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Summary (English)

The present thesis considers optimization of the spectral vision systems used for
quality inspection of food items. The relationship between food quality, vision
based techniques and spectral signature are described. The vision instruments
for food analysis as well as datasets of the food items used in this thesis are de-
scribed. The methodological strategies are outlined including sparse regression
and pre-processing based on feature selection and extraction methods, super-
vised versus unsupervised analysis and linear versus non-linear approaches.

One supervised feature selection algorithm based on the existing sparse regres-
sion methods (EN and lasso) and one unsupervised feature selection strategy
based on the local maxima of the spectral 1D/2D signals of food items are pro-
posed. In addition, two novel feature extraction and selection strategies are
introduced; sparse supervised PCA (SSPCA) and DCT based characterization
of the spectral di�used re�ectance images for wavelength selection and discrim-
ination.

These methods together with some other state-of-the-art statistical and mathe-
matical analysis techniques are applied on datasets of di�erent food items; meat,
diaries, fruits and vegetables. These datasets are acquired using three di�erent
vision systems; a spectral imaging device called VideometerLab, spectroscopy
using spectrometer, and di�used re�ectance imaging systems called Static Light
Scattering (SLS).

These analyses result in signi�cant reduction in the number of required wave-
lengths and simpli�cation of the design of practical vision systems.
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Summary (Danish)

Nærværende afhandling betragter optimering af spektrale visionsystemer, som
anvendes til kvalitetskontrol af fødevarer.

Forholdende mellem fødevarekvalitet, vision baserede teknikker og spektrale sig-
naturer er beskrevet. Visionen instrumenter til fødevareanalyse samt de datasæt
af fødevarer, der anvendes i denne afhandling, er beskrevet. De metodologiske
strategier beskrives og inkluderer såkaldt sparse regression og præ-processering
baseret på feature udvælgelse og feature ekstraktionsmetoder, supervised versus
un-supervised analyse, samt lineær versus ikke-lineære metoder.

Baseret på eksisterende sparse regressionsmetoder (Elastic Net og lasso) fo-
reslås en superviseret feature udvælgelses metode. Baseret på lokale maksima
af de spektrale 1D/2D signaler af fødevarer foreslås en un-supervised featu-
re udvælgelses algoritme. Desuden introduceres to nye feature udvælgelses- og
selektions-strategier; nemlig dels sparse supervised PCA (SSPCA), dels en DCT
baseret karakterisering af spektralt di�use re�ektans billeder, som anvendes til
bølgelængde udvælgelse samt bølgelængde diskrimination.

Disse metoder bliver sammen med andre state-of-the-art statistiske og mate-
matisk analyse teknikker anvendt på datasæt fra forskellige typer fødevaredata;
kød, fødevare-dagbøger, samt frugt og grøntsager. Disse datasæt er fremkom-
met ved hjælp af tre forskellige visionsystemer; en spektral imaging enhed kaldet
VideometerLab, spektroskopi ved hjælp af et spektrometer, og endelig di�ust
re�ektans billeddannende systemer kaldet Static Light Scattering (SLS).

Disse analyser resulterer i en væsentlig reduktion af antallet af nødvendige bøl-
gelængder og leder til en forenkling af udformningen af praktiske visionsystemer.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science, Technical University of Denmark in the Data Analysis Section
in partial ful�llment of the requirements for acquiring the Ph.D. degree in en-
gineering.

The thesis deals with sparse multivariate analysis and dimension reduction tech-
niques for optimal vision systems design. The main focus of this thesis is to
reduce the number of wavelengths of the spectral signals and images of food
items. Sparse regression methods as well as feature selection and extraction
techniques are employed and proposed.

The thesis consists of an introduction to the �eld of research, the basic materials
and methods utilized for the main focus in the thesis and a collection of seven
research papers written during the period June 2011- May 2015, and elsewhere
published or is under review and one unpublished technical report.

Lyngby, 24-May-2015

Sara Sharifzadeh
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Chapter 1

Introduction

The increased expectation for manufacturing high-quality safe food products
necessitates accurate, fast, and objective quality determination in the highly
competitive food industry. Monitoring the quality of food products using vi-
sion based systems has gained a lot of attention in the food industry recently.
Reviewing the research literature shows the application of this technology on
varieties of food items and the vast research work that has been accomplished
in this area. This include di�erent types of meat, diaries, fruits, and vegetables
as well as any other types of food items such as chocolate.

The current thesis is part of the projects at the Center for Imaging Food Quality
(CIFQ). The main focus of the projects in this center is to employ imaging tech-
nologies for quality monitoring of food products. The bene�t of these systems is
that they are contact-less and non-invasive while giving useful information about
the surface and sub-surface of food items with out making any contamination.
There are di�erent partner in this project from industry including Videometer
A/S, NKT Photonics A/S, Arla Foods, Danish Meat Research Institute and
Dupont Nutritional Bio-science.

This thesis involves applying and developing data analysis techniques for opti-
mization of vision based systems used for quality assessment of food items. As
a result, the costs of developing such systems will be reduced and they become
simpler. In addition, the statistical prediction models built on the related food
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data will become more accurate. This thesis is not focused on data acquisi-
tion and collection activities and the data sets used in this thesis was provided
mainly from either CIFQ partners or other collaborations with DTU Food and
University of Copenhagen, Department of Plant and Environmental Sciences
and Department of Food Science. However, having insight about the imaging
systems used for data preparation and understanding the data characteristics
and the desired quality parameters is important for �nding the best analytical
solutions. Therefore, relevant information about the vision instruments used
for data acquisition as well as food data sets speci�cations are provided and
presented in this thesis.

The structure of this chapter is as follows; �rst the relationship between food
quality and vision systems is explained in section 1.1. Then, the concept of
spectral signature is described in section 1.2. Section 1.3 is about the main
aims of this thesis. Finally there are some reading guidelines for this thesis in
section 1.4.

1.1 Food Quality and vision based techniques

Quality is a general term. In the case of food items, quality is usually measured
based on visual properties such as color, texture, and chemical composition
and physical properties such as fat or protein level, water content, �rmness
etc. It can be evaluated by a descriptive term or human sensory attribute such
as surface browning and water content of biscuits (Dissing, 2011), color and
texture of vegetables (Løkke et al., 2013) and tenderness of a piece of meat
(Kamruzzaman et al., 2013) but also more quantitative measures of ingredient
proportions such as fat size distributions in milk (Cabassi et al., 2013) or sugar
content of apples (Sánchez et al., 2003). In this thesis, the terms "quality
parameter" and "quality attribute" are used alternatively for any of this kind.

The traditional quality assurance methods used in the food industry involve
human visual inspection and are tedious, laborious, time-consuming, and can be
inconsistent (ElMasry and Sun, 2010). Vision based techniques have important
privileges over the traditional assessment methods. They are fast, non-invasive
and contact-less and result in reproductive quality monitoring methods in the
food industry. Additionally, they can be used objectively and automatically
on-line.

Vision techniques utilize advanced sensing technologies and instrumentation to
evaluate quality and quality-related attributes. While ordinary means such as
RGB colour cameras are useful for external quality attributes such as size, shape,
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colour, and surface texture, it is di�cult to detect internal structures such as fat
level or map of water content by relatively simple and traditional imaging means
(Du and Sun, 2004; ElMasry and Sun, 2010). For this reason, spectroscopy and
spectral imaging techniques have been widely used for quality assessment. They
are based on optical properties such as re�ectance, transmittance, absorbance or
scatter of polychromatic or monochromatic radiation over the ultraviolet (UV),
visible (VIS), and near-infrared (NIR) regions of the electromagnetic spectrum
(Sun, 2009, 2010).

1.2 Spectral signature and vision system design

The quality parameters of food items a�ects their optical properties such as
re�ectance and absorbance acquired by the spectral vision systems such as hy-
per/multi spectral imaging or spectroscopy (Aguilera, 2005).

On the other hand, due to the di�erence in their chemical compositions and
inherent physical structures, all materials re�ect, scatter, absorb and/or emit
electromagnetic energy in distinctive patterns at speci�c wavelengths. This
characteristic is called spectral signature or �ngerprint. Therefore, spectral
signature can be used to uniquely characterize any given object using its spectral
signal or image over some ranges of wavelengths (ElMasry and Sun, 2010).

The physical and chemical quality information is determined based on the corre-
lation between the spectral response and a speci�c quality attribute of a product.
However, the spectral signal or image is usually acquired in tens or hundreds of
wavelengths. Therefore, the dimensionality of the acquired data might be high.
However, not all of the wavelengths carry relevant information to the desired
quality parameters and many of them may be irrelevant or noisy. On the other
hand, the acquisition and analysis time will increase as the number of bands
grows. This limits them to be implemented directly in on-line systems for auto-
mated quality evaluation purposes. In practice, the use of one or a small number
of bands is preferred. Thus, reducing the number of wavelengths is important
and makes the design of the acquisition system easy and economic.

Another problem of spectral data is multicollinearity and high correlation. This
problem can be alleviated by multivariate analysis techniques and variable se-
lection strategies (Brereton, 2009). This can improve the predictive power of the
calibration model and simplify it by avoiding the redundancies and irrelevant
variables.
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1.3 Main goals of the thesis

The main goal of this thesis is optimization of the spectral vision systems used
for food quality assessment. This can be achieved by reducing the number of
required wavelengths using multivariate analysis techniques. For this aim, the
following issues are considered and included in this thesis:

� Based on the fact that each food item has its own spectral signature that
allows ignoring other irrelevant wavelengths, simplifying the vision systems
and also improving the quality prediction models is conducted.

� The existing sparse data analysis and feature selection methods are applied
on food data sets with di�erent quality challenges.

� New feature selection and extraction methods are developed and applied
on varieties of real scenarios to �nd the desired quality parameters using
the spectral data of food items.

1.4 Reading guidelines

In order to make it easier to read this thesis, some guidelines are presented here.

Theoretical and application parts: This thesis consists of two parts: A
theoretical part and an application part. In the theoretical part, �rst the ma-
terials including the vision systems and food data sets used in this thesis are
described in section 2. Next, in an introductory chapter (chapter 3) the main
methodological considerations for this thesis are outlined. The basic methods
used in the papers are explained in chapter 4 and �nally, for each theoretical
paper, a separate chapter is dedicated (chapter 5 - 8 ). Part II is about the
application of some of the methods explained in part I and for each paper that
is about the application of the described methods, one chapter is considered
(chapter 9 - 12). Finally, we conclude this thesis in chapter 13.

Papers For each paper, an extended abstract is provided as a single chapter in
its relevant part. The papers are placed in an appendix. The extended abstracts
give an overview of the papers and help the reader to �nd the details of interest.
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Reading Flow This thesis is written so that it can be read from the beginning
to the end. As the papers are included in the appendix, the reader does not
need to read all of them and can choose upon his interest. In the following, the
abbreviations used in this thesis are listed to help the reader.

1.4.1 Abbreviation

ANN Arti�cial Neural Networks

CCD - Charge Coupled Device

CIFQ - Center for Imaging Food Quality

DCT - Discrete Cosine Transform

DPA - Discrimination Power Analysis

EN - Elastic Net

FL - Fused lasso

HSIC - Hilbert - Schmidt Independence Criterion

LAR - Least angle regression

Lasso - Least Absolute Shrinkage and Selection Operator

LED - Light Emitting Diode

LOOCV - Leave-One-Out Cross Validation

MAP - Maximum a Posteriory

MHT - Multiple Hypothesis Testing

NIR - Near Infrared

PC - Principal Component

PCA - Principal Component Analysis

PLS - Partial Least Square

RBFANN - Radia Basis Function ANN

ROI - Region of Interest

SLS - Static Light Scattering

SPCA - Sparse Principal Component Analysis
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SPLS - Sparse Partial Least Square

SSC - Solvable Solid Content

SSPCA - Sparse Supervised Principal Component Analysis

SVD - Singular Value Decomposition

SVM - Support Vector Machine

UV - Ultra Violet

VIS - Visible



Part I

Materials and Methods





Chapter 2

Vision systems and spectral
data materials

The data sets used in this thesis were formed using di�erent imaging techniques.
In this chapter, �rst the vision systems are described. Then, the data sets and
their related challenges are introduced.

2.1 Vision instruments for food analysis

In the �rst step of the work, a vision system acquires the digital signal or image
of a food item. The signal/image is the re�ectance of the light illuminated to a
point/surface of the object and sensed by the vision device. The light might be
illuminated in several hundreds of wavelengths depending on the spectral range
(visible (VIS), near infra red (NIR)) and resolution of the vision instrument.
The VIS covers 380-750 nm and the NIR covers 780-2500 nm. Sometimes, the
ultra violet (UV) bands which are below 380 nm are also used. The VIS mainly
shows the visual and physical characteristics such as color and texture while
the NIR regimes signal can be in�uenced by features that are correlated to the
chemical characteristics such as rheology, particle size and etc. Figure 2.1 shows
the position of these bands in the frequency spectrum.
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Figure 2.1: Illustration of the position of UV-VIS-NIR regions in the fre-
quency spectrum (Dissing, 2011)

There are di�erent imaging devices and depending on the food items physical
and chemical characteristics and desired quality parameters, the most suitable
device can be chosen.

2.1.1 Colorimeter

Colorimeters are traditional instruments for measurements of color in di�erent
color spaces such as L∗a∗b∗ or XY Z in the food industry. They provide a
quantitative measurement in a similar way to the human eye (Wu and Sun, 2013;
Balaban and Odabasi, 2006). The minolta chromameter and Hunter Lab are
examples of colorimeters that are used for food items. However, such traditional
instrumental measurements can only measure the surface of a sample that is
uniform and rather small (Balaban and Odabasi, 2006). Hence, they cannot
completely represent the surface characteristics especially when it is non-uniform
and highly textured. Figure 2.2 shows a colorimeter device.

2.1.2 CCD Camera

One of the conventional imaging techniques is based on the analysis of RGB im-
ages captured by a Charged Coupled Device (CCD) camera (Pallottino et al.,
2010; Larsen et al., 2014). Similar to the human eye, a CCD is capable of ab-
sorbing photons in the visible area of the electro magnetic spectrum depicted in
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Figure 2.2: A CR-400 chroma meter from Konika Minolta (konicaminolta,
2015)

.

�gure 2.1. It has similar �lters to the human eye �lters or cones; β , γ and ρ. In
the standard RGB image, there are three channels; Red (650 nm), Green (510
nm) and blue (475 nm) (see �gure 2.3). A CCD converts the electro magnetic
spectrum to electrical impulses to be interpreted as numerical values. The com-
mon CCD basically integrates all the incoming light in the visible area giving
rise to monochromatic images (Dissing, 2011).

The external view and visual characteristics such as color and texture of a food
item can be extracted using an RGB image. However, the internal view, that
is important for some quality parameters such as chemical components, can not
be screened. In addition, it is ine�cient in the case of objects of similar colour
(ElMasry and Sun, 2010). Figure 2.5(a) shows an RGB image of some wok-fried
celeriac.

2.1.3 Spectrophotometer

Another widely used method is spectroscopy. Usually in this method, a spec-
trophotometer is used to illuminate light into a small surface area in hundreds
of bands of electromagnetic spectrum. The interaction of the electromagnetic
radiation with atoms and molecules of the object under study that creates opti-
cal properties such as re�ectance or absorption are analyzed (ElMasry and Sun,
2010). This analysis helps to qualify and quantify chemical and physical infor-
mation contained within the wavelength spectrum based on the fact that, certain
materials have unique �ngerprints or spectral signatures in the electromagnetic
spectrum. Therefore, it is possible to identify the chemical composition of a
food item (that can be related to its quality) based on this. For example, all
biological substances contain thousands of C�H (such as organic compounds
and petroleum derivatives), O�H (such as moisture, carbohydrate and fat)
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Figure 2.3: Spectral sensitivity of the human eye to color roughly matches to
the RGB images

Figure 2.4: View of a spectrophotometer measuring the light di�usely re-
�ected from a fruit (Bernd Herold, 2008)

and N�H (such as proteins and amino acids) molecular bonds. The bonds
of organic molecules change their vibration response energy when irradiated by
NIR frequencies and exhibit absorption peaks through the spectrum (ElMasry
and Sun, 2010). Thus, qualitative and quantitative chemical and physical in-
formation is contained within the wavelength spectrum of absorbed energy or
re�ected energy. Absorbance and re�ectance have reverse relation. In �gure 2.4
a spectrophotometer that is used for measuring the light di�usion of a fruit is
illustrated (Bernd Herold, 2008). Figure 2.5(b) shows the spectroscopy signal
of an apple.

However, spectroscopic techniques are point-based so that only the amount of
light re�ected or transmitted from a speci�c area of a sample are sensed and do
not give information on the spatial distribution of light in the sample. Therefore,
they are not suitable for heterogeneous structures.
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Figure 2.5: (a) an RGB image of some wok-fried celeriac, (b) spectroscopic
signal of an apple (c) spectral images of the wok-fried celeriac

2.1.4 Multi/Hyper spectral imaging device

Multi/hyper spectral imaging techniques integrate advantages of conventional
image-based techniques and spectroscopy methods. They acquire both spatial
and spectral information, forming a series of sub-images, each one representing
the intensity distribution at a certain spectral band (see �gure 2.5(c)). There-
fore, a spectrum is obtained for each pixel in the image of a scene. Depending on
the spatial resolution and the structure of the sample under study, the acquired
spectra from a Region of Interest (ROI) may show the characteristics of some
mixed material instead of a pure spectrum of one singular material (ElMasry
and Sun, 2010). Spectral imaging is not suitable for liquids or homogenous
samples. A point-wise method such as spectroscopy is su�cient in this case,
since the advantage of acquiring 2D images than 1D signals lies in their ability
to consider the spatial heterogeneities in samples (ElMasry and Sun, 2010).

There are di�erent methods and devices for capturing spectral images. Most
of the spectral images used in this thesis were acquired by VideometerLab. It
is a spectral imaging instrument designed for fast and accurate determination
of surface color and chemical composition. As shown in �gure 2.6(a), it has
an integrating sphere or so-called Ulbricht sphere, which has its interior coated
with a matt-white coating (Dissing, 2011). The coating, together with the
curvature of the sphere provides high di�use re�ectivity for optimal uniform
light conditions. There are Light Emitting Diodes (LEDs), positioned side by
side in a pattern which distributes the LEDs belonging to each wavelength
uniformly around the entire rim. Figure 2.6(b) shows the spectral radiant power
distributions of LEDs. As can be seen, the spectral resolution of the LEDs
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Figure 2.6: (a) Principal set-up of the multispectral imaging system based
on integrating (Ulbricht) sphere illumination. The LEDs located
in the rim of the sphere ensures narrowband illumination. (b)
Normalized spectral power distributions of the LEDs located in the
VideometerLab. (c) Spectral sensitivity of the camera mounted in
VideometerLab (Dissing, 2011).

are much higher compared to RGB channels shown in �gure 2.3. The LEDs
strobe successively, each resulting in a monochrome image. These are calibrated
radiometrically as well as geometrically to obtain the optimal dynamic range
for each LED as well as to minimize distortions in the lens and thereby pixel-
correspondence across the spectral bands. In the top of the sphere there is a
camera with a sensitivity area corresponding to the desired spectra, as shown
in �gure 2.6(c). The well de�ned and di�use illumination of the optically closed
scene aims to avoid shadows and specular re�ections. Furthermore, the system
has been developed to guarantee the reproducibility of the collected images. This
allows for comparative studies of images taken at di�erent times (Gomez et al.,
2007). The dense sampling of the electromagnetic spectrum results in acquiring
more information about the object and increased ability to distinguish di�erent
types of materials and surface chemistry that is useful for food assessment.
However, the large amounts of information also creates large amounts of data
which needs more complicated processing strategies and more storage capacity
(Dissing, 2011).

2.1.5 Static light scattering (SLS)

In this new visioning method, a laser beam is illuminated to the surface of the
sample under study at an oblique incident angle of 45◦ and the resulting spatial
distribution of di�use re�ectance is captured using a CCD camera. The laser
beam has a high spectral range and resolution (465−1030nm,±5nm). Therefore,
the system is hyperspectral and the system captures a set of high dynamic range
(HDR) images at approximately 2 seconds/wavelength. Figure 2.7 shows the
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Figure 2.7: General schematic view of the hyperspectral SLS vision system

general schematic of the system. For more details about this system, we refer
to (Skytte et al., 2014).

2.2 Food data

In this thesis, di�erent food data sets from varieties of food items have been
studied. In this section, they are introduced and the related challenges are
described.

2.2.1 Multispectral images of meat

The meat data was provided by the Danish Meat Research Institute. Figure 2.8
shows six di�erent samples of meat from the data set. In this data set, there
were multispectral images of di�erent types of turkey, chicken, beef, veal and
pork. For each meat sample, multispectral images were acquired at 20 di�erent
wavelengths ranging from 430 to 970 nm using a VideometerLab. In addition,
the reference values of the L∗a∗b∗ color of the samples were available. Two
Minolta Chroma Meters CR300 and CR400 were used for that. The aim is to
develop a prediction model for L∗a∗b∗ values based on the spectral images using
a minimum number of bands. Totally, 52 meat samples were digitized. They
were divided randomly into training and test sets 25 times. In each data set, the
number of training samples were 38. These were used for building the models
while the remaining 14 samples were kept as unseen data for the test step.



16 Vision systems and spectral data materials

Figure 2.8: Six di�erent meat samples

This data set was used in a paper that is described in chapter 5 and appendix
A.

2.2.2 Spectroscopic measurements of apples

Two data sets of apple spectroscopic measurements were analyzed in this the-
sis. The measurments and data preparation were performed at Copenhagen
University.

The �rst data set consisted of two types of Danish apples, "Aroma" and "Hol-
steiner Cox". There were 196 middle early season and 219 late season apples.
A spectrometer (MOE-1System, Tec5AG, Oberursel,Germany) was used to col-
lect re�ectance readings in 1 nm increments within a wavelength range between
400�1130 nm, yielding 731 values per spectrum. In addition the solvable solid
content (SSC) and acidity were available for each sample from laboratory mea-
surements. The aim is to develop prediction models for estimation of the SSC
and acidity of apples using the re�ectance spectra. In addition, di�erent sub-
sampling techniques are used to form training and test sets and their e�ect on
the overall performance of the prediction models is compared. Figure 2.9 shows
the raw spectra and its corresponding SSC signal for the apple type.

This data set was used in the paper that is described in chapter 9 and appendix
E.

The second data set was from an apple cultivar called �Rajka�. Spectroscopic
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Figure 2.9: Raw spectral patterns recorded in the VIS�NIR region
400�1100nm of apple type 'Aroma'. The absorption is shown
which is log( 1

Re�ectance
) (left) and the corresponding measured SSC

(right)

measurements were performed on both sides, exposed and non-exposed to the
sun and the average results were considered. The measurements were performed
for a total of 825 wavelengths (306-1130 nm) with 1 nm resolution. There were
185 data points (apple samples) in total. In addition, the SSC (%Brix) and the
�rmness (N) values for each apple were available from laboratory measurements.
Figure 2.10 shows the spectroscopic data in UV/VIS and NIR wavelengths as
well as the corresponding sorted SSC and �rmness signals. The aim of the
analysis is to �nd the proper set of wavelengths carrying relevant information
for prediction of SSC and �rmness using the spectroscopic measurements. This
was done using the sparse regression methods and two model selection strategies.
The relation between the choice of statistical methods and the design of the
vision setups was also determined.

This data set was used in the papers that are described in chapters 7,8,11and
appendixes C, Dand G.

2.2.3 Multispectral images of vegetables

This data set was provided by DTU Food and National Food Institute. The
vegetable data set consists of multispectral images of two types of wok-fried
vegetables, carrot and celeriac. The vegetables were cut into cubes of size ap-
proximately 0.5cm2. Two batches of each type were used and there were two
replicate samples in each batch. In a pilot plant, the raw products were stir-
fried using a special frying machine; "the continuous wok" (Adler-Nissen, 2007).
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Figure 2.10: The UV/VIS and NIR wavelengths spectra of Rajka apple and
the corresponding SSC and �rmness signals.

After frying and cooling, the products were packed and frozen to −30◦C and
after about 60 days of freezing, the bags were removed from the freezer, thawed
and kept for up to 14 days at +5◦C in a refrigerator. On each day of analysis
(days 2, 5, 8, 11 and 14), two polyethylene bags were taken out of the refriger-
ator and digitized using a VideometerLab. Multispectral images were captured
at 19 di�erent wavelengths ranging from 430 to 970 nm. Figure 2.11 shows
multispectral images of a carrot sample in a petri dish.

After measurement with the VideometerLab, the samples were reheated and
served for a sensory panel of six assessors. The sensory evaluations were per-
formed in a sensory lab under normal daylight and at ambient temperature.
At the sensory assessment, appearance, smell, taste and texture were assessed.
Each attribute was given a score between zero and two or three demerit points.
In addition, an expert assessor score was developed based on the agreement of
the 6 assessors on each vegetable sample.

First, the multispectral images of carrot were analyzed to detect any signi�cant
changes over the days of storage. The results of this analysis is described in the
paper presented in chapter 10 and appendix F.

In the second step, a similar analysis was repeated for celeriac spectral data.
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Figure 2.11: Spectral images of carrot at 19 wavelengths. The center wave-
length in nanometer is given.

Besides that, the spectral as well as the sensory data of both vegetables were used
to develop prediction models for estimation of the sensory attributes using the
spectral data. The paper of this work is described in chapter 12 and appendix
H.

2.2.4 Di�use re�ectance spectral images of diary products

Two data sets of milk and diary products were provided from CIFQ (Skytte
et al., 2014).

One of the analyzed SLS data sets consisted of spectral di�use re�ectance images
of eight dairy products including milk and yogurt categories. There were 5
samples available per product (40 samples in total) and the laser was illuminated
in 55 wavelengths (460-1000 nm). The products di�ered from each other in
terms of fat and viscosity level. The analysis was performed to characterize and
discriminate them using their optical features that represent their chemical,
physical and structural di�erences. Figure 2.12 shows di�use re�ectance images
of two di�erent samples. This data set was used in the paper that is described
in chapter 6 and appendix B.

The second milk data set consisted of di�use re�ectance images of milk during
fermentation process in the controlled condition for fat, temperature and protein
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Figure 2.12: Di�use re�ectance images of (left) milk (%1.5) and (right) yogurt
(%3.5)

Figure 2.13: The spectro-temporal image set of milk fermentation process
(Red corresponds to high pixel intensity and blue corresponds to
low pixel intensity)

factors. In fermentation process, every 6 minute the hyperspectral imaging was
performed in 57 wavelengths (480-1040 nm). This resulted in a spectro-temporal
image set. Figure 2.13 shows the spectro-temporal map of �gures obtained
during the fermentation process. The process begins with a milk structure at
t1, and ends with a yogurt structure at t61. The experiments were repeated 8
times and in each round, the fat, protein and temperature level was controlled
in low or high level, forming a total of 23 combinations. In addition, three
experiments were conducted so that, all of the factors were in medium level.
This data set was used in the technical report that is described in chapter 8
and appendix D. The samples were used for classi�cation into one of the three
levels of fat contents using a minimum number of wavelengths and time indexes
to simplify the vision set-up and the reduce the complexity of the practical
experiments. In this work, the protein and temperature information weren't
used. A complete description about this can be found in (Skytte et al., 2014).
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Figure 2.14: The spectral data of 1042 �sh pelets in 256 wavelengths

2.2.5 Hyperspectral images of aquaculture feed pellets (NIR)

This data set was provided for a previous PhD work at DTU COMPUTE
(Ljungqvist et al., 2012). The data set consists of hyperspectral images of aqua-
culture feed pellets in the spectral range of 970-2500 nm in a step size of 6.3
nm, resulting in 256 spectral bands in the NIR range captured by a Specim
vision system. The �ll condition was used where there was white light in the
background. The pellets used were coated with �ve di�erent concentrations of
added synthetic astaxanthin (0, 20, 40, 60, 80 ppm). This data set was used in
(Ljungqvist et al., 2012). The aim of the study was to investigate the possibility
of predicting the concentration level of synthetic astaxanthin coating of feed
pellets by NIR hyperspectral image analysis and to distinguish the important
spectral features. Figure 2.14 shows a 3D visualization of this spectral data.
This data set was used as one of the examined data set in the technical report
described in chapter 8 and appendix D.
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Chapter 3

Introduction to
Methodology

This chapter gives an introduction about the topic of this thesis: multivariate
analysis techniques for optimal vision system design. It describes the general
strategies and approaches considered in this thesis.

3.1 Methodological strategies

Two di�erent methodological approaches are used in this thesis. One is to
employ or develop analytical solutions based on the type of data sets at hand and
their related challenges. Such solutions also align with the aims of this thesis.
The second approach is to develop solid analytical methods in the context of
this thesis goals and test them on di�erent data sets of food items.

Most of the challenges related to the data sets used in this thesis are prediction
of a desired quality parameters or characterization and discrimination.

On the other hand, as explained in section 1.2, the quality of each food item
is correlated into some of the electromagnetic wavelengths and reducing the
number of wavelengths can improve the analysis results.
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For the analysis of the data sets mainly two types of analytical methods are
employed; sparse regression methods and pre-processing for feature selection or
extraction followed by regression or discrimination.

3.1.1 Bene�ts of a sparse prediction model

In sparse regression methods, a regularization term is added to the loss function
of the model that penalizes the complexity of the model. This reduces the
variance of the model in price of a small increase in bias. The most correlated
variables to the response remain in the model and the other variable's coe�cients
are shrunken toward zero. This improves the performance of the model. In
addition, the resulting model can be interpreted easier.

3.1.2 Bene�ts of dimension reduction (feature selection
and extraction)

For feature selection, an objective function should be maximized or minimized
and for feature extraction, the features might be transformed into a new space
and some of the features are ignored as they are irrelevant and redundant and do
not contain useful information (Clemmensen, 2010). Reduction in the number
of variables helps to build a simpler model with less variance. The interpretation
also improves and the performance increases.

3.2 Supervised versus unsupervised analysis

In machine learning, a function �tting paradigm that involves learning through
a teacher is a supervised learning process. It requires training observations
including both input values or predictor variables xi and outputs or response
variables yi. Using both of these observations, the learning algorithm modi�es
its output f̂(xi) = ŷi based on a loss function L(y, ŷ) such as the di�erence

yi − f̂(xi) between the original and the generated outputs. This process is
known as learning by example (Hastie et al., 2009). At the end of learning
process, the expectation is that the estimated and real outputs be close enough
to each other so that, the algorithm can be used for future inputs likely to be
seen in training step.

In contrast, in unsupervised learning or �learning without a teacher�, the ob-
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servations only consists of the input variables xi and the outputs yi are not
available. The dimension of X is sometimes much higher than in supervised
learning, and the properties of interest are often more complicated (Hastie et al.,
2009). These methods look for some patterns in data described by some cri-
terion such as maximum variance, maximum correlation or minimum distance
(Clemmensen, 2010). Di�erent statistical tools may be used for analysis such as
Gaussian mixtures, clustering, multidimensional scaling, principal component
analysis (PCA) and etc. It is di�cult to ascertain the validity of inferences
drawn from the output of most unsupervised learning algorithms.

Most of the analysis that is performed in this thesis are supervised. However,
one unsupervised feature selection method is proposed for the analysis of food
items based on local maxima of spectral data. It is explained in chapter 8.

3.3 Linear verses non-linear analysis

In a linear analysis, the relationship between the input or predictor variables xi
and the output or response yi is modeled as a linear function. For example, a
simple linear regression model is as follows:

Ŷ = βX + ε = β̂0 +

P∑
j=/

Xj β̂j + ε (3.1)

where XT = (X1,, X2, ..., XP ) is the input and the output Y is predicted via
this model. In this model, β is an unknown parameter and can be computed
by di�erent methods which will be explained in more details in section 4.1.1.
β̂0 is intercept or bias and ε is the residual error. Viewing as a function over
the p-dimensional input space, it is linear and in the 1 + P dimensional space,
(X, Ŷ ) represents a hyperplane.

In contrast, some analysis methods model the relation between input and output
as a non-linear function. Examples are the family of arti�cial neural networks
(ANN) or kernel based methods like support vector machine (SVM). In ANN,
the main idea is to extract a linear combinations of the inputs as derived features,
and then model the target as a non-linear function of these features (Hastie et al.,
2009). Depending on a classi�cation/regression task, SVM produces non-linear
boundaries/estimation by constructing a linear boundary/estimation in a large,
transformed version of the feature space. In this thesis both ANN and SVM
were used for regression. They will be described in more detail in section 4.1.2.
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(a)

(b)

Figure 3.1: (a-left) The scatter plot of the original as well as estimated a∗ color
component of meat (using the linear OLS method) versus the input
signal in one NIR band (in each input image, the average ROI was
considered). (a-right) the estimated a∗ by OLS versus the original
color component. (b-left and right), showing the same as (a) using
a non-linear RBFANN.
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The choice of a linear or non-linear method depends on the behavior of the
data. It is useful to compare the performance of the two strategies for making
an appropriate decision. As an example, �gure 3.1 illustrates the regression
results for prediction of the a∗ color component of meat data described in section
2.2.1. In this �gure, y is the a∗ color component that is estimated using the
multispectral images of meat. In �gure 3.1a in left side, both the original as well
as the estimated a∗ color component by the OLS method are plotted versus the
input from one NIR wavelength. A linear trend between the input and output
can be observed. The estimated samples are close to the original ones in most
cases. In the right side, the estimated a∗ color component verses the original
one is shown. As can be seen, they closely follow the ideal line. Figure 3.1b
shows the same for the non-linear RBFANN method. This regression method is
explained more in section 4.1.2.1. Compared to the OLS, the results obtained by
RBFANN is less accurate. That shows the e�ect of the type of relation between
input and output and data behavior, on the selection of the prediction strategy.
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Chapter 4

Basic Methods

In this chapter, the basic methods that the included papers use them or are
based on are described. Some of these methods are also used in the papers
included in the application part.

The methods are categorized so that, in the �rst section just regression methods
are described. The second section is about the pre-processing methods. Finally,
the model selection strategies used in this thesis are explained.

4.1 Regression methods

In this section, the linear as well as non-linear regression methods used in this
thesis are described.
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4.1.1 Linear regression methods

4.1.1.1 Ordinary least square (OLS)

One of the popular linear regression methods is OLS. Assuming a P dimensional
input vector XT = (X1, X2, ..., Xp), and a real-valued output or response vector
Y , a linear regression model as shown in section 3.3 has the form:

Ŷ = βX + ε = β̂0 +

P∑
j=1

Xj β̂j + ε (4.1)

where ε is the model error or residual and is assumed to be independent and
normally distributed. The most popular and simplest method for computation
of the unknown parameter β is the minimization of the residual sum of squares.
βOLS includes the intercept parameter β0 as a 1 is included into xi.

RSS(βOLS) =

N∑
i=1

(yi=x
T
i βOLS)2 (4.2)

RSS(β) is a quadratic function of the parameters, and hence its minimum always
exists. Changing the notation into matrix and taking the derivative with respect
to β, a unique solution is obtained. XTX should be non singular and X is a
matrix of N rows showing the observations and 1 + P columns of P variables.
The �rst column is of 1s for including the intercept.

RSS(βOLS) = (Y=XβOLS)T (Y=XβOLS), (4.3)

∂RSS

∂β
= XT (Y=XβOLS) = 0 (4.4)

β̂OLS = (XTX)=1XTY (4.5)

Figure 4.1 shows a geometrical representation of the least squares estimate in a
R3. As can be seen the residual y− ŷ is orthogonal to the hyperplane. The min-
imization of RSSβ results in the βOLS so that the residual vector is orthogonal
to this subspace. This orthogonality is expressed in equation 4.4.
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Figure 4.1: Illustration of the N-dimensional geometry of least squares regres-
sion with two predictors. ŷ is the predicted response and y is the
real response. The predicted output is the orthogonal projection
of y onto the hyperplane spanned by the input vectors x1 and x2.

In many data sets, the columns of X might not be totally independent (which
is the case for spectral signals and images) or the number of observations N is
smaller than the number of variables P (which happens for many real data).
This causes the X not to bet of full-rank. One way to solve this problem is a
kind of pre-processing to �lter some of the covariates or applying a regularization
term. Some related methods in this case are explained in the following sections.
For more information we refer to (Hastie et al., 2009).

4.1.1.2 Ridge regression

As stated above, when there are many correlated variables in a data set, the
prediction of the variable's regression coe�cients is very di�cult due to the
rank de�ciencies. The poorly determined coe�cients have high variance. Ridge
regression (Hoerl and Kennard, 1970) alleviates this problem so that, the coef-
�cients sizes are penalized by adding a norm two (L2) regularization constraint
to the least square problem.

β̂ridge = arg min
β


N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ

P∑
j=1

β2
j

 (4.6)

In this way, the coe�cients are shrunken toward zero and λ ≥ 0 controls the
amount of shrinkage. It is necessary to normalize the inputs before solving the
ridge as it is not equivalent under scaling of the inputs. Therefore, the input
matrix X has P (rather than P + 1) columns. The matrix form notation is
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considered to �nd β:

RSS(λ) = (y=Xβ)T (y=Xβ) + λβTβ, (4.7)

β̂ridge = (XTX + λI)−1XTY (4.8)

where I is the P × P identity matrix. The ridge regression solution βridge is
again a linear function of y. Always a positive constant is added to the diagonal
of XTX before inversion to avoid singularity.

On the other hand, the singular value decomposition (SVD) of the centered
input matrixX helps to �nd additional insight into the nature of ridge regression
(Hastie et al., 2009).

XN×P = UDV T (4.9)

where UN×P and VP×P are orthogonal matrices spanning the column and row
space of X respectively. D is a P × P diagonal matrix of singular values and
d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 . Applying this for X in ridge regression, we have:

Xβ̂ridge = X(XTX + λI)=1XT y = UD(D2 + λI)=1DUT y =

P∑
j=1

uj
d2
j

d2
j + λ

uTj y,

(4.10)

where the uj are the columns of U . Since λ ≥ 0, we have
d2j

d2j+λ
≤ 1. Thus,

ridge regression computes the coordinates of y with respect to the orthonormal

basis U . For the principal components zj = Xvj = ujdj , the variance
d2j
N

decreases as j increases. From equation 4.10 it can be observed that ridge
shrinks the basis vectors or normalized principal components uj by the factors
d2j

d2j+λ
. Therefore, the coordinates of the basis vector with smaller variance d2

j are

shrunken more. Figure 4.2 shows a two dimensional data and its corresponding
principal components direction. As can be seen, one of the components is larger
than the other and therefore, its corresponding direction maximizes the variance
of the projected data, and the smallest principal component minimizes that
variance. Ridge regression projects y onto these components, and then shrinks
the coe�cients of the low-variance components more than the high-variance
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Figure 4.2: Illustration of a two dimensional data and its corresponding prin-
cipal components. (Hastie et al., 2009)

components. Since in most cases the predictors vary with the response variable,
the ridge shrinkage strategy is reasonable. However, it cannot be considered as
a general case for all data sets.

4.1.1.3 Lasso

The lasso is a shrinkage method like ridge, but it also has the sparsity nature,
which means that some of the coe�cients may become zero in shrinkage (Tib-
shirani, 1994). Instead of a norm two constraint, a norm one constraint (L1) is
applied:

βlasso = arg min
β

1

2

N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ

P∑
j=1

|βj |

 (4.11)

The computation procedure for βlasso is di�erent from ridge. Substitution of
(L2) by an (L1) constraint makes the solutions non-linear in the yi, and there is
no closed form expression as in ridge regression. A higher λ value means more
shrinkage as was also in ridge. However, ridge regression does a proportional

shrinkage (
β̂j

1+λ ), while Lasso translates each coe�cient by a constant factor

λ which is called �soft thresholding , sign(β̂j)(
∣∣∣β̂j∣∣∣ − λ)+. One well known

illustrative comparison of ridge and lasso for a two variable case is depicted in
�gure 4.3. As can be seen, the constraint region for ridge regression is the disk
β2

1 + β2
2 ≤ t2, while for lasso it is the diamond |β1| + |β2| ≤ t. The solution is
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Figure 4.3: Comparison of the error and constraint functions for the lasso (left)
and ridge regression (right) (Hastie et al., 2009). The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2,

respectively, while the red ellipses are the contours of the least
squares error function.

where the elliptical contours of least square hit the constraint region. Since the
diamond has corners, if the solution occurs at a corner, then its corresponding
parameter become zero. This might also happen when P > 2 and explain the
sparsity of lasso solution.

