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Gamma irradiation was investigated as a triggering stimulus for the activation of 
poly(methyl methacrylate) (PMMA) microcapsules. PMMA was exposed to varying doses 
of irradiation and analysed by DSC, SEC and NMR. It was found that the glass transition 
temperature (Tg) of the polymer decreases at low irradiation doses. Additionally, Tg can be 
physically adjusted by adding a plasticizer and both kinds of microcapsules were 
successfully prepared, with non-plasticized and plasticized PMMA shell. Finally, 
impermeable microcapsules after irradiation were shown to become permeable and 
release an encapsulated PDMS cross-linker, which enables the remotely controlled 
formation of PDMS silicones in traditionally unavailable places. Therefore, the activation 
method has significant implications for industrial application. 
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1. Introduction 

Microencapsulation attracts attention mainly due to the way in which it controls release [1, 

2]. The technique allows for the preparation of innovative materials appearing more 

frequently in commercial products. For example, medicines programmed to release active 

substances reduce harmful side effects and frequency of use [3]. Similarly, many cosmetics 

contain microcapsules in order to achieve prolonged action; for instance, encapsulated 

volatile fragrances last longer. Other examples of applications and benefits include the 

masking of unpleasant tastes by the food industry, the controlled release of nutrients in soil 

for farming, textiles and self-healing materials [4, 5]. 

 

To obtain the desired release rate from microcapsules, the correct form of activation must 

be chosen. Activation in this case is a process in which the properties of a microcapsule’s 

shell change in order to deliver enclosed material into the surrounding environment. 



Various sorts of stimuli, such as light, mechanical, thermal or magnetic exposure, can trigger 

this release. Hence, the choice of the shell material is dictated by the type of triggering 

stimulus. For instance, a light-triggered release from a capsule is achieved through the usage 

of photo-responsive or photo-cleavable groups [6, 7]. By adjusting the concentration of 

photosensitive material in the shell structure, different release rates are achieved. 

Moreover, mechanical activation is often employed in self-healing resins [8], where the self-

healing mechanism is triggered through the release and reaction of the healing agent in the 

region of damage. Another example is thermal activation, which leads to the melting of the 

shell at higher temperatures, thereby resulting in capsule collapse [9]. Furthermore, the 

activation of magnetically triggered capsules, the most frequently used in drug delivery 

systems [10], occurs only in tissues subjected to oscillating magnetic fields, thus allowing for 

accurate navigation of the drug due to the presence of magnetic nanoparticles. 

 

Poly(methyl methacrylate), PMMA, has been used widely as a shell material for 

encapsulating liquid compounds [11-13]. PMMA is brittle and hard below the glass 

transition temperature (Tg), but it becomes soft and flexible at higher temperatures. Heating 

microcapsules above the Tg of PMMA leads to the shell melting and thus acts as a triggering 

stimulus; for instance, the formation of an elastomer network in reservoir rocks may be 

delayed through the encapsulation of the PDMS cross-linker. In order to use the 

microcapsules in the oil industry, where temperatures in reservoir rock often reach 50°C, 

the Tg of the polymer shell should be higher than 50°C. However, phase change transition 

should not appear at too high temperatures, in order to ensure fast microcapsule response. 

As a result, PMMA with the Tg of 60°C seems to be a reasonable choice for such a system. In 

addition, exposure to another external stimulus, which decreases the Tg of the shell, makes 

microcapsules permeable at lower temperatures. 

 

In this study, gamma irradiation was investigated as a triggering stimulus, because it 

penetrates through many materials and thus allows for the remote activation of 

microcapsules in inaccessible places. Moreover, gamma irradiation changes the structure of 

polymers and consequently influences their Tg. PMMA generally undergoes chain 

degradation at low irradiation doses, but cross-linking can take place when higher doses are 

delivered to the material [14]. As a result, the Tg may decrease or increase, respectively. 



Furthermore, polymers with purposely low Mw designed were examined, because the glass 

transition temperature of short chain polymers is known to depend strongly on their 

molecular weight [15]. Chemical and physical modifications were also tested with the aim of 

promoting chain scission, i.e. to increase the response for a given dose. 

 

2. Experimental section 

Chemicals  

Hydride-functional PDMS cross-linker (HMS-301, Mw=2000 g/mol, Gelest), vinyl-terminated 

PDMS (DMS-V35, Mw=49500 g/mol, Gelest), poly(vinyl alcohol) (PVA, Mw=22000 g/mol, 

Fluka), azo-bis-isobutyronitrile (AIBN, Ventron) and the platinum cyclovinylmethyl siloxane 

complex (Catalyst 511, Hanse Chemie AG) were used as received. Methyl methacrylate 

(MMA, Aldrich) was passed through an aluminum oxide column to remove any inhibitor. All 

other chemicals were acquired from Aldrich and used as received. 

