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Abstract

This paper presents the Distributed Model Predictive Control (D-MPC) of a wind farm equipped with fast and

short-term Energy Storage System (ESS) for optimal active power control using the fast gradient method via dual

decomposition. The primary objective of the D-MPC control of the wind farm is power reference tracking from

system operators. Besides, by optimal distribution of the power references to individual wind turbines and the ESS

unit, the wind turbine mechanical loads are alleviated. With the fast gradient method, the convergence rate of the D-

MPC is significantly improved which leads to a reduction of the iteration number. Accordingly, the communication

burden is reduced. Case studies demonstrate that the additional ESS unit can lead to a larger wind turbine load

reduction, compared to the conventional wind farm control without ESS. Moreover, the efficiency of the developed

D-MPC algorithm is independent from the wind farm size and is suitable for the real-time control of the wind farm

with ESS.

Index Terms- D-MPC, ESS, mechanical load, wind farm control.



1. Introduction

Wind power has achieved rapid development due to the ambitious goal of renewable energy deployment and increase

of energy demand. With large-scale wind power integration, wind farms are required to meet the more stringent

technical requirements specified by Transmission System Operators (TSOs) [1], [2]. Wind farms may produce less

active power than the available wind energy and the extra wind energy can be bid into the reserve market and the

wind farm can get compensation by offering regulating services to TSOs [3].

With the flexible charging-discharging characteristics, Energy Storage System (ESS) is considered as an effective tool

to enhance the flexibility and controllability of a wind farm. The ESS type selection for the wind farm is dependent

on the control purposes [4]. Fast and short (or medium) term ESS can be used for power quality improvement and

frequency control, while slow and long term ESS is more suitable for economic dispatch [5]. In this paper, the fast

and short-term ESS unit, such as Battery, Super-capacitor, etc., is utilized in a wind farm for its fast response and

the real time operation control purpose of the wind farm. The control objective of the ESS is to compensate the

power mismatch between the reference value and the actual output of the wind farm, and alleviate the mechanical

load of wind turbines.

The wind turbine mechanical load (load for short hereinafter) refers to the forces and moments experienced by the

wind turbine structure, which has a significant effect on the service lifetime of wind turbines [6]. It was initially

introduced as an additional control objective to the control of the wind farm without ESS. Since the wind farm

may be required to produce less than the maximum available power, the wind turbines operate in the derated

mode and have regulation freedom. As long as the power demand is met, the wind farm controller can optimally

distribute the power set-points to the wind turbines for load minimization. The additional ESS can be considered

as an actuator, which is capable of providing fast and flexible power charge-discharging. As such, the regulation

freedom of individual turbines is enhanced. Accordingly, the load alleviation performance can be improved.

Several modern control schemes were proposed to exploit this power distribution freedom of wind turbines [7]–

[14]. Among them, Model Predictive Control (MPC) is considered as a good option to handle the multi-objective

optimization problem. The application of MPC for wind farm is a relatively new research field. In [9], a MPC

controller was designed to improve the wind farm participation to frequency regulation. Beside the wind turbine

model, the network primary frequency model was also included. A Nonlinear MPC (NMPC) was proposed in [10]

for minimizing the wind farm wake loss and optimizing the captured power. In [11], the MPC was used to track a

desired power reference from TSO accurately and smoothly without consideration of wind turbine loads. [12]–[14]

dealt with tracking a desired output and load alleviation of the whole wind farm. The formulated MPC problem

was explicitly solved offline by the multi-parametric programming. The control object of the references above is

wind turbine. In [15], [16], the MPC application was extended to the wind farm equipped with an ESS unit. The



ESS is used to improve the dispatchability of the wind farm and has no contribution to the wind turbine load

alleviation. Moreover, the MPC problems proposed in the aforementioned references were solved in a centralized

manner, so-called Centralized MPC (C-MPC). With the increasing number of wind turbines, the order of the wind

farm model grows drastically and the computation burden becomes very heavy which makes the C-MPC impractical

for real-time applications.

This paper presents a Distributed MPC (D-MPC) control scheme of a wind farm and the ESS unit which aims

to track the power reference and minimize the wind turbine load. The contributions of the paper are twofold.

Firstly, the optimization control problem of the wind farm equipped with an ESS is formulated. The charging and

discharging of the ESS is considered as decision variables to optimize the ESS operation. Secondly, to efficiently

solve the formulated optimal control problem, the D-MPC algorithm is applied. The parallel generalized fast dual

gradient method proposed in [17], [18] is adopted to design the wind farm D-MPC controller.

