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ABSTRACT: We present a risk-based high-throughput screening
(HTS) method to identify chemicals for potential health concerns or
for which additional information is needed. The method is applied to
180 organic chemicals as a case study. We first obtain information on
how the chemical is used and identify relevant use scenarios (e.g.,
dermal application, indoor emissions). For each chemical and use
scenario, exposure models are then used to calculate a chemical intake
fraction, or a product intake fraction, accounting for chemical
properties and the exposed population. We then combine these intake
fractions with use scenario-specific estimates of chemical quantity to
calculate daily intake rates (iR; mg/kg/day). These intake rates are
compared to oral equivalent doses (OED; mg/kg/day), calculated
from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in
vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs)
are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals
considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are
associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure
and important input for decision makers to identify chemicals of concern for further evaluation with additional information or
more refined models.

■ INTRODUCTION

While a growing number of chemicals have been developed and
introduced into commerce over the past several decades,1,2

there is a dearth of exposure and toxicity information available
to assess potential harmful effects of these chemicals to humans
or to provide information needed to regulate and screen
chemicals.3 For this reason, high-throughput screening (HTS)
assessments that incorporate both exposure and toxicity data
are recommended for risk-based screening and prioritization.4

The U.S. Environmental Protection Agency (EPA) has
developed a process combining in vitro HTS assays with

computational tools to facilitate rapid hazard assessments based
on chemical bioactivities.5−9 This process is incorporated in the
EPA’s ToxCast Program.10 ToxCast Phase I chemicals are
primarily food-use pesticides for which regulatory exposure
estimates have been generated; however, exposure estimates are
not available for most commercial chemicals such as those used
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in consumer products and industrial processes.11 As a parallel
effort, high-throughput (HT) methods to characterize and
quantify exposures are clearly needed to facilitate risk-based
HTS assessments.12,13

Far-field (e.g., outdoor environmental releases to ambient air,
water, or soil) and near-field (e.g., indoor releases or personal
care product applications) human exposure models have
recently been developed and applied for screening-level
exposure-based assessment and prioritization.14−24 However, a
general lack of chemical quantity and use information has
hindered the parametrization of these exposure models,25,26

and hence the application of HTS methods for exposure- and
risk-based prioritization. Modeling studies have shown the
actual chemical emission rate contributes the greatest variance
(uncertainty) in far-field human exposure estimates15 and
information about the distribution of chemical production mass
(or volume) with respect to use and release scenarios greatly
influences total exposure estimates.27,28 The intake fraction
(iF), the integrated cumulative intake of a compound per unit
of emission,29 is a convenient metric for quantifying emission-
to-exposure relationships, thus allowing uncertainty in chemical
use and emissions to be treated separately in the exposure
calculation. To begin addressing the need for identifying near-
field chemical uses, the U.S. EPA has recently developed a
consumer product ingredient database for chemical exposure
screening and prioritization30 and has used this database to help
parametrize its exposure models.21

In the present study, we develop a screening-level HTS
framework to provide risk-based prioritization for human health
impact assessment. This framework was developed as part of
ExpoDat, a program developed by the American Chemistry
Council’s Long-Range Research Initiative. With respect to each
considered chemical we identify the applicable far-field, near-
field, and personal care product exposure scenarios and apply
the relevant exposure models. We then compare the estimated
per capita exposures to in vitro bioactivity estimates. Simple,
conservative assumptions for screening-level estimates of
chemical emission, release and application rates are based on
publicly available data and initial (default) assumptions on per-

capita usage. Chemicals highlighted in this screening do not
necessarily pose a risk, but may need additional information
(e.g., how it is used) to better evaluate potential exposure. We
illustrate the sensitivity of the results based on initial default
assumptions, critically discuss limitations of the current
framework, and provide recommendations for future research
on exposure- and risk-based screening and prioritization. To
our knowledge, this is the first work that incorporates a HT
mechanistic exposure modeling approach with HT in vitro
toxicity testing data to evaluate and prioritize chemicals for
potential risk to human health.

■ MATERIALS AND METHODS
Overview. Figure 1 provides a conceptual overview of a

risk-based HT prioritization framework. We first obtain
information on how the chemical is used and determine nine
relevant use scenarios related to human exposures in non-
occupational settings: direct intake, food/oral contact, direct
dermal (e.g., direct application on skin), dermal contact, indoor
emissions, passive indoor emissions, emissions near indoors,
pesticide application, and environmental/outdoor emissions.
For each chemical and use scenario, one or several exposure
models are then used to calculate a chemical intake fraction (iF;
dimensionless), or a product intake fraction (PiF; dimension-
less) in the case of personal care product applications, using
physical-chemical properties and assumed exposure conditions
(e.g., personal care product use patterns). Chemical quantities
(Q; mg/day) applied, used, or released to specific use scenarios
are estimated based on a conservative value using the total
production volumes or emission estimates, adjusting for the
estimated size of the exposed population, where appropriate.
Daily chemical intake rates (iR; mg/kg/day) are calculated as iF
(or PiF) multiplied by Q and divided by body weight (BW; kg).
Because of the lack of data on the fraction of chemicals being
allocated in each use scenario, this iR calculation assumes that
100% of the Q is applied to each relevant use scenario. These
intake rates are compared to oral equivalent doses (OED; mg/
kg/day), calculated from the ToxCast in vitro bioactivity data
using an in vitro-to-in vivo extrapolation (IVIVE) approach and

