Technical University of Denmark

The new worldwide microscale wind resource assessment data on IRENA's Global Atlas. The EUDP Global Wind Atlas

Badger, Jake; Davis, Neil; Hahmann, Andrea N.; Olsen, Bjarke Tobias; Larsén, Xiaoli Guo; Kelly, Mark C.; Volker, Patrick; Badger, Merete; Ahsbahs, Tobias Torben; Mortensen, Niels Gylling; Ejsing Jørgensen, Hans; Lundtang Petersen, Erik; Lange, Julia; Fichaux, Nicolas

Publication date: 2015

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Badger, J., Davis, N., Hahmann, A. N., Olsen, B. T., Larsén, X. G., Kelly, M. C., ... Fichaux, N. (2015). The new worldwide microscale wind resource assessment data on IRENA's Global Atlas. The EUDP Global Wind Atlas European Wind Energy Association (EWEA). [Sound/Visual production (digital)]. EWEA Technology Workshop, Helsinki, Finland, 02/06/2015

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

EWEA RESOURCE ASSESSMENT 2015 Helsinki, 2-3 June 2015

The new worldwide microscale wind resource assessment data on IRENA's Global Atlas

The EUDP Global Wind Atlas

Jake Badger, Neil Davis, Andrea Hahmann, Bjarke T. Olsen Xiaoli G. Larsén, Mark C. Kelly, Patrick Volker, Merete Badger, Tobias T. Ahsbahs, Niels Mortensen, Hans Jørgensen, Erik Lundtang Petersen, Julia Lange, DTU Nicolas Fichaux, IRENA

EUDP 11-II, Globalt Vind Atlas, 64011-0347

DTU Wind Energy Department of Wind Energy

Outline

- Project context
- Model chain
- Input data
- Output and verification
- Web user interface, walk through
- Future plans
- Global assessments of the technical potential

Project context - International collaboration

DTU Wind Energy **Global** Atlas Department of Wind Energy FOR RENEWABLE ENERGY Energy Technology development Coordinated by International Renewable and Demonstration (EUDP) Global Wind Atlas by DTU Wind Energy Agency (IRENA) Energy Multilateral Solar and Wind Working Group Lead countries are Denmark, Germany and Spain. + 11 countries and EC CLEAN ENERG Accelerating the Transition to Clean Energy Technologies

23 participating CEM governments account for 80 percent of global greenhouse gas emissions

International collaboration What is IRENA's Global Atlas?

It is a high-level prospector for renewable energy opportunities

- builds on publicly available information
- information released by the private sector
- data released by institutions,
 - i.e. EUDP Global Wind Atlas
 - New European Wind Atlas

4 DTU Wind Energy, Technical University of Denmark

http://globalatlas.irena.org/

International collaboration IRENA's Global Atlas

It supports

- countries in prospecting their renewable energy opportunities
- companies to approach new markets
- the general public in gaining interest in renewable energy

http://globalatlas.irena.org/

The global wind atlas objective

- provide wind resource data accounting for high resolution effects
- use microscale modelling to capture small scale wind speed variability (crucial for better estimates of total wind resource)
- use a unified methodology
- ensure transparency about the methodology
- verify the results in representative selected areas

For:

 Aggregation, upscaling analysis and energy integration modelling for energy planners and policy makers

Not for:

• Not for wind farm siting

Project context

DTU

Wind resource (power density) calculated at different resolutions

mean power density of total area mean power density for windiest 50% of area Wind farms are not randomly located but are built on favourable areas

Project context

DTU

Note:

This area exhibits large topography effects.

Even for Danish landscape effect can give 25 % boast in wind resource at the windiest 5 percentile.

