
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Benchmarks for multicomponent diffusion and electrochemical migration

Rasouli, Pejman; Steefel, Carl I.; Mayer, K. Ulrich; Rolle, Massimo

Published in:
Computational Geosciences

Link to article, DOI:
10.1007/s10596-015-9481-z

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Rasouli, P., Steefel, C. I., Mayer, K. U., & Rolle, M. (2015). Benchmarks for multicomponent diffusion and
electrochemical migration. Computational Geosciences, 19(3), 523-533. DOI: 10.1007/s10596-015-9481-z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43250182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10596-015-9481-z
http://orbit.dtu.dk/en/publications/benchmarks-for-multicomponent-diffusion-and-electrochemical-migration(e96eb4b7-f424-46e0-b20b-20dc5708e9b1).html


1 

 

This is a Post Print of the article published on line 1
st
 May 2015 and printed June 2015 in 

Computational Geosciences, 19, 523-533. The publishers’ version is available at the permanent 

link: doi:10.1007/s10596-015-9481-z 

 

 

Benchmarks for multicomponent diffusion and electrochemical migration 

 

Pejman Rasouli
1*

, Carl I. Steefel
2
, K. Ulrich Mayer

1
 and Massimo Rolle

3
 

 

1
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 

Main Mall, Vancouver, BC V6T 1Z4, Canada 
2
Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 

3
Department of Environmental Engineering, Technical University of Denmark, Miljøvej 

Building 115, 2800 Kgs. Lyngby, Denmark 

*corresponding author: prasouli@eos.ubc.ca 

 

 

 

 

 

 

 

 

  

http://dx.doi.org/10.1016/j.jconhyd.2014.11.002
http://dx.doi.org/10.1016/j.jconhyd.2014.11.002
mailto:prasouli@eos.ubc.ca


2 

 

Abstract 1 

In multicomponent electrolyte solutions, the tendency of ions to diffuse at different rates results 2 

in a charge imbalance that is counteracted by the electrostatic coupling between charged species 3 

leading to a process called “electrochemical migration” or “electromigration”. Although not 4 

commonly considered in solute transport problems, electromigration can strongly affect mass 5 

transport processes. The number of reactive transport models that consider electromigration has 6 

been growing in recent years, but a direct model inter-comparison that specifically focuses on the 7 

role of electromigration has not been published to date. This contribution provides a set of three 8 

benchmark problems that demonstrates the effect of electric coupling during multicomponent 9 

diffusion and electrochemical migration and at the same time facilitates the inter-comparison of 10 

solutions from existing reactive transport codes. The first benchmark (Lichtner, 1995) focuses on 11 

the 1D-transient diffusion of HNO3 (pH = 4) in a NaCl solution into a fixed concentration 12 

reservoir, also containing NaCl - but with lower HNO3 concentrations (pH = 6). The second 13 

benchmark describes the 1D steady-state migration of the sodium isotope 
22

Na triggered by 14 

sodium chloride diffusion in neutral pH water. The third benchmark (Rolle et al., 2013) presents 15 

a flow-through problem in which transverse dispersion is significantly affected by 16 

electromigration. The system is described by 1D transient and 2D steady-state models. Very 17 

good agreement on all of the benchmarks was obtained with the three reactive transport codes 18 

used: CrunchFlow, MIN3P and PHREEQC.  19 

 20 

Keywords: Reactive transport modeling, multicomponent diffusion, electromigration, model 21 

intercomparison, benchmark    22 
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1. Introduction 23 

It is well known that diffusive transport in multicomponent electrolyte systems cannot be fully 24 

described by Fickian diffusion alone, but is affected by a variety of processes including the 25 

electrostatic interactions between individual ions (Vinograd and McBain, 1941; Newman, 1973; 26 

Ben-Yaakov, 1981; Cussler, 1997).  Each dissolved species is subject to its own species-27 

dependent diffusion coefficient, affected by parameters such as charge and size of the ion 28 

(Cussler, 1997) and ionic conductivity (Lasaga, 1979). As a result, dissolved species will tend to 29 

diffuse at different rates, promoting the development of a charge imbalance in solution. 30 

However, positively and negatively charged species are also affected by electric coupling, which 31 

ensures that charge balance in solution is maintained. Generally speaking, “large” cations and 32 

“small” anions are tied together electrostatically (Newman, 1973; Cussler, 1997) to enforce 33 

electroneutrality at the macroscale - an essential condition in electrolyte solutions (Lichtner, 34 

1996; Van Cappellen and Gaillard, 1996). This electric coupling leads to an additional mass 35 

transport process called “electrochemical migration” or “electromigration” (Newman, 1991; 36 

Ben-Yaakov, 1981). Fick’s law neglects these interactions, describes ion migration solely based 37 

on concentration gradients, and consequently does not consider the electric field generated by 38 

electrostatic bonding (coulombic interactions) of charged species (Lasaga, 1979; McDuff and 39 

Ellis, 1979; Newman, 1991; Lichtner, 1996; Van Cappellen and Gaillard, 1996). In a 40 

multicomponent system that includes charged species, diffusive ion migration is therefore better 41 

described by the Nernst-Plank equation, a formulation that explicitly considers the electric 42 

coupling between species and ensures the conservation of charge (Lasaga, 1979; McDuff and 43 

Ellis, 1979; Newman, 1991; Lichtner, 1996; Van Cappellen and Gaillard, 1996; Boudreau et al., 44 

2004; Liu et al., 2011; Steefel et al., 2014). 45 
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In some cases, electrostatic interactions between diffusing species can have a strong 46 

effect on ion mobility and can produce unexpected behavior such as uphill diffusion (e.g.: 47 

