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Interferometric characterization of few mode fibers (FMF)  
for mode division multiplexing (MDM)  
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Dept. of Photonics Engineering, Technical University of Denmark, Oersteds Plads,  
2800 Kgs. Lyngby, Denmark  

ABSTRACT  

The rapid growth of global data traffic demands the continuous search for new technologies and systems that could 
increase transmission capacity in optical links and recent experiments show that to do so, it is advantageous to explore 
new degrees of freedom such as polarization, wavelength or optical modes.  
 
Mode division multiplexing (MDM) appears in this context as a promising and viable solution for such capacity 
increase, since it utilizes multiple spatial modes of an optical fiber as individual communication channels for data 
transmission. In order to evaluate its performance, a MDM system requires advanced characterization methods with 
regard to the modal content of its photonics components and in particular of the fibers involved for data transmission.  
 
In this contribution we present a time-domain interferometric technique for a full modal characterization of few mode 
fibers (FMF), commonly used in a MDM scenario. This experimental technique requires the use of a Mach-Zehnder 
interferometer, where the reference’s path length is controlled by an optical delay line. The interference between the 
output beams of reference and fiber under test (FUT) is recorded on a CCD camera and a careful evaluation of the 
resulting interferograms allows us to have full access to key parameters such as number of modes, modal weight, 
differential time delay between propagating modes and intensity profiles.  
 
In this work, we apply this simple and complete characterization method to the case of a short link with two optical 
modes propagating in a FMF, which illustrates its potential as a diagnostic tool for MDM systems.    
 
Keywords: mode division multiplexing, few mode fiber, low coherence interferometry. 
 

1. INTRODUCTION 
 

Over the last few decades, optical communication technologies were tremendously developed and permitted to increase 
the transmitted data capacity in optical links beyond the Tb/s. To achieve such an improvement in transmission capacity 
using only single mode fibers, different techniques such as time-division multiplexing (TDM), wavelength-division 
multiplexing (WDM) and polarization-division multiplexing (PDM) were implemented in modern communication 
systems.  However, the demand for transmission of even larger amounts of data continues to grow and requires the 
development of new optical communication technologies to overcome the capacity limit that is about to be reached in the 
near future. One of the possible solutions is mode-division multiplexing (MDM) in few-mode or multimode fibers that 
can be applied in addition to WDM and PDM.  The principle of MDM in the highly multimode optical fiber (MMF) was 
demonstrated in the early 80’s1, but due to non-desirable mode coupling MDM was feasible only over short distances. 
Practical implementations of MDM were delayed a few more years, until transmission systems that would support MDM 
met some minimal requirements which included: the development of a new fiber, optical multiplexers and 
demultiplexers as well as suitable amplifiers, receivers and digital signal processing techniques. In 2011 a prototype of 
FMF was introduced with the possibility to transmit two 100Gb/s PDM-QPSK data streams over two different modes 
along a 40km optical link2. From that time the rapid progress in development MDM transmission systems begun 
bringing improvement in the transmission over larger distances3 and bandwidths of MDM4.  
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With the development of MDM, FMF fibers became a key component in the transmission systems bringing a 
requirement of the careful fiber design with desired fiber properties like proper number of the propagating modes, low 
level of the cross talk between them or the minimal differential mode group delays depending on the chosen approach. 
One of the approaches is to minimize mode-coupling (the weakly-coupled approach)5, so each mode can be detected 
using a simple 2x2 or 4x4 multiple-input multiple-output (MIMO) techniques. Another one is to decrease the differential 
mode group delay between modes (the strongly-coupled approach), which makes possible the simultaneous detection of 
all modes by using complex 2Nx2N MIMO techniques. Regardless of which approach is chosen, an accurate 
experimental evaluation of the designed fibers is necessary. 
 
In this contribution we demonstrate an interferometric-based approach for the FMF modal content characterization.   The 
presented method can be used as a valuable diagnostic tool for MDM systems as an experimental technique of modal 
evaluation with a temporal resolution of few fs, so even the modes with a small intermodal time delay can be discovered. 
Estimation of the relative modal weight does not require a comparison with one of the propagating modes. The 
sensitivity of this method to the influence of an ambient medium is minimal and the system is stable during all 
measurements.  
 