 

Preparation of materials 

Non-plasticised PMMA 

Two kinds of non-plasticised PMMA were examined. Sample named as PMMA_1 is a 

commercially available polymer, whereas sample labeled as PMMA_2 was synthesized 

following the procedure: 5.0g methyl methacrylate, 20.0g toluene, 0.35g AIBN and 0.36g 

thioglycolic acid – a chain transfer agent (CTA) – were charged to a 50 mL round-bottom 

flask equipped with a magnetic stirrer and sealed with a rubber septum. The flask was then 

flushed with nitrogen at room temperature for 15 minutes, and the reaction was run at 60℃ 

for 24h under a nitrogen atmosphere. The round-bottom flask was then cooled, and the 

toluene was removed by a rotary evaporator at room temperature. The material left in the 

flask was then dissolved in dichloromethane (DCM) and precipitated by hexane. Finally, the 

precipitated PMMA was washed additionally by hexane until all impurities had been 

removed. 

 

Fluorinated derivatives - 2,2,2-trifluoroethyl methacrylate – with various molecular weights 

were also synthesized and the preparation details are described in a supplementary 

information. 

 



Plasticised PMMA 

Firstly, PMMA_1 was dissolved in DCM and various amounts of DBP were added to the 

solution. After evaporating DCM at room temperature for two days, the Tg of plasticized 

samples were evaluated. Sample with required Tg was chosen for further analysis, and called 

as PMMA_3. 

 

PMMA microcapsules containing a PDMS cross-linker 

The preparation of microcapsules with PMMA_1 as a shell and a cross-linker core was 

studied extensively in our research group [11, 16]. The phase separation technique was 

employed as briefly described here: an oil phase was prepared by adding the PDMS cross-

linker HMS-301 (1.5g) to DCM (75 mL), preceded by dissolving PMMA (1g) in an organic 

solvent. Afterwards, approximately 77 mL of aqueous emulsifier solution (1% PVA) was 

charged to a 250 mL conical flask. The aqueous phase was mechanically stirred at 2000 rpm 

for 2-5 min (Eurostar Digital Ika Labortechnik), and the oil phase was added drop-wise over 

60 seconds to form an oil-in-water emulsion. The agitation was kept for 1h at around 750 

rpm, before pouring the emulsion into another 120 mL of the aqueous surfactant solution 

(1% PVA). The diluted emulsion was rotary evaporated, in order to remove residual DCM. 

The dispersion of microcapsules was filtered by use of a filtration pump and qualitative filter 

paper, 413 (particle retention: 5-13 μm). Finally, the product was washed with distilled 

water (~1.5 L) and dried at room temperature. 

 

Microcapsules with plasticised PMMA shell were prepared analogously via the phase 

separation technique. Therefore, the oil phase consisted of DCM, PMMA, HMS-301 and 

DBP. 

Gamma irradiation experiments 

Each sample weighed approximately 1 g, and the samples were irradiated at room 

temperature with various doses of gamma rays, by using a 60Cobalt gamma cell at the 

Center for Nuclear Technologies, Danish Technical University, Risø Campus. The dose rate 

was approximately 1 Gy s-1. Nominal doses were given as doses to water, and the maximum 

dose was 10 kGy. 

 



Analytical methods 

The glass transition temperature of the shell polymers was measured by employing a DSC 

Q1000 calorimeter (TA Instruments) at heating/cooling rates of 10°C min-1. The samples 

weighed approximately 2-5mg. The glass transition temperatures were calculated by means 

of the second heating scan as the temperature of the halfway point of the jump in heat 

capacity when the material changed from a glassy to a rubbery state. To investigate the 

chemical structure of the polymers, 1H NMR characterisation was performed on a Bruker 

250 MHz spectrometer using CDCl3 as a solvent. All spectra were recorded across 32 scans, 

while size-exclusion chromatography (SEC) was performed on a Viscotek GPCmax VE-2001 

instrument equipped with a Viscotek TriSEC Model 302 triple detector using two PLgel 

mixed-D columns from Polymer Laboratories. Samples were run in THF at room 

temperature and at a rate of 1 mL/min. Scanning electron microscopy (SEM) images were 

recorded on FEI Inspect S on samples that were metallised with gold using a Cressington 

208HR Sputter Coater, and the reactivity of the PMMA microcapsules was examined by 

using a controlled strain rheometer (Ares G2, TA-Instruments). The strain amplitude was 2% 

and the frequency was kept at 1 Hz, which has previously been shown as a suitable 

frequency for tracking additional curing silicone [16]. Microcapsules were mixed with DMS-

V35 (vinyl-terminated PDMS) at a mass ratio of 1:10, and the dynamic modulus (G’) was 

measured at different temperatures. 