The paper is organized as follows: The modeling of the wind turbine and the ESS unit is introduced in Section 2.

Section 3 describes the wind farm controller based on the D-MPC. Section 4 presents the design of the D-MPC

for a wind farm with an ESS unit. Case studies are presented and discussed in Section 5 followed by conclusions.

2. Modeling of wind turbine and ESS unit

In this section, the discrete models of a single wind turbine and an ESS unit are described which are used as

prediction models for the D-MPC .

2.1. Modeling of Wind turbine

A nonlinear variable speed pitch-controlled wind turbine system is shown in Fig. 1. To reduce the computation

complexity, a simplified wind turbine prediction model introduced in [12] is adopted.

In this model, the fast electromagnetic transients are neglected. The torque control is assumed to be ideal and

generator efficiency µ is compensated in the WTG controller. Accordingly, the power production Pg can be

considered as equal to the reference PWT
ref . The state-space form of the model around an operating point is expressed

as,

ẋ = Ax+Bu+ Ed (1)

z = Cx+Du+ Fd

where x = [θ, ωr, ωf ]
′, u = PWT

ref , d = vw, z = [Pg, Ft, Ts]
′. θ is the pitch angle, ωr and ωf are the rotor speed and

the filtered generator speed ωg, Ft is the thrust force, Tr and Ts represent the rotor torque and the shaft torque,



1

Tower

Aerodynamics Drive train Generator

Pitch Actuator
WTG

controller

vnac

Ft

θ

vw vr
Tr

ωr

Tg

ωg

ωg

Pg
P cmd
g

θref

PWT
ref

+ −

Figure 1. Single wind turbine system

respectively, vw is the wind speed.

The state space matrices are,

A =


0 −K

0
Pηg
τg

K0
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µω0
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2 0
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0
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0
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 ,
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 η2gJgKθTr
Jt

η2gJgKωrTr
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− η2gJrP

0
ref

Jtµω0
g
2 0

KθFt
KωrFt
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 , D =

 1
µω0

g

0

 , F =

 η2gJgKvwTr
Jt

KvwFt

 .
where ηg is the gear box ratio, Jt = Jr + η2gJg represents the equivalent inertia, τg is the time constant of the

generator speed filter, K0
P, K0

I denote the proportional and integral gains of the pitch controller, KθTr
, KωrTr

,

KvwTr
, KθFt

, KωrFt
and KvwFt

are the coefficients derived from the Taylor approximation of Tr and Ft at the

operating point.

To guarantee the control performances within the whole range, the operating region is partitioned into several parts

(χi) according to PWT
ref and vw. For each part, the wind turbine system is linearized at a typical operating point. A

Piece-Wise Affine (PWA) model can be built,

x(k + 1) =Adx(k) +Bdu(k) + Edd(k) (2)

y(k) =Cdx(k) +Ddu(k) + Fdd(k)

if


x(k)

u(k)

d(k)

 ∈ χi,
x ∈ X , u ∈ U , d ∈ D.

X , U and D are the feasible regions for x, u and d, respectively, defined as follows,



X = {θmin ≤ θ ≤ θmax, ωr min ≤ ωr ≤ ωr max, ηgωr min ≤ ωf ≤ ηgωr max},

U = {PWT
min ≤ PWT

ref ≤ PWT
max},

D = {vcut in ≤ vw ≤ vcut out},

where θmin and θmax are the upper and lower limits of θ, ωr min and ωr max are the upper and lower limits of

ωr, PWT
min and PWT

max are the upper and lower limits of PWT
ref , vcut in and vcut out are the cut-in and cut-out wind

speeds. Following the method introduced in [19], the discrete form of the state space matrices (Ad, Bd, Cd, Dd,

Ed, Fd) is formulated.

2.2. Modeling of ESS unit

A simple integrator is used to model the ESS unit and describe its State-Of-Charge (SOC) in discrete-time by,

CESS(k + 1) = CESS(k)− PESS
ref (k) · ts − ηloss · CESS(k) (3)

where CESS denotes SOC and PESS
ref denotes the discharging power. A loss term modeled as ηloss · CESS(k) is

added to (3) and ηloss indicates the loss coefficient [15].

