. It was shown that the extent of rechargeability depends on

the choice of cation and anion. Unfortunately, none of the studied IL-based electrolytes

behaved as ideal electrolytes in a Li-O2 battery. It was found that the anion TFSI−

was much more stable in the Li-O2 system than the FSI− anion and that ILs based on

s pyrrolidium cation and the TFSI anion (P13TFSI and P14TFSI) had better recharge-

ability below 4.2 V (OER/ORR > 60%) compared to the PP13TFSI based electrolyte,

but further investigation is needed to determine whether the difference between the

cations is related to the has to do with the type of cation or the level of impurities.

The work clearly showed the benefit of the DEMS technique to qualify the discussion

of different electrolytes, as a comparison between the voltage profiles and discharge

capacities is often too simplified to distinguish the complicated reaction mechanisms

inside the Li-O2 battery during charge.



Chapter 6

Commercial applications of

lithium-air batteries

As it is clear from the results presented in Chapters 4 and 5, significant challenges need

to be overcome to enable a commercialization of the Li-O2 technology. It is, however,

relevant to consider how the technology benchmark against competing technologies, if

the degradation problem is solved, as this may decide whether it is worth the risk to

pursue this technology. A part of this is an economic assessment of the system. Recently,

two assessments of a Li-O2 system have been presented [13, 86]. Both show that Li-O2

may be significantly better than current state Li-ion batteries on a system level, but

that new types of Li-ion batteries under development have similar energy densities and

may be associated with less risks of failure in the development phase.

An important input to such calculations is a technical description of the system. This

chapter focuses on two technical issues related to a commercialization of the Li-O2

battery: 1. The air purification system to enable an open Li-air system and 2. The

determination of the State-of-Charge in a Li-O2 battery. The last part is closely related

to Paper III. The battery used for calculations in this chapter has an energy content

of 100 kWh, which is more than any EV battery on the market today. This size is in

agreement with previously published system calculations [13, 86], and further details

about the assumptions are found in the Supporting Information of Paper III.

6.1 Impedance-based management of Li-O2 batteries

A battery management system (BMS) is often needed to ensure safe and reliable perfor-

mance of any type of battery, and to predict the remaining capacity. The two important

55
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BMS functions are the calculation of the remaining capacity in the battery, the state

of charge (SoC), and the health of the battery; generally combining capacity retention

on cycling and power capability. The health parameter is referred to as the state of

health (SoH). The SoC and SoH is calculated by the BMS to predict the performance

under different scenarios, to enable optimized usage of the remaining capacity, and even

preventing dangerous situations that may occur if the battery powered device, e.g. an

electric vehicle, is suddenly without power. The SoC can be calculated in several ways,

with the most simple being a comparison of terminal voltage to previously recorded cy-

cling data of cell voltage and battery capacity. A slightly more complex approach is to

continuously monitor and integrate the current over time, also known as coulomb count-

ing. The coulomb counting method accumulates errors if calibration is not performed,

as it relies on the accuracy of the measurement and several methods for mitigating

this have been proposed for lead-acid and lithium-ion batteries [87]. In Li-O2 batteries,

main electrochemical process is unchanged during discharge and charge (assuming no

degradation). This means that the open circuit is constant and does not change with

SoC as shown in Figure 4.6a. Furthermore, constant current measurements show a flat

discharge plateau in a majority of the discharge period as shown in Figure 4.2. It has

also been observed that the current densities have a significant impact on the onset of

sudden death and thus also available capacity, due to the increase in required charge

transport through the poorly conducting Li2O2 layer [88–90]. Since the coulomb count-

ing method relies on a known total capacity to predict sudden death, the method is not

well suited for predicting the remaining capacity in these batteries.

This section describes a method to accurately predict the SoC of Li-O2 batteries using

a single frequency EIS measurements to estimate the remaining capacity as well as the

degradation of the battery materials. EIS is used in many systems to perform in situ

Proposed Metal-O2 SOC calibration using EIS 2015-01-07

Perform EIS 
measurement

Resting until 
OCV condition

Normal 
operation

Coulomb 
counting

SOC 
calculation 

routine

SOC calibration

Initial setup Battery capacity

Figure 6.1: Working principle of the proposed impedance-based BMS system for
Li-O2 batteries.
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determination of certain parameters like degradation of secondary Li-ion batteries [91–

93], capacity fading of Li-S batteries [94, 95], and discharge mechanisms for Si-air [96],

and the following work shows that EIS will be very suited for battery management of

Li-O2 batteries as well.

6.1.1 The working principle of the method

In Section 4.4 it was shown that the low frequency (<1 Hz) contribution of the impedance

is related to the positive electrode and an EIS measurements in this frequency regime

hold information about the double layer capacitance of the electrode. The capacitance

can be calculated under constant load, but the value depends on the current density due

to kinetic effects, and the true value is obtained at OCV. Since the measurements under

load introduces new variables, this work focus on measurements at OCV. At OCV, the

oxygen reduction reaction and Li2O2 oxidation reactions are very slow, and if the EIS

excitation signal is sufficiently small, the impedance signal from the positive electrode

becomes capacitive at the relevant frequencies (see insert in Figure 6.3). This means

that the capacitance can be determined by the simple expression shown in Equation

(6.1) [18].

C =
−1

2πf · Zim
(6.1)

where f is the AC perturbation frequency and Zim is the imaginary part of the corre-

sponding impedance. It is important that other impedance contributions from processes

with similar time constants do not overlap at the frequency used for the calculation. A

frequency of 10 mHz was chosen because it was the highest frequency (and hence shortest

measurement time) with the main contribution from the positive electrode capacitance.

During discharge, Li2O2 is deposited on the carbon surface in the positive electrode

and as Li2O2 is a dielectric, the capacitance of the surface will change as described in

Section 2.2.2, and the proposed SoC estimation is based on following the decrease in

capacitance as the Li2O2 is deposited. As it will be shown later, the correlation between

the capacity and capacitance follow the same trend in all experiments. The trend is an

empirical function given by

C = C0 − p2

(
1− exp

(
Q

p1

))
(6.2)

where C0 is the initial capacitance, Q is the capacity, and p1 and p2 are refined param-

eters determining the exponential shape.
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Figure 6.2: Load profiles used in the experiments to test the applicability of SoC
determination based on the measured capacitance. (a) Discharge of 130 mA/gC to 2
V interrupted by impedance measurements every 100 mAh/gC. 13 mA/gC, 39 mA/gC
and 390 mA/gC were tested in the same way. (b) staircase discharge profile with 33
mAh/gC at 39 mA/gC, 33 mAh/gC at 390 mA/gC and 33 mAh/gC at 39 mA/gC
between each impedance measurement. (c) discharge of 130 mA/gC to 100 mAh/gC
followed by a 3.2 V voltage-limited charge of 130 mA/gC to reduce electrochemical
decomposition to a minimum. (d) Capacity limited galvanostatic cycling at 130 mA/gC
limited to 65 mAh/gC. The charge was limited to 4.5 V to avoid severe electrolyte
decomposition. (e) Drive cycle from ISEA-RWTH Aachen recorded from a Fiat eCity,

scaled to a maximum current density of 390 mA/gC. Reprint from Paper III.

6.1.2 Testing the method

Figure 6.2 shows the different current densities used to test the methods. The current

densities were selected on basis of a future scenario, where electric vehicles will be

powered by Li-O2 batteries as the only source of power. The scaling of the peak and

average current densities are based on an electric vehicle with a 100 kWh battery, a

sustained high power of 55 kW and a peak power of 105 kW, which matches most

electric vehicles today in terms of peak power and is superior in terms of capacity [97].

Details on the calculation are found in the Supporting Information of Paper III.

Figure 6.3a shows the imaginary part of the impedance spectrum at low frequencies

during discharge. It is seen that the imaginary impedance is increasing, meaning that

the capacitance decreases. The data points at 10 mHz is marked and the correspond-

ing capacitance is listed in the figure. Figure 6.3b shows the calculated capacitances

as a function of capacity, and while the potential is almost constant, the capacitance

decreases throughout the discharge. At the end of discharge, when the battery reached

2.2 V, the capacitance was 50 % of the initial value.
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the capacitance decreases. Right: Capacitance as a function of the capacity for a
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measurement. The voltage labels are measured during discharge prior to the impedance
measurements. The OCV was 2.83 V during the entire discharge. Reprint from Paper

III.
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Figure 6.4: Overview of the change in capacitance measured at OCV between different
types of discharge. Reprint from Paper III.

Figure 6.4 shows the change in capacitance as a function of capacity for all measure-

ments. It is seen that the capacitance decrease is similar in nature for all measurements,

but that the capacity of the different batteries vary significantly, up to a factor of 14.

The data has been fitted to Equation (6.2) and the fitted parameters are presented in

Table 6.1. Three observations are made based on these values: (1) all initial capacitances

fall within 10.0 Fg-1
c ± 0.4 Fg-1

c , (2) the trend of the decreasing capacity is very similar

for all measurements performed at different current densities varying a factor of 30, and

at both dynamic and constant current loads, and (3) all capacitances have decreased to

approximately 50 % in the end of discharge, except the high current measurement at

390 mA/gC and the measurement including charging. Both of these exceptions will be

discussed further below.

The purpose of a BMS is to predict the remaining capacity, and in the following we have
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Figure 6.5: Results from experiments on Li-O2 batteries. The data is labeled accord-
ing to current profiles in Figure 6.2. Capacitance is normalized to the initial value before
the discharge, and capacity is normalized to the value at 2.2 V. (a) Constant current
load at four current densities: 13 mA/gC, 39 mA/gC, 130 mA/gC, and 390 mA/gC, (b)
dynamic current profiles according to Figure 6.2 and data from a 130 mA/gC constant
current experiment, (c) Discharge voltage and capacitance from constant current ex-
periments, showing the relation between current density and capacitance. (d) cycling
experiment over 20 cycles showing decreasing capacitance as a function of cycle num-
ber. The insert shows the suggested reason for a decrease in capacitance, due to an
accumulation of the degradation product Li2CO3 during cycling. Reprint from Paper

III.

therefore normalized each discharge capacity to the capacity at 2.2 V, to investigate

how well the remaining capacity is predicted by the capacitance. Even though all initial

capacitances are very similar, we have chosen to normalize these values also, as this

is what would be done in an actual BMS, where the capacitance may vary between

batteries and may change over time due to degradation.

Figure 6.5a and Figure 6.5b show the data from Figure 6.4 using this normalization to

investigate the dependence between the capacitance and the SoC at the different current

profiles seen in Figure 6.2. Figure 6.5c depicts how the voltage during discharge relates

to the capacitance for different current densities, and it is evident that the current

densities impact the discharge capacity, and thereby the capacitance at 2.2 V. Figure

6.5d shows the normalized capacitance in the fully charged state, as a function of cycle

number. Upon cycling, the capacitance decreases almost linearly to approximately 65

% after 20 cycles.
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C0 p1 p2 Q2.2V
C2.2V
C0

Fg-1
c mAh/gC Fg-1

c mAh/gC -

13 mA/gC 10.3 518 820 1001 53%
39 mA/gC 10.0 300 467 767 44%

130 mA/gC 9.83 169 76.9 700 52%
130 mA/gC 10.1 148 90.9 599 50%
390 mA/gC 10.2 67 465 117 78%

Staircase 10.1 241 610 519 54%
Charging 10.3 377 44.8 1614 69%

Drive cycle 1 10.0 188 54.9 812 59%
Drive cycle 2 9.64 124 21.8 652 56%

Table 6.1: Experimental values and parameters obtained by fitting experimental data
to Equation (6.2). C0 is the initial capacitance, Q2.2V is the discharge capacity at the
2.2 V cut-off, C2.2V

C0
is the fraction of capacitance at the 2.2 V cut-off to the initial

capacitance.

6.1.3 State of charge

The constant current experiments presented in Figure 6.3 show how the capacitance

changes as a function of capacity. The correlation is decreasing and at the end of

discharge the capacitance is 50 % of the initial value. Assuming that the change is

due to a uniform layer of Li2O2, this corresponds to a layer thickness of ∼5 nm at

these current densities, and as discussed in Section 6.1.1, this is in line with the general

understanding of the sudden death mechanism [90]. The voltage during discharge is

shown in Figure 6.3 as labels on the capacitance data points, and remains unchanged

at ∼2.70 V between 100 % and 33 % SoC, whereas the capacitance decreases as the

battery is discharged. Seeing that all measurements behave similarly, this shows that

the capacitance holds information about the SoC, that is not possible to obtain using

voltage based measurements.
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Figure 6.6: (a) The combined accumulation of error in the estimation of SoC, in-
cluding both the coulomb counting error and the needed capacity reserve. (b) Scenario
showing the difference in estimation of useable capacity between BMS systems with

and without calibration based on capacitance.

The accuracy of the SoC estimation from capacitance is determined by evaluating the

uncertainty in the capacitance to capacity correlation from the experiments with the
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130 mA/gC constant current load and the drive cycle load shown in Figure 6.5b. To

test the effect of the calibration, we have designed a BMS system based on the following

assumptions:

1. Due to high current dependency on capacity, a reserve of 10 % SoC is needed,

resulting in 90 % useable capacity.

2. Coulomb counting has a 3 % accumulation of error.

3. The SoC is calibrated at end of full charge.

4. Charging is performed at 10 kW and fast charging is not considered.

If no SoC calibration is performed, the coulomb counting error and the need for a

capacity reserve will result in a significant decrease of useable capacity as the battery is

discharge and charged. During discharge, the accumulated error corresponds to 3 % and

during charge, the error is 13 %, due to the additional need of a 10 % capacity reserve

for the following discharge. Figure 6.6a shows the effect of the combined error of 16 %

on a 100 kWh battery as a function of energy consumption of up to 400 kWh without

fully charging the battery. When the battery is fully charged, a BMS would be able to

correct the estimation of useable capacity to the nominal capacity of the battery without

the capacitance calibration, and thus reset the useable capacity to 90 %. Without the

SoC calibration, the useable SoC could decrease to 26 % over an accumulated energy

consumption of 400 kWh, whereas the SoC calibration based on capacitance would be

able to keep the SoC estimation at 90 %, thus maximizing the useable capacity.

Since the capacity of future Li-O2 batteries is expected to increase, we postulate a use-

scenario for the batteries based on ∼10 kW charging power available and no need for fast

charging with daily use. This scenario is illustrated in Figure 6.6b, where the battery is

either discharged, charged or at rest. The calibrations performed in Figure 6.6b enables

the BMS to more accurately predict the remaining capacity, whereas the estimated

capacity without calibration would become less than zero (shown on the figure as circles

when the SoC is crossing the 0 % threshold), warning the vehicle or driver to stop. The

capacitance calibration is less accurate in the less critical beginning of discharge, due to

the slope of the capacitance correlation to the capacity, and gradually more accurate as

the battery is discharged. Figure 6.6b shows that the calibrations performed below 50

% SoC have the possibility to initially correct the SoC by ∼10 %, and when performed

multiple times, able to further minimize the uncertainty of the SoC estimation, resulting

in periods with an uncertainty of less than 5 % SoC.
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6.1.4 Power capability

The current density of 390 mA/gC is only able to provide 12 % of the capacity compared

to the current density of 13 mA/gC. This indicates that the available capacity depends

explicitly on the current density. For correct estimation of the available power, the

internal resistance is usually used to predict if the terminal voltage of a battery will

exceed the limit during high power demands. For Li-O2 batteries, this is not possible

since the resistance is almost unchanged during the entire discharge as shown in Paper I.

Previously, we saw that the capacitance of the 390 mA/gC experiment did not decrease

to ∼50 % of the initial capacitance. If we look at the voltage during the constant current

experiments (Figure 6.5c), we see that the high current density experiments (130 mA/gC

and 390 mA/gC) have significantly higher overpotentials, thus the 2.2 V limit is reached

prematurely. From the measurements, it seems that current densities of 390 mA/gC are

only supported at capacitances above 78 % of the initial capacitance, while it is possible

to use 130 mA/gC until a capacitance of 50 %. This shows that the capacitance can

also be used to estimate the maximum power that the battery is capable of delivering

at the given state.

6.1.5 State of health

The cycling experiment (Figure 6.5d) shows how the capacitance of a fully charged

positive electrode decreases as a function of cycle number. From several papers [56,

62, 98, 99] it has been shown that Li2CO3 and similar species are accumulating upon

charging and are immobilized in the positive electrode (see Figure 6.5d, insert). The

presence of Li2CO3 in the cathode has two main effects on the battery performance.

First, the amount of Li2CO3 will increase for each cycle, resulting in a decrease of the

available active area for Li2O2 deposition. This results in a lower discharge capacity

for the battery. Second, the inclusion of Li2CO3 in the deposited Li2O2 decreases the

charge transport through the Li2O2, thus increasing the required overpotential [61]. It

was shown in Figure 2.6 that even a few angstrom of Li2CO3 will decrease the capaci-

tance significantly, and using the capacitance in the fully charged state, it is possible to

track the degradation of the positive electrode, and a BMS can use this information to

determine the SoH parameter related to capacity retention, and thereby the cycle life

of the battery.
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6.1.6 Further development of the model

With more knowledge about the system, it is expected that the time at OCV can be

reduced significantly and that measurements can be made even while discharging or

charging the battery. This could be done by employing impedance measurements in

the time domain to calculate the capacitance. In this case, it might even be possible

to perform SoC calibrations while driving. Another direction would be to implement

an adaptive state estimation algorithm, akin to the work done by Fleischer et al. [100],

using the capacitance measurements to improve the calibration uncertainties.

The charging experiment shown in Figure 6.5b has a much larger discharge capacity

compared to the other experiments as seen in Table 6.1 (1614 mAh/gC vs 599 mAh/gC

for the 130 mA/gC experiment), and we suspect that this is due to the accumulation

of Li2CO3 and similar species. The reason for the capacitance not decreasing to more

than 69% is not fully understood and further studies of cycling effects on Li-O2 systems

is needed.

Many metal-O2 systems show the same type of discharge and charge curves as the Li-O2,

but further studies on other metal-O2 systems are needed to conclude if the proposed

method is applicable to these systems. A likely candidate for further studies is the Na-O2

battery, where the discharge product, NaO2 is considered to have surface conductivity.

The conductive nature of the NaO2 is expected to cause an increase in capacitance as

the battery is discharged, reflecting an increase in surface area as the NaO2 cubes are

grown [101].

6.1.7 Summary of impedance based management of Li-O2 batteries

A method for estimating the remaining capacity, power capability and cycle life of Li-O2

batteries has been proposed and verified through a number of tests. Experiments showed

that the capacitance of the positive electrode decreased exponentially during discharge,

and that it was possible to improve the prediction of the remaining battery capacity sig-

nificantly based on a single frequency measurement of the positive electrode capacitance.

In a typical scenario, a single SoC calibration was able to improve the available SoC by

more than 10 % of the full battery capacity, by minimizing the uncertainty of the SoC.

The capacitance was also used to estimate a degradation of the positive electrode in a

Li-O2 battery cycled 20 times. This makes the method applicable not only for electric

vehicles, but for batteries in a large range of electrical devices, as the measurements can

be performed when needed, thus maintaining a high level of accuracy for the estimation

of remaining capacity and state-of-health. The approach is furthermore expected to be

transferable to other metal-O2 systems.
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6.2 Separation of O2 from air

A true Li-air system rely on the use of ambient air. Dry atmospheric air contains 78%

N2, 20.9% O2, 0.93% Ar and 400 ppm CO2, and in addition to this, the air typically

contains 1% - 3% H2O [102]. To develop a true lithium-air battery, it is therefore

important to investigate how the non-oxygen gases affect the electrochemistry. Luntz et

al. have shown that nitrogen and argon are inactive in the battery, whereas both H2O

and CO2 have significant impact on the electrochemistry [14]. Meini et al. [103] have

shown that even a small amount of H2O is able to cause a 10-fold increase in discharge

capacity. This effect has been investigate further by Aetukuri et al. [58], proposing that

water increase the solubility of LiO2, to enable a solution-mediated growth of toroidal

shaped Li2O2 particles. While improving the discharge capacity, the presence of water,

unfortunately, also speed up the degradation reactions inside the battery [58].
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Figure 6.7: The effect of adding CO2 impurities to the oxygen gas during discharge
(left) and charge (right). Adding only 1% CO2 increases the overpotentials significantly

during both discharge and charge. Reprint from Paper V.

A similar effect is observed with CO2 [53, 104, 105]. In correspondence with these

observations, Figure 6.7 shows that both the overpotentials and the capacity increase

in a mixture of O2 and CO2 compared to a system with pure oxygen. If the CO2

content becomes too high, the discharge capacity decreases significantly. In Paper V

and [61], it is suggested that the increase in overpotential is caused by an increased

amount of Li2CO3-like species in the Li2O2, and the higher potentials will lead to further

degradation in the battery. The mechanism causing the increase in discharge capacity

is not fully understood, but in Paper V, Mekonnen et al. suggest that the formation

of Li2CO3-like species at the step valley sites of the Li2O2 surface will alter the shape

and growth directions of the Li2O2 in a beneficial way, but as with H2O, the effect is

also expected to increase degradation through cycling. From a current perspective, it is

therefore crucial to remove H2O and CO2 from the gas stream.
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6.2.1 Previous Li-O2 and Li-air strategies

Several strategies have been pursued to avoid impurities in the batteries. Three of

the most investigate strategies are: 1. passive hydrophobic membranes on top of the

air electrode, 2. removal of impurities from the gas and 3. on-board oxygen storage.

Girishkumar et al. discussed that it is not possible to use hydrophobic membranes, as

the O2 permeability will always be higher than the H2O permeability [10], and Zhang

et al. have tested such a membrane system with limited success [106]. In 2009 Excel-

latron Solid State LLC filed a patent describing the use of H2O and CO2 scrubbers as

absorbents [107]. Since then, Bosch and others have proposed methods to reduce mois-

ture from the inlet gas either by using a regenerative dehumidifier based on a desiccant

[108–111], or by using a selectively permeable membrane [112], and a regenerative CO2

absorption system that selectively absorbs CO2 over O2 has been described in [113]. The

third strategy is having an oxygen reservoir on-board. Bosch, Ford and Tesla have filed

patents on this method in different variants. Bosch has suggested an inflatable bladder

pumped by the electrochemical reaction itself [114], whereas Ford and Tesla have looked

at more traditional systems with an oxygen tank and a compressor [115, 116].

6.2.2 A solution for an open Li-air system

The purpose of this assessment is to determine whether it is possible to make an air

purification system that is suitable for use in electric vehicles in terms of weight, volume

and energy consumption. Calculations made on a specific system, based, among others,

on the strategies mentioned above, is included in Appendix D. The main conclusions

are presented below.

The calculations are based on a 100 kWh Li-air battery with an average discharge

voltage of 2.65 V that consumes 17 m3 of oxygen through a full discharge. The scenario

is based on a calculation of 100 % humidity at 25 ◦C and 400 ppm CO2. In order to

dimension the system, a minimum discharge capacity time of 3 hours is assumed, which

corresponds to an average speed of 170 km/h, as a total driving range of 500 km is

expected from a 100 kWh battery.