Figure 1. Overview of framework for risk-based high-throughput chemical screening and prioritization used this study.
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reverse dosimetry.8,9 The approach culminates in the
calculation of the bioactivity quotient (BQ; unitless) for each
chemical and each relevant use scenario. Bioactivity quotients
are conceptually similar to other exposure/effect metrics such
as the hazard quotient (HQ) and are estimated as

=BQ iR/OED (1)

The relative rank of BQs can be used for priority setting, that is,
higher BQs can be considered higher priority. Details of the
data and models used for calculations are provided below.
We parametrize and apply the framework as a case study to

evaluate 180 chemicals (see Table S1 in the Supporting
Information (SI)), which include 50 chemicals from Phase I
and 130 chemicals from Phase II of the U.S. EPA ToxCast
Program for which dosimetry-adjusted in vitro bioactivity data
were available.8,9 For the use scenarios related to indoor
emissions and outdoor releases, various exposure models are
used and the maximum iR is selected. Chemicals with exposure
estimates meeting or exceeding bioactivity, that is, BQs ≥ 1, do
not necessarily indicate the potential for adverse health effects,
but these chemicals may need additional information. In
particular, the assumption that 100% of Q is being applied to
each individual use scenario is a very conservative assumption
for many compound/use scenario pairs. Thus, we conducted a
sensitivity analysis on various default assumptions and other
input parameters.
Chemical and Assay Selection Criteria. The chemicals

selected for this analysis represent ToxCast Phase I and II
chemicals for which in vitro pharmacokinetic data were
available but for which exposure estimates from regulatory
documents (e.g., reregistration eligibility documents) were not.
Pharmaceutical and endogenous compounds were excluded.
This chemical list was then checked against the ToxCast in
vitro assay data set released to the public in December, 2014.
This new release includes data quality flags to alert users to
experimental issues that may confound data interpretation. The
assay list used to select the final chemical list was filtered to
exclude assays with any such data quality flags. In the end, 180
chemicals were identified that had at least one assay hit for
comparison. More information on the ToxCast bioactivity data
is provided in the ‘In Vitro Bioactivity Data’ section.

Input Data for iR (Exposure) Calculations. There are
four types of data input required for the HT exposure
calculations: (1) chemical use categorization in use scenarios,
(2) chemical mass produced/emitted in the U.S., (3) the size of
the exposed population, and (4) chemical properties needed to
parametrize exposure models (e.g., vapor pressure, degradation
half-lives).

Use Categorization. To investigate the potential uses of the
selected chemicals, we matched chemical abstracts service
(CAS) numbers to the U.S. EPA Chemical and Product
Categories (CPCat) database,31 which aggregates and harmo-
nizes 12 different databases classifying chemical-use data into a
set of 1297 cassettes (term groups) of which 824 describe
chemical uses other than drugs. Of the 180 chemicals in this
study, 167 matched up with over 15 000 entries in the database
yielding 427 unique cassettes (see Table S2 of the SI). We
iteratively classified these cassettes into a set of nine use
scenarios: direct intake, food/oral contact, direct dermal,
dermal contact, indoor emissions, passive indoor emissions,
emissions near indoors, pesticide application, and environ-
mental/outdoor emissions (Table 1). For 13 compounds that
do not match any single cassette in CPCat, we assumed that
chemicals are applied, used, or released to all nine use scenarios
as a conservative approach. Moreover, all chemicals are
assumed to have environmental/outdoor emissions. Many of
the cassettes match to more than one use scenario. For
example, in this scheme consumer-use cleaning products have
both an indoor emission and a dermal contact (occurring
incidentally while using the product). Table 1 includes
examples of CPCat database cassettes, with a complete list of
the CPCat cassettes in Table S2 of the SI.
We compiled the resulting use scenarios and conducted a

preliminary review to ensure results are reasonable based on
our knowledge of chemical’s likely uses and identified several
questionable chemical-use/exposure scenario combinations.
Further investigation revealed that these questionable combi-
nations were due to matched entries in a small number of
databases which may have been created for purposes other than
chemical use classification. For example, CPCat assigns the
term “food additive flavors” to a list of pesticides within the
“SPIN” data source, a subset of a data source within CPCat, as a

Table 1. Selected Use Scenarios Based on Database-Defined Use Categories and Assumptions for Chemical Quantity

use scenarios description examples of CPCat cassettes
assumptions of population sizeb

and chemical quantity use (Q)c

direct intake directly ingested or inhaled ‘food_additive flavor’,
‘cigarettes’

100% Q to 10% of U.S. population

food/oral contact likely contact food or be placed in the mouth ‘personal_care dental’,
‘food_contact’

10% Q to 10% of U.S. population

direct dermal directly applied to the skin ‘personal_care cosmetics’ 100% Q to 10% of U.S. population
dermal contact solid items we touch ‘apparel’, ‘tools’, ‘plastics’ 10% Q to 10% of U.S. population
indoor emissions directly emitted indoors ‘air_fresheners’,

