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An optimization based method for line planning to
minimize travel time

Simon H. Bull · Richard Lusby ·
Jesper Larsen

Abstract The line planning problem is to select a number of lines from a
potential pool which provides sufficient passenger capacity and meets opera-
tional requirements, with some objective measure of solution line quality. We
model the problem of minimizing the average passenger system time, including
frequency-dependent estimates for switching between lines, working with the
Danish rail operator DSB and data for Copenhagen commuters. We present a
multi-commodity flow formulation for the problem of freely routing passengers,
coupled to discrete line-frequency decisions selecting lines from a predefined
pool. We show results directly applying this model to the Copenhagen commuter
rail problem.

Keywords Integer Programming · Optimization · Railway

1 S-train problem description

The S-train network in Copenhagen is a commuter rail network serving 84
stations and between 30,000 and 40,000 passengers per hour at peak times.
The trains in the network operate on published lines which each have an hourly
frequency, and according to a published timetable. We consider the lines and
the frequencies, but not the exact timetable.

See Figure 1 for an example of the lines that may operate in the Copenhagen
network. Here each coloured path refers to a different line that is operated at
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some frequency, and on each a train visits every station marked on the line
in each direction according to that frequency. An important feature of the
network is that a train may not necessarily stop at every station it passes; for
example the red and orange lines (C and H) run parallel to each other in the
top left of the figure, and to the same end station, but the red line stops at
fewer stations and is therefore faster between stations. This is of benefit to
passengers travelling past those stations, but passengers travelling to or from
the skipped stations are left with fewer options.

Fig. 1 An example of the lines operated in the S-train network, showing different lines in
different colours and identified by letter, and the presence of a dash indicates a stop.

Given the fact that lines may not stop at all stations, a route or path in
the network is not sufficient to define a line. We define a line here as a route
and a stopping pattern, or in other words a sequence of tracks which a train
passes, and the stations on those tracks that are stopped at and not stopped
at. Paired with every line (route and stopping pattern) is an hourly frequency,
and the set of lines with their frequencies defines the line plan.

Of the roughly 7,000 pairings of stations we consider non-zero demand
for passengers between just over 4,600 of the pairs (which is around 65% of
the possible demand pairings). As input we take a set of 174 valid lines, each
with one or more valid frequencies at which the line could run; in total 350
line-frequency combinations. Each line services between 11 and 39 stations
with an average of 23 stations served per line, and almost all lines can operate
at exactly two frequencies, while some very small number have more possible
frequencies. However we also experiment with more frequencies.



Our demand data is for a specific peak period of the day, where in reality
demand varies throughout the day. Real S-train line plans have lines that operate
at different frequencies at different times during the day, and operate modified
line plans during the weekends. We make the following two assumptions:

– a line plan created for a peak time is valid at other off peak times, possibly
operating at lower frequency;

– a line operates in both directions at the same frequency.

For the second point, we model both directions of the line as having the
same frequency, where in practice it may be possible to operate each direction
at a different frequency, though balancing vehicle movements may be more
complicated (and likely infeasible for a long period, but possibly feasible for a
short rush hour period). In practice current plans operate both directions of a
line identically, and we model the problem in that way.

The line planning problem we consider is that of selecting a set of lines from
a larger pool of lines, and for each selected line, selecting an hourly frequency at
which the line should operate. A line is defined as a route in the infrastructure
network with a stopping pattern, and several lines may share the same route
but have different stopping patterns. The selected line plan must meet certain
criteria, such as providing a minimum hourly service at each station, and not
exceeding hourly limits on trains using certain track segments, visiting certain
stations and turning at certain stations.

The line plan must also have sufficient capacity to transport all expected
passengers, providing all with a good path from their origin to destination. As
a measure we want to model the entire travel time of passengers, and include
a frequency-dependent cost component to penalize occurrences of passengers
switching to lines at low frequency, in favour of switching to lines at high
frequency.

2 Other research

There is much work in the literature on the line planning problem, with different
details and objective measures. Schöbel (2012) gives an overview of line planning
in public transport, and classifies different problem instance characteristics and
models for addressing them.

In many line planing problems, the line and the route are interchangeable;
if a line follows a certain route, then every station on the route is serviced.
Goossens et al (2006) present several models for the train line planning problem
where a route may have different stopping patterns, with a cost focus rather
than a passenger focus. Other work at S-train has used a version of one
presented model to find low cost line plans.