Model chain Downscaling

DTU

Model chain Global Wind Atlas implementation

- Military Grid Reference System (MGRS) form basis of the job structure
- MRGS zones are divided into 4 pieces (total 4903)
- 2439 jobs required to cover land and 30 km offshore
- Frogfoot system runs WAsP-like microscale modelling. Inputs
 - Generalized reanalysis winds
 - High resolution elevation and surface roughness data

11 DTU Wind Energy, Technical University of Denmark

Frogfoot components

Job Creation

🗳 Create New Job		<u> </u>
New job	NEW JOB	
Maps	Name:	
Climates	Comments:	
Calculation grid		
Results		
Review		
Close	Refresh	Next

# Frogfoot results e	xporter - conn	ected to http://v	ind-ptadpol	e/FrogfootServi	ce/JobService	.svc
Result layer selecti	on			Area selection		
Job: Baselin	e test 1		-	MinimumX:	567075	
**			<u>Refresh</u>	MinimumY:	6215025	
				MaximumX:	627075	
				MaximumY:	6275325	
						Reset
Output selection						
 Grid map Resource gr 	id	Height Ag Sector:	l: 100	▼ ○ Gr✓ Variab	ound level:	
Files for AEF	calculation	Variable:		•		
Output target						
Folder: 0	:\lp-12566_c\G	lobalWindAtlas\(CaseStudies\I	Denmark	•	Open folder
File name:					grd 🔻	
View connections						Export

Results Exporter

View ob Name		otService/JobService.svc					1.0	
ob Name						10		
acation tast 1	Priority	Tries	Created	Status		Status:	Any	•
aseune test a	Normai	1880	07/11/2013 13:52:05	Comple	ete	Priority	Arry	-
12	Normal	01	36/11/2013 13:17:02	Comple	te	Name:		
	Produced server 1		best where or one of the					D.
						From		
						To:		G
						Reset filter		Show
New Job				Delete	Paule			
ob details			- Participant					
est2			Lonpele.					
viority: (i) normal () medium	a (C) high							
Job information Tile summary	Activity Comments							
Created at	26/11/2013 13:17							
Completed at	26/11/2013 13:37							
Setup								
Heights	50m, 100m, 200m							
Resolution	1000m							
Extent	(569500, 4680500) - (661500, 4772	(500)						
Projection	UTM WGS84 (30)		E					
Terrain								
Elevation layer	ElevationLayer							
Roughness layer	RoughnessLayer							
Boundary								
Boundary	Aliaz_boundary_inner.map							
Climate	ALLE 1 2 -1893 3000 ALLE							
contaire wataset	1003[4]2[p1900]2004[100005							
			View in Google Earth					

Activity	Status
Checking for work in 1 seconds Check now	I 11

DTU

WAsP Worker

Model chain How to work with Frogfoot?

WAsP Worker(s)

Wasp worker - connected to http://vind-ptadpole/Fr Wasp worker - connected to http://vind-ptadpol Wasp worker - connected to http://vind-ptadpol Wasp worker - connected to http://vind- Wasp worker - connected to http://vind- Kan A A A A A A A A A A A A A A A A A A A	rogfootService/TaskAllocationService.svc
	Checking for work in 1 seconds Check now

Microscale Orographic speed-up

Streamlines closer together means faster flow

Modification of the wind profile

Microscale Surface roughness length

Datasets: atmospheric data

Reanalysis			\land			
Product	Model system	/	Horizontal resolution		Period covered	Temporal resolution
ERA Interim reanalysis	T255, 60 vertical levels, 4DVar		~0.7° × 0.7°		1979- present	3-hourly
NASA – GAO/MERRA	GEOS5 data assimilation system (Incremental Analysis Updates), 72 leve	ls	0.5° × 0.67°		1979- present	hourly
NCAR CFDDA	MM5 (regional model)+ FDDA		~40 km		1985-2005	hourly
CFSR	NCEP GFS (global forecas system)	t	~38 km	(1979-2009 & updating)	hourly

Challenges in generalizing wind climatologies

- Roughness length among the various reanalysis varies
- The response of the simulated wind profile to the surface roughness varies from model to model

surface roughness length (m)

