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Abstract

A method is presented for analysis of the properties of general cross-sections with arbitrary

geometry and material distribution. The full six by six cross-section stiffness matrix is evaluated

from a single element thickness slice represented by 3D solid elements with lengthwise Hermi-

tian interpolation with six independent imposed deformation modes corresponding to extension,

torsion, bending and shear. The flexibility matrix of the slice is obtained from complementary

elastic energy, and the stiffness matrix is obtained by extracting and inverting the cross-section

flexibility. Three examples illustrate the accuracy of the method for solid and thin-walled sec-

tions with isotropic and general anisotropic materials.

Keywords: Cross-section analysis, beam stiffness parameter, finite element method.

1. Introduction

Rotor blades of wind turbines have increased considerably in size in recent years making

them more flexible in relation to the operational loads. To meet deflection, fatigue and perfor-

mance requirements, they must be designed with complex cross-section geometries made up of

composite fiber materials. For most of the design process, full three-dimensional Finite Element

analysis is computationally expensive and does not lend itself well to design space exploration

and the analysis of numerous load scenarios. However, because of the slender nature of rotor
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blades their behaviour can accurately and effectively be predicted using beam models. In a

beam approximation, the three-dimensional elasticity problem is reduced to a one-dimensional

structural problem. Irrespective of the beam theory used to model the blade, the cross-section

properties constitute an essential part of the beam model.

Rotor blade cross-sectional analysis methodology can generally be grouped in two categories

based on whether a centerline approach or a Finite Element discretization is used [1, 2, 3].

Methods based on a centerline approach have been shown to be very efficient and provide

satisfactory results for many thin-walled cross-sections. However, the centerline approach is

sensitive to relative wall curvature, shear-flow representation at corners in the cross-section

layout, and limitations regarding transverse displacement effects. Because of these limitations,

approaches which model beams with complex geometries and general anisotropic materials rely

on Finite Element discretization. The most widely recognized of these approaches in the field

of rotor blade modelling is the Variational Asymptotic Beam Sectional Analysis (VABS) based

on the theory developed by Hodges and Yu [4, 5]. In this procedure the beam is considered as a

three dimensional body described by a lengthwise variation of properties associated with cross-

sections. It results in a split of the elasticity problem into a two-dimensional linear cross-sectional

analysis and a one-dimensional beam analysis. In the cross-section problem the displacements

are represented by isoparametric 2D elements.

Another finite element based approach, which has been shown to accurately extract general

cross-sectional properties of many beam structures, was developed by Giavotto et al. [6, 7]. The

theory is based on defining two types of solutions of a virtual work formulation of which the

non-decaying solution is used to recover the cross-section stiffness properties. The theory was

implemented in two computer codes, namely Anisotropic Beam Analysis (ANBA) developed

by the original authors and more recently in Beam Cross section Analysis Software (BECAS)

developed by Blasques [8]. Both the VABS and the ANBA theories reduce the inherent three

dimensional nature of the problem to a two dimensional form.

This paper builds on the concept of six equilibrium states of a beam previously used by
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Krenk and Jeppesen [9], Høgsberg and Krenk [10] and Jonnalagadda and Whitcomb [11] for the

analysis of cross-sections made of orthotropic materials. The theories developed in these papers

are restricted to orthotropic material properties and include restrictive assumptions regarding the

detailed distribution of deformations and stresses over the cross-section. In the present method,

the cross-section stiffness matrix is calculated based on the analysis of a slice of the beam in

the form of a single layer of elements with cubic shape-function variation in the length-wise

direction and with arbitrary anisotropic properties. Six independent equilibrium deformation

modes corresponding to extension, torsion, homogeneous bending and homogeneous shear are

generated by imposing suitable displacement increments across the slice via Lagrange multipliers.

Elastic energy equivalence of the 3D slice and the complementary elastic energy calculated in

terms of the internal force/moment distribution is then used to define the full six by six flexibility

matrix of the cross-section. Finally, the corresponding cross-section stiffness matrix follows by

inversion of this flexibility matrix.

The advantages of the present finite-thickness slice method are that it avoids the develop-

ment of any special 2D theory for the stress and strain distributions over the cross-section and

enables a simple and direct representation of material discontinuities and general anisotropy via

their well-established representation in 3D elements. Elements with cubic Hermitian length-

wise interpolation in combination with linear, quadratic and cubic in-plane interpolation have

been implemented. Combination of these interpolation types enables accurate modelling of

thin-walled parts, lamina built-up parts, as well as more massive parts.

2. Beam statics description

Consider a beam of length l with longitudinal coordinate x3 and cross-section coordinates x1

and x2 as shown in Fig. 1(a). The origin is located at the center cross-section plane of the beam,

whereby the front and back of the beam are located at x3 = l/2 and x3 = −l/2, respectively.

The beam supports the equilibrium states of tension, torsion, bending, and shear.
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Figure 1: (a) Coordinate system, (b) Section forces and moments.

The static states of a beam are described by three forces and three moments at each cross-

section along x3 which are statically equivalent to the exact distribution of the in-plane stresses.

These six forces and moments are grouped together in the generalized force vector q(x3) =

[Q1(x3) Q2(x3) Q3(x3) M1(x3) M2(x3) M3(x3)]
T . The components Q1(x3) and Q2(x3) are two

shear forces, and Q3(x3) is the axial force. The components M1(x3) and M2(x3) are bending

moments, andM3(x3) is the torsion moment component with respect to the origin of the reference

coordinate system. A compact notation is achieved when representing the two in-plane directions

using Greek subscripts α, β = 1, 2 which allows summation over repeated Greek subscripts. This

notation includes use of the two-dimensional permutation symbol eαβ which takes the following

values based on the indices e12 = 1, e21 = −1, and e11 = e22 = 0. Using the Greek subscripts

and the permutation symbol, internal forces and moments are defined in terms of stresses on a

cross-section as

Qα(x3) =

∫

A
σ3α dA ,

Q3(x3) =

∫

A
σ3 dA ,

Mα(x3) =

∫

A
eαβ xβ σ3 dA ,

M3(x3) =

∫

A
xα eαβ σ3β dA .