There is a more recent focus on the passenger, and on minimizing the total
trip time for passengers (and so modelling their moving and switching times)
as we would like to do for the Copenhagen system. Schöbel and Scholl (2006)
present a model with a station-line graph in which passengers are freely routed



with both travel times and switching penalties, with continuous frequency
decision variables for lines, and use a decomposition such that they include OD
paths as decisions in the master rather than edge flows in the graph. Borndörfer
et al (2007) similarly presents a formulation freely routing passengers and also
dynamically generating lines, using continuous frequency decision variables.
Unlike in the Copenhagen problem, the frequency a line operates at does
not change its cost to passengers who switch to it, while we wish to model
the switching cost with a frequency dependence. Also, the line frequencies in
Copenhagen are not so free that we can model them continuously as there
are only discrete frequencies that are considered valid. As a final example,
Nachtigall and Jerosch (2008) also present a model where passengers are routed
freely, measuring travel time with fixed penalties for switching lines, and with
an integer decision variable per line.

3 Lines Model

We take as input a set of valid lines, L, and for each line l there is a predefined
set of discrete frequencies at which the line could operate: Fl.

Ignoring passengers, we may simply find line plans (pairings of lines with
frequencies) which satisfy all operational limits, and consider how well they
serve passengers. In general such solutions do not even guarantee sufficient
capacity for all passengers, though often they are very close; the minimum
visits requirement per station in many areas provides more capacity than there
are passengers travelling to, from or passing by the station. However even if
a solution does provide sufficient capacity, it is possibly a very poor quality
solution for passengers.

We decide which lines and frequencies we will select from the line set L,
where each has valid frequencies Fl. Let the binary decision variable ylf ∈ {0, 1}
denote selecting line l at frequency f .

Simply selecting a valid set of lines is not in itself trivial; the selected lines
must be compatible, must meet certain service levels, and must not exceed some
fixed operating budget. The service level requirements can all be expressed as
a minimum number of trains visiting a single station per hour, or operating on
a particular track sequence per hour. Similarly, the compatibility requirements
can be expressed as a maximum number of trains per hour visiting stations,
turning at stations, and operating on particular tracks. Selecting a line at
frequency f contributes f trains per hour towards the relevant service level
constraints, and so we can enforce such constraints by summing over every line
frequency decision with the frequency itself as the coefficient.

Every contractual requirement or operational limit can be expressed by
determining exactly those lines which contribute toward the requirement or
limit (such as lines visiting the relevant station or using the relevant track
sequences). Consider such a set Z of lines. The contractual requirement or
operational limit for Z may have either a lower limit or upper limit or both
for the number of trains per hour. For simplicity in definition we assume both;



let these be α(Z) and β(Z) for the lower and upper bounds, respectively. Now,
let C be the set of all such sets Z; every element of C is a set of lines Z with a
lower (α(Z)) and upper (β(Z)) hourly limit.

Additionally, certain sets of lines are inherently incompatible for various
reasons not explicitly related to the line plan but for other operational reasons.
Let I be the set of all incompatible sets of lines, where any element of I is a
set of lines from which only one line can appear in a valid line plan.

Finally, every line has a cost when operated at a particular frequency: clf ,
and we impose a maximum budget for the line plan cmax. This generalized cost
may not necessarily scale with frequency; selecting a line at frequency 2f may
cost more or less than selecting the line at frequency f .

Now, the following constraints define a valid line plan, considering only the
lines themselves but ignoring passengers.∑

f∈Fl

ylf ≤ 1 ∀l ∈ L (1)

∑
l∈L

∑
f∈Fl

clf · ylf ≤ cmax (2)

∑
l∈Z

∑
f∈Fl

ylf ≤ 1 ∀Z ∈ I (3)

∑
l∈Z

∑
f∈Fl

f · ylf ≥ α(Z) ∀Z ∈ C (4)

∑
l∈Z

∑
f∈Fl

f · ylf ≤ β(Z) ∀Z ∈ C (5)

ylf ∈ {0, 1} ∀l ∈ L, ∀f ∈ Ff (6)

Constraints (1) ensure that a given line is chosen at most once disallowing
a single line at multiple frequencies (because, for example, some line might
be permitted at 3, 6, or 12 times per hour but not at 9 times per hour, so
combinations may not be permitted). Constraint (2) ensures that the total
lines cost is no greater than the given budget. Constraints (3) permit only
one line for each of the sets of incompatible lines. Similarly, constraints (4)
provide minimum service levels for the same visits, turnings or track usages.
Constraints (5) provide all operational constraints that can be expressed as a
maximum number of trains visiting or turning at a station, or using a specific
sequence of track.