Lasso can be calculated using the Least angle regression (LAR) method just by
a simple modi�cation. LAR builds a model sequentially, adding one variable at
a time. At each step, it identi�es the best variable to include in an active set,
and then updates the least squares �t. Not all the variables should necessarily
be added to the model. At the �rst step, the coe�cient of the variable that is
most correlated with the response is moved continuously toward its least squares
value (causing its correlation with the evolving residual to decrease in absolute
value). As soon as another variable �catches up� in terms of correlation with the
residual, the process is paused. The second variable then joins the active set, and
their coe�cients are moved together in a way that keeps their correlations tied
and decreasing. This process is continued until all the variables are in the model,
and ends at the full least-squares �t. However, the minimum error for test data
may be found in a middle step before all the β coe�cients be calculated. In
(Hastie et al., 2009), more explanation in this case could be found. In contrast
to LAR, if in a lasso path a non-zero coe�cient hit zero, its variable should
be dropped out from the active set of variables and be treated like other zero
coe�cients.
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4.1.1.4 Elastic net (EN)

Elastic-net is in fact a compromise between lasso and ridge (Zou and Hastie,
2005; Hastie et al., 2009). Looking to the formulation of elastic net in equation
4.12 shows that how each coe�cient is calculated as a weighted combination
of ridge and lasso. The elastic-net selects variables like the lasso and shrinks
together the coe�cients of correlated predictors like ridge. This will reduce the
variance but at the same time the bias is not as much as it is in lasso.

βEN = arg min
β

1

2

N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ

P∑
j=1

((1− α) |βj |+ αβ2
j )


= arg min

β

1

2

N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ1

P∑
j=1

(|βj |) + λ2

p∑
j=1

(β2
j )


(4.12)

4.1.1.5 Fused lasso (FL)

Fused lasso is a generalized version of lasso that encourages sparsity by means
of the (L1) norm penalty on both regression coe�cients and their successive
di�erences (Tibshirani et al., 2005):

βFL = arg min
β

1

2

N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ1

P∑
j=1

|βj |+ λ2

P∑
j=2

|βj − βj−1|


(4.13)

The fused lasso is especially useful for the N � P cases, since it sets many
coe�cients to zero and �nds groups of close features. The �rst penalty term
encourages sparsity in the coe�cients and the second one encourages sparsity in
their di�erences. Therefore, with this solution, groups of adjacent wavelengths
are found.
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4.1.1.6 Partial least square (PLS)

PLS is one of the widely used linear regression methods. It uses both Y , and
X, for construction of a set of linear combinations of the inputs for regression.
Therefore, its solution path is a non-linear function of Y . PLS seeks direc-
tions that have high variance and have high correlation with the response. For
computation of the regression coe�cients βPLS , �rst successive optimization is
performed to calculate W = (w1, w2, ..., wK), so that:

wk = arg max
w

(cor2(Y,Xw)var(Xw)) s.t. wTw = 1, wTΣXXwj = 0

(4.14)
for j = 1, ..., k−1, where ΣXX is covariance of X and K is the number of latent
components. Then, the latent component matrix TN×K = XW is computed
thereby the response matrix YN×q and the predictor matrix XN×P are decom-
posed into latent vectors; Y = TQT +F and X = TPT +E. TN×K is a matrix
of K linear combinations (scores), Pp×k and Qq×k are matrices of coe�cients
(loadings) and En×p and Fn×q are matrices of random errors.

One way to solve the PLS problem is using the statistically inspired modi�cation
of PLS (SIMPLS) (de Jong, 1993) in which, the kth estimated direction vector
ŵk is found by solving the following optimization problem:

ŵk = arg max
w

wTσXY σXY w s.t. wTw = 1, wTΣXXwj = 0 , (4.15)

σXY and ΣXX are the populations covariances of X and Y that can be replaced
by the samples covariances (SXX , SXY ):

wk = arg max
w

wTXTY Y TXw s.t. wTw = 1, wTSXXwj = 0 (4.16)

For the details of solution we refer to (de Jong, 1993). Using W , the latent

components T and loadings Q are computed. Finally, β̂PLS is obtained by
β̂PLS = Ŵ Q̂T .

An older solution for PLS is an iterative algorithm as explained in (Hastie et al.,
2009).
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Figure 4.4: The ANN diagram for regression with one hidden layer.

4.1.2 Non-linear regression methods

There are di�erent non-linear methods for regression. In this thesis two of
them are used; Arti�cial Neural Net works (ANN) and Support Vector Machine
(SVM) as a kernel-based method.

4.1.2.1 Arti�cial neural networks (ANN)

The general architecture of a simple ANN for regression with one hidden layer is
shown in �gure 4.4. First,M linear combinations of the input variables are built
and then each combination is transformed using an activation function h(.):

φj(X) = h(Σi=Pi=1 αijxk + α0j), j = 1, ..,M (4.17)

where αij is the weight parameter and α0j is the bias. Then, the output Ŷ is
constructed as a linearly weighted combination of the non-linear basis functions
φj(X):

Ŷ (X;β) = f

 M∑
j=1

βjφj(X) + β0

 (4.18)

βj and β0 are the weight and bias parameters respectively, and f(.) is an acti-
vation function which is usually, the identity function in the case of regression
(Bishop, 2006).
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ANN models are complex and di�cult to interpret. Depending on the nature of
data, they might result in better performance than linear methods. The number
of hidden layers and neurons in�uence the architecture of an ANN. In addition,
the choice of basis function can determine the type of ANN. In the following the
three important types that is used in this thesis are described:

feed-forward ANN One widely used ANN is the single hidden layer feed-
forward ANN which uses a sigmoid basis function:

φj(X) = σj(X) =
1

1 + exp(−SjX)
(4.19)

where, Sj is the scale parameter which controls the activation rate. A large
scale may cause hard activation around 0.

Radial Basis Function ANN (RBFNN) RBFNN uses a non-linear RBF
based on Euclidean distance or Mahalanobis distance (like a Gaussian kernel
function):

φj(X) = ρj (‖X − µj‖) (4.20)

Where µj is the center vector of the jth hidden node and ρ is the distance
function. The RBFNN also has one hidden layer.

Parameter estimation The parameters of the ANN models are commonly
estimated by minimization of the sum of square function as shown in equation
4.21. The Back Propagation (BP) procedure is used (Hastie et al., 2009) to
solve this which is a gradient descent process.

E(β) = min

N∑
n=1

∥∥∥Ŷ (Xn;β)− Y
∥∥∥2

(4.21)

BPANN is a well known and widely used network. Although it is a powerful
algorithm, it has some drawbacks. One important problem with the error func-
tion minimization for complex and �exible models is the over-�tting on training
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data and poor generalization. Because a complex model is more �exible in cap-
turing the training data behavior. Other problems are slow convergence and
the possibility that the network converges to a local minima.

Due to these problems, di�erent strategies are employed as can be found in
the literature (Bishop, 2006, 2003; Hagan et al., 1996). Examples are ANN
with Adaptive learning rate and momentum term and di�erent regularization
approaches to constrain the parameters.

ANNwith Adaptive Learning Rate andMomentum Term Considering
the error minimization in Equation 4.21, the gradient ∇E(β) can be obtained
by means of back-propagation of errors through the layers. This gradient is used
in the family of gradient training algorithms which iteratively form:

βk+1 = βk − ηk∇E(βk), k = 0, 1, 2, ... (4.22)

where βk is the current weight, −ηk is the learning rate and k is the step
number and −ηk∇E(βk) shows the search direction. The BP gradient-based
training algorithms minimize the error function using the above gradient decent
or steepest descent method with constant, heuristically chosen, learning rate.
The learning rate determines how fast a network will learn the relationships
between input and output patterns. A smaller value of the learning rate means
a slower learning process. In fact, the optimal learning rate changes during
the training process, as the algorithm moves across the performance surface.
Therefore, the performance of the steepest descent algorithm would improve
if the learning rate change during the training process. An adaptive learning
rate attempts to keep the learning step size as large as possible while keeping
learning stable (Hagan et al., 1996).

The idea about using a momentum BP is to stabilize the weight change and
smooth the oscillation in the trajectory. Therefore, a fraction of the previous
weight change ∆βk is considered in updating of the current weights βk+1. Acting
like a low-pass �lter, momentum allows the network to ignore small local minima
in the error surface and slide through them. It also speeds the convergence
because, when all weight changes are in the same direction, the momentum
ampli�es the learning rate.

∆βk+1 = γ∆βk − (1− γ)ηk∇E(βk), k = 0, 1, 2, ... (4.23)

where γ is the momentum coe�cient and should be between 0 and 1. This
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gives the system a certain amount of inertia since the weight vector will tend to
continue moving in the same direction unless opposed by the gradient term.

Regularization of ANN

Feed-Forward ANNRegularization The simplest regularizer is the quadratic
in which, a penalty term is added to the error function and penalizes the sum of
weights toward zero similar to the regularization of the linear methods. This is
called weight decay and is shown in equation 4.24. λ is the regularization ratio
which controls the trade-o� between �tting the data and generalization of the
model.

min

(
N∑
n=1

‖ŷ(xn;β)− yn‖2 + λ

N∑
i=1

β2
i

)
(4.24)

One strong regularization method is the Bayesian regularization that estimates
the ANN parameters by a probabilistic approach (Bishop, 2006). Both the
model output targets Y and parameters β are characterized as random variables
with normal distributions. Then, the Bayesian rule is applied, to calculate their
prior and posterior probabilities. Consequently, the predictive distribution of
the output is obtained, using the sum and product rules for probabilities as
shown in equation 4.25. For more details we refer to (Bishop, 2006, 2003).

P (Ŷ | X,Ytr) =

∫
P (Ŷ | X,β).P (β | Ytr)dβ (4.25)

where, Ytr denotes the data used for training the model. The averaging nature
of the Bayesian method over many di�erent possible solutions solves the over-
�tting problem.

BPANN are sensitive to the number of neurons in their hidden layers. Too few
neurons can lead to under �tting and too many neurons can cause over �tting.
Therefore, for training of the ANN algorithms it is necessary to loop over the
number of hidden nodes for an appropriate choice. In addition, it is useful to
restart the network and train from di�erent initial points to avoid falling in a
local minima.
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RBFNN Regularization For generalization of the RBFNN, the GRNN is
used (Specht, 1993). In GRNN, the best prediction with minimum variance is
obtained as the conditional mean value of Ytr given X.

Ŷ (X) = E 〈Ytr | X〉 =

∫ +∞

−∞
YtrP (Ytr | X)dYtr (4.26)

This could be calculated using the joint probability. GRNN uses a non-parametric
approach to calculate the joint probability P (X,Ytr) by a Gaussian isotropic ker-
nel (Parzen window). The resulting probabilistic output is shown in equation
4.28. The numerator is the sum of the weighted training targets which con-
tribute according to their joint probabilities with the input test sample, to form
the output target. The denominator normalizes the solution.

Ŷ (X) =

∫ +∞
−∞ YtrP (X,Ytr)dYtr∫ +∞
−∞ P (X,Ytr)dYtr

(4.27)

Ŷ (X) =

∑N
i=1 Y

i
trexp(−

D2
i

2σ2 )∑N
i=1 exp(−

D2
i

2σ2 )
(4.28)

where Di = (X−Xi
tr)

T (X−Xi
tr) and Y

i
tr, X

i
tr are the i

thtraining sample values.
σ is the standard deviation of the Gaussian kernel and is called the smoothing
parameter. As can be realized from this equation, the contribution weights are in
fact the Mahalanobis distance of the test input from the training samples. This
means that the closer training samples will contribute more in the prediction
of the output target. The smoothing parameter has great e�ect on the output
prediction. With larger σ, more training data will contribute in the target
output than with a small σ.

4.1.2.2 Support vector machine (SVM)

SVM can be used for both classi�cation as well as regression problems. There
is no assumption about the distribution of the population in this method. In
this thesis, it have been used for both purposes. Therefore, both methods will
be explained brie�y. For more details we refer to (Hastie et al., 2009). In this
thesis, the LIBSVM toolbox was used for solving the SVM problem (Chang and
Lin, 2011).
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SVM for classi�cation Considering a set of N pairs of training samples
(x1, y1), (x2, y2), ...(xN , yN ), with xi ∈ RP and yi ∈ {−1, 1} so that, the two
classes have overlap in feature space, the decision boundary is de�ned as a
hyperplane (in this case a line, f(x) = xTβ + β0) that creates the biggest
margin M = 1

‖β‖ between the training points of the two classes. SVM de�nes

slack variables for such samples ξ = {ξ1, ξ2, ..., ξN} and for those in the right
side ξi = 0 as shown in �gure 4.5. A convex quadratic optimization problem
should be solved to compute the parameters of the boundary function:

min ββ0

1
2 ‖β‖

2
+ CΣNi=1ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi∀i

(4.29)

ξi is the proportional amount by which the prediction f(xi) = xTi β + β0 is
on the wrong side of its margin. Hence by bounding the sum Σξi, the total
proportional amount by which predictions fall on the wrong side of their margin
are bounded.

Here we do not explain the details about the solution of this optimization prob-
lem which results in �nding β and β0. Using these parameters, the decision

function can be written as Ĝ(x) = sign
[
f̂(x)

]
= sign

[
xTβ + β0

]
. More details

can be found in (Hastie et al., 2009).

SVM can also be de�ned based on kernels by enlarging the feature space using
basis expansions such as polynomials or splines. That is, class separation with
linear boundaries improves in higher dimensional spaces and they become non-
linear boundaries when transferred into the original space. For this aim, a non-
linear basis function hm(x),m = 1, 2, ...,M is considered. In the next step, the
SVM classi�er is de�ned using input features h(xi) = (h1(xi), h2(xi), ..., hM (xi)),

i = 1, ..., N , thereby a nonlinear function f̂(x) = h(x)Tβ + β0 is created. In
order to kernelize this function, the optimization problem and its solution are
re-written based on the inner product of the input features. This results in
replacement of a kernel instead of the inner product of the transformed feature
vectors h(xi):

K(x, x
′
) =

〈
h(x), h(x

′
)
〉

(4.30)

K should be a symmetric positive (semi-) de�nite function such as a polynomial,
radial basis or hyperbolic tangent (sigmoid). The new kernelized boundary

function is f(x) =
∑N
i=1 α̂iyiK(x, xi)+ β̂0 which is used by the decision function

Ĝ(x) = sign
[
f̂(x)

]
.
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Figure 4.5: Support vector classi�ers for a two class problem. The decision
boundary is shown by a solid line and the shaded maximal margin
is bounded by the broken lines with the width M = 1

‖β‖ on each

side. The support vectors are the training samples located inside
the margin area and labeled as ξ∗j (Hastie et al., 2009).

SVM for regression SVM can also be used for regression. Similar to clas-
si�cation, for regression purpose it is also characterized based on a maximum
margin algorithm. Given the set of training data {(x1, y1), ..., (xN , yN )}, SVM
�nds a f(x) function that has at most ε deviation from the actual target y. For
a linear regression the input feature space is used and for a nonlinear general-
ization (that we explain here), the features are mapped to an M-dimensional
feature space using non-linear basis functions h(x). This is similar to classi�ca-
tion. Then, a linear model is constructed in this feature space:

f(x, β) =

M∑
m=1

βmhm(x) + β0 (4.31)

To estimate βm and β0, the following objective should be minimized:

min
β,β0

H(β, β0) =

N∑
i=1

V (yi=f(xi)) +
λ

2
‖βm‖2 (4.32)

V (.) is a loss function called ε − sensitive de�ned based on the residual r =
yi − f(xi):

Vε(r) =

{
0 if |r| < ε

|r| − ε otherwise
(4.33)

The function ignores errors of size less than ε . There is a similarity between
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this function and the idea used in support vector classi�cation, where points on
the correct side of the decision boundary and far away from it, are ignored in
the optimization. In regression, these low error points are the ones with small
residuals (Hastie et al., 2009).

The second term in equation 4.32 controls the complexity level of the model.
This optimization leads to a kernel based solution:

f̂(x) = h(x)T β̂ =

N∑
i=1

αiK(x, xi), α̂ = (HHT + λI)−1Y (4.34)

where K(x, xi) =
∑M
m=1 hm(x)hm(xi). Then similar to the support vector

machine, there is no need to specify or evaluate the large set of functions
h1(x), h2(x), ..., hM (x). Only the inner product kernel need be evaluated. For
more information, we refer to (Hastie et al., 2009).

4.2 Pre-processing methods

In data analysis, pre-processing is used to prepare data before the analysis
for example to remove the noisy, redundant and irrelevant information from
data. This leads to a reduction in the dimensionality of data that improves the
generalization and training time. There are di�erent pre-processing approaches.
In this thesis some feature extraction and feature selection methods are used.

4.2.1 Feature extraction

Feature extraction is a dimension reduction strategy. When the number of
spectral variables are high, it is more likely that some of the variables be re-
dundant or not representative enough to be used directly. In feature extraction
approach, features are projected into a new space with lower dimensionality
(Alelyani et al., 2013). The extracted features are expected to contain relevant
information from the input data, so that they can result in better performance
than the initial data. Feature extraction can be performed as an unsupervised
or supervised framework. In the following the state of the art feature extraction
methods used in this thesis are explained.
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4.2.1.1 Principal component analysis (PCA)

Principal component analysis is a classic method for unsupervised dimension
reduction introduced in (Pearson, 1901). It is a sequence of transformations of
a set of observations of possibly correlated variables into an orthogonal space
where they are mutually uncorrelated and ordered in variance. The new trans-
formed variables are called principal components (PC). Each PC is a linear
combination of all original variables. In fact, the PCs are linear manifolds ap-
proximating the set of input points.

We consider a matrix of N observations with P variables XN×P = {x1, ..., xN},
with column-wise zero empirical mean. For a linear approximation of rank q
, PCA can be used. Mathematically, the transformation is de�ned by a set of
P-dimensional vectors of weights or loadings vk = (vk1, . . . , vkP ), k = 1, ..., q
that map each row vector xi, i = 1, ..., N of X to a new vector of PC scores
ti = (ti1, . . . , tiP ), given by {tki} = xi ·vk. So that, the individual variables of ti
considered over the data set successively inherit the maximum possible variance
from X, with each loading vector vk constrained to be a unit vector.

The computation starts for the �rst loading and component as follows:

v1 = arg max
‖v‖=1

{
N∑
i=1

t2ki

}
= arg max

‖v‖=1

N∑
i=1

(xi.v)
2

(4.35)

writing this in matrix form we have:

v1 = arg max
‖v‖=1

‖Xv‖2 = arg max
‖v‖=1

vTXTXv (4.36)

since vk is a unit length vector, equivalently we can write:

v1 = arg max
‖v‖=1

{
vTXTXv

vT v

}
(4.37)

This is a Rayleigh quotient and for a symmetric matrix such as XTX , the
quotient's maximum possible value is the largest eigenvalue λ1 of the matrix,
which occurs when v1 is the corresponding eigenvector.

With v1 found, the �rst PC can be found in the transformed co-ordinate t1 =
X.v1). Then, the kth component can be found by subtracting the �rst k − 1
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principal components from X:

X̂K = X −
K−1∑
S=1

Xvsv
T
s (4.38)

and then �nding the loading vector which extracts the maximum variance from
this new data matrix:

vk = arg max ‖v‖=1

{
X̂k−1v

}2

= arg max ‖v‖=1

{
vT X̂T

k−1X̂K−1v

vT v

}
(4.39)

These calculations result in �nding d number of loading or eigen vectors Vp×d
and PCs Tp×d = XV . The empirical covariance matrix Q = XTX = V ΛV T

which results in:

V TQV = Λ (4.40)

where Λ is a diagonal matrix of eigen values {λ1, ..., λd}.

Figure 4.6 shows an example of some 3D data projected to a 2D hyperplane
that is the �rst two PCs surface.

4.2.1.2 Sparse PCA

In PCA, each PC is a linear combination of all P variables and the loadings are
typically nonzero. This makes the interpretation di�cult. Usually it is preferred
to achieve both dimensionality reduction and variable selection together. One
simple way to achieve this is to threshold the loadings so that the loadings with
absolute values smaller than a threshold be set to zero (Cadima and Jolli�e,
1995). There are many research work for SPCA in literature. They are reviewed
in the paper that is described in chapter 7 and appendix C. Two of them are
brie�y explained here.

An algorithm called SCoTLASS based on regression or reconstruction error
property of PCs was developed in (Jolli�e et al., 2003). The procedure obtains
sparse loadings by directly imposing an L1 constraint on PCA. SCoTLASS
successively maximizes the variance:
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Figure 4.6: The best rank-two linear approximation of some 3D data (left).
Illustration of the projected data onto the �rst two PCs surface
(right) (Hastie et al., 2009).

vTk (XTX)vk

subject to:

{
vTk vk = 1

vTh vk = 0 (for k > 2, h < k)

and the extra constraints:

P∑
j=1

= |vkj | ≤ c (4.41)

for some tuning parameter c. This last constraint can yield some exact zero
loadings for su�ciently small c value.

In another work (Zou et al., 2004), an SPCA algorithm was proposed using the
Elastic-Net framework for L1 penalized regression on regular PCs using least
angle regression (LARS). Considering the d �rst PCs, TP×d = [t1, ..., td] and
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BP×d = [β1, .., , βd] , for any λ let:

(T̂ , B̂) = arg min
T,B

N∑
i=1

∥∥xi − TBTxi∥∥2
+ λ

d∑
j=1

‖βj‖2 +

d∑
j=1

λ1,j ‖βj‖1 (4.42)

subject to TTT = Id×d (4.43)

Then β̂j ∝ vj for j = 1, ..., d.

The same λ is used for all d components. However, λ1,j is di�erent for penalizing
the loadings of di�erent PCs. If P > N , a positive λ is required in order to get
exact PCA when the sparsity constraint (the lasso penalty) vanishes (λ1,j = 0).
For details about the solution, we refer to (Zou et al., 2004).

4.2.1.3 Supervised PCA

There are two di�erent methods for supervised PCA (Bair et al., 2006; Barshan
et al., 2011); In an earlier work (Bair et al., 2006), a pre-processing step was
added to conventional PCA. So that, based on the regression coe�cients of
initial features, only a subset of features with higher scores are considered for
PCA. In another work (Barshan et al., 2011) a generalization of PCA which
aims at �nding the PCs with maximum dependency to the response variables
is proposed. In that work, the Hilbert�Schmidt independence criterion (HSIC)
(Gretton et al., 2005) was used as the dependency function between the data and
target response. It �nds a sub-space XV such that, the dependency between
the projected data XV and the target vector Y is maximized:

max
V

tr(KHLH) = max
V

tr(HXV V TXTHL) = max
V

(V TXTHLHXV ) (4.44)

where H,K,L ∈ RN×N ,Kij = k(xi, xj), Lij = l(yi, yj) and Hij = I−N−1eeT is
the centering matrix (e is a vector of all ones). Therefore, in order to maximize
the dependency between two kernels, the value of the empirical estimate of
HSIC, i.e., tr(KHLH) is maximized. Thus, the following optimization problem



4.2 Pre-processing methods 49

was solved in closed form using Eigen vector decomposition:

arg max
V

tr(V TXTHLHXV ) = arg max
V

tr(V TQV ) (4.45)

s.t.V V T = I

If Q = XTHLHX is a symmetric and real matrix, with Eigen values λ1 ≤ ... ≤
λP and the corresponding Eigen vectors v1, ..., vP , then the maximum value
of this cost function is λP + λP−1 + ... + λP−d+1 and the optimal solution is
V = [vP , vP−1, ..., vP−d+1]. d is the dimension of the output space S. Then, the
PCs are obtained as T = XV . More details about this method are explained in
Appendix C.

4.2.1.4 Discrete Cosine transform (DCT)

DCT can be considered as a feature extraction strategy. It is an appropri-
ate transformation in the �eld of signal processing. It was �rst introduced in
(Ahmed et al., 1974) to be used in the image processing area for the purpose
of feature extraction. It is widely used in image compression, audio and signal
processing. DCT can be applied on signals of one or more dimension. The DCT
transformation of a 2D signal f(x, y) of size N ×M is de�ned as follows:

C(u, v) =
2√
NM

α(u)α(v)

M−1∑
y=0

N−1∑
x=0

f(x, y) cos

[
π(2x+ 1)u

2N

]
cos

[
π(2y + 1)v

2M

]
(4.46)

for u = 0, 1, 2, ..., N − 1 and v = 0, 1, 2, ...,M − 1 and α(i) =

{
1√
2

i = 0

1 i 6= 0
. It

is clear that for u = 0 and v = 0, C(u, v) =
√

1
NM

∑M−1
y=0

∑N−1
x=0 f(x, y) which

is the average value of the 2D signal that is called the DC value whereas,
all other coe�cients (u, v 6= 0 ) show the progressively increasing frequencies
and are called the cosine basis function. These basis functions are orthogonal
and independent, that is, none of the basis functions can be represented as
a combination of other basis functions. Therefore, in the transformed matrix
C(u, v), non of the elements are correlated.
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Figure 4.7: The 2D DCT map of the di�used re�ectance images of milk prod-
ucts shown in �gure 2.12

Besides its excellent decorrelation properties, DCT exhibits energy compaction
for highly correlated data so that it can pack input data into as few coe�cients.
For example, the DCT transformation of the images shown in �gure 2.12 is
illustrated in �gure 4.7. It shows how the images information are located mostly
in a corner of their DCT map. In addition, it decomposes the spatial frequency
in terms of various cosines transforms. In this thesis, DCT was employed to
decompose the frequency information of the di�use re�ectance images of milk
products described in section 2.2.4. That helped to characterize the products
based on their high and low order DCT coe�cients. The work will be explained
in more detail in chapter 6 and appendix B.

4.2.2 Feature selection and testing

The main reason for feature selection is that the data contains many redundant
or irrelevant features. This improves the interpretation and generalization of the
model. A feature selection algorithm searches for a subset of features based on
an evaluation measure which scores di�erent feature subsets. Feature selection
and feature extraction may seem similar but are di�erent. Feature extraction
creates new features from functions of the original features, whereas feature
selection returns a subset of the original features. The selection algorithm varies
depending on the evaluation metric, and the selection falls into one of the three
main categories: wrappers, �lters and embedded methods (Alelyani et al., 2013).

In wrapper methods, feature subsets are scored using a predictive model. Each
new subset is used to train a model, which is tested on a hold-out set. Counting
the number of mistakes made on that hold-out set (the error rate of the model)
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gives the score for that subset. The wrapper methods train a new model for
each subset, they are computationally intensive, but they usually select the best
possible subset (Dy and Brodley, 2004).

In �lter methods a proxy measure is used instead of the error rate to score the
features (Alelyani et al., 2013). The measure is chosen so that, the computa-
tion cost do not be so high as it is in wrapper methods, whilst still capturing
appropriate features. Examples of such a measure are mutual information, cor-
relation coe�cients, inter/intra class distance or the scores of signi�cance tests
for each class/feature combinations. Since the features are not selected based on
the error of a speci�c type of predictive model, they are more general and may
have lower prediction performance than a wrapper. However they are better for
discovering the relation between the features.

In Embedded methods, feature selection is performed while a model is con-
structed such as lasso and EN explained in section 4.1.1.3 and 4.1.1.4 in which
sparse linear models are constructed. In fact, the selected features are those
with non-zero regression coe�cients. The embedded methods tend to be be-
tween �lters and wrappers in terms of computational complexity.

A feature selection can also be supervised or unsupervised. In this thesis, an
unsupervised feature selection method is proposed for spectral data of food items
that is described in chapter 8 and appendix D. In the following two important
state of the art feature selection strategies are described.

4.2.2.1 Feature selection based on scale-space theory

Scale-space theory for signal analysis is a framework to �nd the local information
of a signal (such as maxima and minima) when no prior information is available
about it (Lindeberg, 1996). Therefore, the signal is represented at multiple
scales to �nd the appropriate scales. In a multi-scale representation, structures
at coarse scales constitute simpli�cations of corresponding structures at �ner
scales. In other words, the �ne-scale information is successively suppressed or
�ltered as the scale increases. This principle preserves peaks or other feature
to be arti�cially introduced through scales and forces the analysis to be from
�ner scale to coarser scales (Ceccarelli et al., 2009). Thus, the peaks can give
information about the spectrum. The local extrema points are derived using a
smoothing Gaussian kernel with varying scale parameter or standard deviation.
Di�erent strategies might be used for the choice of scale parameter, usually in
a supervised framework, such as statistical tests (Tarn et al., 2008; Godtliebsen
et al., 2002) or CV (Papandreou and Maragos, 2005; Ceccarelli et al., 2009).
In this thesis, the scale-space method was tested in the technical report that is
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described in chapter 8 and appendix D. In our work, a CV loop is used for the
choice of scale parameter,

4.2.2.2 Feature subset selection using expectation-maximization (EM)
clustering (FSSEM)

FSSEM is a wrapper method used for unsupervised feature selection. The idea
is to cluster the data in each candidate feature subspace and select the best
subspace with the minimum number of features (Dy and Brodley, 2004). This
is done in three steps; feature search, clustering and feature subset selection
criteria. In (Dy and Brodley, 2004) the sequential forward search (SFS) was
used for feature search and the expectation maximization algorithm (EM) was
used for clustering. Two di�erent criteria were used for feature selection; Scatter
separability criterion and maximum likelihood (ML). The number of clusters
were found based on (Bouman, 1997) that begins a search for large number of
clusters kmax, and then sequentially decrement this number by one until only one
cluster remains. Among all pairs of clusters in step k, the two merged clusters
are the ones that give the minimum di�erence in an objective function value.
The objective function is based on the log-likelihood function with a penalty
term added (see (Bouman, 1997)). For initialization of the EM algorithm, the
sub-sampling initialization algorithm proposed in (Fayyad et al., 1998) was used.
This algorithm is also tested in the technical report described in chapter 8 and
appendix D.

4.2.2.3 Multiple hypothesis testing

Selecting features based on the scores of a signi�cance test is a �lter method
as explained in previous section. Feature assessment based on multiple hypoth-
esis testing is a statistical approach used for test and selection of features in
problems that the number of features are very high compared to the number of
observations N � P . It is mostly used for genomic data (Dudoit et al., 2003;
Diz A. P., 2011) to assess the signi�cance of individual features (genes). In this
thesis, it is used for �nding the signi�cant features and the work is presented in
chapter 10 and appendix F.

Considering to haveM features and their p-value (e. g. by using the theoretical
t-distribution probabilities, which assumes the features are normally distributed
or a permutation distribution that does not make any assumption about their
distribution), a hypothesis H is formed so that:
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Table 4.1: Possible outcomes from M hypothesis tests.

Called Not Signi�cant Called Signi�cant total
H = 0 U V (type− I) M0

H = 1 T (type− II) S M1

total M −R R M

{
H = 0 Negative(Null)

H = 1 Positive

This hypothesis is tested for all features j = 1, ...,M and it is accepted Hj = 1
or in other words the result is signi�cant at level α if pj < α. This test has
type − I error equal to α (for each individual test). That is, the probability of
falsely rejecting Hj = 0 is α as shown in table 4.1.

Since there are a lot of individual tests (M is high), the overall measure of
this error is quite high and should be corrected. One simple solution is the
Bonferroni method. In order to reduce the number of false positive features
(V ), this method rejects H = 0 if the p-value of a feature satis�es pj <

α
M . It is

a useful method in cases that M is small, as it is based on the assumption that
the co-variates are independent. However, in cases thatM is quit high and high
correlation exists between the co-variates, it is too conservative. That is, it calls
too few features signi�cant (H = 1). A more useful approach is the Benjamin-
Hachberg (BH) (Benjamini and Hochberg, 1995) method. In this method the
False Discovery Rate (FDR) is introduced as follows:

FDR = E(
V

R
) (4.47)

It is the expected proportion of the false positive features V among the R
features that are called signi�cant. In this method, the FDR rate is bounded
by a user de�ned level α. It is calculated based on the p-values obtained from an
asymptotic approximation of the test statistic like a Gaussian or a permutation
distribution.

If the hypotheses are independent, Benjamini and Hochberg showed that re-
gardless of how many null hypotheses are true and regardless of the distribution
of the p-values when the null hypothesis is false H = 1, this procedure has the
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Figure 4.8: A plot of the ordered p-values p(j), the threshold line (α
j
M ) as well

as the critical point of the BH method (Hastie et al., 2009).

following property (Benjamini and Hochberg, 1995):

FDR ≤ M0

M
α = α (4.48)

In this method, the FDR is �xed at α level and the p-values are ordered p(1) ≤
p(2) ≤ ... ≤ p(M). Then a threshold point (L) is de�ned based on a threshold

line α j
M , j = 1, 2, ...,M so that:

L = max

{
j : p(j) < α

j

M

}
(4.49)

and the null hypotheses is rejected H = 1 for all tests that pj ≤ p(L), which
is the BH rejection threshold (Hastie et al., 2009). As the FDR rate was kept
�xed, the type− I error is limited. This is illustrated in �gure 4.8.

Multiple hypothesis testing was used in this thesis for �nding the number of
signi�cantly changed features obtained from multispectral images of vegetables
described in chapter 2.2.3. The work will be completely explained in chapter 10
appendix F



4.2 Pre-processing methods 55

4.2.3 Over �tting

In training and learning a statistical model, over �tting can limit the gener-
alization of performance and consequently a�ect the prediction capability on
independent test data. Over �tting happens when the model �ts well to the
training data but has poor prediction ability on validation (unseen) data. This
problem generally occurs when the complexity of the model is high, such as
having too many parameters relative to the number of observations. To solve
this problem, the performance of the model should be assessed during training
to guide the choice of learning method or model and be sure about the quality
of the ultimately chosen model. One of the widely used methods for this is cross
validation (CV) that will be explained in the following.

4.2.4 Bias variance trade o�

Considering a target variable Y , a vector of inputs X, and a prediction model
f̂(X) that has been estimated using a training set T , the loss function for

measuring errors between Y and f̂(X) is denoted by L(Y, f̂(X)) that can be
de�ned as:

L(Y, f̂(x)) =

{
(Y − f̂(x))2 squared error∣∣∣Y − f̂(x)

∣∣∣ absolute error
(4.50)

This loss function is calculated for both training and test sets where the test error
or generalization error is the prediction error over an independent test sample.
The expected prediction error (or expected test error) is the expectation averages
over all test samples chosen randomly from the initial population. Figure 4.9
shows the average training and test errors using a lasso objective function. The
data used in this example is the multispectral images of meat samples described
in section 2.2.10 for prediction of a∗ color component. As the model becomes
more and more complex, it uses the training data more and is able to adapt
to more complicated underlying structures. Hence there is a decrease in bias
but an increase in variance. There is some intermediate model complexity that
gives minimum expected test error. The training error is not a good estimate
of the test error, as can be seen in �gure 4.9, the training error consistently
decreases with model complexity, typically dropping to zero if we increase the
model complexity enough. However, a model with zero training error is over
�tted to the training data and will typically generalize poorly.
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Figure 4.9: Behavior of the training and test error as a lasso model complexity
increases.

Assuming that Y = f(X) + ε where E(ε) = 0 and V ar(ε) = σ2
ε , the expected

prediction error can be written in terms of bias and variance:

E(X) = E
[
Y − f̂(X)

]
2 = E

[
Y 2 + f̂2(X)− 2Y f̂(X)

]
= E(Y 2) + E(f̂2(X))− E(2Y f̂(X))

= V ar[Y 2] + E(Y )2 + V ar[f̂(X)] + E(f̂(X))2 − 2f(X)E(f̂(X))

= σ2
ε + V ar[f̂(X)] + (f − E(f̂(X))2 = σ2

ε + V ar[f̂(X)] +Bias(f̂(X))2

(4.51)

The �rst term σ2
ε is an irreducible error as it is the variance of the target

around its true mean f(X), and cannot be avoided no matter how well we
estimate f(X), unless σ2

ε = 0. The second term is the variance; the expected

squared deviation of f̂(X) around its mean. The last term is the squared bias,
the amount by which the average of the estimation di�ers from the true mean.
Typically the more complex the model, the lower the (squared) bias but the
higher the variance.
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4.2.5 Model selection

Model selection methods are used to �nd the tuning parameter(s) of a model by
estimating its expected test error. The tuning parameter varies the complexity of
the model, and the average test error is used to �nd the best value that minimizes
the error. After model selection by estimating the performance of di�erent
models to choose the best one, model assessment is performed to estimate its
prediction error (generalization error) on new data.

One simple and most widely used method for estimation of the prediction error
is the K-fold CV. The data is split into K roughly equal-sized parts. Then, for
K times, one of the folds (parts) are kept as validation set and the model is
�tted to the other K − 1 parts of the data using the range of candidate values
for the parameter(s). Then, the prediction error of the �tted model is calculated
when predicting the kth part of the data. This is done for k = 1, 2, ...,K and
the K estimates of prediction error are averaged to �nd the best value for the
unknown parameter based on the minimum error. Typical choices of K are 5 or
10. However, if the number of samples are limited, then the case K = N is used,
known as leave-one-out CV. In this case, κ(i) = i and for the ith observation
the �t is computed using all the data except the ith one. The choice of K
depends on the size of data. A higher value for K reduces the bias of the CV
estimator but increases the variance. In addition the computational cost is also
high (Hastie et al., 2009).

In this thesis, the CV was used for training of the models. There are also other
sampling and model selection strategies (Hastie et al., 2009) such as bootstrap-
ping that in contrast to CV is a sampling approach with re-substitution and is
useful when the samples diversity are high or Akaike information criterion (AIC)
and Bayesian information criterion (BIC) that are based on a log-likelihood loss
function (Hastie et al., 2009).
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Chapter 5

Paper A - Supervised
feature selection for linear

and non-linear regression of
L∗a∗b∗ color from

multispectral images of
meat

In food quality monitoring, color is an important indicator factor of quality.
Supplying a consistent high quality product requires a continuous assessment
in the meat industry. Conventional assessment methods in this case are based
on subjective visual judgment and laboratory tests which are time-consuming,
destructive and inconsistent in terms of human accuracy. In the case of meat,
the most important quality criteria are visual appearances such as the texture
pattern and the color of the meat. These parameters are linked to the chemical
properties such as the water-holding capacity, intra-muscular (marbling) and
protein content (Sun, 2010). As a result, surface color is an important parameter
for quality measurement in the meat industry.
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of L∗a∗b∗ color from multispectral images of meat

The CIELab (L∗a∗b∗) color space as a device independent color space is an ap-
propriate means in this case due to its strong correlation with the human visual
perception(Tkal£i£ and Tasi£, 2003). The L∗ is the luminance component and
the a∗ and b∗ are the chromatic components. The commonly used colorime-
ter instruments can neither measure the L∗a∗b∗ color in a wide area over the
target surface nor in a contact-less mode. However, developing algorithms for
conversion of food items images into L∗a∗b∗ color space can solve both of these
issues.

This paper addresses the problem of L∗a∗b∗ color prediction from multispectral
images of di�erent types of raw meat. The meat data for this work was provided
by the Danish Meat Research Institute. Six di�erent samples of meat from the
used data set was shown in �gure 2.8. Totally, we used 52 meat samples. The
samples were divided randomly into training and test sets 25 times. In each
data set, the number of training samples were 38. They were used for building
the models and the remaining 14 samples were kept as unseen data for the test
step. For each meat sample, multispectral images were acquired at 20 di�erent
wavelengths ranging from 430 to 970 nm using a VideometerLab. Videometer-
Lab is a multispectral imaging device that was described in section 2.1.4. In
addition, the reference measurements for L∗, a∗ and b∗ color components of each
sample was available from Minolta measurements.