The suggested system is cleaning the air in three steps, as sketched in Figure 6.8. First,

the air is compressed to 3 bar. This has been shown to increase the performance of

the battery [117, 118], and is thus expected to be needed anyway. As the dew-point is

almost independent of pressurization, the compression corresponds to a decrease in dew

point from 25 ◦C to 7.9 ◦C as described in Appendix D. Second, the gas is pre-dried in

a semipermeable membrane unit like the Permapure Drier. This decreases the amount
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Figure 6.8: Schematic illustration of an air cleaning system for Li-air batteries to
remove H2O and CO2 to below ppm levels. The red color represent air with impurities

and the green colors represent the allowed amounts of H2O and CO2.

of CO2 and H2O significantly, and limits the size and energy consumption of the last

step. Third, a system of plug flow reactors with H2O and CO2 absorbents is used to

reduce the impurity levels below 1 ppm. After this final step, the air is ready to use

in the battery. An important part of the cleaning design is to use the dry air from the

battery in a counter flow setup in the membrane-based pre-drying step, as this will save

a significant amount of energy.

Allowing 1 ppm of impurities in the gas stream, accumulates to a total amount of 40 g

H2O and 100 g CO2 in a total lifespan of the battery corresponding to a total of 420 full

cycle equivalents similar to the calculation performed by Albertus et al. in Ref. [13].

If this is found not to be sufficient, an alkaline guard like Potassium or Sodium can be

used as a final cleaning step.

Based on the calculations performed, the system weight will be 20-30 kg in a design

based on regeneration during charging. The energy consumption is estimated to be

approximately 1 % of the battery capacity during discharge due to a pressure loss in

the cleaning system and 4% during charging to heat up the adsorbents to release the

captured H2O and CO2. The gas compressor itself is not considered in this calculation.

Compared to the complications and volume requirements of having an oxygen storage

tank, this looks like an attractive option. Concerning the weight, it is also noted that

the weight of the oxygen itself in the storage tank is 23 kg in a 100 kWh system.

6.2.3 Summary of separation of O2 from air

It was shown that it is possible to design a system with a relatively low weight and

energy consumption, that is able to remove H2O and CO2 to a level below 1 ppm. A
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realistic estimate of the price has been left out, as the expected economy of scale of such

a system will have a huge effect on the system price.

6.3 Summary of commercial applications of lithium-air bat-

teries

Due to significant challenges related to degradation of the electrodes and electrolyte in

Li-O2 batteries, a commercialization of the technology is not expected soon. If (or when)

the battery will be ready to enter the market, this chapter has presented solutions to

two challenges that both could have been show-stoppers. First, a method for estimating

remaining capacity, power capability and cycle life of Li-O2 batteries has been proposed

and verified through a number of tests. Second, an air purification system with accept-

able weight and energy consumption was designed to meet a demand of sub-ppm levels

of H2O and CO2 as required in an open Li-O2 system.



Chapter 7

Summary and outlook

In this thesis I have presented the results of my research during the last three years. I

have divided the results into three chapters, and a summary of the findings has been

given at the end of each chapter. It is not my intention to fully repeat those summaries

here, but only to emphasize a few of the most important aspects of the work and briefly

discuss the outlook of this thesis.

7.1 Summary of main results

During my PhD project, I have investigated carbon based air-electrodes in Li-O2 batter-

ies to establish the necessary testing facilities and develop a theoretical framework with

DEMS and EIS as the key techniques with the ultimate goal of proposing new materials

and screening methods. The main outcome of this work can be summarized as follows:

• During the project I constructed the differential electrochemical mass spectrometer

and used it to investigate different systems, including electrolytes based on ionic

liquids. It was an important achievement, since the measurement of the oxygen

consumed and released is necessary to determine if a Li-O2 system is reversible.

• The biggest contribution of this work to the field of research is the increased

understanding of the electrochemical impedance spectroscopy (EIS) in the Li-

O2 system. Working closely with the research group at IBM Almaden Research

Center, it was possible to combine their extensive knowledge of the system with the

conducted EIS measurement. Among others, it was possible to use EIS to show

that the capacity is also limited by tunneling in porous cathodes, and that the

change in double layer capacitance at sudden death corresponds to a Li2O2 layer

69



Chapter 7. Summary and outlook 70

of approximately 5 nm in porous electrodes, which is in line with flat electrode

measurements and DFT calculations.

• Further development of the EIS technique enabled a detailed probing of the impedance

during charge and combined with DEMS and other supplementary techniques, it

was possible to show that the Li2O2 oxidizes at very low potentials (3.05 V) during

charge, but that the reaction is blocked by the formation of an SEI layer. The

EIS measurements were important to identify the existence of a mixed potential

during charge.

• It was possible to use the knowledge obtained working with EIS to develop a new

and simple tool for battery management systems to estimate the state of charge

and state of health of Li-O2 batteries.

7.2 Outlook

Having worked within the same field of research in three years naturally brings up many

ideas for further research. I have here chosen the six suggestions that I consider most

interesting.

1. The ultimate goal of investigating the fundamental electrochemistry with DEMS,

EIS and supplementary methods has been to find new materials. I suggest to use the

established competences to look for new materials. The search for new electrolytes using

DEMS is well documented in Chapter 5, and an additional screening parameter could

be to use the capacity in charge below 3.15 V to measure the formation rate of the SEI

layer. Cathodes are more complicated as the electrolyte degradation is often dominat-

ing, but the use of EIS and differential capacity measurements might reveal reactions at

certain potentials, that is only related to electrode degradation, which could then serve

as a screening test.

2. Disregarding the stability issues, carbon is indisputably the best cathode material

because it is light, conducting and can be made with a very high surface area. Investiga-

tions of ALD coating of carbon cathodes with a protective layer might therefore provide

the optimal solution.

3. Further development of the EELS/EFTEM method to probe lithium and oxygen on

the sub-nanometer scale. TEM studies often presents nice pictures of toroidal shaped

particles formed in the presence of water impurities, but no one has probed the thin lay-

ers on top of the carbon and this might very well give important inside into the reaction

mechanisms and the SEI layer formation among others.

4. The use of the capacitance to determine the state of charge should be investigated

further and, if possible, expanded to other metal-air systems. Techniques to reliably
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determine the capacitance in the time domain and away from OCV, will strengthen the

method significantly.

5. Having the entire framework of DEMS and EIS ready, it would be interesting to look

at Na-O2 and other similar systems to qualify and quantify the discussion. Especially

EIS could be useful to describe the differences between Li-O2 and Na-O2

6. Finally, the DEMS setup can be used to study many different processes. One option

is to investigate high voltage behavior of electrolytes and measure the gas evolution as

a function of potential.





Appendix A

Development of the testing

equipment

In the project I have been main responsible for building up the basic testing equipment

for Li-O2 batteries. Among others, I have designed and developed

• the differential electrochemical mass spectrometer (DEMS)

• the 2-electrode Swagelok cells

• the equipment used to automatically change gas in the cells from oxygen to argon

and vice verse

• the cell holders to mount the Swagelok cells inside the furnace

• the cathode fabrication using an airbrush
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Figure A.1: (a)-(b) The initial cell design with manual valves. (c) First Li-O2 battery
pack in the ReLiable project. Tested in 2012 using the second cell design with quick-

connect valves. (d) Final cell design with 10 mL volume.
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a b 

Figure A.2: (a) Gas filling and changing system. (b) Five Swagelok cells in the
temperature controlled furnace.

Figure A.1 shows three of the four design versions of the Swagelok cell. As it may be

seen, we increased the gas volume inside the cells in each generation. As we improved

our competences in the preparation of the active materials, our capacity in the cathode

increased and we needed a larger gas volume in the cells. In our initial design we had a

gas volume of 0.5 mL, which was insufficient to support a full discharge. The volumen

was increased to 2 mL, which was still a little too low to be able to neglect the pressure

decrease during discharge. The choice of welding a larger volume onto the Swagelok

cells was made to ensure that the pressure did not decrease by more than 15 % during

discharge, while maintaining the rather compact design.

Figure A.2a shows the Labview controlled gas-change station used to automatically

change gas in the cells from oxygen to argon and vice verse. Based on a wide number

of experiments, we found this necessary to ensure a consistent gas-change routine in

terms of flow time and gas pressure inside the cell after gas-change. In addition to this,

the program was designed to prevent a back-flow of ambient air, which ensured that we

1 

2 

10 

11 

12 

13 

15 

14 

4 

3 

5 

8 

6 

7 

9 

16 

17 

18 

1 2 10 11 12 13 15 14 4 3 5 8 6 7 9 16 17 18 24 21 22 23 20 19 

Template used to crop directly in LaTex with trim-command 
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Figure A.3: The DEMS setup was constructed in two phases. To gain experience, we
constructed a manual DEMS setup to determine appropriate volumes, flushing times
etc. After this, we automated the setup in a Labview interface, basically making DEMS

measurements a one-click experiment.
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always had the pure 6.0 gas available. Figure A.2b shows five Swagelok cell being tested

inside the temperature controlled furnace.

Figure A.3a shows the first version of the DEMS setup. It was a manual system designed

to gain experience with the method before the more complicated and expensive system

was built. I co-supervised Andreas Hansen Poulsen, who did most of the work in a

close collaboration with me. Figures A.3b and A.3c show the automatic DEMS system

under and after construction. I designed and constructed the setup with invaluable help

from research technician Mike Wichmann and student assistant Mathias Kjærgaard

Christensen. It was automated by using magnetic valves, an automatic 2-position 6-way

valve and a much more advanced Labview interface, controlling the mass spectrometer,

potentiostat, magnetic valves and pressure measurements.
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B.1 Initial measurements and design

The first setup in our lab was built in the spring 2012 with manual valves and without

automation to enable fast changes as we learned more about the method and the lithium-

air system. Andreas Hansen Poulsen was responsible for this development under my

supervision. From September 2012 to March 2013, I built a fully automated DEMS

setup based on the experiences we learned from the manual setup. This would not have

been possible without the invaluable help from Mathias Kjærgaard Christensen who

helped me setup the Labview framework and Mike Wichmann, who assembled the pipes

and valves.

To ensure a reliable measurement, a wide number of parameters need to be measured

and characterized. Some of the most important steps are included below.
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Figure B.1: Left: Measurement of ion currents on m/z values of 32 and 36 corre-
sponding to O2 and 36Ar. Right: The ion currents have been used to calculate the
molar amount of O2 in the sampled volume. The time dependence reflect that the

gases are not equally distributed in the capillary inlet to the mass spectrometer.

The timing of the measurement of ion currents turned out to be very important.

Figure B.1 (left) shows a 1 h measurement with the mass spectrometer of a gas sample

in the beginning of the first charge of a Li-O2 battery. The time axis start just as

magnetic valve l in Figure 3.5 was opened. It is seen that the ion currents of m/z 32

and 36 behave differently, and as the relative current between these channels are used

to calculate the molar amount of gas evolved, it is clear that timing is important. In

Figure B.1 (right) the molar amount of O2 calculated based on the ion currents is shown

without the proper calibration. This emphasizes that it is important to fix the time from

the magnetic valve l opens, to the measurement of ion currents is performed. From

these measurements, it was decided to use the data after 10 minutes. Since then, the

pumping procedure between each sampling has improved and the measurement is now

used after only 2 minutes. Every time this changes, a new calibration of the ion currents

is needed.
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Figure B.2: Temperature variations in the room of the DEMS setup.

Temperature Figure B.2 shows the temperature variations in the room in a 3-days pe-

riod. The temperature varies periodically with a minimum temperature in the morning

and a maximum temperature at noon. As the temperature changes affect the pressure

inside the DEMS setup, it is important measure the temperature throughout the entire

measurement to correct the pressure measurements. Using the ideal gas law, a change

in temperature of 2◦C from 24.7◦C to 26.7◦C corresponds to a change in pressure of

((273.15+26.7)/(273.15+24.7)-1)*1.8 bar = 12 mbar. In the DEMS setup this pres-

sure change is equivalent to 0.14 mAh of the 2e-/O2 discharge or charge reaction. For

cathodes with a small carbon loading this corresponds to one third of the total capacity.

Calibration of ion current A number of calibration experiments are needed to en-

able a quantitative translation of M/Z intensities and pressure changes to moles of gas

consumed or evolved. We used a 5 % O2, 5 % CO2 and 90 % Ar to calibrate the corre-

spondence between the measured intensities of O2, CO2 and Ar and the corresponding

partial pressures. Using measurements of the intensities after 2 minutes, the following

correction factors were obtained:

pO2

p36Ar
= 1.273

IO2

I36Ar
(B.1)

pCO2

p36Ar
= 1.152

ICO2

I36Ar
, (B.2)

By diluting the gas with pure argon, it was shown that this ratio was unchanged in the

range 0.1 % to 5 % of O2 and CO2.

Volume calibration The internal volumes are important to calculate the molar amount

of gas consumed or evolved. Relative volumes in the setup was determined by moni-

toring the pressure changes of the two pressure transducers as different combinations of

valves were opened or closed. The actual volumes were determined by replacing a part

of the pipe with two different calibration volumes (500 µL and 1.00 mL) and measuring

the effect on the pressure changes as valves were opened or closed.
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The two volumes, essential to calculate the molar amounts of gas, were determined to

be

Vdis = 4.98 mL (B.3)

VMS = 1.03 mL (B.4)

where Vdis and VMS are specified in Figure 3.6.
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Figure B.3: Mass spectrum of 1,2-dimethoxyethane as measured by the mass spec-
trometer. The measurement is compared with a reference spectrum from NIST Chem-

istry Webbook [119]

Overlapping peaks in the mass spectrum The electrolyte of our reference system

in the ReLiable project is based on DME, which is very volatile. It is therefore important

to ensure that the m/z peaks of DME in the mass spectrum does not overlap with the

peaks of O2 and CO2. Figure B.3 shows a measured and a reference spectrum of DME

and it is seen that the contributions at m/z values of 32 (O2) and 44 (CO2) are very

small.
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Figure B.4: The oxygen background in DEMS measurements as a function of time.

Flushing O2 out of the system When the DEMS setup is measuring the evolved

gas inside the cell, it flushes the cell with argon. Most of the gas in the cell is changed,

but not everything. In the beginning of the charge, the cell is initially filled with pure

O2 and even small amounts of O2 left in the cell will be significant compared to the

evolved amount of O2 during charge. Therefore, the cell needs to be flushed sufficiently.
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Figure B.4 shows four measurements of how the amount of oxygen decreases between

each measurement after changing the gas to argon. These measurements were made in a

dummy cell without O2 evolution, but the onset time of the charge in the real batteries

is shown in the figure. A typical discharge current in the DME-XC72 system is 0.5 mA,

which correspond to 9.3 µmole/h. In this case the oxygen left in the system is insignif-

icant, but in measurements with a lower current density, as in the measurements with

ionic liquids, described in Chapter 5, the O2 background must be taken into account.

B.2 Calculations

The key calculations are:

∆ne- =
Q

F
(B.5)

∆nO2 =
∆p · V
R · T

, (B.6)

where ∆ne- and ∆nO2 are the moles of electrons and oxygen molecules consumed in a

given period of time, Q is the integrated charge, F = 9.65 · 104 C/mole is the Faradays

constant, ∆p is the gas pressure inside the Swagelok cell, V is the volume shown in red in

Figure 3.6 left, R is the gas constant and T is the temperature. As described in Section

B.1, the volume has been calibrated to be 4.98 mL, and as most of the volume is in the

gas system and not in the Swagelok cell, small differences between the different cells

does not affect the measurements. The temperature is measured continuously during

the measurement.

nO2 =
pO2 · V
R · T

(B.7)

As shown in Section B.1, measurements with a calibration gas with O2 and CO2 partial

pressures in the range of 0.1% to 5% showed that

pO2

p36Ar
= 1.273

IO2

I36Ar
(B.8)

pCO2

p36Ar
= 1.152

ICO2

I36Ar
, (B.9)

and using that p36Ar = 0.00333 · pAr = pAr/300.3, Equation B.7 can be rewritten as:

nO2 = 1.273
IO2

I36Ar
· p36Ar · V

R · T
=

1.273

300.3

IO2

I36Ar
· pAr · V
R · T

(B.10)

nCO2 = 1.152
ICO2

I36Ar
· p36Ar · V

R · T
=

1.152

300.3

ICO2

I36Ar
· pAr · V
R · T

(B.11)

As argon constitutes 99-99.9% of the gas, the pAr is approximated with the total pressure

of the analyzed gas.
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B.3 Comparing oxygen consumption with electrochemistry

The DEMS measurement can be used in two modes: Pressure mode and DEMS. Figure

B.5 shows measurements using the XC72 reference system using both of these modes

for comparison. First of all it is noted that they agree well. The pressure measurements

does not have information about which gases are evolved, and is thus only applicable

when the main gas evolved is oxygen.
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Figure B.5: Left: Pressure change in a Li-O2 battery during discharge and charge.
Right: A quantitative analysis of the evolved gases during charge measured by mass

spectrometry.

To validate the DEMS setup, a number of measurements have been performed on the

reference system for comparison with similar measurements performed by Bryan D.

McCloskey et al. at IBM. The measurements are simple charges and discharges like the

ones shown in Figure B.5 with current densities of 100-200 mA/g carbon.
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Figure B.6: The SOC dependence of the e-/O2-ratio. The values are averages of six
batteries tested at currents in the range of 100-200 mA/g carbon.

Figure B.6 shows how the e-/O2-ratio depends on SoC. The values are averages of six

measurements and the error-bars indicate one standard deviation. It is seen that the

process is a 2.0 e-/O2 process during the entire discharge with very small deviations.

During charge, however, the e-/O2-ratio increases during the entire charge ending at 3.5

e-/O2 at the end of charge. It is also noted that the standard deviation of the e-/O2-

ratio increases significantly in charge-mode, indicating that the exact electrochemistry

may change between measurements depending on small variations in current density
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or other parameters. Based on the performed measurements the discharge process is a

1.99 e-/O2 with a standard deviation of 0.02 e-/O2. The average value during charge is

2.62 e-/O2 with a standard deviation of 0.12 e-/O2. The OER/ORR ratio is 0.78 with

a standard deviation of 0.05. These values are compared with the values reported by

McCloskey et al. in [56] in Table B.1, and it is noted that all values are well within one

standard deviation.

OER/ORR (e-/O2)dis (e-/O2)cha

DTU 0.78 ± 0.05 1.99 ± 0.02 2.62 ± 0.12
IBM, [56] 0.78 2.01 2.59

Table B.1: Comparison between DEMS measurements performed at the setup built
at DTU and values reported by McCloskey et al. at IBM [56].
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C.1 Beam damage and observations of lattice fringes in

Li2O2
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Figure C.1: Test of Li2O2 beam sensitivity by monitoring visual changes to the
particles. The same particle is subjected to (a)-(b) 30 e−/nm2s−1 in 10 min and
then (c)-(d) 300 e−/nm2s−1 in 10 min. The measurements were performed at Titan

microscope operated in TEM-mode at 300kV.

A Li2O2 particle subjected to increasing exposure time and dose rate is shown in Figure

C.1. It is seen that the particle can be imaged and spectroscopically inspected by TEM-

EELS for at least 10 minutes without any visible damage at 300keV using a low electron

dose rate of 30 e-/nm2s-1. A ten times higher electron dose rate of 300 e-/nm2s-1, results

in morphological changes. This is on the same order of magnitude as recently reported

by Zhong et al. [47] (20 e-/nm2s-1 at 200 keV) to study Li2O2 precipitates.

C.2 Selected area electron diffraction

The cathode used the most in the experiments described in this thesis contains XC72

carbon black and PTFE binder, and, if discharged, it also contains Li2O2. As lithium

is a very light element, it is important to find a suited strategy to distinguish this from

the rest of the cathode. Selected area electron diffraction (SAED) and electron energy

loss spectroscopy (EELS) are measured on reference systems to identify the best suited

method. The morphology is also useful for quick identification, but it cannot stand
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Figure 1. TEM images 
at two magnifications 
and selected area 
diffraction patterns of 
(a,b,c) Li2O2, (d,e,f) 
Carbon black, and 
(g,h,i) PTFE binder. 

Sample preparation: 
77326s1: PTFE binder, predispersed on Cu-
mesh TEM grid (grid box 74 pos. 1A 
77326s2: Carbon black, prepared in EtOH and 
1 min ultrasound bath, dispersed wet on 
standard Cu TEM-grid with lacey C-film in 
ambient conditions. 
77326s3: Li2O2 ref. sample, crushed and 
dispersed dry on standard Cu TEM-grid with 
lacey C-film in ambient conditions and 
transferred to CM200 microscope within a few 
minutes. 
  
Experimental procedure:                                            
The samples were examined in CM200 in the 
HR-TEM mode at varies magnification using 
gun lens 5 and spot size 5. About 20 sample 
agglomerates from each batch were viewed 
and 5 of the agglomerates were recorded at 
low magnification (for overview) and two 
agglomerates were further inspected at higher 
magnification and by selected area electron 
diffraction. Electron diffraction patterns were 
recorded with a fixed camera length of 330 
mm, i.e. the same magnification. 
  
Results/conclusion:  
Figure 1 shows TEM images at two 
magnifications and selected area diffraction 
patterns on a scale for direct (visual) 
comparison of Li2O2, carbon black, and PTFE 
binder.  
The beam sensitivity/stability of Li2O2 was not 
addressed in this study, although the beam 
dose rate (140 ccd counts nm-2 s-1) and 
accumulated dose was kept low (<10 min) to 
avoid apparent structural changes during 
imaging. 

Figure C.2: TEM images at two magnifications and selected area diffraction patterns
of (a,b,c) Li2O2, (d,e,f) XC72 carbon black, and (g,h,i) PTFE binder. The measure-
ment time on Li2O2 was kept below 10 min with a doserate of 140 e-/nm2s-1 to avoid
visual structural and crystalline changes. The measurements were performed at CM200
(Haldor Topsøe A/S) in the HR-TEM mode. The beam damage is investigated further

in Figure C.1.

alone. The aim of the reference measurements is to test the TEM-EELS technique to

study Li2O2 precipitates on the nm-scale, i.e. species that may be formed during the

discharging of Li-air batteries. In particular, the beam stability of Li2O2 material is

addressed, and low-loss EELS is used to spectroscopically identify lithium species. The

possibilities of imaging crystalline Li2O2 at high-resolution, i.e. imaging of lattice fringes

and eventually sub-nm surface layers are estimated from a theoretical/practical point of

view.

Figure C.2 shows TEM images in two magnifications and SAED patterns for Li2O2,

carbon XC72 and PTFE binder. The compounds were dispersed on a standard Cu

TEM-grid with lacey C-film. The XC72 was ultrasonicated in ethanol for 1 min and
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dispersed in ambient conditions, the PTFE was dispersed using an air-brush using the

same procedure as cathode fabrication, but without adding carbon to the dispersion,

and the Li2O2 was crushed and dispersed dry and transferred to the CM200 microscope.