The constraints of CESS, PESS
ref and ∆PESS

ref are

PESS
ref ∈ P = {−PESS

lim ≤ PESS
ref ≤ PESS

lim },

CESS ∈ C = {CESS
min ≤ CESS ≤ CESS

max},

∆PESS
ref ∈ R = {−∆PESS

lim ≤ ∆PESS
ref ≤ ∆PESS

lim },

where PESS
lim indicates the power limit, CESS

min and CESS
max indicate the upper and lower limits of capacity, respectively

and ∆PESS
lim indicates the power rate limit. P , C and R are the feasible regions of PESS

ref , CESS and ∆PESS
ref ,

respectively.

3. D-MPC based wind farm control

The wind field dynamics can be decoupled into two time scales [20]. The fast dynamic is related to the wind

turbulence and gusts, which lead to the load increase. The slow dynamic is related to the mean wind speed which

is used to represent the propagation of wind stream traveling through the wind farm. Due to the wake effects, there

exists coherence among wind turbines. According to the wind field model and measurements of the wind farm, the

mean wind speed of individual wind turbine can be estimated.



Fig. 2 illustrates the hierarchical D-MPC control structure of a wind farm, which corresponds to the two time-

scale dynamics. For the high level control, Pwfc
ref is generated based on the TSO requirement and the available

wind farm power. According to the wind field model and measurement, the mean wind speed of a certain period

(several minutes) is estimated. Different approaches have been developed to distribute the mean power references for

individual wind turbines PWTi
ref [13]. In this study, the proportional distribution algorithm according to the available

power of each turbine proposed in [1] is adopted,

PWTi
ref =

PWTi
avi∑nt

j=1 P
WTj
avi

Pwfc
ref , (4)

where PWTi
avi indicates the available wind power of the ith turbine. The calculation of PWTi

avi is expressed in (5).

For simplicity, the index i is neglected.

PWT
avi =

 0.5ρAarea(vw)3 · ξ if vcut in ≤ vw ≤ vrated
PWT
rated if vrated ≤ vw ≤ vcut out

, (5)

where ρ is the air density, Aaera is the swept area of the wind turbine, ξ is the wind turbine efficiency, vw is the

mean wind speed, vrated is the rated wind speed, and PWT
rated is the rated power. Conventionally, these mean power

references are directly assigned to the wind turbines. The ESS is used to compensate the mismatch between the

power reference Pwfc
ref and the actual power output Pwfc

meas, the compensating power reference PESS
com is calculated by

PESS
com = Pwfc

ref − Pwfc
meas.
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Figure 2. Control structure of wind farm based on D-MPC

In this study, these references are sent to the D-MPC controllers equipped at each wind turbine and the ESS unit.

These controllers are considered as the low level wind farm control for dynamics. Through the mutual communication

with the central unit, the iterations are executed until the global constraints are met. Subsequently, the reconfigured

power references PWTi
ref and PESS

ref are assigned to the controllers of wind turbines and the ESS unit, respectively.

Here, PESS
ref = PESS

com + PESS
mpc .

4. D-MPC using fast gradient method

4.1. MPC problem formulation

In the high level control, the initial power reference for the ith wind turbine PWTi
ref can be calculated according

to (4). Accordingly, other steady state variables, e.g. the shaft torque TWTi
s , can be decided. The ESS unit is not

involved in this distribution.



In the D-MPC, the prediction horizon is defined as np and k indicates the prediction index. The decision variables u

include power references for wind turbines (uWT) and ESS unit (uESS) over the prediction horizon. The wind turbine

references are defined by uWT ∈ R(np·nt)×1 with uWT = [uWT
1
′
, ..., uWT

nt

′
]′ and uWT

i = [uWT
i (0), ..., uWT

i (np−1)]′.

Similarly, the ESS unit reference is defined by uESS ∈ Rnp×1, with uESS = [uESS(0), · · · , uESS(np − 1)]′. Then,

u = [uWT, uESS] ∈ R[np·(nt+1)]×1.

The output variables TWTi
s (k) and FWTi

t (k) are defined by,

TWTi
s (k) = S1 · yi(k), S1 = [1, 0],

FWTi
t (k) = S2 · yi(k), S2 = [0, 1].