0.48

Datasets terrain: elevation and roughness

Topography: surface description		
Elevation		
Shuttle Radar Topography Mission (SRTM)	resolution 90 - 30 m	
Viewfinder, compiles SRTM and other datasets	resolution 90 - 30 m	
ASTER Global Digital Elevation Model (ASTER GDEM)	resolution 30 m	
Land cover		
ESA GlobCover	resolution 300 m	

Modis, land cover classification

resolution 500 m

20 DTU Wind Energy, Technical University of Denmark

Challenges in determining surface roughness

GLOBCOVER

- European Space Agency initiative
- January December 2009
- Global 300m resolution
- 22 Classes
- Data gaps near poles
 - Limited number of overpasses
 - Large number of cloudy images

Value	GlobCover global legend	
11	Post-flooding or irrigated croplands	
14	Rainfed croplands	
20	Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland, forest) (20-50%)	
30	Mosaic Vegetation (grassland, shrubland, forest) (50-70%) / Cropland (20-50%)	
40	Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5m)	
50	Closed (>40%) broadleaved deciduous forest (>5m)	
60	Open (15-40%) broadleaved deciduous forest (>5m)	
70	Closed (>40%) needleleaved evergreen forest (>5m)	
90	Open (15-40%) needleleaved deciduous or evergreen forest (>5m)	
100	Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m)	
110	Mosaic Forest/Shrubland (50-70%) / Grassland (20-50%)	
120	Mosaic Grassland (50-70%) / Forest/Shrubland (20-50%)	
130	Closed to open (>15%) shrubland (<5m)	
140	Closed to open (>15%) grassland	
150	Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)	
160	Closed (>40%) broadleaved forest regularly flooded - Fresh water	
170	Closed (>40%) broadleaved semi-deciduous and/or evergreen forest regularly flooded - Saline water	
180	Closed to open (>15%) vegetation (grassland, shrubland, woody vegetation) on regularly flooded or waterlogged soil - Fresh, brackish or saline water	
190	Artificial surfaces and associated areas (urban areas >50%)	

Challenges in determining surface roughness Roughness lengths used in the GWA

Roughne	GLOBCOVER_Class	Modis_Class
0.0	Water bodies	Water
0.0004	Permanent snow and ice	Snow / Ice
0.005	Bare areas	Baren or sparsely vegatated
0.03	Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses)	Grasslands
0.05	Sparse (<15%) vegetation	
0.1	Post-flooding or irrigated croplands (or aquatic)	
0.1	Rainfed croplands	Croplands
0.1	Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5m)	Closed Shrublands / Open Shrublands
0.2	Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil - Fresh, brackish or saline water	Permanent Wetland
0.3	Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%)	
0.3	Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)	Cropland / Natural Vegatation Mosaic
0.5	Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently or temporarily) - Fresh or brackish water	
0.5	Mosaic grassland (50-70%) / forest or shrubland (20-50%)	Savannas
0.6	Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or brackish water	
1.5	Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m)	Evergreen Broadleaf Forest
1.5	Closed (>40%) broadleaved deciduous forest (>5m)	Deciduous Broadleaf Forest
1.5	Open (15-40%) broadleaved deciduous forest/woodland (>5m)	
1.5	Closed (>40%) needleleaved evergreen forest (>5m)	Evergreen Needle Leaf Forest
1.5	Open (15-40%) needleleaved deciduous or evergreen forest (>5m)	Deciduous Needle leaf Forest
1.5	Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m)	Mixed Forest
1.5	Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Woody Savannas
1.0	Artificial surfaces and associated areas (Urban areas >50%)	Urban and Built-Up
	No data (burnt areas, clouds,)	

Example output 250 m calculation node spacing

Output and verification

Output and verification

Contingency map for a power density threshold of 600W/m^2 comparing WASA and GWA, **Tobias Ahsbahs**, **2015**