(1)

The internal force and moment components are illustrated in Fig. 1(b).

2.1. Equilibrium states

The statics of a beam is described by six equilibrium states, namely the homogeneous states of

tension, torsion, bending, and shear. The case of homogeneous tension is illustrated in Fig. 2(a).
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Figure 2: Six equilibrium states: (a) Tension, (d) Torsion, (b,e) Bending, (c,f) Shear.

Opposing axial forces of magnitude Q0
3 are acting at the ends of the beam. Similarly the case

of homogeneous torsion illustrated in Fig. 2(d) is characterized by opposing torsion moments of

magnitude M0
3 acting at the ends of the beam. The homogeneous bending states are illustrated

in Fig. 2(b) and (e). Opposing bending moments of magnitude M0
α act at the ends of the beam.

Finally, the states of homogeneous shear are illustrated in Fig. 2(e) and (f). Here, opposing shear

forces of magnitude Q0
α are applied to the ends of the beam. This results in a total external

moment that is counteracted by identical bending moments at the end-sections equal to

Mα(±
1

2
l) = 1

2
l eαβ Q

0
β. (2)

From equilibrium considerations a beam without external loads will exhibit constant internal

normal force, shear forces and torsion moment, while the bending moments will vary linearly

with the shear force as gradient. The six equilibrium states are therefore fully defined by the

internal force q0 = [Q0
1 Q0

2 Q0
3 M0

1 M0
2 M0

3 ]
T at the center section of the beam. The equilibrium

5



distribution of internal forces in the beam in terms of q0 follows as
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. (3)

The distribution of internal forces written in a more compact notation becomes

q(x3) = T(x3) q0 , (4)

where the interpolation matrix T(x3) is defined in (3).

2.2. Flexibility matrix

Following the general formulation of equilibrium based beam elements in [12], the deformation

associated with the internal forces and moments q(x3) is described in terms of six strains defined

by the strain vector γ(x3) = [ε1 ε2 ε3 κ1 κ2 κ3]
T . The components ε1 and ε2 are generalized

shear strains, and ε3 is the axial strain. Similarly κ1 and κ2 are the components of bending

curvature, while κ3 is the rate of twist. The generalized strain vector γ(x3) is defined such that

it is conjugate to the internal force vector q(x3) with respect to energy. Thus, the specific elastic

energy associated with a cross-section is given as

Ws(x3) =
1

2
γ(x3)

T q(x3) . (5)

For linear elastic beams there is a linear relation between the internal forces and the conjugate

strains. This relation can be written either in flexibility or stiffness format,

γ(x3) = Cq(x3) , q(x3) = Dγ(x3) , (6)
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where C and D = C−1 are the cross-section flexibility and stiffness matrix, respectively. Both

are six by six symmetric matrices and as such can contain up to twenty-one independent entries

in the case of a fully general anisotropic cross-section without geometric or material symmetries.

In this case, for example, the principal axes of shear and bending may be different, and torsion

may couple to extension and bending. Considering a beam with constant cross-section properties

C in the longitudinal direction and eliminating γ in (5) using (6), the following representation

of the energy per unit length at x3 expressed in terms of the cross-section flexibility matrix is

obtained

Ws(x3) =
1

2
q(x3)

T Cq(x3) . (7)

The flexibility matrix of the equilibrium states of the beam follows from integration of the

cross-section flexibility relation (7) over the beam length

We =

∫ l/2

−l/2
Ws(x3) dx3 =

∫ l/2

−l/2

1

2
q(x3)

TCq(x3) dx3 . (8)

The energy We can be represented in terms of the internal forces and moments by the center-

section values q0 by (3) as

We =
1

2
qT
0 Hq0 . (9)

where the beam flexibility matrix H corresponding to the six equilibrium states is defined by

the integral

H =

∫ l/2

−l/2
T(x3)

T CT(x3) dx3 . (10)

Carrying out the x3-integration in explicit form with T(x3) given by the matrix in (3) provides
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the relation between the beam flexibility matrix H and the cross-section flexibility matrix C,

H = l
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. (11)

It is seen how the bending flexibility parameters C55, C44, C45, and C54 of the cross-section enter

the constant shear modes of the beam due to their linearly varying bending moment.

2.3. Energy equivalence

The beam displacement field representation with respect to x3 varies at most as a third degree

polynomial. In what follows the solution to this displacement field is defined using a Hermitian

representation in terms of the displacement and displacement derivative fields on the front (+)

and back (−) faces of the beam as shown in Fig. 3. The implementation of the Hermitian

interpolation is presented in Appendix A. The displacement vector field u(x) = [u1, u2, u3]
T is

described in terms of the the coordinates x = [x1, x2, x3]
T by the representation

u(x) = N(x)v . (12)

The matrix N(x) contains the shape functions corresponding to the generalized nodal displace-

ments contained in the column vector v = [ṽ1, . . . , ṽ2m]T where m is the number of nodes on

each side of the slice. The six nodal degrees of freedom are defined as ṽi = [uα, u3, u
′
α, u

′
3], where

the components uα and u3 represent the in-plane and axial displacements, respectively, while

the components u′α and u′3 represent the corresponding derivatives with respect to the axial

coordinate x3. The displacement vector v is conjugate to the force vector p = [p̃1, . . . , p̃2m]T ,

with the nodal forces defined as p̃i = [fα, f3, f
′
α, f

′
3]. The components fα and f3 represent the
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Figure 3: Degrees of freedom and static components at the front (+) and the back (−).

three force components, while the components f ′
α and f ′

3 represent three moment components

conjugate to the displacement derivatives u′α and u′3, respectively.