Oelkers, 1996). In addition, apparent diffusion coefficients (i.e. diffusion coefficients derived 48 

from Fick’s law) may show a strong dependency on concentrations. Considering that the 49 

quantification of diffusion coefficients is labor-intensive (Tyrell, 1961; Cussler, 1997), it is 50 

impractical to determine apparent diffusion coefficients as a function of solution composition for 51 

a range of conditions. Instead, it is advantageous to consider electrochemical interactions 52 

affecting diffusion explicitly rather than lumping this effect into empirically measured apparent 53 

diffusion coefficients.  54 

Reactive transport models are commonly used for the quantitative investigation of flow, 55 

transport and reaction processes in porous media. These models aid with the verification of 56 

conceptual models, are used to design and evaluate experiments, and assist with the 57 

interpretation of field data in the fields of geology, engineering and environmental research 58 

(Boudreau, 1997; Kang et al. , 2006; Steefel et al., 2003; Wang and Van Cappellen, 1996; 59 

MacQuarrie and Mayer 2005). Traditionally, diffusion has been implemented into reactive 60 

transport models based on Fick’s law and diffusion coefficients are often treated as adjustable 61 

parameters (Cussler, 1997). However, the number of reactive transport models that include 62 

electromigration and consider the chemical potential gradient as the driving force of diffusion 63 

has been growing in recent years (Parkhurst and Appelo, 1999; Giambalvo et al., 2002; Shiba et 64 

al., 2005; Johannesson et al 2007; Paz-Garcia et al., 2011; Muniruzzaman et al., 2014). Although 65 

some aspects of electromigration on solute transport have been investigated (Oelkers, 1996; 66 

Giambalvo et al., 2002; Steefel and Maher, 2009), a direct model inter-comparison that 67 
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specifically focuses on the role of electromigration and electrostatic effects on ion transport has 68 

not been published to date.      69 

This contribution was motivated by the need for benchmark problems suited to evaluate 70 

the effect of electric coupling during multicomponent diffusion and electrochemical migration 71 

and to facilitate an inter-comparison of existing reactive transport codes. The following 72 

benchmark problems are specifically designed to highlight effects of electromigration. The first 73 

two benchmarks are one-dimensional and the third benchmark includes two parts, involving one- 74 

and two-dimensional scenarios. Three reactive transport codes were used independently for the 75 

inter-comparison, namely CrunchFlow (Steefel et al., 2014), MIN3P (Mayer et al., 2002) and 76 

PHREEQC (Parkhurst and Appelo, 1999).  77 

2. Governing Equations 78 

Mass Transfer in Electrolytic Systems 79 

Species-specific diffusion is necessary to describe the behavior of electrolyte systems (Steefel 80 

and Maher, 2009) where diffusive transport is the dominant mass transport process. The most 81 

important feature that distinguishes the electrolyte systems from non-electrolyte systems is the 82 

electric coupling of the ionic fluxes (Helfferich, 1962; Newman, 1973). In the electrolyte 83 

systems, electric interaction of ion-ion, ion-solvent and ion-interface induces an electric field. 84 

The treatment of electrolytic diffusion follows naturally from the generalized treatment of 85 

diffusion (Taylor and Krishna, 1993).  86 

Nernst-Planck Equation for Multicomponent Systems 87 

The migration of interacting species is described by the Nernst-Planck equation, which can be 88 

derived from expressions for the diffusive flux written in terms of the chemical potential (Steefel 89 
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et al, 2014).  Written in terms of the flux of an arbitrary species i, the Nernst-Planck equation is 90 

given by: 91 









 ψz

RT

Fc
lnccD i

i
iiiiiJ

    

( 1 ) 92 

where Di is the species-dependent diffusion coefficient (m
2
 s

-1
), ci is the concentration (mol L

-1
 93 

H2O), γi is the activity coefficient (-), F is the Faraday constant (96485 C mol
-1

), R is the gas 94 

constant (8.341 J K
-1

 mol
-1

), T is the absolute temperature (K), zi is the charge number (-) and ψ 95 

is the electric potential (V or J C
-1

). In the presence of advection with a Darcy’s velocity q (m s
-

96 

1
), the modified flux term is: 97 

qJ ii
i

iiiii cψz
RT

Fc
lnccD 










   

( 2 ) 98 

This expression is known as the extended Nernst-Planck equation and holds, in ideal systems, for 99 

all mobile species. It describes the movement of ions in a solution with or without external 100 

electric field (Helfferich, 1962, Bard, 1980 and Bagotsky, 2006).  In a multicomponent system, 101 

the set of Nernst-Planck equations, one for each species, must be solved simultaneously.  102 

By assuming small gradients in ionic strength, a dilute solution with low ionic strength 103 

and isothermal conditions, the contribution of the flux from the gradients in the logarithms of the 104 

activity coefficients can be neglected (Giambalvo et al., 2002; Steefel and Maher, 2009). With 105 

this approximation, the flux of an individual species becomes:  106 

qJ ii
i

iii cψz
RT

Fc
cD 










    

( 3 ) 107 

This equation represents the contributions of diffusion, electromigration and advection to the 108 

total mass transfer.  Assuming there is no externally induced current (null current assumption), a 109 

simplified version of the mass flux can be derived (Giambalvo et al., 2002): 110 
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( 4 ) 111 

This formulation has the advantage that the electric potential does not appear as a primary 112 

unknown and is therefore well suited for implementation in standard reactive transport codes. 113 

3. Participating Codes  114 

The three reactive transport codes participating in this benchmarking exercise are CrunchFlow 115 

(Steefel et al., 2014), MIN3P (Mayer et al., 2002) and PHREEQC (Parkhurst and Appelo, 1999). 116 

