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Minimum length scale in topology optimization by
geometric constraints

Mingdong Zhou∗, Boyan S. Lazarov, Fengwen Wang, Ole Sigmund

Solid Mechanics, Department of Mechanical Engineering, Technical University of Denmark, Nils
Koppels Allé, Building 404, DK-2800 Kgs. Lyngby, Denmark

Abstract

A density-based topology optimization approach is proposed to design structures
with strict minimum length scale. The idea is based on using a filtering-threshold
topology optimization scheme and computationally cheap geometric constraints.
The constraints are defined over the underlying structural geometry represented
by the filtered and physical fields. Satisfying the constraints leads to a design
that possesses user-specified minimum length scale. Conventional topology op-
timization problems can be augmented with the proposed constraints to achieve
minimum length scale on the final design. No additional finite element analy-
sis is required for the constrained optimization. Several benchmark examples are
presented to show the effectiveness of this approach.

Keywords: Minimum length scale, Topology optimization, Geometric constraint

1. Introduction

The aim of this paper is to design two-phase (solid-void) structures that pos-
sess strict minimum length scale by using geometric constraints. The constraints
are defined based on the structural geometry represented by a filtering-threshold
topology optimization scheme. They are computationally cheap and can be easily
implemented into conventional topology optimization problems. No additional
finite element analysis is required to achieve the prescribed minimum length scale
on the final design.
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Topology optimization [1, 2, 3] has been applied to design optimized struc-
tures for a wealth of physics problems and paving its way towards a large num-
ber of industrial applications [4, 5]. It is desirable that a topologically optimized
design can be fabricated reliably by a certain manufacturing process. To fulfil-
l the requirement for manufacturing, one recent trend is to directly consider the
manufacturing characteristics in the optimization process [6, 7, 8], i.e. to achieve
minimum length scale on the optimized design and thus ensure prototype manu-
facturability. In additive manufacturing [6], if this condition is not satisfied, holes
or disconnected parts may appear in the prototype. Another example is the design
of compliant mechanisms, for which achieving minimum length scale is crucial to
avoid the tiny-hinges at structural joints [2].

Some previous approaches to impose minimum length scale in topology opti-
mization are compared as follows. Within the density-based topology optimiza-
tion [2], Poulsen proposed the so-called MOLE (MOnotonicity based minimum
LEngth scale) method [9] to impose minimum length scale onto the topologically
optimized results. In this method, a constraint functional based on local density
variation is formulated, which guarantees that the minimum length scale of the
final design is larger than the size of a circular “looking glass”. Guest [10] sug-
gested projection schemes to achieve minimum length scale by projecting the n-
odal density into the element space with a supporting radius rmin, which stands for
the minimum feature size. However, this scheme does not resolve the “one-node
hinge” problem [2] in designing topologically optimized compliant mechanism-
s, as it imposes length scale only on one phase [12]. Besides, simple projection
may result in grey scale for some design problems [11]. The robust formulation-
s [11, 12, 13], which take the eroded, dilated and (one or several) intermediate
design realizations into account at the same time, impose length scale on the in-
termediate blueprint design only if the considered design realizations share the
same topology. However, as pointed out in [12], the robust formulation does not
necessarily guarantee a consistent topology for the realizations in different phys-
ical problems and the length scale can only be checked a posteriori. Another
drawback of using a robust formulation is the high computational cost, that it ba-
sically requires several finite analysis in every design iteration. A perturbation
based technique [14] proposed by Lazarov et. al is a computationally efficient so-
lution for the stochastic formulation based topology optimization which accounts
for geometric variations. However, due to the locality of the approximation, it
cannot provide a clear length-scale control for compliant mechanism problems.
Recently, a skeleton-based idea, which is similar to that in [17] with the level
set method, is implemented using a density based method in [18]. The idea is
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to extract the medial-zone of a structure and to constrain the density value (or the
signed-distance function in [17]) for all points inside the zone. The constraints can
impose minimum and maximum length scale in the optimized design. In both pa-
pers [17, 18], the sensitivity regarding the change of the medial-zone is neglected
in the sensitivity analysis. Possible shortcomings of this approach are discussed
in detail in [20].

Within the level set based method [15], Chen et al. [16] use a quadratical
energy functional as a penalty term in the objective function, which favors a thin
elongated structural layout with length scale in final results. However, the energy
functional requires complex geometric information and there is no explicit way
to define the exact length scale. A rigorous mathematic approach for imposing
minimum and maximum length scale in level set based topology optimization
is proposed in [19, 20]. Besides the above approaches, predefined engineering
features with length scale can be designed and optimized using a CSG based level
set approach as discussed in [21]. Readers who are interested in maximum length
scale in topology optimization are referred to the articles [17, 18, 19, 20, 22].