The formulation (1)–(6) defines a valid line plan. It completely ignores
passengers; some feasible solutions to the formulation will fail to provide
sufficient capacity for all passengers in the network, and those that do provide
sufficient capacity may nevertheless provide a poor solution for many passengers.
However solving the formulation will find a line plan with some capacity and
servicing all stations, so it can be assessed to determine whether or not it does
provide sufficient capacity or where it is lacking, and how well it serves those
passengers that it does serve.



4 Passengers

4.1 Graph

We model passenger travel as a movement in a graph, where the existence of
components of the graph depends on the presence of a line in the solution. We
could model each line, frequency pair as a completely distinct component of
the graph. However this leads to a very large graph, especially if we want to
experiment with many frequencies for each line, and much of the information
depends on the line itself and not its frequency.

Consider Figure 2 showing the structure of a single line at a single frequency.
To capture the information we want about frequency-dependent aspects of the
line, we could simply duplicate this structure for every frequency at which the
particular line operates. That is, we would have a parallel structure to the l1,
l2, ... vertices representing the same line with route and stopping pattern, but
operating at a different frequency. However much of the information would be
redundant, and for experimenting with large numbers of frequencies per line
the graph becomes very large. Alternatively we could simply have one such
structure that represents every frequency, except then the cost of a particular
path could have no dependence on frequency of lines used. In our problem we
want to penalise switching to low frequency lines more than high frequency
lines. However capacities of edges, though dependent on frequency, can still
be maintained even with a single structure by summing the capacities of the
frequency-line decisions that would contribute toward them. This suggests that
it is possible to partially aggregate the line-frequencies into simply lines, being
careful to accommodate the frequency-dependent switching cost between lines.

s1i s1op1 s2i s2op2 s3i s3op3

l1 l2 l2

Fig. 2 The structure for a single line at one frequency visiting multiple stations. Each
station has three vertices; a source vertex si, a sink vertex so, and a platform vertex p. All
passenger paths originate from some source vertex, and terminate at some other sink vertex,
travelling on dashed line travel edges or switching lines using a platform vertex.

The aggregated graph then contains three types of node:

– a source and sink for every station;
– a platform for every station;
– a station-line for every station a line visits, for every line.



The graph also contains several types of edges:

– A travel edge between every adjacent pair of station-line edges for every
line, in each direction;

– A get-off edge from every station-line to every station sink;
– A get-off edge from every station-line to every station platform;
– A get-on edge from every station source to every station-line;
– A get-on edge from every station platform to every station-line at every

frequency.

Note that this is an aggregation of the line/frequency combinations, though
without being able to aggregate those boarding frequency edges. It means the
capacity of an edge (the station-line to station-line edges) is dependent on a
summation over all frequency decisions for that line.

The graph structure is similar to the stop-and-go graph described by Schöbel
and Scholl (2006). See Figure 3 for the structure of the problem graph for
passengers. The figure shows a single station with its three nodes, and two
distinct lines which visit the station at two frequencies each. Here depicted
as a multi-graph, the graph can be made simple with auxiliary nodes and
edges. For each passenger, a path through the graph from their origin station
s1
i vertex to their destination station s2

o vertex must be found, which incurs
the travelling time (on dashed edges) and switching time costs (on red edges).
Differing from the Schöbel and Scholl (2006) problem structure, in our case
the discrete frequencies a line may operate at are an important feature, and we
want to model different passenger time costs for switching to lines at different
frequencies, so our graph has additional station structure.

si sop

l1

l2

Fig. 3 The graph structure for two lines at a station. Each station has three vertices, si
and so, which representing either entering or exiting the system at this station, and p, which
represents switching lines at the platform. Vertices l1 and l2 represent the two lines visiting
the station. The solid black edges have zero cost, while the dashed black edges cost the travel
time to the next station along a line. The red edges represent the costly switching from one
line to another, and depend on the frequency of the boarded line (one edge per frequency
the line may operate).



4.2 Flow decisions

The problem can be represented as a multi-commodity flow problem, with
one commodity per OD pair, with additional constraints linking flows to line
presence and capacity. However, with the roughly 4,600 OD pairings in our
regular problem instance and the relatively large graph we describe above, the
problem would be very large. Let is refer to such a model, which we do not
formulate here, as a per-OD arc flow model, where for every OD we would select
a proportion of passengers who use every edge in the graph such that every
OD has one path from origin to destination, and those edges used correspond
to selected lines and frequencies. We have tested the per-OD arc flow model
for small instances (such as with only the lines of a known feasible solution
but undermined frequency) and, though solvable, the model is very large and
would not scale to having very many lines.