 

3. Results and discussion 

The addition of plasticiser was explored as an easy and fast method to adjust Tg [17]. Figure 

1 shows the Tg of plasticised PMMA_1 with different amounts of DBP. 
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Figure 1.Tg of PMMA_1 containing various plasticizer concentrations. 



 
As expected, plasticised PMMA with DBP possess decreasing Tg with increasing amount of 

plasticiser. Since the sample with 15% of DBP showed a Tg closest to the desired activation 

temperature (60°C), it was irradiated and used in the preparation of the microcapsules and 

since now called as PMMA_3.  

 

Prepared samples were exposed to different irradiation doses and table 1 shows the Tg and 

molecular weights of the studied polymers.  

 

Table 1. Glass transition temperatures and molecular weights of non-irradiated and 

irradiated polymers. 

Absorbed 
dose 
[kGy] 

PMMA_1 PMMA_2 PMMA_3 

Tg [°C] Mw [g/mol] Tg [°C] Mw [g/mol] Tg [°C] Mw [g/mol] 

0 95 15 000 
PDI 2.3 58 2 000* 

PDI 1.6 59 15 000* 
PDI 2.5 

0.3 92 14 500 53 

 

- 

 
0.5 90 15 000 54 - 
0.8 86 14 000 47 60 
1.6 83 13 500 46 52 
10 89 13 500 53 57 

*SEC calibration was done for standard PMMA molecular weights. Therefore, SEC results are presented only for PMMA_1, 

since sample PMMA_2 has a very low molecular weight and plasticised sample is a mixture of two components. 

 

The polymers had lower glass transition temperatures after irradiation, due to induced 

chain scission. Scission is a two-stage process initiated at unsaturated chain ends, and it is 

followed by random scissions of the backbone [18]. Therefore, in the first stage molecular 

weight does not change significantly since the cleavage of the pendant and the end groups 

takes place. Scission of the main backbone causes observable changes in chain length. Since 

the molecular weights of irradiated samples did not change significantly, it is assumed that 

end-chain degradation mainly took place. Additionally, Figure 2 presents 1H NMR spectra of 

sample PMMA_1 before and after irradiation. The PMMA gives four main resonances in the 
1H NMR spectrum. Signals at 0.7 and 1 ppm correspond to the protons of the methyl groups 

attached to the carbon of the backbone of the PMMA. The peak at 1.7 ppm is attributed to 

the protons of the methylene groups from the backbone, and the peak at ~ 3.5 ppm refers 

to the protons of the methyl groups attached to the ester groups of the side chains of the 



PMMA. Peaks attributed to a double bond of methyl methacrylate (MMA) are also observed 

in the spectrum at 5.5 and 6.0 ppm even at dose 0 kGy. Integration of the signals indicated 

that amount of the monomer in the sample decreased during the irradiation due to 

volatility of MMA. It means that presence of the residue monomer did not influence on the 

Tg loss as it could be assumed since monomers are main degradation products of PMMA 

[18]. Data show that the structure of PMMA did not change significantly, what confirmed 

our assumptions that a slight change in chain length was sufficient to influence polymer 

properties. 

 

 
Figure 2. 1H NMR spectra of  PMMA_1. 

 

At the highest irradiation doses Tg started to increase slightly, due to a cross-linking reaction 

[19]. When the concentration of degradation products increases, the possibility that macro-

radicals will recombine with each other also increases. Since PMMA monomers are very 

susceptible to free radical polymerisation, products formed during the degradation process 

cross-link with each other. Therefore, the glass transition temperature of the PMMA 

increased. 

 
Irradiated sample PMMA_3 behaved similarly to the non-plasticised sample. In both cases, 

the lowest Tg was observed at 1.6 kGy and started to increase at higher doses. Nevertheless, 



the influence of irradiation was less noticeable for the plasticised samples, as plasticisers 

protect polymer compositions against chain scission. For instance, aromatic groups have the 

ability to effectively degrade absorbed energy and increase the radiation stability of a 

mixture [20, 21]. Furthermore, plasticisers act as lubricants between adjacent polymer 

chains and allow for greater molecular movement. This increased mobility of chains leads to 

a higher rate of migration of free radicals, which in turn increases the possibility of radical 

collision. Therefore, the impact of irradiation on Tg was less noticeable for the plasticised 

sample, though PMMA degradation did take place. 