In this paper, a filtering-threshold topology optimization scheme (also known
as three-field scheme) [3], which utilizes a design field ρ (0 ≤ ρ ≤ 1), a filtered
design field ρ̃ and a projected (physical) field ρ̄, is adopted as the basic computa-
tional framework. The idea is motivated by the fact that minimum length scale can
be imposed over the blueprint design ρ̄ηi (thresholded by ηi) implicitly by using a
robust formulation [11, 12, 13], if all the physical realizations ρ̄η thresholded in a
range η ∈ (ηd, ηe) (0 < ηd < ηi < ηe < 1) share a consistent topology. To achieve
the latter, one sufficient condition is given as follows:

(i) ρ̃(x) ≥ ηe, ∀x ∈ Ω1 = {x|ρ̄ηi(x) = 1 and ∇ρ̃ = 0}; (1)

(ii) ρ̃(x) ≤ ηd, ∀x ∈ Ω2 = {x|ρ̄ηi(x) = 0 and ∇ρ̃ = 0}; (2)

where Ω1 represents the inflection region of the filtered field in the solid phase of
the physical field and Ω2 captures that in the void. Fig. 1 illustrates this idea with
a 1D example. The solid curve represents an initial filtered field, for which the
physical fields thresholded at ηd, ηi, ηe possess different topologies. Re-designing
it into the dashed curve as shown in the figure to satisfies (i) and (ii), a solid phase
is ensured in Ω1 for all the physical realizations thresholded by η < ηe and a
void phase remains in Ω2 within η > ηd. As a result, all the physical realizations
thresholded by η ∈ (ηd, ηe) share a consistent topology1 and minimum length scale

1Theoretically, a consistent topology is guaranteed within the range (η d, ηe) by using an ideal
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Figure 1: Re-designing a filtered field (from the solid to the dashed curve) to satisfy the conditions
(i) − (ii) according to Eqs. (1) and (2). Minimum length scale is achieved on the physical field
thresholded by ηi for the dashed curve.

is expected on the blueprint design ρ̄ηi for both solid and void phases. In this work,
two geometric constraints are proposed to meet the above condition and minimum
length scale is achieved by solving a constrained optimization problem. The ap-
proach is inspired by the works in [17, 18, 19, 20] but different from them. Partly
only the minimum length-scale problem is considered here and partly the con-
straints here are formulated based on a filtering-threshold topology optimization
scheme and they are differentiable w.r.t. the design variable. The overall scheme
does not require additional finite element analysis comparing to the robust for-
mulation [11, 12, 13]. It can be easily extended to existing density-based topol-
ogy optimization frameworks. However, although the proposed scheme indeed
ensures length scale, it does not guarantee robustness towards design variations,
which is demonstrated with an example from nano-optics.

The remainder of this paper is organized as follows. In Section 2, the three-
field topology optimization scheme and the geometric constraints are introduced.

Heaviside function. Due to the usage of a smoothed Heaviside function Eq. (7) in this paper, the
physical realizations thresholded at η ≈ ηe and η ≈ ηd may contain grey elements with a small
physical field value ρ̄ < 0.5. This numerical issue does not jeopardize the effectiveness of this
approach in imposing minimum length scale on the blueprint design.
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The formulation of the geometrically constrained optimization problem is present-
ed afterwards. In Section 3, the proposed approach is demonstrated using several
benchmark design problems, including a compliant mechanism, heat conduction
and a slow light waveguide. Key issues are discussed and implementation details
are provided. Conclusions are stated in Section 4.

2. Topology optimization with geometric constraints

2.1. A three-field topology optimization formulation
The goal of topology optimization is to find a material distribution in a given

design domain that minimizes an objective function and satisfies constraints. The
optimization problem generally reads in a discrete form [3] as:

min. : F(u(ρ),ρ),

s.t. : g j(ρ) ≤ 0, j = 1 : m,

: 0 ≤ ρ ≤ 1,

(3)

where ρ denotes the design variable vector, f is an objective functional, u is the
state variable denoting the system response at the nodal points and g is the con-
straint. For a linear elasticity problem, u is the solution of the state equation (as a
constraint in the above formulation):

Ku = f, (4)

where K and f are the structural stiffness matrix and the force vector, respectively.
The Solid Isotropic Material interpolation with Penalization (SIMP) scheme [23]
is adopted to model the element stiffness Ki for the element i as:

Ki = (Emin + ρ̄
p
i (E0 − Emin))K0, (5)

where ρ̄i is the value of the physical field (described below), K0 denotes the ele-
ment stiffness matrix for unit stiffness, E0 represents the Young’s modulus of the
material phase, Emin is a small number to avoid the numerical singularity issue
in finite element analysis and p is the penalization power. The SIMP method is
widely applied to material properties interpolation in topology optimization for
different physical problems [2].