‘cleaning_washing’
100% Q to 50% of U.S. household

passive indoor emissions solid items placed indoors ‘furniture’, ‘building_material’ 10% Q to 50% of U.S. household
emissions near indoors items with emissions near indoors ‘heating fire, ‘lawn_ garden’ 1% Q to 50% of U.S. household
pesticide application used in agriculture as a pesticide ‘pesticide’ emission distributiond

environmental emissions applied to all chemicalsa emission distributione

aFor all compounds, intake rates were estimated assuming general environmental releases to estimate a “background” exposure related to production
volume and emissions. bU.S. population: 300 000 000, U.S. household: 100 000 000. cA maximum value is selected between total production
volumes and emissions estimates and applied to all relevant use scenarios of each chemical. dFor CalTOX and RAIDAR that do not include direct
application to plant, we assumed that pesticides are applied 20% air: 80% soil. For dynamiCROP that includes direct application to agricultural crops,
we assumed that pesticides on average are distributed 20% air: 20% soil: 60% plant. eBased on the air−water partition coefficient (Kaw) value, we bin
compounds as likely to be released 90% air:10% water, 75% air:25% water, 50% air:50% water, 25% air:75% water, 10% air:90% water (see SI for
details).
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result of its ambiguous description of “food/feedstuff flavorings
and nutrients”. This description may possibly stem from an
effort to establish allowable pesticide residue levels in food.
However, in our framework pesticide residues are better
reflected by the pesticide residue use scenario than by direct
ingestion of the overall quantity of pesticide produced. For each
questionable chemical-use scenario combination, we inves-
tigated the impact of removing a questionable data source to
ensure it only removed false positives. This process is further
outlined in the text and Table S3 of the SI. A summary of use
scenarios for all 180 compounds is provided in Table S4 of the
SI.
Chemical Quantities (Q). We used total production volume

(TPV) and emission estimates as surrogates for chemical
quantities (Q) in the U.S. For 52 compounds, we obtained
TPV data from the 2006 U.S. EPA Inventory Update Reporting
(IUR).32 Note that the TPV data are recorded in “bins”,
spanning several orders of magnitude for a given chemical in
that particular year (see Table S5 of the SI). We used the
maximum value of the bounding values of the mass-use range
for these compounds. We selected 10 times the minimum
reported value for one compound (nitrobenzene) because only
a lower bound value was reported in IUR. For 19 pesticides,
aggregated application rates by state and crop from Crop
Protection Research Institute (CPRI) 2002 data were used as a
surrogate for TPV.23 For the rest of compounds (N = 109)
whose TPV data are not available in the 2006 IUR and not
covered by CPRI, we assumed a TPV of 25 000 pounds (lb),
the maximum of the lowest production volume reporting bin.23

In addition, we extracted emission estimates for 50
compounds from at least one of the U.S. EPA databases: the
National-Scale Air Toxics Assessments (NATA),33 the Toxics
Release Inventory (TRI) Program,34 and the National
Emissions Inventory (NEI).35 For seven compounds with
emissions from combustion or mobile sources where the
maximum emission estimates from these U.S. EPA databases
exceeded the TPV value, we chose to use maximum emissions
value. The TPV data, additional emission estimates, and the
selected chemical quantity (Q) used to calculate intake rates for
all 180 compounds are provided in Table S5 of the SI.
Size of the Exposed Population. There is no available

information source for a screening-level model to determine the
fraction of the U.S. population exposed to a particular
compound. Thus, we selected arbitrary numbers that imply
the chemical is fairly widely distributed in commerce, but
concentrates the exposure among only a fraction of the
population. For example, for compounds associated with direct
intake, food/oral contact, direct dermal, and dermal contact, we
assumed that exposure is concentrated within 10% of the 300
million U.S. residents (i.e., those using products including the
compound). For compounds associated with indoor use, we
assumed that 50% of the 100 million U.S. households use the
product indoors. Using a smaller exposed population increases
exposure for those exposed to the compound, as the TPV is
distributed across the assumed population. We also performed
a sensitivity analysis to test how the selected number may affect
the number of compounds with BQ > 1.
Chemical Properties. Chemical properties are needed to

parametrize most exposure models. We obtained chemical
properties and degradation half-lives using a CAS number or
simplified molecular-input line-entry system (SMILES). When
available, we selected measured values, otherwise we used
estimated values from quantitative structure−activity (prop-

erty) relationship (QSA(P)R) models in the U.S. EPA
Estimation Program Interface Suite (EPI Suite), assuming the
former are more reliable than the latter.36 Details of chemical
properties and assumptions are included in the SI.

iF for Direct Intake and Food/Oral Contact. For
compounds used in food, for example as additives or
preservatives, or used as cigarette ingredients, we assumed
100% intake (iF = 1), because compounds in these use
scenarios are likely to be directly ingested or inhaled. We did
not account for food waste in this estimate.
Compounds used in food packaging or dental products were

modeled as inadvertent ingestion exposure where we assumed a
maximum of 10% of the chemical mass may be taken up by the
user, assumed to be a conservative estimate.