The proposed per-OD arc flow model would have one flow variable for
every OD combination, for every edge in the graph, and we would require one
path with capacity sufficient for that OD demand for every OD combination,
respecting every other OD path. As an aggregation, we can combine flows that
have the same origin (or alternatively the same destination), and instead have
one type of flow for every origin. The number of flow decisions is then lower
by a factor of |O|. Instead of requiring one path per OD, we will require the
aggregation of those paths scaled by passenger counts; that is, we will require
a network flow from each origin which supplies the sum of passengers from the
origin to every destination, and each destination from that origin consumes just
the passenger demand from the origin to that destination. The flow variables
are xeo ≥ 0; the number of passengers from origin o using edge e. Note that
we do not require integer flows, and we do not require a single path between
every origin and destination. In fact we see for currently used plans that it is
infeasible for every OD pair to use a single path, as there is insufficient capacity.
Instead some proportion of passengers on some OD trips are forced to take less
favourable paths than the best available due to limited capacity on their most
attractive path.

For simplicity, let AAA be the directed node-arc incidence matrix of the graph
described in Section 4.1, assuming that we have converted it into a directed
simple graph. Let xxxo be the column vector of xeo decisions from origin o.
Therefore, the elements of AAAxxxo express the conservation of flow at every node
of the graph, and should either be negative for the source vertex at station o,
positive at the sink vertices at destinations from o, or zero otherwise. Let aaao
be a column vector where each element corresponds to some node in the graph,
and let aaao,i be its i-th element.

aaao,i =


dod if i is a demand sink node index from o

−1 ·
∑

d dod if i is the source node index for o

0 otherwise



We also require constraints that link the flow variables to the line decision
variables ylf , ensuring both that if any flow uses a line, then the line is present,
and that every connection of the line has sufficient capacity for all flows
which use it. Further, we will require that the edges corresponding to the
frequency-dependent boarding of a line are only used if the line is present at
the correct frequency. Constraints linking the flow variables to the capacity
of the selected lines are in fact sufficient, and it is not necessary to impose
additional constraints to link simply a usage of a line to a line decision variable.
To do this, let E l be the set of all edges in the graph that depend on the
presence of line l at undetermined frequency. Let E lf be the set of all edges in
the graph that depend on the presence of line l at exactly frequency f .

We impose the following constraints:

AAAxxxo = aaao ∀o ∈ O (7)∑
o∈O

xeo ≤
∑
f∈Fl

Pfylf ∀l ∈ L,∀e ∈ E l (8)

∑
o∈O

xeo ≤ Pfylf ∀l ∈ L,∀f ∈ Ff ,∀e ∈ E lf (9)

Constraints (7) ensure that for every origin, a flow network is present
moving the required number of passengers from that origin to their destinations.
Constraints (8) ensure that for every edge on a line (E l), the edge provides
sufficient capacity for all flows using it. The constant Pf is the capacity of any
line at frequency f , which we take as a constant (and are therefore assuming
a uniform vehicle fleet, which is a simplification of the true S-train problem).
An obvious simple extension is to have a line-specific capacity, but that is not
present in our data. Finally, Constraints 9 ensure that for those boarding edges
from a platform that are frequency dependent (edges E lf for line l at frequency
f), again sufficient capacity must be present. In effect, the difference between
constraints (9) and (8) is that (8) are for the aggregated frequency edges and
therefore we sum the ylf variables for all frequencies.

These constraints (7)–(9) define the flows and link them to the line decision
variables. The full formulation then is constraints (1)–(6), and (7)–(9).

4.3 Additional linking constraints

In the previous section we defined a formulation where the linkage between
edge flows and line presence is imposed only by the capacity of a line and the
sum of all usages of every element of the line.

In general, in our problem, the demand between some particular OD pair
is lower than the capacity of a line operating at only the lowest frequency, and
often significantly lower. In a non-integer solution only a small fractional line
decision variable (ylf ) is required to provide capacity for some OD pair to
make use of the line, if no other OD pair uses that line. Suppose for an OD



based arc flow model there are variables xeod deciding the flow on edge e for
flow from o to d. In addition to summing all such flows for every OD pair for
the usage of the line ylf which contains e to constrain the capacity of the edge,
the following constraint could be used:

xeod ≤ dod ·
∑
f∈Fl

ylf

where dod is the demand for pair o-d. This would provide a tighter linkage
between the flow variables and the line variables, at the expense of requiring very
many constraints, though it is not necessarily required that such constraints
are included for every edge of a line.