The three-field topology optimization scheme utilizes a design field ρ, a fil-
tered field ρ̃ and a physical field ρ̄, whose relations are defined through the fol-
lowing filtering and threshold processes:

ρ̃i =

∑
j∈�i
ω(x j)v jρ j∑

j∈�i
ω(x j)v j

, ω(x j) = R − |xi − x j|, (6)
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ρ̄i =
tanh(β · η) + tanh(β · (ρ̃i − η))
tanh(β · η) + tanh(β · (1.0 − η)) . (7)

In Eq. (6),�i is the neighborhood set of elements lying within the filter domain of
the element i, R is the radius of a linear hat-shape filter, v j is the volume of the el-
ement j, ω is a weighting function of the distance between the central coordinates
xi and x j of the cell i and j. In Eq. (7), β controls the steepness of the approximat-
ed Heaviside function and η is the threshold. Note that, other filters can serve for
the same purpose as long as ρ̃ is smooth and the inflection regions Ω1 and Ω2 can
be captured properly by the proposed structural indicators (c.f. Section 2.2).

2.2. Structural indicator functions
In order to identify the inflection regions Ω1,Ω2 defined in Eqs. (1-2), two

structural indicator functions are proposed as follows:

Is = ρ̄ · exp(−c · |∇ρ̃|2), (8)

Iv = (1 − ρ̄) · exp(−c · |∇ρ̃|2), (9)

where the subscripts s and v stand for the solid and void phase, respectively. The
exponential term in Eqs. (8) and (9) annotates the inflection region of a filtered
field (|∇ρ̃| = 0) with value 1, while the parameter c controls the decay rate of I s

and Iv wherever |∇ρ̃| � 0.
Fig. 2 shows a cantilever beam example obtained by using the above filtering-

threshold topology optimization scheme. A fixed Dirichlet boundary of u = 0
is imposed on the left side of the domain and a vertical point load is applied at
the middle of the right side. Figs. 2(a-c) record the optimized design field ρ,
filtered field ρ̃ (R = 10× element size) and physical field ρ̄ (β = 32, η = 0.5),
respectively. A uniform mesh of 400 × 150 quadrilateral elements2 is used in this
example. The indicators I s and Iv computed using different c values are compared
in Figs. 2(d-f) and (g-i) respectively. By using a large c (= 10000) as shown in
Fig. 2(f,i), the proposed indicator function captures Ω1 and Ω2 more precisely
than the others. When using a smaller c (e.g. c = 200), the exponential term in
Eqs. (8-9) decays slowly w.r.t. the gradient variation, such that the indicators as
shown in Figs. 2(d,g) contain non-zero value in a “wider” area, including both the
target inflection and some non-inflection regions.

With an ideal continuous-field representation, the parameter c can be set in-
finitely large such that the indicators only capture the inflection regions with value

2Bilinear elements are used for all examples in this paper.
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1 but 0 otherwise. In practice, however, ∇ρ̃ = 0 does not hold over the entire
(discretized) inflection regions due to a finite discretization and numerically com-
puting ∇ρ̃ using finite difference. It is observed that the numerical error of ∇ρ̃ at
the inflection regions ranges approximately between ∇ρ̃ ∈ [0, 1.5]/r2 for 2D prob-
lems3, where r = R/h and h represents the element size. A too large c value will
fail in capturing those regions (e.g. I s, Iv ≈ 0) and jeopardize the overall effective-
ness of the proposed approach. Therefore, only a finite c value can be practically
implemented. A conservative way to predicting a workable range of c is by set-
ting exp(−c · λ/r4) = 0.5 where λ ∈ [0.5, 1.5] and obtaining c ∈ [0.4, 1.4] · r4. It
ensures that the indicator functions contain finite values over at least one element
for any inflection point (or region). Numerical examples in Section 3 will show
that by setting c = r4 is effective in capturing the inflection region during the op-
timization process and obtaining the desirable minimum length scale on the final
design.

The proposed indicator functions are computationally cheap. They can be ob-
tained based on the value of the physical field ρ̄, the filtered field ρ̃ and its gradient
∇ρ̃, which are directly available during the optimization process. Moreover, they
are differentiable w.r.t. the design variable ρ. So are the constraints defined in
Section 2.3.