2. EXPERIMENT 
2.1 Experimental setup  

Figure 1 presents our experimental setup based on a Mach-Zehnder interferometer. A broadband supercontinuum laser 
(SuperK COMPACT, NKT Photonics) with operational wavelengths from 450nm to 2400nm is used as light source. To 
analyze the performance of the setup depending on different spectral widths, we used two bandpass filters centered at 
850nm with FWHM of 5nm and 10nm respectively. A fiber coupler is used to equally split the incoming light into 
reference and test arms. The test arm contains a mechanical grating unit for higher-order modes excitation6 with a fiber 
polarization controller, the fiber under test (FUT, SMF28 Corning, a single mode fiber with cut-off wavelength of 
1260nm, 8.2μm core diameter and 0.14 NA) and a linear polarizer (Thorlabs) to control the final polarization state of the 
output light. The reference arm consists of the single mode reference fiber (HP780, Nufern), an optical delay line and a 
linear polarizer. The reference and test beams recombine on a free space beam splitter producing interference fringes that 
are captured by a CCD camera (Point Grey, maximum frame rate 120fps) at different positions of the delay line.  
Information about quantity of modes in the fiber under test (FUT) and their differential time-delays could be extracted 
from the obtained interferograms.  

 

Figure 1. Experimental setup of the interferometric-based method: F – filter, L – lens, P – polarizer, BS – beam splitter, PC – 
personal computer. Light is split into reference and test beams. Interferograms of the recombined beams are taken by CCD 
camera at each step of the delay line.   
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For the higher-order modes excitation, the FUT is placed in the mechanical grating unit that is composed of a spring-
loaded clamp that controls the pressure between two metallic plates: (one flat and other with V grooves forming a 
grating) as shown in Fig.1. Applying pressure to the plates creates points in the fiber where the refractive index is altered 
due to a photo-elastic effect. This mechanically generated periodic alteration of the refractive index possesses similar 
features to the photoinduced change of the refractive index in the core of a long-period grating fiber. Such periodic 
stressing over a beat length forces the coupling of the fundamental mode into one of the higher-order modes when a 
phase-matched condition is satisfied6,7.   

For our experiment, a mechanical grating of period Λ=532μm is chosen to covert the fundamental mode LP01 into the 
higher-order mode LP11 at a wavelength of 850nm with a conversion efficiency of 15dB. In order to confirm the 
presence of the excited mode, the FUT is spliced with a single-mode fiber (HP780), where at 850nm only the 
fundamental mode can propagate. A successful mode conversion is expected to present a strong attenuation notch in the 
spectrum at the designed wavelength (as shown in Figure 2 (c)). The depth of the notch is relevant to the conversion 
efficiency that is controlled by the pressure of the spring-loaded clamp on the FUT. Higher pressure results in a stronger 
modal conversion. After some level of the pressure the depth of the notch does not change any more or decrease, so an 
optimal level of the pressure should be manually chosen. Once the perturbation stops, the light spectrum returns to its 
initial values (Figure 2 (b)). The inset on Figure 2 (c) represents the profile of LP11 that is obtained by directing the 
beam from the FUT to the camera after removing the single-mode fiber. Since this mechanical mode converter is 
polarization-dependent we use a polarization controller before it to optimize polarization of the coupled modes and to 
select LP11 only in one polarization state. Comparing to the other methods of the mode conversion this approach is 
simple in implementation and operation.  

 
 

 
 

Figure 2. (a) – schematic representation of the conversion of LP01 into LP11 at wavelength of 850nm with 15dB of the 
conversion efficiency, (b) – an initial transmission spectrum of the light source, (c) – the transmission  spectrum after 
excitation of  the HOM, attenuation notch corresponds to the stripped by the single-mode fiber LP11. Inset represents the 
image of the profile of LP11 on the CCD camera after the single-mode fiber was removed. 

(b) (c) 

(a) 
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2.2 Results 

In our experiment we are used 75cm of a step-index standard fiber SMF28 (Corning) as the FUT. The active length of 
the fiber, from a point where the HOM is excited by the mechanical grating unit to the end facet of the fiber, is 23cm. At 
the operational wavelength of 850nm in SMF28, two modes propagate: the fundamental (LP01) and the first HOM 
(LP11) and we therefore consider it as FMF at our operational wavelength. Simulation of the FUT proves the presence of 
LP01 and LP11 at 850nm with the calculated differential time-delay between modes of 1.462ps.   