Unfortunately, we do not have individual flow variables xeod as we have
aggregated the variables by origin; we have only xeo. Unlike previously, where
the maximum flow on any edge for one o-d flow was dod, now the maximum
demand of flow on any edge from one origin is

∑
d dod, which is not in general

significantly smaller than the capacity provided by one line; in fact it can
often be that any one line capacity is less than the aggregated demand. The
analogous constraint is much weaker:

xeo ≤
∑
f∈Fl

ylf ·
∑
d

dod

In general, the flow originating from an origin has much higher edge usage
than any single dod, and close to the origin itself it may in fact be as high as∑

d dod. However the flow from that origin terminates at many destinations
and at those destinations the flow is much lower; exactly dod flow terminates
at a particular destination from some origin, and that corresponds to usage of
an edge in our graph that belongs to a specific line and is only used by flow
terminating at that destination. That can be seen on Figure 3, where edges
to so can each be associated with a single line, and where there are no edges
out of so. Therefore, for every such specific edge e we can include the following
constraint:

xeo ≤ dod ·
∑
f∈Fl

ylf

Let tld be the terminating edge of line l at destination station d (if there is
destination d on line l). Then, we impose the following:

xtldo ≤ dod ·
∑
f∈Fl

ylf ∀l ∈ L,∀(o, d) ∈ O ×O (10)

Given our tight operational constraints, as well as the budget constraint
(constraints (2) and (5)), such constraints improve the bound given by solving
the LP relaxation of the model, as in general the forcing of some line variables
to have higher value must cause a decrease in others, and then some passengers
must use less favourable lines. However this comes with the addition of many
additional constraints; one for every OD pair, for every line that visits the
destination of the pair (up to |L × O ×O| constraints).

The formulation is constraints (1)–(6), (7)–(9) and (10).



4.4 Objective

As we have said, we are interested in penalising switching time for passengers
with emphasis on discouraging switching to lines operating at low frequency.
As we do not know the timetable in advance, we can’t know the exact time
required for a switch. In the ideal case, for every switching occurrence, both
trains would arrive at a station at the same time and the station layout would
permit passengers to switch from either train to the other, losing no time.
However, generally this is impossible in Copenhagen. The best case at most
stations is that one train arrives shortly before another, in such a way that
passengers may switch from the earlier train to the later time with minimal
waiting time, but then passengers switching in the opposite direction have
almost a worst-case wait time for their next train.

Overall, we consider passenger travel time to be the most appropriate
measure. In tests, if we ignore switching time and minimize only moving travel
time, we find solutions with many undesirable switches required. Conversely if
we ignore travel time and consider only minimizing some measure of switch cost,
we find solutions which do not use “fast” lines appropriately and haver higher
overall average total travel time. Travel time therefore includes both the moving
travel time on train lines and an additional estimate of the wait time. However,
in addition to this we include a separate expression for the “unpleasantness”
of switching lines which we express as a time, in effect calculating a weighted
sum of estimated travel time and the number of switches.

For every edge in the graph, we assign some cost to the passenger. Let te be
the time cost to one passenger for using edge e. For every edge travel edge on a
line (the dashed lines in Figure 3), the edge time cost is the exact, known, travel
time for trains between the two stations. However, for the frequency-dependent
switching edges (the red edges on Figure 3), the edge time cost includes an
estimate of the waiting time and the penalized fixed cost of switching. For
such edges e at frequency f , let te = pfixed + λ 1

f , where λ ∈ [0, 1]. That is, the

time cost is a fixed term with a fraction of the worst case wait time (where
for example in the worst case, a line operating twice per hour has a worst
case switch time of 1

2 an hour). We take, as a parameter, a fixed penalty of
six minutes and λ = 0.5, or an average case wait time estimate. For any other
edges let te = 0. Now, we can define our objective function as simply:

∑
e∈E

∑
o∈O

tex
e
o (11)

5 Instance size

Now that all components of the problem are defined, we can more explicitly
define the standard S-train instance size. Table 1 shows the size of various sets
defined earlier.



Table 1 Sizes of problem instance parameters, and some derived values.

parameter size

|L| 174∑
l∈L |Fl| 350

|I| 258
|C| 189
|OD| 4645∑

(o,d)∈OD dod 35593

Note, for example, that there are in total 35593 passengers and 4645
OD pairs, or on average only 7.66 passengers per OD pair. In fact, a small
proportion of the OD pairs account for the majority of the passengers. A
potential simplification may then be to simply ignore some proportion of
OD pairs with small demand; however experiments solving reduced problems
and then assessing solution quality considering all ODs gave poor results, as
those low-demand ODs cover a diverse range of station pairings that are given
insufficient consideration.