The procedure consists in solving the finite element problem corresponding to six independent

equilibrium states, e.g. those illustrated in Fig. 2. The generalized nodal displacements vj and

conjugate generalized nodal forces pj for j = 1, · · · , 6 are arranged as columns in the following

two matrices

V = [v1, ...,v6] , P = [p1, ...,p6] . (13)

The solution vj, pj for each of the states are calculated by imposing appropriate displacements

on the end-sections of the beam slice, as discussed in Section 3. Once a solution has been

calculated, the section-force component vector q0j at the center section is evaluated. These six

center section-force vectors are arranged in the matrix

R = [q01, ...,q06] . (14)

When the six equilibrium states are linearly independent the matrix R is regular and can be

inverted.

A general equilibrium state can now be represented as a linear combination of the six

equilibrium states introduced above. The components of this representation are denoted s =

[s1, · · · , s6]
T , whereby the nodal displacements and nodal forces take the form

v =

6
∑

j=1

vjsj = Vs , p =

6
∑

j=1

pjsj = Ps. (15)
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The section-forces of the center section are expressed similarly as

q0 =

6
∑

j=1

q0jsj = Rs. (16)

The elastic energy of the slice can now be expressed alternatively in terms of the flexibility

matrix H by use of (9) or as the product of the nodal forces and displacements as given by the

representations in (15),

We =
1

2
sTRTHRs = 1

2
sTVTPs (17)

The matrix R is regular due to the assumed independence of the imposed displacement condi-

tions, and thus the energy can be expressed in terms of the internal force components q0 at the

center cross-section. Elimination of the parameters s by use of (16) gives

We =
1

2
qT
0 Hq0 =

1

2
qT
0 R

−T (VTP)R−1q0 (18)

It follows from this result that the columns of the matrix VR−1 contains the nodal displacement

vectors of the six equilibrium states corresponding to a unit value of the corresponding internal

force q0 at the center cross-section, while the nodal forces of these six equilibrium states are

contained in the columns of the matrix PR−1.

By Betti’s result of equality of the work of one equilibrium state of stresses through a different

set of equilibrium displacements with the work obtained when interchanging the roles of the two

states it follows that the matrix VTP is symmetric, and thus the flexibility matrix H is obtained

in the form

H = R−T (VTP)R−1. (19)

In particular, for orthotropic beams with symmetric cross-section the basic deformation cases

are conveniently chosen in accordance with this symmetry, leading to a diagonal matrix R

corresponding to a simple normalization of the imposed deformation states.

The stiffness matrix of a beam element, formulated in terms of the displacements and rota-

tions at the beam ends, is easily obtained explicitly in terms of the inverse H−1 as described

in [12].
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Figure 4: Deformation modes: (a) Extension, (b) Twist, (c) Bending, (d) Shear.

3. Imposed deformation modes

The six independent equilibrium states are chosen as the deformation modes corresponding

to extension, twist, bending, and shear. These deformation modes are illustrated in Fig. 4 for

the case of a square orthotropic cross-section where the geometry before deformation is sketched

using dotted lines. The equilibrium states are defined in terms of differences in forces and

moments at the front and back face of the beam. It is therefore convenient to group the nodal

displacements at the front (+) and back (−) faces as

v± = v(±1

2
l) (20)

from which the nodal displacements can be split into an increment and a mean value across the

length of the beam,

∆v = v+ − v−, 2 v̄ = v+ + v−. (21)

The six displacement modes are generated by imposing suitable displacement increments defined

in terms of ∆v, while rigid body motion is constrained by using the mean displacements v̄.

It is convenient to describe the nodal displacement increment ∆v of the six deformation

modes in terms of six deformation components grouped in the vector ζ = [ξ1 ξ2 ξ3 η1 η2 η3]
T .
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The components ξ1 and ξ2 are associated with the displacement increments of the two shear

modes, and ξ3 with the displacement increments of the extension mode. Similarly η1 and η2

are associated with the displacement increments of the two bending modes, and η3 with the

displacement increments of the twist mode. Each of the deformation modes corresponds to

activating one of the components of ζ while setting the remaining five to zero.

3.1. Extension mode

The extension deformation mode illustrated in Fig. 4(a) is described by an elongation of the

beam equal to ξ3. No internal generalized shear forces Qα occur in this mode, which yields

constant forces and moments along the longitudinal axis, q(x3) = q0. This leads to a uniform

transverse contraction along the beam and thereby the in-plane displacement increment ∆uα(xγ)

for each node pair is zero. The displacement increments defining the extension deformation mode

therefore follow as

∆uα(xγ) = 0 , ∆u3(xγ) = ξ3 , Node pairs i = 1, . . . ,m. (22)

3.2. Twist mode

The twist deformation mode illustrated in Fig. 4(b) is defined by a constant rate of twist

η3 about the x3-axis. The assumption of constant rate of twist corresponds to assuming ho-

mogeneous St. Venant torsion with identical cross-sectional warping along the beam. As in

the extension mode, no internal generalized shear forces Qα occur which leads to zero in-plane

displacement increment ∆uα(xα) for each node pair. The displacement increments defining the

twist deformation mode then follow as

∆uα(xγ) = −eαβ xβ η3 , ∆u3(xγ) = 0 , Node pairs i = 1, . . . ,m. (23)

3.3. Bending modes

The two bending deformation modes illustrated in Fig. 4(c) are characterized by a constant

bending curvature about the in-plane coordinates xα equal to ηα. As no internal generalized
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shear forces Qα occur in this mode, the in-plane displacement increment ∆uα(xα) for each node

pair is zero. The displacement increments defining the two bending deformation modes then

follow as

∆uα(xγ) = 0 , ∆u3(xγ) = ηα eαβ xβ , Node pairs i = 1, . . . ,m. (24)