Product iF for Direct Dermal Uptake and Dermal Contact.
For compounds categorized as personal care product
ingredients, we calculated the product intake fraction (PiF).
PiF is defined as the mass taken up by the user divided by the
mass of chemical ingredient within the applied product37 and
was estimated assuming daily use of body lotion as a
conservative archetypal product use. We also assumed that
lotion is left on the body for 8 h and a volume of 4.42 cm338

was applied once daily to an area including the feet, legs, hands,
and arms38 which cover an average surface area of 10 935
cm2.39 The PiF is estimated using a mass balance equation
accounting for transfers into skin and into air, as a function of
the thickness of the product applied on the skin (i.e., volume
applied per area applied), the length of time the product is
applied. The chemical-specific skin permeation coefficient, Kp
(cm/h), is derived from the ten Berge model.40 The equations
used for the dermal exposure model are provided in the SI.
For chemicals classified in the dermal contact category such

as tools and sporting equipment, we assumed that a maximum
of 10% of the total mass is available for dermal contact,
applying the same PiF method used for direct dermal uptake.

iF for Indoor Emissions. For compounds classified as indoor
emissions, we calculated iF using three indoor near-field
exposure models. These models simulate the fate and transport
of chemicals released to the indoor air, and subsequent human
exposure via three exposure pathways including inhalation,
dermal, and nondietary dust ingestion. The details of the indoor
exposure models are described elsewhere.17,18,22,41 For those
use scenarios thought to result in a significant fraction of the
compound volatilizing into the air during use (e.g., air
fresheners), it was assumed that the entire compound is
released to air.
Many compounds are introduced to the home as part of a

solid product, such as furniture, electronics, plastic items, or
other common consumer goods. Research has established that
a portion of the compounds in these products will release into
the air (e.g., flame retardants and plasticizers).42 Therefore, for
the “passive indoor emissions” scenario (see Table 1), we
assumed 10% of the mass was introduced to the home and
would release into the air. Similarly, there are products used in
close proximity to the home, such as items used to care for the
lawn or vehicles. For these cases, we assumed that a maximum
of 1% of the mass would release to the household air.

iF for Outdoor Releases. For all compounds, we calculated
iF using three steady-state (Level III) far-field multimedia mass-
balance models, including CalTOX,43 the United Nations
Environment Program and Society for Environmental Toxicol-
ogy and Chemistry toxicity model (USEtox),44 and the Risk
Assessment IDentification And Ranking model (RAIDAR).45
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We assumed that chemical release to soil is negligible for the
generic outdoor release (see different assumptions for
pesticides) and percent mode-of-entry to air and water is
based on the chemical’s air−water partition coefficient (Kaw)
(see SI for details).
Pesticide Residue iF. For chemicals classified as agricultural

pesticides, residues in food after crop harvest and processing
were determined using results from the dynamiCROP
model,46,47 giving the maximum iF across six crop archetypes:
wheat, paddy rice, tomato, apple, potato, and lettuce. In
addition to the fraction of pesticide remaining in crop harvest as
residue, the dynamiCROP model provides estimates of the
fraction of the applied pesticide that is emitted to the
environment (i.e., to soil or to air, kg emitted/kg applied)
according to the crop and pesticide target class (where
herbicides were assumed to not be applied directly to the
crop).19 Emitted fractions were then combined with USEtox iF
for emissions to continental air and soil, respectively, and
summed with the iF due to ingestion of pesticide crop residues,
yielding a total iF for pesticides. We also calculated the iF
values using all three far-field Level III models identified above,
but only accounted for pesticide emissions to the environment,
assuming 20% of the applied mass was released to air (average
air emission for pesticides applied to all crop archetypes in
dynamiCROP), and the remaining 80% was released to soil.
The iF values for indoor air releases, outdoor air releases, and

pesticide applications as well as the PiF values for direct dermal
applications are provided in Table S6 of the SI.
ToxCast in Vitro Bioactivity Data. ToxCast in Vitro

Bioactivity Data. All of the in vitro bioactivity data utilized in
this study were generated as a part of the U.S. EPA ToxCast
Program.5 These HT bioactivity data were collated from a set
of over 650 assays spanning nine separate technologies,
including receptor-binding and enzyme activity assays, cell-
based protein and RNA expression assays, real-time growth

measured by electronic impedance, and fluorescent cellular
imaging. Each chemical was run through each assay in
concentration response and, when activity was measured, an
AC50 (concentration at 50% of maximum activity) or LEC
(lowest effective concentration) value was calculated. The data
utilized for this study were released to the public in December,
2014 (http://epa.gov/ncct/toxcast/data.html). Several publica-
tions utilizing the in vitro screening data can be found in the
peer-reviewed literature.4,48−54

Estimation of Css using in Vitro-to-in Vivo Extrapolation
(IVIVE). Hepatic metabolic clearance and plasma protein
binding data experimentally measured in earlier studies8,9,11

were incorporated into an IVIVE model to estimate the steady-
state chemical blood concentration (Css) as previously
described.11 Briefly, in vitro hepatic clearance rates were
experimentally measured in hepatocytes using the substrate
depletion approach, adjusted for nonspecific binding, and
scaled up to represent overall hepatic intrinsic clearance. These
values were then incorporated with plasma protein binding data
and nonmetabolic renal clearance values into a base equation to
calculate Css based on constant uptake of a daily oral dose. A
correlated Monte Carlo approach was employed55 using
Simcyp (Simcyp V.13; Certara, Sheffield, UK) to simulate
variability across a population of 10 000 individuals equally
comprised of both genders, 20−50 years of age. Plasma Css

values for the 5th, median and 95th percentiles of the
population simulated were obtained as output. The outputs
for the upper 95th percentile were utilized in the calculation of
the oral equivalent doses (OEDs) to provide a conservative
estimate for the analyses.