6 Results

In the following, we will refer to two real solutions: R1 and R2. These are both
real historic line plans and frequencies as operated by S-train.

6.1 Refining a given solution with a limited pool

From a given solution, it is possible to create a limited pool of lines to use as
the input to the model, possibly containing all the lines of the given solution
and possibly also having the original solution as the optimal solution. The
advantage of using a limited pool is that if the pool is sufficiently small, it is
possible to solve the model to optimality quickly and still find good solutions
if the pool contains such solutions.

Suppose a solution is given, and let S be the set of lines present in the
solution, with unspecified frequency. A simple restricted instance is to solve
the model with only the lines S, but with the definition of Fl for each line l in
S unchanged. This is then a very small line pool, but there is guaranteed to
be at least one feasible solution present but there are likely to be others; we
see that solving this limited model for any given solution can quickly find very
similar but better solutions, especially in the case of real past line plans which
were generally not planned with a passenger based objective. The similarity
of any solution found and a real past solution is possibly of value, avoiding
solutions that are significantly different to a plan that is not only feasible but
possible to operate in practice, which we can not in general guarantee.

To determine a wider but limited line pool, consider a set of lines from the
entire line pool that are similar to a given line; let N(l) be a set of “neighbour-



ing” lines to line l which only differ in some small way to l. Now, we may use
the following as a limited line pool:⋃

l∈S

N(l)

We assume that l ∈ N(l), and therefore S is a subset of this limited line pool.
The definition of N(l) has a large affect on the problem size and solution

quality; for example if N(l) = {l} for all lines in S, then this limited line pool
is the same as simply taking the given solution lines; alternatively, if N(l) is
very large then the resulting problem may have every line in L, and the line
pool would not be “limited” at all.

Table 2 shows the problem sizes if we apply these two options, either taking
unknown frequencies or expanding with neighbouring lines, to the two real line
plans R1 and R2. Here we indicate the solution with fixed frequencies as R1,
the problem with the lines of R1 but open frequencies as R1+, and the problem
with all neighbouring lines to R1 as R1∗. For each, we report the number of
considered line, frequency combinations, and for the expanded problems report
the solve time and the percentage improvement in the moving time, train
switching time, and line cost. Note that the line cost is not considered in the
objective and as expected it increases, while we see modest improvements in
the components of the total travel time.

Table 2 Solve times and objective improvements for different limited line pools. Cost
improvements are the improvement in total moving time and switching time, and the
improvement in operator line cost (which we only constrain and therefore is free to increase).

Cost improvements

Problem line, frequencies Solve time (s) Moving Switching Line

R1 9 - - - -
R1+ 19 1 0.1% 9.7% -3.3%
R1∗ 59 395 0.1% 9.7% -3.3%
R2 8 - - - -
R2+ 17 1 0.2% 5.5% -2.4%
R2∗ 52 175 1.5% 4.5% -5.3%

Solve times for the R1∗and R2∗instances are much greater than the R1+

and R2+ instances, and in the case of R1∗ no improvement is seen over
R1+. However, we can see that we can relatively quickly find line plans that
“neighbour” a given plan, and here we can improve over these real line plans
with very similar line plans (in the case of R1+and R2+the found solutions
modify only the line frequencies). We can see that here there is more scope for
improvement in switching time than travel time given these reduced problems.
Note, however, that here we report the percentage improvement for each
individually, but the magnitude of those changes is very different and in our
problem a small relative improvement in travel time can be more significant
than a large relative improvement in switching time.



When we solved both R1+ and R2+, the moving time improves even though
we have exactly the same lines and can only alter frequencies. This may
seem impossible, as the travel time between any pair of stations is unchanged.
However the reason that we see small improvement is that, either, some
passengers did not take their quickest (moving time) route due to a costly low
frequency connection, or because some passengers could not take their fastest
(moving time) route due to a lack of capacity, but with higher frequency (and
therefore capacity) can now take that route.

