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Abstract—The distributed economic dispatch for distributed 
generation is formulated as a optimization problem with 
equality and inequality constraints. An effective distributed 
approach based on multi-agent system is proposed for solving 
the economic dispatch problem in this paper. The proposed 
approach consists of two stages. In the first stage, an 
adjacency average allocation algorithm is proposed to ensure 
the generation-demand equality. In the second stage, a local 
replicator dynamics algorithm is applied to achieve nash 
equilibrium for the power dispatch game. The approach is 
implemented in a fully distributed manner with local 
computation and communication among neighboring agent. 
The feasibility and effectiveness of this approach is 
demonstrated by a numerical test system. 

Keywords—Multi-Agent System; Replicator dynamic; 
Distributed economic dispatch;  Distributed generation 

I.  INTRODUCTION  

The integration of distributed generation and advanced 
communication technology will make the electric grid more 
efficient, flexible and reliable. Real time and optimal 
operations of the power system are required. Economic 
dispatch(ED) is one of the fundamental optimization 
challenges that allocates the total power demand among 
multiple generation units in the most economical way, while 
satisfying both the unit- and system-level constraints [1]. The 
existing economic dispatch algorithms can be classified into 
two categories: the analytical algorithms (such as lambda 
iteration [2] and gradient search) and heuristic algorithms 
(such as genetic algorithm [3], particle swarm optimization 
[4]). Despite the excellent performance, most of existing 
economic dispatch approaches are centralized. Because of the 
large amounts of data to process and the communication 
network subject to topology variations, it is difficult for a 
centralized method to provide optimal control setting in real-
time. In addition, centralized schemes are usually expensive to 
implement, inflexible, and susceptible to single-point failures.  

A recent trend is to solve the ED problem in a distributed 
manner and incorporate distributed intelligence. As distributed 
strategies can be more suitable to handle topological variations 
and accommodate plug-and-play features. Moreover, they are 
more robust, scalable, and can better accommodate a large  

number of units compared to centralized approaches. Finally, 
distributed strategies can effectively exploit sparse 
communication network with limited message passing among 
participating units to aid the cooperation of dispersedly 
located components in the system. 

Existing research on decentralized and distributed 
economic dispatch solutions can be found in some literatures 
[5-14]. In [7] frequency deviation-based method base on local 
available information is proposed, however, due to the lack of 
communication, it may not be effective to utilize all available 
resources in the network. Distributed algorithm, such as 
consensus algorithms [8-9] and auction algorithms[10],  are 
used to solve the ED problem,  which requires only local 
computation and information exchange among some neighbor 
units through a local communication network. In [11] a 
distributed dynamic programing algorithm is proposed to 
optimally allocate the total power demand among different 
generation units, while the global load demand need to acquire 
before executing the algorithm. An improved distributed 
gradient algorithm is proposed in [12], but it needs feedback 
on the power mismatch from the shift in steady state 
frequency due to primary control. In [13] a fully decentralized 
approach consisting of three stages is proposed to solve the 
economic dispatch problem, while the global generation 
information is needed for every agent to solve the ED problem 
alone, too much data flowing over the communication network 
may degrade the effectiveness of the approach. In [14] 
replicator dynamics algorithm is applied in distributed 
optimization, it assumes the algorithm to be initialized with a 
feasible power allocation, but the inequality constraints for 
generation units are not well considered. 



Moreover, with the increasing penetration of renewable 
resources and distributed generation (DG), the interests and 
characteristics of renewable resources and distributed 
generation are not yet represented in existing methods. This 
paper proposes a distributed replicator dynamics approach 
based on multi-agent system (MAS) to solve the ED problem 
for distributed generation.  According to the proposed solution, 
each generator and load has an associated agent that 
communicates with its neighboring agents only. No 
centralized or specialized agent is used to coordinate the 
operation of the autonomous agents. The proposed approach is 
based on two stages: 1) Initialize generation power using 
adjacency average allocation algorithm and 2) solve the ED by 
local replicator dynamics in a distributed manner. The salient 
features of the proposed approach are the following: 

• The economic dispatch problem is solved in a distributed 
fashion, no global load and generation information is 
needed; 
• Proposed adjacency average allocation algorithm 
guarantees the equality constraints, and provides fast and 
effective initialization for replicator dynamics; 
• Designed local replicator dynamics algorithm can handle 
inequality constraints, not be sensitive to the initial state; 
• Renewable resources can be integrated into the power 
dispatch properly considering their interests. 