The Li2O2 was exposed to ambient conditions for less than 2 min.

The samples were examined in CM200 in the HR-TEM mode at different magnification.

Approximately 20 agglomerates from each sample were viewed and 5 of the agglom-

erates were recorded at low magnification (for overview) and two agglomerates were

further inspected at higher magnification and by SAED. Electron diffraction patterns

were recorded with a fixed camera length of 330 mm, i.e. the same magnification. Figure

C.2shows TEM and SAED images of the three samples. The SAED patterns show that

PTFE and XC72 are amorphous, whereas the Li2O2 particle is polycrystalline.

C.3 Electron energy loss spectroscopy

EELS measurements were performed on commercial Li2O2 in the Titan microscope

operated in TEM-mode at 300kV at a nominal TEM magnification of SA 6,300x. In

addition, a post-magnification was introduced by the GIF (about x15). The length

scale of the images is not calibrated, but the image size is estimated. The zero loss

peak for the EELS was continuously adjusted to allow an energy resolution of 1.2-1.4

eV measured as the FWHM of the zero loss peak. All EELS data were recorded with a

dispersion of 0.2eV/channel and a selected entrance aperture (SEA) of 2 mm inserted.

The incident beam dose rate on the sample was measured on the retractable current-

readout-stick (viewing stick) inserted in the electron beam. Electron beam dose rates of

30-300 e-/nm2s-1 were used. Imaging was done prior to and after each EELS acquisition

to record eventual visual changes of the sample during EELS acquisition. Also images

with and without the selected entrance aperture inserted were recorded to identify the

localized sample area giving rise to the EELS signals.
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Figure 4. TEM images of the same area of Li2O2 (Figure 3) recorded at an increased 
doserate of 300 e-/nm2 s-1 after additional (a) 1 min of exposure and (b) 10 min. (c) Low-loss 
EELS spectrum recorded between the acquisitions (a) and (b), revealing clear signature of 
lithium K-edge (Li-K, near 60eV). A visual damage is observed on the particle. Image size is 
not calibrated, but is estimated to about 420 nm x 420 nm based on the thickness of the rim 
on the carbon film of ~15 nm (Figure 2). 

Figure 3. TEM images of Li2O2 recorded at a low electron doserate of 30 e-/nm2 s-1 after (a) 2 
min of total exposure time and (b) 10 min. (c) Low-loss EELS spectrum recorded between the 
acquisitions (a) and (b), revealing clear signature of lithium K-edge (Li-K, near 60eV). No 
visual damage is observed on the particle. Image size is not calibrated, but is estimated to 
about 420 nm x 420 nm based on the thickness of the rim on the carbon film of ~15 nm 
(Figure 2). 
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Figure 5. TEM images of the an area containing both amorphous carbon film and Li2O2 recorded at the higher doserate of 300 e-

/nm2 s-1 after (a) 2 min of exposure and (b) 7 min. (c) Low-loss EELS spectrum recorded between the acquisitions (a) and (b), 
revealing clear signature of lithium K-edge (Li-K, near 60eV), whereas characteristics features of Li in the 20-60 eV range is 
smeared out by the predominant carbon signal. A visual damage is observed on the particle. Image size is not calibrated, but is 
estimated to about 420 nm x 420 nm based on the thickness of the rim on the carbon film of ~15 nm (Figure 2). 

b c a 

Figure C.3: Low-loss TEM-EELS spectrum of commercial Li2O2 in an area (a) with-
out lacey-C film and (b) with lacey-C film recorded at a dose rate of 300 e-/nm2s-1.
The spectra show clear signature of the lithium K-edge (Li-K, near 55eV). A visual
damage was observed on the particle at this dose rate. Image size is about 420 nm x

420 nm.



Appendix C. Supporting TEM measurements 89

Figure C.3 shows the EELS signal from as-prepared Li2O2 sample. The spectrum demon-

strates distinctive EELS signatures of lithium such as Li K edge near 55eV in the low

loss region, which are not present in EELS from the carbon and/or oxygen, shown in

Figure C.4. This verifies the presence of Li. Figure C.3b shows the EELS signal from

an area of both carbon-film and lithium-sample. The determination of the crystal phase

(e.g. Li2O2, Li2O, or LiO2) cannot be readily deduced from the present EELS data and

complementary techniques such as SAED should be used.

In conclusion, Li2O2 precipitates can be imaged and spectroscopically inspected by

TEM-EELS for at least 10 minutes without any visible damage at 300keV using a

low electron dose rate of 30 e-/nm2s-1. A ten times higher electron dose (rate) of 300

e−/nm2s−1, results in clearly visually damaged/changed particles during acquisitions. Li

and C can readily be identified by EELS on the nm-scale, although a drift stable EELS

setup is required due to the weak signals. The oxygen EELS signal was not addressed

in this study. Atomic resolution imaging of Li2O2 without damaging the structure by

the electron beam is lofty as extremely long acquisition times of about 18 minutes are

needed (as compared to 1s for typical high resolution imaging).

C.3.1 EELS reference spectra

Figure C.4a shows the electron energy loss spectra (EELS) of the low loss and core loss

energy windows for lithium, carbon, and oxygen. For the present study, only the energy

losses of 0-300eV were recorded to reveal the zero-loss peak (to determine the energy

resolution), the low loss features (plasmonic region, ca. 10-50eV) and core loss of Li-K

( 55 eV) and C-K (onset at 284eV).
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D.1 Design frame

To assess the viability of an open system based on known technology, a specific calcu-

lation on dimensions and weight of such a system is performed in this section. The key

numbers are presented in this section. The design criteria of the filter are

• Energy: 100 kWh

• Discharge potential: 2.65 V

• Minimum discharge time: 3h

• Required purity: <1 ppm H2O and <1 ppm CO2

Using these numbers, the total consumption of oxygen in a full discharge is calculated

nO2 =
ne-

2
=

Q

2F
=

E

2UF
=

100 kWh

2 · 2.65 V · 96.5 kC/mole
= 704 mole (D.1)

At standard conditions, this correspond to a volume of

VO2 =
nO2RT

pO2

=
704 mole · 8.314 J/mole/K · 298 K

1 bar
= 17 m3 (D.2)

With 20.9 % oxygen in the air, this corresponds to 82 m3 air with up to 1.82 kg H2O

(3 %) and 59 g CO2 (400 ppm).

As discussed in Section 6.2.2, it is reasonable to assume that compression of the gas is

needed. If the air is compressed to 3 bar, this corresponds to a decrease in dew point

from 25 ◦C to 7.9 ◦C or a change in maximum water content from 1.82 kg to 650 g,

using the equation of the dew point defined by Buck [120]

pH2O = (1.0007 + 3.46 · 10−6 · ptotal) · 6.1121 · exp

(
17.502 · T
240.97 + T

)
(D.3)

where pH2O and ptotal is the water and total pressure in millibar, and T is the temper-

ature in degrees Celsius.

The best zeolite absorbents reach an absorption capacity of 30% [121], which means

that 6.1 kg zeolite could absorb the water from a full discharge, but as it will cost a

lot of energy to release the water again, a pre-drying step is added. By using a water

permeable Nafion membrane like the Permapure Drier in a counter flow setup with

the dry gas from the battery, the energy consumption of the system can be reduced

significantly.
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D.2 Pre-drying using a membrane system

The relative dimensioning between zeolites and the passive pre-drying unit depends

on the need for energy savings. If energy is not a concern, the amount of adsorbents

should be increased, whereas the pre-drying unit is better, if energy savings on the

regeneration is important. This calculation is based on a Permapure 24” PD-200T,

Ø1”. Using a maximum discharge time of 3 h, 82 m3 air corresponds to 460 l/min, and

with a maximum flow rate in the Permapure tubes of 40 l/min, 12 pipes are needed.

Using the dimensions of the pipes, they can be fiited into a box of 66 cm x 12 cm x 8

cm. The pressure drop can be calculated to be 0.1 bar and the output concentration od

H2O is calculated to be 1550 ppm. As the Permapure dryer is also permeable to CO2,

this concentration is assumed to be halved to 200 ppm.

D.3 Designing the adsorption system

The typical design of an absorption system is a plug-flow reactor. Two considerations

are important when designing such a system: capacity and kinetics. The capacity should

be sufficient to store all impurities in the inlet gas until regeneration and the kinetics

should be fast enough such that impurities are not able to slip through the reactor

without being absorbed.
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Figure D.1: Langmuir isotherm for H2O adsorption in zeolites and CO2 adsorption
in a solid amine.

The capacity is typically calculated using the Langmuir isotherm, that describes

the ability of the material to adsorb a given molecule as a function of pressure and

temperature. It is defined as

θa =
Kpa

Kpa + 1
(D.4)

where θa is the fractional occupancy of the adsorption sites, pa is the partial pressure of

the impurity ’a’ and K is the equilibrium constant given by K = k exp(−∆G
−	−
/(RT )) =
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k exp(−(∆H − T∆S)/(RT )). In addition to describing the capacity, the Langmuir

isotherm is important to define how easy it is to regenerate the adsorbent by heating.

Figure D.1 shows the Langmuir isotherm for a proposed adsorbent for H2O and one for

CO2. The important thing to note is that the storage capacity of both materials are

high at room temperature and decreases significant at 125 ◦C for the H2O adsorbent

and at 90 ◦C for the CO2 adsorbent. This means that heating the adsorbent 100 ◦C,

will release almost all of the adsorbed H2O and CO2 molecules.
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Figure D.2: Schematic illustration of a plug flow reactor with an adsorbent. The
graph below show the change in impurity concentrations in the adsorbents during oper-
ation and the graph to the right is adapted from [122] and show the H2O concentration
in the output stream of a H2O adsorption reactor as a function of time. The steep

transition of ¡1 ppm level to no adsorption, show that the kinetics are very fast.

The kinetics Figure D.2 shows an actual measurement of the water adsorption. The

plug flow reactor and saturation profile is sketched in the left part of the figure. As an

increasing amount of impurities are adsorbed, the saturation profile moves to the right.

When the profile approaches the outlet of the reactor, it is no longer possible to adsorb

all molecules. Figure D.2 (right) shows the impurities in the outlet during operation

using the zeolite considered as H2O adsorbent. It is seen that the concentration is below

1 ppm until a total test time of 15 h, and as the full capacity corresponds to 16.8 h, an

excess capacity of 12 % is needed to ensure sufficient adsorption.

Calculating the system size Based on the fast kinetics and a capacity of 0.1-0.2

g/g and fast kinetics, an excess capacity of 30 % is chosen with an average capacity

utilization of 0.15 g/g. To remove 1550 ppm H2O and 200 ppm CO2 from 82 m3 of air,

corresponding to 94 g H2O and 30 g CO2, a total of 815 g H2O adsorbent and 260 g

CO2 adsorbent are needed.
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D.4 Energy consumption and weight

Pressure drop The pressure drop in the in the Permapure dryer is 0.2 bar (0.1 bar

entering the battery and 0.1 bar exiting the battery. The pressure drop in the plug flow

reactors are assumed to be 0.1 bar. A total pressure drop of 0.3 bar in a 82 m3 of gas

corresponds to 2.5 MJ or 0.7 kWh, which is 0.7 % of the total battery capacity.

Heating during regeneration A reasonable measure of the energy required to heat

the adsorbents 100 ◦C is to compare the system with sand. If the system weight is

20 kg, the energy required is approximately 2 MJ. The desorption of H2O and CO2

further needs 2.5 MJ and including heating of the gasses and other losses, the energy

requirements may be somewhat bigger than during discharge. 4 kWh (or 4 % of the

battery capacity) is used to be on the safe side, and it is noted that the exact value is

not as important during charge, because the car is connected to the grid.

Weight of the system The permapure dryers can fit into a 6.6 L box which means

that the weight is probably 10-15 kg. The active materials in the adsorption system

weigh a little more than 1 kg and it is safe to assume that the entire system with

heaters do not exceed a weight of 10 kg. The total weight of the system will therefore

be 20-30 kg.
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ABSTRACT: Lithium−O2 (Li−O2) batteries are currently
limited by a large charge overpotential at practically relevant
current densities, and the origin of this overpotential has been
heavily debated in the literature. This paper presents a series of
electrochemical impedance measurements suggesting that the
increase in charge potential is not caused by an increase in the
internal resistance. It is proposed that the potential shift is
instead dictated by a mixed potential of parasitic reactions and
Li2O2 oxidation. The measurements also confirm that the rapid
potential loss near the end of discharge (“sudden death”) is
explained by an increase in the charge transport resistance. The findings confirm that our theory and conclusions in ref 1, based
on experiments on smooth small-area glassy carbon cathodes, are equally valid in real Li−O2 batteries with porous cathodes. The
parameter variations performed in this paper are used to develop the understanding of the electrochemical impedance, which will
be important for further improvement of the Li−air battery.
KEYWORDS: Li−O2 batteries, electrochemical impedance spectroscopy, overpotential, mixed potential, battery performance

1. INTRODUCTION

Lithium−air and Li−O2 batteries have attracted much attention
in recent years because of a potentially high specific energy
density and low cost. Furthermore, the fundamental electro-
chemistry has very low reaction barriers, which, in principle,
enables a high cycle efficiency. The low reaction barriers have
been predicted by Hummelshøj et al.2,3 using density functional
theory (DFT) and proven recently by Viswanathan et al.4 using
experiments on flat glassy carbon cathodes in an electrolysis
cell.
However, more realistic batteries with porous electrodes

show large overpotentials,5 which significantly reduces the cycle
efficiency. Understanding this is crucial to develop a
commercially viable Li−O2 technology. The origin of the
overpotential has been investigated intensively. We have
previously used DFT modeling,2,4 differential electrochemical
mass spectrometry (DEMS), and Li2O2 titration.

5 In addition
to this, and among others, Zhong et al. used in situ transmission
electron microscopy (TEM) to study growth mechanisms,6 and
Chen et al. used a redox-mediator to investigate limitations in
the electronic conductivity.7

In this study, we use electrochemical impedance spectrosco-
py (EIS) that is often used as a diagnostic tool to identify the
underlying mechanisms of the polarization curves in electro-
chemical systems such as lithium-ion batteries and fuel cells, as

it is a powerful tool to obtain noninvasive in situ information
on degradation mechanisms and possible bottlenecks in the
electrochemical reactions. Very recently, Adams et al. and
Landa-Medrano et al. have also used EIS to measure the
internal resistances of a Li−O2 battery using a two-electrode
configuration.8,9 They varied parameters like cathode morphol-
ogy, oxygen partial pressure, salt concentration, and state-of-
charge (SOC), and they succeed in assigning the different
impedance contributions to the processes of either the anode or
the cathode. The batteries investigated were, however, not
characterized by DEMS and Li2O2 titration, which are
important complementary methods necessary to link EIS
results to the fundamental electrochemistry.
In this work, we used an intensely studied and well-

characterized in-house reference system used in a number of
previous publications.5,10−15 It consists of an XC-72 carbon
black and poly(tetrafluoroethylene) (PTFE) binder cathode,
lithium metal anode, and 1 M LiTFSI/1,2-dimethoxyethane
electrolyte. A series of electrochemical impedance spectra was
measured at different state-of-discharge (SOD), SOC, and at
different current densities with a focus on three states of the
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Li−O2 battery electrochemistry: the discharge plateau, sudden
death at the end of discharge, and the initial stage of the
charging process.
By combining the measurements with previous results

presented by McCloskey and Luntz et al.,1,4,5 the EIS
measurements are related to the measured potential.
We show that the overpotential during discharge is caused by

internal resistance and is dominated by the charge transport
through the deposited Li2O2 at the end of discharge. During
charge, however, the potential increase reflects a mixed
potential of parasitic reactions and Li2O2 oxidation.

2. EXPERIMENTAL SECTION
Most of the experimental setup and procedures have been
described in detail previously in ref 11 and are only briefly
described here. The cathodes were prepared by air-spraying a
carbon/PTFE dispersion onto a 316SS 100 mesh (TWP, Inc.,
Berkeley, CA). The slurries were prepared by sonicating a
carbon black powder (Vulcan XC72, www.fuelcellstore.com)
and PTFE (60 wt % dispersion in water, Sigma-Aldrich) in a
3:1 wt/wt ratio in a 20:80 isopropanol/water mixture. A Badger
model 350 air sprayer was used to uniformly coat the SS mesh
(the SS mesh was rinsed in acetone several times prior to
cathode preparation). Prior to cutting 12 mm diameter
cathodes from the carbon-coated SS mesh, the mesh was
allowed to air-dry for 1 h. All cathodes were dried in vacuum at
120 °C for at least 12 h, washed in pure 1,2-dimethoxyethane
(DME) in a glovebox, followed by a second drying under
vacuum for 10 min, and then at 200 °C in the glovebox for at
least 1 h. A typical carbon loading was two milligrams per
cathode.
All solvents and salts in this study were purchased from

Novolyte (Purolyte electrolyte grade), stored in an argon
glovebox (0.1 ppm of O2 and H2O) and used without further
purification. The H2O content of solvents was periodically
checked with a Karl Fischer titrator (Metrohm Inc.) and found
to be no more than 20 ppm. The measurements were made
with an 11 mm diameter lithium metal anode, a 12.5 mm
diameter Celgard 2500 separator, a 12 mm diameter cathode,
and 60 μL of 1 M bis(trifluoromethane)sulfonimide lithium salt
(LiTFSI) dissolved in DME.
The test cell used in this study is shown in Figure S1 in the

Supporting Information. The cell components were stacked
between SS alloy 20 anode and cathode tips that were
hermetically sealed against a quartz tube using compressed
Markez O-rings (Marco Rubber). Capillaries were silver
soldered into the cathode tip to allow gases to be fed to and
swept away from the cell. Gases swept away from the cell could
be quantitatively identified using the DEMS setup described in
detail in ref 10.
2.1. Electrochemical Impedance Spectroscopy. All

electrochemical measurements were made with a BioLogic
VMP3 potentiostat. Electrochemical impedance spectra were
measured while a current was drawn (GEIS) to investigate the
processes under relevant conditions as discussed previously by
Adams et al.8 Impedance was measured at currents between 15
μA (13 μA/cm2) and 1 mA (0.88 mA/cm2). Frequencies
between 4 mHz and 100 kHz were investigated with 15 points
per decade and an alternating current (AC) amplitude of 10%
of the direct current (DC) level. This typically gave an AC
potential response amplitude of 2−5 mV, which was found to
be within the linear regime, while still ensuring a sufficient
signal-to-noise ratio.

To distinguish impedance contributions from the anode and
the cathode in a two-electrode cell, it is often necessary to vary
physical parameters that will affect the two electrodes
differently. We used three methods: (i) measuring impedance
at open-circuit voltage (OCV) in argon atmosphere to prevent
the oxygen reduction/oxidation, (ii) using a symmetrical cell of
two predischarged cathodes, and (iii) testing a different cathode
(see Figure 4 below and Figures S2 and S3 in the Supporting
Information). In the symmetrical cell, the anode/cathode
reactions are oxidation/reduction of Li2O2, which remove any
lithium metal-related contributions from the EIS measurement.
Both cathodes in the symmetrical cell initially discharged 0.25
mAh in separate cells before they were combined in a new cell.
The cathodes were rinsed with DME after the individual
discharge to remove the electrolyte salt before the cathodes
were used in the symmetrical cell. The symmetrical cell was
tested in O2 gas and was made without exposing the cathodes
to air at any point.

2.2. Modeling Li−O2 Impedance. The impedance is
defined as the derivative of the iv curve:

η= ∂
∂

= ∂
∂

Z i
v
i i

( )
(1)

where v is the potential, i is the current density, and η is the
overpotential. Therefore, the impedance is linked closely to the
Tafel plot, which has previously been used to describe reaction
mechanisms in Li−O2 batteries.4,10,16,17 From the Tafel
equation, the overpotential is seen to be proportional to log(i)
at large overpotentials (|η| ≫ RT/nF), but as our batteries
contain a porous cathode, this ideal behavior is not applicable.
The consequences of a porous electrode have been investigated
by Lasia and show that the Tafel slope will increase at higher
currents.18 This is in line with our measurements as well as
previous Li−O2 battery measurements by Viswanathan et al.
and Adams et al. on porous electrodes.4,8 To describe the
measurements better

η = | − | = ·v c iOCV c
1

2 (2)

is applied as an empirical model, when eq 1 is used to compare
the measured impedance with the overpotential. OCV is the
open circuit potential, and c1 and c2 are constants. As c2 is found
to be less than 1 in Section 3.4, Z(i) is expected to be larger at
small currents according to eq 1.
The measured impedance response can, to a first

approximation, be described using an equivalent circuit model
consisting of three Voigt elements (parallel connected resistor
with a constant phase element (CPE)) connected in series, see
Figure S4a in the Supporting Information. The impedance of
the Voigt elements is adopted from Hirschorn et al.,19 and the
total impedance, Z(ω), is thus given by

∑ω
ω

= +
+=

Z R
R

j Q R
( )

1 ( )s
i

i
n

i i1,2,3
i

(3)

where ω is the angular frequency, and Ri, Qi, and ni are
parameters in Voigt element i. Even though the model is not
anchored in an electrochemical model, it is likely that key
physical processes like charge transfer reactions, diffusion, and
electronic transport through the Li2O2 layer will dominate one
or more of the observed features in the spectra. Therefore,
parametrization using the simplified model makes it possible to
determine the magnitude of these processes, although each
feature may contain contributions from multiple physical
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processes, and anode and cathode processes may overlap to
some extent. The sum of the frequency-dependent resistances
R1, R2, and R3 is the polarization resistance, Rp. The equivalent
circuit fits are made using the scipy optimizer fmin_slsqp using
the software package RAVDAV 0.9.7.20

The Voigt elements have three parameters: R, Q, and n. R is
the DC resistance, and Q and n are parameters of the CPE. If n
= 1, the CPE is a capacitor, and even if n is between 0.7 and 1, a
pseudocapacitance, C*, can be calculated. This criterion is met
in all measurements presented in this work, except for the very
end of the 20 μA discharge presented in Figure 3. As discussed
in detail by Jamnik et al.,21 this capacitance is typically a double-
layer capacitance related to the process, and by comparing with
reference values, it is possible to estimate the surface area
contributing to the process. This can be used to distinguish
reactions at the flat lithium anode from reactions in the porous
cathode, since the surface areas of these are ∼1 cm2 and 1 m2,
respectively. The capacitance at the lithium metal surface in an
organic electrolyte is typically 10−20 μF/cm2 as reported by
Aurbach et al.,22,23 and the capacitance of XC72 is 12.6 F/g in
an organic aprotic electrolyte as reported by Barbieri et al.24

From this, it is calculated that the capacitances should be in the
range of 10 μF and 25 mF for the anode and cathode,
respectively. These values should then be compared with the
pseudocapacitance, calculated from the equivalent circuit
parameters according to Hirschorn et al.19

* =
+
Ω

Ω

−⎛
⎝⎜

⎞
⎠⎟C Q

R R
R R

n
n n

1/
(1 )/

(4)

where R, Q, and n are fitting parameters from the Voigt
elements, and RΩ is the DC resistance at the investigated
frequency. As discussed by Zoltowski et al., the pseudocapa-
citance of a CPE element is not well-defined,25 which means
that the surface area obtained using C* might vary slightly from
the actual surface area, but the order of magnitude and relative
changes are still valid.
The capacitance is expected to change during discharge as

the dielectric Li2O2 is deposited. The relative permittivity εr of
Li2O2 has been measured to be 30−35 by Gerbig et al. and
Dunst et al.26,27 Using a value of 30 to calculate the capacitance
of the Li2O2 layer in series with a typical electrode−electrolyte
capacitance of 20 mF, a Li2O2 layer of 8 nm will halve the
cathode capacitance. A similar calculation can be made for the
Li2CO3 interface layer between the cathode and the Li2O2.
Using the relative permittivity of Li2CO3 of 4.9 measured by
Young et al.,28 the capacitance will be halved with a layer
thickness of 1 nm.
The role of oxygen diffusion in the electrolyte has been

discussed in several papers.29−31 To evaluate the significance of
diffusion, the Damköhler number, Da, can be used as a quick
comparison between the oxygen consumption/evolution with
the diffusion rate.29 Using typical values for our system, Da is
0.3 at a current of 250 μA, which means that the diffusion rate
is ∼3 times higher than the consumption rate. Oxygen diffusion
is therefore not expected to be dominating, but it will have
some significance.
Basic requirements for carrying out EIS measurements are

that the system is stable, causal, and linear. Among other things,
this implies that no (or only a negligible) change in voltage and
impedance characteristics is allowed during the measurement
period. Methods have been proposed to deal with impedance
measurements in nonstationary systems such as a PEM fuel cell

with hindered water removal during operation.32 This
approach, however, requires interpolation, which is difficult to
apply in this case with a dramatically decreasing cell voltage
toward the end of discharge of the battery. Without use of such
methods, one can reduce drift problems by decreasing the
measurement time or decreasing the change of the system. To
do this, we optimized the frequency range and compared
impedance spectra from stable low-current measurements (18
μA/cm2 cathode) with impedance spectra from measurements
at less stable but more realistic current densities (>0.2 mA/cm2

cathode).
The Kramers−Kronig relation was used to evaluate the

causality of all measurements. The largest deviations occur at
low frequencies as the electrochemistry changes during the
measurement. To minimize this effect, a frequency cutoff level
of 5% deviation of the Kramer−Kronig transform was used.