CrunchFlow and MIN3P are 3D block-centered finite difference (finite volume) models using 117 

the global implicit approach (GIA) to solve the fully coupled transport and reaction equations. 118 

PHREEQC solves the multicomponent diffusion problem with a 1D finite difference method 119 

using the sequential non-iterative approach (SNIA). A detailed description of the formulation 120 

and capabilities of the codes is discussed elsewhere (Steefel et al., 2014 and references therein). 121 

PHREEQC considers the gradients of the activity coefficients in its implementation (Appelo and 122 

Wersin, 2007) whereas CrunchFlow and MIN3P neglect this contribution.     123 

4. Benchmark Descriptions 124 

The three benchmark problems are summarized in Table 1. The first benchmark (Benchmark 1) 125 

focuses on the role of electromigration in driving the flux of the various charged species to 126 

maintain local charge balance and was first presented by Lichtner (1995). This problem 127 

considers diffusion of HNO3 from a low pH solution (pH = 4) into a circum-neutral reservoir (pH 128 

= 6) with low HNO3 concentrations, both with the same elevated NaCl background 129 

concentrations.  130 
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 131 

Table 1. Summary of multicomponent diffusion benchmarks 132 

Benchmark  Description Processes Dimension 

1 HNO3 (pH 4) diffusion into a 

circum-neutral pH reservoir 

Diffusion/Electromigration 1D 

2 Sodium isotope fractionation 

induced by sodium chloride 

diffusion in neutral pH water 

Diffusion/Electromigration 1D 

3 Transverse dispersion affected 

by electromigration 

Advection/Diffusion/ 

Electromigration 

1D/2D 

 133 

The second benchmark (2) shows the electromigration and subsequent fractionation of the 134 

sodium isotope 
22

Na
+
 due to diffusion of NaCl under neutral pH conditions. The problem is 135 

loosely based on Glaus et al (2013); however, the benchmark case presented here is set up for a 136 

uniform relatively coarse-grained uncharged porous medium and does not include diffusion 137 

through charged micropores as would be the case if porous clay were considered. In the first two 138 

benchmarks, diffusion and electromigration are the only transport processes and models are set 139 

up in one dimension. The third benchmark (3) investigates the effect of electromigration on 140 

transverse dispersion and is based on experiments and modeling carried out by Rolle et al. 141 

(2013). This benchmark also includes advection and is characterized by a higher level of 142 

complexity; it is simulated in one- and two-dimensions.   143 

Benchmark 1:  Transient Electromigration 144 

This problem was initially presented by Lichtner (1995) and has previously been used as an 145 

example to illustrate the multicomponent capabilities of PHREEQC (Appelo, 2007).  It is a 1D 146 

transient problem with a fixed concentration (Dirichlet) boundary condition on the left (at x = 0), 147 
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representing the reservoir, and a no-flux (Neumann) boundary condition on the right (x = 0.01 148 

m).  The chemical system is composed of four primary (component) species (H
+
, NO3

-
, Na

+
 and 149 

Cl
-
) and one secondary species (OH

-
). The porosity is set to 1.0 and the domain is discretized 150 

into 100 equally spaced cells of 100 microns each.  The temperature is 25ºC and there is no flow, 151 

the only transport process is multicomponent diffusion according to the Nernst-Planck equation. 152 

Activity coefficients are calculated with the extended Debye-Hückel equation. Species-153 

dependent diffusion coefficients, as well as the initial and boundary conditions defining the 154 

chemical system are given in Table 2. 155 

 156 

Table 2. Boundary conditions, initial conditions, and species dependent diffusion coefficients for 157 
Benchmark 1 (transient electromigration problem). 158 

Species Boundary Condition 

(mM) 

Initial Condition 

(mM) 

Diffusion Coefficient (m
2
 s

-1
) 

pH 6.001 4.007 9.31 × 10
-9

 

Na
+
 0.1 0.1 1.33 × 10

-9
 

Cl
-
 0.1 0.1 2.03 × 10

-9
 

NO3
-
  0.001 0.1 1.90 × 10

-9
 

OH
-
 

a
1.03 × 10

-5
 

a
1.06 × 10

-7
 5.27 × 10

-9
 

a
OH- concentrations are only provided for completeness, calculated from H

+
 and H2O (Kw = 10

-14
)  159 

 160 

The problem is run for 1 hour using a constant time step of 0.001 hour (corresponding to 1,000 161 

time steps). Results are compared along the spatial profile after T = 1 hour for H
+
, Na

+
, NO3

-
 and 162 

Cl
-
.   163 

Benchmark 2:  Tracer Isotope Diffusion  164 

This 1D problem involves three primary (component) species, Na
+
, Cl

-
, and H

+
, along with an 165 

isotope of Na that is also treated as a distinct component, 
22

Na
+
.  In addition, a single secondary 166 

species, OH
-
, is considered.  In this case, fixed concentration (Dirichlet) boundary conditions are 167 

considered at either end of the domain. The initial condition in the domain is divided into two 168 
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regions; concentrations in half of the domain are equivalent to those at the left boundary, while 169 

concentrations in the other domain half are defined by the right boundary condition. However, 170 

the initial conditions are not significant since the simulation is run until steady state conditions 171 

are achieved. The porosity is set to a constant and uniform value of 0.5 and the domain is 172 

discretized into 100 equally spaced cells of 100 microns each. The diffusion coefficients of Na
+
 173 

and 
22

Na
+
 are assumed to be identical. A constant time step of 1 hour is used and the simulation 174 

is run to 1,500 days to ensure that steady-state is achieved.  Concentrations at the boundaries and 175 

species-dependent diffusion coefficients are described in Table 3.  The simulation also assumes 176 

no flow. 177 

 178 

Table 3. Boundary conditions and diffusion coefficients for Benchmark 2 (isotope tracer problem). 179 