To form the feature vectors from the multispectral images, a Region of Interest
(ROI) of size 200 × 200 pixel was selected from each sample image. In the
next step, the pixel gray levels in each ROI were averaged at each wavelength.
Therefore, we �nally have 20 features per meat sample.

The e�ciency of using multispectral images instead of the standard RGB is
investigated. Furthermore, it is demonstrated that due to the �ber structure
and transparency of raw meat, the prediction models built on the standard color
patches do not work for raw meat test samples.

Three di�erent regression strategies namely linear, nonlinear and kernel-based
methods were used. Due to the limited number of samples, a �ve fold CV was
applied on the training data for the optimal choice of model parameters in all of
the methods. For linear regression, OLS, ridge, PLS, lasso and EN were used and
for non-linear regression generalized feed-forward ANN with adaptive learning
rate (CVHA), momentum BP (CVHM), Bayesian regularization (CVHB) and
Neural regressor with quadratic cost function (CVHQ) were used. SVM was
used as a kernel-based method.

Finding a solution that uses a minimum number of bands is of particular in-
terest to make an industrial vision set-up simpler and cost e�ective. Therefore,
besides the sparse regression methods such as lasso and EN, a supervised fea-
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ture selection strategy is proposed that is combined by the regression strategies.
The proposed method is based on the iterative use of lasso and EN. This feature
selection method is compared with PCA as a pre-processing step.

The results showed that the proposed feature selection method outperforms the
PCA for linear, non-linear and kernel-based methods. The highest performance
was obtained by linear ridge regression applied on the selected features from the
proposed Elastic net (EN)-based feature selection strategy. All the best models
use a reduced number of wavelengths for each of the L∗a∗b∗ components.

The complete paper can be found in appendix A.
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of L∗a∗b∗ color from multispectral images of meat



Chapter 6

Paper B - DCT-Based
Characterization of Milk
Products Using Di�use

Re�ectance Images

In this paper, we proposed to use the two-dimensional Discrete Cosine Trans-
form (DCT) for decomposition of di�use re�ectance images of milk products in
di�erent wavelengths. Two images of this kind have been shown in �gure 2.12.
These images were obtained by illumination of a hyperspectral coherent laser
(460-1000 nm) into the surface of eight di�erent milk products. They were milks
and yogurts of di�erent types and fat levels. This vision system was introduced
recently for inspection of the structure of food items (Nielsen et al., 2011a,b). It
is applicable for homogenous products where particle size and shape are impor-
tant parameters. The main idea is to use the di�usion e�ects, which are known
to be correlated to the microstructure. On the other hand, research �ndings in
the �eld of food quality control have demonstrated a correlation between the
texture, chemical and physical properties of food items with their microstructure
characteristics (Bourne, 2002; Aguilera, 2005).

Considering these sequential relationships from the optical level to the quality
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Re�ectance Images

level, it is possible to build an automatic light-based system as a measuring
tool, for monitoring the quality of dairies along the production line and avoid
unwanted structures during the process. In addition, the use of a minimum
number of bands is of special concern in this work. The reduction in the number
of required wavelengths will assist to simplify the laser set-up and make the
overall system simpler and cost e�ective.

There are two main visual e�ects in the hyperspectral images according to the
characteristics of the milk products e.g. fat or viscosity. The main optical
feature is the low frequency light di�usion emanating from the incident point
that has the highest intensity in the image and another important e�ect is a high
frequency speckle pattern caused by interference of coherent light due to surface
irregularities (Goodman, 2007). Figure B.1 shows these two e�ects. These
e�ects vary in di�erent products according to their molecular composition and
thus, re�ectance and scattering properties of light.

In this paper, we propose to apply a DCT transform on the double logarithm
of the entire di�use re�ectance image. DCT can decorrelate the highly corre-
lated information in these images. It decomposes the low frequency di�usion
e�ects and high frequency speckle e�ects into low and high order coe�cients
that could be quanti�ed easier. The low order DCT coe�cients are considered
to characterize the optical properties. The entropy information of the high order
coe�cients are used to characterize the speckle e�ect.

In the next step, the discrimination power analysis (DPA) introduced in (Dab-
baghchian et al., 2010), is employed as a selection criterion on the initial set of
features for both wavelength and feature selection. It is a more careful method
in terms of discrimination than the conventional zigzag or zonal masking for
DCT coe�cient selection. Especially, that is in our work, both the low and high
order features are important. Using the �nal selected features of one proper
wavelength, we could characterize and discriminate the eight di�erent products.
Comparing this result with the current characterization method based of a �t-
ted log-log linear model, shows that the proposed method can discriminate milk
from yogurt products better.

The complete paper can be found in appendix B.



Chapter 7

Paper C - Sparse supervised
principal component
analysis (SSPCA) for

dimension reduction and
variable selection

Principal component analysis (PCA) is one of the main un-supervised pre-
processing methods for dimension reduction. Given a data matrix XN×P with
N data points and P features, it maps data into an orthogonal space based on
the sorted variance of the input data. In the new space, each principal compo-
nent (PC) is a linear combination of all original variables. The �rst principal
component corresponds to the highest variance and the second to the second
highest variance and so on.

In problems that the training labels are available, supervised PCA is a better
solution. Because, PCA is unsupervised and although this is an advantage when
the labels are unavailable, it can also be a limitation when a label or response
vector is available. Because, it is not possible to guide the algorithm based on
the target response. This is specially important when the task is regression or
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classi�cation, where it is preferred to map data into a space based on the data
variations that depend on the response and not necessarily according to the
maximum variation.

When both dimension reduction and variable selection are required, sparse PCA
(SPCA) methods are preferred. This is the case, when the number of variables
are very high and it is important to reduce the number of variables and remove
any irrelevant or noisy variable. For example, in spectral imaging applications,
each variable might be a wavelength and sparse PCs result in a simpler vision
set-up or in biology, each variable might correspond to a speci�c gene and inter-
pretation of the sparse PCs are easier. This also makes it possible to employ any
suitable non-sparse data analysis method afterward. There are many research
works for SPCA. They are reviewed in appendix C.

This work is focused on developing a sparse supervised PCA (SSPCA) algo-
rithm. Such an algorithm will be appropriate for pre-processing of data sets
for which a target response is available and a sparse solution for variable selec-
tion or interpretation is desired. The supervised PCA algorithm from (Barshan
et al., 2011) is used to form an initial objective function. In order to �nd sparse
solutions, penalization constraints for the Eigen vectors are considered. The
resulting optimization problem is bi-convex and is solved using the PMD algo-
rithm (Witten et al., 2009). Due to the use of a kernel in the objective function,
the solution can handle data sets with linear as well as non-linear behavior.
The sparse Eigen vectors found by the SSPCA algorithm can be used either for
projection of a data set or feature selection. The projection is based on max-
imum dependency of the data to the target instead of its maximum variation.
The proposed method for SSPCA is compared with PCA, the SPCA based on
PMD algorithm and the supervised PCA method. The SSPCA objective func-
tion is close to the objective function of sparse partial least squares (SPLS)
algorithm. Therefore, a comparison is also performed with SPLS. The experi-
ments were conducted on both simulated and real data sets. The experimental
results from the simulations as well as the real data sets demonstrate that the
proposed algorithm for SSPCA can make an appropriate trade o� between the
accuracy and sparsity. It was almost best method in terms of sparsity compared
to other methods and was better or comparable to the other methods in terms
of accuracy.

The complete paper can be found in appendix C.
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Paper D - An unsupervised
feature selection strategy

for characterization of
VIS-NIR spectral signals of

food products based on
local maxima

The spectral vision systems has found application in quality monitoring of food
items widely. However, the spectra is usually obtained in high resolution and
the spectral information are highly correlated. In addition, all of them are not
relevant for the prediction task or may be noisy. Therefore, feature selection
should be performed to exclude the irrelevant and redundant features and to
reduce the complexity, dimensionality and over �tting problems.

In this report an unsupervised feature selection strategy is proposed based on
the fact that, quality parameters of food items are related to their chemical
composition or physical characteristics that in�uence their optical properties
such as re�ectance acquired by spectral measurements (Sun, 2009). Since the
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dimensionality of the spectral features are high and they are highly correlated,
feature selection is important for reducing their model complexity, improving
their analysis result and interpreting the selected features. In this work, the sig-
ni�cant local peaks in the spectrum that are related to the chemical or physical
characteristics are used for prediction or classi�cation of the quality parameters.
Instead of all wavelengths only the local maxima are �ltered and analyzed. As
a result, the algorithm works faster compared to other selection methods that
analyze all the features. In order to avoid small local �uctuations among the
identi�ed peaks, smoothing is performed prior to peak �nding. This is impor-
tant in cases where the spectra are noisy or the number of �uctuation on the
envelope are considerable. This is performed based on adaptive thresholding of
the wavelet coe�cients of the spectra. Previously, a similar strategy was used
for variable noise suppression of the spectral data (Schlenke et al., 2012).

The proposed strategy is compared to the state of the art scale-space strategy
based on Gaussian �ltering which is a supervised method and also utilizes the
signi�cant local peaks of the signal. We also compare our work to two unsuper-
vised feature selection strategies ; a �lter solution based on an entropy function
and a hybrid solution as a combination of a �ltering step based on feature clus-
tering followed by a wrapper frame work that uses FSSEM (Feature Subset
Selection using Expectation-Maximization (EM) clustering).

Three di�erent data sets were used in this work for the experiments; spec-
troscopy measurements of apples that are used for prediction of their SSC con-
tent. They are described in section 2.2.2. The spectro-temporal features of milk
fermentation process used for prediction of their fat level as described in 2.2.4
and the spectral data of the aquaculture feed pellets used for prediction of their
astaxantin concentration level as described in 2.2.5.

The results show that the proposed method is superior than the two other meth-
ods in terms of accuracy and is better or comparable to the supervised scale-
space feature selection method. In terms of computation time, the proposed
method is considerably faster than all other methods.

The complete paper can be found in appendix D.
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Chapter 9

Paper E - A sampling
approach for predicting the

eating quality of apples
using visible�near infrared

spectroscopy

The use of visible and near infrared spectroscopy (VIS�NIR) for the rapid eval-
uation of fruit quality remains a topic of importance and interest for the food
research community and food industry. It might be included in 'the tool box'
for e�cient farm management. Many research work have been performed on he
use of (VIS-NIR) spectroscopy on quality prediction of fruits (see E).

Two of the most important fruit quality traits are SSC and acidity. These traits
have a great in�uence on consumer liking and repetitive purchases. During fruit
growth, the internal quality traits are expected to vary due to di�erent causes
(type of soil, weather, training and thinning techniques, etc.). This variation
in quality might be the most important factor a�ecting the calibration models,
which are used to train di�erent spectroscopy devices. Model validation, an
essential step to be carried out after calibration, has often been performed using
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samples from the same batch. The use of a large sets of samples together with
preprocessing statistical methods helps to obtain satisfactory results.

In addition, post-harvest sample arrangement is also important for the purpose
of proper model construction. In this paper, a 'fractionator' tree sampling proce-
dure is proposed to obtain representative apple fruit samples at time of harvest.
These samples were used to evaluate the performance of VIS�NIR spectroscopy
method for calibration and validation model development. Thus, the objectives
of the study are: (1) evaluate the SSC and acidity prediction performance of an
early and late season apple cultivar; and (2) to compare di�erent sub-sampling
techniques to form training and test sets on the overall performance of the pre-
diction models. Furthermore, the main implications of the method in practice
are discussed.

A total of 196 middle�early season and 219 late season apples 'Aroma' and
'Holsteiner Cox' samples were used to construct spectral models for SSC and
acidity. PLS, ridge regression and EN models were used to build prediction
models. Furthermore, we compared three sub-sample arrangements for forming
training and test sets (smooth fractionator, by date of measurement after harvest
and random). Using the smooth fractionator sampling method, combined with
a supervised feature selection strategy that was proposed in the paper presented
in appendix A followed by EN regression resulted in improved performance for
SSC models of Aroma apples, with a coe�cient of variation CVSSC=13%. The
number of selected wavelengths by the feature selection method was 26. The
model showed consistently low errors and bias:

PLS/EN : R2
cal = 0.60/0.60;SEC = 0.88/0.88Brix;Biascal = 0.00/0.00;

R2
val = 0.33/0.44;SEP = 1.14/1.03;Biasval = 0.04/0.03

However, prediction of acidity and SSC (CV = 5%) of the late cultivar Hol-
steiner Cox produced inferior results as compared with Aroma.

Based on these results, it was possible to construct local SSC and acidity cali-
bration models for early season apple cultivars. The overall model performance
of these data sets also depend on the proper selection of training and test sets.
The smooth fractionator protocol provided an objective method for obtaining
training and test sets that capture the existing variability of the fruit samples
for construction of VIS�NIR prediction models. The implication is that by using
such e�cient sampling methods for obtaining an initial sample of fruit that rep-
resents the variability of the population and for sub-sampling to form training
and test sets, it should be possible to use relatively small sample sizes to develop
spectral predictions of fruit quality. Using feature selection and EN appears to
improve the SSC model performance in terms of R2, RMSECV and RMSEP
for Aroma apples. The complete paper can be found in appendix E.
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Paper F - Statistical quality
assessment of pre-fried

carrots using multispectral
imaging

Multispectral imaging is increasingly being used for quality assessment of food
items due to its non-invasive bene�ts. Since, there is a trend toward the use of
these methods for quality control of food products such as meat, dairies and veg-
etables; it is of importance to test the capabilities as well as the reproducibility
of such.

In this paper, the multispectral images of pre-processed carrots were used to
detect the e�ect of storage on their color and NIR characteristics. The carrots
were pre-fried without oil and then frozen for about two months. Then, they
were moved to the refrigerator for experiments during a period of 14 days.
Generally the surface color and texture are important parameters; indicating the
quality of food. Multispectral images provide this information in visible bands
and also more information about the subsurface and chemical characteristics
in NIR bands. Using the multispectral images in visible and NIR bands, we
tracked the quality of carrots during the storage days. The aim was to �nd out
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in which days, signi�cant changes occurred.

In this study, the preparation of carrots was performed in two steps. First, the
vegetables were stir-fried (without oil) (Adler-Nissen, 2007). Research �ndings
have shown that, stir frying produces high quality vegetables. After stir-frying,
the products were frozen. Afterward, the pre-fried carrots were kept around
two months in the freezer and then were moved into the refrigerator and their
quality was evaluated within 14 days of storage. For quality assessment, the
multispectral images of carrots were analyzed on days 2, 5, 8, 11 and 14.

Previously, the use of multispectral images for assessment of the color changes
over time in per-fried vegetables was performed (Dissing et al., 2009). In this
paper, high dimensional features were formed from the ratios of spectral bands
and their corresponding percentiles. The high dimensional features based on
band ratios are preferred, since they are more robust toward the undesired
e�ects such as shadows. Multiple hypothesis testing was used to assess the high
dimensional features. This method involves the signi�cance assessment of the
individual features. Since the dimensionality of the extracted features was quite
high (3078), a conventional t-test at a signi�cance level e.g. α = 0.05 may �nd
about 154 signi�cant features just by chance even if, the null hypothesis of no
change is true for all the features (Diz A. P., 2011). In our study, the False
Discovery Rate (FDR) introduced in (Benjamini and Hochberg, 1995) and the
expected number of signi�cant features was used to detect the signi�cant days
of change. In addition, the SVM classi�cation was employed. Although the
classi�cation results support the multiple hypotheses testing, it is di�cult to
use them alone, as a demonstration for signi�cance of changes over the days. In
addition, the method used in (Dissing et al., 2009) was applied to our data set,
and the results were compared with the �ndings from the multiple hypothesis
tests.

The experimental results show that the most important change in carrot samples
occurred after 2 weeks. While with less signi�cance level, they also changed after
2 days. Classi�cation results obtained by SVM supported this. However, the
EN regression results had high MSEs. As a result, the 2-sided t-tests on the
regression predictions of any set of 2 days at a 5% level were signi�cant.

In addition, considering the requirements of an industrial level vision system,
it is interesting to know which wavelengths contributed most in the signi�cant
features. For this reason, we examined the frequency at which a wavelength
was contributed into signi�cant features. For example, for day 2 to 5, the three
mostly used wavelengths were 435 nm (blue), 910 nm (NIR) and 470 nm (blue).
In case of day 11 to 14, the 850-890 nm NIR bands as well as 660 nm (red)
and 435 nm (blue) had the highest frequency. Similar analysis for other cases
showed that, NIR bands as well as the blue and red wavelengths were among
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the top frequent bands. The complete paper can be found in appendix F.
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Chapter 11

Paper G - Optimal vision
system design for

characterization of apples
using UV/VIS/NIR
spectroscopy data

Quality monitoring of the food items by spectroscopy provides information in a
large number of wavelengths including highly correlated and redundant informa-
tion. The acquired optical characteristics such as re�ectance or absorbance can
represent the pigmentation and structural tissue changes in the plant organs.

There are di�erent types of spectrophotometers used for spectroscopy and their
spectral resolution (provided by monochromator) is an important characteris-
tic showing the range of wavelengths they support (Bernd Herold, 2008),(Sun,
2010). However, not all the wavelengths are equally important for character-
ization of food items. Usually the data in adjacent wavelengths are highly
correlated and many of them are redundant, whereas other wavelengths may
not carry relevant information for the problem at hand. Therefore, choosing a
proper set of wavelengths carrying relevant information will help to simplify the
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vision system.

The aim of this paper is to solve such problems by employing sparse regression
methods on UV/VIS/NIR spectroscopic data (306-1130 nm) of an apple cul-
tivar. Two quality parameters, the sugar content called solvable solid content
(SSC) and �rmness of the apples were predicted using their spectroscopic data.
Sparse regression methods assist to reduce the number of wavelengths (Hastie
et al., 2009) and can simplify the vision set-ups used in food quality control. We
compared three sparse regression techniques; least angle shrinkage and selection
operator (lasso) (Hastie et al., 2009), elastic-net (EN) (Hastie et al., 2009) and
fused Lasso (FL) (Tibshirani et al., 2005). The data set was divided into dif-
ferent training and test sets four times and the average results are considered.
A 10-fold CV was employed for training the prediction models. However, using
the model parameters corresponding to the minimum validation error resulted
in the use of a considerable number of wavelengths. In order to reduce the num-
ber of wavelengths even more, two strategies were investigated in the training
phase. First, the one standard error rule was used (Hastie et al., 2009). In
addition, manual selection of the proper number of wavelengths corresponding
to an acceptable performance compared to the optimal point was performed. It
is shown that, considering a tradeo� between the number of selected bands and
the corresponding validation performance during the training step can result
in a signi�cant reduction in the number of bands at a small price in the test
performance. Both methods reduced the number of wavelengths signi�cantly
for all regression strategies. However, this reduction was more considerable for
�rmness than SSC. In addition, the second strategy decreased the number of
required wavelengths more and achieved better performance than the �rst one.

Based on the results, the methods that are suitable for vision set-ups with
di�erent number of bands are determined. Besides the number of bands, the
width of the regimes is important in spectrophotometer design. For example,
lasso is suitable when a few individual narrow bands (less than 10 bands) can
be provided by e.g. a few LEDs. EN is suitable when more bands (up to 200)
in narrow regimes can be supplied. A monochromator capable of selecting a few
narrow regimes of laser light suits this case. Finally, FL is the best choice when
a lot of bands (e.g. more than 200) in broad regimes of laser light are available.
The monochromator does not need to provide high resolution in this case. The
complete paper can be found in appendix G.
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Paper H - Sensory quality
prediction using

multispectral imaging

The use of computer-vision based systems as non-destructive and in-line quality
monitoring methods in food industry is increasing. The classic methods for food
quality assessment are mainly based on laboratory tests and sensory evaluation,
usually performed by human experts. However, such methods have some limi-
tations. For example they can be destructive and they are dependent on well
trained assessors.

Due to these limitations, the computer vision - based techniques such as multi-
spectral imaging have been employed as an alternative for quality inspection of
food items. These techniques are fast, non-invasive and result in reproductive
quality monitoring methods in food industry. Additionally, they can be used
objectively and in-line. Multispectral imaging gives information about the color
and visual characteristics of the food under study as well as its chemical char-
acteristics that are correlated to its quality (ElMasry and Sun, 2010). That is
based on the unique spectral signatures of materials in the electromagnetic spec-
trum (Sun, 2009). Such spectral imaging systems can be designed very cheap
for food quality monitoring.
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In most cases the assessment is performed by detection or prediction of a "quality
parameter" such as appearance condition (color or texture) or content level
(sugar, acidity, etc.). Reviewing the literature shows that there are only a few
research works on the use of vision-based systems for prediction of the human
attitude about the food quality which we call "sensory attribute" or "sensory
score".

Sensory analysis is one of the important methods for evaluation of the eating
quality of food items and consumer satisfaction in food industry. Usually a panel
of well-trained experts or untrained consumers evaluates a food product. There
are several qualitative or quantitative sensory evaluation methods (Varela and
Ares, 2012). However, sensory analysis in some cases is a destructive method
and is time consuming. Therefore, it cannot be used as a routine analysis in an
industrial production and processing line (Kamruzzaman et al., 2013).

This paper addresses the prediction of sensory attributes of wok-fried vegeta-
bles, (carrot and celeriac) using multispectral imaging techniques. Such kind of
research for other types of food items were conducted before, that are reviewed
in the paper presented in appendix H.

In this work, two types of vegetables (carrot and celeriac) were used for inves-
tigations. Two batches of stir-fried vegetables were evaluated after a freezing
period followed by a chill-storage period for up to 14 days at 5 ◦C. At each
day of experiment, the sensory evaluation was performed by a sensory panel
of 6 assessors. In addition, multispectral images were acquired from the same
samples in 19 di�erent wavelengths (VIS-NIR).

The multispectral images were analyzed so that the vegetable pieces were seg-
mented and high dimensional spectral features of 3078 length were formed per
piece of vegetable. Using these features as input matrix X and the sensory
attributes as the response vector Y , regression models formed for prediction
of the sensory attributes and some strategies were employed to generalize the
prediction models.

The results show that the sensory attributes that had some variation over the
storage days and consistency over the two batches resulted in better models in
terms of generalization. For carrot, the smell and for celeriac, the o�-taste were
the attributes that gave the best results. Based on this, the use of more batches
and further samples can help to develop better prediction models in terms of
generalization. In addition, analysis of wavelengths showed that, both visible as
well as NIR bands were among the most contributing wavelengths in the image
features that were used by the prediction models. However, the discoloration
scores were not appropriate due to the limitation in human visual perception.
Therefore, we conclude that a vision-based quality assessment system should
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utilize multispectral images of some visible and NIR wavelengths together with
an appropriate set of calibration sensory attributes (in this case excluding color),
to improve the prediction task. In addition, the multispectral images provided
a basis for assessing color changes not visible to the human eye. The complete
paper can be found in appendix H.
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Chapter 13

Conclusion

In this thesis several spectral datasets of di�erent food items such as meat,
diaries, fruits and vegetables were analyzed. In all cases the main challenge
was to reduce the number of spectral wavelengths that directly in�uences the
design of the required vision set-up. Depending on the type of the vision sys-
tem employed, the spectral signals/images were available in tens to hundreds
of wavelengths. In most cases, the number of available samples were smaller
than the number of wavelengths (N � P ) that forces an ill-posed problem.
Di�erent multivariate analysis techniques were employed to reduce the number
of wavelengths. Using the reduced number of wavelengths, the spectral data
was characterized for discrimination of di�erent qualitative labels or prediction
of a quantitative target.

Our strategy in this thesis was �rst to employ the existing linear and sparse
linear methods (ridge, PLS, lasso, EN, FL, LDA) as well as non-linear and kernel
based methods namely, ANN and SVM. Consequently, new feature selection and
extraction algorithms were developed for the aim of wavelength reduction. A
supervised feature selection method based on EN and lasso was developed. In
addition, an unsupervised feature selection strategy based on local maxima of
spectral 1D or 2D signals was proposed for the analysis of the spectral data of
food products. For feature extraction, we proposed a novel sparse supervised
PCA (SSPCA) method. Another feature extraction and wavelength selection
method was introduced for characterization of the di�used re�ectance images
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based on DCT transform.

The supervised feature selection method combines the sparse solutions obtained
by l1 and l2 regularizations of lasso and EN with an iterative strategy to dis-
cover the patterns of relevant informations from the frequent non-zero coe�-
cients. The use of this method on two di�erent datasets (meat and apples)
demonstrated an improvement in prediction results.

The second proposed feature selection method utilizes the structure of the op-
tical response pro�les obtained along the electromagnetic spectrum and the
fact that local maxima points are the best links to the phisio-chemical quality
characteristics of material. This physical phenomenon was combined by signal
processing and mathematical methods to develop a feature selection algorithm
that is unsupervised and do not require any target response measurements. This
method was also successfully tested on three di�erent datasets of apples, diaries,
and feed pellets of �sh.

The SSPCA method was built based on maximization of an objective function
with regularization constraint on the Eigen vectors. The resulting optimiza-
tion problem is bi-convex and is solved iteratively based on soft thresholoding
of Eigen vectors that produces sparse solution. This method was successfully
applied on simulated and real datasets of food items and micro array.

The second proposed feature extraction and selection method was based on
transformation of the di�used re�ectance images into the DCT domain for de-
composition of the high and low frequency feature e�ects in these kind of images.
The �nal feature sets was formed in DCT domain using a few number of lower
order DCT coe�cients as well as the extracted entropy information. These
features were used for both wavelength selection and characterization of the
spectral images.

In addition, we have applied the statistical and mathematical modeling tech-
niques on di�erent scenarios of food related challenges; the e�ect of post harvest
sampling, optimal spectrophotometer design, change detection in stir-fried veg-
etables over the storage time and sensory data prediction.

The method employed in this thesis were based on deterministic strategies while
the e�ect of using probabilistic approaches remains for future investigations in
this case. In addition, the spectral signature map of the food items that can
be provided from chemometric measurements was not considered in this thesis.
The proposed unsupervised feature selection method is closely related to this.
The use of such spectral signature maps might improve this method.
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Abstract

In food quality monitoring, color is an important indicator factor of quality.
The CIELab (L∗a∗b∗) color space as a device independent color space, is an
appropriate means in this case. The commonly used colorimeter instruments
can neither measure the L∗a∗b∗ color in a wide area over the target surface nor
in a contact-less mode. However, developing algorithms for conversion of food
items images into L∗a∗b∗ color space can solve both of these issues. This paper
addresses the problem of L∗a∗b∗ color prediction from multispectral images of
di�erent types of raw meat. The e�ciency of using multispectral images instead
of the standard RGB is investigated. In addition, it is demonstrated that due
to the �ber structure and transparency of raw meat, the prediction models built
on the standard color patches do not work for raw meat test samples. As a
result, multispectral images of di�erent types of meat samples (430-970 nm)
were used for training and testing of the L∗a∗b∗ prediction models. Finding a
sparse solution or the use of a minimum number of bands is of particular interest
to make an industrial vision set-up simpler and cost e�ective. In this paper, a
wide range of linear, non-linear, kernel-based regression and sparse regression
methods are compared. In order to improve the prediction results of these
models, we propose a supervised feature selection strategy which is compared
with the Principal component analysis (PCA) as a pre-processing step. The
results showed that the proposed feature selection method outperforms the PCA
for both linear and non-linear methods. The highest performance was obtained
by linear ridge regression applied on the selected features from the proposed
Elastic net (EN) -based feature selection strategy. All the best models use a
reduced number of wavelengths for each of the L∗a∗b∗ components.

Keywords:L∗a∗b∗ color space, Multispectral imaging, Regression, Sparse re-
gression, Arti�cial neural networks, Support vector machine, Supervised feature
selection

A.1 Introduction

Monitoring the quality of meat products is a signi�cant concern in the food
industry. Supplying a consistent high quality product requires a continuous
assessment in the meat industry. This requires a development of on-line in-
spection methods for automation of the inspection process (Sharifzadeh et al.,
2012b). Conventional assessment methods in this case are based on subjective
visual judgment and laboratory tests which are time-consuming, destructive and
inconsistent in terms of human accuracy.
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The visual appearance; such as the texture pattern and the color of the meat are
the main criteria for both the manufacturer and customer. These parameters
are linked to the chemical properties such as the water-holding capacity, intra-
muscular (marbling) and protein content (Sun, 2010). As a result, surface color
is an important parameter for quality measurement in the meat industry.

One e�cient color space for quanti�cation of food items is the CIELab or L∗a∗b∗

color space, due to its precise characteristics (Mendoza et al., 2006; Brewer et al.,
2006). It is a device independent color space de�ned by the International Com-
mission on Illumination - abbreviated as CIE in 1976. L∗a∗b∗ has a perceptually
equal space. This means that the Euclidean distance between two colors in the
CIELab color space is strongly correlated with the human visual perception
(Tkal£i£ and Tasi£, 2003). The L∗ is the luminance component and the a∗ and
b∗ are chromatic components.

Colorimeters and spectrophotometers are traditional instruments for measure-
ments of colors such as L∗a∗b∗ in the food industry. They provide a quantitative
measurement in a similar way to the human eye (Wu and Sun, 2013)(Balaban
and Odabasi, 2006). Colorimeters, such as the Minolta chromameter or the
Hunter Lab, are used to measure the color of primary radiation sources that
emit light and secondary radiation sources that re�ect or transmit external
light (León et al., 2006). Therefore, color values are obtained optically but
not mathematically. Before doing the measurements, the instrument is usually
calibrated.

Traditional instrumental measurements can only measure the surface of a sample
that is uniform and rather small (Balaban and Odabasi, 2006). Hence, they
cannot completely represent the surface characteristics especially when it is
non-uniform and highly textured as is the case for meat. In order to have a
global representation of the target surface, computer vision techniques can be
used to quantify the color (Wu and Sun, 2013). This leads to the formation of a
3D map of L∗a∗b∗ color values. Such a map represents the spatial characteristics
of the whole surface instead of a small area. Color space conversion techniques
can be employed to transfer an image into the L∗a∗b∗ space with the desired
numerical and visual speci�cations. Thereby, the images of the meat samples
from other color spaces such as RGB or CMYK can be transferred into L∗a∗b∗

space. In this way, it is possible to convert each image pixel into L∗a∗b∗ and
therefore, generalize the representation.

Reviewing the literature shows that, conversion to L∗a∗b∗ was mainly performed
using RGB images. In (Larrain et al., 2008; Mendoza et al., 2006) standard se-
quential transformation into XYZ color space and then from XYZ to L∗a∗b∗ was
used for RGB images of beef and vegetables respectively. In (Fdhal et al., 2009),
conversion for the RGB images of the standard color patches into L∗a∗b∗ was
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performed using BPANN 1. In (Cao and Jun, 2011, 2008), RBFNN 2 and GRNN
3 were used for conversion from CMYK color space to CIELab respectively.

The use of RGB images has some drawbacks. An RGB image, captured by a dig-
ital camera, is formed by �ltering the incoming photons into three broad primary
channels representing the color variables; Red, Green and Blue (RGB). These
three variables are enough to describe a color sensation. However, the intensity
recorded in each channel is an integration over a large range of wavelengths and
therefore, two objects with di�erent spectral radiant power distribution may
seem to have similar colors in an RGB image. This is called metameric failure,
which means matching colorimetrically under one illumination, but di�er under
another. It occurs when the spectral radiant power distribution of two objects
are di�erent, but the rough splitting of photons fails to observe this (Dissing
et al., 2010). In addition, RGB is a device dependent color space and the color
of an object may be slightly di�erent in two di�erent camera records.

Multispectral imaging is an alternative for solving these limitations. In a mul-
tispectral imaging system, the sampling frequency of the electromagnetic spec-
trum is high and images are formed in very narrow bands compared to the three
broad intervals used in standard RGB imaging. Therefore, the distribution of
incoming photons for each pixel is approximated correctly. Besides the visual
bands that characterize the color information, the higher wavelengths such as
NIR are related to the chemical characteristics. Therefore, spectral imaging
has been widely used for food quality control applications (Gamal et al., 2009;
Dissing et al., 2009; Sharifzadeh et al., 2013b).

So far, multispectral imaging has never been used in color conversion of food
items. Color conversion using the spectral images can be done based on sta-
tistical predictive models. The advantage of such methods over the standard
matrix transformation was investigated in (León et al., 2006). In that work, a
sequential transformation was used for conversion of the RGB images of color
samples into L∗a∗b∗. In addition, OLS 4 linear regression and ANN5 with early
stopping generalization were employed and their results showed that the ANN
model obtained the best performance. In (Dissing et al., 2010), the multispec-
tral images of the standard color patches were transformed into the CIE-XYZ
using linear regression models.

This paper focuses on conversion of multispectral images (430-970 nm) of di�er-
ent types of raw meat into L∗a∗b∗ units. In the following, we explain the main

1Back Propagation arti�cial neural network
2Radial basis function neural network
3Generalized regularized neural network
4Ordinary least square
5Arti�cial neural networks
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points investigated in this paper:

Since the food items can have variation, it is important to create and validate
the prediction models on food products. Therefore, the use of real meat samples
instead of the color patches for building the prediction models was investigated.
Uncooked meat is translucent and transparent. Therefore the light re�ected
from it, not only comes from its surface but part of it comes from below the
surface. Meat also has structure due to �bers with orientation. The color
patches do not have structure and the light is re�ected directly from the surface.
Therefore, a model built on color patches do not work well on raw meat samples.

Due to the fact that the vision systems with their spectra are costly and not
feasible to implement in the industry for online food productions, the sparsity is
important and performing predictions using a minimum number of wavelengths
would make the required vision system more cost e�cient. Therefore, we propose
a new supervised feature selection strategy based on EN and lasso 6 regression
as a pre-processing step. The selected features were compared with PCA using
three di�erent regression strategies. A complete comparison between linear,
non-linear and kernel-based regression methods was performed, which we did
not see in the previous works. In order to have a general and fair judgment
about the methods, the original data set was divided randomly into 25 training
and test sets and the regression methods were tested on all of them and the
average results were considered.

Finally, the results of the spectral images were compared with the RGB images.

The rest of the paper is organized as follows; section A.2 is about color descrip-
tion and section A.3 describes the data preparation. In section A.4, we describe
linear, non-linear and kernel-based regression methods respectively. Section A.5
is about the proposed supervised linear feature selection algorithm. Experimen-
tal results are presented in section A.6. Finally, there is a conclusion for this
paper in section A.7.

A.2 Color Description

In principle, there are two methods for describing color; The spectral and the
tristimulus data description (X-Rite, 2004). Spectral data, describes the surface
properties of the colored object. It demonstrates how the surface a�ects (re�ects,
absorbs, transmits, or emits) light. Conditions such as lighting changes, the

6Least angle shrinkage and selection operator



90
Supervised feature selection for linear and non-linear regression of L∗a∗b∗

color from multispectral images of meat

Figure A.1: L∗a∗b∗ 3D color space

uniqueness of each human viewer, and di�erent rendering methods have no
e�ect on these surface properties. In this paper, the multispectral images of
meat are the input images.

The tristimulus data which is a 3D color space, describes the color of an object,
as it appears to human eye or sensor, and as it would be reproduced on a device
such as a monitor or printer. A CIELab color could be considered as a point
in a 3D coordinate color space as shown in Figure 3.1. On the other hand,
RGB and CMYK color representation describe a color as three values that can
be mixed to generate the color. In contrast to these color spaces, CIELab is
device-independent, meaning that the range of colors in this color space does
not depend on the characteristics of a particular device, or the visual skills of a
speci�c observer or the lightening condition. In addition, the RGB and CMYK
color spaces are much smaller than the range of colors that is visible to the
human eye.

In this paper, the output color is CIELab which is a uniform and widely used
color scale. In this color space, L∗ de�nes the lightness and ranges from 0
to 100; a∗ denotes the red/green value; and b∗ the yellow/blue value. The
range of both chromatic components is between -128 and 128. This Color space
resembles a three-dimensional space and uses rectangular coordinates based on
the perpendicular yellow-blue, reen-red and illumination axes as shown in Figure
A.1.
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Figure A.2: Six di�erent meat samples from the data set used in this paper

A.3 Data Preparation

The meat data for this work was provided by the Danish Meat Research Insti-
tute. Figure A.2 shows six di�erent samples of meat from the used data set. In
this data set, there were images of di�erent types of turkey, chicken, beef, veal
and pork.

In order to prepare the reference L∗a∗b∗ measure, two Minolta Chroma Meters
CR300 and CR400 were used. Each Minolta data was acquired at 8 locations
on each meat sample and the average and standard deviations of these readings
were recorded. Then, the two Minolta results were averaged. The mean values
were used as the reference L∗, a∗ and b∗ for each sample. The average standard
deviations will be used as a reference for evaluation of the accuracy of the
prediction models.

Totally, we used 52 meat samples which were divided randomly into training
and test sets 25 times. In each data set, the number of training samples were
38 which were used for building the models and the remaining 14 samples were
kept as unseen data for the test step.

For each meat sample, multispectral images were acquired at 20 di�erent wave-
lengths ranging from 430 to 970 nm using a VideometerLab. VideometerLab is a
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multispectral imaging device 7. A sample is placed inside an integrating sphere.
On top of the sphere, there is a camera which achieves a uniform and repro-
ducible illumination. The illuminating diodes achieve the same level of intensity
in all bands. They were calibrated radiometrically as well as geometrically to
obtain the optimal dynamic range for each LED as well as to minimize distor-
tions in the lens and thereby pixel-correspondence across the spectral bands.
The optimal light condition avoids shadows and specular re�ections (Dissing
et al., 2009).

To form the feature vectors from the multispectral images, a Region of Interest
(ROI) of size 200×200 pixel was selected from each sample image. In the next
step, the pixel gray levels in each ROI were averaged at each wavelength. There-
fore, we �nally have 20 features per meat sample. The feature matrix is XN×P ,
where N denotes the number of samples and P is the number of wavelengths.
The three output components are LN×1, AN×1, BN×1. For ease of notation, we
consider each of them as Y in the following sections.

One important point about the data set is that, we did not know the regions,
where the measurements were performed. This means that, there is a deviation
or mismatch between the regions from which, X is formed and the regions that
Y values were measured.

In order to conduct the comparative experiment with the color checker, the
standard X-Rite color checker was used. As shown in Figure A.3, it has 24
squares of colors in an 4 × 6 array. The multispectral images of this color
checker were prepared in exactly the same wavelengths and light settings as the
meat samples and the data set was formed in the same way. It has 24 samples
in 20 wavelengths. The reference L∗a∗b∗ values of each color patch in the color
checker is known.

A.4 Methods

In this section three regression strategies namely linear, non-linear and kernel-
based methods that were used in this paper are explained. Due to the limited
number of samples, a 5 fold CV was applied on the training data for the optimal
choice of model parameters in all the methods.

7http://www.videometer.com
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Figure A.3: The X-Rite color checker

A.4.1 Linear Regression

To convert the pixel intensities in the multispectral images into L∗a∗b∗ units,
we can simply use the unbiased OLS model Ŷ = Xβ̂ols + ε , where ε is i.i.d.
noise. However, since it is highly probable that some wavelengths have higher
correlation to some of the output components (L∗a∗b∗), selection and shrinking
strategies can be useful.

One simple regularization method is ridge regression which uses the L2 norm
penalty to shrink some of the regression coe�cients. This decreases the variance
of the outputs. Another e�cient regularization method is PLS which selects
directions or components based on both the variance in the co-variates and
their correlation with the response (Hastie et al., 2009). If there is a lot of
variation in X that has no connection to the variation of outputs and instead,
the response is highly sensitive to the low variations of input, PLS can be a
good solution. Therefore, we apply the PLS regression to improve the result, in
the case such scenario exists in our data.