3. RESULTS
All measurements were performed using a system with an
XC72 carbon black cathode, DME/LiTFSI electrolyte, and
lithium anode. This system has been characterized extensively
in previous publications from 2011 to 2013 by McCloskey et
al.5,10−15 The most important methods used in these studies are
differential electrochemical mass spectrometry (DEMS),
peroxide titration, and X-ray diffraction.
In this work, we used DEMS to quantify gas consumption

and release during discharge and charge at all investigated
current densities to verify that the measured impedance can be
related to previous work. A ratio of 2.0 e−/O2 was observed
during discharge at all investigated currents between 10 μA (8.8
μA/cm2) and 5 mA (4.4 mA/cm2). During charge, the amount
of oxygen released corresponded to 2.5 e−/O2 until a potential
of 3.7 V. Above this potential, the ratio changed to 3 e−/O2.
CO2 was evolved at potentials above 4.2 V.
The OCV was measured as a function of discharge and

charge to ensure an accurate determination of the over-
potential. A full discharge−charge cycle at 250 μA (220 μA/
cm2) is seen in Figure 1. The battery was allowed to relax to

OCV by interruption of the current a number of times during
both discharge and charge, which is seen as steep voltage
transients in Figure 1. The relaxation criteria were a change in
cell voltage of less than 1 mV/h or a relaxation time of 15 h.
The initial OCV was 3.2 V. The OCV decreased to 2.85 V after
a short period of discharge and stayed at this value during the
entire dischargealso after reaching the 2.0 V cutoff at sudden

Figure 1. Measurement of OCV through a 250 μA (220 μA/cm2)
discharge and charge. The steep voltage transients occur when the
battery is allowed to relax at OCV.
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death. During charge, the OCV was 2.85 V, but it increased
slightly toward the end of charge where it reached 3.2 V.
3.1. Discharge to Sudden Death at 250 μA. EIS

measurements from the first discharge at 250 μA (220 μ/cm2)
are shown in Figure 2a−d. The spectra were measured while
drawing a current, which means that the SODs shown in Figure
2 and Table 1 are approximate values. Three arcs are
distinguished in the Nyquist plot in Figure 2a. They were
almost constant in the first part of the discharge but changed as
the potential decreased near the end of discharge. The three
identified impedance contributions are labeled Z1, Z2, and Z3,
and, on the basis of a fit to the equivalent circuit given in eq 3
and shown in Figure S4a in the Supporting Information, the
corresponding peak frequencies, resistances, and pseudocapa-
citances are calculated. The values from two of these
calculations are given in Table 1.
It is seen that R1 is constant through the discharge, whereas

R2 and R3 increase and C3* decreases. The decrease of C3* and
increase of R3 through the discharge could be a blocking of the
cathode surface. The magnitudes of the pseudocapacitances

indicate that Z1 originates from an anode process, and Z2 and
Z3 originate from cathode processes. The cathode blocking and
identification of reaction processes in the impedance spectra are
discussed further in Section 4.1.
The peak frequencies changed between different current

densities and close to sudden death. In all of our measurements,
however, f1 was between 100 Hz and 10 kHz, f 2 was between 2
and 100 Hz, and f 3 was between 20 mHz and 1 Hz. These
intervals are shown in Figure 2c,d, and the clear separation
helps in identifying the different impedance contributions.

3.2. Discharge to Sudden Death at 20 μA.We decreased
the discharge current to 20 μA (18 μA/cm2) to increase the
stability of the system during the impedance measurements, see
Figure 3. When comparing this with the previous discharge at
250 μA presented in Figure 2, it is important to note that both
the capacity and the polarization resistance, Rp, are significantly
larger in the 20 μA discharge.
On the basis of a fit using eq 3, representing the equivalent

circuit presented in Figure S4a in the Supporting Information,
the resistance and pseudocapacitance parameters of Z1, Z2, and

Figure 2. Nyquist plot (a) and (b) and Bode-like plot (c) and (d) of impedance measurements during a 250 μA (220 μA/cm2) constant current
discharge. The approximate SODs are shown in (e) and in the legends of (a) and (b). Three processes are identified and named Z1, Z2, and Z3, and
the corresponding peak frequencies are within the gray intervals marked in (c) and (d) at all current densities and SODs investigated.

Table 1. Peak Frequencies, Resistances, and Pseudocapacitances from Selected Impedance Fita

f1 [Hz] f 2 [Hz] f 3 [Hz] R1 [Ω] R2 [Ω] R3 [Ω] C1* [mF] C2* [mF] C3* [mF]

discharge at 250 μA
0.16 mAh 733 5.4 93 × 10−3 96 56 145 2.3 × 10−3 0.53 10.2
0.51 mAh 605 3.4 184 × 10−3 94 92 188 2.8 × 10−3 0.45 4.0

discharge at 20 μA
0.5 mAh 470 1.15 5.5 × 10−3 109 50 1007 3.1 × 10−3 2.8 19.3
1.9 mAh 464 1.12 9.9 × 10−3 107 158 2131 3.2 × 10−3 0.6 2.0
2.3 mAh 479 1.1 × 10−3 114 14 097 2.9 × 10−3 0.8

charge at 250 μA
0.03 mAh 678 9.6 267 × 10−3 65 166 497 3.6 × 10−3 76 × 10−3 1.0
0.42 mAh 983 14.0 19 × 10−3 255 105 700 0.6 × 10−3 99 × 10−3 9.0

aThe expected capacitances for the full anode and cathode are 10 μF and 25 mF, respectively. Typical values of n are n1 = 0.77, n2 = 0.86, and n3 =
0.78.
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Z3 are presented in Figure 3 and summarized in Table 1. The
parameters of Z1 were constant through the entire discharge,
and the change of parameters related to Z2 and Z3 are divided
into three parts as indicated in Figure 3: (1) At 0−40% SOD,
only negligible change was observed, (2) at 40−80% SOD, R2
and R3 increased 2−3 times, and C2* and C3* decreased by 95%,
and (3) at 80−100% SOD, R3 increased exponentially to 14.1
kΩ at 90% SOD (more than 10 times the initial value), the
pseudocapacitances stayed at ∼5% of the initial value, and the
voltage dropped. Parameters related to Z2 could not be
determined in the last part of the discharge because of an
overlap with Z3.
At 20 μA, the average relative Kramers−Kronig deviation at

frequencies from 1 mHz to 10 Hz was typically 0.5% at the
plateau, increasing near sudden death to 2% at 2.2 V. The n3
value got below 0.7 in the end of the discharge to typical values
of 0.62. This means that the pseudocapacitance C3* is less
meaningful to calculate.
3.3. EIS Measurement in Argon. A potentiostatic EIS

measurement at OCV with 5 mV amplitude was made on a
fresh battery in argon atmosphere before exposure to oxygen to
investigate reactions not related to oxygen reduction. The
measurement is shown in Figure 4, and clearly, reactions were
still taking place in the absence of oxygen, as Z1 and Z2 were
still present. The low frequency tail could be modeled with a
capacitor, C3, which means that no charge transfer reaction is
present for this process. The spectrum was modeled with the
equivalent circuit R-RQ-RQ-RQ-C, shown in Figure S4c in the
Supporting Information. The capacitance C3 was 18.3 mF, and
the pseudocapacitances C1* and C2* were 1.2 μF and 0.2 mF,
respectively. The presence of Z2 suggests that this process is not
related to oxygen reduction.

3.4. iv Curve at the Discharge Plateau. As discussed in
Section 2.2, the impedance is the slope of the iv-curve at a given
current. To obtain a full understanding of the relationship
between the impedance and the overpotential, it is necessary to
investigate the current dependence of the impedance. We did
this by measuring the impedance at the plateau at ∼40% of the
total capacity at different current densities and compared this
with the corresponding iv curve. As the impedance is almost
constant in the first part of a discharge, the exact time of
measurement was of less importance. To avoid effects of
degradation in the battery, each point in the plot was made with
a fresh battery. To eliminate variations due to different masses
of the cathodes, both currents and impedances were weighed
with the mass of carbon.
Figure 5 shows the iv curve of the plateau potential as a

function of current density (red dots). The values are fitted

with eq 2 (red line) with OCV, c1, and c2 as fitting parameters.
The result is OCV = 2.78 V, c1 = 12 mV·(gC/mA)

0.44 and c2 =
0.44, which correspond to a Tafel slope of 120 millivolts per
decade at 180 mA/gC. This is in line with previous publications
by Viswanathan et al. and Lu et al.4,17 The iv curve fit is
differentiated (black line) and compared with the measured

Figure 3. Resistances and normalized pseudocapacitances determined
from EIS measurements in a 20 μA (18 μA/cm2) constant current
discharge to 2.2 V using eq 3. Nyquist plots are shown at three
representative stages, and the corresponding SODs are marked with
circles on the voltage profile. R2 and C2* could not be determined well
at the end of discharge and are thus greyed out.

Figure 4. Bode plot and Nyquist plot (inset) of a potentiostatic EIS
measurement at OCV in argon atmosphere. The spectrum is modeled
with an R-RQ-RQ-RQ-C circuit, shown in Figure S4c in the Supporting
Information.

Figure 5. Plateau voltage dependence on current density (red dots)
from 10 μA (9 μA/cm2) to 5 mA (4.4 mA/cm2). Equation 2 is fitted
to the data (red line), which is then differentiated (black line) and
compared with the total resistance (black dots) measured with
impedance. Three representative discharge curves show how the
plateau voltage is determined. The impedance and current density
were weighed by the carbon mass of each electrode.
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impedance (black dots) in accordance with eq 1. It is seen that
the measured impedance followed the same trend, but that it
was higher than expected based on the iv curve. The reason for
this discrepancy is likely related to a chemically induced
parasitic side reaction that becomes more pronounced at lower
discharge rates. This will be discussed further in Section 4.1.
3.5. Charge at 250 μA. In Figure 6, we present typical EIS

measurements during a charge. To limit the complexity of the

analysis, impedance measurements are only made at voltages
below 4.2 V to avoid the major decomposition reactions
observed at higher potentials using DEMS. In this measure-
ment, the 4.2 V limit corresponded to 60% SOC.
Three impedance contributions are identified. The correla-

tion between the impedance and SOC is more complex than
during discharge. The spectrum is dominated by a high- and a
low-frequency response similar to Z1 and Z3 during discharge. It
seems like the frequencies between 1 and 100 Hz are
dominated by a mix of different processes appearing at certain
SOCs and then disappearing at higher SOC, but further studies
are needed to qualify this. The parameters obtained using
equivalent circuit fitting on the green (0.03 mAh) and black
(0.42 mAh) spectra with eq 3 are given in Table 1. The three
contributions are in the same frequency ranges as seen during
discharge. The polarization resistance, Rp, was almost constant
in the range of 500−1000 Ω, but the peak frequencies and the
relative magnitude of the different impedance contributions
changed. Looking at the pseudocapacitances, C1* decreased
from 3.6 μF to 0.6 μF, and C3* increased from 1.0 mF to 9.0
mF. This suggests that the active cathode area is increasing and
that the active area of the anode is decreasing during charge. It

is further noted that C3* is almost the same in the end of charge
and in the beginning of the discharge (10.2 mF). Finally, it is
noted that R1 was almost constant until 3.7 V, after which it
suddenly increased. This supports that the lithium anode
surface is deactivated by an accelerated formation of the solid
electrolyte interface (SEI) layer − possibly due to oxygen
crossover.

4. DISCUSSION
To gain electrochemical knowledge of the fundamental
reactions and bottlenecks during discharge and charge of the
Li−O2 battery, a series of electrochemical impedance spectra at
different current densities and SOCs has been measured. It was
seen that three impedance contributions were present during
both discharge and charge, and they are referred to as Z1, Z2,
and Z3. The five key findings were that

(i) the impedance did not change at the discharge plateau,
(ii) Z2 and Z3 increased near sudden death,
(iii) C3* decreased significantly just before sudden death,
(iv) pseudocapacitances related to Z1, Z2, and Z3 were

typically 3 μF for C1*, 0.1−3 mF for C2*, and 1−20 mF for
C3*, and

(v) the OCV was always 2.85 V during discharge and the
initial stages of charge, then slowly increased to 3.2 V at
the end of charge.

4.1. Identification of Processes during Discharge. Our
results support previous findings by Adams et al. and Landa-
Medrano et al. in refs 8 and 9 that Z1 originates from the anode
and that Z2 and Z3 originate from the cathode. In addition to
this, our results show that Z3 is a combination of the charge
transfer reaction of oxygen reduction and the electronic
transport through the Li2O2, whereas Z2 is a cathode-specific
process that is not related to the oxygen reduction. The
assignment of anode and cathode features in the EIS is
substantiated by the following three observations.
First, the full capacitance at the lithium anode surface is

expected to be in the range of 10 μF as discussed in Section 2.2,
whereas the capacitance of the XC72 electrode is expected to
be 25 mF. If only part of an electrode is active during the EIS
measurement, the capacitance will be lower. As reported, C1*
was typically 3 μF, whereas C2* and C3* were in the range of
0.1−20 mF. Furthermore, the cathode capacitance per active
surface area calculated by Adams et al. was in the same range as
C3*.

8

Second, the careful parameter study presented by Adams et
al. in ref 8 shows that relevant cathode processes have peak
frequencies below 10 Hz, which correspond with f 2 and f 3 in
our study, whereas the peak frequency of the anode process is
∼1 kHz, which corresponds to f1 in our study.
Third, Z1 did not change during discharge, whereas Z2 and Z3

increased significantly close to sudden death. Both electrodes
changed during the measurement. On the lithium anode,
Younesi et al. have previously shown that an SEI layer is
forming in a combination of chemical and electrochemical
reactions,33 but as shown by McCloskey et al. this is affecting
neither the electrochemistry nor the measured impedance.4 On
the other hand, the cathode is covered with an insulating layer
of mainly Li2O2 during discharge, and an increase in charge
transfer resistance is typically captured in EIS measurements.
Ascribing Z3 to oxygen reduction and electronic transport

through Li2O2 is based on two observations: (i) Z3 is the only
process related to oxygen reduction, as both Z1 and Z2 are

Figure 6. Nyquist (a) and Bode-like (b) plots of EIS measurements
made during a 250 μA (220 μA/cm2) constant current charge. The
charge followed a discharge similar to that shown in Figure 2 with a
discharge resistance extrapolated to 3 kΩ at 2.0 V. The SOCs are
shown as circles in the inset graph of the voltage profile. The 0.03 mAh
and 0.42 mAh measurement was modeled using eq 3, and the obtained
parameters are presented in Table 1
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present in argon, and (ii) R3 was the largest resistance during
the entire discharge, both when the cathode was limited by
reaction kinetics at the discharge plateau and by electronic
conduction at sudden death.
The process related to Z2 is cathode specific and not related

to oxygen reduction, as it was present in argon but almost
absent in a measurement with P50 carbon paper, shown in
Figure S3 in the Supporting Information. As P50 is binder-free,
this could indicate a degradation effect related to the PTFE
binder. A little surprising, Z2 was not present in the symmetrical
cell measurement. This could indicate that the parasitic reaction
was chemically passivated during handling when assembling the
symmetrical cell.
The iv curve in Figure 5 was made to ensure that all

electrochemical processes were captured in the impedance
spectrum. This was indeed the case, since the total impedance
could account for the changes in the overpotential. Actually, the
measured impedance seemed to overestimate the slope of the iv
curve, and the reason is most likely a result of lower Li2O2
formation yields, and therefore more heterogeneous discharge
electrodeposits, at lower current densities as shown in a
previous publication.5 Garcia-Lastra et al. and Mekonnen et al.
have shown that an increase of Li2CO3-like inclusions in the
Li2O2 layer can change the electrical conductivity using DFT
calculations,34,35 and such changes would also change the
current dependence of the impedance and explain the
deviation.
4.2. Analysis of the Overpotential during Discharge.

The measurements show that the electrochemistry was
unchanged during the entire discharge, and they support the
general understanding of tunneling being the dominant charge
transport mechanism through the Li2O2 layer at relevant
current densities and temperatures, which was initially
proposed by Albertus et al.16 and confirmed by Luntz et al.1

Furthermore, the discharge was initially occurring in the entire
cathode, whereas the increasing electronic transport through
the growing Li2O2 layer passivated large parts of the cathode
during discharge.
The tunneling mechanism is supported by two observations.

First, the impedance contribution Z3 related to oxygen
reduction and electronic conduction through Li2O2 was
constant at the discharge plateau and increased rapidly near
sudden death, which is characteristic for the tunneling barrier
that depends exponentially on the Li2O2 layer thickness, and
second, the electrochemistry was unchanged during the
discharge, as shown by a constant 2 e−/O2 process and
identification of the same three processes in the impedance
spectra at all SODs.
Passivation of the cathode is observed in the pseudocapa-

citance C3*. At 20 μA, the initial value is 21 mF. This is the
expected value of the entire cathode, which means that Li2O2
deposition is occurring in the entire cathode. The decrease in
stage 1, as defined in Figure 3, reflects Li2O2 formation, because
the introduction of a dielectric material in a capacitor changes
the capacitance. In stage 2, the decrease is significant, cannot be
explained by the dielectric layer of Li2O2 alone, and must
therefore reflect a reduction in active surface area. The cathode
passivates when the critical thickness of Li2O2 is reached and
tunneling is no longer possible. In stage 3, the available surface
area is not sufficient to support the constant current, and the
voltage drops to enable conduction through the blocked parts
of the electrode. This is seen as an increase in cathode
resistance. When fully discharged, the resistance is too large,

and the current cannot be supported within the cutoff limit of
2.2 V. This is in full agreement with observations made by
Luntz et al. using flat glassy carbon electrodes in electrolysis
cells.1

Because of discussions in literature on the significance of
oxygen diffusion in the electrolyte, it is worth mentioning that
the sudden death is not due to pore clogging and increased
oxygen diffusion resistance. In a typical discharge, the average
thickness of Li2O2 is 0.5−1 nm based on the BET surface area
of XC-72. This means that the porosity and Damköhler number
are almost unchanged during the entire discharge, and as stated
by Wang et al.,29 such small changes will not give rise to the
sudden death behavior.

4.3. Analysis of the Overpotential during Charge. The
EIS measurements from the charge confirm that the electrical
resistivity through Li2O2 decreases in charge mode as proposed
by Luntz et al. using flat glassy carbon electrodes1 and show
that the voltage increase during charge is a mixed potential
rather than an increase in internal resistance, as McCloskey et
al. have also suggested based on modeling.10

The change in resistivity in charge mode is identified by
comparing the impedance at the end of discharge with the
resistance in the beginning of the charge. During charge, the
polarization resistance was ∼500 Ω at a current of 250 μA (220
μA/cm2), which is much lower than the extrapolated value of 3
kΩ at 2.0 V during discharge. Furthermore, the charge
resistance had only little dependence on the discharge current
and depth of discharge, which suggests that the charge is not
limited by the same process as the discharge. Luntz et al. have
previously explained this by a reduction of the tunneling barrier
because of a change in the Fermi energy by experiments on flat
glassy carbon electrodes in an electrolysis cell.1

The mixed potential is identified because the impedance was
not increasing as the charging potential increased, which
indicates a change of reaction mechanisms. As shown by DEMS
and Li2O2 titration, the charging reaction is not a 2 e−/O2
process but rather a 2.5−3 e−/O2 process, and parasitic
electrochemical reactions are thus present during the entire
charge.5,10,11,15 Keeping in mind that the OCV never exceeded
3.2 V during charge, and no significant resistance increase was
seen in the impedance spectra, it suggests that a mixed potential
between these competing electrochemical reactions was
established during charge to support the high current.
These results contradict the theory proposed by Chen et al.

suggesting that the increase in charge overpotential occurs
because the Li2O2 closest to the electronically conducting part
of the cathode oxidizes first.7 If this was the case, an increase of
the charge resistance of at least an order of magnitude would be
expected to explain the voltage increase, but the resistance does
not increase by more than a factor of 2. Furthermore, after
discharging under alternating O2 isotope atmospheres, Li2O2
oxidation was found to preferentially occur at the Li2O2/
electrolyte interface over the Li2O2/cathode interface during
the initial stages of charge, as shown in a previous publication.14

Interestingly, R1 increased four times when the battery
reached 4 V, and C1* decreased to 20%. This suggests significant
anode degradation and is in line with previous work by Younesi
et al. showing how the SEI layer changes on the lithium metal
during charge of a Li−O2 battery.33 At this point it is not
possible to determine whether this change is caused by
degradation of the anode or an overlapping cathode process,
but if the increase is because of anode degradation, this will be
important to prevent in a commercial Li−O2 battery.
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5. CONCLUSION
By measuring EIS spectra at different current densities and
different SOCs it was possible to assign the three identified
contributions to either the cathode or the anode. Only one of
the two cathode processes depended on the presence of
oxygen. This indicates that this contribution was related to the
Li2O2 formation. The other contribution was cathode specific
and may reflect a degradation reaction related to the PTFE
binder.
During discharge, the rapid potential change near the end of

discharge was due to an increase in polarization resistance,
primarily related to the charge transport through the Li2O2.
This supports previously published work by Luntz et al. in ref 1,
which states that the electronic transport through Li2O2 at
relevant current densities is governed by tunneling.
In the initial part of the charge, the impedance was low

compared to the end of discharge at sudden death. This
supports that the electronic conductivity is improved when
changing to charge mode, which has also been shown in a
previous work on smooth glassy carbon cathodes in an
electrolysis cell.1 During charge, the voltage increased
significantly, whereas the resistance and OCV were almost
unchanged, and DEMS measurements identified the presence
of parasitic reactions. This suggests that the electrochemistry
changed during charge and that the voltage increase was due to
a mixed potential of parasitic reactions and Li2O2 oxidation,
established to support a constant current.
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Figure S1. Schematic figure of the test cell used in this study. The inlet and outlet allow gasses 

to be fed to and swept away from the cell and analyzed in a mass spectrometer. 
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Figure S2. Bode-plot and Nyquist-plot (inset) of a potentiostatic EIS measurement of a 

symmetrical XC72 cell at 0 V with an ac amplitude of 5 mV. The cell was made of two cathodes 

that had been discharged in separate cells with a lithium anode at 250 μA (220 μA/cm
2
). The 

spectrum is modeled with a 𝑅-𝑅𝑄-𝑄 circuit, shown in Figure S4b.  