3.4. Shear modes

The two shear deformation modes illustrated in Fig. 4(d) are characterised by the combina-

tion of a transverse shearing displacement and an antisymmetric deformation associated with

the presence of linearly varying bending moments. The latter contribution can be calculated

from the nodal displacements of the extension, twist, and bending deformation modes. The

nodal displacements of these four deformation modes vj where j = 3, 4, 5, 6 and their corre-

sponding mid section internal force vectors without the null shear force components defined as

qr
0i = [Q0

3 M0
1 M0

2 M0
3 ]

T are arranged as columns in the following two matrices

Vr = [v3, ...,v6] , Rr = [qr
03, ...,q

r
06] . (25)

A matrix containing the nodal displacements corresponding to unit equilibrium loads can then

be obtained by post-multiplication by the matrix R−1
r ,

Vu = VrR
−1
r , (26)

where the column vectors of the matrix Vu follow as

Vu = [vu
3 , ...,v

u
6 ] , (27)

The column vectors vu
3 , v

u
4 , v

u
5 , and vu

6 are the nodal displacements associated with the equilib-

rium states of tension, bending, and torsion for imposed unit load components.

The deformation associated with linearly varying bending moments along the beam can now

be represented as a linear combination of the mid plane nodal displacements of the bending

equilibrium states with unit equilibrium loads v̄u
4 , v̄

u
5 ,

uaj (xk) = ūuj4(xα)M1(x3) + ūuj5(xα)M2(x3) , Node pairs i = 1, . . . ,m. (28)
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Substituting the representation of the moments in terms of the shear forces according to (2)

yields

uaj (xk) = x3
[

− ūuj5(xα)Q
0
1 + ūuj4(xα)Q

0
2

]

, Node pairs i = 1, . . . ,m. (29)

Taking the difference in displacement across the beam, the nodal displacement increment from

the presence of the linearly varying bending moments follows as

∆uaj (xα) = l
[

− ūuj5(xα)Q
0
1 + ūuj4(xα)Q

0
2

]

, Node pairs i = 1, . . . ,m. (30)

The displacement increments which define the two shear deformation modes now follow as the

summation of the contribution from the antisymmetric bending moment ∆uaj (xα) and the trans-

verse shearing displacement defined by ξα,

∆uα(xγ) = ξα +∆uaα(xγ) , ∆u3(xγ) = ∆ua3(xγ) , Node pairs i = 1, . . . ,m. (31)

3.5. Rigid body motion

Rigid body displacements must be constrained to completely define the kinematics associ-

ated with the six deformation modes. Since the beam is located in a 3D space, three rigid

body rotations and three rigid body translations must be constrained. To ensure no generalized

shear forces are present in the extension, twist, and bending deformation modes, constraints are

imposed as to allow shearing of the beam. Shear deformation is tied with transverse displace-

ment and inclination of the end faces. Constraining the increments in transverse displacements

∆uα(xα) = 0 for each node pair and not imposing constraints on the rotation about the α-axis

allows the beam to shear, while preventing rigid body rotation. The remaining rigid body ro-

tation about the x3-axis and the three rigid body translations can be constrained in terms of

averages of the mean displacements

m
∑

i=1

ū3i = 0 ,

m
∑

i=1

ūαi = 0 ,

m
∑

i=1

xαi eαβ ūβi = 0 , (32)

where xαi and ūji are the in-plane nodal coordinates and the three mean displacements of node

pair i, respectively.
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For the two shear deformation modes, rigid body motion is constrained by ensuring that

the deformation is orthogonal to the deformation in the other four modes. The orthogonality is

expressed in terms of energy such that the displacements v1,v2 of the shear modes do not produce

work with respect to the force distributions of the extension, twist and bending deformation

modes,

vT
α+ pj+ − vT

α− pj− = 0 , α = 1, 2; j = 3, 4, 5, 6. (33)

The extension, twist and bending deformation modes have constant generalized internal forces,

whereby the forces at the front and back face are of equal magnitude but with opposite sign,

p+ = −p−. Using this relation the orthogonality conditions simplify to

v̄T
α pj+ = 0, α = 1, 2; j = 3, 4, 5, 6 (34)

These relations clearly indicate that the orthogonality constraints act only on the mean dis-

placements. From the nature of the deformation modes, the orthogonality conditions prevent

all three rigid body rotations and rigid body translation in the x3 direction. The remaining two

rigid body translations in the xα direction can be constrained in terms of averages of the mean

displacements by use of the second formula in (32),

m
∑

i=1

ūαi = 0. (35)

4. Deformation modes using finite elements

The properties of the cross-section are evaluated based on the global stiffness matrix of the

slice obtained using the discretization method presented in Appendix A. The stiffness equations

of the slice in terms of the nodal displacement at the front (+) and back (−) faces v± take the

following block matrix format





K++ K+−

K−+ K−−









v+

v−



 =





f+

f−



 . (36)
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The stiffness equations in terms of the increment and mean of forces and displacements across

the length of the beam follow as





K11 K12

K21 K22









∆v

2v̄



 =





f+ − f−

f+ + f−



 , (37)

where the block matrices are defined as

K11 = 1

2
(K++ −K+− −K−+ +K−−) ,

K12 = 1

2
(K++ +K+− −K−+ −K−−) ,

K21 = 1

2
(K++ −K+− +K−+ −K−−) ,

K22 = 1

2
(K++ +K+− +K−+ +K−−).

(38)

The six deformation modes are imposed by representing the translation increments ∆uj for

all node pairs in terms of the six component deformation mode vector ζ as described in Section 3.

