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Abstract 

Extreme seasonal summer rain storms are common in the mountains to the north east 

of Beijing and these often result in mass movement of sediment slurries transported 

for up to a few km. These debris flows can be deadly and are very destructive to 

infrastructure and agriculture. This project tests the application of luminescence 

dating to determining the return frequency of such extreme events. The high sediment 

concentration and the very short flow duration gives very little opportunity for 

daylight resetting during transport and only a small fraction of the total mass is likely 

to be reset before transport begins. Here we examine the quartz single-grain dose 

distribution from a recent known-age (<25 years) debris flow from a small (~3.9 km
2
) 

catchment ~140 km north of Beijing and compare it with those from three samples 

from a sedimentary sequence containing the evidence of multiple flow events.          

Multi-grain quartz OSL signals are dominated by the fast component and <1% of the 

150-200 µm grains give a detectable test dose (4.5 Gy) response. Single-grain beta 

dose recovery gave a ratio of 0.97±0.06 (n=30) with an over-dispersion of 23±8% 

(CAM). Both the recent known age and the palaeo-distributions are highly dispersed 

with over-dispersions greater than 50%. The average weighted doses range between 

~3 mGy and ~6.5 Gy, indicating that all deposits are no more than a few thousand 

years. Minimum age modelling give an age estimate for the youngest sample 

consistent with the known age, and minimum ages for the older palaeo-deposits 
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suggest that there have been at least 3 major debris flows in this small catchment in 

the last 1000 years.  

Keywords: Debris flow deposits; Quartz; Single-grain dating; SAR 

 

1. INTRODUCTION 

 

Debris flows are a common mass-movement process which have repeatedly led 

to mortality and important economic loss in high relief areas of the world, especially 

in China with its historically high population density (Fiorillo and Wilson, 2004; 

Yang et al., 2011; Tang et al., 2012). The Xiao Xi Tian catchment (Fig. 1) is typical of 

small catchments to the north of Beijing, and lies upstream of the Miyun reservoir (the 

largest water supply storage for Beijing). Floods and resulting debris flows in such 

catchments have important implications for water quality and storage capacity (Xie et 

al., 2001; Qin et al., 2001); they also have a direct impact on infrastructure and the 

lives of local people. Even in China, where documentary records have a long history, 

such events are not well documented. In order to estimate accurately the hazard of 

debris flow events, we need tools for dating the sediments deposited by these events, 

so that we can relate these to climate variations, and so estimate the return frequency.  

Optically Stimulated Luminescence (OSL) is one such potential tool. 

Unfortunately, debris flows result in poor sorting, rapid sedimentation and very little 

opportunity for light exposure. This inevitably results in extremely heterogeneous 

resetting of the OSL signal. The relationship between bleaching and mineral type was 

considered by Godfrey-Smith et al. (1988), Fuchs et al. (2005) and Murray et al. 

(2012) and Olley et al. (1998) and Fuchs et al. (2005) examined the dependence of 

bleaching on grain size. It is now well known that quartz OSL signals bleach more 

easily than those from feldspar, and in many cases it appears that coarser (sand-sized) 

grains are easier to bleach than fine (silt-sized) grains. Because of averaging, 

multi-grain aliquots will tend to systematically overestimate the dose absorbed by 

well-bleached grains (e.g. Olley et al., 1998). Ultimately dose measurements on 

individual grains are required if the well-bleached fraction is to be identified and 

quantified. Wu et al. (2010) have found that using the lowest 5% of the apparent 
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single-grain doses (Murray et al., 1995) helped to distinguish the best bleached grains 

from the incompletely bleaching grains, indicating the potential for applying single 

grain luminescence dating to debris flow deposits in a mountainous regime from 

western Taiwan but there has been little or no testing of this approach on 

palaeo-debris flows. There are also more sophisticated statistical tools available for 

identifying the well-bleached part of a dose distribution (e.g. the minimum age model, 

MAM, Galbraith et al., 1999, the internal/external consistency criterion, IEU, 

Thomsen et al., 2007), but these have not been applied before to palaeo-debris flows. 