Then the MPC problem at time t can be formulated as follows,

min
uWT,uESS

nt∑
i=1

(

np∑
k=0

‖ uWT
i (k)− PWTi

ref ‖2QP +

np∑
k=0

‖ S1 · yi(k)− TWTi
s ‖2QT

+

np−1∑
k=0

‖ ∆(S2 · yi(k)) ‖2QF )+ ‖ CESS − Cmid ‖2QC , (6)

subject to

xi(k + 1) = Adxi(k) +Bdu
WT
i (k) + Eddi(k),

yi(k) = Cdxi(k) +Ddu
WT
i (k) + Fddi(k), (7)

xi(0) = xi(t), (8)

xi ∈ Xi, uWT
i ∈ Ui, (9)

CESS(k + 1) = CESS(k)− (uESS(k) + PESS
com ) · ts, (10)

PESS
com (t) + uESS(0) +

nt∑
i=1

uWT
i (0) = Pwfc

ref , (11)

PESS
com (t) + uESS(k) ∈ P, CESS(k) ∈ C, (12)

∆(PESS
com (t) + uESS) ∈ R. (13)

In (6), the second and third terms represent the penalty of the wind turbine load. The wind turbine tower is excited

by Ft caused by the wind flowing on the rotor. The oscillatory transient leads to an undesired nodding of the tower,

causing fatigue to the wind turbine. Ts is transferred through the gearbox which is vulnerable. The oscillatory

transient of Ts will create micro cracks in the material and lead to the component failure.

As an approximate estimation of the wind turbine load, the quadratic representation for single wind turbine proposed

in [12], [13] is used. The deviation of Ts from the steady state and the derivative of Ft are penalized to reduce the

wind turbine load. In the fourth term, in order to facilitate the long term and stable operation of the ESS unit, its

SOC is limited within the range of close to the medium SOC level Cmid as much as possible [21]. QP , QT , QF



and QC are the weighting factors.

For the constraints (7)-(13), Xi and Ui are the local state and control input constraint sets, respectively. As

the optimization variables u, the first values are taken as the control inputs for each turbine and ESS unit, i.e.

PWT
ref (t) = uWT(0) and PESS

mpc (t) = uESS(0). The control inputs are coupled whose sum equals to Pwfc
ref (see (11)).

By substituting (11) into (12),

Pwfc
ref − PESS

lim ≤
nt∑
i=1

uWT
i (0) ≤ Pwfc

ref + PESS
lim . (14)

If there is no ESS unit, (14) is changed into,

Pwfc
ref ≤

nt∑
i=1

uWT
i (0) ≤ Pwfc

ref . (15)

Obviously, the control inputs in (14) have more regulation flexibility, compared to (15). Accordingly, a better load

minimization performance can be expected with the ESS unit. To what extent that the load minimization can be

improved is dependent on the technical features of the ESS unit, including response time, power and energy ratings,

etc.

4.2. Parallel generalized fast dual method

The parallel generalized fast dual method is used to solve the MPC problem formulated in Section 4.1.

4.2.1. Primal problem. The MPC problem can be reformulated as the following standard Quadratic Programming

(QP) problem with Hessian matrix Hi ∈ Rnp×np (positive definite) and coefficient vector gi ∈ Rnp×1,

min
u

Φ =

nt+1∑
i=1

Φi(ui) =

nt+1∑
i=1

(
1

2
u′iHiui + g′iui) (16)

subject to

Gu = b (17)

u ∈ U . (18)

According to the method introduced in [19], Hi can be calculated by (7), (10) and np. gi can be derived according

to (7), (10), np and PWTi
ref . The coupling of the control inputs described in (11) can be rewritten as the equality

constraint (17). Accordingly, G and b can be expressed by,

G = [G1, · · · , Gnt+1], Gi = [1, 0, · · · , 0], Gi ∈ R1×np ,

b = Pwfc
ref .



4.2.2. Properties of dual problem. The key properties of the dual problem proved in [17] are briefly described,

which are the theoretical foundation of the distribution optimization algorithm.

Property: Assume that function Φ and its local function Φi are strongly convex, the dual functions d and di are

concave, differentiable and satisfies the following inequalities for every dual variables λ1, λ2, L with L � GH−1G′

and Li with Li � GiH−1i G′i.

d(λ1) ≥ d(λ2) +∇d(λ2)(λ1 − λ2)− 1

2
‖λ1 − λ2‖2L

di(λ1) ≥ di(λ2) +∇di(λ2)(λ1 − λ2)− 1

2
‖λ1 − λ2‖2Li (19)

This property offers a tight quadratic lower bound to the dual function. The obtained bound can be further proved

to be the best obtained bound. Consequently, a more accurate approximation of the dual function can be derived

and the convergence rate can be improved. Based on this property, a generalized parallel optimization algorithm

was proposed in [17] for D-MPC.