There are not necessarily prominent changes between images of all sequences
of wavelengths and some of them are highly correlated. In this case a sparse
solution such as lasso which uses the L1 norm penalty can be employed:

β̂lasso = argmin
β

{
1

2

N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ

P∑
j=1

|βj |

}
(A.1)
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Here, βj is the j
th coe�cient and λ controls the shrinkage rate. Another sparse

regression method is EN. EN is in fact a compromise between lasso and ridge.
Each regression coe�cient is calculated as a weighted combination of ridge and
lasso. EN selects variables like lasso, and shrinks together the coe�cients of
the correlated predictors like ridge (Hastie et al., 2009). The EN regression
coe�cients are computed by minimization of the following function:

β̂EN = arg min
β

1

2

N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ1

P∑
j=1

|βj |+ λ2

p∑
j=1

‖βj‖ ,


(A.2)

where there are both L1 and L2 penalty terms. The sparse regression methods
result in the use of less wavelengths. As mentioned before, this is important
regarding the economical concerns.

A.4.2 Non-Linear Regression

ANN can be used as a nonlinear regression solution. Figure A.4 shows the
architecture of a simple ANN for regression with one hidden layer. First, M
linear combinations of the input variables are built and then each combination
is transformed using an activation function h(.):

φj(X) = h(Σi=Pi=1 αijxk + α0j), j = 1, ..,M (A.3)

where αij is the weight parameter and α0j is the bias. Then, the output Ŷ is
constructed as a linearly weighted combination of the nonlinear basis functions
φj(X):

Ŷ (X;β) = f

 M∑
j=1

βjφj(X) + β0

 (A.4)

βj and β0 are the weight and bias parameters respectively, and f(.) is an acti-
vation function which is usually, the identity function in the case of regression
(Bishop, 2006).

Although this nonlinear model is more complex and di�cult to interpret, it may
probably be more accurate for some types of data. Therefore, when there is no
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Figure A.4: The ANN diagram for regression with one hidden layer

need for a detailed interpretation of the model, ANN may be a good solution
which is the case for color conversion. The choice of basis function and the
solution strategy for the weight parameters vary in di�erent ANNs. In addition,
the architecture of an ANN is also based on the number of hidden layers and
neurons. As mentioned in Section A.1, in many previous color conversion works,
di�erent types of ANN were used. Therefore, in this work, their application was
investigated and compared with the linear methods.

A.4.2.1 ANN Modeling and Parametrization

One widely used ANN is the single hidden layer feed-forward ANN which uses
a sigmoid basis function:

φj(X) = σj(X) =
1

1 + exp(−SjX)
(A.5)

Here, Sj is the scale parameter which controls the activation rate. A large scale
may cause hard activation around 0.

Another type is the RBFNN that uses a non-linear RBF 8 based on the Euclidean
distance or Mahalanobis distance (like a Gaussian kernel function):

φj(X) = ρj (‖X − µj‖) (A.6)

8Radial basis function
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Where µj is the center vector of the jth hidden node and ρ is the distance
function. The RBFNN also has one hidden layer.

The parameters of the ANN models are commonly estimated by minimization
of the sum of square function shown in Equation A.7, using the BP procedure
(Hastie et al., 2009). This is a gradient descent process.

E(β) = min

N∑
n=1

∥∥∥Ŷ (Xn;β)− Y
∥∥∥2

(A.7)

BPANN is a well known and widely used network and it has been used for color
conversion problem as mentioned in Section A.1. Although it is a powerful
algorithm, it has some drawbacks. One important problems with the error
function minimization for complex and �exible models is the over-�tting on
training data and poor generalization. Because a complex model is more �exible
in capturing the training data behavior. Other problems are slow convergence
and the possibility that the network converges to a local minimum. The ANN
algorithms are also sensitive to the initial points and it is recommended to restart
the algorithm several times for this reason. We applied the simple BPANN as
well as the generalized BPANN with early stopping on our data set. They were
also used in (León et al., 2006; Fdhal et al., 2009), for conversion from RGB into
L∗a∗b∗ units. Although they worked �ne in some of the 25 random sets, the
results were poor for most of them and the average results were not satisfactory.
This is because of the above mentioned problems. Due to this oscillating and
unstable behavior of BP, we employed other types of BPANN.

In the literature, there are ANNs that employ di�erent strategies to overcome
these problems (Bishop, 2006, 2003; Hagan et al., 1996). In this paper we applied
some of these strategies and compared their results; The ANN with Adaptive
learning rate and momentum term was tested to accelerate the convergence. In
addition, di�erent regularized ANNs were used to constrain the parameters. In
the following, the tested ANNs will be explained in detail.

A.4.2.2 ANN with Adaptive Learning Rate and Momentum Term

Considering the error minimization in Equation A.7, the gradient ∇E(β) can
be obtained by means of back-propagation of errors through the layers. This
gradient is used in the family of gradient training algorithms which iteratively
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form:

βk+1 = βk − ηk∇E(βk), k = 0, 1, 2, ... (A.8)

where βk is the current weight, −ηk is the learning rate and k is the step
number and −ηk∇E(βk) shows the search direction. The BP gradient-based
training algorithms minimize the error function using the above gradient decent
or steepest descent method with constant, heuristically chosen, learning rate.

The learning rate determines how fast a network will learn the relationships
between input and output patterns. A smaller value of the learning rate means
a slower learning process. In fact, the optimal learning rate changes during
the training process, as the algorithm moves across the performance surface.
Therefore, the performance of the steepest descent algorithm would improve,
if the learning rate changes during the training process. An adaptive learning
rate attempts to keep the learning step size as large as possible while keeping
learning stable (Hagan et al., 1996).

The idea about using a momentum BP is to stabilize the weight change and
smooth the osculation in the trajectory. Therefore, a fraction of the previous
weight change ∆βk is considered in updating of the current weights βk+1. Acting
like a low-pass �lter, momentum allows the network to ignore small local minima
in the error surface and slide through them. It also speeds the convergence
because, when all weight changes are in the same direction, the momentum
ampli�es the learning rate.

∆βk+1 = γ∆βk − (1− γ)ηk∇E(βk), k = 0, 1, 2, ... (A.9)

where γ is the momentum coe�cient and should be between 0 and 1. This
gives the system a certain amount of inertia since the weight vector will tend to
continue moving in the same direction unless opposed by the gradient term.

Both the BP with adaptive learning rate and BP with momentum term were
applied on the 25 data sets.

A.4.2.3 Regularization of ANN

Feed-Forward ANNRegularization The simplest regularizer is the quadratic
in which, a penalty term is added to the error function and penalizes the sum
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of weights toward zero similar to the regularization of the linear methods. The
results of this method were acceptable on the validation sets and some of the
test sets. However, the average test results were not satisfactory, showing very
unstable and oscillating response on the di�erent sets. This may happen due to
the convergence in a local minimum.

These poor results will not be presented in this paper. Instead, the Bayesian
regularization was used. It is an interesting approach which estimates the ANN
parameters by a probabilistic approach (Bishop, 2006). Both the model output
targets Y and parameters β are characterized as random variables with normal
distributions. Then, the Bayesian rule is applied, to calculate their prior and
posterior probabilities. Consequently, the predictive distribution of the output is
obtained, using the sum and product rules for probabilities as shown in Equation
A.10. For more details we refer to (Bishop, 2006, 2003).

P (Ŷ | X,Ytr) =

∫
P (Ŷ | X,β).P (β | Ytr)dβ (A.10)

where, Ytr denotes the data used for training the model. The averaging nature
of the Bayesian method over many di�erent possible solutions solves the over-
�tting problem.

Another regularized ANN that was tested is the Nr_quadratic neural regressor
with a quadratic cost function from DTU:toolbox (Kolenda et al., 2002a). This is
a two layer feed-forward ANN with a hyperbolic tangent non-linear functions for
the hidden layer and linear output layer. The weights of the ANN are optimized
with a MAP9 approach and the quadratic error function is augmented with a
Gaussian prior over the weights. An adaptive regularization is used to prevent
the over �tting. For more information, we refer to the documents provided in
(Kolenda et al., 2002a).

BPANN are sensitive to the number of neurons in their hidden layers.

Too few neurons can lead to under �tting and too many neurons can cause over
�tting. For this reason, for training of all the ANN algorithms described in
Sections A.4.2.2 and A.4.2.3, loops are used for the best choice of the number of
hidden nodes. Algorithm 1 shows the procedures used to train the ANN model.
In each CV iteration, there is a loop on hidden nodes size. There is also another
loop which repeats the training for each fold and each hidden node size several
times. This will restart the network, training from di�erent initial points and

9Maximum a posteriori
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Algorithm 1 Training algorithm for ANNs described in A.4.2.2 and A.4.2.3
Inputs: Training data (Xtr, Ytr)
Initialization:

� HD=vector of hidden neuron size

� Rep=number of repetition times

� Initialize the 5 fold indices

Algorithm:
1. For cv=1,...,5 repeat:

Divide the inputs into training and validation sets
2. For nhd=1,...,HD repeat:
3. For rp=1,...,Rep repeat:

train the ANN with nhd number of hidden nodes
calculate the training error matrix (HD×Rep)

End loops 2 and 3
Find the vector of minimum training error (1×HD)
Find their corresponding trained ANN
Use these ANN to calculate the validation error (cv×HD)

End loop 1

� Find the minimum validation error

� Find the corresponding ANN with best nhd

Output: Best trained ANN and validation error
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also helps to avoid falling in a local minimum. The output network from this
algorithm will be used for the test data.

RBFNN Regularization For generalization of the RBFNN, the GRNN is
used (Specht, 1991). In GRNN, the best prediction with minimum variance is
obtained as the conditional mean value of Ytr given X.

Ŷ (X) = E 〈Ytr | X〉 =

∫ +∞

−∞
YtrP (Ytr | X)dYtr (A.11)

This could be calculated using the joint probability. GRNN uses a nonparamet-
ric approach to calculate the joint probability P (X,Ytr) by a Gaussian isotropic
kernel (Parzen window). The resulting probabilistic output is shown in Equa-
tion A.13. The numerator is the sum of the weighted training targets which
contribute according to their joint probabilities with the input test sample, to
form the output target. The denominator normalizes the solution.

Ŷ (X) =

∫ +∞
−∞ YtrP (X,Ytr)dYtr∫ +∞
−∞ P (X,Ytr)dYtr

(A.12)

Ŷ (X) =

∑N
i=1 Y

i
trexp(−

D2
i

2σ2 )∑N
i=1 exp(−

D2
i

2σ2 )
(A.13)

where Di = (X−Xi
tr)

T (X−Xi
tr) and Y

i
tr, X

i
tr are the i

thtraining sample values.
σ is the standard deviation of the Gaussian kernel and is called the smoothing
parameter. As can be seen from this equation, the contribution weights are in
fact the Mahalanobis distance of the test input from the training samples. This
means that the closer training samples will contribute more in the prediction
of the output target. The smoothing parameter has great e�ect on the output
prediction. With larger σ, more training data will contribute in the target
output than with a small σ. In each CV iteration, we loop over di�erent σ
values and repeated the training like in Algorithm 1, for the proper choice of σ.
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A.4.3 Kernel-based Regression

SVM 10was used as a kernel-based method for regression. SVM is character-
ized based on a maximum margin algorithm. Given the set of training data
{(x1, y1), ..., (xN , yN )}, SVM �nds a f(x) function that has at most ε devia-
tion from the actual target y. For this aim, the features are mapped to an
M-dimensional feature space using non-linear basis functions (h(x)). Then, a
linear model is constructed in this feature space:

f(x, β) =

M∑
m=1

βmhm(x) + β0 (A.14)

To estimate βm and β0, a new type of loss function called ε − sensitive loss
function is used:

Vε(r) =

{
0 if |r| < ε

|r| − ε otherwise
(A.15)

The objective function to be minimized is as follows:

min
β,β0

L(β, β0) =

N∑
i=1

V (yi − f(xi)) +
λ

2

∑
β2
m (A.16)

The second term in Equation A.16 controls the complexity level of the model.
This optimization leads to a kernel based solution:

f̂(x) = h(x)T β̂ =

N∑
i=1

αiK(x, xi), α̂ = (HHT + λI)−1Y (A.17)

where K(x, xi) =
∑M
m=1 hm(x)hm(xi). For more information, we refer to

(Hastie et al., 2009).

10Support vector machine
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A.5 The Proposed Supervised Linear Feature Se-

lection

Feature selection can be used as a pre-processing step before all the explained
methods. It helps to avoid over �tting by reducing the number of trainable
parameters as much as possible.

Since the sparse linear regression methods perform both feature selection and
regression together, it is not expected that a feature selection step improve their
results. But, for non-sparse regression methods, it can be e�ective.

In the case of a feed-forward ANN, with a �exible number of hidden nodes, it is
well known that the hidden layer can be regarded as taking the role of feature
selection and dimension reduction. In in each CV iteration of Algorithm 1, the
loop over the number of hidden nodes performs this selection properly. It has
been demonstrated that CV is a successful model selection method (Shi and
Xu, 2006). In addition, for ANN models, feature selection can be applied on
the input variables XN×P as a pre-processing step before the regression. It can
be combined with any type of neural network.

One common dimension reduction method is PCA. It projects the variables
orthogonally into a new space in which, they are sorted according to their vari-
ances. Therefore, it is possible to exclude features with low variance from the
model. But, PCA is an unsupervised feature selection algorithm. This means
that it does not consider the important information in the target values Ytr
and their dependencies to the training spectra Xtr. In addition, PCA is not a
sparse feature reduction method. Because each principal component is a linear
combination of all the variables.

However, according to the reasons described in section A.1, we are interested in
using a minimum number of wavelengths. Although the sparse linear regression
methods such as EN and lasso perform this, to improve the prediction results,
we propose to use them for supervised linear feature selection. As described in
section A.4.1, these methods will remove the redundant and irrelevant variables
from the model, even with low or high variance. Algorithm 2 shows the di�erent
steps of our proposed supervised feature selection algorithm to form the reduced
feature sets from EN.

In Algorithm 2, the vector Freq was used to record the number of times each
wavelength had non-zero regression coe�cients and w was the vector of wave-
lengths. EN regression was repeated 4 times on each of the 25 input training
sets. The 4 repetitions were done to cancel the e�ect of randomness in CV loops.
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At the �nal iteration, the frequency of being non-zero for each of the 20 coe�-
cients were obtained. The sorted Freq vector shows the top frequent non-zero
coe�cients. Their corresponding wavelengths could be found in the re-ordered
version of the w vector according to the sorted Freq. At this step, the number
of wavelengths, to be used as the �nal selected features were determined. For
this aim, another iteration over all possible candidate numbers (1 to 20) were
tested.

Algorithm 2 The proposed algorithm for feature selection using EN
Inputs: 25 sets of (Xtr, Xts, Ytr)
Initialization:

� Freq=vector of zeros (1× 20)

� W=vector of the 20 wavelengths

Algorithm:
1. For all the 25 sets and for rep=1,...,4 repeat:

Compute βEN by training an EN regression model with 5 fold cv
Add one to the Freq elements with non-zero βEN coe�cients

End loop 1
Sort Freq in descending order
Re-order the corresponding elements in W with respect to Freq

2. For i=1, ..., 20 repeat:
3. For all the 25 sets and for rep=1,...,4 repeat:

Compute the RMSE of regression on the training data using the corresponding �rst i
wavelengths of W
End loops 2 and 3

Average the RMSEs over the 25 sets and 4 iterations
Find the index of the minimum average RMSE among the 20. (n)
Select the �rst n top wavelengths from W , (selEN ) and form the 25 sets of

XtrEN , XtsEN

Output: 25 sets of (XtrEN , XtsEN )

In the case of higher number of wavelengths (when N << P ) this can be reduced
to a limited candidate list. The average RMSE 11 was considered as a criterion
for the �nal decision. The best number of features among the 20 candidates
corresponds to the one with the minimum RMSE (n). Finally, the selected
wavelengths were used to form the new training and test feature matrices. The
same algorithm was used for feature selection by lasso. These two method were
compared with PCA.

11Root mean square error
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A.6 Experimental Results

In this section, �rst the evaluation criteria for prediction models will be intro-
duced. Then, we will show the results from the experiments on the X-Rite color
checker. In the next step, the results of applying linear, non-linear and kernel-
based models on all the spectral data will be presented. Then, we will show
the results of the same models on the selected features from both our proposed
method and PCA. Since there were many tables of results, only the box plots
are illustrated here and the complete tables are presented in the appendix. The
RGB images experimental results will be shown next and also an L∗a∗b∗ image
will be formed. Finally, there will be a discussion.

A.6.1 Evaluation Measures for Prediction Models

R-square (R2), RMSE and ∆E measures are used for evaluation of the models.

R2 is a statistical measure that shows the amount of data variation explained
by a regression model. In order to calculate the R2, RSS12, TSS13 and ESS14

are de�ned as follows:

RSS =

N∑
i=1

(yi − ŷi)2, TSS =

N∑
i=1

(yi − Ȳ )2, ESS =

N∑
i=1

(ŷi − Ȳ )2 (A.18)

The most general de�nition of the (R2) or coe�cient of determination is:

R2 = (1− RSS

TSS
)× 100 (A.19)

In this de�nition, (R2) is calculated based on the unexplained variance by the
model or in other words the variance of the model's error.

RMSE shows the estimated standard deviation of the error and is calculated as
follows:

12Residual sum of squares
13Total sum of squares
14Explained sum of squares
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Table A.1: The average of the standard deviations over the 25 test sets for
L*a*b* components

The average standard deviation

L* 2.237
a* 1.115
b* 0.879

RMSE =

√√√√ 1

N − 1

N∑
i=1

(yi − ŷi)2 (A.20)

As mentioned in Section A.3, the average standard deviation of the Minolta
measurements can be used as a reference for evaluation of the prediction models.
Table A.1 show the overall average of standard deviations for all the 14 samples
in the 25 test sets. The estimated RMSE as the standard deviation of the
prediction model, can be compared with these measured values.

The delta error ∆E shows the color di�erence. A ∆E of 1 or less is not per-
ceptible by human eye. A ∆E between 3 and 6 is typically considered as an
acceptable match in commercial applications. Since the ∆E calculations are
illuminant-dependent, calculations from colors viewed or measured under di�er-
ent illuminants are not comparable (Upton, 2006).

∆E =

√
(L− L̂)2 + (a− â)2 + (b− b̂)2 (A.21)

A.6.2 Color Checker Test Results

As described in Section A.1, due to the transparency and texture structure of
the raw meat, the use of multispectral images of meat may probably work better
than the standard color checkers for color prediction. This was investigated by
performing two experiments on the color checker data and meat samples.

In the �rst experiment, the color checker data was used for training a prediction
model and in the second one, the 25 meat training sets were used. Then, they
were applied for prediction on the respecting training sets as well as the 25 test
sets. The average results were considered. The linear sparse EN regression was
used to form the prediction model for L∗a∗b∗ color components. Since the color
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Table A.2: The training and test results of the prediction model built on the
color checker and meat data

LOOCV-EN
Color Checker Model Meat Model

L* a* b* L* a* b*
R2
tr% 93.25 95.55 95.71 90.73 94.85 83.92

RMSEtr 4.75 5.08 6.89 2.50 1.25 1.02
R2
ts% 84.06 -482.42 -521.64 87.63 87.28 68.07

RMSEts 3.18 12.20 6.26 2.78 1.76 1.41
∆Ets 12.35 3.22

checker data had limited number of samples (X24×20), LOOCV
15 was used

for both experiments on the color checker and meat data. This helps to have
good generalization while �nding the optimal model parameters. The results
are presented in Table A.2.

As can be seen, both models were capable of predicting on their own training
data. But, the color checker failed to predict the color components for the meat
data as expected regarding the physical characteristics of the raw meat. The
negative R2 shows the high RSS in Equation A.19. These results motivate us
to use the multispectral images of meat to build the prediction models.

The errors in the case of the color checker training data was higher than ex-
pected. The reason for this was investigated by calculation of 0.95% con�dence
interval of the mean values of the color patches. First, the standard error of
the regions of interests in the 24 patches of color was calculated from which, we
computed 4x24×20 for the 95% con�dence interval of the mean values. Then,
it was used for calculation of the con�dence intervals for the three components
and the averaged results were considered.

4L24×20 = 4x24×20βL(20×1) →4L = 2.67 (A.22)

4a24×20 = 4x24×20βa(20×1) →4a = 7.34 (A.23)

4b24×1 = 4x24×20βb(20×1) →4b = 7.90 (A.24)

These results explain the reason for high RMSEtr for the color checker. In
addition, The average values of the ROIs for the 24 color patches plus/minus

15Leave one out cross validation



A.6 Experimental Results 107

Figure A.5: The plot of the (µ ± σ) in 20 wavelengths for the 24 ROI of the
color patches. The horizontal axis shows the wavelength.

the standard deviation within each region, along di�erent wavelengths (µ± σ),
are plotted in Figure A.5. It shows that, although the color patches seem to be
uniform, there is still variation in the spectral images of each color patch.

A.6.3 Linear Model Results

In this section the results of applying the linear regression methods described
in Section A.4.1 are presented. As stated before, the tables of average results
on the 25 training and test sets are shown in the appendix. In Figure A.6, the
box plots of the R2 of the test results over the 25 di�erent sets are shown. The
R2 results for the L∗ and a∗ components were better than b∗ component. The
test RMSEs (see the appendix), show higher prediction error compared to the
measurements errors shown in Table A.1. The training set results was better
than the test set. The best ∆Ets was 3.12 obtained from the ridge regression.
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Figure A.6: R2 box plots of the L∗a∗b∗ prediction for liner models on the 25
random test sets

Since the 25 sets were generated randomly, possibly some of the training sets
did not include the existing variation inside the original data set. Considering
the fact that the original data set consists of a few samples of di�erent types
of meat, the above mentioned issue, may explain some far data points from the
median in the box plots.

Since we are interested in sparse solutions, the number of times that the EN and
lasso regression coe�cients were non-zero in the 25 sets are illustrated for the
three components in Figure A.7. We call this a frequency map because, it shows
the frequency of having non-zero coe�cients for each wavelength. Comparing
the wavelengths with the spectrum of colors shown in the bottom of the plots,
helps to �nd which wavelengths are mostly selected by EN and lasso. As can
be seen, some near infra-red wavelengths in all cases were among the top most
frequent bands.
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Figure A.7: The frequency map of the selected wavelengths by EN (left) and
lasso (right)



110
Supervised feature selection for linear and non-linear regression of L∗a∗b∗

color from multispectral images of meat

A.6.4 ANN Results

In this section, the results of applying the non-linear regression methods de-
scribed in Section A.4.2 are presented. Since in this paper di�erent ANNs
are compared, their names are contracted for the ease of notation. For feed-
forward ANN, a simple one hidden layer architecture similar to the Figure A.4
was considered. The algorithm shown in Algorithm 1 was used for training
the generalized feed-forward ANN with adaptive learning rate (CVHA), mo-
mentum BP (CVHM), Bayesian regularization (CVHB) and Neural regressor
with quadratic cost function (CVHQ). The range of hidden neurons sizes were
{5, 10, 20, 40, 60, 80, 100}. Similar algorithm was used for training the GRNN
(CVSG). However, a loop for the best choice of the smoothing value σ was
used instead of the hidden neurons loop. The regularized RBFNN model is a 2
layer network. For the smoothing value σ, 100 di�erent values were generated
logarithmically between 0.01 to 10.

Figure A.8 shows the box plots ofR2 test results. We can see that, there are some
very far outliers from the median which may a�ect the overall average results
signi�cantly. Such a case can be seen for example, for the CVHB prediction
for b* component. This may happen in ANN due to the inappropriate initial
point or a convergence to a local minimum. Among the tested ANNs, the
GRNN (CVSG) shows the lowest performance. Like linear models, the non-
linear models work �ne on the training data. The best training results are
obtained from the CVHQ, CVHB and CVHA and for the test data, the best
two models are the CVHQ and CVHB. The best ∆Ets was 3.85 obtained by
CVHQ. The average training results are satisfactory however, the test results
are not better than the linear models using all the 20 wavelengths (see the
appendix). One reason can be the high number of input variables. Regarding
the higher complexity of the ANNs than the linear models, reducing their input
variables may improve the results.

A.6.5 SVM Results

Figure A.9 shows the box plots of R2 test results for the three components
using SVM. The results of the SVM regression model does not show a signi�cant
improvement compared to the previous methods. During training the model,
a linear kernel obtained the best result and was used in the �nal model. In
contrast to the previous models, there are no outliers in the output results.
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Figure A.8: R2 box plots of the L*a *b * prediction for non-linear models on
the 25 random test sets

Figure A.9: R2 box plots of the L*a *b * components from SVM prediction
results on the 25 random test sets
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Figure A.10: The average of the �rst 2 PCs from the 25 random data sets
versus the wavelengths

A.6.6 Feature Selection Results

The proposed supervised feature selection strategy based on EN and lasso in
Section A.5 as well as PCA were used to reduce the number of wavelengths.
Then the resulting reduced spectral data was employed in training the models.

First, a PCA analysis was performed on each of the 25 data sets. The 97%
of the variation was explained just by the �rst two PC components in all cases,
which was a very signi�cant reduction in data dimension. Figure A.10 shows the
average of the selected PCs in the 25 data sets with respect to the wavelengths.As
can be seen, both PCs enhance the higher part of the wavelengths corresponding
to the NIR wavelengths. The �rst PC which describes more than 90% of the
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Table A.3: The number of top wavelengths selected by EN and lasso

EN lasso

L* 16 12

a* 8 12

b* 13 13

variations has another peak around the red color area, that corresponds to the
di�erent color ranges of the meat samples and can explain the correlation with
the a∗ component. However, the second component shows a negative correlation
peak in the red color area. It also has two small peaks in blue and yellow ranges
which explains the b∗color component.

The second and third sets of reduced features were formed using the Algorithm
2 in a supervised approach. Figure A.11 shows the frequency map of the 20
wavelengths by EN and lasso. Similar to the PC components, the near infra-red
wavelengths have high frequencies in all cases specially, for the a∗ component.
In addition, some visible bands were among the high frequent wavelengths.
These frequencies were sorted in a descending order and their corresponding
20 wavelengths were also re-ordered. Then, for each of the 25 training sets, a
candidate subset of the top wavelengths were considered and an EN regression
was applied for 4 iterations. The candidate subset length was varied from 1
to 20. The average RMSE results of these 20 candidate subsets are illustrated
in Figure A.12. The minimum RMSE corresponds to the best number of top
wavelengths. Table A.3, shows the �nal number of selected bands for each
component.

The reduced sets of features obtained from the PCA and the proposed method
were used to build the prediction models. Figure A.13 shows the box plots of
the R2 test results for linear, non-linear and SVM regression methods. This
�gure just shows the results of the EN-based feature selection. In the case of
linear models, we can see that by using less bands, the results are better than
Figure A.6, except for the two sparse methods, EN and lasso, as we expected.
Comparison of Figure A.8 with this �gure shows that, the use of less wavelengths
did not made considerable changes in the median for non-linear models. Many
outliers can be seen in the both box plots of the ANN methods. The lowest me-
dian among all methods was for CVSG in all the three components. Comparing
Figure A.9 for SVM with this �gure does not show important di�erences.

The complete results are presented in the appendix. The PCA did not improve
the results in almost all cases. Comparing the results for the ANN models
show some improvements in the maximum averages obtained on the test sets.
This does not mean that all the non-linear models results were improved by the
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Figure A.11: The frequency map of the selected wavelengths by EN and lasso
in 4 iterations for each of the 25 sets
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Figure A.12: The average RMSE results of EN and lasso regression for 20
candidate subsets of the sorted wavelengths
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Figure A.13: R2 box plots of the test data using EN-based Feature selection
for linear, non-linear and SVM methods

proposed features. In the case of SVM results, the most prominent improvement
obtained for the a∗ component. Comparing all the results, the best ∆Ets was
2.87 obtained from the ridge regression using the EN-based feature selection.

A.6.7 Comparison with RGB Images

In order to investigate the e�ect of the number of wavelengths in the accuracy
of the regression models, we have extracted the RGB components from the 20
original bands. Then, these pseudo RGB features were used to perform L∗a∗b∗

prediction using the best linear and non-linear models from the previous exper-
iments as well as the SVM method. The average results over the 25 data sets
are presented in Table A.4. The prediction result in the case of L∗ component,
is good, showing that for brightness component, the use of three RGB bands
may be enough. The results for the chromatic components are worse than the
multispectral bands specially in the case of the b∗ component. We can see that
the complex non-linear methods can do signi�cantly better predictions on the
features from the limited RGB bands for the chromatic components, compared
to the linear and kernel-based models. All the ∆Ets values are above 4.
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Table A.4: Average R2 and ∆Ets of the test data on pseudo RGB features

R2 Ridge EN Lasso CVHB CVHQ SVM
L* 87.53 87.34 87.60 88.13 86.48 87.10
a* 47.35 35.03 33.96 49.06 62.00 31.87
b* 14.02 9.11 10.33 28.87 20.84 7.95

∆Ets 4.68 4.95 4.92 4.38 4.30 4.99

Although a real RGB image captured by a CCD camera may not be exactly the
same as the images we formed by band extraction over the multispectral images,
the poor prediction results for the color components compared to the results
using multispectral bands, can demonstrate the superiority of the multispectral
imaging.

A.6.8 Displaying L∗a∗b∗ Components

In order to visualize the results of the L∗a∗b∗ color predictions, we made a
prediction for all the pixels of a meat sample. To form these images, one of the
trained ridge models on the EN-based feature selection method was used for
each of the three components. Figure A.14 illustrates the pseudo RGB image
and the corresponding images of the L∗a∗b∗ components. In the L∗ image, the
main structure of the marbled meat is distinguishable. In the a∗ and b∗ image,
we can observe the color variation in di�erent parts of the meat.

We investigated the use of multispectral images of raw meat for L∗a∗b∗ color
prediction. Considering the variation in the results of the same methods on the
25 random sets, the important role of an appropriate training set, covering the
existing variation of the population, in success of the prediction model becomes
clear. Another point is that, comparison of the best results of di�erent models
show that, the use of a sub-set of features can improve the results. In our
work, the proposed supervised linear feature selection algorithm outperformed
the PCA for all tested methods. However, the best results were obtained by
applying a non-sparse linear regression method like ridge on these features.
SVM was the next best method for the selected features. Although the non-
linear methods are more complex and more time-consuming in training, they
did not obtain higher results in average, compared to the two other methods.
Their box plots show that, an inappropriate initial point or a convergence to a
local minimum may a�ect the �nal model dramatically and their average results
may not improve due to these few poor outliers. On the other hand, the results
show that more complex models work better on limited number of features. The
L∗a∗b∗ predictions from pseudo RGB features support this.
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(a) RGB (b) L*

(c) a* (d) b*

Figure A.14: The RGB image of a meat sample and its corresponding pre-
dicted L∗a∗b∗ components

In addition, we found that for prediction of the L∗ component, simple RGB
bands give good average result. But, they fails to gain acceptable results for the
chromatic components.

Another important point in terms of the reduction in wavelengths is that, for
each of the three components, the reduced number of wavelengths by the pro-
posed method can perform an acceptable prediction. The best average test
results of the all three strategies and their combination with the pre-processing
methods are compared in Figure A.15. In addition, the comparison of the best
∆Ets of these four approaches are presented in Figure A.16.

The selected features in Figure A.11, showed high frequencies in selection of
the NIR wavelengths together with some visible bands in all cases. This shows
the importance of the spectral imaging. In (Cao and Jun, 2008), the GRNN
(CVSG) was suggested for CMYK color conversion into the L∗a∗b∗ . Consid-
ering the tested non-linear models, we can see that in the case of multispectral
images of meat, this model shows the lowest performance compared to the other
models. However, there was no comparison in (Cao and Jun, 2008) between dif-
ferent ANN models. In (Larrain et al., 2008), the regression of colorimeter
measurements on RGB images of only beef samples gained the highest R2 for
a∗ component (96%), while for the two other components it was less than 60%.
In our work, the best R2 was also obtained for a∗ component and the R2 of the
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Figure A.15: Comparison of the best average R2 test results for the linear,
non-linear and SVM methods and their combinations with the
feature selection (FS) methods.

Figure A.16: Comparison of the best average ∆Ets for the linear, non-linear
and kernel-based methods and their combinations with the fea-
ture selection (FS) methods.
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two other components was higher. However, the best ∆Ets in our work was less
than that work (2.87 and 1.57 respectively). The main reasons are the random
division and averaging over 25 test sets and also the use of di�erent meat types
(veal, beef, chicken, pork, etc.) than one item, makes the �tting task with the
prediction models more di�cult.

We believe that, the mismatch between the regions where measurements were
performed and the ROI regions are likely one main source of error in our models.
In addition, as stated before, the random division of the original data set,with
limited samples of many varieties, into training and test sets can be another
source of error. Because it raises the possibility that some of the training sets
do not cover the existing variability inside the original data set and therefore,
the average results be decreased.

A.7 Conclusion

In this paper, multispectral images of di�erent kinds of raw meat were used
for prediction of the L∗a∗b∗ color components, which is useful for food quality
inspection. The use of meat images was preferred over the use of standard color
checkers due to the special characteristics of raw meat such as transparency and
�ber structure. Results from the experiments supports this. Three regression
strategies, linear, non-linear and kernel-based (SVM) were compared for color
conversion. In addition, �nding a sparse solution with a minimum number of
wavelengths is important, since they are economically more e�ective for indus-
trial vision systems. Therefore, a supervised linear feature selection algorithm
was proposed. This method was compared with PCA using all three strategies.
In order to generalize the results and make a reliable comparison between di�er-
ent methods, the original data set was randomly divided 25 times into training
and test sets. Comparison of the results showed that the proposed feature selec-
tion strategy with non-sparse linear regression gained the best average results
for all the color components. Finally, comparison with the pseudo RGB data
showed the superiority of the multispectral data for prediction of the chromatic
components.
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Abstract

We propose to use the two-dimensional Discrete Cosine Transform (DCT) for
decomposition of di�use re�ectance images of laser illumination on milk products
in di�erent wavelengths. Based on the prior knowledge about the characteristics
of the images, the initial feature vectors are formed at each wavelength. The low
order DCT coe�cients are used to quantify the optical properties. In addition,
the entropy information of the higher order DCT coe�cients is used to include
the illumination interference e�ects near the incident point. The discrimination
powers of the features are computed and used to do wavelength and feature
selection. Using the selected features of just one band, we could characterize
and discriminate eight di�erent milk products. Comparing this result with the
current characterization method based on a �tted log-log linear model, shows
that the proposed method can discriminate milk from yogurt products better.

Keywords:

discrete cosine transform; entropy; di�use re�ectance image; discrimination
power.

B.1 Introduction

The Discrete Cosine Transform (DCT) is an appropriate transformation in the
�eld of signal processing. It was �rst introduced in (Ahmed et al., 1974) to be
used in the image processing area for the purpose of feature selection. It has
excellent decorrelation properties as well as energy compaction. In addition,
it decomposes the spatial frequency of an image in terms of various cosines
transforms. Some of its application areas are image and speech compression
(Gonzalez and Woods, 2001; Ramirez and Minami, 2003), speech recognition
(Bouvrie et al., 2008; Sharifzadeh et al., 2012a) and medical imaging (Fu et al.,
2005).

In this paper, the DCT is employed for decomposition of di�use re�ectance
images. These images are obtained by illumination of a hyperspectral coherent
laser (460-1000 nm) into the surface of eight di�erent milk products. This
vision system has been introduced recently for inspection of the structure of
food items (Nielsen et al., 2011a,b). It is applicable for homogenous products
where particle size and shape are important parameters. The main idea is to
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use the di�usion e�ects, which are known to be correlated to the microstructure,
for characterization of the structural composition of food items (Martelli et al.,
2010; Mateo et al., 2010).

On the other hand, research �ndings in the �eld of food quality control have
demonstrated a correlation between the texture, chemical and physical prop-
erties of food items with their microstructure characteristics (Aguilera, 2005;
Bourne, 2002).

Considering these sequential relationships from the optical level to the quality
level, it is possible to build an automatic light-based system as a measuring
tool, for monitoring the quality of dairies along the production line and avoid
unwanted structures during the process.

Therefore, �nding an e�cient method for characterization of the hyperspectral
images into key discriminative features obtained from a minimum number of
bands is of special concern in this �eld. The reduction in the number of required
wavelengths will assist to simplify the laser set-up and make the overall system
simpler and cost e�ective.

According to the characteristics of the milk products e.g. fat or viscosity, we can
observe di�erent visual e�ects in the hyperspectral images. The main optical
feature is the low frequency light di�usion emanating from the incident point
that has the highest intensity in the image as can be seen in �gure B.1(a). An-
other important e�ect is a high frequency speckle pattern caused by interference
of coherent light due to surface irregularities (Goodman, 2007). It is shown in
�gure B.1(b) by zooming in around the center point. These e�ects vary in dif-
ferent products according to their molecular composition and thus re�ectance
and scattering properties of light.

The current characterization technique for these images uses a narrow band of
pixels of the scattering pro�le including the scattering center (Nielsen et al.,
2011a,b; Sharifzadeh et al., 2012b). A double logarithm transformation is ap-
plied on the original pro�le to form this image. Therefore, the extracted line
of intensities is called the log-log model. The resulting pro�le includes a slope
and an intercept containing the subsurface and surface information respectively.
This method only considers the low frequency information in the image.

In this paper, we propose to apply a DCT transform on the double logarithm
of the entire di�use re�ectance image to decompose the low frequency di�usion
e�ect as well as the high frequency speckle patterns. DCT can decorrelate the
highly correlated information in these images. It decomposes the low frequency
di�usion e�ects and high frequency speckle e�ects into low and high order coe�-
cients that could be quanti�ed easier. Finally, due to the high compression level



124
DCT -Based Characterization of Milk Products Using Di�use Re�ectance

Images

(a) (b)

Figure B.1: (a) A log-log transformed di�use re�ectance image of yogurt show-
ing the low frequency di�usion e�ect at the center. (b) The
zoomed image showing the high frequency speckle noise around
the incident point caused by the destructive interference of light
to the rough surface of fermented milk.

in the DCT domain, the number of discriminative features is reduced. In order
to form an initial set of features for each image of each wavelength, we combine
those of both low and high frequency e�ects. The low order DCT coe�cients
are considered to characterize the optical properties. The entropy information
of the high order coe�cients are used to characterize the speckle e�ect based on
an approach that will be explained in section 3.

In the next step, the discrimination power analysis (DPA) introduced in (Dab-
baghchian et al., 2010), is employed as a selection criterion on the initial set of
features for both wavelength and feature selection. It is a more careful method
in terms of discrimination than the conventional zigzag or zonal masking for
DCT coe�cient selection. Especially, that is in our work, both the low and high
order features are important. Using the �nal selected features of one proper
wavelength, we could characterize and discriminate the eight di�erent products.

The proposed method is compared to the previous pro�le based characteriza-
tion method including low frequency information and the results show that in
addition to the more discrimination power of the proposed method (including
both the low and high frequency information), it can separate the milk class
products from the yogurt class better.

The rest of this paper is organized as follows. In section B.2, the data is de-
scribed. Section B.3 presents the characterization of the di�use re�ectance im-
ages. In sectionB.4, feature selection and discrimination is explained. The
experimental results are shown in section B.5. Finally, there is a conclusion for
this paper.
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Table B.1: The eight milk products and their fat levels

Product Type Yogurt Milk

Short Names L M H CH CU L M H
Fat Level 0.5 1.5 3.5 0.1 1.5 0.5 1.5 3.5

B.2 Data Description

The data set consists of spectral di�use re�ectance images (1200 × 1600 pixel)
of eight commercial dairy products including milk and yogurt categories. Table
B.1 shows their names and fat levels. L, M and H stand for low, medium
and high. The CH and CU are extracted from the commercial name of the
products. In each category, there are products with di�erent fat levels and
viscosities. In the yogurt category, there are two di�erent products with similar
fat levels. The yogurt products di�er from each other not only in terms of the
fat, but also according to the applied fermentation processes. In this paper, we
are not interested in predicting these kinds of features. Instead, we would like
to characterize the products di�use re�ectance pro�les and then discriminate
them using their optical features. In fact, the optical characteristics represent
the chemical, physical and structural di�erences between the products. For
each product, there are �ve samples in the data set. Thus, there are 40 samples
available in total. The laser was illuminated in 55 wavelengths (460-1000 nm).