Species Left Boundary 

Condition (mM) 

Right Boundary 

Condition (mM) 

Diffusion Coefficient (m
2
 s

-1
) 

pH 7.0 7.0 9.31 × 10
-9

 

Na
+
 0.5 0.1 1.33 × 10

-9
 

22
Na

+
 10

-6
 10

-6
 1.33 × 10

-9
 

Cl
-
 0.5 0.1 2.03 × 10

-9
 

OH
-
 

a
1.05 × 10

-4
 

a
1.03 × 10

-4
 5.27 × 10

-9
 

a
OH- concentrations are only provided for completeness, calculated from H

+
 and H2O (Kw = 10

-14
) 180 

 181 

Benchmark 3: Transverse Dispersion 182 

Rolle et al. (2013) investigate the effect of electromigration on transverse dispersion under 183 

steady state flow conditions. In the full 2D case, the problem involves unidirectional flow and 184 

transport of a multicomponent tracer plume down the length of a 2D flow-through chamber.  185 

 186 
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 187 

Figure 1. Schematic of the 2D flow and transverse disperison experiment conducted by Rolle et al. 188 
(2013). 189 

 190 

Using PHREEQC, Rolle et al. (2013) solved the problem numerically by simulating transverse 191 

dispersion and electromigration perpendicular to the flow path as a 1D problem. This approach 192 

simplifies a 2D steady-state problem into a 1D transient problem by making use of the 193 

transformation t = x/v, where x is the distance from the source for the 2D problem, v is the 194 

uniform average linear groundwater velocity, and t defines the travel time to reach the location x. 195 

At the same time, t defines the simulation time for the 1D transient transverse dispersion problem 196 

(Rolle et al., 2013). Coinciding with experimental conditions, a 1 cm source in the middle of the 197 

12 cm wide cross section at x = 0 describes the continuous release of the electrolyte solution. The 198 

simulation was run for the case of an average linear velocity of 1.5 m day
-1

.  The results of the 199 

1D transient simulations are compared among the three participating codes, whereas fully 2D 200 

simulations with explicit treatment of flow were performed with CrunchFlow and MIN3P. 201 

 202 
Table 4. Chemical conditions and transverse dispersion coefficients for Benchmark 3 (transverse 203 

dispersion problem). 204 

Species Tracer 

Injection 

Ports (mM) 

Initial Condition (1D) 

and Remaining Injection 

Ports (2D) (mM) 

Diffusion 

Coefficient 

(m
2
 s

-1
) 

Transverse 

Dispersion 

Coefficient (m
2
 s

-1
) 

K
+
 0.29 10

-6
 1.77 × 10

-9
 2. 405 × 10

-9 
Mg

2+
 0.29 10

-6
 6.26 × 10

-10
 1. 745 × 10

-9
 

Cl
-
 0.87 3 × 10

-6
 1.81 × 10

-9
 2. 425 × 10

-9
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 205 

The dispersion coefficients used in these simulations require some discussion. In fact, the 206 

parameterization of the hydrodynamic transverse dispersion coefficient used in Rolle et al. 207 

(2013) differs from the classical linear model commonly adopted in subsurface applications of 208 

solute transport and reads as:  209 



 











2

2

42Pe

Pe
DDD aq

i

P

i

T

i                                                                                                ( 5 ) 210 

where Di
P
 is the pore diffusion coefficient approximated as the product of the aqueous diffusion 211 

coefficient of a species i and the porosity of the medium (0.41). Pe=vd/Di
aq

 is the grain Péclet 212 

number where d is the average grain size (1.25 mm). δ=6.2, and β=0.47 are empirical parameters 213 

determined in previous multitracer experiments and pore-scale simulations (Rolle et al., 2012). 214 

Equation 7 explicitly retains a direct dependence of the mechanical dispersion term on the 215 

aqueous diffusivity of the transported species; the non-linear dependence on the average flow 216 

velocity arises from the incomplete mixing in the pore channels (e.g. Hochstetler et al., 2013; 217 

Rolle and Kitanidis, 2014). 218 

For this benchmark analysis we considered the mixed electrolyte case described in Rolle et al., 219 

2013, where a dilute solution of KCl and MgCl2 was continuously injected in ambient deionized 220 

water. The free aqueous diffusion coefficients of the ions at T=20 ºC are DK+ = 1.77 × 10
-9

 m
2
 s

-
221 

1
, DMg2+ = 6.26 × 10

-10
 m

2
 s

-1
, and DCl- = 1.81 × 10

-9
 m

2
 s

-1
. These values used in Eq. 7 yield the 222 

transverse dispersion coefficients given in the last column of Table 4.    223 

1D Benchmark: The 1D benchmark consists of a pure transverse diffusion problem discretized 224 

into 48 grid cells of 2.5 mm. In the 1D system, the injection ports constitute initial conditions 225 

used at grid cells 23-26, corresponding to a 10 mm wide region in the center of the symmetrical 226 
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system. The initial condition is used everywhere else in the domain and is intended to represent 227 

deionized water. The transverse dispersion coefficients given in Table 4 are used.  The 228 

boundaries at either end of the system are treated as no-flux, but they do not influence the system 229 

behavior for the 16 hour simulation time (corresponding to x = 1 m, i.e. the outflow boundary of 230 

the domain). The simulation was run with a constant 0.001 hour time step.  231 

2D Benchmark: For the full 2D problem solved with CrunchFlow and MIN3P, the transverse 232 