4.2.3. Distributed algorithm. The parallel fast dual gradient method for the wind farm control is described in this

part. In order to limit the online computation time, a fixed iteration number kmax is predefined as the stopping

criterion.

Wind farm control with parallel fast dual gradient method

Require: Introduce the dual variables λ, η and φ. Initial guesses λ[1] = η[0], φ[1] = 1.

for: k = 1, ..., kmax, do

1) Send λ[k] to all wind turbines and ESS unit i ∈ {1, ...nt+1} through communication (Central Unit⇒D-MPC).

2) Update and solve the local optimization with augmented cost function in individual D-MPCs equipped in the

wind turbines and ESS unit:

u
[k]
i = arg min

ui
{Φi + u′iG

′
iλ

[k]}.

3) Update L−1i in D-MPC of the wind turbine, once the operating region of the wind turbine changes.

4) Receive u[k]i from the wind turbines and the ESS unit and form u[k] = (u
[k]
1 , ..., u

[k]
nt+1) (D-MPC⇒Central

Unit).



5) Receive the updated L−1i (D-MPC⇒Central Unit) and then update L−1 according to L−1i in Central Unit:

η[k] = λ[k] + L−1(Gu[k] − b)

φ[k+1] =
1 +

√
1 + 4(φ[k])2

2

λ[k+1] = η[k] + (
φ[k] − 1

φ[k+1]
)(η[k] − η[k−1])

end for

Proposition: As proved in [17], if the property described in Section 4.2.2 holds and L � GH−1G′, the

convergence rate of the algorithm is improved from O(1/k) to O(1/k2) with negligible increase in iteration

complexity.

L = GH−1G′ has the tightest upper bounds and is adopted. L−1 can be calculated by,

L−1 =

nt+1∑
i=1

L−1i =

nt+1∑
i=1

(GiH
−1
i Gi)

−1. (20)

For the wind turbines, the linearized model parameters change with the operating region. Accordingly, Hi is time-

variant which further leads to the variation of L−1i . To reduce the online computation complexity, the variables

involved in the computation, including Hi and L−1i , can be pre-computed offline and stored according to the

operation regions. For the ESS unit, the model parameters are invariant and its Hi is fixed.

Most computation tasks are distributed to the local D-MPCs, the computation burden of Central Unit only consists

of the calculation of L−1 which is a simple addition of the individual L−1i and the dual variable updates during

iterations. Furthermore, the improved convergence rate leads to the reduced iteration number. Therefore, the com-

munication burden between D-MPCs and the Central Unit has been largely reduced.

For the local D-MPCs, the computation task consists of the formulation of the optimization problem and the solution

of the problem. Due to the updates of Hi and gi, the optimization problem should be reformulated for each time

step. As described above, Hi has been pre-computed and stored. The search of the corresponding Hi is much faster

than the sampling time ts. gi is dependent on PWTi
ref , which is time-variant. Since gi ∈ Rnp×1, the low-rank matrix

calculation is quite fast. Besides, the computation of solving the formulated low-rank QP problem is also fast (in

milliseconds). Therefore, as long as the iteration number is not very large, the computation burden of the local

D-MPCs is not heavy.



5. Case studies

The developed wind farm controller was tested in a wind farm with 10 × 5 MW wind turbines (nt = 10) and a

500 kW/3 kWh ESS (e.g. Super-capacitor) with power rate limit ∆PESS
ref =300 kW/s. The mean wind speed of each

wind turbine (10 min) is assumed to be known. The wind field of the wind farm is generated from the built-in wind

model in SimWindFarm, which is a Matlab toolbox for dyanmic wind farm model, simulation and control [22].

The correlations among upstream-downstream wind and wake effects are taken into account in the wind model.

The sampling time of the wind farm control was set as ts = 1 s . The prediction horizon was set as np = 10. The

real-time wind speed can be estimated and the value for the prediction horizon is based on persistence assumption.