 

A potentiostatic EIS measurement of a symmetrical cell at OCV with 5 mV amplitude was made 

to eliminate contributions from the lithium anode in the EIS spectrum. The cell was made of two 

cathodes that had been discharged 1 hour in separate cells with a lithium anode at 250 µA (220 

µA/cm
2
). The measurement is shown in Figure S2. The spectrum has been modeled with a 𝑅-

𝑅𝑄-𝑄 circuit. The CPE element was chosen instead of a capacitor to describe the low frequency 

tail, because the slope was -0.74 in the Bode plot, rather than -1 in the case of a capacitor. The 

pseudo-capacitance of the low frequency tail was 2.1 mF and the resistance and pseudo-

capacitance of the 𝑅𝑄 circuit was 27 Ω and 4.3 µF, respectively. 
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Figure S3. Bode-like plot and Nyquist-plot (inset) of a 250 μA (220 μA/cm

2
) discharge GEIS of 

an AvCarb P50 cathode carbon paper. The spectrum is modeled with a 𝑅-𝑅𝑄-𝑅𝑄-𝑅𝑄 circuit, 

shown in Figure S4a. 

 

A GEIS measurement on AvCarb P50 carbon paper prepared as described in Ref. 1 is shown in 

Figure S3. Both 𝑍1 and 𝑍3 have similar parameter values compared to XC72 and 𝑍2 is very 

small. 
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Figure S4. Equivalent circuit diagrams used to model the impedance measurements presented in 

the paper. The most common element is a Voigt element (parallel connected resistor with a 

constant phase element, CPE). (a) The equivalent circuit used the most. As discussed in the 

paper, the contributions to the impedance can be attributed to either the anode (𝑍1) or the cathode 

(𝑍2 and 𝑍3). (b) is used to model the data in Figure S2 and (c) is used to model data in Figure 4.  
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Reactions and SEI Formation during Charging of Li-O2 Cells
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In this letter we combine detailed electrochemical impedance measurements with quantitative measurements of O2 evolution and
Li2O2 oxidation to describe the charge mechanisms during charge of Li-O2 batteries with porous carbon electrodes. We identify
Li2O2 oxidation at 3.05 V and an apparent chemical formation of a solid electrolyte interface (SEI) layer as the first monolayer
of Li2O2 is oxidized, leading to a voltage increase. The first electrochemical degradation reaction is identified between 3.3 V and
3.5 V, and the chemical degradation is limited above 3.5 V, suggesting that a chemically stable SEI layer has been formed.
© 2015 The Electrochemical Society. [DOI: 10.1149/2.0051507eel] All rights reserved.
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The non-aqueous Li-O2 battery has received significant attention in
the past years due to its potentially high specific energy and low cost,
which makes it ideal for future electric vehicles. The combination of
metallic lithium as the negative electrode and reduction of molecular
oxygen at the positive electrode enable a theoretical energy density of
3.8 kWh/kg including the weight of lithium and oxygen.

During discharge, oxygen is consumed to form the insoluble
Li2O2; a high bandgap product that will limit conduction of elec-
trons and holes to the surface when the growing layer reaches a critical
thickness.1,2 Low overpotentials (<0.2 V) have been predicted for dis-
charge and charge using density functional theory,3–6 and supported
experimentally by Luntz et al. using flat glassy carbon electrodes.2

However, practical batteries with large surface area cathodes display
large overpotentials.7 This decreases the cycle efficiency significantly
and open up potential dependent parasitic reactions during charge.8

Here, we focus on the initial part of the charge until a potential
of 3.6 V to understand why the potential increases as the battery is
charged. Understanding and ultimately solving this problem is an im-
portant step toward commercialization of the Li-O2 technology. We
have analyzed Li-O2 batteries identical to a carbon based reference
system used in a number of previous publications.8–12 A differential
capacity plot of a galvanostatic charge is used to identify the onset
of at least eight electrochemical reactions during a full charge and
using differential electrochemical mass spectrometry (DEMS), elec-
trochemical impedance spectroscopy (EIS), and quantitative optical
absorption spectroscopy; it was possible to explain why the initial
low-overpotential oxidation of Li2O2 does not continue and why the
voltage increases. The findings are illustrated in Figure 1a.

Experimental

All electrochemical measurements were performed using a
2-electrode Swagelok cell with XC72 carbon black cathodes (Vul-
can XC72, Cabotcorp, GA), 1 M LiTFSI (Sigma-Aldrich) in 1,2-
dimethoxyethane (BASF) electrolyte, a Whatman glass fiber sepa-
rator and lithium anode. LiTFSI was dried at 180◦C for 12 h and
1,2-dimethoxyethane was dried using 4 Å molecular sieves (Sigma-
Aldrich). The carbon cathodes were manufactured by air-spraying a
slurry of XC72 Carbon Black and PTFE (60 wt% dispersion in water)
in a wt/wt ratio of 3:1 as described in Ref. 8.

Electrochemical impedance spectroscopy (EIS) and galvanostatic
discharge-charge curves were measured using Bio-Logic VMP3 and
MPG-2 potentiostats. Potentiostatic EIS measurements were per-
formed at different charge potentials, Uch, from 3.1 V to 3.6 V. Fre-
quencies between 20 kHz and 10 mHz were investigated with 15
points per decade and an alternating current (AC) amplitude of 5 mV.
All impedance measurements followed the procedure: a) discharge to
2.6 V at 130 mA/gcarbon followed by 150 min at 2.6 V, b) charge to Uch

at 130 mA/gcarbon, and c) continuous EIS measurements at Uch until

∗Electrochemical Society Active Member.
zE-mail: jhoj@topsoe.dk

the current decreased to 13 mA/gcarbon. 130 mA/gcarbon was chosen
because it is within a commercially interesting range and comparable
to previous studies.7–9 The voltage profile is presented in Figure S3 in
the Supporting Information.

DEMS measurements were performed at 130–260 mA/gcarbon and
the gas consumption and gas evolution were quantified using both
pressure measurements and mass spectrometry. The applied in-house
DEMS setup is similar in design to the setup used by McCloskey
et al.9

To assess the amount of Li2O2 in the air electrode at different stages
of charge, we used a spectrophotometric measurement to determine
the concentration of a Ti-complex. Li2O2 was allowed to react with
water to form H2O2 that oxidizes TiOSO4 in the solution to form the
Ti-complex. The concentration of the Ti-complex was determined by
measuring the absorbance at around 408 nm. A detailed description
of the method is included in the Supporting Information.

Results and Discussion

Figure 1b shows a typical charge curve, and Figure 2 shows differ-
ential capacity plots (dQ/dV) of such curves. The peaks correspond to
voltage plateaus in the charge curve and thereby different processes,
and from this, eight electrochemical processes can be identified at
3.05 V, 3.3 V, 3.4 V, 3.5 V, 3.85 V, 4.2 V, 4.3 V and 4.5 V. These
potentials form the basis of the following discussion. Analyses of 10
charge measurements following a discharge to 2.6 V show a charge
capacity below 3.15 V corresponding to 540 ± 80 μmolLi2O2 /gcarbon.
This corresponds to 4.3% of the total discharge capacity or approxi-
mately one monolayer as calculated in the Supporting Information.

Quantification of Li2O2 and O2 evolution.— Figure 3a shows the
oxygen evolution (blue line) and the Li2O2 removal (red line) as the
cathode is charged. The oxygen evolution is determined based on the
DEMS measurements presented in Figure S1 in the Supporting In-
formation and the Li2O2 removal is based on the optical absorption
measurements presented in Figure S2 in the Supporting Information.
The O2 evolution and, in particular, the deviation from the theoretical
value is in accordance with measurements presented by McCloskey
et al.,7 and suggests the presence of electrochemical degradation re-
actions, especially at potentials above 3.5 V. The Li2O2 is, however,
disappearing more rapidly than expected from the electrochemistry,
suggesting a significant chemical degradation. Figure 3b shows the
amount of chemical and electrochemical reactions in different poten-
tial intervals, and it is clear that the chemical degradation is most
significant in the potential ranges 2 V–3.1 V and 3.3 V–3.5 V. This
effect is somewhat more pronounced than previously reported.7

Electrochemical impedance spectroscopy (EIS).— EIS was mea-
sured at 11 different potentials during the initial charge from 3.10 V to
3.60 V. Figure S4 in the Supporting Information shows a typical mea-
surement, with the equivalent circuit fit and the determination of the
resistance, RLi2O2 , and the pseudocapacitance. Both parameters are re-
lated to a combination of the charge transfer through Li2O2 and Li2O2
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Figure 1. (a) Sketch of the reactions and SEI formation during charge of the Li-O2 battery as discussed in this letter. The potentials in the figure are the proposed
onset potentials. Li2O2 oxidation occurs at 3.05 V and an SEI layer is formed immediately on the freshly oxidized surface. At 3.3 V–3.5 V several reactions occur.
Among these are gas evolution from the SEI layer and oxidation of other Li2O2 surfaces. (b) Charge of a Li-O2 battery after a discharge to 2.6 V.

Figure 2. (a) Differential capacity plot (dQ/dV) of a representative battery charge. Each peak represents the onset of an electrochemical reaction. (b) Differential
capacity plot of the initial part of the charge following a constant current 130 mA/gcarbon discharge to 2.0 V, 2.2 V, 2.5 V or 2.6 V, which was maintained for 150
min before charging. The measurement labeled 2.0 V–0 min corresponds to charging immediately after discharge to 2.0 V.

oxidation.8 Figure 4a shows the cathode resistance at selected volt-
ages during charge, as determined by EIS. It is seen that the resistance
increases from 3.10 V to 3.30 V, decreases at 3.33 V, increases until
3.50 V, and decreases again at 3.60 V. The resistance and correspond-
ing pseudocapacitances at the marked cross section at 65 mA/gcarbon

are shown in Figure 4b for all 11 potentials. Both the resistance and
the pseudocapacitance change stepwise as a function of potential. The
resistance increases monotonic until 2.27 V, then it drops and con-
tinue a second monotonic increase from 3.33 V to 3.50 V after which
it drops. The pseudocapacitance is high at 3.10 V, decreases at 3.20
V, increases at 3.33 V and decreases again at 3.60 V. When keeping
the potential at 3.10 V, it was observed that the capacitance decreased
60% from 0.7 mF/gcarbon at 130 mA/gcarbon to 0.28 mF/gcarbon at 13
mA/gcarbon. During the measurement, the current decreases and Li2O2

is removed. Both changes are expected to increase the capacitance,
and the decreasing capacitance therefore clearly suggests that com-

pounds are deposited during this initial charge, which is in line with
the absorption measurements.

Identification of Li2O2 oxidation at 3.05 V.— We argue that the
process identified at 3.05 V is oxidation of Li2O2 based on three
observations. First, Figure S1 in the Supporting Information, shows
that the e−/O2 ratio is between 2.0 (at 2 V) and 2.1 (at 3.2 V) in the
beginning of the charge, which is exactly – or at least very close to
– the expected value for Li2O2 oxidation. Second, Figure 2b shows
how the onset potential of the process at around 3.05 V increases with
the depth of discharge and the exposure time at low potentials. To
understand this shift, it is noted that DEMS measurements show that
the e−/O2 ratio is 2.0 during the entire discharge, and McCloskey et al.
show that the Li2O2 yield is independent of the depth of discharge.7

This means that the thickness, and thereby the conductivity, of the
Li2O2 layer is the only parameter expected to change between the

Figure 3. (a) Measurement of O2 evolution using DEMS (blue) and Li2O2 removal (either chemical or electrochemical) determined spectrophotometrically (red).
The dotted line corresponds to a pure electrochemical 2 e−/O2 oxidation of Li2O2 without any chemical degradation. (b) The amount of Li2O2 oxidation with and
without gas evolution and electrochemical degradation in different potential intervals during charge. Values are normalized such that the sum of the electrochemical
reactions (blue and green) equals the relative change in capacity in each interval and sum up to 1 for a full charge.
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Figure 4. (a) The resistance related to the charge transfer through Li2O2 and Li2O2 oxidation measured at different potentials determined using EIS. The current
decreases during the measurement. (b) Resistance and capacitance values at different potentials during charge. Guide lines have been inserted to illustrate the
monotonic increases in the resistance.

measurements, and as the conductivity through the Li2O2 layer affects
the onset potential of the reaction, it suggests that the reaction occurs
at the Li2O2 surface. Third, the onset potential at the investigated
current densities (∼0.1 μA/cm2 real surface area) is 2.9 V–3.0 V
which corresponds well with the onset potential of Li2O2 oxidation
measured by Viswanathan et al. using flat glassy carbon electrodes.13

SEI layer formation.— DEMS measurements show that all elec-
trons come from the Li2O2 oxidation at the onset of the charge, until
3.1 V. In this interval, it was found from Figure 2b that 4.3% of the
Li2O2 was oxidized electrochemically and in Figure 3b it is seen that
another 4.6% was removed without gas evolution. Since all electrons
are accounted for by the gas evolved, the reaction with no gas evolu-
tion must be chemical and it is interpreted as the formation of an SEI
layer based on three observations. First, the amount of Li2O2 degra-
dation is close to the amount of electrochemically oxidized Li2O2 in
the initial part of the charge, and as the oxidation does not continue,
it suggests that the electrochemical oxidation of Li2O2 exposes the
surface such that the oxidation is followed by a chemical degradation
of Li2O2, forming an SEI layer. Furthermore, the amount of oxidized
and chemically degraded Li2O2 both correspond to approximately
one monolayer, which suggest that the reaction occur on the entire
surface of Li2O2. Second, the 60% decrease in capacitance at 3.1 V
suggests a significant deposition of a dielectric compound that could
be explained by the formation of an SEI layer. Third, the monotonic
increase in Li2O2 resistance until 3.3 V suggests a decrease of avail-
able surface area or an increased electronic transport resistance. Both
options could be explained by a growing SEI layer.

Electrochemical degradation.— Identification of the lowest po-
tential without electrochemical degradation is important to identify
a safe-voltage limit. We propose that at least one of the three sepa-
rate processes identified in the differential capacity plot in the voltage
range from 3.3 V to 3.5 V is an electrochemical degradation reaction as
the e−/O2 ratio increases in this range. Two observations suggest that
the reaction occurs at 3.3 V, but further investigation is needed to de-
termine the onset potential definitively. First, EIS measurements show
that the pseudocapacitance increases and the resistance decreases at
3.3 V. A sudden change like this suggests a new reaction pathway at
this potential. Second, isotope measurements presented by McCloskey
et al. using an identical system show that CO2 evolution occurs from
the electrolyte-Li2O2 interface from 3.3 V.9 As the CO2 evolution
reaction depends on the potential, it is likely that this reaction is the
new reaction pathway seen in the EIS measurements. To explain that
three processes are identified in this voltage range, it is noted that DFT
calculations from different groups show that onset potentials in this
range could also be oxidation of another Li2O2 crystal plane like the
oxygen rich (1–100) surface.14,15

Charge above 3.5 V.— At around 3.6 V, the resistance and
the pseudocapacitance decrease again. The correspondence between
impedance and overpotential is not straight forward, but the significant

decrease in impedance as the voltage increases, is a strong indication
of a shift in equilibrium potential caused by a mixed potential estab-
lished between different oxidation reactions to maintain the constant
current. The theory of a mixed a potential is further substantiated by
measurements at higher potentials shown in a previous publication.8

Summary

The main results of this work are shown in Figure 1a. We have
showed that Li2O2 is oxidized already at 3.05 V in porous carbon
cathodes, but that this facile oxidation is limited to approximately one
monolayer. Analysis of the chemical degradation and the change in
double layer capacitance indicate that the Li2O2 surface reacts with
the electrolyte to form a SEI layer as soon as the outermost layer is
oxidized. The resistance increases as the SEI layer blocks the surface
and the voltage increases to maintain the constant current.

Three reactions were identified between 3.3 V and 3.5 V. The
interval is dominated by Li2O2 oxidation with a small amount of
electrochemical degradation and significant chemical degradation of
Li2O2. It is expected that the reactions in this region are a gas evolving
degradation reaction in the Li2O2-electrolyte interface and oxidation
of another Li2O2 crystal plane, possibly the O-rich (1–100) plane,
among others. Above 3.5 V the chemical and electrochemical reac-
tions become more complicated and a shift in equilibrium potential
due to the establishment of a mixed potential is indicated as previ-
ously reported,8 but further work would be needed to understand and
distinguish these reactions fully.

In conclusion, the immediate formation of an SEI layer on the
oxidized Li2O2 surface in the initial part of the charge is a significant
problem that needs to be resolved before a viable Li-O2 battery can
be developed and an analysis of the very first part of the charge
might serve as a suitable screening parameter in the search for better
electrolytes.
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 2 

DEMS measurements 

    

Figure S1. Left: Charge of a Li-O2 battery after a discharge to 2.6 V. The e
-
/O2 ratio was calculated using an 

average of six DEMS measurements. The errorbars indicate one standard deviation. Right: Headspace pressure 

increase during charge at 130 mA/gcarbon constant current charge until a potential Uch (noted in the figure) is 

reached. The charging is continued potentiostatic at Uch, resulting in a decreasing current with time.  

 

Calculation of monolayers 

It is not possible to estimate the thickness of the Li2O2 layer, because the full BET area may 

not reflect the accessible surface area, as the use of binder has been shown to block the 

micropores of the carbon electrode.
1,2

 Another approach is to use that it is generally accepted 

that the sudden death occur as the insulating Li2O2 layer reaches a thickness of ~5 nm at 

relevant current densities, and, using this thickness, the initial oxidation of 4.3 % correspond 

to a removal of 2.1 Å Li2O2. This is approximately one monolayer of Li2O2. 
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 3 

Chemical quantification of Li2O2 

After electrochemical test of a Li-O2 battery, the cell was purged with argon and transferred to 

a glovebox. The cell was carefully disassembled and the cathode was extracted. Each cathode 

was washed with 1,2-dimethoxyethane (BASF) dried using 4 Å molecular sieves (Sigma-

Aldrich), and the cathodes were subsequently dried in vacuum. The cathodes were taken from 

the glovebox and immediately put into a 4 mL 0.063-0.07 % TiOSO4 aqueous solution and 

the colored oxidized Ti-complex was seen immediately. The reactions occurring are listed in 

(S1) and (S2).
3
  

Li2O2 + 2H2O  2LiOH + H2O2    (S1) 

Ti(IV)OSO4 + H2O2 + 2H2O  4H
+
 + H2Ti(VI)O4 + OSO4

4-
  (S2) 

H2Ti(VI)O4 absorbs strongly at 408 nm. The solutions were left to react for 15-30 min and to 

remove carbon particles, which otherwise would interfere with the spectrophotometric 

measurement, samples were centrifuged and the supernatant was extracted yielding a clear 

colored liquid that was characterized using a Shimadzu UV-3600 PharmaSpec with 1 nm 

resolution and medium scan in absorbance mode. 

The results from the absorption measurements are illustrated in Figure S2. 

  

Figure S2. Optical absorption spectroscopy for the washed Li2O2 coated electrodes. Left: The extinction of the 

H2Ti(VI)O4 complex in aqueous solutions illustrating the amount of detected Li2O2. Right: Lambert-Beer type 
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 4 

calibration curve used to determine the amount of Li2O2 in the cathodes. The curve is made by measuring the 

absorbance of solutions with a known amount of peroxide. In the graph, the amount of Li2O2 is represented by a 

capacity equivalent. 

 

The chemical quantification of Li2O2 using the Ti-complex presumes that Li2O2 reacts with 

water forming LiOH and H2O2. Another reaction is, however, possible 

Li2O2 + H2O  ½O2 + 2LiOH    (S3) 

If this reaction takes place, the amount of Li2O2 would be underestimated, since the Ti() 

complex is only oxidized by H2O2 that is not formed during this reaction. 

Experimentally we did not observe any O2 evolution from cathodes submerged in H2O and 

previous McCloskey et al. used a similar method to convert Li2O2 and LiO2 from identical 

cathodes into H2O2, and detailed tests of the method showed that all Li2O2 was converted to 

H2O2.
4
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 5 

Electrochemical impedance spectroscopy 

 

Figure S3. Typical voltage profile used to measure the impedance at specific potentials during charge. All 

impedance measurements follow the procedure: a) discharge to 2.6 V at 130 mA/gcarbon followed by 150 min at 

2.6 V, b) charge to Uch at 130 mA/gcarbon, and c) continuous EIS measurements at Uch until the current decreased 

to 13 mA/gcarbon. The voltage profile show a measurement with Uch = 3.30 V. 