6.2 OD grouping

Stations can be grouped together if they are served similarly by all lines.
Consider two adjacent stations, s1 and s2, which are on an infrastructure line,
and all lines in the line pool stop at either both s1 and s2 or neither s1 nor s2.
That is, they are served identically by all lines. Then, if there is a third station
s3 with demand to both stations s1 and s2 we can treat the two demands
as a single combined demand to (say) s1. Any demand for travelling directly
from s1 to s2, or vice versa, which would be discarded, can be reserved by
requiring sufficient aggregated extra capacity on the lines visiting both stations.
This may under-reserve capacity on the connection between s1 and s2 if s1 is
closer to s3 than s2 is, or over-reserve capacity if s1 is further from s3. We
optionally apply a pessimistic grouping strategy which reduces the problem
size (by reducing the total number of OD pairs), but given the potential error
in under use or overuse of some connections, we only consider low magnitude
OD pairs and always assess solutions found using all OD pairs.

6.3 LP Heuristic

We propose the following as a simple heuristic for finding solutions. Initially, we
solve the LP relaxation of the model and consider exactly those ylf variables
that have non-zero value. Then, we restrict the problem to only those lines
present but find the optimal integer solution with the restricted problem. We
compare the value of the optimal integer solution to the initial lower bound
to the LP that we had, and, if we wish, we can re-introduce the missing line-
frequency decision variables and allow the solver to tighten that lower bound
and potentially discover better integer solutions. The advantage we see is that it
is much faster to solve to optimality when there is a restricted pool of lines, and
so we can relatively quickly find good solutions. In fact, in some experiments
the solutions are optimal or near optimal. We hope that the smaller resulting
problems have acceptable solve times but still have solutions of good quality.
Also, as a possibility, we can expand the lines in the LP solution using the
ideas from the Section 6.1.

We compare four different formulations, summarized in Table 3. The formu-
lations differ in the presence of the additional constraints (10), and in whether
or not the grouping of ODs from Section (6.2) is applied.



Table 3 Four different formulations, differing in the presence of additional constraints and
their grouping of OD pairs.

Without cons. (10) With cons. (10)

No grouping M1 M3
Grouping M2 M4

We try solving the problem with the LP heuristic for each of the four
methods. The solve times are summarized in Table 4, referring to firstly the
solve time for the LP, and then the additional solve time to reach (potentially)
the optimal solution. However it can be seen that only formulation M4 can
solve first the LP and then the IP to optimality in reasonable time. The others
can all provide the LP solution but none can prove optimality for a solution in
reasonable time. We allowed 5000 seconds for attempting to solve the resulting
reduced IP for each model. After this time, M1 and M2 both had no incumbent
solution, whereas M3 had nearly found and proven an optimal solution. In fact,
the lines, frequencies solution provided by M3 was exactly the same as that
provided by M4.

Table 4 LP and IP solve times
for different formulations for an
LP non-zero heuristic, where the
IP is solved only considering non-
zero variables in the LP solution.

Times (s)

Formulation LP IP

M1 325 50001

M2 42 50001

M3 4728 50002

M4 178 1086

1: Terminated with no incum-
bent
2: Terminated with 0.8% gap

We see that M1 and M2 do not solve to optimality or even find any feasible
solutions in reasonable time. However, the comparison is potentially misleading
as each is solved using the lines and frequencies found to be non-zero at
LP optimality, and as we might expect, as M1 and M2 lack the additional
constraints (10), their LP solutions potentially have more non-zeros than the
LP solutions for M1 and M2.

Consider Table 5 where we show the number of line, frequency combinations
in the LP solutions to M1 and M3, and then consider expanding those as we
did with integer solutions in Section 6.1.

From the table, it can be seen that the additional constraints (10) reduce the
number of non-zero variables in an LP solution significantly. Also, in contrast



Table 5 The problem size in line, frequency combinations given by taking non-zero elements
of an LP, or expanding that with additional frequencies (denoted +), or with neighbouring
lines (denoted ∗)

Problem line, frequencies

M1 LP 172
M1 LP+ 324
M1 LP∗ 350
M3 LP 59
M3 LP+ 62
M3 LP∗ 156

to the LP solution without constraints (10), the solution with the constraints
features the majority of lines at every valid frequency (due to there being only
an increase from 59 to 62 line-frequency variables when the missing frequencies
are included). Without the constraints, however, lines tend to occur at only
a single frequency but a far greater variety of lines is present. For M1 the
expansions of the problem is unlikely to give the benefit we would like; rather
than resulting in a still small problem it is expanded to almost every line, and
so we would gain little over attempting to solve the entire problem.