The corresponding axial derivatives ∆u′
j are kept as part of the finite element problem to be

solved. This is accomplished by introducing the representation

∆v = Aw +Bq0 , (39)

in which the six deformation components and the derivative increments are contained in the

vector w = [ζT ,∆u′j,1, · · · ,∆u′j,m]
T , while the second term adds the displacement increments

associated with an antisymmetric bending moment defined in (30). Note, that the second term

is proportional to the length l. The transformation matrix A and the antisymmetric bending

moment contribution matrix B are defined by the block matrix format

A =











A1 J1

...
. . .

Am Jm











, B =











B1

...

Bm











, (40)
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where the matrix Ai defining the displacement increments and the matrix Ji retaining the

derivative increments are given as

Ai =

































0 0 0 0 0 −x2

0 1 0 0 0 x1

0 0 1 x2 −x1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

































i

, Ji =

































0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

































i

. (41)

Based on (30) the antisymmetric moment contribution matrix Bi is defined in terms of the beam

length l and the mean nodal displacements from the two unit bending equilibrium states ūuj4

and ūuj5,

Bi = l

































−ūu15 ūu14 0 0 0 0

−ūu25 ūu24 0 0 0 0

−ūu35 ūu34 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

































i

. (42)

Elimination of ∆v in (37) by (39) gives





ATK11A ATK12

K21A K22









w

2v̄



 =





AT (f+ − f− −K11Bq0)

(f+ + f− −K21Bq0))



 . (43)

In this form, the forces associated with each of the six deformation components ζ contained in

the vector w are equal to minus twice the mid-section generalized forces q0.

17



4.1. Enforcing deformation modes using constraints

Activating each of the six deformation modes is accomplished by the addition of constraints

which enforce relationships among the degrees of freedom. Two types of constraints are needed,

namely constraints to fix the value of the six deformation components ζ, and constraints which

prevent rigid body motion of the slice.

The constraints that define the value of the six deformation components ζ provide the handle

needed to set one degree of freedom to unity and all others to zero. This corresponds to activating

one deformation mode, while setting the remaining five to zero. These constraints are defined

as

ζ = gj , (44)

where the vector gj is used to select which degree of freedom to activate while setting the

remaining five to zero, where the index j = 1, . . . , 6 specifies which deformation is activated, e.g.

g3 = [0, 0, 1, 0, 0, 0]T for the extension case.

Two different sets of constraints to prevent rigid body motion are needed in the analysis,

namely one for the extension, twist, and bending deformation modes and the other one for the

two shear deformation modes. These constraints act on the mean displacements and can be

expressed as

Gn ū = 0, (45)

where Gn is the rigid body constraint matrix where the index n ranging from 1 to 2 specifies

which of the two sets of constraints are enforced. From (32) the constraint matrix using average

displacements when solving the extension, twist, and bending deformation modes takes the form

G1 = [G1i, . . . ,G1m] , (46)
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where the sub-matrices G1i containing the in-plane nodal coordinates for node i are defined as

G1i =

















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−x2 x1 0 0 0 0

















i

, i = 1, . . . ,m. (47)

The constraints of the shear deformation problems make use of the combined orthogonality and

mean value conditions (34) and (35). These are combined in the constraint matrix

G2 =





Gu
2

Gl
2



 (48)

in which the matrix Gu
2 enforcing the orthogonality conditions is defined as

Gu
2 =

[

p3+,p4+,p5+,p6+

]T
. (49)

The matrix Gl
2 enforcing rigid body constraints using mean displacements is defined as

Gl
2 =

[

G2i, . . . ,G2n

]

, (50)

where the sub-matrices G2i take the form

G2i =





1 0 0 0 0 0

0 1 0 0 0 0





i

, i = 1, . . . ,m. (51)

The constraints are added to the system of linear equations using the method of Lagrange

multipliers where each constraint is enforced by solving for the associated Lagrange multiplier,

acting as the force needed to impose the constraint, [13, 14]. When no external forces are applied

to the slice in addition to constraint forces, the Lagrange multipliers associated with the degrees

of freedom of the deformation modes are the constraint forces, here in the form of minus twice

the mid section generalized forces. This enables the antisymmetric moment contribution to be
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moved inside the stiffness matrix. Incorporating the constraints to define the six deformation

components and the constraints to prevent rigid body motion and their associated Lagrange

multipliers to be solved λζ and λr, respectively, the system of equations of (43) takes the

following form

















ATK11 A ATK12 LT − 1

2
ATK11 B 0

K21 A K22 −1

2
K21 B GT

n

L 0 0 0

0 Gn 0 0

































w

2ū

λζ

λr

















j

=

















0

0

gj

0

















. (52)

The matrix L used to select the deformation components ζ takes the form

L =
[

I6×6 06×3m

]

. (53)

The form of the rigid body constraint matrix Gn depends on the analysis step, with G1 for the

extension, torsion and bending modes and G2 for the two shear modes.

It is convenient to present (52) in a compact notation where the displacement and force

terms are grouped together

Uj =
[

wT 2ūT λT
ζ λT

r

]T

j
, Fj =

[

0 0 gT
j 0

]T
. (54)

In this notation, the system of equations takes the form

KcUj = Fj, (55)

in which the stiffness matrix supplemented by the constraint matrices is contained in the matrix

Kc.

5. Cross-section stiffness matrix analysis procedure

The cross-section stiffness analysis procedure is summarized in Table 1 in pseudo-code format.

The first part of the analysis consists of assembling both the stiffness matrix of the slice in block

format and the transformation matrix A based on (40).
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Table 1: Analysis procedure.