B.3 Characterization of The Images

As mentioned in section B.1 there are two important features in the di�use
re�ectance images that can be used for characterization of these images; the low
frequency light di�usion e�ect and the high frequency speckle e�ect.

The light di�usion e�ect shows the spatial intensity distribution due to the ab-
sorption and scattering of the light. It is mostly dependent on the microstruc-
tural characteristics of the subsurface such as particle size distribution.

The speckle e�ect is caused by the interference of light at the surface. It can be
seen as a measure of surface roughness. In a fermented milk product like yogurt,
the surface roughness is higher than milk due to the increase in viscosity of the
material after the fermentation process. Hence, it could be used as a measure
for distinguishing milk from yogurt. Figure B.2 shows in the top row, two
di�usion images of a medium-fat milk sample (M-M) and a high-fat yogurt (Y-
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Figure B.2: (top) left and right, The zoomed di�used re�ectance images of
milk-M (1.5) and Yogurt-H (3.5) respectively. (Down) their cor-
responding 400 × 400 top left DCT coe�cients from the DCT
matrix.

H). The images are zoomed around the incident point. The di�erence in both
low frequency di�usion e�ect and the high frequency speckle noise e�ect is clear
between the two images.

B.3.1 DCT transform

Two dimensional DCT transform is applied to the di�use re�ectance images
of each sample product at each wavelength. This yields 40Ö55 DCT matrices
of size 1200 × 1600. In the second row of �gure B.2, the corresponding 400 ×
400 DCT coe�cients from the top-left DCT matrix of the above images are
illustrated. The di�erence in the higher order DCT coe�cients represents the
speckle e�ect that was seen in the spatial domain as well. However, it is not
easy to distinguish the di�erence in low order DCT coe�cients that represent
the di�usion e�ect.

According to these observations, choosing the DCT coe�cients in a conventional
zigzag or zonal low order masking alone, is not a good choice. That is due to
the large number of DCT coe�cients in a wide span of low and high frequencies
that describe the scattering and speckle e�ect. To demonstrate this issue, a
400Ö400 sub-volume of DCT coe�cients from the top-left of the DCT matrix
is considered for all the samples of all classes. For ease of visualization, they are
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(a) (b)

Figure B.3: The �rst 50 highest DCT coe�cients of all the samples of the 8
products: (a) in original domain (b) in PCA space using the �rst
two PCs.

sorted and just the logarithm of the 50 highest are illustrated in �gure B.3(a).
It is di�cult to distinguish all the products. In addition, they are transformed
into the PCA domain and the �rst two PCs are shown in �gure B.3(b). In both
images, just a few products can be distinguished from each other and the other
classes. It is not easy to distinguish most fermented products and the high-fat
milk from each other. This is because; the higher values of the DCT coe�cients
only carry the information about the di�usion e�ect and that is not enough for
discrimination. In order to include the speckle e�ect, we propose to use the
entropy of the DCT coe�cients which will be explained in the following section.

B.3.2 Entropy

The high frequency DCT coe�cients that contain information about the speckle
e�ect result in an increase in the entropy of the sub-volumes of the DCT matrix
that include them. For example, in the two 400 × 400 sub-volumes that are
shown at the bottom of �gure B.2, the entropies are 1.55 and 2.02 from left
to right respectively. Starting from the top-left corner of a DCT matrix, we
considered an n ×m sub-volume and calculated the entropy repeatedly, while
continuously increasing the n and m values as illustrated in �gure B.4(a). The
resulting entropy pro�le is shown in �gure B.4(b). It shows that, as the size
of the volume increases, the entropy also increases up to some point and then,
decreases due to the uniform values of the DCT coe�cients in higher frequencies.
Since the speckle e�ect that characterizes the surface roughness enhances the
higher order DCT coe�cients, the maximum entropy should describe the speckle
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Figure B.4: (a) The sequential entropy calculation on increasing sub-volumes
of the DCT matrix. (b) The resulting entropy pro�le. (c) The
zoomed original di�usion image around the incident point. (d)
The di�usion image obtained by the inverse DCT transform of
the 52× 52 lower order sub-volume of the DCT matrix .

e�ect for each sample. By forming such entropy pro�le for the eight products, we
found that it can characterize their speckle e�ect uniquely. Therefore, the low
entropies before the peak point can be considered as the di�usion e�ect so that,
their corresponding sub-volumes include mostly the DCT coe�cients describing
the di�usion e�ect. On the other hand, the right side of the peak point includes
the higher order DCT coe�cients that describe the di�usion e�ect. To verify
this further, we isolated the low order di�usion e�ect DCT coe�cients using
the index of the peak point that is 52 in �gure B.4(b). Then, an inverse DCT
transform is applied to this 52× 52 DCT sub-volume. Comparison of the result
with the original di�use re�ectance image shows the removal of the speckle
e�ect, as shown in �gure B.4( c, d).
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B.3.3 Forming the Initial feature set

According to the discovered points, the right side of the entropy pro�le was
considered for characterization of the speckle e�ect. The mean, the standard
deviation and the maximum value, of this part of the pro�le were considered
as the candidate speckle e�ect features. By looking to the entropy pro�les of
the eight products, it was found that in average, the maximum entropy occurs
around a 50 × 50 sub-volume. Regarding to its variation in di�erent products
and also considering a softer threshold for separation of the DCT coe�cients
of the di�usion and speckle e�ects, a 20 × 20 sub-volume of low order DCT
coe�cients was considered. They form a 400 length vector as the candidate
feature for the light di�usion e�ect.

The �nal initial set of features for each wavelength image was formed by con-
catenating the three candidate features of the speckle e�ect with the 400 of the
di�usion e�ect.

B.3.4 Feature forming based on log-log model

In order to form the features based on log-log model, at each wavelength, a
narrow diagonal band (around 10 pixels width) including the scattering center
was considered in the double logarithm of the di�use re�ectance image as shown
in �gure B.5(a). The orientation of the line was chosen in a way to consider as
much as possible, higher number of pixels along the path through the center.
Then, it was averaged over the pixels. Since this diagonal line is symmetric, just
half of that was considered. The resulting averaged pro�le includes an intercept
from the peak and a slope as shown in �gure B.5(b). These two features were
used to characterize the image. For more information, we refer to (Nielsen et al.,
2011a,b).

B.4 Feature Selection and Discrimination

The length of the formed initial set of features (403) per band, regarding the
total number of samples of all classes (40) is quite high. Therefore, it is better
to select a subset of them according to their ability for characterization and
discrimination of di�erent products. Besides that, there are 55 bands per sample
and as mentioned earlier, we are interested to reduce the number of wavelengths
to simplify the laser set-up. Therefore a strategy should also be taken into
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(a) (b)

Figure B.5: (a) Symmetric narrow band of pixels crossing the incident point
in the double logarithm di�use re�ectance image. (b) Half of the
band is averaged and the slope and intercept from the peak are
shown.

account to sort the discrimination ability of di�erent wavelengths and select one
or a few number of them.

Since majority of the features are the decorrelated DCT coe�cients, it is not
necessary to decorrelate them by a transformation into an orthogonal space.
Inspired by the approach in (Dabbaghchian et al., 2010), we employ the DPA
introduced in that work. The main idea behind this data-dependent approach
is that, all of the DCT coe�cients do not have the same discrimination power
(DP). In other words, some of them can discriminate the classes better than the
others. It is di�erent from other similar approaches such as PCA and LDA, in
the sense that it does not utilize the between- and within- class variances by
a transformation to maximizes the discrimination of the features in the trans-
formed domain. It searches for the best discriminant features in the original
domain. In case of decorrelated features such as DCT coe�cients it is an appro-
priate approach for ranking the features and choosing a sub-set of them. The
calculation of DPA will be explained step by step in the following:

Assuming that we have C classes with theNc number of data points and P = 403
features in each class, the DPj of each feature fj (j = 1, 2, ..., 403) is calculated
as follows:

1. The mean and variance of each class is calculated for that feature (f j) :

mjc = 1
Nc

∑Nc

n=1(fnj), C = 1, 2, ..., C, vjc =
∑Nc

n=1(fnj−mjc)
2, c = 1, 2, ..., C

2. The variance of all classes are averaged: VWj = 1
C

∑C
c=1 vjc
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Figure B.6: The three steps of the sequential strategy

3. The mean and variance of all training samples are calculated for fj : Mj =
1

C×Nc

∑C
c=1

∑Nc

n=1 fnj , V
B
j =

∑C
c=1

∑Nc

n=1(fnj −Mj)
2

4. The DP can be estimate as DPj =
V B
j

VW
j

It is mentioned in (Dabbaghchian et al., 2010) that DPA can be used as a stand-
alone feature reduction algorithm. Since we need to do both band and feature
selection, a sequential strategy is taken into account as shown in �gure B.6.

B.4.1 Preparation of training and test sets

In order to maintain the training and test sets from the few data points, one
sample of each class was considered as the unseen test data and the rest were as-
signed to the training set. Therefore, the two sets were formed as tests8x403X55,
train32X403X55. Then, leave one out cross validation (LOOCV) was used on
the training data set for both wavelength selection and feature selection steps.
LOOCV is used for generalization and to avoid over-�tting as much as possible
(Hastie et al., 2009). However, due to the limited training data points, this
could not be achieved completely.

B.4.2 Wavelength Selection

The band selection algorithm is as follows:

1. At each iterations of LOOCV, sum of the DPA of all 403 training features
are calculated at each wavelength ;w = 1, 2, ..., 55; SUM32×55.

2. The sum of DPs, SUM32×55is averaged over the 32 iterations; Average−
SUM1×55.

3. The best band is the one with the highest average discrimination power.
This algorithm was also used for wavelength selection of the log-log model.
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B.4.3 Feature selection for the selected band

The use of just one band is a signi�cant reduction in the number of features,
since there are 403 initial features per wavelength. In order to select the most
discriminative features of the selected band, these steps are followed:

1. The DPs o f the features in the selected band are sorted for each of the 32
Looev iterations in descending order. Then, the corresponding features to
the �rst top �ve DPs at each iteration are kept in a list; list32×5

2. The densities of theNu unique features in this list are calculated. Density1×Nu

3. According to these densities, the features that were among the top �ve fea-
tures almost in all 32 LOOCV iterations are selected as the �nal features.
The number �ve in the above explained procedure was chosen empirically
by looking to the sorted features and also for the aim of selecting a limit
number of features. Interestingly, we observed in all the iterations, the
�rst three features were from distinct low frequency DCT coe�cients rep-
resenting the light di�usion e�ect and one of the last two was the mean
value of the speckle e�ect from the entropy pro�le shown in �gure B.4(b).

B.4.4 Discrimination

In order to evaluate the proposed characterization approach and compare it
with the existing log-log method, the training and test data are visualized on
the same plot. Besides that, the discrimination power of the two methods is
numerically measured by sum of the feature's DPs as well as the maximum
Rayleigh quotient term (Hastie et al., 2009):

max
aTBa

aTWa
(B.1)

Where B and W are the between- and within-class covariance matrices and a is
the Eigen vector of the generalized Eigen value problem, det(B − λW ) = 0 . In
order to maximize equation B.1, the Eigen vector ai corresponding to the highest
Eigen value λ1 should be used. In addition, the support vector machine (SVM)
classi�er with a linear kernel is used (Chang and Lin, 2011) and the average
LOOCV results and unseen test results are compared for the two methods.
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B.5 Results and Discussion

First, the results of the proposed method in DCT domain will be shown. Then,
the log-log model results will be presented. Finally, there is a discussion.

B.5.1 Characterization results in DCT domain

As explained in the previous section, both the band selection and feature selec-
tion were performed using LOOCV on the training data. Figure B.7(a) shows
the average sum of the DPs for the 55 bands. According to this plot, the highest
sum of DPs obtained for band 38 (830 nm).

By sorting the feature's DPs in this band, a list of features corresponding to
the top �ve DPs were formed for the 32 LOOCV iterations. There were eight
unique features in the list. Figure B.7(b) shows the densities of the unique
features in the list. As can be seen, three features were among the top features
in all 32 iterations. They are the low order DCT coe�cients showing the light
di�usion e�ect. Their location in the DCT matrix is represented in �gure B.8.
In addition, the feature number one that represents the mean entropy of the
speckle e�ect was among the top �ve features in 31 of the iterations. These four
features were selected as the �nal features, for characterizing the samples.

In order to visualize the ability of the speckle e�ect features to separate the two
groups of yogurt products and milk, a 3D visualization of the mean, standard
deviation and maximum features (1, 2, 3 in �gure B.8) is represented in �gure
B.9(a). The results show that these features are capable to perform the sepa-
ration accurately for both training and test data. In addition to this between
group separations, we can also observe a trend for within group separation ac-
cording to the fat level. Figure B.9(b) shows the 3D visualization of the three
di�usion e�ect features (4, 6, 44 in �gure B.9). As can be seen, they fail to sep-
arate the high-fat milk sample (M-H) and the medium-fat yogurt (YM). Since
the visualization of the 4D selected features is impossible, three of them (1, 4,
6) are chosen and visualized in �gure B.9(c). Even in absence of one of them,
we can see the successful separation of all the classes and also the two groups
of milk and yogurt. Finally, the four features are transformed into the orthog-
onal PCA space and the �rst two PCs are shown in �gure B.9(d). Besides the
successful discrimination, we can observe that the PC1 represents the variation
from yogurt to milk group, while PC2 shows the change in fat content.
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Figure B.7: (a) Average sum of DPs over the 32 LOOCV iterations for the
55 bands. (b) Density of the 8 unique features found among the
top �ve discriminative features in the list over the 32 iterations.
The horizontal axis shows the feature's number among the 403
features.

B.5.2 Characterization results using the log-log model

The same wavelength selection strategy based on sum of discrimination powers
were used for band selection for log-log model dataset. Figure B.10 shows the
2D visualization of the slope and intercepts features in original as well as PCA
space. In both spaces, the two features group the samples only according to
their fat level, while there is no trend to separate the milk group from the
yogurt group. For example the high fat milk (M-H) and the medium fat yogurt
(Y-M) have close overlap which may make the discrimination di�cult.

B.5.3 Discussion

According to the visualized results, the combination of the speckle e�ect (high
frequency) and di�usion e�ect (low frequency) features in DCT domain shows to
be a promising way of characterizing the di�use re�ectance images. The statis-
tical analysis results are presented in table B.2. Although both methods could
discriminate the single test samples of all classes, the average LOOCV classi�-
cation performance shows that the proposed method can work better. However,
the statistical models su�er from the over-�tting due to the limited number of
samples. The table results show that, the DCT domain features are capable to
characterize the images better in terms of discrimination power and Rayleigh
criteria than the log-log model features. Besides that, considering the plots
in �gure B.9 and �gure B.10, they are capable to reduce the overlap between
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Figure B.8: The 1, 2 and 3 are the mean, standard deviation and maximul12
of the entropy pro�le of the speckle e�ect. The 400 low order
DCT feature's numbers start from 4.

Table B.2: The discrimination results

Av. SVM Prf. of LOOCV SVM Test Perf. Sum of DPs Rayleigh criteria

DCT 100% 100% 2460.3 5850.6

Log-Log Model 96.87% 100% 1815.1 79.60

classes and separate the products not only according to their fat level, but also
according to their category (milk-yogurt). That is obtained by employing the
ability of DCT transform in frequency decomposition and combining the high
and low frequency information of the images. When only the analysis of the
di�usion e�ect is needed, this frequency decomposed information can be used
to exclude the speckle e�ect as shown in �gure B.4(d), using the inverse DCT
transform.

B.6 Conclusion

In this paper, a DCT-based characterization method is introduced for di�use
re�ectance images. These images result from illumination of a narrow laser beam
in di�erent wavelengths into eight di�erent dairies. They were milks and yogurts
of di�erent types and fat levels. The low order DCT coe�cient were used to
characterize the low frequency light di�usion e�ect and the entropy information
of higher order DCT coe�cients were used to characterize the speckle e�ect in
the images. The discrimination power criterion was used to reduce the number
of wavelength and to select the features. The existing characterization method
based on a linear log-log model can only separate the products according to
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Figure B.9: (a) 3D visualization of speckle e�ect features (b) 3D visualization
of the three di�usion e�ect selected features (c) 3D visualization
of speckle and di�usion selected features (d) 2D plot in PCA space
using the �rst two PCs. The "O" shows a training sample and
"+" shows a test sample.
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Figure B.10: 2D visualization of the log-log model features (a) in original
space (b) in PCA space

their fat levels, but the proposed method can discriminate them based on both
their category (milk-yogurt) and fat level. It also improves the discrimination
and removes the overlap between the classes.
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Abstract

Principal component analysis (PCA) is one of the main un-supervised pre-
processing methods for dimension reduction. When training labels are available,
supervised PCA is a better solution. In cases where both dimension reduction
and variable selection are required, sparse PCA (SPCA) methods are preferred.
In this paper a pre-processing method for sparse supervised PCA (SSPCA) is
proposed. The method is based on the objective function of a supervised PCA
algorithm and a punishment term is added to make the Eigen vectors sparse. To
solve the new objective function, the penalized matrix decomposition (PMD)
algorithm is employed. The PMD algorithm was used for a SPCA method
previously. However, the proposed method achieves a higher level of sparsity
compared to the PMD-based SPCA. SSPCA can be used for data sets with
linear as well as non-linear behavior. The proposed method is compared with
PCA, PMD-based SPCA and supervised PCA. Since there is similarity in the
objective function of SSPCA and sparse partial least squares (SPLS) method,
the results are also compared with SPLS. Experimental results from the simu-
lated as well as real data sets show that SSPCA provides an appropriate trade o�
between accuracy and sparsity. Comparison of the results with the other meth-
ods show that in terms of accuracy it is one of the most successful methods,
while in terms of sparsity, it performs excellent variable reduction. Therefore,
the Eigen vectors found by SSPCA can be used for feature selection in di�erent
applications.

Keywords:Variable selection, Dimension reduction, sparse PCA, supervised
PCA, sparse supervised PCA, penalized matrix decomposition

C.1 Introduction

Principal component analysis (PCA) is a well known dimension reduction ap-
proach that is used in many data mining and machine learning problems such
as genetics, image and signal processing, chemistry, etc. Given a data matrix
XN×P with N data points and P features, it maps data into an orthogonal
space based on the sorted variance of the input data. In the new space, each
principal component (PC) is a linear combination of all original variables. The
�rst principal component corresponds to the highest variance and the second to
the second highest variance and so on.

However, based on the type of problem, two main limitations can be considered
for PCA; First, is that PCA is not sparse, while in many applications, specially
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those with a high number of variables, it is important to reduce the number of
variables and remove any irrelevant or noisy variable. For example, in spectral
imaging applications, each variable might be a wavelength and sparse PCs result
in a simpler vision set-up or in biology, each variable might correspond to a
speci�c gene and interpretation of the sparse PCs are easier. This also makes
it possible to employ any suitable non-sparse data analysis method afterward.
In addition, PCA is un-supervised. Although this can be considered as an
advantage in many cases, it can also be a limitation when a label or response
vector is available because, it is not possible to guide the algorithm based on
the target response. This is specially important when the task is regression or
classi�cation, where it is preferred to map data into a space based on the data
variations that depend on the response and not necessarily according to the
maximum variation.

To address the �rst limitation, many researchers have proposed methods and
algorithms for sparse PCA (SPCA). Simple thresholding of the loadings was
proposed in (Cadima and Jolli�e, 1995). In (Sigg and Buhmann, 2008) the
sparse and non-negative PCA problem was addressed based on constraints on
cardinality and sign of the elements. In (B. Moghaddam, 2006; A. d'Aspremont
and Ghaoui, 2007), greedy algorithms were used to �nd sub-optimal solutions
for SPCA. Another algorithm called SCoTLASS based on regression or recon-
struction error property of PCs was developed in (Jolli�e et al., 2003). In (Zou
et al., 2004), an SPCA algorithm was proposed using the Elastic-Net framework
for L1-norm penalized regression on regular PCs using least angle regression
(LARS). In (Witten et al., 2009) an algorithm based on the penalized ma-
trix decomposition (PMD) was proposed. The augmented Lagrangian method
(ALSPCA) by (Lu and Zhang, 2009), regularized singular value decomposition
(SVD) method by (Shen and Huang, 2008) and the generalized power method
by (Journée et al., 2010) are alternative methods for computing the sparse PCs.
Most of the solutions to SPCA are non-convex optimization procedures that
�nd a solution close to the optimal point. Some of them such as (d'Aspremont
et al., 2007; Zhang and Ghaoui, 2011) also guarantee the global convergence. In
(d'Aspremont et al., 2007) an algorithm called DSPCA based on semide�nite
programing (SD) was proposed by semide�nite relaxation of the SPCA prob-
lem. The second work (Zhang and Ghaoui, 2011), is based on the DSPCA for
large scale data sets. First, a feature elimination method was used to reduce
the problem size and then, a block coordinate descent algorithm, was used to
solve the DSPCA. In (Vu et al., 2013) a convex relaxation of sparse principal
subspace was proposed based on the convex hull of rank-d projection matrices
(Fantop). The solution was based on SD and generalizes the DSPCA approach
to d ≥ 1 dimensions. Recently, a two-stage sparse PCA procedure has been
proposed that attains the optimal principal subspace estimator in polynomial
time (Zhaoran Wang, 2014). In another work, a robust algorithm for SPCA was
proposed which is resistant to outlying observations (Croux et al., 2013).
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For supervised dimensionality reduction, various approaches exists such as met-
ric learning and su�cient dimension reduction methods (Chang and Yeung,
2006; Yeung and Chang, 2006; Torkkola, 2003; Fukumizu et al., 2004). In addi-
tion, supervised PCA methods were proposed (Bair et al., 2006; Barshan et al.,
2011). In (Bair et al., 2006), a pre-processing step was added to conventional
PCA. So that, based on the regression coe�cients of initial features, only a sub-
set of features with higher scores are considered for PCA. The supervised PCA
method proposed in (Barshan et al., 2011) is a generalization of PCA which aims
at �nding the PCs with maximum dependency to the response variables. In that
work, the Hilbert�Schmidt independence criterion (HSIC) (Gretton et al., 2005)
was used as the dependency function between the data and target response. A
closed form solution was found for the objective function.

This work is focused on developing a sparse supervised PCA (SSPCA) algo-
rithm. Such an algorithm will be appropriate for pre-processing of data sets
for which a target response is available and a sparse solution for variable selec-
tion or interpretation is desired. The supervised PCA algorithm from (Barshan
et al., 2011) is used to form an initial objective function. In order to �nd sparse
solutions, penalization constraints for the Eigen vectors are considered. The re-
sulting optimization problem is bi-convex and solved using the PMD algorithm
(Witten et al., 2009). Due to the use of a kernel in the objective function, the
solution can handle data sets with linear as well as non-linear behavior. The
sparse Eigen vectors found by the SSPCA algorithm can be used either for pro-
jection of a data set or feature selection. The projection is based on maximum
dependency of the data to the target instead of its maximum variation. In this
paper, SSPCA is compared with PCA, the SPCA based on PMD algorithm and
the supervised PCA method. The SSPCA objective function is close to the
objective function of sparse partial least squares (SPLS) algorithm. Therefore,
a comparison is also performed with SPLS. The experiments were conducted on
both simulated and real data sets.

The rest of this paper is organized as follows; In section C.2, the supervised
PCA and SPCA based on the PMD method are explained. Section C.3 intro-
duces the SSPCA method. The SPLS method is explained brie�y in section
C.4. Experimental results are presented in section C.5. Finally, discussion and
conclusion are given in sections C.6 and C.7 respectively.



C.2 Related works 143

C.2 Related works

C.2.1 Supervised PCA

Considering a data matrix Xn×p that has n data points and p features, and
also a target vector Yn×1, supervised PCA �nds a sub-space XV such that the
dependency between the projected data XV and the outcome Y is maximized
(Barshan et al., 2011). The HSIC independence criterion (Gretton et al., 2005)
was used to measure the dependency.

According to HSIC, the independence of the variables X and Y is possible, if
and only if any bounded continuous function of them is uncorrelated. There-
fore, dependency and correlation are di�erent. If two random variables are
independent, their HSIC value will be zero. The HSIC can be expressed in
terms of kernel functions. In (Barshan et al., 2011), an empirical form of
HSIC was used to make it a practical criterion for independence testing. Let
Z = (x1, y1), . . . , (xn, yn) ⊆ X × Y be a series of n independent observations
drawn from PX,Y . The empirical estimate of HSIC is:

HSIC(Z,F,G) = (n− 1)−2tr(KHLH), (C.1)

where F and G are separable reproducing kernel Hilbert space (RKHS), contain-
ing all continuous bounded real-valued functions of x and y respectively (from
X to R and from Y to R), k and l are the corresponding kernels of F and G
and H,K,L ∈ Rn×n,Kij = k(xi, xj), Lij = l(yi, yj) and Hij = I − n−1eeT is
the centering matrix (e is a vector of all ones). Therefore, in order to maximize
the dependency between two kernels, the value of the empirical estimate, i.e.,
tr(KHLH) should be maximized. Then the objective function of supervised
PCA is:

max
V

tr(KHLH) = max
V

tr(HXV V TXTHL) = max
V

tr(V TXTHLHXV ),

(C.2)

where V is the orthogonal transformation which maps data into a new space
where the features are independent. Thus, for supervised PCA, the following
optimization problem was solved in closed form using Eigen vector decomposi-
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tion:

arg max
V

tr(V TXTHLHXV ) = arg max
V

tr(V TQV ), (C.3)

s.t.V V T = I.

If Q = XTHLHX is a symmetric and real matrix, with Eigen values λ1 ≤ ... ≤
λp and the corresponding Eigen vectors v1, ..., vp , then the maximum value
of this cost function is λp + λp−1 + ... + λp−d+1 and the optimal solution is
V = [vp, vp−1, ..., vp−d+1]. d is the dimension of the output space S.

In cases where n� p, the Eigen vectors of the very largemathrmCovp×p should
be calculated. That is impractical and therefore a dual form was proposed in
(Barshan et al., 2011):

L = ∆T∆⇒ Q = XTHLHX = ΨTΨ, (C.4)

where Ψn×p = ∆THX and V can be calculated by the SVD of Ψ = UΣV T .
Then any training or test data can be transferred into the new space as Z = XV .

C.2.2 Sparse PCA

In a sparse PCA problem, the Eigen vectors should have some zero elements.
This can be achieved by a penalization approach such as an upper constraint
on the Eigen vectors as proposed in (Witten et al., 2009). If Xn×p be a data
matrix of rank K ≤ min(n, p), an SVD problem is shown in Eq. C.5.

X̂ = UΛV T , UTU = In, V V
T = Ip, λ1 ≥ λ2 ≥ ... ≥ λK > 0 (C.5)

For r ≤ K, the SVD problem was considered based on the Frobenius norm in
(Witten et al., 2009):

r∑
k=1

λkukv
T
k = arg min

X̂∈M(r)

∥∥∥X − X̂∥∥∥2

F
= arg min

X̂∈M(r)

∥∥X − UΛV T
∥∥2

F
, (C.6)
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where M(r) is the set of rank-r (n × p) matrices. In the case of the Frobenius
norm, the following was demonstrated in the appendix of (Witten et al., 2009):

1

2

∥∥X − UΛV T
∥∥2

F
=

1

2
‖X‖2F −

K∑
k=1

uTkXvkdk +
1

2

K∑
k=1

d2
k. (C.7)

Therefore, the minimization in Eq. C.6 was written as a maximization form for
k = 1. In addition, by penalizing the decomposition of the original matrix X
(PMD), sparse components U and V were achieved, as shown in Eq. C.8. The
constant terms of Eq. C.7 were ignored.

max u,vu
TXv, s.t. ‖u‖22 ≤ 1, ‖v‖22 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2 (C.8)

P1 and P2 are convex penalty functions like lasso P1(u) =
∑n
i=1 |ui| . The

equality constraint on ‖.‖2 was changed into an inequality to avoid a non-convex
problem. The objective function is bi-convex in u and v. That is, with u �xed,
it is linear in v, and vice versa. Algorithm 3 shows the procedure for solving this
bi-convex problem. That is the general PMD(L1, L1) with penalty functions
for both u and v.

Algorithm 3 Computation of K-factors of PMD

1. Let X1 ← X
2. For k ∈ 1, ...,K :
(a) Find uk, vk and dk by applying the following single-factor PMD algorithm
to Xk :

� Initialize vk to have L2-norm equal to one.

� Iterate until convergence:


uk ← arg maxuk

uTkX
kvk,

s.t.P1(uk) ≤ c1and ‖uk‖22 ≤ 1

vk ← arg maxvk u
T
kX

kvk,

s.t.P2(vk) ≤ c2and ‖vk‖22 ≤ 1

.

� dk ← uTkX
kvk.

(b) Xk+1 ← Xk − dkukvTk

The optimization equations in Algorithm 3 have a closed form solution based
on soft thresholding. The parameters c1 and c2 are restricted to 1 ≤ c1 ≤

√
n
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and 1 ≤ c2 ≤
√
p. The smaller the c1 and c2 values, the more sparse the Eigen

vectors. For further demonstrations we refer to (Witten et al., 2009).

SPCA was solved as a PMD(., L1) problem in (Witten et al., 2009) which results
in sparse column vectors. In addition, an orthogonality constraint was added
to enforce orthogonality to the subsequent sparse PCs. There are similarities
between this method and the work in (Shen and Huang, 2008) for identifying
sparse principal components.

C.3 The proposed SSPCA method

In order to make the supervised PCA algorithm sparse, the Eigen vectors vk are
constrained in Eq. ??. Then, the new objective function is:

arg max
V

(tr(V TQV )) = arg max
V

(tr(V TΨTΨV )) (C.9)

s.t. ‖vk‖1 ≤ c2, ‖vk‖
2
2 ≤ 1.

The penalization constraint is applied on individual Eigen vectors and the same
value is used for all Eigen vectors. Because Penalizing the Eigen vector's matrix
and �nding all the Eigen vectors simultaneously requires di�erent regularization
parameters for Eigen vectors, otherwise the resulting sparse matrix will be of
rank one. That means an increase in the number of parameters which makes
the problem more di�cult. Therefore, in our work, we consider the same regu-
larization parameter for all Eigen vectors and solve the problem for each Eigen
vector separately. Then, there exist mathematical solutions for this simpli�ed
problem.

The equivalent SVD problem to this objective function is considered so that,
Ψ = UΣV T . This transfers the problem into the form of PMD that �nds the
Eigen vectors in individual iterations. Since the column vectors, vk must be
sparse, it can be solved as an PMD(., L1) problem. That is, the penalization is
applied only on column vectors.

max uk,vku
T
k Ψkvks.t. ‖vk‖1 ≤ c2, ‖u1‖22 ≤ 1, ‖vk‖22 ≤ 1, (C.10)

uk ⊥ u1, ..., uk−1.
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Algorithm 4 Procedures for SSPCA

Input: training data matrix X, test data x, kernel matrix of target variable L
and training data size n.
Output: Dimension reduced training and test data using sparse Eigen vectors,
Z and z.
1. Decompose L such that L = ∆T∆
2: H ← I − n−1eeT

3: Ψ← ∆THX
4: Compute the sparse basis based on the PMD method:
Let Ψ1 ← Ψ

For k ∈ 1, ...,K :
Find uk, vk and dk by applying the following single-factor PMD algorithm to
Ψk :
Initialize vk to have L2-norm equal to one.
Repeat (a) and (b) until convergence:

(a) uk=
U⊥K−1U

⊥T
k−1Ψkvk

‖U⊥T
k−1Ψkvk‖

2

(b) vk = S(a,τ)
‖S(a,τ)‖2

, where a = ψkuk, τ = 0 if ‖vk‖1 ≤ c2 otherwise an appropri-

ate τ is found so that, the condition is ful�lled.
dk ← uTk Ψkvk.

Ψk+1 ← Ψk − dkukvTk

5: Encode training data: Z ← XV
6: Encode test data: z ← xV
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The regularization parameter, c2 controls the sparsity of the Eigen vectors.
Algorithm 4 shows the procedures for SSPCA. As can be seen, the K-factor
PMD(., L1) is utilized for �nding the row and column vectors uk and vk respec-
tively. The update equation for uk forces orthogonality. U⊥k−1 is an orthogonal
basis to Uk−1 = {u1, u2, ..., uk−1}. This update step yields orthogonal factors. It
can not be used directly for vk, since it does not result in a sparse solution.
However, the vks are not very correlated, since they are associated with orthog-
onal uks (Witten et al., 2009). In the update equation for vk , the S denotes
the soft thresholding operator, so that for τ > 0:

S(a, τ) =

{
sgn(a)(|a| − τ) |a| > τ,

0 |a| ≤ τ.
(C.11)

The solution to the above equation, satis�es vk = S(a,τ)
‖S(a,τ)‖2

with τ = 0, if this

results in ‖vk‖1 ≤ c2; otherwise, τ is chosen so that ‖vk‖1 = c2 . Further
demonstrations for these update formula can be found in (Witten et al., 2009)
and also provided in the Appendix.

In fact, the use of soft thresholding inside the convergence loop, reduces the
absolute value of the Eigen vector elements so that, some of them will become
zero or close to zero. The features that, the target vector Y is dependent on
(relevant features), should remain among the non-zero elements and the zero
or small elements should correspond to the irrelevant and noisy input variables.
This should happen if the kernel and other parameters are chosen appropriately,
specially for the �rst Eigen vector when the original Ψ1 is used. An appropriate
kernel is the one that has the highest dependency to the input matrix or in other
words, is close to the target Y behavior. With an appropriate penalization or
constraint value c2, most irrelevant variables should be canceled out and most
relevant ones should remain. Then, the result of such maximization is a sparse
Eigen vector that the algorithm converges to. As a result, some rows of zero are
formed in the �nal Eigen matrix corresponding to the common zero elements of
the Eigen vectors.

Even with similar penalization values, the sparsity of the SSPCA and PMD-
based SPCA are not necessarily similar. Because the objective function of
SSPCA includes a kernel of the target vector Ψn×p = ∆THX , while the SPCA
objective uses only the input matrix X. This can increase the sparsity level
of the proposed method than SPCA. Because in computation of the Ψ based
on ∆, the Eigen value matrix of the kernel is used. Depending on the rank of
the kernel, it is likely that many diagonal elements of the Eigen value matrix
become small or zero. Thus, the sparsity of Ψ will be increased.
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C.4 Comparison with SPLS method

Due to the closeness of the proposed method to SPLS (Chun and Keles, 2010),
their main di�erences is described here. SPLS is a sparse version of the well
known supervised regression method PLS. In PLS, the response matrix Yn×q
and the predictor matrix Xn×p are decomposed into latent vectors so that,
Y = TQT + F and X = TPT + E. Tn×k is a matrix that produces K linear
combinations (scores), Pp×k and Qq×k are matrices of coe�cients (loadings)
and En×p and Fn×q are matrices of random errors. PLS �nds the columns of
W = (w1, w2, ..., wK) by successive optimization problems and then, the latent
component matrix T = XW is computed:

wk = arg maxw cor
2(Y,Xw)var(Xw) s.t.wTw = 1, wTΣXXwj = 0 ,

(C.12)

for j = 1, ..., k − 1, where ΣXX is the covariance of X. Using the statistically
inspired modi�cation of PLS (SIMPLS), the kth estimated direction vector ŵk
is found by solving the following optimization problem:

ŵk = arg max
w

wTσXY σXY w s.t. wTw = 1, wTΣXXwj = 0 , (C.13)

ΣXX and σXY are the populations covariances of X and Y that can be replaced
by the samples covariances (SXX , SXY ):

wk = arg max
w

wTXTY Y TXw s.t. wTw = 1, wTSXXwj = 0 . (C.14)

UsingW , the latent components T and loadings Q are computed. Finally, β̂PLS
is obtained by β̂PLS = Ŵ Q̂T .

In the sparse version of the PLS algorithm, an L1 penalty is imposed to the
PLS objective function:

wk = arg max
w

wTXTY Y TXw s.t. wTw = 1, |w| ≤ λ (C.15)
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.

This optimization problem is solved by a bi-convex procedure that is explained
in more detail in (Chun and Keles, 2010).

The major di�erence between the SPLS and SSPCA can be explained by the
de�nition of the correlation and dependency. Similar to PLS, SPLS aims to
maximize the covariance between two random variables while SSPCA (similar
to supervised PCA) maximizes the dependency between them. In other words,
SPLS can detect linear dependence between two variables while in SSPCA any
linear or non-linear dependency can be detected. This is performed by the choice
of an appropriate kernel. In addition, after �nding β̂SPLS , a linear regression
is performed to compute Ŷ . However, SSPCA is a pre-processing step and can
be followed by di�erent regression or classi�cation methods. The di�erences
between supervised PCA and PLS are explained in more detail in (Barshan
et al., 2011). They are the same for SPLS and SSPCA.

C.5 Experimental results

Five methods including PCA, SPCA based on the PMD method, supervised
PCA, SSPCA and SPLS were applied on three simulated and three real data sets
and the results will be shown in this section. Both regression and classi�cation
scenarios exist among these data sets. In data simulations, both linear and
non-linear conditions were generated. In all the experiments and for all the
methods, at least three Eigen vectors were chosen, so that their corresponding
Eigen values explain at least 95% of variance. The models were trained using
the cross validation (CV) model selection technique. In both regression and
classi�cation problems, the support vector machine (SVM) from the LibSVM
toolbox (Chang and Lin, 2011) was used in training over the CV loops and the
�nal tests. We have also employed CV loops for selection of the SVM parameters
such as kernel type, spread parameter of radial basis function (RBF), degrees
of the polynomial kernels etc. For each data set, based on its dimension, the
appropriate number of folds was determined. Since in many real problems, the
number of data points is less than the number of features, such condition was
considered. For example, in cases where the number of samples was much less
than the number of variables (N � P ), larger number of folds (e.g. 10 folds)
were used to avoid over-�tting.

No model parameters were required to be found for PCA. However, for all the
other methods, CV loops were used for model selection; In SPCA, CV was used
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for the choice of the restriction parameter c2. As mentioned in section C.2.2,
c2 can be chosen in the range of 1 ≤ c2 ≤

√
P . In supervised PCA, CV was

used for the choice of the kernel type. The tested kernels were RBF, adaptive
(RBF) (Zelnik-manor and Perona, 2004), quadratic and sinusoid kernels. For
RBF and quadratic kernels, the spread parameter σ and degree parameters were
respectively chosen based on iterations over a list of candidate values. For the
proposed SSPCA method, both c2 and kernel were found based on CV. The
required parameters for SPLS such as λ are also found using a CV loop.

Root Mean Square Error (RMSE) was used as an evaluation criterion for all the
methods in the regression problems for both the training (over the CV loops)
and �nal tests. In the case of classi�cation, the percentage of classi�cation
performance was considered. In addition, the average number of non-zero rows
in the selected Eigen vectors are reported. All analyses were performed using
MATLAB (R2013a).

C.5.1 Simulation results

The �rst sets of experiments were performed on some simulated data sets to
evaluate the performance of the proposed SSPCA method and compare it with
the other methods. In these experiments, the �rst Eigen vector will be plotted.
This helps to compare the sparsity level of the tested algorithms as well as their
ability to �nd the relevant features. As mentioned in section C.3, in the case of
SSPCA, the Eigen vectors elements corresponding to the irrelevant and noisy
variables should be zero or small in absolute values, while those corresponding
to the relevant features should be higher in absolute values. Specially, when
the kernel type and other parameters are chosen appropriately. Generally a
successful method should have small (zero if it is an sparse method) elements
for irrelevant and noisy variables and higher absolute values where the variables
are relevant. That is, the principal directions should mostly be formed by the
relevant features.

In all simulations, the data set was randomly divided into training and test sets
5 times and the average results were considered.

C.5.1.1 Simulation 1

In this example, a data matrix Xsim1(150×120) with N = 150 random samples
and P = 120 variables were generated from a standard normal distribution.
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Table C.1: Regression results for the �rst simulated data set.