discretization is 50 grid cells with a spacing of 2.4 mm (corresponding to a total width of 0.12 233 

m).  At the inlet boundary, grid cells 24, 25, 26 and 27 in the transverse direction are set at the 234 

tracer injection port concentrations of 0.29 mM K
+
, 0.29 mM Mg

2+
, and 0.87 mM Cl

-
 (see  235 

Table 4), while the remaining injection ports carry deionized water.  The longitudinal 236 

discretization is 500 grid cells with a spacing of 2.4 mm thus a total length of 1.2 m; the 237 

concentrations are reported at x = 1.0 m, corresponding to the outflow boundary of the 238 

experimental setup. The additional length of 0.2 m is considered in the models to avoid any 239 

possible boundary effects. In this case, lateral flow can be calculated, or simply prescribed at 1.5 240 

m day
-1

. A maximum time step of 1 hour is used with an initial minimum time step of 10
-6

 hours. 241 

The simulation time is 32 hours to ensure that the final results correspond to steady state 242 

conditions representative of the experiment.   243 

5. Results and Discussion 244 

Benchmark 1  245 

Simulation results for the Benchmark 1 (Lichtner, 1995) depict the diffusion of HNO3 (pH = 246 

4.007) from the solution domain towards the boundary where NO3
- 
concentration are 100 times 247 

lower and pH = 6.001. Results for NO3
-
 and H

+
 reveal that both ions continue to diffuse towards 248 
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the left boundary after 1 hour simulation time (Figure 2). Because the diffusion coefficient for 249 

H
+
 is much larger than the corresponding value for NO3

-
, H

+
 has become substantially more 250 

depleted in the domain than NO3
-
. The discrepancy in diffusion rates of H

+
 and NO3

-
 triggered 251 

electromigration of Na
+
 and Cl

-
 to maintain local charge balance; Na

+
 is entering the domain to 252 

offset the preferential loss of H
+
, while Cl

-
 is leaving the system to counterbalance NO3

-
, which 253 

is preferentially retained. Migration of Na
+
 and Cl

-
 occurs despite the fact that there was no 254 

initial concentration gradient of either species (Table 2) and takes place even against the 255 

developing concentration gradients of Na
+
 and Cl

-
. If Fick’s Law were used to describe this 256 

multispecies diffusion problem, there would be no change in Na
+
 and Cl

-
 concentration and 257 

consequently electroneutrality would be violated.  258 

There is very good agreement between the simulation results of all three codes and they 259 

demonstrate near identical outputs. Simulations were executed on a desktop computer equipped 260 

with an Intel Core 2 Quad CPU with two 2.4 GHz processors, 8 GB RAM and a 64-bit operating 261 

system.  262 

 263 
 264 
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Figure 2: Species concentrations after 1 hour simulation time for HNO3 diffusion (Benchmark 1).  The 265 
left boundary is a fixed concentration (Dirichlet) boundary, while the right boundary is no-flux. 266 

 267 

Benchmark 2 268 

The results of the Benchmark 2 simulation visually show steady state diffusion with same 269 

concentration profiles for Na
+
 and Cl

-
 from left to right ( 270 

Figure 3). However, it has to be kept in mind that the diffusion coefficient for Cl
-
 is considerably 271 

larger than the one for Na
+
. In fact, considering that the equations are based on the null current 272 

assumption, this holds back Cl
-
 migration and accelerates Na

+
 migration. Although there are no 273 

initial concentration gradients for 
22

Na
+
, H

+
 and OH

-
, these species, present at much lower 274 

concentrations, also become affected by the electrostatic coupling.   275 

 276 

 277 
 278 

Figure 3: Na
+
, Cl

-
, H

+
, OH

-
 and 

22
Na

+
 concentrations after 1500 days for system summarized in Table 2 279 

(Benchmark 2).  The left boundary is a fixed concentration (Dirichlet) boundary at 0.5 mM, while the 280 
right boundary is a fixed concentration boundary at 0.1 mM for Na

+
, Cl

-
.  The fixed gradient in NaCl 281 

results in a flux of H
+
, OH

-
 and 

22
Na

+
, despite the fact that their concentrations are the same at either end 282 

of the column. 283 

 284 
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A closer look at the results reveals that H
+
 migrates from the left to the right to enhance the 285 

positive charge flux, while OH
-
 migrates from the right to the left to counteract the negative 286 

charge flux from the left to the right dominated by Cl
-
. Primarily, one would expect that 

22
Na

+
 287 

should also be subjected to a net flux from the left to the right; however, the sodium isotope is 288 

present at very low concentrations and is more strongly affected by migration dynamics of H
+
 289 

and OH
-
, resulting in a net migration form the right to the left inducing an unexpected isotope 290 

fractionation. Solving this problem with Fick’s law would not predict 
22

Na
+
 isotope fractionation, 291 

H
+
 and OH

-
 migration, and would result in a net negative charge flux across the domain. These 292 

results suggest that multicomponent diffusion can introduce isotope fractionation, even in the 293 

absence of fractionating reactions.  294 

Overall, there is very good agreement between the three codes with better agreement between 295 

CrunchFlow and MIN3P. Slight differences are observed for the PHREEQC results. It is difficult 296 

to decisively determine the reasons for these differences, but it is likely that the discrepancies are 297 

due to slight variations in model formation (i.e. consideration of activity gradients in the 298 