MAIN

(1) Initialize gj , B and Gn

(2) Calculate matrices K11,K12,K21,K22, and A

(3) Deformation modes:

Run MODES with G1 for extension, bending and twist modes, j = 3, 4, 5, 6

Update B and G2

Run MODES with G2 for shear modes j = 1, 2

(5) Flexibility and stiffness matrices:

V = [v1, ...,v6] , P = [p1, ...,p6] , R = [q01, ...,q06]

H = R−T (VTP)R−1

C from (11)

D = C−1

MODES

(a) Uj = K−1
c Fj

(b) ∆v = Aw +Bq0

(c) v± = 1

2
(∆v ± v̄)

(d) pj = Kvj

The next step is to analyse the six deformation modes. First the extension, torsion and

bending deformation modes are analysed using the rigid body constraint matrix G1 defined in

(46). The nodal displacements vj from these four deformation modes are used to populate the

antisymmetric moment contribution matrix B based on (40), while the corresponding nodal

force distributions pj are used to create the constraint matrix G2 from (48). The two shear

deformation modes are then calculated.

The nodal displacements, conjugate nodal forces and mid section force vectors of the six

deformation modes are then arranged as columns in the matrices V, P and R, respectively. The

beam flexibility matrix H can then be determined from (19). The cross-section flexibility matrix
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C is then calculated using (11) and finally the corresponding cross-section stiffness matrix D is

obtained by inversion of this flexibility matrix.

6. Examples

This section contains an assessment of the capacity of the present method for calculating the

full six by six set of stiffness coefficients of general cross-sections. Three examples are used to

cover solid and thin-walled sections as well as isotropic and general anisotropic materials, namely

an isotropic circular section, a rectangular section with antisymmetric composite layup, and a

realistic wind turbine blade cross-section with off-axis fibers in the spar cap. It is noted, that

for thin-walled, single-layer, orthotropic cross-sections the isoparametric representation used in

[10] comes out as a special case of the present formulation, although set up in a different way as

a two-dimensional theory for the cross-section.

6.1. Isotropic circular section

The first example concerns the circular cross-section geometry shown in Fig. 5(a), where the

circle has a radius of r = 1 and is made of an isotropic material with Poisson ratio ν = 0.3.

The cross-section is discretized using n layers in the radial direction and 4n segments in the

circumferential direction using elements with quadratic interpolation in the cross-section plane

and Hermitian cubic interpolation in the axial direction. The case n = 2 is shown in Fig. 5(b).

(a)

r

x2

x1

(b)

Figure 5: (a) Schematic of a circular section, (b) n = 2 finite element discretization.
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Table 2: Normalized cross-section stiffness properties for an isotropic circle.

Mesh refinement parameter n

1 2 4 8 Analytical

A/πr2 0.9882 0.9992 0.9999 1.0000 1.0000

I1/πr
4 = I2/πr

4 0.2468 0.2498 0.2500 0.2500 0.2500

J/πr4 0.4883 0.4992 0.5000 0.5000 0.5000

A1/πr
2 = A2/πr

2 0.8604 0.8504 0.8507 0.8507 0.8507

The reference axis being at the center, only the diagonal terms in the stiffness matrix are non-

zero. The diagonal terms are GA1, GA2, EA, EI1, EI2, and GJ representing the shear stiffness

about both in-plane axes, the extension stiffness, the bending stiffness about both in-plane axes,

and the torsion stiffness, respectively. From symmetry of the section GA1 = GA2 and EI1 = EI2.

Results for isotropic cross-sections obtained using different mesh sizes and an analytical solution

from Renton [15] are listed in Table 2. The relative error of the stiffness coefficients with respect

to the analytical solution are plotted in Fig. 6, illustrating cubic convergence for all parameters

towards the analytical solution. Two elements in the radial direction are required to obtain

1 2 4 8
10

−5

10
−3

10
−1

10
1

 

 

R
el
a
ti
v
e
E
rr
o
r
[%

]

n

GAα

GJ

EA
EIα

Figure 6: Relative error in stiffness coefficients with respect to the mesh refinement parameter.
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(a) x3

x1

x2

(b) x3

x1

x2

(c) x3

x1

x2

(d)
x3

x1

x2

(e) x3

x1

x2

(f) x3

x1

x2

Figure 7: Deformation modes: (a) Extension, (d) Twist, (b,e) Bending, (c,f) Shear.

convergence of all the stiffness coefficients to within 1% relative error. This is due to the

inability of four quadratic triangular elements to capture exactly the geometry of the circle as

well as the occurrence of cubic terms in the cross-section coordinates in the transverse shear

problem.

The 3D deformation of the six deformation modes are presented graphically in Fig. 7 using

two layers of elements and a slice thickness of 2 to clearly illustrate the deformation modes.

The quadratic curvature associated with the bending deformations is seen in Figs. 7(b) and (e).

Furthermore in the two shear cases, the cubic displacement in the thickness direction is modelled

with the use of a single element in the thickness direction via the Hermitian interpolation. It

can be seen in Figs. 7(d) that the twist mode does not develop an axial warping due to the

circular cross-section. The extension, bending and twist deformation modes exhibit constant

in-plane contractions along the axial direction, whereas the shear modes have varying in-plane

displacements because of the presence of linearly varying bending moments.
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6.2. Composite rectangular section

The second example considers the solid rectangular section made of layered orthotropic

material as shown in Fig. 8(a) with width of 2a = 0.05m and height of 2b = 0.1m. The upper

and lower halves of the section are made of composite material with properties taken from [3],

namely Ei = 141.963 GPa, Ej = Ek = 9.79056 GPa, Gij = Gik = Gjk = 59.9844 GPa and

νij = νik = νjk = 0.42, where the ijk system constitutes the principal material directions in

the plane of the lamina, as shown in Fig. 8(b). Moreover, the xixj-plane is in the plane of the

lamina and parallel to the x3x1-plane while the xi axis is along the fiber direction. The fiber

orientation angle θ is defined as the angle between the x3 axis and the xi axis.