The aim of this study is to derive quartz OSL burial ages for four samples 

collected from the Xiao Xi Tian catchment: one documented recent (<25 a) deposit 

and three unknown age palaeo-debris flows. Multi-grain aliquot (~200 grains each) 

measurements are used to establish the suitability of these samples for OSL dating. As 

these samples are likely to suffer from significant incomplete bleaching the main 

emphasis is placed on single-grain OSL measurements. Single-grain thermal transfer 

and dose recovery experiments are undertaken and the burial doses evaluated by 

applying various minimum age models to the measured dose distributions. Finally 

these ages are discussed in terms of return frequency. 

 

2. REGIONAL SETTING 

 

The study site (Fig. 1) is situated in the Xiao Xi Tian gully (between 

40°43′21.38″and 40°43′23.54″N; 116°51′00.72″and 116°51′1.31″E) a tributary of the 

seasonal Fanzipai west gully, which ultimately flows into the Bai River and the 

Miyun reservoir. The catchment area upstream of the sampling site is ~3.9 km
2
 and 

the upstream length of the main channel is ~4 km. The local geology is dominated by 

granite and gneiss, and the catchment lies in the warm temperate sub-humid monsoon 

climate zone, with frequent rain storms between June and August; this period includes 

~73% of the annual 660 mm precipitation (Tu, 1994). Over the Miyun district as a 

whole, the mapped area of debris flows is about 28% of the total catchment area; this 
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represents a clear and ongoing threat to infrastructure and human life. The only 

documented debris-flow in the catchment was in 1989 (Tu, 1994).  

 

3. SAMPLE AND MEASUREMENT DETAILS 

 

3.1 SAMPLING 

 

Four samples were collected from the Xiao Xi Tian (XXT) gully. A recent debris 

flow sample (XXT-1) was taken from the bed of the river channel and three 

palaeo-debris flow samples were collected from two incised debris flow terraces (Fig. 

1). Sample XXT-2 was taken from the lower terrace. Samples XXT-3 and XXT-4 

were taken from the higher terrace. The exposed section was cut vertically and 

cleaned to expose the mainly cobble/gravel deposits. Samples were taken by driving 

10 cm diameter 25 cm long steel tubes into the section. Both ends of the tube were 

packed with aluminium foil and wrapped to prevent sample mixing during transport. 

Samples were opened under subdued red light and 3 cm from each end of the tubes 

were removed for dose rate analysis and water content measurement; the remainder 

was prepared for OSL measurement (see below). 

Sample XXT-1 (Fig. 1) was taken from the recent (<25 year old) debris flow 

sample. The other three samples are of unknown age, but stratigraphically older. We 

expect sample XXT-3 to be the oldest deposit, overlain by the younger sample 

XXT-4. The river then incised and later deposited the younger debris flow deposit 

(XXT-2) some time before XXT-1. 

 

3.2 SAMPLE REPARATION 

 

The material taken for OSL measurements was firstly wet sieved to recover grain 

sizes between 150 and 200 µm. This fraction was then treated with 10% HCl to 

remove carbonates, and 10% H2O2 to remove organic matter. Density separation used 

aqueous solutions of density 2.58 and 2.7 g cm
-3

 to separate quartz grains, which were 
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then etched in 40% HF for 1 h, and washed in 10% HCl to remove any fluoride 

precipitates. The purity of quartz was checked by infrared stimulation. Some of the 

samples showed a significant IRSL signal, and these were treated again with 40% HF 

for 40 minutes. After this double treatment, no sample gave a significant IR signal 

(compared to blue OSL). All samples were re-sieved after chemical treatment to give 

grains in the range of 125-180 µm.  

 

3.3 INSTRUMENTATION AND ANALYSIS 

 

Quartz OSL measurements were made using Risø TL/OSL-DA-20 readers 

(Bøtter-Jensen et al., 2010) fitted with single-grain laser attachments (Bøtter-Jensen et 

al., 2003). Luminescence was detected by a bialkali EMI 9235QB photomultiplier 

tube through a 7.5 mm Hoya U-340 filter. Optical stimulation used either an array of 

blue LEDs (multi-grain measurements) providing a power density of ~40 mW cm
-2 

at
 

the sample position or a 10 mW green Nd:YVO4 solid diode-pumped laser emitting at 

532 nm (single-grain measurements) providing a power density of ~50 W cm
-2 

 at the 

stimulation position (Duller et al., 1999). Blue LED stimulation was for 40 s at 125
 o
C 

whereas green laser stimulation was for 0.9 s at 125
 o
C. For multi-grain measurements 

quartz grains were mounted as a monolayer on 9.7 mm stainless steel discs using 

silicon oil. Each multi-grain aliquot contained ~200 grains. For single-grain 

measurements individual grains were loaded into aluminium discs containing 100 

grain holes, each with a diameter and depth of 200 m, set out on a square grid with 