5.1. Convergence with the fast gradient method

As described in Section 4.2.3, the proposition is met, if L � GH−1G′. However, the value of L can affect the

convergence. The convergences of the fast dual gradient method with different L were compared in Fig. 3, where the

vertical axis indicates the deviation to the constraints (see (11)). Obviously, when L � GH−1G′, the convergence

rate is higher (L1,L2 > L3). Especially when L = GH−1G′, it has the tightest upper bounds and the convergence

is fastest. It can be observed that a good performance of the D-MPC is guaranteed by about 5 iterations. Therefore,

the maximum iteration number kmax is set as 5 in the following simulations. 1
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5.2. Wind farm operation with the developed D-MPC

In this section, the operation of the wind farm was simulated and studied under both high and low wind conditions.

Pwfc
ref is decided according to the TSO requirement and the available wind farm power. For the sake of simplification,



Pwfc
ref is assumed to be fixed during the simulation. Accordingly, for the high wind condition, Pwfc

ref = 40 MW. vw

of individual wind turbines are above the rated wind speed (11.4 m/s), listed in Tables 2 and 4. Therefore, the

available power for all the turbines are the same (5 MW). In the high level wind farm control, according to (4),

PWFi
ref =

Pwfc
ref

nt
= 4 MW. For the low wind condition, the same wind profile was shifted downward. vw of individual

wind turbines are below the rated wind speed, listed in Table 3 and 5. Pwfc
ref is defined as 12 MW. Unlike the

high wind speed condition, the available power for all the wind turbines are different which leads to the different

distribution factors of the power references for all the turbines. The simulation time was set as 300 s. The weighting

factors in (6) were defined: QP = 1, QT = 30, QF = 1, QC = 1. As suggested in [12], QF should be kept small

to avoid violent control and shaft load increase.

The objectives of the wind farm controller include power reference tracking, wind turbine load minimization and

optimal operation of the ESS unit. Since the mismatch between Pwfc
ref and Pwfc

meas can be compensated by ESS

through the additional power command PESS
com , the power reference tracking performance is not illustrated. In the

following subsections, the results related to the latter two control objectives are shown.

5.2.1. Wind turbine load alleviation. The shaft and thrust-induced loads are quantified by the standard deviation

σ(Ts) and σ(∆Ft), respectively. The performances of all wind turbines are similar. Therefore, a single wind turbine

(WT 10) was selected for illustration. The wind speed variations under both high and low wind conditions are

shown in Fig. 4, which covers from 12.1 m/s to 16.8 m/s for the high wind condition and from 6.2 m/s to 10.8 m/s

for the low wind condition. Case study scenarios are listed in Table 1.
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Figure 4. Wind speed variation of WT 10



Table 1. Case scenario definition

Scenario Wind farm controller Description

Scenario 1 Conventional Control without ESS No ESS. PWFi
ref is calculated based on

the proportional distribution algorithm.

Scenario 2 D-MPC without ESS No ESS. PWFi
ref is calculated based on

the D-MPC algorithm.

Scenario 3 C-MPC with ESS With ESS. PWFi
ref and PESS

ref are calcu-
lated based on the C-MPC algorithm.

Scenario 4 D-MPC with ESS With ESS. PWFi
ref and PESS

ref are calcu-
lated based on the D-MPC algorithm.

The waveforms of Ts and Ft of WT 10 with different controllers are shown in Fig. 5-6. The standard deviation of

Ts and ∆Ft of all the wind turbines are listed in Tables 2-5.
1

0 50 100 150 200 250 300

3.2

3.4

3.6

Sh
af

t
to

rq
ue

(M
N

m
)

(b)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

0 50 100 150 200 250 300

3.8

4

4.2

Po
w

er
(M

W
)

(a)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

Time (s)

T
hr

us
t

fo
rc

e
(M

N
)

(c)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure 5. Simulation results of WT 10 under high wind condition
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Figure 6. Simulation results of WT 10 under low wind condition

In Fig. 5(a) and Fig. 6(a), it is shown that the power references of Scenarios 2-4 vary following the wind speed

under both high and low wind conditions. It should be noticed that under the low wind condition, the wind speed

of a wind turbine may not be high enough to support its power reference. In that case, the output power of the

wind turbine is the maximum available power, as illustrated in Fig. 6(a) (the power dip between t = 220 s and

t = 235 s). Compared with Scenario 1, the deviation of the shaft torque is significantly reduced (Fig. 5(b) and Fig.

6(b)). Due to the small weighting factor QF , the alleviation of the thrust force is not significant (Fig. 5(c) and

Fig. 6(c)). The control performances of Scenario 3 and Scenario 4 are almost identical while there exist differences

between Scenario 2 and Scenarios 3-4.