 

   

Figure S4. Left: Typical EIS measurement performed at a constant potential Uch. The spectrum is dominated by 

the low frequency arc that has been shown to relate to the Li2O2 reduction during discharge and Li2O2 oxidation 

during charge.
5
 Right: The equivalent circuit used to describe the impedance during charge. The allowed peak-

frequency intervals of all processes are listed in the figure. As previously shown, Z4 is related to the oxygen 

oxidation and double layer capacitance of the cathode.
5
 

 

As discussed in a previous publication, the pseudocapacitance C
*
 is calculated using

5
 

𝑪∗ = 𝑸𝟏/𝒏 (
𝑹Ω𝑹

𝑹Ω + 𝑹
)
(𝟏−𝒏)/𝒏

, 

where 𝑅, 𝑄 and 𝑛 are fitting parameters from the Voigt elements, and 𝑅Ω is the DC resistance 

at the investigated frequency. 
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Abstract
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Li-O2 batteries have received wide attention as an
enabling technology for a mass-market entry of
electric vehicles due to a potential capacity much
higher than current Li-ion technology. In electric
vehicles, reliable estimation of the state-of-charge
(SoC) is crucial to determine the remaining capacity,
but Li-O2 batteries are very different to Li-ion
batteries, and current SoC-estimation methods
prove insufficient. In Li-O2 batteries, the capacity
is highly dependent on the discharge rate, since
different current densities enable different growth
mechanisms of Li2O2, and an on-board calibration
of the SoC is therefore needed. Such a calibration
is typically performed by measuring the open-circuit voltage (OCV), but as the OCV of the Li-O2 battery does
not change as a function of capacity, this method cannot be used. In this manuscript, we propose a method, based
on a single-frequency electrochemical impedance measurement, to estimate the remaining capacity and assess the
state-of-health by calculating the capacitance of the positive electrode where the discharge products are formed. The
results show that the capacitance is a good measure of the remaining capacity and that the SoC estimation can be
improved significantly by the calibration.

Highlights
− A new method to estimate capacity and degradation in metal-O2 batteries is proposed
− The method uses impedance measurement to determine the positive electrode capacitance
− Extensive testing on Li-O2 batteries show a decreasing capacitance during discharge
− The proposed method is able to reduce the SoC estimation uncertainty to less than 10 %

Keywords: Battery management, Metal-O2, Li-O2, Impedance spectroscopy, SoC, State-of-health

1. Introduction

The continued research in improving the performance
of batteries for portable devices and electric vehicles
has led to an increasing interest in metal-O2 battery
technologies such as Li-O2, Al-O2, Mg-O2, and Na-O2
[1, 2], because these technologies offer specific energies

∗Corresponding author. Tel.: +45 5851 5104 Fax.: +45 5851 5098
Email address: andreas@lithiumbalance.com (Andreas E.

Christensen)

that are much higher than the battery technology pow-
ering today’s devices. For electric vehicles, the Li-O2
battery technology has the potential of increasing the
driving range by up to 4 times, compared to the elec-
tric vehicles on the market in 2014 [3]. To ensure safe
and reliable performance from any battery, and to pre-
dict remaining capacity, a battery management system
(BMS) is needed. The two important BMS function-
alities are the calculation of the remaining capacity in
the batteries, the state-of-charge (SoC), and the health
of the battery; generally combining capacity retention
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on cycling and power capability. The health parame-
ter is referred to as the state-of-health (SoH). The SoC
and SoH is calculated by the BMS to predict the per-
formance under different scenarios, to enable optimised
usage of the remaining capacity, and even preventing
dangerous situations that may occur if the battery pow-
ered device, e.g. an electric vehicle, is suddenly with-
out power. The SoC can be calculated in numerous
ways, with the most simple being a comparison of ter-
minal voltage to previously recorded cycling data of
cell voltage and battery capacity. A slightly more com-
plex approach is to continuously monitor and integrate
the current over time, also known as coulomb count-
ing [4]. The coulomb counting method accumulates er-
rors if calibration is not performed, as it relies on the
accuracy of the measurement and several methods for
mitigating this have been proposed for lead-acid and
lithium-ion batteries [5]. Common for the secondary
metal-O2 technologies is that the main electrochemi-
cal process is unchanged during discharge and charge
(assuming no degradation). This means that the open
circuit voltage (OCV) does not change as a function of
SoC. Furthermore, constant current measurements show
a flat discharge plateau in a majority of the discharge pe-
riod. This has been shown for Li-O2 and Na-O2 batter-
ies [6, 7], as well as for Mg-O2 and Al-O2 [8, 9]. Taking
the well studied Li-O2 battery as an example, the dom-
inating process during discharge is reduction of oxygen
to deposit Li2O2 on top of an existing Li2O2 layer [10].
Initially Li2O2 is deposited on the pristine positive elec-
trode and later the process changes to Li2O2 depositing
on Li2O2. As this process continues during the entire
discharge, both OCV and discharge potential is constant
until the end of discharge, where other processes be-
come limiting, resulting in a rapid voltage drop referred
to as “sudden death”. It has also been observed that the
current densities have a significant impact on the on-
set of sudden death and thus available capacity, due to
the increase in required electron transport through the
poorly conducting Li2O2 layer [11, 12, 13]. Since the
coulomb counting method relies on a known total ca-
pacity to predict sudden death, the method is not well
suited for predicting the remaining capacity in these bat-
teries.

New methods have to be developed to overcome the
constant OCV and flat discharge plateau that otherwise
would complicate accurate online prediction of remain-
ing capacity in Li-O2 batteries. In the following, we
propose a method to accurately predict the SoC of Li-O2
batteries using a single frequency impedance measure-
ments to estimate the remaining capacity as well as the
degradation of the battery materials. Since the method

is not limited to Li-O2, we will also discuss the applica-
bility in other metal-O2 systems.

2. Experimental

Electrochemical measurements were performed on
Li-O2 batteries using 2-electrode Swagelok cells that
were assembled inside an Ar-filled glovebox (<3 ppm
O2 and H2O). The batteries used an XC72 carbon
black positive electrode (Vulcan XC72, Cabotcorp,
GA), and 1 M LiTFSI (99.95 % Sigma-Aldrich) in 1,2-
dimethoxyethane (BASF) electrolyte was used with a
Whatman GF/A glass fiber separator (Whatman) and
lithium anode (HongKong Wisdom Tech Company).
The carbon electrodes were made by air-spraying a
slurry of XC72 Carbon Black and PTFE (60 wt%
dispersion in water) in a wt/wt ratio of 3:1 as de-
scribed in Mekonnen et al. [14]. All experiments were
performed in a temperature controlled environment at
25 ◦C. Electrochemical impedance spectroscopy (EIS)
and discharge-charge curves were measured using Bio-
Logic VMP3 and MPG2 potentiostats. Impedance mea-
surements were performed throughout a number of dif-
ferent current profiles. All reported impedance mea-
surements were performed at OCV after at least 3 h
rest. The full impedance spectra included frequencies
between 20 kHz and 10 mHz with 15 points per decade
and an alternating current (AC) amplitude of 10 mV
(potentiostatic mode) or a current density of 13 mA g-1

c
(galvanostatic mode). In measurements replicating an
actual BMS system, only one frequency (10 mHz) was
investigated in order to establish a fast and simple as-
sessment. The validity of using only this single fre-
quency was confirmed by comparison with a full spec-
trum. For all experiments on Li-O2 batteries, the dis-
charge capacity was calculated as the capacity between
fully charged and the the onset of sudden death; indi-
cated by the voltage decreasing to 2.2 V. The current
densities were calculated based on the carbon-loading
of the electrodes, which typically was ∼6.5 mg cm-2 for
an electrode with a diameter of 10 mm.

2.1. Impedance analysis

EIS is used in many systems to perform in situ de-
termination of certain parameters like degradation of
secondary Li-ion batteries [15, 16, 17], capacity fad-
ing of Li-S batteries [18], and discharge mechanisms
for Si-air [19]. In Li-O2 batteries, it has previously
been shown that the low frequency (<1 Hz) contribu-
tion of the impedance is related to the positive elec-
trode [20, 21, 22]. EIS measurements in this frequency

2
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regime gives a capacitance value that relates to the dou-
ble layer capacitance of the electrode [20]. The best
measurements of this value is performed at OCV, as
this gives a uniform distribution of charged species in
the entire electrode, but our initial experiments showed
that it is also possible to measure the capacitance under
constant load. Because the measurements under load
introduces new variables, we are focusing on measure-
ments at OCV in this manuscript. At OCV, the oxy-
gen reduction reaction and Li2O2 oxidation reactions
are very slow, and if the EIS excitation signal is suf-
ficiently small, the impedance signal from the positive
electrode becomes capacitive at the relevant frequencies
(see insert in Figure 2). This means that the capacitance
can be determined by the simple expression shown in
Equation 1 [23].

C =
−1

2π f · Zim
(1)

where f is the AC perturbation frequency and Zim is
the imaginary part of the corresponding impedance. It
is important that other impedance contributions from
processes with similar time constants do not overlap
at the frequency used for the calculation. A frequency
of 10 mHz was chosen because it was the highest fre-
quency (and hence shortest measurement time) with the
main contribution from the positive electrode capaci-
tance.

2.2. Relating capacitance to the discharge processes
The capacitance of the positive electrode is deter-

mined by the electrochemical double layer capacitance
that reflects the ability of the system to store electrical
charge by rearranging the charges in the carbon (elec-
trons) and in the electrolyte (ions). The value is pro-
portional to the surface area and depends on the choice
of electrolyte, the concentration of charged species in
the electrolyte (salt concentration) and deposits on the
carbon surface. For a Li-O2 battery, Li2O2 is deposited
on the surface during discharge and as Li2O2 is a di-
electric, the capacitance of the surface will change. The
capacitance of XC72 is 12.6 F g-1

c in an organic aprotic
electrolyte as reported by Barbieri et al., which corre-
sponds to 5.4 µF cm-2, using a measured BET area of
235 m2 g-1 [24]. The capacitance of the Li2O2 layer is
calculated using Equation 2.

C = εrε0
A
d

(2)

where εr is the relative permittivity, ε0 is the vacuum
permittivity, A is the area of the layer and d is the thick-
ness of the layer. The relative permittivity of Li2O2

has been determined to be 35 by Gerbig et al. [25],
and using these values it can be calculated that going
from a pristine carbon surface without Li2O2 to ∼6 nm
of Li2O2 will halve the capacitance (a detailed descrip-
tion of this is found in Supporting Information S1). The
proposed SoC estimation is based on analysis of the de-
crease in capacitance as the Li2O2 is deposited.

As it will be shown later, the correlation between
the capacity and capacitance is following the same
trend for all the performed Li-O2 experiments and that
trend can be described by the simple functional form in
Equation 3.

C = C0 − p2

(
1 − exp

(
Q
p1

))
(3)

where C0 is the initial capacitance, Q is the capacity,
and p1 and p2 are refined parameters determining the
exponential shape.

2.3. Scaling the current density

The experiments are divided into two categories, (i)
constant current discharges at different current densities,
and (ii) dynamic current densities with different profiles.
Figure 1 shows the applied techniques. Current den-
sities are selected on basis of a future scenario, where
electric vehicles will be powered by metal-O2 batteries
as the sole source of power. The scaling of the peak
and average current densities are based on an electric
vehicle with a 100 kWh battery, a sustained high power
of 55 kW and a peak power of 105 kW, which matches
most electric vehicles today in terms of peak power and
is superior in terms of capacity [27]. See Supporting
Information S2 for details.

3
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Figure 1: Current profiles used in the experiments. (a) discharge at 130 mA g-1
c to 2.0 V interrupted by impedance measurements every

100 mAh g-1
c . 13 mA g-1

c , 39 mA g-1
c , and 390 mA g-1

c were tested in similar manner. (b) staircase discharge profile with 33 mAh g-1
c at 39 mA g-1

c ,
33 mAh g-1

c at 390 mA g-1
c and 33 mAh g-1

c at 39 mA g-1
c between each impedance measurement. (c) discharge of 130 mA g-1

c for 100 mAh g-1
c

with 3.20 V voltage-limited charge at 130 mA g-1
c to reduce electrochemical decomposition to a minimum. (d) capacity limited galvanostatic

cycling at 130 mA g-1
c limited to 65 mAh g-1

c . The charge was limited to 4.5 V to avoid severe electrolyte decomposition. (e) drive cycle from
ISEA-RWTH Aachen recorded from a Fiat 500 eCity [26], scaled to a maximum of 390 mA g-1

c (55 kW).

3. Results

To investigate the correlation of the capacitance dur-
ing discharge and charge to the SoC, SoH and power ca-
pability of the Li-O2 battery, we have performed a num-
ber of experiments based on the current profiles listed in
Figure 1. All experiments with Li-O2 batteries show a
decrease in the capacitance as the battery is discharged.

Figure 2 shows the capacitance decrease as a function
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Figure 2: Capacitance as a function of the capacity for a constant
current discharge at 130 mA g-1

c . Insert shows a Nyquist plot of the
impedance measurement, where the capacity data is highlighted. The
voltage labels are measured during discharge prior to the impedance
measurements. The OCV was 2.83 V during the entire discharge.

of capacity and it is clear how the capacitance changes
even though the voltage is unchanged. The capacitance
is calculated according to Equation 1 and the insert in
Figure 2 shows how the impedance measurement is re-
lated to the capacitance. For every data point, a unique
impedance measurement was made and the capacitance
was determined. At the end of discharge, when the bat-
tery reached sudden death, the capacitance was 50 % of
the initial value.

Figure 3a and Figure 3b show additional measure-
ments of the dependence between the capacitance and
the SoC at the different current profiles seen in Figure
1. When testing Li-O2 batteries using different current
profiles, the capacity varies significantly. From Table 1
it is seen that the discharge capacity can vary up to a fac-
tor of ∼14 between the conducted measurements. The
purpose of a BMS is to predict the remaining capacity,
and in the following we have therefore normalised each
discharge capacity to the capacity at 2.2 V, to investigate
how well the remaining capacity is predicted by the ca-
pacitance. Even though all initial capacitances are very
similar, we have chosen to normalise this value also, as
this is what would be done in an actual BMS, where the
capacitance may vary between batteries and may change
over time due to degradation. The original data is pre-
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Figure 3: Results from experiments on Li-O2 batteries, data labeled
according to current profiles in Figure 1. Capacitance is normalised
to the initial value before discharge, and capacity is normalised to
the value at 2.2 V. (a) constant current at four current densities:
13 mA g-1

c , 39 mA g-1
c , 130 mA g-1

c , and 390 mA g-1
c , (b) dynamic

current profiles according to Figure 1 and data from a 130 mA g-1
c

constant current experiment to make comparison easier, (c) discharge
voltage and capacitance from constant current experiments, showing
the relation between current density and capacitance. (d) cycling ex-
periment over 20 cycles showing decreasing capacitance as a function
of cycle number, insert showing possible degradation mechanism by
Li2CO3 accumulation.

sented in Supporting Information S3. All measurements
have been fitted to Equation 3 and it is seen that they
all follow the same trend. Table 1 shows the experi-
mental values and derived parameters, and three obser-
vations are made: (i) all initial capacitances fall within
10.0 F g-1

c ± 0.4 F g-1
c , (ii) the trend of the decreasing ca-

pacity is very similar for all measurements performed at
current densities varying a factor of 30, and at both dy-
namic and constant current experiments, and (iii) all ca-
pacitances have decreased to approximately 50 % in the
end of discharge, except the high current measurement
at 390 mA g-1

c and the measurement including charging;
Both these exceptions will be discussed further below.

Figure 3c depicts how the voltage during discharge
relates to the capacitance for different current densities,
and it is evident that the current densities impact the dis-
charge capacity, and thereby the capacitance at 2.2 V.
Figure 3d shows the normalised capacitance in the fully
charged state, as a function of cycle number. Upon cy-
cling, the capacitance decreases almost linearly to ap-
proximately 65 % after 20 cycles.

C0 p1 p2 Q2.2V
C2.2V

C0

F g-1
c mAh g-1

c F g-1
c mAh g-1

c -

13 mA g-1
c 10.3 518 820 1001 53%

39 mA g-1
c 10.0 300 467 767 44%

130 mA g-1
c 9.83 169 76.9 700 52%

130 mA g-1
c 10.1 148 90.9 599 50%

390 mA g-1
c 10.2 67 465 117 78%

Staircase 10.1 241 610 519 54%
Charging 10.3 377 44.8 1614 69%

Drive cycle 1 10.0 188 54.9 812 59%
Drive cycle 2 9.64 124 21.8 652 56%

Table 1: Experimental values and parameters obtained by fitting ex-
perimental data to Equation 3. C0 is the initial capacitance, Q2.2V

is the discharge capacity at the 2.2 V cut-off, C2.2V
C0

is the fraction of
capacitance at the 2.2 V cut-off to the initial capacitance.

4. Discussion

In the following, we show the correlation between
the capacitance and the capacity, which qualifies the
method for further studies targeting commercial use in
a Li-O2 BMS.

4.1. State-of-charge
The constant current experiments presented in Fig-

ure 2 show how the capacitance changes as a function
of capacity. The correlation is decreasing and at the
end of discharge the capacitance is 50 % of the initial
value, which is in very good agreement with the esti-
mates based on Equation 2. Assuming that the change
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is due to a uniform layer of Li2O2, this corresponds to
a layer thickness of ∼6 nm at these current densities,
and as discussed in Section 2.2, this is in line with the
general understanding of the sudden death mechanism
[13]. The voltage during discharge is shown in Fig-
ure 2 as labels on the capacitance data points, and re-
mains unchanged at ∼2.70 V between 100 % and 33 %
SoC, whereas the capacitance decreases as the battery is
discharged. Seeing that all measurements behave simi-
larly, this shows that the capacitance holds information
about the SoC, that is not possible to obtain using volt-
age based measurements.
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Figure 4: (a) Effect of error accumulation in coulomb counting and
capacity reserve, without reaching a full charge. (b) Scenario showing
difference in estimation of useable capacity between a BMS using
calibration based on capacitance, and no calibration other than full-
charge correction, shown as a vertical line at the end. The circles
at 0 % SoC highlights places were the capacitance calibration would
enable further discharging of the battery.

To estimate the error of the SoC estimation based
on capacitance measurements, the two drive cycle mea-
surements and the measurement at 130 mA g-1

c in Figure
3b are used to give a minimum relative capacity based
on a given capacitance. The points of calibration used
in the drive scenario are presented in Supporting Infor-
mation S4, Table S2.

To test the effect of the calibration, we have designed
a BMS system based on the following assumptions:

1. Due to high current dependency on capacity, a reserve of ∼10 %
SoC is needed, resulting in 90 % useable capacity.

2. Coulomb counting has a ∼3 % accumulation of error.

3. The SoC is calibrated at end of full charge.
4. Fast charging is not considered, charging performed at ∼10 kW.

If no SoC calibration is performed, the coulomb count-
ing error and the need for a capacity reserve will result
in a signicant decrease of useable capacity as the bat-
tery is discharge and charged. During discharge, the ac-
cumulated error corresponds to 3 % and during charge,
the error is 13 %, due to the additional need of a 10 %
capacity reserve for the following discharge. Figure 4a
shows the effect of the combined error of 16 % on a
100 kWh battery as a function of energy consumption
of up to 400 kWh without fully charging the battery.
When the battery is fully charged, a BMS would be able
to correct the estimation of useable capacity to the nom-
inal capacity of the battery without the capacitance cal-
ibration, and thus reset the useable capacity to 90 %.
Without the SoC calibration, the useable SoC could de-
crease to 26 % over an accumulated energy consump-
tion of 400 kWh, whereas the SoC calibration based on
capacitance would be able to keep the SoC estimation
at 90 %, thus maximising the useable capacity.

Since the capacity of future metal-O2 batteries is ex-
pected to increase, we postulate a use-scenario for the
batteries based on ∼10 kW charging power available
and no need for fast charging with daily use. This sce-
nario is illustrated in Figure 4b, where the battery is re-
spectively discharged, charged or at rest. The calibra-
tions performed in Figure 4b enables the BMS to more
accurately predict the remaining capacity, whereas the
estimated capacity without calibration would become
less than zero (shown on the figure as circles when the
SoC is crossing the 0 % threshold), warning the vehicle
or driver to stop. The capacitance calibration is less ac-
curate in the less critical beginning of discharge, due to
the slope of the capacitance correlation to the capacity,
and gradually more accurate as the battery is discharged.
Figure 4b shows that the calibrations performed below
50 % SoC have the possibility to initially correct the
SoC to an uncertainty of less than ∼10 %, and when
performed multiple times, able to further minimise the
uncertainty of the SoC estimation, resulting in periods
with an uncertainty of less than 5 % SoC.

4.2. Power capability

The current density of 390 mA g-1
c is only able to

provide 12 % of the capacity compared to the current
density of 13 mA g-1

c . This indicates that the avail-
able capacity depends explicitly on the current density.
For correct estimation of the available power, the inter-
nal resistance is usually used to predict if the terminal
voltage of a battery will exceed the limit during high
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power demands. For Li-O2 batteries, this is not possible
since the resistance is almost unchanged during the en-
tire discharge [20]. Previously, we saw that the capac-
itance of the 390 mA g-1

c experiment did not decrease
to ∼50 % of the initial capacitance. If we look at the
voltage during the constant current experiments (Figure
3c), we see that the high current density experiments
(130 mA g-1

c and 390 mA g-1
c ) have significantly higher

overpotentials, thus the 2.2 V limit is reached prema-
turely. From the measurements, it seems that current
densities of 390 mA g-1

c are only supported at capaci-
tances above 78 % of the initial capacitance, while it is
possible to use 130 mA g-1

c until a capacitance of 50 %.
This shows that the capacitance can also be used to esti-
mate the maximum power that the battery is capable of
delivering at the given state.

4.3. State-of-health
The cycling experiment (Figure 3d) shows how the

capacitance of a fully charged positive electrode de-
creases as a function of cycle number. From several
papers [14, 28, 29, 30] it has been shown that Li2CO3
and similar species are accumulating upon charging and
are immobilised in the positive electrode (see Figure
3d, insert). The presence of Li2CO3 in the cathode has
two main effects on the battery performance. First, the
amount of Li2CO3 will increase for each cycle, result-
ing in a decrease of the available active area for Li2O2
deposition. This results in a lower discharge capac-
ity for the battery. Second, the inclusion of Li2CO3
in the deposited Li2O2 decreases the charge transport
through the Li2O2, thus increasing the required overpo-
tential [31]. It has previously been shown that even a
few angstrom of Li2CO3 will decrease the capacitance
significantly [20], and using the capacitance in the fully
charged state, it is possible to track the degradation of
the positive electrode, and a BMS can use the informa-
tion to determine the SoH parameter related to capacity
retention, and thereby the cycle life of the battery.

4.4. Further development of the model
With more knowledge about the system, it is expected

that the time at OCV can be reduced significantly and
that measurements can be made even while discharging
or charging the battery. This could be done by employ-
ing impedance measurements in the time domain to cal-
culate the capacitance. In this case, it might even be
possible to perform SoC calibrations while driving. An-
other direction would be to implement an adaptive state
estimation algorithm, akin to the work done by Fleis-
cher et al. [26], using the capacitance measurements to
improve the calibration uncertainties.