600 m hole spacing. Laboratory irradiations employed 
90

Sr/
90

Y beta source fitted on 

the readers with a dose rate of ~0.10 Gy/s to quartz grains in single-grain aluminium 

discs. These sources all had good spatial uniformity (<5% standard deviation across 

the sample area) and using the approach developed by Lapp et al. (2012) to correct for 

spatially non-uniformity did not result in significant changes to dose or scatter. 

All OSL measurements were performed using a SAR protocol (Murray and 

Wintle, 2000; Wintle and Murray, 2006). For single-grain measurements a minimum 

of two regeneration doses (2 and 10 Gy) was measured in increasing order. In some 
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cases an additional regeneration dose of 80 Gy was added to ensure that larger doses 

were measured accurately. A zero Gy (recuperation) dose and a recycling dose equal 

to the second regeneration dose (10 Gy) were used to test the reliability of the dose 

response curve. A preheat of 200 C for 10 s, a cut heat of 180C, heating rate of 5
 
C 

s
-1

, and 4.5 Gy test dose were used in all measurements unless otherwise specified.      

Multi-grain signals were derived from the summation of the initial 0.64 s of 

stimulation, less a background of the following 0.64 s of stimulation. Single-grain 

signals were derived from the summation of the first 0.06 s of the stimulation curves, 

less a background of the final 0.16 s of stimulation. Sensitivity corrected 

dose-response curves were fitted using a single saturation exponential function, 

passing through the origin. The uncertainties on individual dose (De) estimates are 

assigned using “Analyst 4.00” (Duller, 2007) and are derived by error propagation 

from counting statistics and curve fitting. 

Multi-grain and single-grain dose estimates were only accepted for later analysis if 

they satisfied four criteria : (1) the relative uncertainty of the natural test dose signal 

Tn was < 30%; (2) the recycling ratio was consistent with unity at 2σ; (3) the OSL IR 

depletion ratio (Duller, 2003) was consistent with unity at 2σ; (4) the sensitivity 

corrected recuperation signal (i.e. the OSL signal in response to a zero Gy 

regenerative dose)  was consistent with zero at 2σ. These criteria rejected >99% of 

the measured single grains and ~5% of the multi-grain aliquots.  

 

4. DOSE RATES 

 

Environmental dose rates were measured using >70 g of homogenized material 

derived from the sampling tubes. The ground sediment was cast in wax in a defined 

counting geometry and stored for >21 days to ensure equilibrium between 
226

Ra and 

222
Rn. The samples were then counted using calibrated high resolution gamma 

spectrometers (Murray et al., 1987). The resulting radionuclide concentrations of 
238

U, 

232
Th and 

40
K were converted to specific dose rate values (Table 1) using the 

conversion factors of Guérin et al. (2011), and the cosmic ray contribution assessed 
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according to Prescott and Hutton (1994). The water content is taken as midway 

between observed and saturated water content, because the observed value is 

measured on a well-drained naturally-cut exposed section. We consider it very likely 

that at the time of sampling the section was dryer than it had ever been during burial. 

Had we instead used the observed field water content in the dosimetric calculations 

the ages would have decreased by 19% on average.  

 

5. MULTI-GRAIN ALIQUOT MEASUREMENTS 

 

Multi-grain aliquots (containing ~200 grains each ) were initially measured to 

assess the suitability of these samples. Fig.2a (inset) presents representative OSL 

stimulation curves from sample XXT-2. Also shown is the OSL signal obtained from 

calibration quartz, which is known to be fast component dominated (Jain et al., 2003) 

implying that the initial OSL signals from these samples are fast component 

dominated. The dose response curve (see Fig. 2a) is well represented by a single 

saturating exponential function.         