Calculation of OEDs. Reverse dosimetry was utilized to
relate Css to an exposure concentration.56 The upper 95th
percentile for the Css was used to generate OEDs according to
the following formula:

Figure 2. Comparison of modeled maximum iRs from this study and 95th percentile iRs inferred from NHANES biomonitoring data. Note that
nitrobenzene is chemical intermediate with over 1 billion pounds produced in the U.S. and the levels in blood are below limit of detection in 2003−
2004 NHANES survey.
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= μ μ

×

OED[mg/kg/day]

ToxCast AC or LEC[ M ]/ C [ M]

1[mg/kg/day]
50 ss

(2)

In the equation above, the OED is linearly related to the in
vitro AC50 or LEC and inversely related to Css. This equation is
valid only for first-order metabolism that is expected at ambient
exposure levels. An OED was generated for each chemical and
each AC50 or LEC value across all of the in vitro assay
endpoints. Only the lowest (i.e., minimum) OEDs calculated
for each chemical across all assays were used in this case study
and are provided in Table S7 of the SI.

■ RESULTS

Comparison of Modeled iRs and Those Inferred from
Biomonitoring Data. The iRs estimated from our con-
servative approach (i.e., assuming that 100% of the total
production volume is being directed toward to each relevant
use scenario) can be compared with those inferred from
measured concentrations in biological (urine or blood) samples
such as those in the National Health and Nutrition
Examination Survey (NHANES).57,58 Of the 180 chemicals
considered, 95th percentile blood or urine concentrations are
available in NHANES for 28 chemicals. Using the methods that
are used to estimate iRs,28 we back-calculated iRs inferred from
NHANES biomonitoring data and compared with maximum
iRs from our approach. As shown in Figure 2, our maximum iRs
are always greater than the 95th percentile iRs inferred from
biomonitoring data. We then compared results for compounds
primarily used for one purpose versus those used for multiple
purposes. For four parabens that are almost solely used in
dermal applications and another five compounds almost solely
used in pesticide applications, maximum iRs are within 2 orders
of magnitude of the 95th percentile iRs inferred from
biomonitoring data. In contrast, for compounds that the
majority of total chemical quantity (Q) is expected to be

released outdoors (e.g., naphthalene)27,28 and that are
determined to have also near-field use scenarios such as direct
intake from cigarette smoking, the difference between
maximum iRs and 95th percentile iRs inferred from
biomonitoring data of these compounds is much greater (up
to 7 orders of magnitude) than the former nine compounds
with predominantly a single use (four parabens and five
pesticides). This highlights the need for more refined
information on the proportion of the mass utilized in each
use scenario to improve exposure estimates.

Comparison of Exposure and Bioactivity Potential. In
Figure 3, we plot for each chemical the maximum iR for the
applicable use scenarios versus the inverse of the minimum
OED. The diagonal solid line represents the threshold where
the iRs are equal to the OEDs (i.e., BQ = 1). The 38
compounds to the right of the solid 1-to-1 line have maximum
BQs (=iR/OED) greater than 1. A given chemical may have
BQ > 1 for one or more of its modeled use scenarios. Most of
the 38 compounds with BQs > 1 have direct intake, food/oral
contact, direct dermal, or dermal contact as one of their
applicable use scenarios. Because iFs for these use scenarios are
relatively high and we allocated 100% of the chemical quantity
to each relevant use scenario, this observation highlights the
importance of using correct and accurate use categorization and
data on the distribution of chemical mass to each use scenario
in HT screening and prioritization.
Figure 4 provides a heat map to depict BQs for each relevant

use scenario for each compound. For eight compounds, the
estimated exposure level is 2 orders of magnitude greater than
the bioactivity level (in red), primarily for use scenarios that
result in closer contact between the consumer and the
chemical. There are 14 compounds with BQs > 1 from at
least three use scenarios, 13 other compounds with BQs > 1
from at least two use scenarios, and 11 compounds with BQs >
1 only for a single use scenario. The BQ of triphenyl phosphate,
a flame retardant, is greater than 100 for four use scenarios, in
part because of its large production volume (see SI Table S5)
and its low minimum OED.

Figure 3. Maximum bioactivity quotients (BQs) for the case study chemicals calculated as ratios of the maximum intake rate (iR; mg/kg/day) and
the minimum oral equivalent dose (OED; mg/kg/day) derived from in vitro bioassays.
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Looking at each column of Figure 4, most of the highest BQs
in red correspond to high iF values such as for direct intake (iF
= 1) or direct dermal application (median of PiF = 0.49). There
are 14 compounds with BQs > 1 for direct intake, 17 for food/
oral contact, 14 for direct dermal, and 21 for dermal contact,
highlighting the impact of iF on the iR value. For chemicals
used in pesticide application, there are 13 chemicals with BQs >
1 when total exposure includes ingestion of pesticide residue,
and 4 when exposure results from only overall environmental
emissions (i.e., excluding residues on treated crops).
In total, there are seven compounds with BQs > 1 that are

strictly due to outdoor environmental emissions. Four of these
chemicals are pesticides, two of which (i.e., endrin, mirex) are
persistent organic pollutants (POPs) listed under the Stock-
holm Convention.18 Of the seven chemicals, the production
volume estimates for four chemicals (i.e., endrin, mirex,
imazalil, perfluoroundecanoic acid) are not available in the
national databases and thus applying hypothetical TPV of
25 000 lb/year, the maximum of the lowest production volume
reporting bin, results in a release high enough to correspond
with exposures exceeding the bioactivity level (i.e., BQ > 1).
Sensitivity Analysis. In this study, due to the limited