AAAAA

A
A
A
A
A

A
A
A
A
A

2a

b

b −θ

θ

x1

x2

(a)

xi

xj

x2

θ

x3

x1

(b)

Figure 8: (a) Schematic of a composite rectangular section, (b) Definition of principal material axes.

The cross-section parameters of the composite rectangular section with θ = 45◦ using a

regular mesh of 10 × 10 elements with quadratic interpolation in the cross-section plane and

Hermitian cubic interpolation in the axial direction are presented in Table 3. The results are

compared to the values obtained using the commercial code VABS using 744 quadratic elements.

It is observed that for this section, results match well those calculated using VABS, with the

maximum percentage difference (0.25%) occurring for the shear stiffness in the x1 direction. This
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Figure 9: Coupling parameters as function of the fiber orientation angle θ.

configuration exhibits strong shear-bending coupling and extension-torsion coupling, and the

torsional rigidity is an order of magnitude less than the coupling. A measure of the importance

of the off-diagonal terms can be obtained by normalizing them with respect to their associated

diagonal terms,

γij =
Dij

√

DiiDjj

. (56)

Table 3: Cross-section stiffness properties for the composite rectangular section with θ = 45◦.

Units VABS Mesh 10x10 % Diff.

GA1 [N] 5.395E+07 5.409E+07 0.25

GA2 [N] 9.660E+07 9.659E+07 0.01

EA [N] 2.955E+08 2.957E+08 0.05

EI1 [Nm2] 2.434E+05 2.436E+05 0.06

EI2 [Nm2] 4.945E+04 4.955E+04 0.19

GJ [Nm2] 1.326E+05 1.326E+05 0.01

D14 [Nm] 1.832E+06 1.836E+06 0.21

D25 [Nm] 5.198E+05 5.197E+05 0.03

D36 [Nm] -2.960E+06 -2.960E+06 0.00
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Figure 10: Deformation modes of the composite rectangular section: (a) Extension, (d) Twist, (b,e) Bending,

(c,f) Shear.

The non-dimensional coupling parameters γij range from −1 < γij < 1 where the extreme values

indicate maximum possible coupling. Figure 9 shows the value of the coupling parameters with

respect to the ply angle. It is seen that the maximum value for each coupling does not occur for

the same fiber orientation angle, with the maximum for the shear-bending coupling γ14 occurring

at 43◦, for the shear-bending coupling γ25 at 75◦, and for the extension-torsion coupling γ36

at 50◦.

The deformation modes are shown graphically in Fig. 10. It is seen that the extension, bend-

ing, and torsion modes have a uniform transverse deformation along the x3 axis. Furthermore,

shearing occurs in these four modes because of the presence of off-axis fibers.

6.3. Wind turbine blade section

A concept developed in the late 1980’s for reducing loads seen by wind turbines is to promote

blade twisting to decrease the angle of attack when subject to a wind gust with the use of biased
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layups in the blade spar cap [16, 17]. This final example of the present paper concerns the

analysis of the two-cell cross-section of a wind turbine blade shown in Fig. 11 that exhibits

bend-twist coupling via the use off-axis fibers in the spar cap. The section has a 1m chord and

the outer geometry of a S825 airfoil which is normally used at 75% of the blade radius. The

origin of the coordinate system is placed at the leading edge of the section and the x1 axis is

co-linear with the airfoil chord line. The spar cap extends from 0.13m to 0.47m with the shear

web positioned vertically at the center of the spar cap at 0.30m. The material properties are

taken from Griffin [18]. The two different material layups used in the cross section are listed in

Table 4. Note, that the thickness of the triaxial fabric has been modified for ease of modelling.

Each section is made of three laminas having the triaxial fabric on the outer and inner surfaces

and a balsa core for the skin and web sections and a spar cap mixture core for the spar cap

sections. The spar cap mixture is made of alternate layers of triaxial fabric and uniaxial fabric.

The stiffness properties for each layup are listed in Table 5. Because the shear stiffness G23 was

not provided in the reference, it was calculated assuming transversely isotropic composites.

x1

x2

0.13m

0.30m

0.47m

Skin 0.01m

Web 0.01m

Spar cap

Figure 11: Schematic of a wind turbine blade section.

Previous work by Høgsberg and Krenk [10] has shown that extensive flanges and parts of

thin-walled structures can be effectively modelled using elements with cubic-linear interpolations
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Table 4: Cross-section layup definition.

Section Material Thickness [mm]

Skin & Web triaxial fabric 1.5

balsa 7.0

triaxial fabric 1.5

Spar Cap triaxial fabric 3.5

spar cap mixture user defined

triaxial fabric 3.5

in the cross-section plane. Figure 12 shows the mesh of the wind turbine cross-section used in

the current analysis obtained using cubic-linear elements. The skin, web and spar cap are

modelled using thirteen 16-node elements with cubic-linear interpolation in the cross-section

plane and Hermitian cubic interpolation in the axial direction. The trailing edge and transitions

between sections with different thicknesses are modelled using eight 8-node elements with linear

interpolation in the cross-section plane and Hermitian cubic interpolation in the axial direction.

The discretization of the slice contains a total of 184 nodes.

The effect of the thickness and material orientation of the spar cap on the bending stiffness

about the x1 axis EI1 and the bend-twist coupling parameter γ46 is shown in Fig. 13. The

spar cap thickness was varied from 20mm to 35mm and the material orientation from 0◦ to

−45◦, where the material orientation follows from Fig. 8(b). A maximum bend-twist coupling

Table 5: Material properties.

Material E11 [GPa] E22 = E33 [GPa] G12 = G13 [GPa] G23 [GPa] ν12 = ν13 = ν23

Balsa 2.07 2.07 0.14 0.863 0.22

Spar cap mixture 27.1 8.35 4.70 3.05 0.37

Triaxial fabric 24.2 8.97 4.97 3.23 0.39
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Figure 12: Finite element discretization of blade section.

parameter value of γ46 = 0.068 is obtained with a material orientation of θ = −30◦. It can be

seen in Fig. 13(b) that the coupling parameter is rather insensitive to the spar cap thickness.