As can be seen from the table, the LP solution when using M1 (and also
with M2) has many more non-zero elements than the LP solution of M3 (and
similarly M4). As the heuristic method was to then take only those non-zero
elements, it is perhaps not surprising that it was difficult to solve M1 with
the 172 line, frequency combinations to IP optimality, as it was to solve M4
to IP optimality with its 59 line, frequency decisions. However, as a further
experiment, we instead solved M2 to LP optimality, discarded the non-zero
line, frequency elements of the problem not in the LP solution, and then added
constraints (10) and in this case, with a 5000 second time limit, we were able
to solve the model to within 1.3% of optimality. This solution was in fact 2.8%
worse that the solution found with the 59 non-zero line, frequencies of the M3
LP solution. This reveals a weakness of the LP heuristic method, in that it
may be possible that there are no good integer solutions given the restricted
problem, and possibly no feasible integer solutions at all.

Finally, we simply attempted to solved M4 as a MIP with all lines and
frequencies, which, given 5000 seconds found a solution 1.7% worse than the
solution provided by M4 with the LP heuristic. Allowing significantly more
time, the solver can show that the M4 LP heuristic solution is within 1% of
optimal, and it finds the exact same solution itself, but not better solutions.

6.4 Line switching solution quality

Our aim is to reduce total passenger travel time, especially reducing the number
of passengers switching to low frequency lines in preference for switching to
high frequency lines (or not switching at all). Here we consider four solutions:
again real solutions R1 and R2; the best solution seen above with the M4



formulation and LP heuristic, which we will call S1 and a different solution
found with a more generous cost limit, S2.

Table 6 shows the number of passengers switching to lines operating at 3,
6, or 12 times per hour for these different solutions, given that every passenger
takes their best route subject to overall capacity. As expected, solutions S1
and S2 have an overall lower number of passengers switching in the case of S2,
few passengers switching to lines operating at just 3 per hour, which incur the
heaviest penalty. Note that this is not simply that the frequencies of all lines is
increased; the tight operational limits mean that there is little possibility for
generally increasing frequency everywhere, nor does the cost constraint (even
if more generous as with S2), and these better solutions have exactly as many
3-per-hour lines as R2 and one fewer than R1.

Table 6 Passenger switching numbers for different solutions, to lines operating at 3, 6 or 12
times per hour.

Solution f3 f6 f12 Total

R1 1492 2494 2274 6260
R2 959 3415 2219 6593
S1 1143 2382 2088 5613
S2 35 3151 2242 5428

7 Conclusions

Here we use an arc-flow formulation to attempt to solve a line planning problem
for the S-train network in Copenhagen, focusing on passengers. The integer
programme we formulate can generally not be solved to optimality for our
instances, but we can find relatively good solutions in reasonable time with
an LP based heuristic method, and given more time the full formulation itself
can also find good quality solutions but not generally prove optimality. We
also show we can find good solutions quickly when we restrict ourselves to
lines that are similar to currently operated lines, and this is perhaps a natural
restriction as it is unlikely that the operator would change all lines at once.

The passenger focus means that the lines are of good quality for the
passenger and tend to be at the upper limit of whatever cost limit we allow. By
reducing the cost limit to be lower than real operated plans, we can show that
there are plans which are both better for the average passenger and cheaper in
line cost (though our line cost does not necessarily reflect all components of
the true operating cost or other important measures).

We show that for this problem, the arc-flow model, though large, can be
directly applied and solved to find solutions of reasonable quality, and we show
a simple LP based heuristic approach to find good solutions more quickly. In
our experiments we have found that the model is also applicable to the same
problem but with many more frequencies per line, without becoming unsolvable.



However given that the operational requirements are created considering the
given frequency options, there are not so many interesting solutions with
additional frequencies.

There are several limitations or weaknesses to the model. One limitation is
that, while we try to minimize switching time, we can only estimate this time
as we have no timetable. In fact, the lines constraints (constraints (1)–(6)) do
not capture everything necessary to ensure that a timetable can be created
for the line plan at all; it may be that our proposed line plans are infeasible.
However, assuming that a valid timetable does exist, we can still only estimate
the wait time.

Another is that we penalise the cost of switching to one specific line. However,
for many trips, when boarding a subsequent line on a trip, a passenger can have
several similar options in some line plans. For example, a passenger may begin
on line l1 and exit at some station to wait for a train to their destination, and
there are two lines l2 and l3 stopping at both their intermediate and destination
stations, and a real passenger would likely board the first of those to arrive
(because the lines may only differ in stations past their destination). Therefore
if the two lines operate at a low frequency our long estimated wait time is
pessimistic because the combined frequency of the lines is not low.
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