information on many exposure parameters (e.g., percent of the
population using the product containing our study chemicals),
default assumptions were made in estimating exposures and

thus a variety of sensitivity analyses were conducted to evaluate
the influence of these default assumptions and input data (e.g.,
TPV, use categorization) on overall screening results (BQs >
1). For example, we selected arbitrary numbers for the size of
the exposed population (e.g., 10% of the U.S. population for
direct intake, food/oral contact, direct dermal, and dermal
contact) and then applied this fraction to the iR calculations
(=Q × iF/0.1). We note that these are multiplicative factors.
Thus, exposure estimates are directly proportional or inversely
proportional to the selected value. For example, if the size of
the exposed population decreases by a factor of 10, exposure
estimates per person increase by a factor of 10 and
subsequently, the number of chemicals with BQ > 1 increases
(38 chemicals with BQ > 1 when applying 10% of the
population versus 51 chemicals with BQ > 1 when applying 1%
of the population).
Similarly, we assumed that 10% of the mass in solid objects

was available for transfer in food/oral contact, dermal contact,
and passive indoor emissions due to the lack of information.
However, if the percent available in these three use scenarios
decreases by a factor of 10, the number of chemicals with BQ >
1 decreases (38 chemicals with BQ > 1 when applying 10% of
the TPV versus 32 chemicals with BQ > 1 when applying 1% of
the TPV).

Figure 4. Heat map of the 38 chemicals with a bioactivity quotient (BQ) greater than 1. BQs are determined for each relevant use scenario: red: BQs
≥ 100; orange: 1 ≤ BQs < 100; yellow: 0.01 ≤ BQs < 1; green: BQs < 0.01; white: not a relevant exposure category or scenario.
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As described in the Materials and Methods section, because
information about the mass of chemical used in each use
scenario (e.g., direct intake, food/dermal contact, direct dermal,
dermal contact, etc.) is not available, we allocated 100% of the
chemical quantity to each relevant use scenario in this study. It
is clear that this is a rather conservative approach, especially for
some of the direct exposure pathways where only a small
fraction of the total quantity may be allocated. However, if we
assumed that only 1% of the total quantity was allocated to the
four near-field use scenarios (i.e., direct intake, food/dermal
contact, direct dermal, dermal contact), the number of
compounds with BQs > 1 is reduced from 38 to 16 compounds
(see SI Figure S1). This highlights the importance of obtaining
information on the distribution of the TPV between these near-
field use scenarios.
We also ran our model assuming that all compounds had all

use scenarios and found that our results are also sensitive to the
use categorization (38 chemicals with BQ > 1 when applying
only relevant use scenarios versus 59 chemicals with BQ > 1
when applying all use scenarios for all compounds, see SI
Figure S2). We further ran our model differentiating
compounds with and without near-field exposure, but assuming
the most conservative, direct intake use scenario for all
compounds with near-field exposure use scenarios and found
that the number of chemicals with BQ > 1 is the same as when
we assumed that all compounds had all use scenarios. These
results highlight the importance of using correct and accurate
use categorization. Conversely, we ran the model without the
more complex fate and transport models, specifically, without
applying the near-field (indoor fate and transport), far-field
(outdoor fate and transport), and pesticide application models
and found that using only simple assumptions for the other
exposure scenarios (e.g., 100% of the chemical quantity is taken
up by the user for direct intake, 10% of the chemical quantity is
taken up by the user for food/oral contact, etc.), would screen
35 chemicals with BQs > 1. This indicates that for these
particular sets of compounds, almost all are screened as a result
of near-field exposure pathways.
In addition, the selected chemical quantity estimates

influence the model results. For example, we selected a
maximum value of TPV within a reported range as a
conservative approach. However, if half of the minimum
reporting value for the smallest category and the geometric
mean of the bounding values for other binned categories are
selected in iR calculations, the number of chemicals with BQ >
1 is changed from 38 to 33. This highlights that applying more
realistic and reliable data on the total mass (or volumes)
produced in or imported to the U.S is critical to obtaining
confidence in chemical screening and prioritization results.

■ DISCUSSION
Implications. The framework described in this study

provides several implications for HT chemical screening and
prioritization. First, we demonstrate that chemicals can be
evaluated for potential health concerns by comparing the
potential exposure levels (i.e., iR) from our HTS exposure
assessment framework and the potential toxicity levels (i.e.,
OED) from the ToxCast HTS bioactivity data. Second, for
chemicals for which chemical quantity (Q) estimates are
available in the U.S. national databases, our framework allows
us to estimate exposures as a product of Q and iF (i.e., ratio of
integrated intake to unit of emission) from exposure models.
Third, we demonstrated a HT approach for assigning relevant

use scenarios to chemicals based on the U.S. EPA CPCat
database and this strategy refines screening results and identifies
the needed information for further refinement such as the
distribution of chemical quantity among multiple use scenarios.
Also, the approach for assigning relevant use scenarios can be
applied to a large number of chemicals. Fourth, the selection of
maximum iR from multiple exposure models allows for
conservative evaluation of chemical risk in the absence of
studies that address the differences and variability in model
results among various models.