Thermal transfer as a function of preheat temperature was measured by bleaching 

unheated aliquots twice with blue light for 100 s at room temperature with an 

intervening pause of 10 ks to allow charge optically transferred into the 110 °C TL 

peak to decay. The preheat temperature varied between 180 and 280 °C (in increments 

of 20 °C). For sample XXT-1 eight aliquots were measured at each preheat 

temperature, and the average doses are shown in Fig. 2b. Thermal transfer is the 

process of de-trapping charge from non-light-sensitive but thermally shallow traps 

and re-trapping in deeper light-sensitive OSL traps during preheat; this can result in 

the overestimation of ages if OSL from the transferred charge is sufficiently large 

compared to the natural OSL. It is thus especially important to quantify thermal 

transfer when dating young sediments. In our case all average dose estimates for the 

different preheat temperatures are consistent with the average 0.13±0.03 Gy (n=48). 

Based on these results a preheat temperature of 200C was chosen. Finally, we 

undertook a dose recovery experiment using multi-grain aliquots (~200 grains each; 
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given dose 4.5 Gy) using a preheat temperature of 200C (10 s), and obtained an 

average dose recovery ratio of 0.94±0.04 (n=6) for sample XXT-3. This demonstrates 

that our protocol is able to measure accurately a dose given in the laboratory prior to 

any thermal treatment.  

Multi-grain equivalent doses were measured for each of the four samples. 

Weighted mean dose for each sample (see Table 2) is calculated using the unlogged 

Central Age Model (CAMUL, Arnold et al., 2009; Medialdea et al.,2014). However, 

all dose distributions appear positively skewed which may indicate the presence of 

incomplete bleaching. In that case the CAMUL ages will overestimate the true burial 

ages even if thermal transfer is taken into consideration.     

 

6. SINGLE-GRAIN MEASUREMENTS 

 

It is well-known that the brightness of the OSL signals generally vary significantly 

from one grain to another and that it is common to observe grains whose OSL 

sensitivity varies by several orders of magnitude (e.g. Duller, 2008 and references 

therein). For these samples the sensitivity of accepted individual grains only vary by 

~1 order of magnitude and the majority of these grains emit weak OSL signals; the 

median natural OSL test dose response per grain is 12±2 Gy
-1

 (summed over the 

initial 60 ms of stimulation, n=156). 

 

6.1 EFFECT OF REJECTION CRITERIA 

 

In the OSL literature it is common practice to apply a standard set of rejection 

criteria (see section 3.3) to reject individual aliquots with aberrant OSL characteristics 

in an attempt to improve the precision and accuracy of OSL ages (e.g. Jacobs et al., 

2006; Arnold and Roberts, 2011; Jacobs et al., 2012). However, for these samples 

(three natural and two dose recovery dose distributions) the application of these 

rejection criteria have no significant impact on either the central dose (CAMUL) or the 

relative over-dispersion (ODUL; Arnold et al., 2009). The average ratio of CAMUL 
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doses for the dose distributions when all rejection criteria have been used to those 

when all detectable grains are included (i.e. sTN<30%) is 0.98±0.03 (n=5 samples). 

The corresponding ratio for the ODUL is 1.03±0.07 (n=5 samples). On average the 

application of all the rejection criteria leads to the rejection of 14±5% of the 

detectable grain population. Thus, for these samples at least, there seems to be no 

justification for applying these standard rejection criteria. A similar conclusion has 

also been reached by Thomsen et al. (2012). Despite this we have chosen to apply 

these standard rejection criteria for consistency with earlier published work. 

 

6.2 THERMAL TRANSFER AND DOSE RECOVERY 

 

Single-grain thermal transfer (0 Gy dose recovery) was measured for sample 

XXT-4 using a preheat of 200 °
C for 10 s and a cutheat of 180 °

C. The resulting dose 

distribution (shown in Fig. 3a) appears to be symmetric and has an arithmetic average 

dose of 200±90 mGy (n=30). The corresponding CAMUL dose is 50±30 mGy. We 

then performed two additional dose recovery experiments using sample XXT-4. The 

grains were loaded into the single-grain discs and bleached as before prior to being 

given beta doses of 1 Gy (N=3400, Fig. 3b) and 4.5 Gy (N=3600, Fig. 3c), 

respectively. Dose recovery ratios calculated using CAMUL are 0.95±0.10, n=28 

(OD=28±15%) and 0.97±0.06, n=30 (OD=23±8%), respectively. In Fig. 3d we show 

the relationship between absolute standard deviation and absolute over-dispersion 

with measured dose for these three experiments.  