II.   FORMULATION OF THE ECONOMIC DISPATCH PROBLEM 

The ED minimizes the total generation cost ( )C P  given 

by the sum of the generation costs for each unit i , ( )i iC P , as 

follows:  
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where ( )i iC P  is the cost function of generation unit i ; 
iP is 

the power output of generation unit i ; n  is the number of 

generators; 
dP  is the total system load; min

iP , max
iP are the 

lower and upper limits of generation unit i , respectively. 

     The generation cost function is modelled with the following 
quadratic formula: 

 2( )i i i i i i iC P a b P c P                             (4) 

where 
ia , 

ib and 
ic are the fuel cost coefficients for unit i .  

 In this paper, small distribution generation units operating 
close to the load points in the power distribution system are 
considered, thus some technical constraints such as losses in 
long transmission lines, valve-point effects, prohibited zones, 
and ramp-rate limits[13] for the large generation units are not 
included. 

III. PRELIMINARY 

In this section, notations of graph theory are presented to 
model the networked environment, and the replicator dynamics 
algorithm is introduced. 

A. Graph Theory 

Denote ) ( ,G H E as a graph consisting of a set of 

nodes 1,2,  . . .  { },H n  and a set of edges E H H   . An 

undirected edge from i to j is denoted by an unordered and 
distinct pair ( ),  i j E  , the neighbor set of node i is denoted 

by { | ( ,  ) }iN j H i j E   . A path is referred to a sequence 

of edges which connect a sequence of nodes. Two nodes are 
called connected if there contains a path from i to j. A graph is 
connected if and only if there exists a path between any two 
nodes. 

B. Replicator dynamics 

Replicator dynamic [15], [16] ]models the interaction of an 
homogeneous population, where fractions of individuals play 
a symmetric game, the one that has a better playoff will 
increase its population in the habitat.  

A particular choice of replicator dynamics is given by 

( ( ) ( ))i i i iP P f P f P

                          (5) 

where
iP


 denotes the increase rate of individuals in the 

population playing strategy i; iP  is the amount of individuals 

in the population playing strategy i; ( )i if P  is the fitness 

function of the individuals that play strategy i; ( )f P  is the 

average fitness function in population. 

As the population size 
dP   is constant, ( )f P  can be 

defined as 
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then the constraint set 
P would be invariant, as  
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which means

 ( )i PP t   for all 0t  . 
The proportions of individuals in each habitat evolve until 

each individual reaches the same fitness. If 0iP

 , for 

all 1,2...i n , that is 

* *( )i if P f                                        
(8) 

the evolution process reaches an equilibrium. 

IV. LOCAL REPLICATOR DYNAMICS 

A. Local Replicator Dynamics Algorithm 

For the distributed system, communication networks are 
constrained, and nodes can only have information about their 
neighbors, thus the ordinary replicator dynamics cannot be 



used in this environment. A local version of the original 
replicator dynamics in (5) is proposed in [15] to account for 
local interactions of fractions of the population over a graph 
G . 

The local replicator dynamics(LRD) is given by 
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for all i H , where ( )i if P  is still the fitness function that 

describes the payoff for the i th node, while the average fitness 
defined in (6) is changed, it takes the summations only over 
the neighborhood of node i instead of  all node in the system. 
Therefore, the full information constraint for the calculation of 
the original average fitness in (6) is relaxed and the LRD can 
be used to handle the network constraints in the ED problem 
(1) given by the topology of the graph G . 

          The steady state is achieved when  

      ( ) ( )
i i

i i j j j j
j N j N
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which is satisfied if ( ) ( )i i j jf P f P  for all  
ij N  and   

all i H . Assuming that the graph G is connected, thus at 

steady state all fitnesses are equal, that is 

( ) ( ) ( )i i j jf P f P f P   
             

for all ,i j H       (11) 

where ( )f P  is the equilibrium average fitness. Hence, LRD 

and RD have the same equilibrium point pP  . Besides, 

p  is also invariant under the LRD, which has been proved in 

[15]. 
        Taking the load demand as the population, and 
dispatched DG as a habitat to be chosen by the individuals, the 
amount of individuals in each DG will be the power

iP  

assigned to the ith DG. Thus LRD can be used for the power 
dispatch. Taking into account the equilibrium condition of the 
replicator dynamics, an appropriate choice for the fitness of 
each DG should be related to its marginal cost. Let 

( ) ( )i i i i if P C P P   , using (1) and (4), it is obtained that 

( ) 2i i i i if P c P b                              (12) 

       Given that fitness functions are a measure of the playoff, a 
big enough positive constant B can be added to all fitness 
functions to ensure ) 0(i if P  , for min max

i i iP P P  , i H . 