2.3. Geometric constraints

Based on the proposed indicator functions in Eqs. (8-9), two geometric con-
straints are proposed as follows to meet the two requirements in Eqs. (1) and (2)
respectively:

gs =
1
n

∑
i∈�

Is
i · [min{ (ρ̃i − ηe) , 0 }]2 = 0, (10)

gv =
1
n

∑
i∈�

Iv
i · [min{ (ηd − ρ̃i) , 0 }]2 = 0, (11)

where n is the total number of elements in the discretization set �. By satisfying
these two constraints, the value of the filtered field will be larger than the threshold
ηe at the inflection region Ω1 and smaller than the threshold ηd at Ω2. Therefore,
the sufficient condition proposed in Section 1 is satisfied and minimal length scale
is expected over the blueprint design.

3An analytical derivation of the numerical resolution of ∇ρ̃ is given in Appendix.
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(a) ρ (b) ρ̃ (r = 10) (c) ρ̄ (β = 64, η = 0.5)

(d) I s, c = 200 (e) I s, c = 2000 (f) I s, c = 10000

(g) Iv, c = 200 (h) Iv, c = 2000 (i) Iv, c = 10000

Figure 2: Structural indictors of an optimized cantilever beam: (a) the optimized design field ρ; (b)
the filtered field ρ̃; (c) the physical field ρ̄; (d-f) the indicators for the solid phase obtained using
different c values; (g-f) the indicators for the void.
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In practice, however, the equality constraints Eqs. (10-11) cannot be strictly
satisfied due to numerical errors even if the expected minimum length scale has
been achieved. The explanation is that by implementing a finite c value, the in-
dicator functions contain (very small) non-zero values I s, Iv � 0 over a “wider”
non-inflection regions due to the exponential decay (as the discussed in Section
2.2), where the value of constraints gs, gv are also non-zero. Hence, it is pertinent
to relax the constraints as follows:

gs ≤ ε and gv ≤ ε, (12)

where ε is a small number to compensate the numerical errors. Its appropriate val-
ue is discussed later in Section 3.1.5. By adding the relaxed geometric constraints
into the standard topology optimization problem Eq. (3), the new formulation
becomes:

min : F(u(ρ),ρ),

s.t. : g j ≤ 0, j = 1 : m,

: gs ≤ ε,
: gv ≤ ε,
: 0 ≤ ρ ≤ 1.

(13)

Both gs and gv are differentiable w.r.t. the design variable ρ and the optimization
problem can be solved using the method of moving asymptotes (MMA) [25] if the
first-order sensitivity of the original problem Eq. (3) is available.

The minimum length scale on the final design is determined by the radius of
the filter R in Eq. (6), the considered threshold range (ηd, ηe) and the threshold
ηi for the blueprint design. Readers are referred to [12, 24] for the details of
predicting the minimum length scale based on a linear hat filter for the smoothing
operation.

3. Numerical Examples

In this section, the proposed geometric constraints are studied using several
benchmark topology optimization examples. During the design process, the ad-
ditional geometric constraints are introduced after an initial topology has been
obtained. Such treatment seems to be a necessity for the minimum length-scale
type control as introduced here and in refs. [17, 18, 19, 20]. The parameter c for
the indicator functions is chosen as c = r4 for all the examples. More implemen-
tation details are provided hereafter.

9



3.1. Compliant mechanism

3.1.1. Problem formulation
The first example is to design a linear elastic compliant gripper [26]. The

optimization problem is defined as follows:

min. : F(ρ) = lTu,

s.t. : Ku = f,

: ρ̄Tv ≤ V∗,
: gs ≤ ε,
: gv ≤ ε,
: 0 ≤ ρ ≤ 1,

(14)

where u denotes the displacement vector using finite element discretization, l con-
tains value 1 at the output degree of freedom and 0 otherwise, v assembles the
volume of all elements, V0 and V∗ are the volume of design domain and the upper
allowable volume fraction, respectively. In this example, Emin = 10−9E0 is used
for the SIMP interpolation in Eq. 5.

Fig. 3 shows the design domain Ω (blue color) and the boundary conditions.
On the left side of Ω, the upper and lower corners are clamped. The input force
at the center is modeled as a strain-based actuator consisting of a blocking force
Fin and an actuator of stiffness kin. On the right side, two symmetric output point
at the tip of of the jaw (solid black region) are considered, where two springs
of stiffness kout are attached to simulate the reaction with the target object. The
design objective is to maximize the displacement at the tips of the linear elastic
gripper under one volume, two geometric and one set of box constraints. The
parameters in this example are set as follows: fin = 1, kin = 0.2, kout = 0.005,
V∗ = 0.2, E0 = 1 and p = 3.