 

6.3 DE DISTRIBUTIONS AND ANALYSIS 

 

The four natural single-grain dose distributions were then measured and are 

shown as scatter plots in Fig. 4. Between 0.6 and 1.0% of the measured grains were 

accepted into the dose distribution and the majority of these grains are only weakly 

luminescent (see above). The dose distribution for the known-age sample (XXT-1, 

Fig. 4a) appears to be approximately symmetrical, whereas the dose distributions for 
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the three palaeo-debris samples (Fig. 4b, 4c and 4d) appear slightly positively skewed 

and show a „leading edge‟ at low De values. Thus, this may indicate some degree of 

incomplete bleaching.  

The weighted average doses calculated using the CAMUL are summarized in 

Table 2 and these are converted to ages in Table 3. These ages are in stratigraphic 

order, but it is reasonable to assume that the ages for three palaeo-debris flow samples 

are overestimated due to the likely presence of incomplete bleaching. 

 

6.3.1 IEU MINIMUM AGE MODELING 

 

We then applied the Internal/External Consistency Criterion (IEU, Thomsen et 

al., 2007) to identify the grains most likely to have been well-bleached at deposition. 

The IEU approach assumes the distribution of well-bleached grains is normal, and that 

this portion of the total distribution can be identified using the assigned uncertainties. 

The uncertainty on an individual dose estimate is given by Thomsen et al. (2007) as 

follows: 

2 2( )btot c a D b    
                                          (1) 

Where tot is the total uncertainty calculated for each individual estimated dose; 

c is the uncertainty assigned based on counting statistics and curve fitting errors; bD  

is the burial dose, and a and b are the slope and intercept of the linear fit to the OD 

data shown in Fig. 3d; this describes the variation in OD with dose in a well-bleached 

distribution using the beta dose recovery data of Fig. 3a,b,c. The values of a and b are 

found to be 0.23±0.08 and 0.04±0.02 Gy, respectively. Those grains identified as 

well-bleached using the values of a and b given above are indicated in Fig. 4 by filled 

symbols. The average weighted doses derived from these apparently well-bleached 

grains are also summarized in Table 2 and these doses are converted to ages in Table 

3. The IEU identifies all the deposits as consistent with modern although the 

uncertainty on the oldest sample (XXT-3) is ±200 years.  
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Table 2 also summarises the fraction of grains identified as well-bleached in the 

total grain population (i.e. nw.b./n). For the two youngest samples 80 and 58% of the 

grains are well-bleached, but for the stratigraphically older samples the corresponding 

values are only 12 and 29%. While on the one hand this could arise because the older 

deposits are less well-bleached, we also note that the IEU result for the older two 

samples are both critically dependent on a single dose estimate in each distribution, 

i.e. 0.27±0.34 Gy in XXT-3 and 0.05±0.02 Gy in XXT-4. Both these doses are the 

lowest measured for these samples and both have absolute uncertainties significantly 

smaller than the other grains identified as being well-bleached. As the IEU uses 

individual uncertainties to determine which grains are well-bleached, there is a risk 

that single precisely known outliers can bias the result to low doses. 

If we for the moment ignore the individual uncertainties and simply calculate an 

arithmetic mean of the grain population identified as well-bleached, then for sample 

XXT-4 we obtain a dose of 0.41±0.09 (n=8) with an absolute standard deviation of 

0.25 Gy (see column sw.b. in Table 2). However, the beta dose recovery data suggests 

that the minimum possible standard deviation (for a dose of 0.4 Gy) is ~0.57 Gy (see 

linear relationship given in Fig. 3d). Thus, the grains identified as well-bleached form 

a dose distribution which has significantly less variability than that observed in the 

beta dose recovery experiments, suggesting that the IEU hasn‟t included the entire 

population of presumed well-bleached grains in the burial dose estimation. 

If we arbitrarily ignore the apparently very low dose but well-known grain from 

each of the two oldest deposits and apply the IEU then the standard deviations of the 

accepted results become more similar to those expected from the beta dose recovery 

(see Table 2 and Fig. 3d). Not surprisingly, the ages of the older two samples become 

much greater and the oldest deposit is now 1120±140 years old rather than 180±200 

years (if the low dose point is retained). The fraction of grains identified as 

well-bleached increases to 70 and 64%, respectively, similar to the fractions identified 

for the younger samples. 
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6.3.2 UNWEIGHTED IEU 

 

However, we must accept that the rejection of these two very young grains is 

arbitrary. We are only forced into this position because they are well-known 

absolutely and bias any minimum age model that depends on the uncertainties on 

individual grains. Fuchs and Lang (2001) ignored the uncertainties associated with 

individual aliquots in their minimum age model applied to multi-grain aliquots. They 

first calculated a minimum relative standard deviation based on their beta dose 

recovery experiment and showed that this was independent of dose in the range of 

interest. They then ordered their natural doses in increasing values and compared the 

running relative standard deviation in their data starting with the lowest De estimates 

with that predicted from their beta dose recovery experiment. When these two values 

were equal they adopted the relevant running mean as their best estimate of dose. 