PHREEQC formulation, absent in the other two codes) and/or the use of different coupling 299 

schemes (GIM vs. SNIA). However, all codes show identical trends and concentration 300 

differences are small, implying that the residual discrepancies will not affect the interpretation of 301 

the results. 302 

 303 

Benchmark 3:  1D Transverse Dispersion 304 

The transverse concentration profiles for Cl
-
, K

+
 and Mg

2+
 are plotted at the outlet (x = 1.0 m) 305 

corresponding to a residence time of 16 hours in the 2D domain. The separation of the three 306 

tracer profiles ( 307 
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Figure 4) demonstrates the effect of species-dependent dispersion coefficients and 308 

electrochemical migration on transverse displacement. The Cl
-
 concentration profile is located 309 

between K
+
 and Mg

2+ 
despite having the largest diffusion coefficient. In fact, DCl- in liberated 310 

state is considerably larger than DMg2+ and also slightly larger than DK+ (Table 4). These results 311 

show that Cl
-
 migration is retarded due to electrostatic coupling with the cations and in particular 312 

with Mg
2+

, which diffuses more slowly. The outcomes reported in Fig. 4 demonstrate the 313 

positive contribution of electromigration to transverse displacement of the two cations and the 314 

negative contribution of electromigration to transverse displacement of chloride (Rolle et al., 315 

2013).     316 

 317 

 318 

Figure 4. 1D simulation results of transverse profiles for Cl
-
, K

+
 and Mg

2+
 at the outlet (corresponding to 319 

a residence time of 16 hours) demonstrate the effect of species-dependent dispersion and electromigration 320 
on the transverse displacement of charged species (1D Benchmark 3 solved with MIN3P). 321 

 322 

There is a very good agreement between the three codes and an excellent match between 323 

CrunchFlow and MIN3P ( 324 
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Figure 5). Similar to the two previous benchmarks, there are slight differences between the 325 

results of CrunchFlow and MIN3P on the one hand and PHREEQC on the other hand. Peak 326 

chloride concentrations predicted by PHREEQC are slightly higher than those calculated by 327 

CrunchFlow and MIN3P (~ 0.6%). Magnesium and potassium concentration profiles are in very 328 

good agreement for all codes.  329 

330 

 331 

 332 

Figure 5. 1D simulation of transverse multicomponent diffusion for the case of transport of mixed 333 
electrolytes (KCl and MgCl2 solution) in pure water described by Rolle et al. (2013), comparing 334 
CrunchFlow, MIN3P and PHREEQC results. 335 

 336 
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Benchmark 3:  2D Flow and Transverse Dispersion 337 

Using CrunchFlow and MIN3P it was possible to carry out a full two-dimensional flow and 338 

multicomponent transport simulation of the flow-through system. The simulation was run for 339 

two pore volumes (32 hours) to ensure that steady state conditions at the outflow were reached. 340 

To illustrate the 2D concentration distributions and to provide a means for visual comparison of 341 

the CrunchFlow and MIN3P results, 2D contour plots are provided for K
+
, Mg

2+
 and Cl

-
 (Figure 342 

6).   343 
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 344 

 345 

Figure 6. Simulation results for Benchmark 3 considering flow (uni-directional) and multicomponent 346 
transverse dispersion for steady-state conditions, from top to bottom are shown: K

+
, Mg

2+
 and Cl

-
 for 347 

CrunchFlow and K
+
, Mg

2+
 and Cl

-
 for MIN3P. 348 

 349 

Cross-sections extracted from two-dimensional steady state CrunchFlow and MIN3P results are 350 

compared at the outflow to one-dimensional transient PHREEQC results, corresponding to a 351 

residence time of 16 hours. Overall, there is an excellent agreement between MIN3P and 352 

CrunchFlow results (Figure 7) and results are also very close to the concentrations computed with the 353 

1D PHREEQC approach. PHREEQC concentration profiles are slightly higher than CrunchFlow 354 
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and MIN3P (the differences of the peak concentrations are ~ 0.6% for Cl
-
, ~ 0.7% for Mg

2+
 and 355 

~ 0.4% for K
+
). 356 

357 

 358 

Figure 7. Comparison of 1D PHREEQC results (no explicit consideration of flow, only following the 359 
plume as it moves down the flow path) and transverse profiles derived from 2D CrunchFlow and MIN3P 360 
runs for the transverse dispersion problem.  The CrunchFlow 2D runs are based on GIMRT and use a first 361 
order upwind formulation, along with a backwards Euler time stepping approach, the same numerical 362 
methods are used in the MIN3P simulations. 363 

 364 
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6. Concluding Remarks 365 

Three benchmark problems were presented, each with significant effects of multicomponent 366 

diffusion and electromigration on transport of solutes in saturated porous media. The 367 

benchmarks were specifically designed to be sensitive to the effect of electromigration on 368 

diffusion and lateral concentration displacement. Benchmarks 1 and 2 are hypothetical problems 369 

that provide opportunities to verify the implementation of multicomponent diffusion and 370 

electromigration formulations in reactive transport codes. Benchmark 3 is based on the outcomes 371 

of laboratory experiments (Rolle et al., 2013) and provides the opportunity to verify and validate 372 

multicomponent diffusion and species-dependent transverse dispersion formulations under flow-373 

through conditions. Three reactive transport codes with the capability of simulating 374 

multicomponent diffusion and electrochemical migration participated in this study (CrunchFlow, 375 

MIN3P and PHREEQC). For all benchmark problems considered in this work an overall very 376 

good agreement between the simulation results obtained with the different codes. Despite some 377 

residual discrepancies between the simulation results, all three codes were able to consistently 378 

reproduce the same trends and evolution in concentration patterns induced by multicomponent 379 

diffusion and by the electrostatic interactions between the charged species. Small discrepancies 380 

between the results indicate that different approaches in implementing the governing equations 381 

are not a significant source of uncertainties for model applications; uncertainties will rather be 382 

dominated by the underlying conceptual model.     383 

Acknowledgements: 384 

Funding for this research was provided by the Natural Sciences and Engineering Research 385 