Notice that this constant displacement does not affect the 
optimization process. Thus the final fitness function is defined 
as 

( ) 2i i i i if P B b c P                            (13) 

        In order to approximate the continuous-time local 
replicator dynamics, one option is the discrete-time version of 
the model, given by  
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[ 1] 2 [ 1]i i i if k B b c P k                              (15) 

where  is a step size, [k 1]jl   is the unbalance power of  the 

jth DG , ij N  .  

B. Renewables Consideration 

          As the cost functions of renewable resources are not the 
same as DG, and renewable generators are mostly owned by 
private sectors, how to incorporate renewable resources into 
ED is a problem. Assuming that integrating as much 
renewable energy as possible into the system is the desired 
objective and renewable sources are regulated to have 
priorities compared with fossil sources. In this case, the LRD 
formulation of the ED problem (14) remains the same, while 
the fitness will be configured to reflect the interest of 
renewable sources, as 

max
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( ) i i

i i
i i

m P
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m P
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don t want                  (16) 

where im is an objective factor that reflect the objective  of 
renewable sources, it can be tuned according to desired 
objective. If renewable sources want to join the power 
dispatch, it will determine a large fitness, which guarantee the 
maximum power dispatched to renewable sources in the LRD 
evolve process. On the contrary, a small fitness will be 
determined. Notice that the fitness will keep fixed in the 
evolve process. 

C. Inequality Constraints Handling 

To avoid violations of inequality constraints, we can 
update the equation (14) and (15) as follows: 
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      If the calculated generation power [ 1]iP k   of a DG lies 

within the bound, the power will be updated as usual; 
otherwise, the unit will be fixed to its violated limit, and the 
unbalance power produced by drawing back to its violated 
limit will be compensated by the neighbor DGs/agents. The 
unbalance power compensated by each neighbor is defined as 

u[k 1] ( [ 1] [ 1]) / Zi i i il P k P k                  (19) 

where iZ  is the number of neighbor DGs for ith DG . 

        After DG power violating limit, the DG will be excluded 
from next LRD evolve process until it find the suitable 
conditions to join the process again. However, lack of node in 
the strong connected network will cause some node isolated 
from network, which may bring the problem that evolve 
process cannot continue. For handling this problem, the 
concept of transfer agent has been used. When the DG power 
violating limit or quitting the LRD evolve process, the respect 
DG Agent will act as transfer agent building virtual 
communication channels to make the neighbor agents 
connected. 



          Fig. 1 illustrates the idea of building virtual 
communication channels. Assuming the case of bound 
violation with DG 1. The affected communications links are 
the 4 red links associated with agent 1 in Fig. 1(a). After the 
bound violation, generation power of agent 1 will be fixed and 
excluded from next LRD evolve process, however, agent 1 
acting as transfer agent still participates in the information 
exchange. As shown in Fig. 1(b), agent 1 will take the 
incoming data from a neighbor agent and send it directly to all 
other agents that are originally connected to the agent through 
agent 1, as long as there is no direct communication link 
between the two neighbor agents. In this way, it is like the 
topology of the communication network is reconfigured as the 
one shown in Fig. 1(c). It should be noted that agent 1 still use 
its current fitness at bound point to calculate the power in the  
evolve process left to see if  the calculated power lies within 
the bound. If the expected condition appears (the calculated 
power lies within the bound), the original communication 
topology will be restored and agent 1 will rejoin the evolve 
process again.  
          It should be noted that during the process of bound 
violation there are some unbalanced power flowing in the 
network, but the power will be dispatched legitimately by 
LRD eventually. 

 
Fig. 1. Construction of virtual communication channel by transfer agent 

V. IMPLEMENTATION OF  PROPOSED APPROACH 

The approach presented in this section is proposed 
primarily for solving the ED in a fully distributed  manner by 
MAS. It is assumed that each DG and load in the system has 
an agent responsible for and the graph is strong connected, 
which means there must an channel connected with  an agent. 
The proposed approach consists of two stages. The first stage 
aims at determining the initial generation power for DG agents, 
while the second stage is power dispatch using LRD.  

A. Adjacency Average Allocation Algorithm 

In most previously proposed decentralized and distributed 
algorithms, the total demand in the network are needed to 
execute the algorithm, which requires the global information. 
In this paper, an adjacency average allocation algorithm is 
proposed to initialize the generation power of DG by the 
interaction between neighbor load agents and DG agents. The 
adjacency average allocation algorithm is a fully distributed 

algorithm, which allocate the distributed load power to their 
adjacency node equally as the initialization for the second 
stage. 