However, in contrast to their data our beta dose recovery experiments predict that the 

minimum standard deviation is dose dependent, i.e. the relative standard deviations of 

the distributions from the two dose recovery experiments are 68 and 33%, 

respectively (see Fig. 3d) and so we cannot use a fixed predicted standard deviation. 

Instead, we use the equation given in Fig. 3d (standard deviation = 0.23×D +0.48) to 

predict the expected standard deviation but otherwise process the data in the same 

manner as Fuchs and Lang (2001). Using this approach, called the unweighted IEU 

(Unw.IEU), the observed standard deviations from the two older samples match the 

predicted standard deviations at running doses of 1.31±0.16 Gy (n=26; sample 

XXT-4) and 2.13±0.32 Gy (n=8; sample XXT-3). The observed standard deviations in 

the two young samples never decrease to match the predicted values (i.e. the 

variability is always larger than that predicted from the beta dose recovery 

experiments), so we choose the minimum, at which the observed standard deviation is 

approximately 25% larger than the predicted. At this point the doses for the two 

younger samples are -0.24±0.14 Gy (n=15; sample XXT-1) and 0.3±0.2 Gy (n=17; 

sample XXT-2). Both of these results are consistent with modern deposition (see 

Table 2). 
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6.3.3 IEU AGES WITH VARYING ODs 

 

In the above (weighted) IEU calculations we have assumed that the variability 

observed in beta dose recovery experiments mirrors the dose variability of the 

well-bleached grains. However, it is likely that this assumption leads to 

underestimation of the burial doses, because it has been shown that the variability in 

gamma dose recovery experiments are larger than in beta dose recovery experiments 

(e.g. Thomsen et al., 2005; 2012) and because environmental beta dose heterogeneity 

has not been taken into account (e.g. Guérin et al., 2014). To test the importance of 

the adopted OD (value of a in equation 1), we have calculated the IEU doses (without 

rejecting the two low dose outliers) for ODs ranging from 23 to 50%. The equivalent 

doses of the two younger samples do not change significantly over this range, but the 

equivalent doses of the two older samples increase markedly for ODs above 30%; for 

an OD of 40% the equivalent doses without rejection of outliers match the equivalent 

doses obtained if the two outliers are rejected, i.e. ages of 360±60 and 1070±150 years 

are obtained for samples XXT-4 and XXT-3, respectively. 

 

7. AGES AND DISCUSSION 

 

The CAMUL weighted age of the youngest sample (known age <25 years) is 

1±18 years and the corresponding IEU age is -9±20 years. We conclude that the 

minimum age model used here (IEU) has successfully identified the majority of grains 

(80%) in this distribution as well-bleached. In contrast, only 12% to 29% of grains in 

the two older deposits are identified as well bleached. 

If we accept the uncertainties associated with individual grains and apply the 

IEU then all the deposits are consistent with recent deposition although the oldest has 

an uncertainty of ±200 years (Table 3). However, as discussed above, these results are 

critically dependent on the presence of an individual, low dose precisely known De in 

each of the two older distributions. These can of course be arbitrarily rejected but we 
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have no internal justification for such a course. If instead we assume that predicted 

statistical uncertainties on individual doses are all small compared to unidentified 

sources of dispersion and so discard the uncertainties on individual grain analysis, the 

youngest two samples remain consistent with modern deposition but the older two 

become ~600 and 700 years old. It is important to realise that based on internal 

evidence we cannot choose between these two scenarios; in theory larger data sets 

might help to resolve this issue but the luminescence characteristics of this material 

make that impractical. Until we understand the origins of these infrequent grains 

recording very small doses, this ambiguity cannot be resolved. Nevertheless, in our 

view, it is likely that the the two outlier grains (see Fig. 4c and 4d) are anomalous and 

that the older ages resulting from the unweighted IEU or the weighted IEU with the 

two outliers discarded are more likely to reflect the true ages. If that is the case, we 

deduce that this debris flow record starts with the XXT-3 deposit either about ~1100 

years ago (IEUrej) or ~700 years ago (unw. IEU), and this deposit was over-topped by 

a subsequent major event (XXT-4) ~400 years ago (IEUrej) or ~600 years ago (unw. 