Council of Canada (NSERC) in form of a Discovery Grant and a Discovery Accelerator 386 



23 

 

Supplement Award held by K. Ulrich Mayer. The contribution of C. Steefel was supported by 387 

the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, 388 

Geosciences, and Biosciences Division, of the U.S. Department of Energy under Contract No. 389 

DE-AC02-05CH11231. M. Rolle acknowledges the support of the Baden-Württemberg Stiftung 390 

under the Eliteprogram for postdocs. 391 

 392 

References: 393 

1. Alt-Epping, P., Tournassat, C., Rasouli, P., Steefel, C., Mayer, K., Jenni, A., Mäder, U., 394 

Sengor, S., Fernandez, R.: Benchmark reactive transport simulations of a column experiment 395 

in compacted bentonite with multispecies diffusion and explicit treatment of electrostatic 396 

effects. Comput. Geosci. (2015). doi:10.1007/s10596-014-9451-x 397 

2. Appelo, C.A.J.:Multicomponent diffusion in clays. In: Candela, L., Vadillo, I., Aagaard, P. 398 

(eds.) Water Pollution in Natural Porous Media, pp. 3–13. Instituto Geologico de Espana, 399 

Madrid (2007) 400 

3. Appelo, C.A.J., Wersin, P.: Multicomponent diffusion modeling in clay systems with 401 

application to the diffusion of tritium, iodide, and sodium in Opalinus Clay. Environ. Sci. 402 

Technol. 41, 5002–5007 (2007) 403 

4. Appelo, C.A.J., Van Loon, L.R., Wersin, P.: Multicomponent diffusion of a suite of tracers 404 

(HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay. Geochim. Cosmochim. 405 

Acta 74, 1201–1219 (2010) 406 

5. Bagotsky, V.S.: Fundamentals of Elechtrochemistary, 2nd edn. John Wiley and Sons, 407 

Pennington (2006) 408 



24 

 

6. Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. 409 

John Wiley and Sons, New York (1980) 410 

7. Ben-Yaakov, S.: Diffusion of seawater ions—significance and consequences of cross 411 

coupling effects. Am. J. Sci. 281, 974–980 (1981) 412 

8. Boudreau, B.P.: Diagenetic models and their implementation. Springer, New York (1997) 413 

9. Boudreau, B.P., Meysman, F.J.R., Middelburg, J.J.: Multicomponent ionic diffusion in 414 

porewaters: Coulombic effects revisited. Earth Planet. Sci. Lett. 222, 653–666 (2004) 415 

10. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimera, J.: On matrix 416 

diffusion: formulations, solution methods and qualitative effects. Hydrogeol. J. 6, 178–190 417 

(1998) 418 

11. Chiogna, G., Cirpka, O.A., Grathwohl, P., Rolle, M.: Relevance of local compound-419 

specific transverse dispersion for conservative and reactive mixing in heterogeneous porous 420 

media.Water Resour. Res. 47, W06515 (2011). doi:10.1029/2010WR010270 421 

12. Cussler, E.L.: Diffusion: Mass Transfer in Fluid Systems, 2nd edn. Cambridge University 422 

Press, New York (1997) 423 

13. Giambalvo, E.R., Steefel, C.I., Fisher, A.T., Rosenberg, N.D., Wheat, C.G.: Effect of 424 

fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan 425 

de Fuca Ridge. Geochim. Cosmochim. Acta 66, 1739–1757 (2002) 426 

14. Glaus, M.A., Birgersson, M., Karnland, O., Van Loon, L.R.: Seeming steady-state uphill 427 

diffusion of 22Na+ in compacted montmorillonite. Environ. Sci. Tech. 47, 11522–11527 428 

(2013) 429 

15. Helfferich, F.: Ion Exchange, 2nd edn. McGraw-Hill, NewYork (1962) 430 



25 

 

16. Hochstetler, D.L., Rolle, M., Chiogna, G., Haberer, C.M., Grathwohl, P., Kitanidis, P.K.: 431 

Effects of compound-specific transverse mixing on steady-state reactive plumes: insights 432 

from porescale simulations and Darcy-scale experiments. Adv.Water Resour. 54, 1–13 433 

(2013). doi:10.1016/j.advwatres.2012.12.007 434 

17. Johannesson, B., Yamada, K., Nilsson, L.O., Hosokawa, Y.: Multispecies ionic diffusion 435 

in concrete with account to interaction between ions in the pore solution and the cement 436 

hydrates. Materials and Structures, Kluwer Academic Publishers, 40, 651–665 (2007) 437 

18. Kang, Q., Lichtner, P.C., Zhang, D.: Lattice Boltzmann porescale model for multi-438 

component reactive transport in porous media. J. Geophys. Res 111, B05203 (2006). 439 

doi:10.1029/2005JB003951 440 

19. LaBolle, E.M., Fogg, G.E.: Role of molecular diffusion in contaminant migration and 441 

recovery in alluvial aquifer system. Transp. Porous Media 42, 155–179 (2001) 442 

20. Lasaga, A.C.: Treatment ofmulticomponent diffusion and ion-pairs in diagenetic fluxes. 443 

Am. J. Sci. 279, 324–346 (1979) 444 

21. Lichtner, P.C.: Principles and practice of reactive transport modeling. Mater. Res. Soc. 445 

Symp. Proc. 353, 117–130 (1995) 446 

22. Lichtner, P.C.: Continuum formulation of multicomponent–multiphase reactive transport. 447 

Ch. 1 in. reactive transport in porous media. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. 448 