Adjacency average allocation algorithm makes it a good 
initialization since load power are almost distributed in the 
generation equally, which can increase the LRD convergence 
speed.Notice that the load agent is only activated at the first 
stage for initialization, since the power balance is preserved 
over time by (7). 

B. Implementation of LRD 

For the second stage, the proposed LRD is implemented 
based on a MAS framework, which is developed using Java 
Agent Development (JADE) platform. Each generation agent 
has two main functions: local information update (LIU) and 
information exchange (IE) with neighboring agents, as shown 
in Fig. 2. The MAS framework only include generation agents 
since load agents are not working in the second stage. 

LIU is in charge of updating the fitness, generation power 
and unbalance power in the evolve process according to (17), 
(18) and (19), based on its own parameters and information 
obtained from neighboring agents. 

IE is responsible for exchanging information with the 
neighboring agents. The supporting communication network 
topology can be designed to be either the same or independent 
to the topology of the power network, as long as the designed 
communication graph is strongly connected. 
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Fig. 2. The LRD in MAS framework 

VI. CASE STUDIES 

    In this section, several case studies are discussed to show 
the effectiveness of the proposed approach. 

A. Adjacency Average Allocation Algorithm 

       The system with 3 DGs and 3 loads are considered. The 
generation cost coefficients and the generation limits are 
summarized in Table I. The supporting communication 
topology is as shown in Fig. 3. 

TABLE I.  DG DATA 

Unit min
iP max

iP ic  ib  ia  

1 0 80 0.0156 7.92 561 
2 0 80 0.0194 7.85 310 
3 0 60 0.0482 7.8 78 



 
Fig. 3. System topology 

        In this case study, different distributed load demand are 
applied to observe the impact of adjacency average allocation 
algorithm to the DG initial generation power. The total load 
demand is 159 kW, Table II shows two scenarios with 
different load demand for load agent. 

TABLE II.  DISTRIBUTED LOAD DEMAND 

Scenario Load 1(kW) Load 2(kW) Load 3(kW) 
1 20 49 90 
2 58 59 42 
3 46 65 48 

       With adjacency average allocation algorithm，DG agents 
can determine the initial power for LRD. The results with 
different scenarios are shown in Table III. For scenario1, the 
initial power is located in the normal range, while for scenario 
2, the initial power of DG2 and DG3 is nearly violate the 
bound. Scenario 3 is the worst situation, in which DG3 violate 
the upper limit.  Thus with distributed load demand initial 
power for DGs can be different, but for all the initial  
conditions, the designed LRD with transfer agent can get an 
optimal solution no matter where  the initial power locates, 
which will be discussed in the next cases. 

TABLE III.  LOAD DEMAND ALLOCATION IN DGS 

Scenario DG 1(kW) DG 2(kW) DG 3(kW) 
1 45 65 49 
2 21 79 59 
3 24 70 65 

       Compare to the flooding-based consensus algorithm [13] 
and discovery algorithm [17], adjacency average allocation 
algorithm  is really fast for DGs to perceive the load demand 
and only local information is needed, avoided getting the 
global information.  
       With more load agents and more communication channels, 
the load demand will be more distributed, and the initial power 
for each generation agent will be more equal, which will  
provide a good start point  for the LRD next stage. 

B. Transfer Agent for Bound vialation  

In order to investigate the effectiveness of inequality 
constraints handling by transfer agent, Three cases are 
compared. The first two cases for scenario 2 show the 
performance with and without generation constraints, and   the 
third case considers transient bound violation handling by 
transfer agent. The last case for scenario 3 demonstrates the 
effectiveness of LRD with different initial states. 

   
(a)                                                              (b) 

Fig. 4. Without generation constraint: (a) power, (b) fitness 

As without generation constraints, the DGs’ constraints are 
not imposed. The evolve process of DG output power and 
fitness is shown in Fig. 4, it can be observed the fitness 
asymptotically converge to a common value after 35 iterations, 
which means the equilibrium point is achieved. Hence, the 
optimization goal is fulfilled. The generator output powers are 

1=73.24kWP  ,
 2 =60.78kWP  , 3 =24.98kWP and the average 

fitness is 5.94. Although all the final outputs are within the 
generators’ operational ranges, careful examination on the 
plots shows that DG2 power goes beyond 80 kW during the 
transient response since the generation constraints are not 
imposed. This is not desirable due to there will be chances for 
the final dispatched power exceeding limit. 