Conversely, from Fig. 13(a) it is seen that both the spar cap thickness and fiber orientation

have an effect on the bending stiffness, where a smaller material angle and thicker spar cap

yield larger bending stiffness. The bending stiffness varies almost linearly with the thickness

for the range studied. The bending stiffness is less sensitive to changes in material orientation

close to θ = 0◦. This is expected from stress and strain coordinate transformation, where the

axial stiffness component varies with the cosine of the angle while the shear-extension stiffness
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Figure 13: Effect of varying spar cap thickness and spar cap fiber orientation:(a) Bending stiffness EI1, (b)

Bend-twist coupling γ46.
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component varies with the sine of the angle. Small material angles can therefore be used to

obtain bend-twist coupling while limiting the increase in spar cap thickness needed to maintain

a constant bending stiffness. For example, a −7◦ material orientation would yield a coupling

parameter of γ46 = 0.027 and would only require a 4% increase in the spar cap thickness to

maintain the same bending stiffness as a configuration with no off-axis fibers (i.e. 0◦) and a

20mm spar cap. Doubling the value of the coupling parameter would require a −16◦ material

orientation and an increase in thickness of 22% to maintain the same bending stiffness.

7. Conclusions

A method for analysing the cross-section stiffness properties of elastic beams with arbitrary

cross-section geometry and material distribution has been presented. The method is based on

analysis of a slice of the beam on which six independent deformation modes corresponding to

extension, torsion, bending and shear are prescribed by imposing displacement increments across

the slice via Lagrange multipliers. The six by six cross-section flexibility matrix is obtained using

complementary elastic energy calculated in terms of the internal force/moment components and

then inverted to give the cross-section stiffness matrix. The slice is modelled using a single layer

of 3D finite elements with standard discretization in the cross-section plane and Hermitian cubic

interpolation in the length-wise direction, whereby the degrees of freedom are concentrated on

the front and back faces of the slice.

Three examples of increasing complexity have been used to demonstrate the accuracy of the

procedure for a number of cases including both solid and thin-walled sections and isotropic and

general anisotropic materials. Results show excellent agreement with analytical solutions and

values predicted by the commercial code VABS. Finally, the method has been used to illustrate

the compromise between bend-twist coupling and bending stiffness of a realistic cross-section of

a wind turbine blade with off-axis fibers in its spar-cap.
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Appendix A. Finite element representation of a slice

In the present analysis the beam is discretized using three-dimensional isoparametric finite

elements with a Hermitian interpolation in the longitudinal direction x3. The Hermitian in-
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terpolation provides the required third degree polynomial representation of the displacement

field as well as places all the nodes on the front and back face of the beam slice, simplifying

the definition of the deformation modes. To avoid ill-conditioned elements, a slice of thickness

comparable to the in-plane element dimensions is used.

The theory of the finite element method is well established, see e.g. [13, 14], and the focus

here is on the modifications in the interpolation method needed for Hermitian interpolation in

the axial direction. The elements are described in terms of the intrinsic coordinates ξ = [ξ, η, ζ]T

where the coordinate ζ is collinear with the global axial coordinate x3. For hexahedron elements,

the intrinsic coordinates cover the range −1 ≤ ξ, η, ζ ≤ 1. An 8-node element in the intrinsic

coordinate system is shown in Fig. A.1. For this element, nodes 1-8 represent the corner nodes.

8

5

6

7

4

1

2

3

ζ

ξ

η

Figure A.1: 8-node element in intrinsic {ξ, η, ζ} coordinate system.

The displacement vector field u(x) = [u1, u2, u3]
T is described using the representation

u(x) = N(ξ)v =
2m
∑

j=1

Nj(ξ) ṽj , (A.1)

where the shape functions associated with the nodal degrees of freedom ṽj are contained in the
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Table A.1: Shape functions of 8-node element with Hermitian interpolation.

Corner nodes: ξi = ±1, ηi = ±1 , ζi = ±1

N =
1

16
(1 + ζiζ)

2(2− ζiζ)(1 + ηiη)(1 + ξiξ)

Corner nodes: ξi = ±1, ηi = ±1 , ζi = ±1

Nh =
l

32
(ζ + ζi)

2(ζ − ζi)(1 + ηiη)(1 + ξiξ)

block matrix Nj(ξ),

Nj(ξ) =













N(ξ) 0 0 Nh(ξ) 0 0

0 N(ξ) 0 0 Nh(ξ) 0

0 0 N(ξ) 0 0 Nh(ξ)













j

. (A.2)

in which the shape functions associated with the vector components of the displacement field are

labelled as N and the shape functions associated with the displacement gradients are labelled

as Nh.

u = 1

ζ

ξ

η

u′ = 1

ζ

ξ

η

Figure A.2: Shape functions for 8-node element associated with corner node ξi = 1, ηi = 1, ζi = −1 .

The shape functions for an 8-node element with Hermitian interpolation are given in Table

A.1. They are constructed using Lagrange product formulas. Shape functions associated with

the corner node 7 are shown in Fig. A.2. The element is characterized by a linear variation in
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Figure A.3: Bending deformation of 8-node element with Hermitian interpolation, undeformed(–) deformed(–).

the ξ, η plane and a cubic variation in ζ. It should be noted that shape functions Nh associated

with the gradients of the displacement field are made proportional to the thickness of the slice, l,

in order to have the gradients defined in the global coordinate system. The bending deformation

of such an element is shown in Fig. A.3. The Hermitian interpolation enables capturing the

quadratic displacement without intermediate nodes, and similarly for the cubic variation in the

shear problem.
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