IEU). The river then incised at some time, and this was followed by two recent debris 

flows, one within the last 100 years (XXT-2), and finally the documented event ~25 

years ago. The oldest two events are separated by at least one hundred years, and the 

most recent two events occurred within decades of each other, but there was probably 

a significant time gap of 300 to 500 years during which the downcutting occurred. 

This may reflect catchment changes (e.g. in land use), but it must also be recognised 

that the material sampled in the older events was all from relict deposits-they were 

preserved in the sedimentary sequence. In contrast, the most recent material was 

sampled in the channel bed, and so its preservation potential is unknown. This channel 

deposit may also be better bleached than the older units. In other words, such 

relatively well-bleached events may have occurred before and been eroded away by 

subsequent flows without being preserved in the stratigraphic record. 

 

8 CONCLUSIONS 
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In conclusion, the quartz extracted from these debris flows is suitable for 

luminescence dating, although very few grains (<1%) give detectable signals and 

most are very weak. The IEU minimum age model can successfully identify the 

well-bleached grains in a recent known-age deposit. Unfortunately, interpretation of 

the two older units is compromised by the presence of what may be one very young 

outlying grain in each of the two deposits. It appears that there have been major 

debris-flow events in this catchment every few hundred years; this return period may 

have decreased significantly in the last century, but this latter interpretation is 

compromised by differences in stratigraphic position. 
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Figure captions 

Figure 1: Map showing XXT catchment and diagram of sampling locations. 

 

Figure 2: (a) Representative multi-grain (small) aliquot dose response curve 

(preheat 200 °C for 10 s, cutheat 180 °C) for sample XXT-2 showing 

recycling and recuperation (open symbols) and the interpolation of the 

sensitivity-corrected natural signal onto the dose response curve. Inset 

shows normalised luminescence signals from calibration quartz (closed 

triangles) and XXT-2 (open symbols). (b) Multi-grain thermal transfer 

measured using bleached aliquots of sample XXT-1. The arithmetic 

average dose of 0.13±0.03 Gy (n=48) for all preheat temperature ranging 

between 180 °C and 280 °C is shown as a dashed line. 

 

Figure 3: (a) Single-grain thermal transfer dose distribution for sample XXT-4. (b) 

Single-grain dose recovery distribution for sample XXT-4 with an added 

dose of 1 Gy. (c) as (b) but with an added dose of 4.5 Gy. (d) Absolute 

over-dispersion(OD, open circles) plotted against dose using data from 

(a), (b) and (c).The slope is 0.23±0.08. Also shown (triangles) is the 

relationship between absolute standard deviation (stdev) and dose for the 

distributions shown in (a), (b) and (c). The linear fit to the data is shown 

by the dashed line.  

 

Figure 4: Lower dose regions of the distributions and display the grains accepted 

by the IEU model (all grains retained) as grey filled symbols using an 

OD of 23% (see also Table 2). Insets focus in single-grain test dose (4.5 

Gy) response plotted against De for all natural samples. The two outliers 

discussed in the text are marked as black circles of sample XXT-3 and 

XXT-4.  
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Sample 
Depth 

(m) 

w.c. 

(%) 

 Radionuclide concentrations (Bq kg
-1

)  Dose rate (Gy ka
-1

) 

 U-238  Ra-226  Th-232  K-40  dry β  dry γ  Total 

XXT-1 

XXT-2 

0.03 

0.04 

14 

17 
 

9 

38 

± 

± 

6 

9 
 
18.2 

16.0 

± 

± 

0.5 

0.7 
 
26.5 

28.2 

± 

± 

0.6 

0.7 
 
781 

696 

± 

± 

16 

16 
 
2.13 

2.05 

± 

± 

0.05 

0.05 
 
1.05 

1.00 

± 

± 

0.02 

0.01 
 
3.06 

2.88 

± 

± 

0.12 

0.11 

XXT-4 0.1 26  20 ± 10  21.0 ± 0.8  28.9 ± 0.7  559 ± 16  1.69 ± 0.06  0.93 ± 0.02  2.32 ± 0.09 

XXT-3 10.6 13  11 ± 10  16.4 ± 0.8  33.3 ± 0.8  833 ± 20  2.30 ± 0.06  1.16 ± 0.04  3.10 ± 0.14 

Table1. Summary of depth, water content (w.c.), radionuclide concentrations and quartz dose rates for the three 

palaeo-debris samples. Water content is taken as midw ay between observed and saturated water content. 