3.1.2. Design results
Fig. 4 compares three optimized mechanism designs with different minimum

length scale. The domain is discretized using a uniform quad mesh of resolution
300 × 300. A filter of radius r = 10 elements (physical length 1

30 L) is implement-
ed for all the cases. Fig. 4(a) shows a result without length-scale control, which
contains tiny hinges between structural members. Figs. 4(b-c) are two designs ob-
tained by solving the proposed constrained formulation Eq. (13) with considered
threshold ranges η ∈ (0.4, 0.6) and (0.3, 0.7), respectively. The minimum length
scale of the two structures increases as the considered threshold range expands.
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Figure 3: Compliant mechanism design problem: design domainΩ (blue) and boundary condition.

(a) F = −3.86 (b) F = −3.73 (c) F = −3.62

Figure 4: Optimized compliant mechanisms with different minimum length scale: (a) without
length-scale control, containing tiny hinges at structural joints; (b) with length-scale control, con-
sidered threshold range η ∈ (0.4, 0.6); (c) η ∈ (0.3, 0.7).
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(a) F = −3.62 (b) F = −3.38

Figure 5: Two optimized designs with same minimum length scale by using: (a) the proposed
geometrically constrained formulation, same result as Fig. 4(c); (b) a standard robust formulation
[12].

No tiny-hinges appear in the final optimized designs. The exact length scale for
material and void phases are indicated by the size of solid and open circles in the
figures. These three mechanisms achieve displacement of F = −3.86,−3.73 and
−3.62 at the output points, respectively. The performance of the compliant gripper
degrades as the minimum length scale increases.

In the implementation, β = 64 and the geometric constraints gs and gv ≤ 10−8

are applied after 75 iterations of the standard topology optimization once a prelim-
inary topology of a compliant gripper is formed. However, it is observed that s-
tarting with a grey initial guess and meanwhile imposing the geometric constraints
from the beginning can result in a local minima very quickly. In such a case, it is
difficult to generate a meaningful topology at the end.

3.1.3. Performance evaluation w.r.t. geometric variation
To demonstrate the structural performance w.r.t. geometric variation, the fil-

tered field of the design in Fig. 4(c) is thresholded using different η ∈ (0.3, 0.7)
and the performance of each realization is plotted as the solid curve in Fig. 6.
Functional mechanisms of displacement D < 0 are observed throughout the con-
sidered range η ∈ (0.3, 0.7).

This result is compared with another design shown in Fig. 5(b), which is
obtained by a standard robust formulation [12]. The latter considers a dilated
(ηd = 0.3), an intermediate (blueprint) (ηi = 0.5) and an eroded design (ηe = 0.7)
in the problem formulation. The same filtering as in Fig. 4(c) is implemented.
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Figure 6: Performance of the two mechanisms shown in Fig. 5 as function of threshold value by
using the proposed geometrically constrained formulation (red solid line) and the robust formula-
tion (black dashed line). The considered threshold range for both designs are η ∈ (0.3, 0.7).

As shown in Fig. 5, both designs exhibit the same minimum length scale but
different structural shape, especially at the joints between structural members.
Interestingly, such difference distinguishes the level of performance robustness
of a compliant mechanism w.r.t. geometric variations. The performance of the
robust design is plotted as the dashed line in Fig. 6. As shown in the figure, the
geometrically constrained design outperforms the robust one near the considered
design point η = 0.5. However, the robust formulation yield designs which behave
less sensitively w.r.t. the member-width variation throughout the overall threshold
range.

It is worth to note that the proposed constrained optimization only take the per-
formance of the blueprint (intermediate) design into account and imposing length
scale by the proposed geometric constraints does not necessarily guarantee a ro-
bust performance w.r.t. geometric variation. One can obtain designs of robust per-
formance by using a robust formulation [11, 12, 13]. However, minimum length
scale may not be realized on the optimized blueprint as the other realizations in the
considered threshold range exhibit different topologies [12]. Regarding computa-
tional efficiency, only one finite element analysis per design iteration is required
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(a) 100 × 100 mesh (b) 200 × 200 mesh

Figure 7: Designs with different discretization: (a) 100×100 mesh, r = 3.5 elements; (b) 200×200
mesh, r = 7 elements. The considered threshold range is (0.3, 0.7).

by using the proposed formulation, while several analysis 4 are needed when the
robust formulation is adopted.

3.1.4. Design with different discretization
The proposed scheme can be applied to design structures of different reso-

lutions. First, a coarse mesh of 100 × 100 elements is used and the optimized
mechanism is shown in Fig. 7(a). In this example, constants r = 3.5 elements,
c = 150 and β = 64 are implemented. The considered threshold range is still
η ∈ (0.3, 0.7). Comparing to the previous design as shown in Fig. 5(a) (obtained
with r = 10 elements and c = 10000), the current optimization process utilizes
smaller r and c values, which lead to a larger numerical error for the indictors in
capturing the inflection region. As a result, the geometric constraints is further
relaxed to ε = 10−6 in order to be satisfied. It is found that by increasing c in
the range c ∈ [150, 600] and meanwhile slightly tightening the geometric con-
straints in the range ε ∈ [10−6, 10−7] can yield designs with the same minimum
length scale. However, if c ≥ 700 is chosen, the value of I s and Iv are too small
(Is, Iv ≈ 0) at some inflection regions and it is very difficult to obtain desirable
outcome in such a case.