The charging experiment shown in Figure 3b has a
much larger discharge capacity compared to the other
experiments (Table 1: 1614 mAh g-1

c vs 599 mAh g-1
c for

the 130 mA g-1
c experiment), and we suspect that this is

due to the accumulation of Li2CO3 and similar species.
The reason for the capacitance not decreasing to more
than 69% is not fully understood and further studies of
cycling effects on Li-O2 systems is needed.

Since the capacitance is expectedly one of the only
parameters changing during large parts of the discharge,
it is likely that the proposed method will be an impor-
tant part of any metal-O2 BMS. Many metal-O2 systems
show the same type of discharge and charge curves as
the Li-O2, but further studies on other metal-O2 systems
are needed to conclude if the proposed method is appli-
cable to these systems. A likely candidate for further
studies is the Na-O2 battery, where the discharge prod-
uct, NaO2 is considered to have surface conductivity.
The conductive nature of the NaO2 is expected to cause
an increase in capacitance as the battery is discharged,
reflecting an increase in surface area as the NaO2 cubes
are grown [32].

5. Conclusion

A method for estimating remaining capacity, power
capability and cycle life of metal-O2 batteries has been
proposed. The method was verified using Li-O2 bat-
teries, and the approach is expected to be transferrable
to other metal-O2 systems. Experiments showed that
the capacitance of the positive electrode decreased ex-
ponentially during discharge, and that it was possible to
improve the prediction the remaining battery capacity
significantly based on a single frequency measurement
of the positive electrode capacitance. In a typical sce-
nario, a single SoC calibration is able to improve the
available SoC by more than 10 % of the full battery ca-
pacity, by minimising the uncertainty of the SoC. The
capacitance was also used to estimate a degradation of
the positive electrode in a Li-O2 batteries cycled over
20 times. This makes the method applicable not only
for electric vehicles, but for batteries in a large range
of electrical devices, as the measurements can be per-
formed when needed, thus maintaining a high level of
accuracy for the estimation of remaining capacity and
state-of-health.
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Figure S1: Calculation of capacitance depending on Li2O2 layer thickness, showing where capacitance is 50 % of the initial 12.6 F g-1
c

The calculation of capacitance is based on a simple model with two capacitances: the capacitance of the pris-
tine carbon electrode, and the capacitance of the Li2O2 layer deposited on the carbon electrode. Equation 2 in the
manuscript and a calculation of two capacitances in series is used to calculate the total capacitance depending on the
Li2O2 layer thickness. The final formula is:

Ctotal(d) =

(
1

εrε0A/d
+

1
CXC72

)−1

(1)

Where εr is the relative permittivity, ε0 is the vacuum permittivity, A is the area of the layer, d is the thickness of
the Li2O2 layer, and CXC72 is the capacitance of XC72 in an aprotic electrolyte. For the case where d = 0 only
the capacitance of XC72 is used, all other calculations use: εr = 35 [1], ε0 = 8.9 · 10−12, A = 235 m2 g-1, and
CXC72 = 12.6 F g-1

c [2].
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S2. Scaling of current densities

Target energy Vdischarge Q2.2V mc Ihigh Phigh Ipeak Ppeak

kWh V mAh g-1
c kg mA g-1

c kW mA g-1
c kW

100 2.65 700 53.9 390 55.7 736 105.2

Table S1: Calculation based on target energy of 100 kWh.

The current densities are calculated based on a target energy of 100 kWh, a discharge voltage plateau of 2.65 V,
and a capacity of 700 mAh g-1

c . Peak power of 105 kW corresponds to expected peak motor power for electric vehicles,
based on comparison of 8 vehicles, model year 2013 [3].
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Figure S2: Comparison of peak motor power for selected electric vehicles, model year 2013.
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S3. Original capacitance data

Capacitance data before normalisation, from all experiments.

0 400 800 1200 
2 

4 

6 

8 

10 

Staircase 
Charging 

Drive cycle 1 
Drive cycle 2 

Constant current 

Variable current 

Capacity [mAhg-1] C 

C
 [

F
g

-1
] 

C
 

13 mAgC 

39 mAgC 
130 mAgC 
130 mAgC 
390 mAgC 

-1 

-1 

-1 

-1 

-1 

Figure S3: Capacitance data from all Li2O2 experiments.

S4. SoC estimation error

To estimate the error of the SoC estimation based on capacitance measurements, the two drive cycle measurements
and the measurement at 130 mA g-1

c in Figure 3b in the manuscript are used to give a minimum relative capacity based
on a given capacitance. The points of calibration used in the drive scenario are presented in Table S2.

Actual capacity Capacitance Minimum capacity
100% 100% 79%
85% 99% 69%
68% 98% 62%
51% 94% 39%
35% 90% 29%
18% 83% 18%
1% 61% 1%

Table S2: Calibration data.

It is clearly seen that the capacity is not estimated well in the beginning of the discharge, but in this regime
coulomb counting will be sufficient. In the end of the discharge, where the exact knowledge of the remaining capacity
is much more important, the estimation is, however, much more accurate. This enables a precise determination of the
SoC and thereby a better utilisation of the battery capacity as shown in Figure 4 in the manuscript.
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1. Introduction  

A quest of alternative energy storage systems has led to significant attention towards Li-air (or Li-O2) 

battery during the past decade.
1-6

 Exceptionally high theoretical energy density comparable to gasoline 

makes Li-O2 battery more appealing than other types of metal-ion or metal-air battery systems. But there 

are many challenges that are essential to overcome in order to bring this technology into practical and 

commercially viable applications. In the Li-O2 battery, oxygen is reduced during discharge to form 

Li2O2 at the air electrode while the lithium electrode is oxidized. During charge, Li2O2 is oxidized at the 

air electrode and lithium is plated on the lithium electrode. To ensure full rechargeability, it is important 

that the reaction is completely reversible with an insignificant loss in degradation reactions. The 

development of an electrolyte with sufficient stability towards Li2O2 and intermediate reaction products 

like the superoxide radical has been described as the biggest challenge in the development of the Li-O2 

system,
6
 and, so far, no stable electrolytes have been identified.

1, 7-9
  Moreover a suitable electrolyte for 

Li−O2 cells should also have superior anodic stability; low volatility to avoid solvent evaporation in 

open cell system; high oxygen solubility and diffusivity to enable sufficient oxygen transport to the air 

electrode to support the required currents; low viscosity; high conductivity and a wide electrochemical 

window. Although many solvents have been investigated in this regard, none of them fulfill the above 

mentioned requirements. Ionic liquids (ILs) have been proposed by several researchers as suitable 
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electrolyte because of their relatively high electrochemical and chemical stability against O2 radicals.
3-4, 

10-18
 

Ionic Liquids (ILs), generally comprised by an organic cations and inorganic anions, are a class 

of molten organic salts which are fluids at temperatures around 100 °C or below.
19-23

 They have 

stimulated much interest for a variety of chemical, physical and biological processes in past few decades 

due to their remarkable and unique properties such as negligible volatility, thermal & electrochemical 

stability, non flammability, tunable viscosity, high ionic conductivity and superior hydrophobicity. 

Recently ILs have received significant attention as safe and environmentally friendly electrolytes in 

electrochemical devices such as Li-O2 battery due to the nonvolatile nature.
4, 11, 18, 24-25

 Another 

interesting fact about these ILs is that the physicochemical properties can be tuned just by varying the 

combinations of cations and anions. However, one should take into account that not all ILs are suitable 

as electrolyte. As an example, ILs based on imidazolium families is unstable against peroxide radical 

attack.
26

 On the other hand pyrrolidinium and piperidinium based cations with combination of 

bis(trifluoromethanesulfonyl)imide (TFSI
-
) anion has been reported to meet the criteria of good 

electrolytes.
2
 There are many discussions in literature regarding the use of ionic liquid-based electrolytes 

in Li-oxygen cells. Bresser et al.
27

 have recently reviewed the utilization of ionic liquids in Li-O2 

battery. The first report on ionic liquid as electrolye in Li-air battery was published by Kuboki et al. in 

2005.
4
 In their study hydrophobic Imidazolium based ionic liquids were investigated as electrolyte 

solvent in primary lithium-O2 and lithium-air cells. Mizuno et al.
28

 studied the applicability of N-

methyl-N-propyl piperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) as electrolyte solvent for 

lithium-O2 batteries, where they found retention of reversible capacity about 60% of the initial capacity 

after 30 cycles. Recently Monaco et al.
14

 reported the use of N-butyl-N-methylpyrrolidinium bis-(tri 

fluoromethane sulfonyl) imidelithium-bis-(trifluoromethane-sulfonyl) imide (P14TFSI-LiTFSI, 9:1) as 

electrolyte in a novel Li-O2 flow cell configuration by circulating the oxygen-saturated electrolyte 

through the cell.  In a more recent study, Elia et al.
11

 have demonstrated the reversibility of, 

P14TFSI−LiTFSI) electrolyte with energy efficiency in the order of 82%, by using capacity-limited 
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galvanostatic cycling. In another report the stability of P14TFSI−LiTFSI electrolytes was investigated by 

Piana et al.
15

 in a different Li-O2 cell configurations. They showed that P14TFSI gets reduced on 

metallic lithium but it works well in specially designed configuration. They also mentioned that poor 

cyclability in the particular cell design might be due to the insufficient long-term stability against the 

attack of O2

. Based on these new promising results, the research in developing stable IL based 

electrolytes increases in order to develop a reversible Li-O2 battery for energy storage devices. 

 In our study, we investigate the rechargeability in a Li-O2 cell with ionic liquid electrolytes based 

on five different cations and two different anions as shown in Figure 1. The main focus is N-

alkylmethylpyrrolidinium (P13
+
 and P14

+
) and N-alkylmethylpipiridinium (PP13

+
) based cations in 

combination with the TFSI
-
 anion, and other IL based electrolytes will be used primarily for comparison. 

As mentioned before, these ILs have shown promising results as stable electrolytes in Li-O2 battery, and 

we analyse the stability further using Differential Electrochemical Mass Spectrometry (DEMS) to 

quantitatively assess the amount of oxygen consumed during discharge (ORR) and the types and amount 

of gas evolved during charge (OER). Complementary measurements with the 

bis(trifluoromethanesulfonyl)imide (FSI
-
) anion, or a cation based on either imidazolium or quaternary 

ammonium are used to describe the desired features of an IL-based electrolyte for Li-O2 batteries. 

  

2. Experimental materials and methods 

The ILs used in this study are: N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl) imide 

(P13TFSI, purity 99.9 %, Solvionic), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl) imide (P13FSI, 

purity 99.9 %, Solvionic),  N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide 

(PP13TFSI, purity 99.9 %, Solvionic), N,N-Diethyl-N-methyl-N-propylammonium 

bis(fluorosulfonyl)imide(N1223FSI, purity 99.9 %, Solvionic), 1-butyl-2,3-dimethyllimidazolium 

bis(trifluoromethanesulfonyl)imide (BdImTFSI, purity 99.9 %, Solvionic), N-methyl-N-

butylpyrrolidinium bis(trifluoromethanesulfonyl) imide (P14TFSI, purity 98.5 %, Sigma-Aldrich). All 

ILs were used as received from suppliers. Lithium bis(trifluoromethanesulfonyl) imide (LiTFSI, purity 
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99.9 %, Sigma-Aldrich), was preheated at 180 C and Lithium bis(fluorosulfonyl) imide (LiFSI, purity 

99.9 %, Suzhou Fluolyte) was preheated at 80 C prior to preparing the electrolye. The 0.3 M LiX-IL 

(X=TFSI, FSI) electrolytes were prepared by adding the appropriate amount of salt and ionic liquid and 

stirring over night at room temperature in order to get homogenous electrolyte solution. 

Homemade carbon cathodes were manufactured by air-spraying a slurry of XC72 carbon black 

(Vulcan XC72, Cabotcorp, GA) and PTFE (60 wt% dispersion in water, Sigma-Aldrich) in a wt/wt ratio 

of 3:1 onto a 316SS stainless steel 150 mesh (Westcoast, Denmark) as described in.
8
 After air-drying for 

at least one hour, the coated SS mesh was cut in 10 mm diameter cathodes. The cathodes were rinsed 

carefully. First, an acetone and isopropanol wash removed any loose particles and secondly, the cathodes 

were in vacuum for at least 30 minutes at room temperature followed by at least 12 h at 200 °C inside a 

glove box. A homebuild airtight swagelok Li-O2 cell was used for all studies.  The cell was assembled 

with lithium as anode (HongKong Wisdom Tech Company), Whatmann glass fibre separators and XC72 

cathode. ~60 μl of electrolyte was used for each experiment. 

The presence of crystalline products on electrodes after first cycle (for discharge and charge, 

separately) was analyzed using a Regaku Advance X-ray Diffractometer (2θ = 20-80°) working with Cu-

Kα radiation (λ =0.15418 nm). For this purpose, cathode materials were scratched from the electrode 

after disassembling inside the glove box and inserted into a 0.7mm diameter capillary. The capillary was 

sealed with glue and measured in the diffractometer. 

DEMS measurements were performed at currents of 20 µA and 50 µA and the gas consumption and 

gas evolution were quantified using both pressure measurements and mass spectrometry. The applied in-

house DEMS setup is similar in design to the setup used by McCloskey et al..
29

 From the DEMS 

measurements it is possible to determine the e

/O2 ratio during both discharge and charge, the amount of 

oxygen consumed (ORR) compared to the oxygen evolved (OER) and the amount of CO2 and H2 

evolved. These key characteristics are crucial to determine if a Li-O2 system is truly reversible 
30

 and 

Table 1 summarizes this information from all investigated electrolytes. 
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 The concentration and diffusion of oxygen, denoted as [O2] and DO2, respectively, in the RTILs 

were determined by a chronoamperometric technique adapted from Shoup and Szabo.
31-32

 Prior to this, 

the ionic liquid was saturated with O2 for 12 h. A 33 µm glassy-carbon (GC) microdisc electrode (Bio-

Logic) was polished using 0.05 µm Al2O3 (Buehler). The electrochemical determinations were 

conducted using a minimal amount of the IL (a few drops) in a borosilicate glass vial that prior to each 

experiment had been cleaned in boiling HNO3 (Sigma-Aldrich) and then heated to a 120 
o
C and brought 

into a glovebox where the IL was added. The glass vial was taken out of the glovebox and rapidly put 

under an O2 with a Pt wire acting as both pseudo-reference- and counter electrode. The chronoampero 

metric experiments were performed using a Bio-Logic VMP3 potentiostat, with a sample time of 0.01 s, 

by stepping the potential from a voltage from zero current, held for 30 s, to a chosen potential after the 

reduction of oxygen, measured for 5 s, that was identified by previous cyclic voltammograms. 

 

3. Results and Discussions: 

Molecular formulas of the ionic liquid cations and anions investigated in this study are shown in Figure 

1. DEMS results for (e

/O2)dis, (e


/O2)ch, OER/ORR, CO2/ORR, and H2/ORR for all studied IL based 

electrolytes and the DME based electrolyte are summarized Table 1.  

Figure 2(A) shows the first galvanostatic discharge-charge cycle curve for electrolytes based on 

P13TFSI and P13FSI in Li-oxygen cells at room temperature. The cells were discharged at 50µA to a 

voltage cutoff of 2.2 V and charged to 4.2V at the same current. Figure 2(B) presents the total gas (O2) 

consumed during discharge (ORR) and gas evolved during charge (OER). The value of the ratio 

(OER/ORR) should be exactly 1 if the cell is fully rechargeable. The measurement shows that P13TFSI 

and P13FSI are only 60 % and 20 % rechargeable at potentials below 4.2 V. Figure 2(C) shows 

DEMS measurements during charge. Oxygen (m/z = 32) is identified as the main gaseous charging 

product in both the electrolytes. For P13TFSI, the initial O2 evolution rate is close to 2 e

/O2, which is 

consistent with Li2O2 oxidation. But as charging continues, the oxygen evolution rate gradually 

decreases to 3 e

/O2. P13FSI is also showing an initial 2 e


/O2 ratio, suggesting Li2O2 oxidation, but 
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after charging approximately 10 % of the full discharge capacity, the oxygen evolution decreases and the 

potential increases rapidly.  

Results for cells with P14TFSI and PP13TFSI based electrolytes are displayed in Figure 3. The 

oxygen gas evolution rate of P14TFSI was close to 2e

/O2 throughout most of the charging process and 

decreased slightly at the end of charge. PP13TFSI, on the other hand, did not perform well. At 50 µA, 

the battery was not able to sustain the current for long and only little oxygen was evolved. At a lower 

current of 20 µA, a capacity similar to P14TFSI (measured at 50 µA) was obtained. This measurement 

showed poor reversibility with an OER/ORR ratio of 40%, which is quite similar with the result by 

McCloskey et al.
1
 Although the electron count per oxygen is 2.09 during discharge, the charge reveal 

significant electrochemical degradation corresponding to more than half of measured the current.  

XRD results of discharged cathodes for pure ionic liquids and DME based electrolyte was 

depicted in Figure 4. All cells were discharged to 2.2 V at a current of 20 µA. Li2O2 crystalline phases 

were observed in the all discharged cathodes except the electrolytes with FSI

 based ionic liquids (e.g. 

P13FSI, N1223FSI; Figure 4, Figure S3). This indicates that no detectable Li2O2 or other crystalline 

products are formed during discharge.  Although the presence of Li2CO3 phases was observed from 

XRD but we could not see any CO2 gas evolved till 4.2V in DEMS. 

Figure 5 shows the e

/O2 data through six cycles for electrolytes based on P14TFSI and 

P13TFSI. It is seen that the amount of electrochemical degradation reactions increases during both 

discharge and charge as the batteries are cycled which shows that even though the first cycle seems 

promising, the system is not stable. 

 

Discussion of P13FSI and P13TFSI 

DEMS result in Figure 2 clearly indicates some parasitical electrochemistry attributed to 

oxidation/degradation of the electrolyte or to the oxidation electrolyte degradation products.
1
 Here we 

should mention that the error bar in O2 evolution rate in case of P13FSI-0.3MLiFSI is related to the 

background correction. DEMS result clearly shows the difference in performance in Li-O2 cell just by 
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changing the anion. Hence the stability could be because of different structure of those two anions. 

Literature shows 
33

 that O2-solubility of IL might be enhanced by choosing a suitable anion although 

oxygen mobility may  decrease. Monaco et al.
33

 demonstrated in this study that the reason for the 

increase in O2-solubility is the increase in fluorine content in the anion part. Other reason of the 

improvement in O2-solubility could be attributed to the increase in the size of anions.
34

 Our solubility 

measurement using the method described above also show higher O2 solubility in TFSI
-
 based IL than 

FSI
-
 one (Table 2) which suggest better reversibility in P13TFSI based electrolytes due to better O2 

stability of TFSI- anion. 

 

 

Discussion of P14TFSI and PP13TFSI 

It might be interesting to look into oxygen evolution rate behavior during charge of piperidinium 

(PP13TFSI) based electrolytes at different current density. Here oxygen evolved at a rate higher than 2 

(e

/O2) (3) at the beginning but it decreases gradually to 4 electron processes at low current (20µA) 

while at relatively higher current (50µA) it is showing value 4 throughout the charging process. This 

clearly indicates other chemical/electrochemical reactions are taking part extensively and this electrolyte 

is not stable in Li-O2 cell.  

The stability of P14TFSI based electrolytes are extensively studied recently by Piana et al. in different 

Li-O2 cell configurations.
15

 They observed decomposition of P14TFSI via reduction on metallic lithium 

when they assemble cell with pure lithium as anode and vulcan XC72 carbon as cathode. They found 

alkene and amines as the degradation products, detected by OEMS and 1H-NMR experiments. We too 

used the similar type cell configuration and the DEMS result show only  62% reversibility in the first 

cycle. That indicates some other electrochemistry are taking part during discharge and charge but we 

could not detect any alkene or amine in DEMS. 

 

General discussion 
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The same result for DME and other ionic liquid based electrolyte compositions are presented in the 

Supporting Information (Figures S1, S2). Significantly small parasitical reactions are observed in case of 

P13TFSI, P14TFSI and PP13TFSI where the (e

/O2)dis are fairly near 2 while the value is really high in 

case of BdImTFSI, P13FSI and N1223FSI based electrolytes (Table1). For comparison, 1MLiTFSI -

DME based electrolytes also display quite high degree of reversibility with the (e

/O2)dis value very near 

to 2 (table1 and SI). In general all electrolytes show much higher (e

/O2)ch (≫ 2.0) values which implies 

that some parasitical electrochemistry always occurs during the charging process. The other gas evolved 

(e.g., CO2, H2) during the cell operation for all electrolytes was very low (below detection level) except 

for the electrolyte based on PP13TFSI ionic liquid. We have observed substantial amounts of H2 (∼27 

%, although non calibrated*) in pipiredinium based electrolytes from DEMS study. Also we have 

detected trace amount of water in PP13TFSI and BdImTFSI ionic liquids while conducting the solubility 

measurement.  

Although P13TFSI and P14TFSI have been observed to be the best interms of stability in Li-O2 

cells but we could see that these are not sufficient for long term stability purpose (Figure 5). An increase 

in the e

/O2 ratio during cycling agrees well with results published by McCloskey et al. in DME based 

electrolytes and Piana et al. in P14TFSI based electrolytes. 

 

4. Conclusions 

We have demonstrated using DEMS that the extent of rechargeability is much dependent on the choice 

of cation and anion. Unfortunately none of the studied ionic liquid based electrolytes could behave as 

true ideal electrolytes in Li-O2 battery. Although the pyrrolidium-cation and TFSI-anion (P13TFSI, 

P14TFSI) based ionic liquids have better rechargrability (OER/ORR>60%) than pyrrolidium-cation and 

FSI-anion based ionic liquids; still these are quite far for fulfilling the requirement of perfect 

electrolytes. Other electrolytes based on piperidinium, imidazoliun and quaternary ammonium are 

unstable in Li-O2 battery. 
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Figure Captions 
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Table 1: Differential Electrochemical Mass Spectrometry (DEMS) result of different ionic liquid and 

DME based electrolytes (* indicates non calibrated data). 