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 9.57±0.58 9.76±0.83 5.00±0.17 2.14±0.91 0.00±0.00

RMSEts 9.33±1.00 9.75±1.24 7.69±0.65 2.53±1.42 0.00±0.00

Num. of NZ. 120.00±0.00 43.00±17.46 120.00±0.00 12.8±5.40 10.00±1.00

Then, a linear function of four variables X(5, 15, 25, 35) was de�ned:

Ysim1 = 6Xsim1(5) + 5Xsim1(15)− 7Xsim1(25)− 3Xsim1(35). (C.16)

There were 100 training samples and 50 test samples. The training set was
used for �nding the Eigen vectors. Fig. C.1 shows the �rst Eigen vector for the
PCA, SPCA, supervised PCA and SSPCA methods as well as the regression
coe�cients of SPLS (βSPLS). In this example, βSPLS was scaled to be shown
on the same plot with the Eigen vectors. For ease of visualization,each method
graph is plotted with an o�set from other methods. The big circles with black
edges show the relevant features. In the �gure, the y axis shows the numerical
value of Eigen vector elements. Based on its sign (positive or negative), each
element is combined with others to form the principal direction for transforming
data into the new space. Table C.1 shows the average regression results. The last
row shows the average number of non-zero rows in the selected Eigen vectors.
SPLS obtained the best result in terms of accuracy and sparsity and then the
proposed method is the next best method for this linear function.

C.5.1.2 Simulation 2

The data matrix is Xsim2(100×50). The non-linear function depends on variables
X(10, 40):

Ysim2 = (1 +Xsim2(10)) ◦ (1 +Xsim2(10)) +Xsim2(40)� (0.5+
(1.5 +Xsim2(10)) ◦ (1.5 +Xsim2(10))).

(C.17)

The ◦ and � show the element-wise multiplication and division respectively.
The data set was divided 5 times randomly into training (30 samples) and test
(70 samples) sets. Fig. C.2 and table C.2 show the results. Each method graph
is plotted with an o�set from others similar to the previous simulation. As can
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Figure C.1: Comparison of the �rst Eigen vector/regression coe�cients of the
�ve tested methods on the �rst simulated data set. The black
edged circles show the relevant features.
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Figure C.2: Comparison of the �rst Eigen vector/regression coe�cients of the
�ve tested methods on the second simulated data set. The black
edged circles show the relevant features.

Table C.2: Regression results for the second simulated data set.

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 1.81±0.22 1.78±0.34 1.38±0.30 1.42±0.20 0.50±0.34

RMSEts 2.05±0.14 2.08±0.13 1.99±0.09 1.79±0.17 2.41±0.42

Num. of NZ. 50.00±0.00 10.80±1.30 50.00±0.00 13.40±4.39 22.60±16.62

be seen, for this non-linear function, SSPCA obtained the best result while the
worst result was for the SPLS method. That is SPLS, as a linear regression
method, is not an appropriate method for non-linear data sets.

C.5.1.3 Simulation 3

The data matrix is Xsim3(400×30). The non-linear function depends on variables
X(5, 20):

Ysim3 = exp(Xsim3(5))− 2Xsim3(20) ◦Xsim3(20). (C.18)
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Figure C.3: Comparison of the �rst Eigen vector/regression coe�cients of the
�ve tested methods on the third simulated data set. Each method
graph is shifted up with an o�set for better visualization. The
black edged circles show the relevant features.

The data set was divided 5 times randomly into training (300 samples) and test
(100 samples) sets. Fig. C.3 and table C.3 show the results.

C.5.2 Real data sets results

In this part of the report, three real data sets are considered and the �ve methods
are tested on them. In all cases, the data sets were divided 4 times into training
and test sets and the average results are considered.

Table C.3: Regression results for the third simulated data set.

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 3.55±0.44 3.40±0.54 2.54±0.30 2.59±0.25 3.02±0.35

RMSEts 3.61±1.16 3.51±1.13 2.85±0.70 2.75±0.75 3.36±0.97

Num. of NZ. 30.00±0.00 23.00±1.73 30.00±0.00 10.80±1.79 12.80±6.72
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Figure C.4: Comparison of the �rst three Eigen vector/regression coe�cients
of the �ve tested methods on the apple data set.

C.5.2.1 Prediction of solvable solid content (SSC) of apple using
spectroscopic measurements

The �rst real data set is the spectroscopic data of an apple type called Rajka.
This is the same data set used in (Sharifzadeh et al., 2013a). Spectroscopic
measurements were performed in 825 wavelengths (306 -1130 nm) and there
were 185 data points (apple samples) in total. In addition, the SSC (%Brix)
value for each apple was available from laboratory measurements. We divided
the data into training and test sets 4 times based on a systematic sampling
method called a smooth arrangement or smooth fractionator (Gundersen, 2002).
For this aim, the samples were ranked in ascending order according to the SSC
level. Then, from every 4 samples, one was chosen as test (unseen data during
training) and the rest as training. By using this method, both training and test
sets comprise the original variation of the data.

Fig. C.4 shows the �rst three Eigen vectors of the �rst four methods that are
shown on the same plot together with the SPLS regression coe�cients. The
graphs are also shifted up in this plot similar to the previous illustrations. The
average results are presented in table C.4. As can be seen, the proposed method
is the best method in terms of accuracy and sparsity. SPLS and supervised
PCA are the second best methods. However their number of used wavelengths
are not comparable with the proposed method. All methods have a peak in the
red color area of the visible bands that corresponds to the apple color.
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Table C.4: Average regression results for the apple data set

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 0.91±0.03 0.92±0.03 0.88±0.02 0.88±0.01 0.79±0.04

RMSEts 0.90±0.07 0.91±0.05 0.88±0.07 0.87±0.06 0.88±0.07

Num. of NZ. 825.00±0.00 439.75±177.86 825.00±0.00 149.00±202.38 778.25±48.93

Table C.5: Average regression results for the meat data set.

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 2.32±0.09 2.42±0.51 2.25±0.36 1.93±0.15 1.06±0.07

RMSEts 2.32±0.22 2.36±0.72 2.52±0.14 2.01±0.32 1.60±0.23

Num. of NZ. 20.00±0.00 11.75±6.18 20.00±0.00 9.25±3.20 18.50±1.73

C.5.2.2 Prediction of a* color component for several meat types us-
ing multispectral images

This data set consists of multispectral images of di�erent types of meat, e.g.
turkey, chicken, beef, veal and pork. This data was previously used in (Shar-
ifzadeh et al., 2014). Totally, there were spectral images in 20 wavelengths
(430-970) and 52 meat samples. The median of the pixel values in an ROI
was considered at each wavelength, forming a 52× 20 matrix. In addition, the
a* color component of each sample was available from a Minolta colorimeter
measurement. The data was divided randomly into training and test sets 4
times. In each data set, the number of training and test samples were 38 and
14 respectively.

The �rst three Eigen vectors of the �rst four methods are shown in the same
plot together with the regression coe�cients of SPLS in Fig. C.5. βSPLS is
scaled in this plot. Here also, the graphs are visualized with an o�set. The
regression results are presented in table C.5. As can be seen, SPLS obtained
the best result in terms of accuracy and SSPCA is the second most accurate
method. However, SSPCA is the best method in terms of sparsity. SPLS uses
most of the 20 wavelengths on average. Reducing the number of wavelengths
is important for a vision system design in industrial scale. Both the red color
wavelengths as well as the NIR bands are among the selected bands by the �rst
three Eigen vectors of SSPCA. The red area corresponds to the color of most
meat types and NIR regions are correlated to their chemical characteristics.
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Figure C.5: Comparison of the �rst three Eigen vectors/regression coe�cients
of the �ve tested methods on the meat data.

Table C.6: Average regression results for the leukemia data set.

PCA SPCA Sup. PCA SSPCA SPLS

PRFtr 98.62±1.77 100.00±0.00 98.63±0.91 98.17±1.48 100.00±0.00

PRF ts 97.30±3.13 94.44±7.86 94.52±7.86 94.52±4.54 95.91±5.30

Num. of NZ. 7129.00±0.00 2618.25±405.38 7129.00±0.00 30.75±18.34 1630.50±1671.96

C.5.2.3 Leukemia microarray classi�cation and gene selection

The leukemia data set consist of 7129 genes and 72 samples (Goluband D. K. Slonim
et al., 1999). Previously it was used in (Zou and Hastie, 2005). There are two
types of leukemia (acute lymphoblastic leukemia and acute myeloid leukemia).
The goal is to predict the type of leukemia based on the expression level of those
7219 genes. In microarray analysis, it is important to diagnose the related genes
to the disease. In our experiment, we divided the data into training and test
sets 4 times based on the smooth fractionator method (Gundersen, 2002), so
that 75% of samples were chosen for training and the rest were kept for test.
The percentages of classi�cation performance as well as the number of selected
genes are shown in table C.6. PCA obtained the best classi�cation rate using all
the genes while the other methods performances come close to that. However,
in terms of gene selection, the proposed method obtained an excellent result
compared to other methods.
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C.6 Discussion

The experimental results from the simulations as well as the real data sets
demonstrate that the proposed algorithm for SSPCA can make an appropriate
trade o� between the accuracy and sparsity. In the �rst simulation, SPLS
was the best method in terms of accuracy and sparsity as there was a pure
linear relationship between X and Y. This is due to the linear kernel in its
objective function. However, in the case of non-linear relationships, the second
and third simulation results showed that the SSPCA can perform better in terms
of accuracy and sparsity. The choice of kernel type and penalization parameter
play an important role on the accuracy and sparsity of this method. When the
kernel is close to data behavior, the results can improve more. As expected,
the sparsity of the SSPCA was better than SPCA in almost all cases and its
accuracy was better than supervised PCA in all experiments due to canceling
the e�ect of irrelevant and noisy variables.

Another important issue is that, SSPCA is both supervised and sparse. How-
ever, when in a data set the response is dependent to the maximum variation of
the data, the supervision does not improve the result strongly compared to the
unsupervised methods. This can explain the reason for the proposed method not
achieving the best result in terms of accuracy compared to the other methods
for some data sets.

SSPCA was also successful for high dimensional data sets such as the apple and
microarray data.

Another important aspect of the SSPCA algorithm, is its ability on choosing the
relevant features. This can be used as a criterion to perform feature selection
as a pre-processing step for di�erent applications.

C.7 Conclusion

In this paper, an SSPCA method was proposed for pre-processing of data sets
with available target vectors. It computes sparse Eigen vectors based on the
maximum dependency of the data to the response. The resulting Eigen vectors
are almost orthogonal. The algorithm is based on the previous supervised PCA
and penalizing terms were added to make the Eigen vectors sparse. The new
objective function was solved based on the PMD algorithm. The SSPCA Eigen
vectors are sparser compared to the PMD-based SPCA. Similar to the PMD
method, the objective was solved as a bi-convex optimization problem. Due to
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the use of the HSIC criterion in its objective function, this method can be used
for data sets with linear as well as non-linear behavior. Experimental results
showed that SSPCA can make an appropriate compromise between accuracy and
sparsity. Comparison of the results from PCA, PMD-based SPCA, supervised
PCA, SSPCA and SPLS on both simulated and real data sets showed that
SSPCA works best in terms of sparsity. The accuracy was also comparable with
the other methods. In addition, its sparse Eigen vector can be used as a means
of feature selection, since the relevant features are usually among their non-zero
elements.
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Appendix

As mentioned in section C.2.2, SPCA can be solved as a PMD(., L1) problem
as it requires the column vector V to be sparse. In addition, in order to en-
force orthogonality to the subsequent sparse PCs, in (Witten et al., 2009) an
orthogonality constraint was added as follows:

max uk,vk

∥∥uTkXkvk
∥∥ s.t. ‖vk‖1 ≤ c2, ‖uk‖22 ≤ 1, ‖vk‖22 ≤ 1, uk ⊥ u1, ..., uk−1

(A.1)

With vk �xed and a = Xkvk, uk is calculated based on the following steps:

max uk

∥∥uTk a∥∥ s.t. ‖uk‖22 ≤ 1, uk ⊥ u1, ..., uk−1 (A.2)

Then uk = U⊥k−1θ, so that U
⊥
k−1 is an orthogonal basis to Uk−1 = {u1, u2, ..., uk−1}

and ‖u‖2 = ‖θ‖2:

max θθ
TU⊥Tk−1X

kvk,s.t. ‖θ‖22 ≤ 1, (A.3)

The optimal θ is:

θopt. =
U⊥Tk−1X

kvk∥∥U⊥Tk−1X
kvk
∥∥

2

(A.4)

Therefore, the value for uk is found:

uk =
U⊥K−1U

⊥T
k−1X

kvk∥∥U⊥Tk−1X
kvk
∥∥

2

=
(I − Uk−1U

T
k−1)Xkvk∥∥U⊥Tk−1X
kvk
∥∥

2

(A.5)

This update step is used for uk in algorithm 4 and yields orthogonal factors.

With uk �xed and a = Xkuk,we have:

max vkv
T
k a s.t. ‖vk‖22 ≤ 1, ‖vk‖1 ≤ c2 (A.6)
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or the equivalent minimization:

min vk − vTk a s.t. ‖vk‖22 ≤ 1, ‖vk‖1 ≤ c2 (A.7)

The problem can be rewritten based on Lagrange multipliers:

−vTk a+ λ ‖vk‖22 + τ ‖vk‖1 (A.8)

The Karush�Kuhn�Tucker conditions for optimality consist of :

0 = =a+ 2λvk + τΓk
λ(‖vk‖22=1) = 0
τ(‖vk‖1=c2) = 0

(A.9)

where the �rst equation is obtained by di�erentiation and setting the derivative
equal to 0. Γk = sgn(vk) if vk 6= 0; otherwise, Γk ∈ [−1, 1]. If λ > 0, then from
the �rst equation:

vk =
S(a, τ)

2λ
(A.10)

In general, λ = 0 (if this results in a feasible solution) or it must be chosen such
that ‖vk‖2 = 1. Then as shown in algorithm 4:

vk =
S(a, τ)

‖S(a, τ)‖2
(A.11)

Again by the Karush�Kuhn�Tucker conditions, τ = 0 (if this results in a feasible
solution) or it must be chosen such that ‖vk‖1 = c2. Then, τ = 0 if this results
in ‖vk‖1 ≤ c2; otherwise, it is chosen such that ‖vk‖1 = c2.
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abstract

The use of spectral vision systems for quality monitoring of food items results
in high dimensional signals. However, many of the wavelengths do not carry
relevant information and might be highly correlated to each other, redundant
or noisy. We introduce an unsupervised strategy that �nds the appropriate
features as a �lter feature selection method. The proposed method uses the
most signi�cant peaks of the signal over the wavelengths for quality prediction.
In order to avoid small local �uctuations on the signal envelop that result in
identi�cation of numerous peaks, a smoothing step is performed prior to the
peak �nding. This is useful especially, in cases that the input signal is noisy.
In this paper, smoothing is performed based on adaptive thresholding of the
wavelet coe�cients. The proposed strategy is compared to the state of the art
scale-space strategy based on Gaussian �ltering which is a supervised method
and also utilizes the signi�cant local peaks of the signal. We also compare our
work to two unsupervised feature selection strategies ; a �lter solution based on
an entropy function and a hybrid solution as a combination of a �ltering step
based on feature clustering followed by a wrapper frame work that uses FSSEM
(Feature Subset Selection using Expectation-Maximization (EM) clustering).
The results show that the proposed method is superior than the two other
methods in terms of accuracy and is comparable to the supervised scale-space
feature selection method. In terms of computation time, the proposed method
is considerably faster than all other methods.

D.1 Introduction

Spectral vision systems have gained a lot of attention for food quality inspection.
They also �nd application for medical purposes. Usually some quantitative
values dependent to the acquired spectra should be predicted or classi�ed. The
spectra is obtained in high resolution and the spectral information are highly
correlated. In addition, all of them are not relevant to the prediction or may be
noisy. Therefore, feature selection should be performed to exclude the irrelevant
and redundant features to reduce the complexity, dimensionality and over �tting
problems.

Feature selection is part of dimension reduction strategies that can improve
learning performance, lower computational complexity and build better gener-
alizable models (Alelyani et al., 2013). Feature selection can be supervised or
unsupervised. In this paper, unsupervised feature selection is considered which
addresses the condition that training labels or target values are not available.
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This can be the case in many real experiments where providing enough training
samples or performing laboratory measurements are not possible.

Feature selection algorithms are categorized into �lter, wrapper, hybrid, or em-
bedded models. A �lter model is independent of any classi�er and each feature
is evaluated by studying its characteristics using certain statistical criteria such
as the Fisher score (Duda et al., 2000) or entropy function (Dash et al., 2002).
A wrapper model utilizes a clustering algorithm to evaluate the quality of the
selected features (Roth and Lange., 2003; Dy and Brodley, 2004). It starts by
�nding a subset of features and then the selected subset is evaluated based on
a criterion such as likelihood or scatter separability for its clustering quality.
These two steps are repeated until the desired quality is found. This method
is accurate but computationally expensive. One important wrapper modeling
is FSSEM (Dy and Brodley, 2000, 2004). The hybrid model employs a �lter
modeling and then it chooses the subset with the highest classi�cation accu-
racy. Finally, an embedded model achieves model �tting and feature selection
simultaneously (Zhao et al., 2010). More details about these models can be
found in (Alelyani et al., 2013).

This report focuses on developing an unsupervised feature selection algorithm
for high resolution spectral signals of food items. A previous work on unsu-
pervised feature selection for spectroscopy data of food items was presented
in (Krier et al., 2007). In that work, a methodology combining hierarchical
constrained clustering of spectral variables and selection of clusters by mutual
information was proposed. The mutual information measure was also used for
mass spectrometry data 1 to �nd the relation between the features and the class
labels in a supervised framework for detection of ovarian cancer through spectra
of human serum (Krier et al., 2007). In (Prigent et al., 2010) classi�cation of
skin hyper-pigmentation was performed by spectral analysis of multi-spectral
images. The spectrum data reduction was performed using projection pursuit.

In this report an unsupervised feature selection strategy is proposed based on
the fact that, quality parameters of food items are related to their chemical com-
position or physical characteristics that in�uence their optical properties such
as re�ectance acquired by spectral measurements (Sun, 2009). As mentioned
earlier the dimensionality of the spectral features are high and they are highly
correlated. We hypothesize that the signi�cant local peaks in the spectrum are

1A mass spectra is a plot of the ion signal as a function of the mass-to-charge ratio. The
spectra are used to determine the elemental or isotopic signature of a sample, the masses of
particles and of molecules, and to elucidate the chemical structures of molecules. Mass spec-
trometry works by ionizing chemical compounds to generate charged molecules and measuring
their mass-to-charge ratios. It should not be confused with light spectroscopy. The type of
spectra is totally di�erent from spectral signals obtained from vision systems and instead of
re�ectance it shows the relative abundance of detected ions as a function of the mass-to-charge
ratio.
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related to the chemical or physical characteristics and can be used for prediction
or classi�cation of the quality parameters. Instead of all wavelengths only the
local maxima are �ltered and analyzed, such that, the algorithm should work
faster compared to other selection methods that analyze all the features. In
order to avoid small local �uctuations among the identi�ed peaks, smoothing is
performed prior to peak �nding. This is important in cases where the spectra
are noisy or the number of �uctuation on the envelope are considerable. This
is performed based on adaptive thresholding of the wavelet coe�cients of the
spectra. Previously, a similar strategy used for variable noise suppression of the
spectral data (Schlenke et al., 2012).

We have not seen any similar work based on local peaks for spectral data of food
products. The use of local peaks for spectral information has been mostly used
for Protein mass spectrometry data that is used for medical detection purposes.
In a similar work (Tibshirani et al., 2004), classi�cation of the protein mass
spectrometry data for solid cancers was performed by peak probability contrasts.
A list of all common peaks among the spectra was provided and their statistical
signi�cance and their relative importance in discriminating between the two
groups of healthy and cancerous samples was tested in a supervised framework.
In (Ceccarelli et al., 2009), feature selection and extraction was performed based
on the theory of multi-scale spaces (Lindeberg, 1991) for high resolution mass
spectrometry spectra.

To compare the proposed method with other techniques the scale-space feature
selection strategy that is also based on local maxima is considered. This method
was used in (Ceccarelli et al., 2009). In addition two other unsupervised feature
selection methods were implemented; an unsupervised �lter approach for feature
selection (Dash et al., 2002) and the unsupervised FSSEM algorithm (Dy and
Brodley, 2004) with an additional pre-selection step to reduce the computational
cost.

The rest of this report is organized as follows. Section D.2 is about the materials
and methods used in this paper. In section D.3 the experimental results are
presented and we �nalize with a discussion and a conclusion.

D.2 Materials and methods

In this section, we �rst describe the three methods used for comparison. Sub-
sequently, we introduce the proposed unsupervised feature selection strategy.
Finally, three spectral data sets of food items used for experiments will be de-
scribed.
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D.2.1 State of the art feature selection methods

This section reviews the three methods used for comparison to the proposed
method.

D.2.1.1 Feature selection based on scale-space theory

Scale-space theory for signal analysis is a framework to �nd the local information
of a signal (such as maxima or minima) when no prior information is available
about them (Lindeberg, 1996). Therefore, the signal is represented at multiple
scales to �nd the appropriate scales. In a multi-scale representation, structures
at coarse scales constitute simpli�cations of corresponding structures at �ner
scales. In other words, the �ne-scale information is successively suppressed as
the scale increases. This principle preserves peaks or other features to be arti-
�cially introduced through scales and forces the analysis to be from �ner scales
to coarser scales (Ceccarelli et al., 2009). Thus, the peaks can give information
about the spectrum.

In this paper a K-fold cross validation (CV) was used to train the models and the
scale parameter of the standard deviation σ of a smoothing Gaussian kernel was
varied inside the CV loop. At each CV iteration, for each scale parameter, the
Gaussian kernel has applied and all the peaks, found for the training samples,
are sorted. Then, the peaks were added to the model one by one (from the
highest density to the lowest) and the error was computed at each step. Next,
the minimum error was assigned to its corresponding number of peaks and scale
in that CV iteration. At the end of all CV iterations, the validation error was
averaged over all CV iterations and the scale and number of peaks corresponding
to the minimum validation error was chosen for training and testing of the �nal
models.

D.2.1.2 Unsupervised feature selection based on entropy function
for clustering

In (Dash et al., 2002) a �lter model criteria was used for feature selection that
is based on the entropy-based distance. The main idea is that a proper subset
of features must cluster data better than other subsets and a clustered data set
has very di�erent point to point distance histogram than data without clusters.
The distance measure was used in computation of an entropy measure that
assign low entropy to intra and inter-cluster distances, and a higher entropy to
noisy distances. In other words, the relevant features with low entropy values
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cluster data better than irrelevant features with high entropy values. Therefore,
the best feature set was found based on the minimum entropy measures (Dash
et al., 2002). The entropy measure based on the point to point distance is as
follows:

E = −
∑
Xi

∑
Xj

Eij (A.1)

Eij =

{
exp(β∗Dij)−exp(0)
exp(β∗µ)−exp(0) 0 ≤ Dij ≤ µ

exp(β∗(1.0−Dij))−exp(0)
exp(β∗(1.0−µ))−exp(0) µ ≤ Dij ≤ 1.0

(A.2)

where Dij is the normalized distance in the range [0.0− 1.0] between instances
Xi and Xj and Eij is normalized in the range [0.0− 1.0]. β is a parameter
that was set to 10 to assign su�ciently small entropy to intra- and inter cluster
distances. As mentioned in (Dash et al., 2002), setting µ properly can help to
distinguish between data with and data without clusters and it was computed
using the equation A.2 by setting all other parameter based on the strategy
explained in (Dash et al., 2002). This measure is able to assign a low entropy
for data with clusters and a high entropy otherwise.

This method was used as an evaluation criteria for feature selection process.
The other important step for this process is the search or generation step. In
this search step for the best or optimal subset of features with minimum entropy,
the forward selection algorithm was used (Dash et al., 2002).

D.2.1.3 Hybrid unsupervised feature selection based on FSSEMmethod

The FSSEM method has three di�erent steps; feature search, clustering and fea-
ture subset selection criteria. In (Dy and Brodley, 2004), the sequential forward
search (SFS) was used for feature search and the expectation maximization
algorithm (EM) was used for clustering. Two di�erent criteria were used for
feature selection; Scatter separability criterion and maximum likelihood (ML).
The number of clusters were found based on (Bouman, 1997). For initializa-
tion of the EM algorithm, the sub-sampling initialization algorithm proposed in
(Fayyad et al., 1998) was used.

The scatter separability criterion �nds features that best separate the data and
the ML �nds the features that model Gaussian clusters best (Dy and Brodley,
2004). In this work, the scatter separability criterion is used as the feature
selection criteria .
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Since the complexity of the FSSEM algorithm is high, the processing time for
the high dimensional data sets used in this work is quite high and impractical.
Therefore, a pre-selection of features is performed before applying this method in
order to reduce the number of features and manage the computational time. For
this aim, �rst the features with very low variance that remain almost unchanged
over the samples are removed. Such features do not improve the discrimination
or prediction. To reduce the dimensionality further, the features are partitioned
into k clusters determined by the k components of the Gaussian mixture dis-
tribution. The clustering is iterated until the change in the likelihood function
is negligible or a maximum number of iterations is reached. The number of
mixture components is chosen to be high as it is not important to have clusters
with overlap or close features. This is because, after this pre-selection step, the
FSSEM algorithm will select the most relevant features among the pre-selected
features in the next step.

D.2.2 The proposed method

As explained in section D.1, this work focuses on the unsupervised feature selec-
tion of the food spectral data. The high dimensional spectra of the food items
represent the chemical composition and inherent physical properties of their
constituent materials. From the illuminated energy (VIS-NIR), each material,
re�ect, scatter, absorb and/or emit the light in distinctive patterns at speci�c
wavelengths that shows the spectral signature or �ngerprint of that material.
Therefore, the spectra contains more information than necessary (Michelsburg
et al., 2012) and the relevant wavelengths showing the spectral signature are
mostly located in the local peaks of the spectra which is well known from re-
mote sensing and chemometric analysis (Serpico and Moser, 2007; Brereton,
2009). Figure D.1 shows the NIR spectroscopic signal of a case study from (Br-
ereton, 2009) where samples of vegetable oils were assigned into one of the four
classes (vegetable oil types) using pattern recognition techniques. As can be
seen, discrimination between classes can be best performed at the local peaks.

Thus, unsupervised selection of the feature located on the local peaks of food
items spectra can be performed for characterization, prediction or discrimina-
tion. In the �rst step, de-noising should be performed if there are local �uctu-
ations on the envelope of the spectra to avoid �nding lots of small peaks and
smoothing the spectra. This is performed by thresholding the wavelet coe�-
cients of the spectral signal. After that, the local peaks are found. A local peak
is a wavelength of a sample that is larger in value than its two neighboring wave-
lengths. If a peak is �at, only one point (wavelength) among all the �at points
is considered. Then, the density of peaks at each wavelength is calculated. This
histogram is used to �nd the probability map of peaks for the wavelengths. Fi-
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Figure D.1: NIR spectra of the four groups of oils (Brereton, 2009)

nally, by thresholding the probabilities, the peak wavelengths are found. There
are di�erent methods for �nding the threshold such as the method proposed in
(Kittler and Illingworth, 1986). In this work, we have chosen the threshold value
simply at 0.5. As most of the spectral points of the data sets were non-peak
points this threshold worked �ne for the data sets, but it can be improved based
on more accurate measurements for future studies.

D.2.2.1 Spectral data smoothing

Since spectral signals are often have some local �uctuations and might be cor-
rupted by noise during their acquisition and transmission, smoothing methods
should be employed on measurements in order to reduce such e�ects. In this
work, the local �uctuations on the envelope of the spectra might result in �nd-
ing lots of small peaks. Therefore, inspired by (Schlenke et al., 2012) a per-
processing step for smoothing the spectra and de-noising is performed based
on thresholding of the wavelet coe�cients of the spectral signal. The wavelet
transform decomposes a signal into wavelet coe�cients and small coe�cients are
linked to vibrations and noise e�ects whereas the large coe�cients are related
to signi�cant features of the signal (Jansen, 2001). This is done using a base
function called mother wavelet. Then, the small coe�cients can be altered or
removed by thresholding. If all the wavelet coe�cients below a certain threshold
are set to zero, it is called hard thresholding, while soft thresholding also reduces
or shrinks the other wavelet coe�cients that are higher than the threshold by
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the chosen threshold as follows:

Ts(Y, t) =

{
sign(|Y| − t) if |Y | ≥ t
0 else

(A.3)

Another important point in this case is the choice of the optimal threshold.
In practice, noise levels within a single real measurement are not necessarily
constant and a constant threshold is not appropriate for all sections of the
signal. Therefore, an ideal threshold is a variable function of the actual noise
level.

In this work, the mother wavelet 'Symlets 8' is used and the soft thresholding
together with an implemented MATLAB function for adaptive thresholding is
employed. In this method, the threshold value is computed based on the changes
in variance of noise in di�erent time intervals (Lavielle, 1999).

D.2.3 Data description

Three di�erent data sets are used in this report and are described in this section.

D.2.3.1 Spectroscopy measurements of apples (UV-VIS-NIR)

This data set was from an apple cultivar called Rajka. It was previously used
in (Sharifzadeh et al., 2013a). Spectroscopic measurements were performed on
both sides of apples, exposed and non-exposed to the sun, in 825 wavelengths
(306-1130 nm) and the average results were considered. There were 185 data
points (apple samples) in total. In addition, the solvable solid content (SSC)
(%Brix) value for each apple was available from laboratory measurements. How-
ever, the SSC reference measurements were not used in the proposed feature
selection method as it is an unsupervised method. They were just used in the
evaluation step of the proposed method. Figure D.2 visualizes this spectroscopic
data.

Similar to (Sharifzadeh et al., 2013a), we divided the data into training and
test sets 4 times based on a systematic sampling method called a smooth ar-
rangement or smooth fractionator (Gundersen, 2002). By using this method,
both training and test sets comprise the original variation of the data. Each
training set has 138 samples and each test set has 47 samples. Compared to the
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Figure D.2: Spectroscopy samples of apple type 'Rajka' in 825 wavelengths
(VIS-NIR)

825 wavelengths, the number of samples are limited that makes the prediction
di�cult (N � P ).

D.2.3.2 Hyper-spectral di�use re�ectance images of milk fermenta-
tion process (VIS-NIR)

This data set consisting of di�use re�ectance images of milk during fermentation
process in the controlled condition for fat, temperature and protein factors.
These images are obtained by illumination of a hyper-spectral coherent laser
(480-1040 nm) into the surface of samples and a CCD camera captures the
resulting pro�le. A complete description about this can be found in (Skytte
et al., 2014). During the milk fermentation process, every 6 minute the hyper
spectral imaging was performed in 57 wavelengths (480-1040 nm). This resulted
in a spectro-temporal image set shown in the left side �gure D.3. The process
begins with a milk structure at t1, and ends with a yogurt structure at t61.
The experiments were repeated for 8 times and in each round, the fat, protein
and temperature level was controlled in low or high level, forming a total of 23

combinations. In addition, three experiments were conducted so that, all of the
factors were in medium level.

Due to the high resolution of the acquired images a feature extraction strategy
was used based on a slope parameter introduced in (Nielsen et al., 2011a,b). In
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Figure D.3: The procedure of forming the feature map from a spectro-
temporal image set of milk fermentation process; (left) The laser
beam pro�le (Red corresponds to high pixel intensity and blue
corresponds to low pixel intensity), (right) The slope features,
(right) 3D representation of the �nal spectro-temporal feature
map.

this method, from each image, a narrow band (11 pixels width) of the scatter-
ing pro�le from left to right including the scattering center is considered and
averaged over the 11 pixels. The result is illustrated by a red line in the middle
of each image in the left side �gure D.3. The slope of the double logarithm
transformation to the intensities along half of this line is as the �nal feature for
each image. This is visualized in the middle of �gure D.3. For more information
in this case we refer to (Nielsen et al., 2011a,b). Finally, a 2D spectro-temporal
feature map is formed from the slope values of the image sets. A 3D visualiza-
tion of this map is shown in the right side of �gure D.3. There are 57 elements
along the wavelength and 61 along the time.

In this work, classi�cation of the samples into one of the three levels of fat
content using the spectro-temporal samples is addressed. In addition, reducing
the number of wavelengths and time indexes is desired as this helps to simplify
the vision set-up and the reduce the complexity of the practical experiments.
This requires to perform feature selection along both wavelength and time. The
11 spectro-temporal data sets, were arranged two times to form two di�erent
pairs of sets {s1, s2} and {s3, s4}. Each of the si i = 1, ..., 4 have two spectro-
temporal samples with low and two with high level of fat contents. However,
s1 and s3 have two samples with medium level of fat content and s2 and s4

have one. The two other controlled parameters (protein and temperature) are
di�erent in the samples. Then, each pair can be used two times for feature
selection so that, for example, once s1 is considered as the training set and s2

as test and vice-versa. Therefore, experimental tests were applied four times on
the prepared sets.
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Figure D.4: The spectral data of 1042 �sh pellets in 256 wavelengths

D.2.3.3 Hyper-spectral Images of aquaculture feed pellets (NIR)

The data set consists of hyper-spectral images of aquaculture feed pellets in the
spectral range of 970-2500 nm in a step size of 6.3 nm, resulting in 256 spectral
bands in the NIR range captured by a Specim vision system. The �ll condition
was used where there was white light in the background. The pellets used were
coated with �ve di�erent concentrations of added synthetic astaxanthin (0, 20,
40, 60, 80 ppm). This data set was used in (Ljungqvist et al., 2012). The aim
of the study was to investigate the possibility of predicting the concentration
level of synthetic astaxanthin coating of feed pellets by NIR hyper-spectral image
analysis and to investigate what spectral features are of importance. The pellets
were segmented from the background and divided into sub-regions of maximally
100× 100 pixels and the mean of each region was used as a sample resulting in
to 1042 samples (N � P ). Figure D.4 shows the spectral samples of this data
set.

In our work, we employed the smooth arrangement or smooth fractionator
method (Gundersen, 2002) and divided the data based on this method into
training and test sets four times.
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D.2.4 Model evaluation

For each of the feature selection methods, the training data sets are used to
�nd the best subset of features. The output of this step is the indexes of the
best features among the input variables. In the next step, these indexes are
used to selected the features of the test data. Finally the selected test features
are evaluated. In order to evaluate the feature selection methods, prediction or
classi�cation is performed based on the type of data sets. For the spectroscopic
apple data, prediction is performed using the support vector machine (SVM).
For the spectro-temporal milk data set and spectral �sh pellet data, classi�cation
based on SVM is employed. More information about the SVM can be found in
many di�erent sources such as (Hastie et al., 2009).

As an evaluation criterion, the average RMSE for both training and test sets is
estimated for regression problems. In the case of classi�cation, the percentage
of classi�cation performance PRF% is considered.

D.3 Experimental Results

In this section, the results of the four methods, entropy �lter, hybrid using
clustering, scale-space and the proposed method are presented for the three
data sets described in section D.2.3. The average and standard deviation of the
results over the four training and test sets are reported.

D.3.1 Results of the apple spectroscopy data

Table D.1 shows the results of applying the four methods on the spectroscopic
data of apples described in section D.2.3.1. As can be seen, the proposed method
and the supervised scale-space method obtained better results compared to the
other two unsupervised methods. The original as well as the de-noised signal
for one sample are shown on the same plot in �gure D.5-a. As can be seen, the
number of peaks has reduced after smoothing. The �nal selected wavelengths
are shown on the 3D illustration of this data set in �gure D.5-b.
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Table D.1: Comparison of the regression results for the apple data set

SVR
Apple data set

RMSEtr RMSEts
Entropy 1.09± 0.11 1.09± 0.07
Hybrid 1.04 ± 0.09 1.09± 0.07

Scale-space 0.87 ± 0.04 0.97± 0.05
Proposed method 0.91± 0.02 0.95± 0.07

(a) (b)

Figure D.5: The results of the proposed method on one sample of the apple
data set (a) the original as well as the de-noised signal and their
corresponding local maxima (b) the �nal selected peaks on the
data set
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(a) (b)

Figure D.6: Illustration of the proposed method on the milk data (a) the av-
eraged spectro-temporal map over time (b) the averaged signal
along the selected wavelengths.

D.3.2 Results of the spectro-temporal data of milk fer-
mentation process

As explained in section D.2.3.2, there are only 11 2D spectro-temporal samples
and the training and test sets have 6 (s1, s3) or 5 (s2, s4) samples. Due to the
limited samples compared to the high number of variables (61 time points and 57
wavelengths), the feature selection is performed in two cascade steps; �rst the 2D
pro�les are averaged along the time (see �gure D.6-a) and the best wavelengths
are found by applying the feature selection strategies on the averaged 1-D pro�le.
Then, averaging along the selected wavelengths is performed (see �gure D.6-b)
and feature selection results in �nding the best time points. This reduces the
number of variables. Since the over all 1D behavior along the time or wavelength
in a 2D sample is almost consistent (see the right side of �gure D.3) and only
the height of the pro�le is di�erent (e.g. between two di�erent time points along
the wavelength), the averaging strategy works for this data set. In other words,
there is not a considerable shift in the location of peaks between the samples.
The results of this data set are shown in table D.2. There might be some over
�tting in the models due to the lack of samples in this data set.

D.3.3 Results of the hyper-spectral data of feed pellets

The results of the four methods on this data set are shown in table D.3. The
proposed method as well as the scale-space gained better results again. The
original as well as the de-noised signal for one sample are shown on the same
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Table D.2: Comparison of the classi�cation results for the milk data set

SVM
Milk

PRFtr% PRFts%
Entropy 100.0± 0.0 95.83 ± 8.33
Hybrid 100.0± 0.0 100.0± 0.0

Scale-space 100.0± 0.0 100.0± 0.0
Proposed method 100.0± 0.0 100.0± 0.0

Table D.3: Comparison of the classi�cation results for the feed pellets data set

SVM
Fish pellet

PRFtr% PRFts%
Entropy 23.83± 5.18 21.49 ± 4.03
Hybrid 22.11 ± 2.28 22.27 ± 1.68

Scale-space 48.81 ± 18.69 49.63 ± 20.36
Proposed method 59.24 ± 2.44 56.63 ± 7.42

(a) (b)

Figure D.7: The results of the proposed method on one sample of the feed
pellet data set (a) the original as well as the de-noised signal and
their corresponding local maxima (b) the �nal selected peaks on
the data set
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plot in �gure D.7-a. As can be seen, the number of peaks has reduced after
smoothing. The �nal selected wavelengths are shown on the 3D illustration of
this data set in �gure D.7-b.

D.4 Discussion

Based on the results achieved by applying the four methods on the three data
sets, the importance of considering the peaks in the analysis of the spectral data
of food items is clear.

In �gure D.8, the selected wavelengths by the four tested feature selection strate-
gies are shown on the same plot. For ease of illustration, the spectral curves
are shifted vertically. As can be seen, the scale-space method has considered
most of the local peak points and after that the proposed method has used the
most signi�cant peaks. These two methods were more successful than the other
methods according to the results obtained in previous section. Both of the en-
tropy and hybrid methods use forward feature selection. The former uses the
entropy criterion for feature selection. However, the group of selected features
for which, the samples have the minimum entropy, are not located necessarily
on the peaks. While the peak points have good correlation to the quality pa-
rameter (SSC). In the case of the hybrid method, the choice of features with
highest variance at the primary step, keeps the peak points as there are lots of
variations around the peaks. The forward selection step has also chosen some
of the local peaks based on the scatter separability criterion.