Web user interface, walk through

Roughness length

Orography

WAsP Mesoroughness per sector

Orographic speed-up per sector

Annual mean wind climate

Selection of aggregation area

Wind rose

Windiest fractile plot

Wind speed distribution

Distribution of mean wind speed over area

Mean annual cycle over area

- Global runs with alternative reanalyses (1000 m)
- Complete verification
- Integration into IRENA global atlas
- Launch IRENA-coordinated web event, September 2015

- Following projects
 - Framework agreement led by ECN (NL) to supply renewable resource data to JRC TIMES-EU energy model.
 - Foundation for data inputs and concepts for server platform for the New European Wind Atlas
 - Roughness mapping improvements
 - Elevation data verification would be of value
 - Model chain development
 - Many possibilities for post processing of data

IPCC Special Report on Renewable Energy Sources and Climate Change: range tech. pot. **19 – 125 PWh / year** (onshore and near shore)

Table 7.1 | Global assessments of the technical potential for wind energy.

Study	Scope	Methods and Assumptions ¹	Results ²
Krewitt et al. (2009) Onshore and offs		Updated Hoogwijk and Graus (2008), itself based on Hoogwijk et al. (2004), by revising offshore wind power plant spacing by 2050 to 16 MW/km ²	Technical (more constraints): 121,000 TWh/yr 440 EJ/yr
Lu et al. (2009)	Onshore and offshore	>20% capacity factor (Class 1); 100 m hub height; 9 MW/km ² spacing; based on coarse simu- lated model data set; exclusions for urban and developed areas, forests, inland water, permanent snow/ice; offshore assumes 100 m hub height, 6 MW/km ² , <92.6 km from shore, <200m depth, no other exclusions	Technical (limited constraints): 840,000 TWh/yr 3,050 EJ/yr
Hoogwijk and Graus (2008)	Onshore and offshore	Updated Hoogwijk et al. (2004) by incorporating offshore wind energy, assuming 100 m hub height for onshore, and altering cost assumptions; for offshore, study updates and adds to earlier analysis by Fellows (2000); other assumptions as listed below under Hoogwijk et al. (2004); con- strained technical potential defined here in economic terms separately for onshore and offshore	Technical/Economic (more constraints): 110,000 TWh/yr 400 EJ/yr
Archer and Jacobson (2005)	Onshore and near-Shore	>Class 3; 80 m hub height; 9 MW/km ² spacing; 48% average capacity factor; based on wind speeds from surface stations and balloon-launch monitoring stations; near-shore wind energy effectively included because resource data includes buoys (see study for details); constrained technical potential = 20% of total technical potential	Technical (limited constraints): 627,000 TWh/yr 2,260 EJ/yr Technical (more constraints): 125,000 TWh/yr 450 EJ/yr
WBGU (2004)	Onshore and offshore	Multi-MW turbines; based on interpolation of wind speeds from meteorological towers; exclu- sions for urban areas, forest areas, wetlands, nature reserves, glaciers, and sand dunes; local exclusions accounted for through corrections related to population density; offshore to 40 m depth, with sea ice and minimum distance to shore considered regionally; constrained technical potential (authors define as 'sustainable' potential) = 14% of total technical potential	Technical (limited constraints): 278,000 TWh/yr 1,000 EJ/yr Technical (more constraints): 39,000 TWh/yr 140 EJ/yr

We can use the EUDP Global Wind Atlas to determine global potential accounting for high resolution effects and get a better spatial breakdown.

So far "back of the envelope" calculations suggest 2 – 300 PWh / year

The challenge is to create a consistent approach, with range of tested assumptions, available for the community to scrutinize.

The Global Wind Atlas makes this easier via

- Transparency of methodology
- Providing data to allow annual energy production calculation
- GIS integration of datasets

Thank you for your attention

Funding: EUDP 11-II, Globalt Vind Atlas, 64011-0347

42 DTU Wind Energy, Technical University of Denmark