Cathode Solvent Salt OER/ORR (e
-
/O2)dis (e

-
/O2)ch CO2/ORR H2/ORR* 

XC72 P13TFSI LiTFSI 0.6173 

(±0.081) 

2.0048 

(±0.1413) 

3.0914 

(±0.2717) 

0.00493 

(±0.0011) 

 

0.0103 

(±0.0018) 

 

P14TFSI LiTFSI 0.6284 

(±0.1368) 

2.0309 

(±0.1271) 

 

2.7495 

(±0.4071) 

 

0.00415 

 

0.01438 

 

PP13TFSI LiTFSI 0.40214 

(±0.1236) 

 

2.093 

(±0.049) 

 

4.025 

(±0.078) 

 

0.0316 

(±0.0011) 

 

0.18 

(±0.086) 

 

BdImTFSI LiTFSI 0.45 

(±0.15) 

 

2.144 

(±0.1077) 

 

8.264 

 

0.0155 

(±0.0098) 

 

0.008 

 (±0.0068) 

 

P13FSI LiFSI 0.1929 

(±0.0042) 

 

2.51 

(±0.098) 

 

3.404 

 

0.044 

(±0.032) 

 

0.015 

(±0.011) 

 

N1223FSI LiFSI 0.1888 

(±0.0569) 

 

2.45 

(±0.117) 

 

4.059 

 

0.0046 

(±0.0018) 

 

0.0026 

(±0.0008) 

 

DME LiTFSI 0.796 

(±0.01) 

1.897158 

(±0.0468) 

 0.079475 

 

0.027453 
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Figure 1: Schematic diagram of different cations and anions of ionic liquid used in this study. 
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Figure 2: (A) Galvanostatic discharge−charge curves for cells utilizing P13TFSI-0.3MLiTFSI  

LiTFSI and P13FSI-0.3MLiFSI (both at 50µA discharge-charge). (B) Oxygen consumption 

(measured using pressure decay) during discharge and evolution (measured using DEMS) during 

charge. (c) Gas evolution rates for O2, CO2, and H2. 
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Figure 3: (A) Galvanostatic discharge−charge curves for cells employing P14TFSI-0.3MLiTFSI 

(50µA discharge-charge) and PP13TFSI-0.3MLiTFSI (50µA and 20µA discharge-charge). (B) 

Oxygen consumption (measured using pressure decay) during discharge and evolution (measured 

using DEMS) during charge and (c) Gas evolution rates for O2, CO2, and H2. 
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Figure 4: XRD patterns of discharged XC72 carbon cathodes of various electrolytes. 

 

 

 

Paper IV - Rechargeability of ionic liquids in Li-O2 batteries 152



 

19 

 

 

Figure 5: Cycling behavior of P14TFSI and P13TFSI based electrolytes. 
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IL DO2 [cm
2
/s] [O2] [mM] η [mPa s] 

P13FSI 2.57e-6 8.17 52.70 

P13TFSI 9.17e-7 11.71 71.23 

PP13TFSI 1.78e-6 10.58 151 

BdIm-TFSI 1.22e-6 18.81 115.22 

P14TFSI (1.8 ±0.2) e-6 14 89* 

N1223FSI 1.22e-6 7.71  

 

 

Table 2: The concentration [O2] and diffusion of oxygen, DO2, in the RTILs. 
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Communication: The influence of CO2 poisoning on overvoltages
and discharge capacity in non-aqueous Li-Air batteries
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The effects of Li2CO3 like species originating from reactions between CO2 and Li2O2 at the cathode
of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic
charge-discharge measurements. Adsorption energies of CO2 at various nucleation sites on a stepped
(11̄00) Li2O2 surface were determined and even a low concentration of CO2 effectively blocks the
step nucleation site and alters the Li2O2 shape due to Li2CO3 formation. Nudged elastic band calcu-
lations show that once CO2 is adsorbed on a step valley site, it is effectively unable to diffuse and im-
pacts the Li2O2 growth mechanism, capacity, and overvoltages. The charging processes are strongly
influenced by CO2 contamination, and exhibit increased overvoltages and increased capacity, as a
result of poisoning of nucleation sites: this effect is predicted from DFT calculations and observed
experimentally already at 1% CO2. Large capacity losses and overvoltages are seen at higher CO2

concentrations. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869212]

I. INTRODUCTION

As energy storage needs are growing rapidly, there is also
an increase in research into high energy density materials for
energy storage. Significant attention has been given to metal-
air batteries, particularly Li-air batteries, as future environ-
mentally friendly high energy density storage for vehicles,
where the capacity offered by existing Li-ion technology is
too low to solve the increasing demands on batteries.1 The
Li-O2 couple is particularly attractive and could have ∼5–
10 times greater specific energies than currently available Li-
ion batteries, though there are severe scientific and technical
challenges that need to be addressed.2, 3 Such as a clear un-
derstanding of the Li2O2 growth mechanisms, transport pro-
cesses, interfacial phenomena, air impurities, and stability of
the key components are vital parts of non-aqueous recharge-
able Li-air cell research.4

As first reported by Abraham and Jiang in 1996, the
Li-O2 battery with aprotic solvent is shown to be recharge-
able, when Li2O2 is formed during discharge at the cathode.5

Detailed understanding of the Li2O2 growth mechanism is im-
portant to solve the problem associated with the practical lim-
itations of the battery. Previous theoretical works by Hum-
melshøj et al.6 and Radin et al.7, 8 showed that steps on a
reconstructed (11̄00)surface could act as nucleation sites for
low discharge overvoltage and facets such as (0001), (11̄00),
and (112̄0) have similar surface energies. Hummelshøj et al.9

have also shown that surfaces are potential dependent and
vary during discharge and charge. According to G0W0 cal-
culations, both Li2O2 and Li2CO3 are insulating materials
with wide band gap of 4.9 and 8.8 eV, respectively.10–12

Therefore, as these materials deposit at the cathode surface

a)E-mail: teve@dtu.dk

during discharge they will limit the electronic conduction
and lead to sudden death during discharge within 5–10 nm
thick Li2O2 deposits.13, 14 However, recent DFT calculations
found that hole and electron polaronic transports at the sur-
face and in bulk Li2O2 and Li2CO3 can take place. Using
a PBE+U (Hubbard-corrected Perdew–Burke–Ernzerhof) ex-
change correlation functional, Garcia-Lastra et al.11 revealed
that the hole polarons have higher mobility than electron po-
larons and Li2CO3 exhibits lower conduction than Li2O2. Re-
cent works by Luntz et al. have shown that hole tunneling
should dominate and polaronic transport is only expected to
be significant in Li2O2 at elevated temperatures and low cur-
rent densities.15, 16

Li2CO3 like crystalline species are formed by parasitic
side reactions between the Li2O2 or LiO2 and carbon sources
from air impurities such as CO and CO2 gases,17 the graphite
itself, or the decomposition of aprotic electrolytes. Younesi
et al.18, 34 reported the degradation of various electrolytes by
Li2O2 and documented Li2CO3 as a decomposition product
from aprotic electrolytes. Likewise, McCloskey et al.3 have
shown that carbonates accumulate at the C-Li2O2 and Li2O2-
electrolyte interfaces and are responsible for a large poten-
tial increase during recharge and a huge decrease in exchange
current density. This makes growth of Li2O2 on Li2CO3 an
equally important process to investigate, but this is beyond
the scope of this communication. As reported by Siegfried
et al.19 and Myrdal and Vegge20 adsorption of sulfur contain-
ing compounds on oxide surfaces could also control the elec-
trochemical growth mechanism. Adsorbed species at surfaces
can potentially block the nucleation sites, and therefore, alter
the growth directions, overvoltages, and capacities.

In this communication, we address the influence of
CO2 contamination on the Li2O2 growth mechanism, dis-
charge/charge overvoltages, and capacity in non-aqueous

0021-9606/2014/140(12)/121101/5/$30.00 © 2014 AIP Publishing LLC140, 121101-1
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TABLE I. Adsorption energies of CO2 in the gas phase at (11̄00) Li2O2

surface.

Species Sites Adsorption energy (eV)

CO2 Step valley −0.73
Terrace valley −0.21
Step ridge −0.02

Li-air batteries using density functional theory (DFT) and
galvanostatic measurements. Among other air contaminants,
CO2 is the most critical subject due to its high solubility in
aprotic electrolytes and high reactivity with Li2O2 to form an
insulating material Li2CO3.

II. COMPUTATIONAL RESULTS AND ANALYSIS

DFT21–23 as implemented in the GPAW (grid-based
projector-augmented wave method) code24 is used to per-
form the presented calculations through the atomic simu-
lation environment (ASE).25 GPAW is built on real space
grids and non-valence electrons are described by PAW (pro-
jector augmented-wave method).26, 27 Electron exchange and
correlation is approximated by the revised Perdew–Burke–
Ernzerhof (RPBE) functional.28 The stepped (11̄00) Li2O2

surface with a super cell consisting of a 56–64 atoms slab
with a 18 Å vacuum layer between periodic images along
the z-axis, see Fig. S1 in the supplementary material.35 Since
the oxygen rich (0001) facet will also be exposed, in particu-
lar under charging conditions,9 and subsequent investigations
should be performed to analyze the detailed mechanisms of
CO2 bonding to this facet. Recent computational DFT results
for SO2 adsorption on stepped (0001) and (11̄00) surfaces do,
however, show preferential bonding to the (11̄00) facets,20

which is investigated here. The k-points are sampled with a
(4,4,1) Monkhorst-Pack mesh and 0.15 grid points is used.
Atomic energy optimization calculations are performed until
all forces are less than 0.01 eV/Å. Energy barriers are cal-
culated by the climbing image nudged elastic band (CINEB)
method.29–31

Adsorption energies of CO2 at various nucleation sites on
a stepped (11̄00) Li2O2 surface were determined, see Table I.
CO2 binds preferentially at the step valley site and weakly
binds at the step ridge site. NEB calculations show that once
CO2 is adsorbed at step valley site, it is bound by barriers up-
wards of 3 eV, see Fig. S2 in the supplementary material,35

since the CO2 molecule is required to desorb from the surface
prior to re-adsorbing at the step site. The detailed nature of a
conversion of adsorbed CO2 to Li2CO3 warrants further inves-
tigations, but we find the adsorption of a single CO2 molecule
forms a Li∼3CO3-type complex (Fig. 1(b)), which could act
as a nucleation site for further growth of Li2CO3.

The computational lithium electrode approach is used in
the free energy calculations.6, 32 Defined as, U = 0, when bulk
Li anode and Li ions in solution (Li+ + e−) are at equilib-
rium. The free energy change of the reaction is shifted by
−neU at an applied bias, where n is the number of transferred
electrons; other assumptions are listed in the supplementary
material.35 As reported by Hummelshøj et al., kinks and steps

sites of the stepped (11̄00) Li2O2 surface are favorable nucle-
ation sites for a low overvoltage Li2O2 growth mechanism.
The influence of CO2 poisoning on the Li2O2 growth mecha-
nism is studied while CO2 is already adsorbed at step valley
site (Fig. 1(b)).

The free energy diagram in Fig. 2 shows a four steps,
two formula units Li2O2 growth mechanism on the stepped
(11̄00) Li2O2 surface with and without CO2. The first step in
the presence of CO2 is adsorption of LiO2 species (Fig. 1(c)),
and which reduces the binding energy by 0.44 V compared
to the pure discharge. The next step is the addition of a sec-
ond LiO2 species (Fig. 1(d)), which is the potential limiting
charge step that raises the binding energy by 0.20 V com-
pared to pure Li2O2. This is followed by subsequent additions
of two Li (Figs. 1(e) and 1(f)) with relatively small binding
energies with respect to a pure discharge. In the pure O2 dis-
charge mechanism, unlike in the presence of CO2, addition of
the first Li is the limiting charge potential step. The 2Li2O2

growth at the step surface effectively displaces CO2 from the
step to the less stable terrace site.

Hummelshøj et al. have reported that the pure Li2O2

growth mechanism follows a 4 steps reaction mechanism,
where all reaction steps are electrochemical, similar to what
is seen in the presence of CO2. The equilibrium potential can
be obtained as U0 = −�G/2e. The effective equilibrium po-
tential on a pure surface becomes 2.73 V (experimental value,
U0,Exp = 2.85 V), while in the presence of CO2, this is effec-
tively reduced to 2.53 V for the first cycle due to the shift in
binding energy of CO2 from a step valley to terrace site. As
a result, discharge at other facets may become activate.9 At
neutral bias all reaction steps are downhill, but at an applied
potential, the free energy difference changes for each step cal-
culated as

�Gi,U = �Gi − eU. (1)

The lowest free energy step, �Gi,min, along the reaction path
becomes uphill first at an applied potential called limited dis-
charge potential, Udischarge, while the largest free energy step,
�Gi,max, that is last to become downhill for the reversed re-
action at an applied potential called limited charge potential,
Ucharge, obtained as

Udischarge = min [−�Gi/e] and Ucharge = max [−�Gi/e].
(2)

In the presence (absence) of a single CO2 molecule, this dis-
charge occurs as described in Fig. 1, resulting in Udischarge

= 2.21 V (2.66 V), and Ucharge = 2.97 V (2.81 V) and the
discharge and charge overvoltages in the presence (absence)
of CO2 are ηdischarge = 0.31 V (0.07 V), and ηcharge = 0.44 V
(0.08 V). The calculated 0.44 V overvoltage for charge corre-
sponds to low CO2 concentrations, where only a single CO2

molecule is adsorbed on the Li2O2 step forming a Li∼3CO3

type complex (see Fig. 1). Here, the charging process follows
the same reaction steps as the discharge, but in reverse (from
right to left in Fig. 2), i.e., the first two steps are desorption
of two Li and followed by desorption of 2 LiO2 species: in
total desorbing 2 Li2O2 units from the surface and returning
to the configuration in Fig. 1(b). Quantitative agreement with
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FIG. 1. Stepped Li2O2 (11̄00) surface before and after adsorption of CO2 and 4 steps Li2O2 growth pathways during discharge. (a) Pure stepped Li2O2 surface.
(b) CO2 adsorbs to step valley site forming a Li∼3CO3 type complex. (c) 1st LiO2 adsorbs. (d) 2nd LiO2 adsorbs. (e) 1st Li. (f) 2nd Li adsorbs to the surface
completing growth of 2 Li2O2 formula units. Atoms labeled as: C (gray), Li (purple), and O (red). Deposited atoms shown as: Li (yellow) and O (green).

experimental overvoltages can therefore only be expected for
low concentrations of CO2 (e.g., 1%). For higher CO2 con-
centrations, the formation of crystalline Li2CO3 would be ex-
pected, resulting in significantly larger overvoltages.3

III. EXPERIMENTAL RESULTS AND ANALYSIS

Li-air batteries were constructed using a Swagelok de-
sign and assembled inside an Ar-filled glovebox (≤3 ppm
O2 and H2O). Each battery contained a 200 μl 1 M LiTFSI
(99.95%, Sigma-Aldrich) and 1,2-dimethoxymethane, DME,
(H2O < 20 ppm, BASF) electrolyte. Cathodes consisted of
P50 AvCarb carbon paper (Fuel cell store), which were son-
icated using 2-propanol (99.5%, Sigma-Aldrich) and acetone
(≥99.8%, Sigma-Aldrich), introduced into a glovebox where
they were rinsed with DME before drying in vacuum at 80 ◦C
for 12 h. Cathodes were supported by a 316 steel mesh. A

FIG. 2. Calculated free energy diagrams for a four steps discharge mecha-
nism on a stepped (11̄00)Li2O2 surface with and without adsorbed CO2.

10 mm diameter lithium foil (99.9%, Sigma-Aldrich) was
used as anode. Two Celgard separators 2500 (Celgard) were
placed in between the two electrodes. The separators were
sonicated in EtOH (99.9%, Sigma-Aldrich), transferred to a
glovebox, and rinsed with DME before drying in vacuum at
80 ◦C for 12 h. Experiments were performed using a Bio-
Logic VMP3 Multichannel galvanostat (Bio-Logic, Claix,
France). Batteries were operated in two galvanostatic modes:
First, at 100 μA (127.3 μA/cm2) where cells were discharged
to 2 V and charged to 4.6 V vs. Li+/Li. Second, at 50 μA
(63.6 μA/cm2) using the same potential limits.

To investigate the effect of gaseous CO2, the assembled
cells were purged with three different atmospheres: 0/100
CO2/O2, 1/99 CO2/O2, and 50/50 CO2/O2. Three individ-
ual batteries were assembled and investigated for each atmo-
sphere and each curve presented in Figs. 3 and 4 is there-
fore an average of three cells with the equal atmosphere as
shown in Fig. S3 in the supplementary material.35 The lowest
discharge capacity was observed for the 50% CO2 cells and
is likely caused by the high concentration of electrochemi-
cally inactive CO2. A similar effect was observed, by Gowda
et al.17 for a pure CO2 cell, where the cell potential immedi-
ately dropped. It should however be noted that Takechi et al.33

observed, quite to the contrary of our observations, higher
discharge capacities up to 70% CO2 with respect to pure O2

cells. Interestingly, a higher discharge capacity was observed
for the 1% CO2 cells in respect to the pure O2 cells as shown
in Fig. 3 (inset). A possible explanation is the dissolution of
Li2CO3 species in DME and/or, as also suggested by Gowda
et al., or a change in deposition morphology compared to that
deposited in the pure O2 cells as suggested by Myrdal and
Vegge.20 Such morphological changes could increase the to-
tal electrodeposited layer and lead to higher capacities.

All CO2 cells have higher discharge overvoltages com-
pared to cells with pure O2 at a discharge rate of 127.3
μA/cm2, which may be caused by the blocking of the
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FIG. 3. Galvanostatic discharge profiles at 127.3 μA/cm2 discharge at three
different atmospheres: 50% CO2, 1% CO2, and 0% CO2. Inset shows the
increase in discharge capacity in 1% CO2.

active nucleation sites by solubilized CO2, forcing the
reactions to follow pathways with higher overvoltages. This
effect can even be seen at 1% CO2, as illustrated in Fig. 3
above. The charge capacity, as seen in Fig. 4 and Fig. S4 in
the supplementary material,35 is very dependent on the CO2

concentration, with high concentrations limiting charge ca-
pacity and thereby the cell reversibly. The 50% CO2 cells
reach the lower potential limit (2.0 V) early, at approximately
35 mAh/g, while 1% CO2 cells and pure O2 cells continued
until capacities in the range 1150–1600 mAh/g were reached
depending on current density. The low charge capacity at high
CO2 contaminations should be attributed to the poor Li-CO2

electrochemistry, also reported by Gowda et al. The charging
overvoltages are a function of both current density and the
level of CO2 contamination. While there is no significant dif-
ference in overvoltages between cells charge at 127.3 and 63.6
μA/cm2 for 50% CO2 cells, which again can be attributed to
the poor Li-CO2 electrochemistry. At 127.3 μA/cm2, there is
an increase in overvoltage of about 0.4 and 0.3 V for 1% CO2

cells and 0% CO2 cells, respectively. The general increase in
overvoltages with increasing current density can be explained

FIG. 4. Galvanostatic charge profiles at 127.3 (solid) and 63.6 (dotted)
μA/cm2 at three different atmospheres: 50% CO2, 1% CO2, and 0% CO2.

by the Butler-Volmer model, while the larger overvoltage for
the 1% CO2 cells than 0% CO2 cells is expectedly caused
by the formation and oxidation of the carbonate like species
(Fig. 1(b)). A second charge at 63.6 μA/cm2 shows identical
results for 1% and 0% CO2. This can be ascribed to the evo-
lution of CO2 observed during the initial charge cycle, where
CO2 is released at 4.5 V, as shown in Fig. S5 in the sup-
plementary material,35 resulting in residual CO2 in the elec-
trolyte causing blocking of the step sites in subsequent charg-
ing experiments.

IV. CONCLUSIONS

Influences of CO2 poisoning at a stepped (11̄00) Li2O2

surface in non-aqueous Li-air battery were studied using DFT
calculations and cells were characterized by electrochemical
charge-discharge measurements. CO2 preferentially binds at
step valley site at the Li2O2 surface and the Li2O2 growth
mechanism consists of four electrochemical steps, following
the same sequence for both pure and contaminated systems.
Accordingly, the first step of the growth mechanism is the ad-
sorption of two LiO2 species and followed by addition of two
Li to form 2 Li2O2 at the cathode surface. For charge in the
low CO2 limit, a similar reaction will occur, but in reverse
order.

Low concentrations of CO2 (1%) effectively block the
surface-active nucleation sites and alter the shape and growth
directions of Li2O2 on the surface; resulting in an increased
capacity of the battery at the expense of an increase in the
overvoltage in the presence of CO2. A similar behavior is seen
in pure oxygen following charging to 4.5 V, resulting from
decomposition reactions. The effective discharge potential is
reduced by 0.20 V on a stepped (11̄00) Li2O2 surface, shifting
the reaction to alternate nucleation sites. In general, the DFT
calculations and experimental results show that the recharging
process is strongly influenced by CO2 contamination, and ex-
hibits significantly increased charging overvoltage, which is
observed already with 1% CO2 contamination, while at 50%
CO2 a large capacity loss is also seen.
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Jansen, Jürgen Janek, and Philipp Adelhelm. A comprehensive study on the cell

chemistry of the sodium superoxide (NaO2) battery. Physical chemistry chemical

physics : PCCP, 15(28):11661–72, June 2013. doi: 10.1039/c3cp50930c.

[102] World Meteorological Organization. Technical Regulations. Volume I - General

Meteorological Standards and Recommended Practices. World Meteorological Or-

ganization, Geneva, 2011 edition, 2012. ISBN 9789263100498.

[103] Stefano Meini, Michele Piana, Nikolaos Tsiouvaras, Arnd Garsuch, and Hubert a.

Gasteiger. The Effect of Water on the Discharge Capacity of a Non-Catalyzed

Carbon Cathode for Li-O2 Batteries. Electrochemical and Solid-State Letters, 15

(4):A45, 2012. doi: 10.1149/2.005204esl.

[104] Kensuke Takechi, Tohru Shiga, and Takahiko Asaoka. A Li–O2/CO2 battery.

Chemical Communications, 47(12):3463–3465, February 2011. doi: 10.1039/

C0CC05176D.

http://www.fueleconomy.gov/feg/evsbs.shtml
http://www.fueleconomy.gov/feg/evsbs.shtml


Bibliography 176

[105] Hyung-Kyu Lim, Hee-Dae Lim, Kyu-Young Park, Dong-Hwa Seo, Hyeokjo Gwon,

Jihyun Hong, William a Goddard, Hyungjun Kim, and Kisuk Kang. Toward a

Lithium-”Air” Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen

Cell. Journal of the American Chemical Society, 135(26):9733–42, July 2013. doi:

10.1021/ja4016765.

[106] Jian Zhang, Wu Xu, Xiaohong Li, and Wei Liu. Air Dehydration Membranes for

Nonaqueous Lithium–Air Batteries. Journal of The Electrochemical Society, 157

(8):A940–A946, 2010. doi: 10.1149/1.3430093.

[107] L G Johnson. Oxygen battery system, September 2009. URL https://www.

google.dk/patents/US20090239132.

[108] R Hilse, M Schiemann, H G Schweiger, and S D Tillmann. Battery system for use

in electrochemical energy generating, storing or consuming apparatus, has drying

unit and housing with opening for exchange of gas between housing inner space,

housing outer space and drying unit, January 2011. URL https://www.google.

dk/patents/DE102009032463A1?cl=en.

[109] M Heger, H Thomas, D J Morton, and I Rottler. Battery system for e.g. hybrid car,

has air interchange device that allows exchange of air between interior of battery

housing and exterior environment to prevent or minimize ingress of water from

exterior environment into interior, October 2012. URL https://www.google.dk/

patents/DE102011015925A1?cl=en.

[110] A Gleiter. Vorrichtung zur Reduzierung von Feuchtigkeit in einem Innenraum
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