Limitations. Limitations on the results of this study arise
primarily from the uncertainty and variability of model input
parameters. Primary sources of uncertainty in this HT
assessment and prioritization results are (1) a wide range of
reported TPVs or emission rates, (2) lack of data on the
distribution of chemical quantity among relevant use scenarios,
(3) ambiguous description of use categories defined in the
databases, (4) variability in modeled iR values, (5) uncertainty
and variability in measured and predicted chemical properties,
and 6) uncertainty in the in vitro bioactivity data and
extrapolation to OED values.

Uncertainty in Chemical Quantity. The chemical quantity
estimates selected to represent chemical emission, application
or ingestion rates are derived, for the most part, from the
maximum values from a wide range for given production
volume bins. In addition, a portion of the chemical may be used
as a chemical intermediate which is not released into the
environment or a portion may be exported or additional masses
may be imported from other countries. Note that these
production volume estimates are not averaged values over
multiple years, but from a single year, that is, 2006 EPA IUR for
industrial chemicals and 2002 CPRI for pesticides. Even such
basic source information as production volumes are not
available for a large fraction of the study compounds (N =
82) in any national databases. We note that exposure estimates
are a direct linear function of the selected mass (Q), such that if
the selected value for Q over- or underestimates actual chemical
use/application quantity by n orders of magnitude, then
exposure estimates will have the same magnitude of error.

Lack of Data on Allocation of Chemical Quantity to Each
Use Scenario. As discussed in the sensitivity analysis, the
screening compounds in this modeling framework are very
sensitive to our assumption that we allocated 100% of the
chemical quantity to each relevant use scenario. For example,
three polycyclic aromatic hydrocarbons, benz[a]anthracene,
benzo[b]fluoranthene, and naphthalene, have BQ values over 1
for direct intake. These compounds do lead to exposure
through direct intake as they are in cigarette smoke. However,
exposure is likely overestimated because of the allocation of the
entire emission volume to this use scenario. This over-
estimation was also demonstrated in Figure 2, showing iRs
estimated from our exposure models are much higher than
those from NHANES biomonitoring data for compounds with
multiple use scenarios.

Potential Errors in Use Classification and Oversimplified
Use Information. There may be errors in chemical use
classification (e.g., CPCat database or its interpretation) and
thus in the selection of relevant and appropriate exposure
models for iF calculations. In this study, we only used a subset
of the CPCat terms that were clearly defined and associated
with a “likely” use scenario. For example, for chemicals with the
CPCat term describing “food packaging”, it is likely that
chemicals will contact food. However, the CPCat term “plastic”
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is more general and ambiguous than “food packaging”, and
indicates that a chemical is likely to be passively released
indoors via consumer products, and also may “possibly” be used
as a food contact material. We classified these ambiguous or
general CPCat terms as “possible” use scenarios and ran our
HT exposure assessment accounting for these scenarios. The
number of chemicals with BQ > 1 increased from 38 to 45 (see
Figure S3 of the SI), primarily resulting from “possible” food/
oral contact use scenarios.
We note that we additionally identified data sources within

CPCat that seemed to have incorrect classifications and
suggested a method for screening these databases (see text
and Table S3 of SI). We suggest future users of CPCat conduct
a similar screening. Even with this preliminary screening, we
still have a few chemical/category combinations that do not
seem logical. For example, mirex was flagged as having a BQ
value greater than 1 through dermal contact. Mirex was
classified as having dermal contact because it was included in a
database of consumer products. While it may have been in U.S.
consumer products in the past, to our knowledge it is no longer
used in this country, indicating the importance of continuing to
improve available use databases.
In addition, depending on the type of personal care products

(e.g., leave-on or wash-off products), dermal exposure may vary
on the several orders of magnitude. However, there are issues
with confirming that a chemical is used exclusively in either
leave-on or wash-off products, e.g., especially when listed in
CPCat as a generic “personal care” product. Therefore, future
studies need to acquire more refined use information to
distinguish the mass of chemical used as a leave-on versus wash-
off product and to account for the subsequent differences in
exposure. Further efforts to improve the accuracy of high-
throughput iR estimates also require obtaining information on
the market share of various cosmetics, chemical concentrations
in products, the mass of product applied, the surface area of
application, and the frequency of use.
Variability in Modeled iR Values. The variability of modeled

iR values is associated with (a) results obtained from different
exposure models with different model formulation and
parametrization, (b) limited model applicability to a wide
range of chemical properties, and (c) selection of default iF or
PiF values in the absence of specific product use types or
exposure models. For example, dermal uptake has large
differences in model formulation and parametrization between
three indoor exposure models. Intake rates between the three
indoor models are compared in Figure S4 of the SI. Overall,
intake rates per chemical are within 1−2 orders of magnitude
between models. The differences in model assumptions,
formulation, and parametrization such as differences in the
assumed size of the indoor environments (e.g., volume of
house), differences in the assumed flooring (e.g., percent that is
carpeted), and differences in transport rate estimations between
compartments (e.g., deposition rate, ventilation rate, cleaning
rate), contribute to the differences between models.
For all outdoor release scenarios (i.e., air, water, soil), total

intake rates are well correlated among three far-field exposure
models (see Figures S5−S7 of the SI). Nevertheless, there are
differences in model predictions among the three models. For
example, there are recognized differences in the far-field models
in terms of relative volumes of compartments, differences in the
number of compartments, flow rates of water and air, treatment
of food web bioaccumulation, and various other factors.
Specifically, for the outdoor water release scenario, there are

outliers for the intake rates, largely due to the different
estimates of the bioconcentration factor (BCF) and bio-
accumulation factor (BAF) used to compute food ingestion
through consumption of fish as shown in Figure S8 of the SI.
For chemicals in personal care products, we used the same

default “worst-case” archetype scenario of body lotion for all
compounds. However, for chemicals only used in rinse-off
products such as shampoo and soap, this approach will
overestimate direct dermal exposure. In addition, for dibutyl
phthalate, traditionally used in nail care products, there are no
available models to estimate exposure (e.g., incidental dermal
exposure, nail biting).