An internal quartz dose rate of 0.06±0.03 mGy a
-1
 has been assumed. Total dose rate include cosmic rays 

and effect of water content. 

 

 

 

 

Table



Sample 

 MG  SG 

 
CAMUL 

(Gy) 
 n 

 
CAMUL 

(Gy) 
 

ODUL 

(%) 
 n N 

 IEU  IEUrej.
 
  Unw. IEU 

  
 Dose (Gy)  nw.b. nw.b./n  

sw.b. 

(Gy)  Dose (Gy)  nw.b. nw.b./n  

sw.b. 

(Gy)  Dose (Gy)  nw.b. nw.b./n  

sw.b. 

(Gy) 

XXT-1  0.62 ± 0.12  16  0.00 ± 0.05  -  20 3500  -0.03 ± 0.07  16 0.80  0.57   -   - -  -  -0.24 ± 0.14  15 0.75  0.53 

XXT-2  2.8 ± 0.4  18  0.7 ± 0.2  87 ± 54  24 3500  0.21 ± 0.11  14 0.58  0.66   -   - -  -  0.3 ± 0.2  17 0.71  0.67 

XXT-4  2.2 ± 0.4  17  1.2 ± 0.2  56 ± 16  28 2900  0.11 ± 0.07  8 0.29  0.25  0.84 ± 0.12  19 0.70  0.52  1.3 ± 0.2  26 0.93  0.84 

XXT-3  4.7 ± 0.4  17  6.4 ± 1.1  71 ± 24  26 5000  0.6 ± 0.6  3 0.12  1.00  3.5 ± 0.4  16 0.64  1.60  2.1 ± 0.3  8 0.31  0.91 

Table2. Summary of multi-grain (MG) and single-grain (SG) dose estimates. ‘CAMUL’ is the unlogged central age model (Arnold et al., 2009). ‘IEU’ is the internal/external consistency minimum age 

model (Thomsen et al., 2007) using all accepted dose estimates. ‘IEUrej.’ is the same model as the IEU but applied after the rejection of a single absolutely well known dose estimated (see text 

for detail). The IEU minimum doses have been calculated using a minimum relative over-dospersion of 23%. The ‘unw. IEU’ is a unw eighted minimum age model similar to the approach 

suggested by Fuchs and Lang (2001) but adapted to accomodate a varying predicted standard deviation (see text for details ). ‘n’ is the number of accepted aliquots/grains, ‘N’ is the number of 

total measured grains, ‘nw.b.’ is the number of grains identif ied to be well-bleached, and ‘sw.b.’  is the absolute standard deviation of the grains identif ied as being well-bleached. 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 



Sample  CAMUL (a)  IEU (a)   IEUrej. (a)  Unw. IEU (a) 

XXT-1  1 ± 18  -9 ± 20   -   -80 ± 50 

XXT-2  250 ± 70  70 ± 40   -   110 ± 60 

XXT-4  520 ± 80  50 ± 30  360 ± 50  570 ± 80 

XXT-3  2100 ± 400  180 ± 200  1120 ± 140  690 ± 110 

Table 3.  Summary of single-grain ages. ‘CAMUL’ is the unlogged central age model (Arnold 

et al., 2009). ‘IEU’ is the internal/external consistency minimum age model 

(Thomsen et al., 2007) using all accepted dose estimates. ‘IEUrej.’ is the same 

model as the IEU but applied after the rejection of a single absolutely well known 

dose estimated (see text for details). The IEU minimum doses have been 

calculated using a minimum relative over-dospersion of 23%. The ‘unw. IEU’ is a 

unw eighted minimum age model similar to the approach suggested by Fuchs and 

Lang (2001) but adapted to accomodate a varying predicted standard deviation 

(see text for details). 

                 

                 

                 

                 

                 

                 

                 

 