        
(a)                                                                    (b) 

Fig. 5. With generation constraint: (a) power, (b) fitness 

Case with generation constraints is considered,  the results 
are shown in Fig. 5.  We notice that DG2 gets saturated after 
the second iteration due to the generation constraints and it is 
excluded from the next evolve process. Thus DG2 output 
power remains at the maximum point, and the fitness stay 
unchanged in the next evolve process. DG1 and DG3 will 
continue the evolve process, and converge to a new 
equilibrium point after 75 iterations, which is different from 
the one without DG constraints. Based on the results, 

1=58.71kWP , 2 =80kWP MW, 3 =20.29kWP , no DG power 

exceed the operation ranges even in the transient responses, 
but the final solution is not optimal due to DG 2 converge to 
the power limit early,  which makes the solution pointless.  

        
(a)                                                                    (b) 

Fig. 6. Transfer agent with generation constraint: (a) power, (b)fitness 



For the case with generation constraints, transfer agent is 
used to solve the transient bound violation problem. Shown in 
Fig. 6, DG2 gets saturated after the second iteration, at the 
same time agent 2 will act as the transfer agent and quit the 
next evolve process until the rejoin condition appears. On one 
hand agent 2 will build a virtual communication channel 
between DG1 and  DG3, on the other hand, it will still 
calculate its generation power with the information from 
neighbors in every iteration. It can be seen that at the fourth 
iteration, DG2’s fitness at the maximum point is less than the 
average fitness of DG1 and DG3, so it will rejoin the evolve 
process automatically according to the characteristic of LRD. 
Finally, the fitness of all DGs converge to the same value 5.94, 
and the optimal solution is 1=73.24kWP  , 2 =60.78kWP  , 

3 =24.98kWP  , which is the same as the case without DG 

constraints. 
By the method of transferring the unbalance power to the 

neighbor agents when transfer agent draws back its dispatched 
power to normal range, bound violation can be solved 
legitimately. 

C. Priority to Renewable Generation 

For the Scenario1, adding a 20kW renewable generation 
unit, connecting with DG3, in the network. Assumed that the 
renewable source is a photovoltaic(PV) generator which wants 
to join the power dispatch because of the daytime. Since there 
is no load connected with, there will no load agent assigning 
power to it in the first stage, thus the initial power for PV will 
be zero, and the other DGs’ initial condition will be the same 
as Table III.  

Shown in the Fig. 7, bigger fitness is selected by PV Agent, 
and remains fixed in the evolve process. When the other 3 
DGs converge to a steady condition the LRD will be end, at 
the same time  PV fulfill its maximum power, thus the interest 
of PV is highly considered. The final dispatched power is 

1=63.85kWP  ,
  2 =53.22kWP  , 3 =21.93kWP  , and the 

average fitness for 3 DGs is 6.24. Compared to the case 
without generation constraint, the dispatched power is less for 
DGs due to PV joins the dispatch, and the average fitness is 
increased, which means the marginal cost for DGs is 
decreased. 

 
         (a)                                                                                (b) 

Fig. 7.  Adding renewable generation (a) power, (b) fitness 

Moreover, at the 50th iteration, significant fluctuations can 
be observed for DG3 power and fitness. This is because DG3, 
the only neighbor of PV, has to compensate the unbalance 
power when PV draws back to the maximum power after 
violation bound. 

This case also can be  seen as the plug and play test, due to 
no initial  power assigned to PV, PV as a new generator can be  
plugged  at any time during the evolve process. Finally the PV 
is well adapted into the system from the result obtained 
previous. 

D. Computational Efficiency and Convergence Analysis 

The distributed nature of the proposed approach affects 
both computational and convergence times. It should be noted 
that the proposed approach has a two-stage architecture. For 
the first stage, the number of iterations does not really depend 
on the topology of the communication graph, while the 
number of second stage iterations is related to the graph 
diameter, such as a line and a fully-connected topologies are 
different. 

Moreover, for the proposed approach no global 
information is needed in the initialization stage and the LRD 
implementation stage, which make it a fully distributed 
implementation. 

VII. CONCLUSION  

       This paper proposes a fully distributed economic dispatch 
approach for distributed generation based on MAS framework. 
Each generation and load is modelled as an agent and strongly 
connected communication network is sufficient for the 
information exchange. By the proposed approach, adjacency 
average allocation algorithm enables to address the equality 
constraints, and guarantees a good initialization for the local 
replicator dynamics. Designed local replicator dynamics 
algorithm is well adapt to different initial condition, and 
renewable resources can be integrated properly. With transfer 
agent constructing the virtual communication channel, some 
restrictions on the LRD can be released. Moreover, due to the 
fast speed of approach, real time economic dispatch can be 
guaranteed. 
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