Since the entropy based �ltering and the hybrid methods are both based on
forward selection algorithm, they require to examine all of the features that
increases the complexity of these unsupervised algorithms. In addition, the
scale-space strategy is a supervised frame work that uses k-fold CV loop with two
internal loops for the choice of σ and the number of peaks. This also considerably
increases the computational time. However, the proposed method does not use
any of the above mentioned factors and hence is faster than the other methods.
Table D.4 presents a comparison of the average computational times and the
corresponding standard deviation of the tested methods for the apple data set.
As can be seen, the scale space method has the highest computational time
while for the proposed method it is considerably lower than the other methods.

Since the proposed feature selection method is unsupervised it can be used
for the analysis of the quality of food items in the absence of the quantitative
reference for quality in conditions that only spectral measurements are available.
The short time of process makes it useful to be used in-line in real time projects.
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Figure D.8: Comparison of the selected wavelengths by the four tested meth-
ods for apple data set.

Table D.4: Comparison of the computational time of the tested methods

Entropy Hybrid Scale-space Proposed method

t(sc.) 10702.25±5621.40 7760.64±3448.79 36153.71±1853.81 122.37±83.05
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In this work, the threshold value for �nding the signi�cant peaks was constant
and further studies may be required for �nding a more robust way for the choice
of threshold value.

D.5 Conclusion

In this report, a new unsupervised feature selection method is proposed for
spectral data of food products. The local extrema of the food items spectra
are found for all training samples. Then, a histogram map for the peaks of all
wavelengths is formed and thresholded to �nd the most important peaks. To
remove the local �uctuations and noise e�ects in the spectral data, a smoothing
step based on thresholding of the wavelet coe�cients of the spectra is performed.
The proposed method is compared with two other unsupervised feature selection
algorithms; a �lter method that uses an entropy function and a hybrid method
based on clustering. In addition, the proposed method is compared with the
state of the art scale-space strategy that is a supervised method. Experimental
results showed that the proposed method is better than the �lter and hybrid
methods in terms of accuracy and comparable with the scale space method. It
worked even better than the scale space method in some cases. In addition, it is
superior than all other methods in terms of computational time. The proposed
method is suitable for quality assessment of the food items using their spectral
data in condition that no quality references are available.

Acknowledgment: This work was (in part) �nanced by the Center for Imag-
ing Food Quality project which is funded by the Danish Council for Strategic
Research (contract no 09-067039) within the Program Commission on Health,
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A sampling approach for predicting the eating
quality of apples using visible–near infrared
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Skov,d Line Harder Clemmensenb and Torben B Toldam-Andersena

Abstract

BACKGROUND: Visible–near infrared spectroscopy remains a method of increasing interest as a fast alternative for the
evaluation of fruit quality. The success of the method is assumed to be achieved by using large sets of samples to produce
robust calibration models. In this study we used representative samples of an early and a late season apple cultivar to evaluate
model robustness (in terms of prediction ability and error) on the soluble solids content (SSC) and acidity prediction, in the
wavelength range 400–1100 nm.

RESULTS: A total of 196 middle–early season and 219 late season apples (Malus domestica Borkh.) cvs ‘Aroma’ and ‘Holsteiner
Cox’ samples were used to construct spectral models for SSC and acidity. Partial least squares (PLS), ridge regression (RR) and
elastic net (EN) models were used to build prediction models. Furthermore, we compared three sub-sample arrangements for
forming training and test sets (‘smooth fractionator’, by date of measurement after harvest and random). Using the ‘smooth
fractionator’ sampling method, fewer spectral bands (26) and elastic net resulted in improved performance for SSC models
of ‘Aroma’ apples, with a coefficient of variation CVSSC = 13%. The model showed consistently low errors and bias (PLS/EN:
R2

cal = 0.60/0.60; SEC = 0.88/0.88◦Brix; Biascal = 0.00/0.00; R2
val = 0.33/0.44; SEP = 1.14/1.03; Biasval = 0.04/0.03). However, the

prediction acidity and for SSC (CV = 5%) of the late cultivar ‘Holsteiner Cox’ produced inferior results as compared with ‘Aroma’.

CONCLUSION: It was possible to construct local SSC and acidity calibration models for early season apple cultivars with CVs of
SSC and acidity around 10%. The overall model performance of these data sets also depend on the proper selection of training
and test sets. The ‘smooth fractionator’ protocol provided an objective method for obtaining training and test sets that capture
the existing variability of the fruit samples for construction of visible–NIR prediction models. The implication is that by using
such ‘efficient’ sampling methods for obtaining an initial sample of fruit that represents the variability of the population and
for sub-sampling to form training and test sets it should be possible to use relatively small sample sizes to develop spectral
predictions of fruit quality. Using feature selection and elastic net appears to improve the SSC model performance in terms of
R2, RMSECV and RMSEP for ‘Aroma’ apples.
c© 2013 Society of Chemical Industry

Keywords: Malus domestica; SSC; representative sample; training set formation; variability

INTRODUCTION
The use of visible and near infrared spectroscopy (visible–NIR)
for the rapid evaluation of fruit quality remains a topic of
importance and interest for the food research community and
food industry because, in a near future, it might be included
in ‘the tool box’ for efficient farm management.1,2 Spectral
regions on the visible and near infrared spectrum have been
used to predict quality in intact fruits such as apples (380
up to 2000 nm), apricots (600–2500 nm), citrus (636–1236 nm),
grapes (650–1100 nm), kiwifruits (300–1100 nm), pineapples
(400–2500 nm) with different degrees of success.3 The fruit quality
parameters studied with spectroscopy included: soluble solids
content (SSC), firmness, acidity, dry matter, taste and starch, among
others.3 In most of these studies the quality characteristics were
predicted using multivariate statistical models.

Two of the most important fruit quality traits are SSC and
acidity.4 These traits have a great influence on consumer liking

and repetitive purchases. During fruit growth, the internal quality
traits are expected to vary due to different causes (type of soil,
weather, training and thinning techniques, etc.). This variation
in quality might be the most important factor affecting the

∗ Correspondence to: Mabel V Mart ı́nez Vega, Department of Plant and
Environmental Sciences, Faculty of Science, University of Copenhagen,
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calibration models, which are used to train different spectroscopy
devices.3 Model validation, an essential step to be carried out after
calibration, has often been performed using samples from the
same batch. The tendency has been to use or suggest large sets of
samples, which together with pre-processing statistical methods,

reached somewhat satisfactory results.3–5 One conclusion was
that the samples should be ‘rich’ in variation and ideally contain
information from multiple orchards/seasons/cultivars to obtain

sufficient robustness.3,6–8 In addition, for the purpose of proper
model construction, post-harvest sample arrangements have also
been proposed with different aims. Interestingly, most of the
studies reporting spectral robustness issues for fruit quality, used
samples obtained randomly from either fruit trees or from the
commercial market. Frequently, little has been reported regarding
the sampling techniques applied during fruit collection and often
relevant sample statistics (mean, standard deviation, ranges of the
quality parameter of interest) have not been provided. As a result,
the reproduction, comparison, evaluation and improvement of
the mentioned experiments becomes challenging.

In an earlier study, we explored the variability of mass, sugar,
firmness and starch of representative samples of ‘Granny Smith’
apples obtained at the orchard scale (Martı́nez Vega MV et al.,
unpublished). In this study, we extend our approach of using the
‘fractionator’ tree sampling procedure to obtain representative
apple fruit samples at time of harvest.9 These samples were
used to evaluate the performance of visible–NIR spectroscopy
method for calibration and validation model development. Thus,
the objectives of the study were: (1) evaluate the SSC and acidity
prediction performance of an early and late season apple cultivar;
and (2) to compare different sub-sampling techniques to form
training and test sets on the overall performance of the prediction
models. Furthermore, we discuss the main implications of the
method in practice.

MATERIALS AND METHODS
Fruit material
Two Danish apple (Malus domestica Borkh.) cultivars, an early
season ‘Aroma’ and a late season ‘Holsteiner Cox’, were collected
at fruit maturity, in September and October 2011, respectively
from 11-year-old trees at the Pometum orchard, University of
Copenhagen, Denmark. The samples were selected using the
‘fractionator’ procedure for trees,9 from 10 trees per cultivar. The
fractionator procedure is a form of multi-level systematic uniform
random cluster sampling, in which the trees, primary branches,
and, at the final stage, branch segments form the clusters of fruit
for sampling purposes. For both cultivars we used systematic
sampling periods of 2 (for branch) and 2 for in-branch segment
with random starts. When the branch segments bore more than
one fruit, a random number was used to select one fruit from
each of the final sample of branch segments. Each sampled fruit
was labelled with a number to preserve information about the
picking order. Once harvested, the samples were kept at room
temperature (18 ◦C). To widen the spread of fruit SSC and acidity
values for the experiments, apple quality measurements for each
cultivar were performed after 5 (Date 1) and 10 (Date 2) days of
storage. Likewise, to preserve the distribution of fruits per tree
from the original sample, the sub-groups for each of the storage
periods mentioned were selected by taking a systematic sample
of fruit with period 2 while preserving the original picking order
from the 10 trees. Thus, sample Date 1 contained apples 1, 3, 5 . . . ,
and Date 2 sample consisted of the fruit ranked 2, 4, 6 and so forth.

Determination of fruit quality
On each apple, two pieces of fruit flesh (stem to calix end), from
the exposed and non-exposed side of the fruit were squeezed. Its
juice was presented to a calibrated handheld brix meter (Metler
Toledo ‘Quick brix 60’; Mettler Toledo Inc. Columbus, Ohio, USA)
to measure SSC content. The remaining juice was kept for acidity
determination. Acidity was measured with a titrino (719 S Titrino
Metrohm; , Herisau, Switzerland). The titration consisted of adding
a solution of NaOH of concentration 0.1 mol L−1 to 5 mL a sample
solution of apple juice until the pH reached 8.1. Results were
expressed in grams of malic acid (the most abundant acid in
apples) per 100 mL of apple juice.

Spectral measurements
A spectrometer (MOE-1 System, Tec5 AG, Oberursel, Germany) with
MMS sensors and a 12 V/100 W halogen lamp was used to collect
reflectance readings in 1 nm increments within a wavelength
range between 400–1130 nm, yielding 731 values per spectrum.
A calibration was performed using a white piece of barium sulfate
every 20 apples. Spectral measurements were performed on the
exposed and non-exposed (to sun) parts around the equator of
each apple. A distance between the lamp and the fruit of 10 mm
was maintained. A holder supported fruits to direct light in a
45◦ angle to avoid specular reflectance. The integration time
was 161 ms. Each intact fruit was placed on a rotary circular
base with the stem–calyx vertical and four equidistant guides on
the base made sure that the measurements were approximately
equidistant. The scans collected at each sample point were
averaged and transformed to absorbance [log(1/reflectance)].10

Training and test sets arrangements
First, over-mature or damaged fruit samples on ‘Date 2’ were
removed from the data sets. Then, three different data sets were
formed for each cultivar.

Set A
A smooth arrangement from all samples (‘Date 1’ and ‘Date 2’
together) according to SSC and acidity values was performed. The
‘smooth’ arrangement was formed by ranking all the original
sample of fruit in increasing order according to the SSC or
acidity level, respectively, for SSC and acidity modelling. Then
every second fruit was pushed out to form a monotonically
increasing and then decreasing ordering of fruit by quality. From
this new ordering, a predefined systematic sampling interval of ‘4’
(probability p = 1/4) was applied to obtain approximately 25% of
the samples for the test set. The remaining 75% of the samples
comprised the training set. This procedure was repeated four
times, starting with fruit ranked 1, 2, 3 and 4, corresponding to
the four possible ‘random starts’ that form all possible systematic
samples from the ‘smooth’ ordering. Systematic sampling from
a smooth arrangement (‘smooth fractionator’) is a procedure
designed to provide samples with high within-sample variance
and low between-sample variance, which in this case means that
both training and test sets capture well the variation of SSC and of
acidity existing in the original sample.11,12 The averages of results
were used to evaluate the general performance of the regression
methods on the data sets.

Set B
SSC samples of each cultivar from ‘Date 1’ formed the training set
and samples from ‘Date 2’ the test set. The same criterion was used
to construct the models for acidity.

J Sci Food Agric 2013; 93: 3710–3719 c© 2013 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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Set C
The original data set was divided into training (75%) and test (25%)
sets using simple random sampling without replacement. This was
repeated 25 times to obtain 25 independent sets for training and
testing. The averages of results were used to evaluate the general
performance of the regression methods on the data sets.

Preprocessing of spectral data
Since the spectral data contained NIR bands, Multiplicative scatter
correction (MSC) was applied.10 In addition, because of the
presence of visual bands, the original data set without MSC was
also considered. All the models and algorithms were calculated
using Matlab software (version R2011a; The MathWorks Inc., Natick,
MA, USA).

Calculation of calibration and prediction models
Three different linear regression methods were used on each data
set. For all the regression methods, 10-fold cross validation with a
modified version of the standard error rule13 was used for finding
the best parameters to train the model.

Partial least squares regression
The commonly used partial least squares regression (PLS) method
was used to predict fruit quality from spectra data. The basis of the
method is to link the variation in the spectral information to the
response to find only the relevant information for predicting the
response.10

Calibration and prediction models were constructed using
the ‘internal validation’ approach (using samples from the same
batch).3 The SSC and acidity data were autoscaled before model
calculation. This latter procedure ensures that all samples have
approximately the same contribution to the model.10

Ridge regression
This method is based on the penalisation of the regression
coefficients. As a result, the regression model is regularised to
reduce the variance of the predicted output.13 The purpose is
to alleviate the effect of noise on the model. Ridge regression
requires that both the response vector (Y) and the data matrix (X)
to be centred.

Elastic net
Elastic net (EN) is a sparse regression method based on the
regularisation of regression coefficients. This means that the
regression coefficients are shrunk so that some of them are set to
zero. Therefore, it can cancel out the noise effect. In addition, it has
a grouping effect and the non-zero coefficients correspond to the
groups of correlated variables (wavelengths). When the number
of variables (e.g. number of spectral bands = 731) is higher than
the number of observations (e.g. NSSC = 196 data points), the
prediction becomes an ‘ill-posed’ problem13 and EN is one of
the appropriate methods in this case. This method requires the
response vector (Y) to be centred and the data matrix (X) to be
normalised with unique length for each variable.14

Feature selection
This method is commonly used for high dimensional data to
reduce the complexity of the model. Since the dimensionality of
the apple data was high (731 spectral bands), this pre-processing

step was also employed. It was compared with the regression
results using all the features (wavelengths). Feature selection helps
to distinguish the wavelengths that carry the useful information
for the prediction to simplify the model.

A common approach for dimension reduction is principal
component analysis (PCA), but it is not an appropriate method
for ‘ill-posed’ problems.15 Although PCA is a dimension reduction
method, each principal component is a linear combination of all
the basic features (wavelengths). This means that it could not be
used as a tool for reducing the number of used wavelengths for
prediction. We applied a feature selection algorithm proposed in a
former study (Sharifzadeh S et al.,16 unpublished). The method first
sorts the wavelengths according to the number of times that their
corresponding regression coefficients were non-zero in several
iterations of elastic net regression and then selects a subset of
them as described below.

For this research, the regression coefficients obtained from
applying EN on the set C (25 randomly generated training sets),
were used for feature selection. First, the number of times that the
coefficients were non-zero in each band was counted (‘frequency
of being non-zero’). Then, the wavelengths were sorted according
to their corresponding frequencies. To choose a proper number of
wavelengths for performing the regression task, a candidate list of
the number of selected wavelengths was formed:

candidate list of top selected wavelengths

= [20, 50, 80, 100, 150, 200, 250, 700]

In the next step, an EN regression with 10-fold cross validation
was applied on only the 25 training sets using the spectral
data corresponding to each of these candidate numbers of
wavelengths. Finally, the best candidate number of wavelengths
was chosen according to the corresponding minimum root mean
square error of prediction (RMSEP).

Model evaluation
Model robustness was evaluated in terms of the coefficient of
determination (R2), the standard deviation (SD) of training and test
sets, the standard error of calibration (SEC), the root mean square
of residual errors of cross validation (RMSECV), the standard error
of prediction (SEP), the root mean square of residual errors of
prediction (RMSEP) and the bias.

RESULTS AND DISCUSSION
Cultivar variability along the harvest season
The ‘fractionator’ procedure yielded in total 205 fruits for ‘Aroma’
and 221 fruits for ‘Holsteiner Cox’. The total number of samples
for ‘Aroma’ in Date 1 was N = 103 fruit and for Date 2 was N = 102
fruit. The number of samples for ‘Holsteiner Cox’ was N = 111
fruit in Date 1 and N = 110 fruit in Date 2. Figure 1 illustrates the
spread of SSC and acidity values for both cultivars after elimination
of damaged samples (over-mature or with disease). The higher
SSC values of ‘Holsteiner Cox’ were expected given the reported
sweetness properties of the late season cultivar as compared to
the early season ‘Aroma’.17

In general SSC and acidity values had low to moderate variation.
‘Aroma’ samples had the same average of SSC on both post-storage
dates, whereas ‘Holsteiner Cox’ samples showed a slight increase
of the average SSC values. The increase is related to degradation of
starch which normally is present at high levels in late season
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Figure 1. Box and whisker plots for (a) SSC (soluble solids content) and (b) acidity values for cultivars ‘Aroma’ and ‘Holsteiner Cox’ on two post-storage
measurement dates (5 and 10 days). Extreme values, present for both variables and measurement dates are indicated by solid symbols on the plots. N =
number of samples; CV = SD/mean.

cultivars with potential for postharvest storage (unpublished
data). The lower coefficient of variation (CV = SD/mean) of SSC for
‘Holsteiner Cox’ as compared to ‘Aroma’ , showed that ‘Holsteiner
Cox’ samples had a notably narrower spread of SSC values (Fig.
1a). ‘Aroma’ and ‘Holsteiner Cox’ had almost similar CVs of acidity
on both harvest dates.

Spectral signatures of the early and late season cultivar
The spectral signatures for the apple cultivars ‘Aroma’ and
‘Holsteiner Cox’ obtained in two different post-storage dates are
illustrated in Fig. 2.

There were differences in the shapes of the spectral signature
between cultivars and between measurement dates. Furthermore,
the curves showed large variability in absorbance at a given
wavelength. The visible region (below 700 nm) of the spectra
appeared more irregular than the NIR region (above 700 nm)
between Dates 1 and 2.

The ‘Aroma’ signature showed a noisy area in the blue
region 400–500 nm. On the further green region 500–600 nm,
there were differences on the turning points of the curve
between Date 1 and Date 2 spectra. Different spectral regions
have been related to chemical components such as chlorophyll
at 650–695 nm18 or carotenoids and anthocyanins at shorter
wavelengths than 650 nm, sugars in 470–484 nm, 498–512 nm,
526–540 nm, 568–582 nm, 665–679 nm,19 and sour taste (acidity)
in the 640–700 nm region.20 The low absorption values around the
area between 700 and 900 nm probably do not contain important
information for ‘Aroma’ and ‘Holsteiner Cox’ cultivars. In this

sense, spectral bands with almost zero light absorption have been
reported to be influenced mainly by scattering properties of the
tissue.21 These spectral regions were not removed for the model
calculations, however.

The peaked-shaped area shape above 900 nm is consistent with
previous studies of SSC on apples. One should expect to find
spectral curve peaks at around 800 nm related also to chlorophyll
content,22 950 nm peaked areas may be related to water content
and sugar–water peaks at 840 and 890 nm23 and the overtones
of the hydroxy (O—H) stretch/vibration of H2O/carbohydrates
may be explained at 930–1080 nm as well as variations in the
absorption at 960 and 1060 nm, which are related to absorption
of pure water and solutions of different sugar concentrations.18

Results of band selection
Figure 3 shows the counts of non-zero coefficients for each of
the 731 wavelengths. The plot corresponds to the analysis of the
original SSC data without MSC pre-treatment.

Figure 4 shows the resulting averages of the RMSEP values
plotted after EN was applied on bands of training data according to
the candidate list. As described previously in the feature selection
section.

For SSC, the minimum RMSEP occurred at 600 features, but
there was a very close RMSEP value also at 350. Because 350 bands
was considerably smaller than 600, the first 350 top bands were
selected for SSC. The same procedure was performed for acidity.
In this case, the first 250 bands were chosen. The selected bands
for SSC and acidity are shown in Fig. 5.
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Figure 2. Raw spectral patterns recorded in the visible–NIR region 400–1100 nm (exposed and non-exposed sides of the fruit averaged and MSC
pre-processed) and expressed as ‘Absorbance’ for (a) ‘Aroma’ and (b) ‘Holsteiner Cox’ in two measurement dates. Axes: X = wavelength (400–1100 nm),
and Y = absorbance.
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Figure 3. The frequency of having non-zero regression coefficients in 25
iterations of EN for the original SSC data set for ‘Aroma’ apples.

All the described steps were also performed with the MSC pre-
processed data. The number of selected bands for SSC and acidity
in this case were 450 and 250 respectively.

Results for the calibration and validation models
The resulting numbers of fruit samples on each of the previously
explained sampling arrangements were: Sets A and C of ‘Aroma’
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Figure 4. The RMSEP candidate number for SSC.

had 147 and 49 (196 in total) samples for SSC and 141 and 48 (189
in total) samples for acidity. ‘Holsteiner Cox’ SSC training and test
sets A and C had 165 and 54 (219 in total) respectively and the sets
for acidity had 152 and 51 (203 in total) samples.

The smallest RMSEPs from each combination of the three
arrangements and two data sets (original/MSC) are presented
in Fig. 6. The selected features on Set A (smooth arrangement)
using the EN regression and 26 wavelengths obtained the best
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Figure 6. Overall comparison of the soluble solids content (SSC) prediction
errors based on RMSEPs of the three training/test arrangements (A, B
and C respectively) and the two original (without) and MSC pre-processed
data. MSC, multiplicative scatter correction; Rg, ridge regression; FS, feature
selection; EN, elastic net. The numbers on the ordinate indicate the number
of wavelengths used in the models.

results for SSC and acidity prediction. Therefore complete results
of sets B and C are not presented.

Figure 7 illustrates a comparison of the error of the prediction
models obtained on sets B (Fig. 7a) and C (Fig. 7b) respectively.
The figure further demonstrates the importance of the strategy
used for forming the training and test sets. The minimum RMSEPs
for set B were higher than the worst results obtained using set A
using PLS. Set C also produced better models than Set B, but the
best results were not as good as those for Set A.

Sets B and C had higher prediction errors. In particular the
random sets (C) often caused over fitting during the modelling
process, resulting often in poorer models. As an illustration, Fig. 8
shows the spread of RMSEP from the three sample arrangements
used for building the prediction models of SSC of ‘Aroma’ apples.
Summary statistics for the four sets and their average formed
during smooth arrangement (Set A) are shown in Table 1.

Table 2 presents the average prediction statistics for the set ‘A’
of the ‘Aroma’ cultivar, which obtained the best results for both
SSC and acidity models. In general, the calibration and prediction

correlation using PLS were inferior to RR and EN in all cases (Table
2 and Table 3). The error and bias remained low for set A.

In a similar manner, Table 3 shows the ridge and EN regression
results for the selected bands of the original and MSC pre-
processed data. For the SSC data, in all cases except ridge
regression on the original data, the performance slightly improved
using the reduced number of wavelengths. In the case of acidity,
the effect was the same.

Soluble solids content
Table 2 shows that elastic net and ridge regression improved
the prediction of SSC and also resulted in lower errors and bias
as compared to PLS. Table 3 demonstrates that even though all
the models performance in terms of R2, errors and bias were not
importantly improved after band selection, fewer bands on the
visible and NIR region were suited for SSC prediction for set A.
Fewer bands simplify the measurement systems and make them
more cost effective. Our ‘Aroma’ SSC calibration models performed
better (R2 = 0.44; SEC = 0.88◦Brix; range: 8.0–15.5◦Brix; SD = 1.39)
than previous studies done by Zude et al.,21 which reported
R2 = 0.04 and higher SEC = 1.82 (for stored ‘Golden Delicious’
apples). They used higher number of samples in storage (n = 250;
SD = not reported) and spectral bands between 400 and 1000 nm.
On the other hand, Dai et al.24 obtained SSC prediction models
with higher R2 using smaller sample numbers (N = 58; R2 = 0.76;
SEC = 0.22; SEP = 0.83), similar band range 400–1100 nm for a
data set with SSC values fairly normally distributed around
the mean (rangecal = 8.6–16.7; rangeval = 8.6–15.5 SDcal = 1.69;
SDval = 1.62). The high difference between SEC and SEP in this
latter study indicates that the training and test samples were
not very similar. Another model from Hernández et al.25 also had
high prediction results (R2 = 0.98; SEC = 0.45◦Brix; SEP = 1.69◦Brix)
except bias = 1.62 was quite high. They used samples with higher
variation than ours (CVSSC = 0.28). It was not clear, however, how
the samples were collected in these latter studies. Peirs et al.8

calculated a SSC model using 244 apple samples for calibration
and 244 samples validation from seven different apple cultivars
where R2

cal = 0.91 to 0.92, SEC = 0.49 to 0.76 but using spectral
regions between 380 and 2000 nm. It is possible that better results
for SSC might be obtained by extending the spectral data to other
areas of the NIR spectra to the ones we studied.

J Sci Food Agric 2013; 93: 3710–3719 c© 2013 Society of Chemical Industry wileyonlinelibrary.com/jsfa

189



3
7

1
6

www.soci.org MV Martı́nez Vega et al.

0 0.5 1 1.5 2 2.5 3

MSC.EN+FS-4

O.EN+FS-5

O.EN-8

MSC.EN-7

O.Rg+FS-350

MSC.Rg+FS-450

O.PLS-731

O.Rg-731

MSC.PLS-731

MSC.Rg-731

m
et

ho
d-

nu
m

be
r 

of
 b

an
ds

RMSEp

SSC-B

0 0.02 0.04 0.06 0.08 0.1

0 0.02 0.04 0.06 0.08 0.1

0.12

O.EN+FS-12

MSC.EN+FS-27

MSC.EN-31

O.EN-59

MSC.Rg+FS-250

O.Rg+FS-250

O.PLS-731

O.Rg-731

MSC.PLS-731

MSC.Rg-731

m
et

ho
d-

nu
m

be
r 

of
 b

an
ds

RMSEp

Acidity-B(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

O.EN+FS-46

O.EN-60

MSC.EN+FS-61

MSC.EN-93

O.Rg+FS-350

MSC.Rg+FS-450

O.PLS-731

O.Rg-731

MSC.PLS-731

MSC.Rg-731

m
et

ho
d-

nu
m

be
r 

of
 b

an
ds

RMSEp

SSC-C

O.EN+FS-41

MSC.EN-65

O.EN-124

O.Rg+FS-250

MSC.Rg+FS-250

MSC.EN+FS-38

O.PLS-731

O.Rg-731

MSC.PLS-731

MSC.Rg-731

m
et

ho
d-

nu
m

be
r 

of
 b

an
ds

RMSEp

Acidity-C(b)

Figure 7. Comparison of the RMSEPs of the different regression methods used on the data division for modelling sub-samples (a) Set B and (b) set C
for ‘Aroma’ cultivar. The numbers on the ordinate indicate the number of wavelengths used in the models and the letters indicate, in each case, the
approach used to analyse the data sets. MSC, multiplicative scatter correction; O, original data without MSC; Rg, ridge regression; FS, feature selection;
EN, elastic net.

Table 1. Statistics for the training/test sub-sample sets for the sample arrangement A

Characteristic Statistic Set 1 Set 2 Set 3 Set 4 Average

Soluble solids content (◦Brix) Number 147/49 147/49 147/49 147/49 147/49

Range 7.9–14.4/8.3–15.9 7.9–15.9/8.2–14.3 7.9–15.9/8.2–14.4 8.2–15.9/7.9–14.1 8.0–15.5/8.1–14.7

Mean 11.05/11.08 11.06/11.05 11.06/11.04 11.06/11.05 11.1/11.1

SD 1.37/1.47 1.41/1.37 1.40/1.38 1.40/1.39 1.39/1.40

Acidity (g 100 mL−1) Number 141/48 141/48 141/48 141/48 141/48

Range 0.5–1.1/0.45–0.87 0.47–1/0.45–0.88 0.45–0.91/0.5–0.1 0.45–1/0.51–0.9 0.47–0.98/0.48–0.91

Mean 0.67/0.67 0.67/0.67 0.67/0.67 0.67/0.67 0.67/0.67

SD 0.09/0.01 0.09/0.1 0.09/0.1 0.1/0.09 0.09/0.1

Acidity

Our acidity models performed lower those reported by Peirs
et al.8 They used random samples from a combination of seven
different apple cultivars to construct calibration (N = 244) and
validation (N = 244) models in the region between 380 and
2000 nm. Their results were R2

cal = 0.88, R2
val = 0.86 (SEC = 1.64;

SEP = 1.73). Abu-Khalaf and Bennedsen26 reported also better
results using in total 200 samples of two apple cultivars (‘Golden
Delicious’ and ‘Jonagold’) to calculate calibration (N = 130;
r2 = 0.84; SEC = 0.07) and validation models (N = 70; SEP = 0.07)

on the spectral region 400–1100 nm. Other studies have reported
improved prediction results for acidity on citrus fruit using the
spectral region between 500–1100 nm (r2 = 0.65; RMSEP = 0.15)
and up to the 2500 nm acidity predictions have reached r2 = 0.86;
RMSEP = 0.17.27

‘Holsteiner Cox’ models had poor prediction, which was
somehow expected because the sample variability from this
cultivar was very low (CV of 5–6%). However, this also means
that the spectra may be did not capture SSC or acidity levels
accurately for this cultivar.
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Table 2. Averaged calibration and prediction results (Set A) for ‘Aroma’ apple cultivar using all 731 spectral bands

Raw data sets MSC transformed data sets

Characteristic Statistic PLS RR EN PLS RR EN

Soluble solids content (◦Brix) Ncal 147 147 147 147 147 147

Nval 49 49 49 49 49 49

RMSECV 0.91 0.78 0.90 0.91 0.87 0.85

RMSEP 1.09 1.04 1.04 1.11 1.08 1.05

R2
cal 0.55 0.68 0.56 0.60 0.60 0.61

R2
val 0.33 0.43 0.43 0.35 0.39 0.43

SEC 0.93 0.79 0.92 0.92 0.88 0.86

SEP 1.07 1.04 1.04 1.11 1.08 0.99

Biascal 0.00 0.00 0.00 0.00 0.00 0.00

Biasval 0.01 0.02 0.01 −0.03 0.01 0.02

NNC 731 731 45 731 731 134

Acidity (g 100 mL−1) Ncal 141 141 141 141 141 141

Nval 48 48 48 48 48 48

RMSECV 0.08 0.08 0.07 0.08 0.08 0.08

RMSEP 0.08 0.08 0.08 0.09 0.08 0.08

R2
cal 0.29 0.30 0.36 0.29 0.27 0.33

R2
val 0.22 0.22 0.22 0.15 0.18 0.18

SEC 0.08 0.08 0.08 0.08 0.08 0.08

SEP 0.09 0.09 0.08 0.09 0.09 0.09

Biascal 0.00 0.00 0.00 0.00 0.00 0.00

Biasval −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

NNC 731 731 81 731 731 26

MSC, multiplicative scatter correction.
PLS, partial least squares method.
RR, ridge regression.
EN, Elastic Net.
Ncal, number of samples in the calibration set.
Nval, number of samples in the prediction set.
RMSECV, root mean square error of cross validation.
RMSEP, root mean square error of prediction.
R2

cal, coefficient of determination (calibration).
R2

val, coefficient of determination (validation).
SEC, standard error of calibration.
SEP, standard error of prediction.
Biascal, bias calibration.
Biasval, bias validation.
NNC, number of non-zero coefficients.

The differences on model robustness observed between the
three approaches used for forming training and test sets, indicated
that training and test sample arrangement do affect the overall
model performance, especially when the number of samples
are limited and smaller than the number of wavelengths. The
tendency of producing stable prediction after applying the smooth
fractionator to form training and test sets, stressed the importance
of maintaining the original sample variability throughout the entire
model construction process in order to achieve model robustness
and high precision (higher coefficients of determination, low
errors between calibration and validation sets and low bias). This
conclusion is supported by the differences observed between
our training and test sets performance, which suggests that
the variability of the training set were, by chance, excluded
from the test set during the formation of training and test sets.
Consequently, using a different sampling period (p = 2) to form
training and test sets, so that the proportion becomes 50–50
instead of the commonly used 75–25, might be a better approach
to use in order to preserve as much as possible the original
variability of the whole data set, when working with smaller

samples. The fractionator technique used to sample fruit from the
trees has already been shown to be an effective way to obtain
small samples (<100) representing the variability of fruit size and
internal quality at the orchard scale, as shown by Wulfsohn et al.28

and Martinez V et al. (unpublished). These previous studies and
the findings of this study suggest that is feasible to develop robust
visible–NIR prediction models using relatively small samples. The
type of cross validation used might have some additive effect
on the model performance as well, because it is a method also
based on repetitive selection of samples from the calibration set.29

However, given the low results for the model errors and bias, we
consider the robustness of our models to be adequate for this type
of data set.

In practice, the results of this study imply that using local
fruit samples for developing spectral calibration and prediction
sets is feasible, as long as the sample variability is taken into
account on the formation of training and prediction sets. The late
season samples, however, need to be modelled differently. Using
representative fruit samples with higher internal quality variability
(e.g. CV > 15%) might be a better approach to use, since a much
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Figure 8. Box plots for the root mean square of prediction (RMSEP) for the raw and MSC treated data of the sample arrangements A, B and C.

Table 3. Averaged calibration and prediction results (set A) for Aroma apple cultivar using selected bands

Raw data sets MSC transformed data sets

Characteristic Statistic PLS RR EN PLS RR EN

Soluble solids content (◦Brix) Ncal 147 147 147 147 147 147

Nval 49 49 49 49 49 49

RMSECV 0.87 0.77 0.88 0.92 0.88 0.87

RMSEP 1.14 1.07 1.03 1.13 1.07 1.05

R2
cal 0.60 0.69 0.60 0.55 0.60 0.61

R2
val 0.33 0.40 0.44 0.33 0.40 0.43

SEC 0.88 0.78 0.88 0.93 0.89 0.87

SEP 1.14 1.07 1.03 1.13 1.08 1.05

Biascal 0.00 0.00 0.00 0.00 0.00 0.00

Biasval 0.04 0.03 0.03 0.00 0.02 0.02

NNC 350 350 26 450 450 50

Acidity (g 100 mL−1) Ncal 141 141 141 141 141 141

Nval 48 48 48 48 48 48

RMSECV 0.08 0.08 0.08 0.08 0.08 0.08

RMSEP 0.08 0.08 0.09 0.08 0.08 0.08

R2
cal 0.32 0.31 0.27 0.32 0.31 0.30

R2
val 0.22 0.24 0.19 0.19 0.20 0.18

SEC 0.08 0.08 0.08 0.08 0.08 0.08

SEP 0.09 0.08 0.09 0.08 0.08 0.09

Biascal 0.00 0.00 0.00 0.00 0.00 0.00

Biasval −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

NNC 250 250 37 250 250 19

Abbreviations as in the footnote to Table 2.

higher number of samples of the fruit populations with the same
variability as the samples we presented will not necessarily improve
the prediction results greatly. Such high variability samples may be
obtained from commercial orchards where the internal variability
of fruits is expected to be higher. We are testing this hypothesis in
different batches in our further research.

CONCLUSION
Three sub-sampling techniques for the formation of training and
test sets for spectral prediction of SSC and acidity of an early apple
cultivar were compared. The smooth fractionator approach was
clearly superior to random sampling and to by-date separation,

resulting in models with consistently low errors and low bias,
mainly because the method provides a fair representation of the
response values in both the training and test sets. In addition,
three different methods to reduce model complexity, PLS, RR
and EN were compared. Using elastic net and fewer bands
were the best approaches to reduce model complexity (R2 = 0.44;
SEP = 1.03◦Brix; bias = 0.03; range: 8.1–14.7◦Brix). Therefore our
results confirmed that the fractionator sampling provide data sets
suitable for SSC prediction with visible–NIR spectroscopy. To our
knowledge, this is the first proposal of a modelling protocol for a
sub-sample of training and test sets, which takes into account the
variability of the original sample in the context of predicting fruit
quality by using a non-destructive method.
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Abstract.  

Multispectral imaging is increasingly being used for quality assessment of food items 
due to its non-invasive benefits. In this paper, we investigate the use of multispectral 
images of pre-fried carrots, to detect changes over a period of 14 days. The idea is to 
distinguish changes in quality from spectral images of visible and NIR bands. High 
dimensional feature vectors were formed from all possible ratios of spectral bands in 
9 different percentiles per piece of carrot. We propose to use a multiple hypothesis 
testing technique based on the Benjamini-Hachberg (BH) method to distinguish pos-
sible significant changes in features during the inspection days. Discrimination by the 
SVM classifier supported these results. Additionally, 2-sided t-tests on the predictions 
of the elastic-net regressions were carried out to compare our results with previous 
studies on fried carrots. The experimental results showed that the most significant 
changes occured in day 2 and day 14. 

Keywords: Multispectral imaging, Multiple hypothesis testing, Segmentation, 
Food quality assessment, SVM classification, Elastic-net regression 

1 Introduction 

Spectral imaging has recently gained use in on-line quality monitoring of food items. 
This method has important privileges over the traditional assessment methods, based 
on skillful human experts. The imaging-based methods are automatic, fast and con-
tact-less. Since, there is a trend toward the use of these methods for quality control of 
food products such as meat, dairies and vegetables; it is of importance to test the ca-
pabilities as well as the reproducibility of such. 

In this paper, the multispectral images of pre-processed carrots were used to detect 
the effect of storage on their color and NIR characteristics. The carrots were pre-fried 
without oil and then frozen for about two months. Then, they were moved to the re-
frigerator for experiments during a period of 14 days. Generally the surface color and 
texture are important parameters; indicating the quality of food. Multispectral images 
provide this information in visible bands and also more information about the subsur-
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face and chemical characteristics in NIR bands. Using the multispectral images in 
visible and NIR bands, we tracked the quality of carrots during the storage days. The 
aim was to find out in which days, significant changes occurred. 

In this study, the preparation of carrots was performed in two steps. First, the vege-
tables were stir-fried (without oil) [1, 2]. Research findings have shown that, stir-
frying produces high quality vegetables [1]. After stir-frying, the products were fro-
zen. The concept of partial thawing during distribution which can improve shelf life 
was used [3, 4].  

Previous studies showed that, multispectral images can be used to assess the color 
change over time in pre-fried vegetables [5]. The analysis of multispectral images of 
pre-fried carrots and celeriac (fried in oil) was carried out for change detection with in 
a period of 14 days in [6, 7]. In [6], the segmented vegetable pieces were used to form 
the high dimensional feature vectors (3249 variables). For each carrot piece, 9 differ-
ent percentiles in all possible ratios of bands were calculated. Then, the elastic-net 
regression analysis was carried out to predict the days of analysis from these high 
dimensional features. Finally, a 2-sided t-test on the estimated days was applied. A 
significant change was detected in carrots from day 2 to 4 at a 5% level of signifi-
cance.  In [7], instead of the ratios of bands, the feature vectors were calculated using 
the percentiles of pixel intensity values within each vegetable piece.  These features 
were used directly for unpaired t-tests to detect trends of change in reflection, as a 
function of days kept in the refrigerator.  Again for carrot, the significant change was 
detected from day 2 to 4 at 5% level. The results were also compared with the sensory 
panel tests. 

In this paper, we propose to apply a multiple hypothesis testing technique to assess 
the high dimensional features obtained from the ratios of spectral bands and their 
corresponding percentiles. The high dimensional features based on band ratios are 
preferred, since they are more robust toward the undesired effects such as shadows. 
Multiple hypothesis techniques are mostly used for genomic data [8, 9]. They involve 
the significance assessment of the individual features. This assessment was per-
formed, without the use of multivariate predictive models like in [6]. Since the dimen-
sionality of the extracted features was quite high (3078), a conventional t-test at a 
significance level e.g. α=0.05 may find about 154 significant features just by chance 
even if, the null hypothesis of no change is true for all the features [9].  In our study, 
the False Discovery Rate (FDR) introduced in [11] and the expected number of signif-
icant features was used to detect the significant days of change. In addition, the Sup-
port Vector Machine (SVM) classification was employed. Although the classification 
results support the multiple hypotheses testing, it is difficult to use them alone, as a 
demonstration for significance of changes over the days. In addition, the method used 
in [6] was applied to our data set, and the results were compared with the findings 
from the multiple hypothesis tests. Finally, we found the wavelengths mostly repre-
sented the significant features over the inspection days.  