(eds.) Reviews in Mineralogy, vol. 34. Mineralogical Society of America, Washington, DC 449 

(1996) 450 

23. Liu, C.X., Shang, J., Zachara, J.M.: Multispecies diffusion models: a study of uranyl 451 

species diffusion.Water Resour. Res. 47, W12514 (2011). doi:10.1029/2011WR010575 452 



26 

 

24. MacQuarrie, K.T.B., Mayer, K.U.: Reactive transport modeling in fractured rock: a state-453 

of-the-science review. Earth Sci. Rev. 72, 189–227 (2005) 454 

25. Mayer, K.U., Frind, E.O., Blowes, D.W.: A numericalmodel for the investigation of 455 

reactive transport in variably saturated media using a generalized formulation for kinetically 456 

controlled reactions.Water Resour. Res. 38, 1301–1321 (2002). doi:10:1029/2001WR000862 457 

26. McDuff, E.R., Ellis, A.R.: Determining diffusion-coefficients in marine-sediments—458 

laboratory study of the validity of resistivity techniques. Am. J. Sci. 279, 666–675 (1979) 459 

27. Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore 460 

scale flow on average geochemical reaction rates using direct numerical simulation. Water 461 

Resour. Res. 48, W03527 (2012). doi: 10.1029/2011WR011404 462 

28. Muniruzzaman, M., Haberer, C.M., Grathwohl, P., Rolle, M.: Multicomponent ionic 463 

dispersion during transport of electrolytes in heterogeneous porous media: experiments and 464 

model-based interpretation. Geochim. Cosmochim. Acta 141, 656–669 (2014) 465 

29. Newman, J.S.: Electrochemical Systems. Prentice-Hall, Englewood Cliff (1973) 466 

30. Oelkers, E.H.: Physical and chemical properties of rocks and fluids for chemical mass 467 

transport calculations. Rev. Mineral. Geochem. 34, 131–191 (1996) 468 

31. Ovaysi, S., Piri, M.: Pore-scale dissolution of CO2+SO2 in deep saline aquifers. Int. J. 469 

Greenh. Gas Control 15, 119–133 (2013) 470 

32. Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer 471 

program for speciation, batch-reaction, onedimensional transport, and inverse geochemical 472 

calculations. Denver (1999) 473 



27 

 

33. Paz-Garcia, J.M., Johannesson, B., Ottosen, L.M., Ribeiro, A.B.., Rodriguez-Maroto, 474 

J.M.: Modeling of electrokinetic processes by finite element integration of the Nernst-475 

Planck-Poisson system of equations. Sep. Purif. Technol. 79, 183–192 (2011) 476 

34. Rolle, M., Hochstetler, D.L., Chiogna, G., Kitanidis, P., Grathwohl, P.: Experimental 477 

investigation and pore-scale modeling interpretation of compound-specific transverse 478 

dispersion in porous media. Transp. Porous Media 93, 347–362 (2012) 479 

35. Rolle, M., Muniruzzaman, M., Haberer, C.M., Grathwohl, P.: Coulombic effects in 480 

advection-dominated transport of electrolytes in porous media: multicomponent ionic 481 

dispersion. Geochim. Cosmochim. Acta 120, 195–205 (2013) 482 

36. Rolle, M., Chiogna, G., Hochstetler, D.L., Kitanidis, P.K.: On the importance of diffusion 483 

and compound-specific mixing for groundwater transport: an investigation from pore to field 484 

scale. J. Contam. Hydrol. 153, 51–68 (2013) 485 

37. Rolle,M., Kitanidis, P.K.: Effects of compound-specific dilution on transient transport 486 

and solute breakthrough: a pore-scale analysis. Adv. Water Resour. 71, 186–199 (2014) 487 

38. Shiba, S., Hirata, Y., Seno, T.: Mathematical model for hydraulically aided electrokinetic 488 

remediation of aquifer and removal of nonanionic copper. Eng. Geol. 77, 305–315 (2005) 489 

39. Steefel, C.I., Carroll, S.A., Zhao, P., Roberts, S.: Cesium migration in Hanford sediment: 490 

a multisite cation exchange model based on laboratory transport experiments. J. Contam. 491 

Hydrol. 67, 219–246 (2003) 492 

40. Steefel, C.I., Maher, K.: Fluid-rock interaction: a reactive transport approach. Rev. 493 

Mineral. Geochem. 70, 485–532 D2009]. Mineralogical Society of America 494 



28 

 

41. Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, 495 

V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L.,Molins, S.,Moulton, D., Shao, H., 496 

Šimůnek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface 497 

environmental simulation. Comput. Geosci. (2014). doi:10.1007/s10596-014-9443-x 498 

42. Taylor, R., Krishna, R.: Multicomponent Mass Transfer. John Wiley and Sons, New 499 

York (1993) 500 

43. Tyrrell, H.J.V.: Diffusion and Heat Flow in Liquids. Butterworths, London (1961) 501 

44. Van Cappellen, P., Gaillard, J.F.: Biogeochemical dynamics in aquatic sediments. Ch. 8 502 

in.: reactive transport in porous media. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) 503 

Reviews in Mineralogy, vol. 34, pp. 335–376. Mineralogical Society of America, 504 

Washington, DC (1996) 505 

45. Vinograd, J.R., McBain, J.W.: Diffusion of electrolytes and of the ions in their mixtures. 506 

J. Am. Chem. Soc. 63, 2008–2015 (1941) 507 

46. Wang, Y., Van Cappellen, P.: A multicomponent reactive transport model of early 508 

digenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. 509 

Acta 60, 2993–3014 (1996) 510 