Uncertainty and Variability in Measured and Predicted
Chemical Properties. Approximately 44% of the case-study
chemicals have the potential to appreciably dissociate (>10%
ionic) in pH ranges from 4 to 10. We note that for the ionized
form of the molecule, the physicochemical properties are
different from those of their corresponding neutral form. Due
to a paucity of information for ionogenic organic chemicals and
current limitations in exposure models to treat these chemicals,
exposures were estimated based on only the neutral properties
of these chemicals. This simplifying assumption has been
adopted by other high-throughput exposure model applica-
tions15,21,23,24 and the implications of these assumptions are a
source of uncertainty that requires further measurements for
these types of chemicals to improve exposure models.

Uncertainty in Css and OED Estimations and in Vitro
Bioactivity Assessments. The approach utilized to estimate the
Css and OEDs was designed to maintain a reasonable degree of
compatibility with HT toxicity testing assessments conducted
to inform testing prioritization strategies.8,9 Two critical
determinants of chemical disposition in the body−hepatic
metabolic clearance and plasma protein binding−were
experimentally measured, whereas a set of simplifying
conservative assumptions was employed for other chemical
pharmacokinetic parameters. For instance, 100% absorption
was assumed, and no additional routes of chemical clearance
were considered (i.e., biliary clearance, extrahepatic metabo-
lism).9,11,59 When they are not valid these assumptions will
ultimately lead to an underestimation of clearance and
subsequent overprediction of Css, which would ultimately be
protective of human health.
Assessment of the IVIVE modeling approach used here was

conducted in previous studies11,29 by comparing the IVIVE-
derived Css values against the Css values derived from previously
published human in vivo pharmacokinetic studies for 29
environmental chemicals. The IVIVE values predicted the in
vivo values to within 20-fold for 80% of the chemicals.11,59

Overprediction of C55 prevailed, and nearly all of the values that
were under-predicted in this approach were only under-
predicted by 2- to 5-fold. The exceptions to this were
perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic
acid (PFOS), believed to undergo the rare process of active
renal resorption.9,60 Despite the limited in vivo data to assess
the IVIVE model, the findings indicate that this approach
provides reasonable predictions that, when they err, do so in a
conservative manner.
The OEDs, used to represent a measure of bioactivity, are

derived by dividing the ToxCast assay-specific AC50 by the
chemical-specific Css values. The bioactivities measured in the
ToxCast assays span a range of biological targets including
cytochrome P450 metabolism, nuclear receptor activation,
mitochondrial effects and anti-inflammatory activities. A
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significant debate has emerged about the utility of these assays
in predicting in vivo hazard.61−65 Alternately, one recent effort
considered the utility of the bioactivity measures to serve as
surrogates for points of departure rather than identifying
specific adverse effects. Rat in vitro chemical pharmacokinetics
were measured to derive rat OEDs for the ToxCast data. When
the minimum OEDs were compared to the lowest low effect
level doses (LELs) from rat in vivo studies, the rat OEDs were
lower for 94% of the 57 chemicals assessed and on average 60-
fold lower than the in vivo LELs.65 Further, 60% of the
minimum in vivo LELs and the minimum OEDs were within 2
orders of magnitude of each other. In the absence of causative
information linking in vitro activities with in vivo effects, this
dose concordance suggests that the most sensitive OEDs for
each chemical can be used as a reasonably conservative
surrogate for an in vivo point of departure.
Outlook. Momentum has grown worldwide to assess the

utility of HT and in vitro screening approaches in toxicity
testing since the release of the National Research Council
(NRC) Report “Toxicity Testing in the 21st Century”.66

Equally, if not more important, is the requirement to obtain
screening-level exposure estimates to combine with toxicity
testing to inform risk-based decisions currently faced by the
EPA and other international regulatory agencies.4,12 The work
presented in this paper outlines one such approach, designed to
be modular and transparent to allow application of refined
models and data when available. Importantly, it has identified
key gaps in data availability and curation and in modeling tools
that need to be addressed to allow improvement in future
efforts. Addressing uncertainty across these relevant areas will
be critical to inform a more robust tool for exposure prediction
and, ultimately, risk-based prioritization.
As noted in the Results and Discussion sections, for more

refined HT screening and prioritization, future studies need to
obtain correct and accurate use categorization and data on the
distribution of chemical mass to each use scenario. Also, future
studies need to use more refined dermal exposure models to
account for the difference in dermal exposure between leave-on
and wash-off consumer products. We did not include
uncertainty analysis; however, the propagation of uncertainty
in chemical properties (measured or predicted) should be
included in exposure calculations15 and in future applications of
the ExpoDat framework.
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