Table 2. Standard Deviation σ(Ts) in 0.01MNm (High Wind Speed)

Turbine vavr (m/s) Scenario 1 Scenario 2 Scenario 3 Scenario 4

WT 01 15.05 6.26 2.83 (-54.79%) 2.02 (-67.73%) 2.02 (-67.73%)

WT 02 15.11 6.23 2.98 (-52.17%) 2.15 (-65.49%) 2.15 (-65.49%)

WT 03 14.81 6.10 2.82 (-53.77%) 1.92 (-68.52%) 1.92 (-68.52%)

WT 04 14.81 6.18 3.15 (-49.03%) 2.33 (-62.30%) 2.33 (-62.30%)

WT 05 14.94 6.89 3.31 (-51.96%) 2.33 (-66.18%) 2.33 (-66.18%)

WT 06 15.10 5.70 2.85 (-50.00%) 2.05 (-64.04%) 2.05 (-64.04%)

WT 07 14.24 6.01 3.13 (-47.92%) 2.77 (-53.91%) 2.77 (-53.91%)

WT 08 14.54 6.48 3.18 (-50.93%) 2.52 (-61.11%) 2.52 (-61.11%)

WT 09 15.21 6.63 3.34 (-49.62%) 2.27 (-65.76%) 2.27 (-65.76%)

WT 10 14.09 6.29 3.47 (-44.83%) 2.88 (-54.21%) 2.88 (-54.21%)

Table 3. Standard Deviation σ(Ts) in 0.01MNm (Low Wind Speed)

Turbine vavr (m/s) Scenario 1 Scenario 2 Scenario 3 Scenario 4

WT 01 9.05 6.04 4.75 (-21.36%) 4.45 (-26.32%) 4.45 (-26.32%)

WT 02 9.11 4.10 3.46 (-15.61%) 3.37 (-17.80%) 3.37 (-17.80%)

WT 03 8.81 3.74 2.87 (-23.26%) 2.62 (-29.95%) 2.62 (-29.95%)

WT 04 8.81 4.52 3.40 (-24.78%) 3.33 (-26.33%) 3.33 (-26.33%)

WT 05 8.94 4.69 2.97 (-36.67%) 2.77 (-40.94%) 2.77 (-40.94%)

WT 06 9.10 3.69 2.78 (-24.66%) 2.75 (-25.47%) 2.75 (-25.47%)

WT 07 8.24 4.25 2.83 (-33.41%) 2.59 (-39.06%) 2.59 (-39.06%)

WT 08 8.54 4.04 2.83 (-29.95%) 2.63 (-34.90%) 2.63 (-34.90%)

WT 09 9.21 3.97 2.80 (-29.47%) 2.42 (-39.04%) 2.42 (-39.04%)

WT 10 8.09 4.58 3.19 (-30.35%) 3.02 (-34.06%) 3.02 (-34.06%)

According to the results in Table 2 and Table 3, σ(Ts) is reduced largely in Scenario 2, compared with Scenario

1. By taking σ(Ts) in Scenario 1 as the reference, the reduction of Scenario 2 ranges from 44.83% to 54.79%

under the high wind condition (Table 2) and 15.61% to 36.67% under the low wind condition (Table 3). Based on

this, the additional ESS further increases the reduction values of each wind turbine, which range from 53.91% to

68.52% in Scenario 3 and 4 under the high wind condition (Table 2) and 17.80% to 40.94% under the low wind

condition (Table 3). These results verify the expectation made in Section 4.1.



Table 4. Standard Deviation σ(∆Ft) in 0.01MN (High Wind Speed)

Turbine vavr (m/s) Scenario 1 Scenario 2 Scenario 3 Scenario 4

WT 01 15.05 1.68 1.64 (-2.38%) 1.63 (-2.98%) 1.63 (-2.98%)

WT 02 15.11 1.65 1.60 (-3.03%) 1.59 (-3.64%) 1.59 (-3.64%)

WT 03 14.81 1.75 1.70 (-2.86%) 1.70 (-2.86%) 1.70 (-2.86%)

WT 04 14.81 1.69 1.63 (-3.55%) 1.61 (-4.73%) 1.61 (-4.73%)

WT 05 14.94 1.96 1.90 (-3.06%) 1.89 (-3.57%) 1.89 (-3.57%)