Fig. 7(b) shows another optimized design of the same minimum length scale

4The number of finite element analysis by using a robust formulation is equal to the number of
design realizations considered in the problem formulation.
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but with a finer resolution 200 × 200. The parameters used in optimization are
r = 7 elements, c = 2400, η ∈ (0.3, 0.7) and ε = 10−7. In this example, as the
mesh resolution becomes finer and the filter covers more elements, it is found
the workable c value spans a larger range between c ∈ [1500, 3500] for satisfied
geometric constraints gs, gv ≤ 10−7 and the same minimum length scale.

3.1.5. Discussion on choosing c and ε
In practice, the parameter c is chosen based on the numerical accuracy in rep-

resenting the gradient of a filtered field. The indicator functions should have finite
values (e.g. Is, Iv ≥ 0.1) to capture the discretized inflection regions (represented
by at least one element) during the optimization process. Otherwise, it will be
difficult to achieve the desirable length scale if the values of I s, Iv at the inflection
regions are too small (e.g. I s, Iv < 10−2). It is advised to apply a large c value
if the numerical error is small, and vice versa. Based on the analytic derivation
of the numerical resolution in Appendix, a conservative setting c = r4 is found
effective for all the numerical examples in this paper.

Due to numerical errors, the geometric constraints are relaxed in order to be
satisfied. Generally, a small filter radius r (elements) accompanied with a small c
causes a large numerical error in representing the inflection regions by the indica-
tor function. Hence, a further relaxation on the geometric constraints is required,
and vice versa. Fig. 8 records a set of ε in the mechanism design problem with
a 200 × 200 mesh, for which both satisfied constraints and minimum length scale
are obtained for different r and c (c = r4). It is found that similar results can be
obtained by slightly varying ε around the curve. But over-relaxing the constraints
will fail in imposing the desirable length scale on the final designs. Numerical in-
vestigation shows that this curve can serve as a reference to choose ε for different
r, provided that c = r4 is used. All the other examples in this paper are implement-
ed according to it and satisfactory results are obtained. However, further research
is needed to eliminate the parameter tuning in the proposed method.
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Figure 8: Choosing ε for different r and c = r4. Each marker is recorded when both minimum
length scale and satisfied geometric constraints are achieved in the mechanism design example
with mesh 200 × 200.

3.2. Heat conduction
3.2.1. Problem formulation

The second example studies a heat conduction problem. The discretized for-
mulation is given as follows:

min. : F(ρ) = pTt,

s.t. : Ct = p,

: ρ̄Tv ≤ V∗,
: gs ≤ ε,
: gv ≤ ε,
: 0 ≤ ρ ≤ 1,

(15)

where t denotes the temperature vector, p corresponds to uniform heating over the
domain with value 1 at all degrees of freedom and C is the conductivity matrix.
The SIMP model in Eq. (5) with p = 3 is used for computing the conductivity
matrix by replacing the stiffness K with conductivity C. The conductivity is set to
E0 = 1 and Emin = 10−3 for the solid and void respectively.
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Figure 9: Heat conduction problem: design domain Ω (blue) and boundary condition.

Fig. 9 shows the design domain Ω (blue color) and the boundary conditions.
The domain is isolated at the boundary except that a heat sink with temperature 0
is attached at the central bottom part of the domain. In the implementation, only
a half of the design domain is considered due to symmetric boundary conditions.
The upper volume fraction is set as V ∗ = 0.3.

3.2.2. Design results
Fig. 10 records several snapshots of an optimization process before and after

the geometrical constraints are applied. . In this example, the domain is dis-
cretized using a uniform quad mesh of resolution 300 × 300. Constants r = 10
elements, ε = 10−8 and β = 32 are implemented. The considered threshold range
is η ∈ (0.25, 0.75).

The design shown in Fig. 10(a) is obtained after 50 iteration by solving a
standard topology optimization problem without geometric constraints. The con-
straints are highly violated when they are first applied due to the intermediate
value (grey) elements in Fig. 10(a). However, the constraints tend to suppress the
grey regions and the filtered field is gradually regularized as shown in Fig. 10(b-f).
Topological change is observed during the constrained optimization process. The
final optimized design is shown in Fig. 11(a), which achieves an objective value
of F = 2.86.