 

Fluorinated derivatives were also exposed to gamma irradiation, but no clear relationship 

between the irradiation dose and Tg was observed. All experimental details are presented in 

supplementary information.  

 

PMMA microcapsules containing a PDMS cross-linker 

Microcapsules with a non-plasticised PMMA_1 and a plasticised PMMA_3 shell containing a 

high viscosity PDMS cross-linker agent were prepared using the phase separation technique. 

Figure 3 presents SEM photos of the capsules. The diameter of the microcapsules falls 

between 3-40 μm, with the average size at around 20 μm, while the mass content of the 

encapsulated cross-linker, determined by the 1H NMR method, was approximately 50% [11].  

 

 
Figure 3. SEM photos of microcapsules with a) a non-plasticised and b) a plasticised 

PMMA_1 shell. 

 



The presence of DBP in the microcapsule shells was verified by 1H NMR analysis, and the 

spectra of the microcapsules are shown in Figure 4. The 1H NMR spectrum of the plasticised 

microcapsules should show resonances attributed to the PMMA, cross-linker and DBP. 

Peaks attributed to hydrogens in a PMMA structure were previously described. A spectrum 

of the cross-linker shows peak at 4.7 ppm, which is assigned to the hydrogens attached to 

the silicon atom, and the peak at 0 ppm corresponds to the protons of the methyl groups 

linked to the silicone atom. A spectrum of DBP shows six peaks. Resonances at 7.7 and 7.5 

ppm are ascribed to protons in the DBP aromatic group. At 4.3 ppm there is a signal arising 

from the metoxy protons of the butoxy group. Two peaks at 1.7 and 1.4 ppm come from 

protons in -CH2- groups and a resonance at 1 ppm is ascribed to the protons from the 

methyl group. As a spectrum of microcapsules with plasticized shell shows all these peaks, it 

proves that DBP was incorporated into the shell. The chemical structure of the microcapsule 

was also inferred from the FTIR studies [11]. No evidence  of hydroxyl  groups  (OH)  in  the  

region  of  3 300  cm-1  from the emulsifier (PVA) was detected via IR spectroscopy meaning 

that all PVA was washed out during purification step.  

 

 
Figure 4. 1H NMR spectra of microcapsules plasticised shells and the components. 



Adding plasticiser did not influence the preparation process of the microcapsules. Since DBP 

is soluble in DCM and miscible with PMMA, plasticised PMMA microcapsules were 

successfully prepared.  

 

Activation of the microcapsules 

Microcapsules with a PMMA_1 shell were exposed to a 1.6 kGy dose, and their reactivity 

with vinyl-terminated DMS-V35 was examined by using a controlled strain rheometer. The 

dynamic moduli of the mixture were measured at different temperatures, the results for 

which are presented in Figure 5. Non-irradiated microcapsules reacted with DMS-V35 at 

100°C, and a significant increase in storage modulus was observed. PMMA passes through 

phase change transition at 95°C and microcapsules become permeable. Below 100°C, the 

microcapsules were relatively stable, since only minor changes in G’ were observed – the 

remaining cross-linker on the surface of the shell could be a reason for this result. Although 

the storage modulus increased below Tg of the PMMA, it is evident that the cross-linking 

reaction took place mainly at 100°C. On the other hand, a dramatic increase in G’ was 

observed at 30°C for irradiated microcapsules despite the fact that the PMMA Tg was 

around 80°C, which means that not only does the Tg of polymer change during irradiation, 

but local heating effects can affect the local structure of the PMMA shell. 

 

 
Figure 5. The reactivity of PMMA_1 microcapsules with DMS-V35, before and after 

irradiation. The mass ratio between the compounds was 1:10, respectively. 

 



4. Conclusions 

This paper presents a comprehensive study of the potential application of gamma 

irradiation as a triggering stimulus for PMMA microcapsule remote activation. It was found 

that PMMA undergoes chain degradation at small doses of gamma irradiation, and 

therefore the glass transition temperature is decreased. The effect of chain degradation is 

more noticeable for PMMA with relatively low molecular weight. Moreover, physical 

modification of the microcapsules’ shell by adding plasticiser, allows for the easy and fast 

control of the initial Tg of the microcapsule shell.  

 

Secondly, the reactivity of microcapsules with vinyl-terminated PDMS shows that a cross-

linking reaction takes place with high efficiency after γ-irradiation activation. Before 

activation, microcapsules are stable at a wide range of temperatures, but when they are 

exposed to gamma irradiation, an encapsulated cross-linker releases at lower temperatures 

and an elastomer network is created. Therefore, two main advantages of the usage of the γ-

irradiation stimulus are the possibility of remotely activating microcapsules in unreachable 

places and a significant decrease in activation temperature. 
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