The reference fiber is HP780, a standard single mode fiber with a cut-off wavelength of 730±30nm. The optical beams 
from the outputs of reference fiber and the FUT recombine on the beam splitter (Figure 1). When the two arms of the 
Mach-Zehnder interferometer are perfectly matched, which means that the difference in their optical paths is equal or 
smaller than the coherence length of the light source, interference appears. An example of the interference between the 
excited LP11 from the FUT and the fundamental mode from the reference fiber is shown on Figure 3. The closer the path 
difference is to zero, the higher the contrast of the fringes on the interferograms becomes. Equation 1 shows the 
dependence of the coherence length with the width of the spectrum and the central wavelength. In order to obtain 
interferograms with a high fringe contrast when using a 10nm FWHM bandpass filter, the path difference between the 
two arms has to be equal or smaller than 31.79µm.  

where 0λ is the central wavelength of the spectrum,         - the spectrum width.  

 

 

Figure 3. Interference between the LP01 from the reference fiber and excited LP11 from the FUT.  

  
To evaluate the performance of the interferometric-based setup depending on the different coherence lengths two 
bandpass filters with spectral widths of 5nm and 10nm were used. Also we introduced visibility (V) as the parameter to 
assess the quality of the interference:  

where maxI is the  maximum brightness of the fringes on interferograms, minI - the minimal brightness between the two 
fringes.  
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Figure 4. The visibility as a function of the optical path difference for the bandpass filters with 5nm and 10nm of FWHM.  
 

At the point of the best match of the optical paths the visibility is close to 1. The further from this point, the smaller 
visibility is, approaching zero after some distance. Varying the delay line we scan across the different delays of the 
modes in the FUT. Figures 4 (a) and (b) present the visibility as a function of the optical path difference for the bandpass 
filters with spectrum widths of 5nm and 10nm respectively. For a narrow spectrum (Figure 4) the visibility curve is 
broad, preserving a good contrast of the interferograms along most of the scanning length. Only one wide peak is 
observed. At the same time, the FWHM width of the peak is larger than the coherence length of the spectrum for 10nm 
filter that is equal to 63.58µm due to dispersion broadening.  
 
For a wider spectrum (Figure 4 (b)) the coherence length is equal to 31.79μm, which is also smaller than the FWHM 
width of the peak. We suppose that a small peak at the distance of 100μm is present due to steep edges of the filtered 
spectrum. Comparing results for those two measurements it is evident that the temporal resolution of the system directly 
depends on the spectral width of the light source (as expected). The wider the initial spectrum is, the higher the temporal 
resolution becomes. Therefore, in order to reach a high temporal resolution in the system a light source of low coherence 
is required. 

            

Figure 5. Experimental results of the measurement of the visibility as a function of the optical path difference for the bandpass filter 
with 10nm of FWHM. (a) – Only the fundamental LP01 is propagating, (b) – LP01 is partly converted into LP11.   

Figure 5 depicts the experimental results from the measurements of the visibility for (a) LP01 and (b) both LP11 and 
LP01. The FUT was scanned along 300µm with a step of 4µm. The point where interference for LP01 is higher (Figure 

(a) LP01 (b) LP11 

(a) (b) 
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5(a)) corresponds to an optical path difference of zero (origin of the visibility curve). Figure 5(b) presents a second peak, 
shifted 115µm from zero that corresponds to the center of the peak due to of LP11 excitation. To verify the performance 
of the setup LP11 was deliberately excited in order to have two modes simultaneously propagating in the fiber. It is 
worth noticing that this technique allows for the determination of the different modes even when the fundamental is not 
dominant, as in Figure 5 (b)  where height of the peak of the LP01 mode is about half of that on the corresponding LP11 
peak. The visibility of LP11 is 0.4 while the visibility of LP01 is 0.76. The measured differential time-delay between 
LP01 and LP11 is equal to 0.383ps. 

 

3. CONCLUSION 

In the current work we have presented an efficient interferometric-based technique that is a simple and practical 
characterization tool for the evaluation of the modal content of an optical fiber. We showed that this method allows 
recovering the propagating modes in FMF without prior knowledge of the fiber properties during measurement, even 
when the fundamental is not the dominant mode. The first HOM (LP11) was successfully excited with the conversion 
efficiency of 15dB in the standard SMF28 fiber, which at the operational wavelength of 850nm behaves as FMF. By 
analyzing the visibility trace an accurate estimation of the propagating modes and their relative differential time-delay is 
achieved. As it was shown above, current technique can become a valuable characterization tool for MDM systems.  
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