WT 06 15.10 1.59 1.57 (-1.26%) 1.55 (-2.52%) 1.55 (-2.52%)

WT 07 14.24 1.82 1.76 (-3.30%) 1.75 (-3.85%) 1.75 (-3.85%)

WT 08 14.54 1.75 1.68 (-4.00%) 1.68 (-4.00%) 1.68 (-4.00%)

WT 09 15.21 1.75 1.69 (-3.43%) 1.69 (-3.43%) 1.69 (-3.43%)

WT 10 14.09 1.82 1.76 (-3.30%) 1.74 (-4.40%) 1.74 (-4.40%)

Table 5. Standard Deviation σ(∆Ft) in 0.01MN (Low Wind Speed)

Turbine vavr (m/s) Scenario 1 Scenario 2 Scenario 3 Scenario 4

WT 01 9.05 2.14 2.06 (-3.74%) 2.05 (-4.21%) 2.05 (-4.21%)

WT 02 9.11 2.35 2.30 (-2.13%) 2.30 (-2.13%) 2.30 (-2.13%)

WT 03 8.81 2.47 2.44 (-1.21%) 2.44 (-1.21%) 2.44 (-1.21%)

WT 04 8.81 2.05 2.02 (-1.46%) 2.00 (-2.44%) 2.00 (-2.44%)

WT 05 8.94 2.67 2.64 (-1.12%) 2.61 (-2.25%) 2.61 (-2.25%)

WT 06 9.10 2.01 1.91 (-4.98%) 1.96 (-2.49%) 1.96 (-2.49%)

WT 07 8.24 2.66 2.49 (-6.39%) 2.48 (-6.77%) 2.48 (-6.77%)

WT 08 8.54 2.45 2.33 (-4.90%) 2.32 (-5.31%) 2.32 (-5.31%)

WT 09 9.21 2.66 2.59 (-2.63%) 2.58 (-3.01%) 2.58 (-3.01%)

WT 10 8.09 2.52 2.37 (-5.95%) 2.36 (-6.35%) 2.36 (-6.35%)

According to the results in Table 4 and Table 5, σ(∆Ft) of each wind turbine is also reduced to some extent in

Scenario 2. By taking σ(∆Ft) in Scenario 1 as the reference, the reduction ranges from 1.26% to 4.00% under the

high wind condition (Table 4) and 1.12% to 6.39% under the low wind condition (Table 5). The additional ESS

further increases the reduction under the high wind condition, which range from 2.28% to 4.64% in Scenario 3

and 4 (Table 4). For the low wind case, the reduction of most turbines is further increased by the additional ESS,

except WT06. However, from the whole wind farm point of view, the thrust force induced loads experienced by

all wind turbines are alleviated. The reduction ranges from 1.21% to 6.77% in Scenario 3 and 4 (Table 5).

From Table 2-5, it can also be observed that σ(Ts) and σ(∆Ft) of Scenario 3 are the same as these of Scenario

4, which proves that the D-MPC has the same control performance as the C-MPC.

5.2.2. Operation of the ESS unit. In this paper, the medium SOC level is set as Cmid = 50%. The SOC variations

of the ESS unit under both high and low wind conditions are illustrated in Fig. 7(a) and Fig. 7(b), respectively.

With the developed D-MPC controller, the SOC can be observed to operate around the Cmid, which is within 25%

to 65%.
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Figure 7. SOC of the ESS unit

6. Conclusion

With a fast and short-term ESS unit in the wind farm, it can not only compensate the mismatch between the

required power by TSOs and actual power output, but also contribute to the minimization of the wind turbine load

by coordination with wind turbines using the D-MPC. Compared to the conventional wind farm control without

ESS, the wind turbine load is largely reduced, which is verified by the case study. In this paper, only a single ESS

unit is considered. However, the developed algorithm can also be extended for multiple ESS units cases.

The D-MPC algorithm based on the fast dual gradient method was developed to solve the multi-objective control

problem of the wind farm with an ESS. Compared with the C-MPC, most of the computation tasks are distributed

to the local D-MPCs equipped at the wind turbines and the ESS unit. Accordingly, the computation burden of

the central unit is significantly reduced while the control performances are identical. Besides, due to the reduced

iteration number, the communication burden between local D-MPCs and central unit has been largely reduced.

Therefore, this control structure is independent from the wind farm size and suitable for the modern wind farm

application.
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