As a comparison, another design result with a smaller length scale is shown
in Fig. 11(b). It exhibits more structural details with a smaller length scale and
achieves a better objective value of F = 2.37. For this example, a smaller filter
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(a) (b) (c)

(d) (e) (f)

Figure 10: Optimization process of the heat conduction problem with geometric constraints,
threshold range η ∈ (0.25, 0.75): (a) the intermediate design before applying the geometric con-
straints; (b-f) design evolution with constraints applied.

radius r = 5 elements is chosen and the considered threshold range is still η ∈
(0.25, 0.75). The geometric constraints gs, gv ≤ 10−7 are satisfied when achieving
the expected length scale.

3.2.3. Discussion
Due to the additional geometrical constraints, the design space of the proposed

formulation becomes more restrictive than that in the standard formulation. The
final optimized result tends to be initial-design dependent although topological
change is observed during the design process. In order to fully leverage the ca-
pability of topology optimization and meanwhile to support the minimum length-
scale control, it is desirable to apply the geometric constraints later in the opti-
mization process after an initial topology has formed.

For the heat conduction problem with distributed thermal load, the standard
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(a) r = 10, F = 2.86 (b) r = 5, F = 2.37

Figure 11: Optimized blueprint designs of the heat conduction problem with different length scale:
(a) r = 10, H = 2.86; (b) r = 5, H = 2.37; the considered threshold range is (0.25,0.75) for both
designs.

topology optimization formulation [2] usually results in an optimized design con-
taining elements of intermediate values. Because of these grey elements, the ge-
ometrically constrained problem starts with a highly infeasible design and the
optimization process may end up with a physically unexpected (local minima)
solution, e.g. the final design containing connected structural members. Proper-
ly normalizing and balancing the sensitivities of the objective functional and the
constrains can avoid such issue and obtain meaningful results.

3.3. Slow light waveguide

The problem of designing a dispersion engineered slow light waveguide is in-
vestigated in this section by applying the proposed constraints. Fig. 12 shows
the design domain Ω, which is discretized using a 512 × 32 quad mesh. A slow
light waveguide is obtained by minimizing the errors between actual group index
ng and a prescribed group index n∗g in a given wavenumber range k. For concise-
ness, the original problem formulation is not repeated in this paper. Readers are

Figure 12: Slow light waveguide problem: a single design unit in a (vertically) periodic structure,
design domain Ω.
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referred to [27, 28] for more details.
It has been demonstrated that robust topology optimization formulations can-

not always guarantee the same topology for all the considered design realizations
in the problem formulation w.r.t. geometric variations, although equally good
performances can be obtained [27]. Fig. 13 shows such a result by solving a
worst-case based robust formulation [12] considering three physical design real-
izations thresholded by η = 0.35, 0.5 and 0.65. In this example, the filter radius
r = 3.75 elements, ε = 10−6 and β = 50 are implemented. As shown in Fig. 13(c),
the dilated (η = 0.35), eroded (η = 0.65) and blueprint (η = 0.5) designs are
equally optimized with the expected group index. However, they exhibit different
topologies as the contour plot shown in 13(b), where some small holes shown in
13(a) vanish in the eroded design. No strict length scale can be identified on the
blueprint design.

Using the result in Fig. 13(a) as the initial guess for the proposed scheme,
another optimized slow light waveguide is obtained as shown in Fig. 14(a). This
new result possesses minimum length scale in both solid and void phases as the
contours of the eroded, blueprint and dilated designs in Fig. 14(b) demonstrate
a same topology. The corresponding performance is compared in Fig. 14(c).
The blueprint (η = 0.5) demonstrates a good performance regarding the desirable
group index n∗g = 25 in the design wavenumber range of k ∈ [0.3875, 0.4625] ·
2π/a. However, the performance of the other realizations are either degraded
or destroyed due to geometric variations. The physical realizations threshold at
η = 0.45 and η = 0.55 correspond to approximately 15nm manufacturing error
in practice. This example demonstrates that imposing minimum length scale does
not result in a functional slow light waveguide throughout the considered thresh-
old range. The design performance is highly sensitive w.r.t geometric variation.

Combining the worst-case based robust formulation and the proposed geomet-
ric constraints result in a design shown in Fig. 15. Equally optimized performance
is achieved for the considered three designs and minimum length scale is identified
on the blueprint design. However, because the robust formulation here only takes
three designs into account, the other intermediate realizations (e.g. η = 0.45, 0.55)
still do not behave as well as the blueprint. This issue may be alleviated by in-
cluding more realizations in the formulation.

4. Conclusions

A topology optimization approach with geometric constraints is presented to
design structures that possess strict minimum length scale. The constraints are
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formulated based on structural indicator functions, which are defined on the regu-
larized filtered and physical fields in a three-field topology optimization scheme.
They are computationally cheap and differentiable w.r.t. the design variable. The
constrained optimization problem is solved using mathematical programming. No
additional finite element analysis is required.

In order to utilize this approach effectively, it is advised to provide a good
initial guess for the constrained optimization. One pertinent way is by adding the
constraints later into the standard topology optimization process after an initial
topology has formed. It is found difficult to obtain efficient designs if the initial
guess for the constrained optimization is far from an admissible feasible design.
One limitation of the proposed method is that parameters c and ε must be chosen
properly based on the level of numerical accuracy in representing the underlying
structure. However, strategies based on numerical investigation are suggested to
set those parameters. It is targeted as future work to formulate a scheme without
parameter tuning.

The structural indicator functions proposed in this paper can be replaced by
other representations, such as a medial-axis (or media-zone) based scheme. A
differentiable representation is necessary to carry out a full sensitivity analysis
and to solve the optimization problem in a meaningful way.

Numerical examples in this paper reveal the fact that imposing minimum
length scale does not necessarily guarantee robust performance w.r.t. geomet-
ric variation. For the mechanics problem, workable compliant mechanisms are
obtained w.r.t. structural membrane-width change. But for the dispersion engi-
neered slow light waveguide problem, for which the physical performance is very
sensitive to geometric variations, a degraded performance is observed for eroded
and dilated structures even if they share the same topology to a well-optimized
blueprint design. Combining a worst-case based robust formulation and the pro-
posed geometric constraints results in designs with equally good performance for
the considered design realizations besides the desirable minimum length scale.
Future work will investigate how to efficiently achieve a robust performance w.r.t.
a range of geometric variations and the minimum length scale at the same time in
topology optimization.
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Appendix: Numerical resolution in representing ∇ρ̃ in a uniform finite ele-
ment mesh

In a discretized filtering-threshold topology optimization scheme, ∇ρ̃ = 0 does
not hold precisely over the entire inflection region of a filtered field because of
numerical errors. In this section, the numerical resolution and the error of repre-
senting ∇ρ̃ is discussed.

With a uniform discretization with unit length (h = 1), the linear-hat filtering
can be described by a convolution function w = (1 − |x|/r)/r over the domain
[−r, r] covered by the filter, where r is the filter radius [24]. For a feature of width
l < r as shown in Fig. 16, the expression of the filtered field and its gradient at
x ∈ [x0, x0 + l] are computed as follows:

ρ̃(x) =
∫ x

x0

1
r

(1 − x − x0

r
)dx +

∫ x0+l

x

1
r

(1 − x0 + l − x
r

)dx, (16)

and hence

∇ρ̃(x) =
2x0 + l

r2
− 2x

r2
, x ∈ [x0, x0 + l]. (17)

Assuming that the field values ρ and ρ̃ are constant inside each element, the nu-
merical resolution of representing ∇ρ̃ is equal to 1/r2 in this 1D example. When
computing ∇ρ̃ using finite difference, the numerical error of ∇ρ̃ at the inflection
regions is approximately of the same order of magnitude to the above resolution,
which dependent on the radius of the filter r. Note that r is in the unit of number
of elements instead of a physical length. For 2D problems, it is observed that the
value of ∇ρ̃ at the inflections ranges approximately between ∇ρ̃ ∈ [0, 1.5]/r2, for
which the upper bound slightly varies among different structural layouts.
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Figure 13: Optimized slow light waveguide for ng = 25 in k ∈ [0.3875, 0.4625]2π/a by using
a robust formulation. (a) the waveguide composed of 8 repeated cells; (b) contour plots of the
blueprint (in black bold lines), dilated design realization (in blue dashed lines) and eroded design
realization (in red dash-dotted lines); (c) performance evaluation by varying structural membrane-
width.
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Figure 14: Optimized slow light waveguide by using the proposed geometric constraints. (a) the
waveguide composed of 8 repeated cells; (b) contour plots of the blueprint (in black bold lines),
dilated design realization (in blue dashed lines) and eroded design realization (in red dash-dotted
lines); (c) performance evaluation by varying structural membrane-width.
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Figure 15: Optimized slow light waveguide by using both a robust formulation and geometric
constraints. (a) the waveguide composed of 8 repeated cells; (b) contour plots of the blueprint (in
black bold lines), dilated design realization (in blue dashed lines) and eroded design realization
(in red dash-dotted lines); (c) performance evaluation by varying structural membrane-width.
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Figure 16: Filtering a feature of width l < r using a linear-hat filter. The red solid curve denotes
the filtered field ρ̃.
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