The rest of this paper is organized as follows; section 2 describes the data prepara-
tion for the experiments and the feature extraction step. In section 3, we explain the 
data analysis and section 4 presents the results. Finally, there is a conclusion for this 
paper in section 5. 
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2 Data Preparation and Feature extraction 

2.1 Data Preparation 

The carrots used in this study, were prepared for the experiments a few days after 
harvest. First, they were cut into cube shapes of size one cm3 approximately. Then, 
they were wok-fried for 4 minutes at 250° C in the continuous stir [1]. After cooling 
down, they were packed in 500g weight in plastic bags and frozen at -30° C for 50-60 
days. Finally, they were moved to the refrigerator (+5° C). On days 2, 5, 8, 11 and 14 
one bag was taken out from the refrigerator and the imaging experiments were con-
ducted. The VideometeLab1 was used for multispectral imaging like in [6, 7]. The 
multispectral images were obtained in 19 different wavelengths with the image reso-
lution of 1280×960 pixels. The spectral images of a sample petri dish of carrots are 
shown in Fig.1 and pseudo-RGB images of samples in the five inspection days are 
shown in Fig 2. 

 

Fig. 1. Spectral images of carrot in 19 wavelengths, shown in nanometer range. 

 

     

Fig. 2. Pseudo-RGB images of carrot samples. From left to right: day 2, 5, 8, 11, 14 

                                                            
1 www.videometer.com  
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2.2 Feature extraction 

In order to form feature vectors, the first step is to segment the carrot pieces from 
the background and also from each other. Some of the procedures are almost similar 
to those in [6].  A brief description of different steps is presented in the following.  

The background, which is everything except carrot, was removed in three different 
steps. First, a simple thresholding was performed manually, considering the histo-
grams of the images. But, some parts of the background that had intensity variations 
close to the carrots, still remained. Therefore, two populations were considered (carrot 
and remaining background) and labeled manually. Then Canonical Discriminant 
Analysis (CDA) [10] was employed to improve the discrimination level between the 
two populations to define better thresholds [12]. Finally, a fine morphological opera-
tion (closing and erosion) was used to clean the undesired small remaining areas. For 
segmentation of carrot pieces, similar to [13], the Sobel edge detector was used which 
is based on the gradient function. Then, some morphological operations followed by a 
Watershed transformation were applied on the background-removed image. Using 
both the gradient and Watershed transform, the carrot pieces were segmented.     

 Each carrot piece was considered as a single observation. Since there were lumps 
of pieces in the petri dishes instead of individual well separated cubes, the segmenta-
tion was not perfect. In some cases two carrots were segmented as one piece or one 
piece was segmented into two different pieces. However, all segmented areas include 
carrots bodies. Fig.3 illustrates different steps of the carrot segmentation.  A feature 
vector was formed for each detected carrot piece. First, for each of the 19 bands, all 
its 18 possible ratios to the other bands were calculated (totally 342 ratio matrices). 
Then, in each ratio matrix, 9 percentiles (1, 5, 10, 25, 50, 75, 90, 95, 99) were calcu-
lated for each piece. Therefore, by concatenating of the 9 percentile vectors of the 342 
ratios, a 3078 length feature vector per piece of carrot was obtained. 

 

 

Fig. 3. Segmentation steps: 1-original image 2-two manual thresholding steps 3-thresholding 
using CDA 4-morphological operation 5-detected edges by Sobel 6-detected edges by Water-
shed 7-Watershed label matrix 8-segmented pieces 
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3 Data Analysis 

As mentioned before, the aim of the analysis is to detect and track changes in the 
color and NIR characteristics of the carrots over the days of inspection. Totally, 3277 
observations (carrot pieces) were segmented from the images of the 5 days of experi-
ments. They were divided into two sets (set1 and set2) randomly and all analyses 
were performed twice, using one of the sets as training and the other as test set and 
vice versa. 

3.1 Elastic-net Regression and 2-sided t-test 

Looking to the problem from a statistical point of view, a statistical test can be used 
for finding the significant changes. For this aim, like in [6], an elastic-net regression 
was performed on the ratio features to predict the number of days. 10-fold cross vali-
dation was used to generalize the prediction model. In the next step, a 2-sided t-test 
was applied on the predicted labels for all pairs of days to test the null hypothesis H0 
that two groups come from the same population at the 5% level of significance. This 
means that instead of considering the high dimensional features directly, they were 
first used for predicting the days and the one–dimensional prediction vector was used 
for the statistical test. 

3.2 SVM Classification 

The main problem at hand can be considered as discrimination of the data between 
different labels (days). If we look at the problem from this point of view, a classifica-
tion approach can be used as a means of discrimination. For this aim, the powerful, 
support vector machine classifier was employed using LIBSVM [13]. A linear kernel 
with 5-fold cross validation was used for training the classifier. We expect that in 
days where considerable changes occurred, most of the samples be truly classified. 
On the other hand, for days with more similarity, misclassified samples should in-
crease. Therefore, we will look at the confusion matrix for classification between 
days. 

3.3 Multiple Hypothesis Testing  

Another way of performing a statistical test is to perform multiple hypothesis tests 
for individual features of pairs of days to find the significant changes. However, not 
all the detected significant features are truly significant. For example, if the conven-
tional statistical t-test with a priori significance level of α=5% be used, just by chance, 
about 154 significantly changed features will be found out of the total 3078 features, 
while the null hypothesis may be true for some of them. Table 1 shows the theoretical 
outcomes from the M hypothesis tests [10]. Where, M is the number of features.  

To address this problem, the number of falsely significant features (V in Table 1), 
for which the null hypothesis of no change (H0) is true, should be found. One simple  
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Table 1. Possible outcomes from M hypothesis tests. 

 
solution is the Bonferroni method. In order to reduce the number of false positive 
features (V), it rejects H0 if the p-value of a feature satisfies	݌ ൏ ߙ ⁄ܯ . It is a useful 
method in cases that M is small, as it is based on the assumption that the covariates 
are independent. However, in our case M is quit high (M=3078) and high correlation 
exists between the covariates. Therefore, the Benjamin-Hachberg  (BH) method is 
used instead. They introduced the False Discovery Rate (FDR) as follows: 

ܴܦܨ  ൌ ሺ௏ܧ
ோ
ሻ (1) 

It is the expected proportion of the false positive features V among the R features 
that are called significant. In this method, the FDR rate is bounded by a user defined 
level α. It is calculated based on the p-values obtained from an asymptotic approxima-
tion of the test statistic like a Gaussian or a permutation distribution. 

In this paper, a plug- in version of this method is followed [10]. The FDR rate is 
bounded at α=0.15 and the permutation distribution is used. Then, the number of truly 
significant features ܧሺܵሻ෣  is estimated and used for making decision about the days 
that significant changes occurred in the vegetable data. The procedures are as follows:     

  
1. The t statistics are calculated  for all the features of both days: 	ݐ௝	, j ൌ 1,… ,M	
2. For K=1000 times, the sample’s labels (days) are permuted and the t statistic 

for the features at each permutation round is calculated. ݐ௝
௞, j ൌ 1,… ,M	, k ൌ

1,… , K	
3. For a cut-point C, the ܴ ൌ ∑ ௝หݐሺหܫ ൐ ሻெܥ

௝ୀଵ ,  as well as the ܧሺܸሻ෣ ൌ
ଵ

௄
∑ ∑ ௝ݐሺหܫ

௞ห ൐ ሻ௄ܥ
௞ୀଵ

ெ
௝ୀଵ   are calculated. (the I function shows the number of 

times the inequality is satisfied) 
4. The ܦܨ෣ܴ ൌ ሺܸሻ෣ܧ ܴ⁄  and the number of truly significant features	ܧሺܵሻ෣ ൌ ܴ െ

ሺܸሻ෣ܧ	   are computed. 
 
In this study, the cut-point C is chosen equal to the t statistic of the critical point of 
the BH method.  The critical value controls the FDR to be around α=0.15. It is cal-
culated in the following steps:  
 
1. The corresponding pooled p-value of the t statistics for each feature is com-

puted: ݌௝ ൌ
ଵ

ெ௄
∑ ∑ ௝ᇲݐሺቚܫ

௞ ቚ ൐ หݐ௝หሻ௄
௞ୀଵ

ெ
௝ᇲୀଵ   

2. The p-values for the features are ranked in ascending order ݌ሺଵሻ ൑ ሺଶሻ݌ ൑ ⋯ ൑
 ሺெሻ݌

3. The BH critical point is  ܮ ൌ ሺ௝ሻ݌	:ሼ݆ݔܽ݉ ൏ ߙ ൈ ݆ ⁄ܯ ሽ and so the cut point is 
C=|ݐ௅|.   

 Called not Significant Called Significant Total 
H0 True U V M0 
H0 False T S M1 

Total M-R R M 
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(a)                                                                (b) 

Fig. 4. (a) A plot of the ordered p-values	݌ሺ௝ሻ, the threshold line (ߙ ൈ ݆ ⁄ܯ ) as well as the criti-
cal point of the BH method. (b) The box-plots of the elastic-net prediction, set1 training set2 
test. 

Fig.4 (a) shows a sample plot of the ordered p-values, the threshold line (ߙ ൈ ݆ ⁄ܯ ) as 
well as the critical point. Using this method, the number of significantly changed 
features is obtained for all pairs of days. 

4 Results and Discussion 

In the first experiment, like in [6], an elastic-net prediction was performed using the 
spectral data of set1 to train the prediction model. Then, set2 was used for test. Fig. 
4(b) shows the boxplot of the result. The same experiment was repeated, when the 
training and test sets were swapped. The prediction error was high (similar to [6]) and 
the test MSEs were 13.55 and 13.66 for the two experiments respectively. Although 
the prediction accuracy was poor, a linear trend could be seen for the predictions over 
the 5 days. A pairwise 2-sided t-test (at a 5% level of significance) was performed for 
all pairs of days using the prediction output. The results of both sets showed signifi-
cant change almost between all pairs of days.  

In the next experiment, SVM classification was performed. Table 2 shows the con-
fusion matrix of the SVM test results, where set2 was used for training the model and 
set1 was used for test. It shows the percentage of each day’s samples that were classi-
fied into one of the 5 days of inspection. Therefore, all rows sum to 100 percent. As 
can be seen, at each day, more than half of the observations were classified to the 
same class (inspection day) correctly, and less observations were misclassified. This 
implies the capability of the multispectral imaging to distinguish subtle changes in 
carrots over days that are even difficult to be observed by eyes, as we have seen in 
Fig. 2.  

On the other hand, the number of misclassified samples was also considerable in 
many cases which illustrate the similarity of the samples in different days. Day 14 
gained the minimum misclassification and 78.66% of the samples were just truly clas-
sified in that day. For the second experiment, where the training and test sets were 
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swapped, the same holds true for day 14. Day two gained the second highest classifi-
cation performance. However, in the second experiment its percentage was around 
60.29. Therefore, more information about the significance of the changes seemed 
necessary to confirm a change in quality of carrots between days. 

At this step, we used the results from the multiple hypothesis tests explained in the 
previous section. Tables 3, shows the number of significantly changed features in all 
pairs of days for set1. These results were obtained using the BH method for the FDR 
rate bounded at 0.15. The Table is symmetric to the diagonal. The pairwise analysis 
between day 14 and the all other days showed the highest number of significantly 
changed features. This is compatible with the previous results from the SVM classifi-
cation. The next highest number of significant features was detected from the pairwise 
analysis of day 2 with the other days. This was seen in one of the SVM test results as 
well. The same analysis was performed on set2 and the results were similar to set 1. 
Therefore, we can conclude from these analyses that, the most important change in 
carrot samples occurred after 2 weeks. While with less significance level, they also 
changed after 2 days being kept in the refrigerator.  

Comparison of the results obtained from the SVM and BH methods with those from 
the t-test on the elastic-net predictions, showed differences in the significant days of 
change. However, we believe that the SVM and BH methods results are more reliable. 
First, since they were obtained by the direct use of the 3078 features of spectral image 
than the prediction results. Second, the elastic-net regression prediction error was 
high.   

Table 2.  The percentage of each day data assigned to the 5 classes by SVM 

 Class 2 Class 5 Class 8 Class 11 Class 14 
Day 2 73.19 2.41 4.22 15.36 4.82 
Day 5 4 64 20 2.15 9.85 
Day 8 4.19 18.39 62.26 4.84 10.32 

Day 11 24.92 1.25 5.61 62.30 5.923 
Day 14 4.73 6.80 10.35 2.66 75.45 

Table 3. Number of significantly changed features in all pairs of inspection days for set1 

Set 1 Day 2 Day 5 Day 8 Day 11 Day 14 

Day 2 0 592.47 503.99 332.48 1288.67 

Day 5 592.47 0 4.98 22.94 1118.72 

Day 8 503.99 4.98 0 22.01 1025.24 

Day 11 332.48 22.94 22.01 0 1026.94 

Day 14 1288.67 1118.72 1025.24 1026.94 0 
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Fig. 5. The Frequency map for contribution of the wavelengths in significant features  

In addition, considering the requirements of an industrial level vision system, it is 
interesting to know which wavelengths contributed most in the significant features. 
For this reason, we examined the frequency at which a wavelength was included in 
the features below the critical point. Fig. 5 shows the frequency of each wavelength 
being used in those features. The frequency maps of the pairwise analysis between 
days 2 to 5 and 11 to 14 are shown. For day 2 to 5, the three mostly used wavelengths 
were 435 nm (blue), 910 nm (NIR) and 470 nm (blue). In case of day 11 to 14, the 
850-890 nm NIR bands as well as 660 nm (red) and 435 nm (blue) had the highest 
frequency. Similar analysis for other cases showed that, NIR bands as well as the blue 
and red wavelengths were among the top frequent bands. 

There were some differences between the previous work in [6] and this study. The 
carrots were fried in oil in that work while no oil was used for this study. The inspec-
tion days weren’t exactly the same compared to this work and the freezing period was 
two months more. The elastic-net regression model was built using leave-one-out 
cross validation that we believe may cause over fitting regarding the limited samples 
and high number of features. The significant change was found between days 2 and 4 
in that work. 

5 Conclusion 

In this paper, multispectral images of pre-fried carrots were used to detect the changes 
in their quality within 14 days of inspection. The pre-fried carrots were kept around 
two months in the freezer and then were moved into the refrigerator. The use of mul-
tispectral images helps to extract the features representing the surface color as well as 
NIR characteristics of carrots. The Benjamin-Hachberg (BH) multiple hypothesis 
testing method was used to find the most significantly changed features over the stor-
age days. The most important change in carrot samples occurred after 2 weeks. While 
with less significance level, they also changed after 2 days. Classification results ob-
tained by SVM supported this. However, the elastic-net regression results had high 
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MSEs. As a result, the 2-sided t-tests on the regression predictions of any set of 2 
days at a 5% level were significant. 
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Abstract— Quality monitoring of the food items by 
spectroscopy provides information in a large number of 
wavelengths including highly correlated and redundant 
information. Although increasing the information, the increase in 
the number of wavelengths causes the vision set-up to be more 
complex and expensive. In this paper, three sparse regression 
methods; lasso, elastic-net and fused lasso are employed for 
estimation of the chemical and physical characteristics of one 
apple cultivar using their high dimensional spectroscopic 
measurements. The use of sparse regression reduces the number 
of required wavelengths for prediction and thus, simplifies the 
required vision set-up.  It is shown that, considering a tradeoff 
between the number of selected bands and the corresponding 
validation performance during the training step can result in a 
significant reduction in the number of bands at a small price in 
the test performance. Furthermore, appropriate regression 
methods for different number of bands and spectrophotometer 
design are determined. 

 
Keywords—Sparse regression, spectroscopy, lasso, elastic-net, 

fused lasso  

I.  INTRODUCTION  
In food industry, the vision-based techniques such as 
spectroscopic measurements are widely used methods for 
quality monitoring of the food items. They acquire changes in 
the chemical and physical composition as factors of quality [1, 
2]. For instance, the optical characteristics such as reflectance 
or absorbance measured by UV/VIS/NIR spectroscopy can 
represent the pigmentation and structural tissue changes in the 
plant organs.  

There are different types of spectrophotometers used for 
spectroscopy and their spectral resolution (provided by 
monochromator) is an important characteristic showing the 
range of wavelengths they support [1, 3]. However, not all the 
wavelengths are equally important for characterization of food 
items. Usually the data in adjacent wavelengths are highly 
correlated and many of them are redundant, whereas other 
wavelengths may not carry relevant information for the 
problem at hand. Therefore, choosing a proper set of 
wavelengths carrying relevant information will help to 
simplify the vision system.  

 

The aim of this paper is to solve such problems by 
employing sparse regression methods on UV/VIS/NIR 
spectroscopic data (306-1130 nm) of an apple cultivar. Two 
quality parameters, the sugar content called solvable solid 
content (SSC) and firmness of the apples [2] were predicted 
using their spectroscopic data. Sparse regression methods 
assist to reduce the number of wavelengths [4] and can 
simplify the vision set-ups used in food quality control [8].  
We compared three sparse regression techniques; least angle 
shrinkage and selection operator (lasso) [4], elastic-net (EN) 
[4] and fused Lasso (FL) [5]. The data set was divided into 
different training and test sets four times and the average 
results are considered. A 10-fold cross validation (CV) was 
employed for training the prediction models. However, using 
the model parameters corresponding to the minimum 
validation error resulted in the use of a considerable number of 
wavelengths. In order to reduce the number of wavelengths 
even more, two strategies were investigated in the training 
phase. First, the one standard error rule was used [4]. In 
addition, manual selection of the proper number of 
wavelengths corresponding to an acceptable performance 
compared to the optimal point was performed. Results showed 
that both methods reduced the number of wavelengths 
significantly for all methods. However, this reduction was 
more considerable for firmness than SSC.  In addition, the 
second strategy decreased the number of required wavelengths 
more and achieved better performance than the first one. 
Finally, a relation between the statistical methods and the 
design of the vision setups were determined.  

 

II. DATA DESCRIPTION 
The apple cultivar that was used in this paper is called 
“Rajka”. Spectroscopic measurements were performed on both 
sides, exposed and non-exposed to the sun, in 825 
wavelengths (306-1130 nm) and the average results were 
considered. There were 185 data points (apple samples) in 
total. In addition, the SSC (%Brix) and the firmness (N) 
values for each apple were available from laboratory 
measurements. Figure 1 shows the spectroscopic data in 
UV/VIS and NIR wavelengths as well as the corresponding 

This work was financed by the Centre for Imaging Food Quality project which is 
funded by the Danish Council for Strategic Research (contract no 09- 067039) 
within the Program Commission on Health, Food and Welfare. 
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sorted SSC and firmness signals. A slight trend can be seen in 
spectroscopic data in both UV/VIS and NIR bands that 
follows the corresponding sharp changes in SSC and firmness. 
In order to form the training and test sets, the samples were 
ranked in ascending order according to the SSC or firmness 
level. Then, from every 4 fruit samples, one was chosen as test 
(unseen data during training) and the rest as training. This was 
repeated 4 times by changing the number of test samples 
(1,2,3,4) to prepare 4 training and test sets ( ). 
   

III. STATISTICAL ANALYSIS 
Since the number of samples N=185 was much smaller than 
the number of wavelengths P=825, the parsimonious 
regression methods were employed.  

 

A. Lasso 
Considering the general regression problem with

, where are the predictor variables 
and   are the responses, the lasso regression method 
estimates the regression coefficients  by minimizing the 
residual sum of squares so that, the L1 norm of the coefficients 
is penalized [4]: 

 

 

 
In  case, the lasso selects at most  variables before 

it saturates [4]. Moreover, it does not support a grouping 
effect. That means that, if there is a group of variables with 
high pairwise correlations, then the lasso tends to select only 
one variable from the group. In this paper, the lasso algorithm 
implementation based on least angle regression (LAR) 
algorithm formed in [6] was used. The training involved a 10 
fold CV to determine the number of non-zero coefficients 
varying from 1 to N.  
 

B. EN 
EN is a sparse regression method in which the regression 
coefficients  are calculated based on both L1 and L2 norms 
penalty [4]: 
 

 

 
It can be used in ill-posed conditions where N<P. In 

addition, it has the grouping effect that helps to design a vision 
system with groups of close wavelengths. The EN 
implementation from [6] was used in this paper. Training was 
performed by a 10 fold CV with loops for selection of the  

 
Fig. 1. The UV/VIS and NIR wavelengths sorted spectroscopic data and the 
corresponding SSC and firmness signals. 

 
norm 2 penalty  and the number of non-zero coefficients.  

 

C. FL 
FL is a generalized version of lasso that encourages sparsity 
by means of the L1 norm penalty on both regression 
coefficients and their successive differences [5]: 

 

 
The fused lasso is especially useful for the N<P cases, 

since it sets many coefficients to zero and finds groups of 
close features. The first penalty term encourages sparsity in 
the coefficients and the second one encourages sparsity in 
their differences. Therefore, with this solution we expect to 
find groups of adjacent wavelengths. In this paper, the 
implementation of this algorithm from the SLEP package [7] 
was used. A 10 fold CV with two loops for the choice of the 
two penalty terms were used for training the models. In 
addition, for each trained model the number of bands were 
calculated in each case and used for making decision about the 
best model parameters. 
 

D. Model Selection 
 
As mentioned in section 1, the one-standard error rule [4] was 
used as the first strategy for reducing the number of bands and 
making the models more parsimonious. The one- standard 
error rule picks the simplest model within one standard error 
from the minimum error point. Suppose that, we have P 
number of variables and M folds. The standard error of the 
error matrix  at point p is computed as follows: 
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Computing this value at the minimum point, the best model 

parameter can be found at one sep distant from the minimum 
point in the direction where less bands are chosen. The second 
selection strategy is simply a manual selection by comparing 
the error at the minimum point and the points with less 
number of bands. In fact, a tradeoff was made between the 
reduction in number of bands and the increase in error. 

 

IV. EXPERIMENTAL RESULTS 
In order to evaluate the regression methods the root mean 
square error and the R-square criteria were used: 
 

,    
 

 

 
where  and  are the original and estimated response values 
and  is the mean value of all target values.  

In figure 2 the minimum error points as well as the points 
selected by the one standard error rule and also manual 
selection are shown for the three methods. Since the 
dimension of the resulting average validation error map from 
the 10 fold CV loop varies for the three regression methods, 
the three plots do not represent an equal number of points. In 
case of lasso, the number of bands was the only model 
parameter and thus the average validation error was an N 
length vector. For EN model, besides the number of bands, the 
norm 2 penalization coefficient  was the second parameter. 
Therefore, the illustration was performed by reducing the 
dimension into one so that, just the minimum error for each 
lambda as well as the points found by the two selection 
strategies are illustrated. Finally, for FL, the two varying 
parameters were 1 and 2 that created a 2D average error map. 
However, in this work we are interested to make the decision 
based on the number of wavelengths. Therefore, a 2D matrix 
of the same length showing the average number of 
wavelengths over the 10 folds was also calculated. Then, these 
two matrixes were vectorized and shown verses each other. In 
all of these cases, the selection direction of the new points was 
defined in a way that the simplest and most parsimonious 
models could be selected. The density of selection of different 
wavelengths for the four data sets in SSC estimation is shown 
in figure. 3. As can be seen, the UV, VIS and NIR regimes are 
selected by all three methods. 

Finally, the average results of the four training and test sets 
from all the three regression methods for the SSC and 
firmness are presented in tables 1 and 2. As can be seen, in 
both cases moving from the minimum point toward a new 
point selected manually or by one standard error rule 
significantly reduced the average number of wavelengths   

Fig. 2. Illustration of the average 10 fold CV validation error of the three 
regression methods for set 1.  

 

Fig. 3. Density of band selection for SSC estimation using the three regression 
methods. Model parameters were obtained by manual selection for 4 data sets. 
 
and also reduced the over-fitting by decreasing the difference 
between the training and test performances. Moreover, the 
manual selection reduced the number of bands more than the 
one standard error rule. 
 

 

A. Discussion 
Based on the results, the methods that are suitable for vision 
set-ups with different number of bands are illustrated on top of 
figure 2 by different colors. Besides the number of bands, the 
width of the regimes is important in spectrophotometer design. 
Considering figure 2 and 3 and the two tables, lasso is suitable 
when a few individual narrow bands (less than 10 bands) can 
be provided by e.g. a few LEDs. EN is suitable when more 
bands (up to 200) in narrow regimes can be supplied. A 
monochromator capable of selecting a few narrow regimes of 
laser light suits this case. Finally, FL is the best choice when a 
lot of bands (e.g. more than 200) in broad regimes of laser 
light are available. The monochromator does not need to 
provide high resolution in this case. 
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Table 1. The average results of the three regression methods for SSC. 

SSC 
Minimum  

point 
Manual 

Selection 

1 Std. Error 
Rule 

FL 

 
41.12 39.40 37.80 

 
55.70 42.68 43.98 

 
0.86 0.87 0.88 

 
0.76 0.87 0.86 

 
532.5 142.75 158.75 

EN 

 
41.28 41.32 37.86 

 
53.32 44.92 39.59 

 
0.86 0.86 0.88 

 
0.78 0.85 0.89 

 
30.25 11.50 19.25 

LASSO 

 
41.55 40.87 35.16 

 
55.46 44.39 37.02 

 
0.86 0.86 0.90 

 
0.76 0.85 0.91 

 
16.0 6.25 5.0 

 

I. CONCLUSION 
In this paper, three regression methods; lasso, EN and fused 
lasso were used for estimation of the SSC and firmness level 
of an apple cultivar using their spectroscopic data. By manual 
selection of a new point or using the one standard error rule 
instead of the minimum error point, we could significantly 
reduce the number of required wavelengths for training the 
prediction model at a price of a small increase in the test error. 
Finally, the proper regression methods with different number 
of bands and types of spectrophotometer design were defined 
in the discussion.  
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Abstract 

The use of computer – vision based systems as non-destructive and in-line quality monitoring 

methods in food industry is increasing. We propose the use of multispectral images ranging from 

visible (VIS) to near infrared bands (NIR
1
) to predict sensory attributes.  Sensory evaluation is an 

important quality assessment method in food industry. However, it is time consuming and in 

some cases destructive. On the other hand, multispectral imaging is a non-invasive and cheap 

method that can be used fast and in-line. The visible spectra show the pigmentation and 

appearance information while the NIR spectra are correlated to the chemical characteristics of 

the object under study. In this work, two types of vegetables (carrot and celeriac) were used for 

investigations. Two batches of stir-fried vegetables were evaluated after a freezing period 

followed by a chill-storage period for up to 14 days at 5°C. At each day of experiment, the 

sensory evaluation was performed by a sensory panel of 6 assessors. In addition, multispectral 

images were acquired from the same samples in 19 different wavelengths (VIS-NIR). The aim is 

to explore the general relationship between the sensory attributes and the multispectral images. 

We develop statistical regression models to predict the sensory attributes from the spectral 

information. Experimental results demonstrated such a relationship between some of the sensory 

attributes and spectral features. From the obtained results, we found that variation of sensory 

scores over the days of storage and their consistency over the batches were the two main 

requirements for generalization of the models. We also found that, due to the limitation in human 

visual perception, the color attribute did not have such characteristics. In addition, the analysis 

results demonstrated that both visible as well as NIR wavelengths were among the most 

contributing wavelengths in the models. 

                                                 
VIS-NIR: visible-near infrared 

CCD: Charge coupled device 

QIM: quality index method 

EN: elastic-net 

RMSE: root mean square error 

SSC: solvable solid content 

PLSR: partial least square regression 
DPA: Discrimination Power Analysis 

DP: Discrimination Power 
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Key words (6): 

Multispectral imaging, Sensory assessment, Stir-fried vegetables, Sensory attributes, Regression  

1 Introduction 

The use of computer vision - based systems for assessment and monitoring the quality of food 

items has gained attention widely in recent years. A simple example is the use of a digital CCD 

camera for quality inspection of apples (Garrido-Novell, et al., 2012).    

The classic methods for food quality assessment are mainly based on laboratory tests and 

sensory evaluation, usually performed by human experts. However, such methods have some 

limitations. For example they can be destructive in some cases and they are dependent on well 

trained assessors. In addition, they are slow methods when used in-line in a production line.  

Due to these limitations, the computer vision - based techniques such as multispectral imaging 

have been employed as an alternative for quality inspection of food items. These techniques are 

fast, non-invasive and result in reproductive quality monitoring methods in food industry. 

Additionally, they can be used objectively and in-line. Multispectral imaging gives information 

about the color and visual characteristics of the food under study as well as its chemical 

characteristics that are correlated to its quality (ElMasry & Sun, 2010). That is based on certain 

materials unique spectral signatures in the electromagnetic spectrum (Sun , 2009). Such spectral 

imaging systems can be designed very cheap for food quality monitoring.  
In most cases the assessment is performed by detection or prediction of a “quality parameter” 

such as appearance condition (color or texture) or content level (sugar, acidity, etc.).  Reviewing 

the literature shows that there are only a few research works on the use of vision-based systems 

for prediction of the human attitude about the food quality which we call  “sensory attribute” or 

“sensory score” in this paper.  

Sensory analysis is one of the important methods for evaluation of the eating quality of food 

items and consumer satisfaction in food industry. Usually a panel of well-trained experts or 

untrained consumers evaluates a food product. There are several qualitative or quantitative 

sensory evaluation methods (Varela & Ares, 2012; Lawless & Heymann, 1999) . However, 

sensory analysis in some cases is a destructive method and cannot be used inline. In addition, it 

can be very expensive and time consuming. Therefore, it cannot be used as a routine analysis in 

an industrial production and processing line (Kamruzzaman , ElMasry , Sun, & Allen, 2013) 

This paper addresses the problem of prediction of sensory attributes of wok-fried vegetables, 

(carrot and celeriac) using multispectral imaging techniques. Such kind of research for other 

types of food items were conducted before. Prediction of sensory attributes related to the eating 

quality of lamb meat samples using VIS-NIR spectroscopy (400-2498 nm) (Andrés, et al., 2007) 

, lamb meat tenderness using NIR hyperspectral images (900-1700 nm) (Kamruzzaman , 

ElMasry , Sun, & Allen, 2013), pork samples using NIR hyperspectral images (900-1700 nm) 

(Barbina, ElMasrya , & Sun, 2012), table grapes by hyperspectral images in VIS-NIR range 

(400-1000 nm) (Baiano, Terracone, Peri, & Romaniello, Application of hyperspectral imaging 

for prediction of physico-chemical and sensory characteristics of table grapes, 2012) are the main 

previous works in this case.  

In this work, we study the relationship between multispectral images and sensory attributes of 

vegetables. The wok-fried vegetables (carrot and celeriac) used in this work, were stored in 

refrigerator for some days after a freezing period (Adler-Nissen, et al., Improving the Supply 
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Chain and Food Quality of Professionally Prepared Meals, 2013). Previously, multispectral 

images of the same type of vegetables were analyzed to find significant changes over a storage 

period and the results showed that multispectral imaging is capable to distinguish the subtle 

visual changes of samples over the storage days (Sharifzadeh, Clemmensen, Løje, & Ersbøll, 

2013; Dissing, Clemmensen, Løje, Ersbøll, & Adler Nissen, 2009; Clemmensen, Dissing, 

Hyldig, & Løje, 2012). Therefore, in this work, multispectral images are used to predict a wide 

range of sensory attributes including color, taste, smell and texture.  

The most similar work for vegetables was reported in (Løkke, Seefeldt, Skov, & Edelenbos, 

2013) that also has differences in both type and condition to our work. In that work, the 

relationship between the multispectral images (405-970 nm) of green vegetables (wild rocket) 

and two sensory attributes (color and texture quality) was studied in changing condition of 

storage temperature, time and packaging condition.  

The objective of this study is first to investigate, if there exists a general relationship between 

the sensory attributes and multispectral images. This can be tested by developing statistical 

regression models for prediction of sensory attributes using multispectral images of vegetables. 

Secondly, in the case of such relationship, to find “strategies” or  “factors” and possible 

”requirements” for improving the predictive regression models with general prediction ability on 

new batches of data. This might be possible using a combination of sensory attributes or the 

specific individual attributes. Finally, it is to determine the spectral wavelengths carrying the 

most relevant information regarding the prediction.  Finding such wavelengths is important for 

the design of an appropriate imaging system in industry for measuring relevant quality 

parameters. 

2 Material and methods 

2.1 Material preparation 

Two types of vegetables, carrot and celeriac are selected in this work.  They are prepared based 

on a new way of producing convenience vegetable products of high culinary quality by 

continuously stir-frying the vegetables (Adler-Nissen J. , 2007). Stir-fried root crops produced by 

the continuous stir-frying process have a robustness against freezing and exhibit no visible drip 

losses or only little drip loss after thawing (Adler-Nissen J. , 2007; Clemmensen, Dissing, 

Hyldig, & Løje, 2012) compared to some blanched and frozen vegetables.  

For this aim, the raw celeriac and carrots were cut into cubes of size approximately 0.5 cm 

cubed. Due to the relatively high biological variations of vegetable products, we used two 

batches for each type of vegetables  (   ,   ). This helps to include more possible variations of the 

original population into the data set, that helps for generalization of the statistical prediction models. 
Batch one was harvested and pre-processed (washed and cut) on one day, and the other batch on 

the following day. Additionally, there were two replicate samples in each batch (a,b), in order to 

have estimates of both within batch variations as well as between batch variations. Covering both 

these variations is important for developing a general prediction model for sensory attributes. In 

a pilot plant, the raw vegetables were stir-fried using a special frying machine;” the continuous 

wok” (Adler-Nissen, 2007). After frying and cooling, the products were packed in polyethylene 

bags in 500g portions and frozen to −30˚C. After about 60 days of freezing, the bags with the 

stir-fried vegetables were removed from the freezer and thawed up to 14 days at +5˚C in a 

refrigerator.  
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2.2 Acquiring multispectral images 

On each day of analysis (days 2, 5, 8, 11 and 14), two polyethylene bags of the two batches (   

,   ) were taken out of the refrigerator. Then, for each member of the sensory panel, 30 g of each 

sample bag was placed in two petri dishes (a,b). To acquire the multispectral images, a 

VideometerLab was used (Carstensen, Hansen, Lassen, & Hansen, 2006) and each petry dish 

was digitized separately (see Figure 1). VideometerLab is a multispectral imaging device 

designed for fast and accurate determination of surface color and chemical composition. It was 

used and described in detail in (Dissing, Clemmensen, Løje, Ersbøll, & Adler Nissen, 2009). The 

multispectral images were captured at 19 different wavelengths ranging from 430 to 970 nm.  

 

 

Figure 1.  (a) a VideometerLab (b) internal design of a VideometerLab (Dissing, Nielsen, Ersbøll, & Frosch, 188 

2011) 

2.3 Sensory evaluation 

An internal panel consisting of 6 assessors performed the evaluation. They were all selected and 

tested according to international standards (ISO-8586-1, 1993) for their ability to make sensory 

evaluations. The sensory score was developed based on the agreement of the 6 assessors about 

each sensory attribute on each vegetable sample.  

At each day of analysis, after measurement with the VideometerLab, the petry dishes (a,b) of 

each batch or sample bag  (30 g) were transferred to an aluminum tray (one aluminum tray for 

each sample) and re-heated to be served for the assessors. Then, for each assessor at each 

analysis day, two replicates (a,b) of each batch (     ) were served (4 petry in total ). 

In this work, the sensory attributes were analyzed using a sensory method named Quality Index 

Method  (QIM). In another study (Clemmensen, Dissing, Hyldig, & Løje, 2012), individual QIM 

schemes for carrots and celeriac were designed in analogy to how QIM scheme was developed 

for several fish species (Martinsdóttir, Schelvis, Hyldig, & Sveinsdóttir, 2009). The sensory 

attributes were defined based on appearance, smell, taste and texture categories. For both 

vegetable types 7 sensory attributes were defined. For carrot, the attributes were discoloration, 

smell, cloying sweetness, taste, frying aroma, off-taste and firmness and for celeriac they were 

discoloration, smell, frying aroma, taste, sweetness, off-taste and firmness.  Each attribute was 
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given a score between zero and two or three demerit points, so that the score increases as quality 

decreases, i.e. very fresh products have scores near to 0. More information about QIM are 

provided in the Appendix. 

2.4 Multispectral image analysis 

Spectral images of a sample petri dish of carrots are shown in Figure 2. At the first step of image 

analysis, the vegetable pieces were segmented from the background and from each other using 

image segmentation techniques such as thresholding, morphological operation and filtering 

(Gonzalez & Woods, 2001; Otsu, 1979). Each vegetable piece was considered as an individual 

sample. Then, a feature vector was formed for each detected vegetable piece. First, for each of 

the 9 bands, all its 18 possible ratios to the other bands were calculated (totally 342 ratio 

images). The band ratioing method is one of the simplest methods for multispectral image 

enhancement technique (Jain, 1989). It is usually applied to enhance the spectral differences 

between raw images and suppress the effect of undesired effects such as variable illumination 

and slop shadows. Then, in each ratio image, 9 percentiles (1, 5, 10, 25, 50, 75, 90, 95 and 99) 

were calculated for each piece. In this way, feature vectors are formed from the spectral images 

with the length of                per piece of vegetable. In the rest of the paper we refer 

to them as “spectral features”.  

2.5 Statistical analysis 

In order to develop prediction models for sensory attributes using the spectral features, there 

must be significant changes or variations in both spectral features and sensory attributes. The 

statistical test used for existence of such significant variations in spectral features over the days  

 

Figure 2. Spectral images of carrot in some wavelengths, shown in Nano-meter range. 

 

Figure 3. Pseudo-RGB images of carrot (top) and celeriac (bottom). From left to right: day 2, 5, 8, 11and 14. 

of storage will be presented in the following and the variation of the sensory attributes will be 

shown only by visualization and due to the considerations about the length of the paper, the 
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statistical tests about the significant changes of the sensory data will not be presented. Visualing 

the sensory attributes also helps to obtain better insight about the variation of the sensory data as 

will be explained in the following. 

The variation analysis gives information about the changes in freshness of the vegetables over 

the storage days. However, the aim of this work is not to test the freshness of vegetables. We re-

emphasize that the existence of variation in both the spectral features and sensory attributes is 

important for developing the prediction models. 

2.5.1 Statistical analysis of spectral features 

It is not possible to distinguish any differance between the vegetable samples over the storage 

days visually.  This can be observed from the pseudo-RGB images of carrot and celeriac samples 

for five inspection days shown in Figure 3. However, an analysis of the multispectral images 

demonstrates significant variations over the storage days (Dissing, Clemmensen, Løje, Ersbøll, 

& Adler Nissen, 2009; Sharifzadeh, Clemmensen, Løje, & Ersbøll, 2013) . The spectral features 

are used in a statistical analysis based on multiple hypothesis testing (Hastie, Tibshirani, & 

Friedman, 2009; Benjamini & Hochberg, 1995).  More information about this test is provided in 

the appendix. The test is performed on the spectral features of all possible pairs of days. The 

output of each test is the number of significantly changed features between the two days. To 

make a decision about a significant change between two days of storage, there must be high 

number of significant features between all pairs of days between them. For example, it is 

necessary to observe a high number of significant features between both days (2,5) and (5,8) to 

consider a significant change between days (2,8). The result of this analysis for carrot was 

presented in (Sharifzadeh, Clemmensen, Løje, & Ersbøll, 2013). 

2.5.2 Visualisation of the sensory attributes 

Figure 4 and Figure 5 show the scores of the sensory attributes for the two batches of vegetables. 

As can be seen some of the sensory attributes have variation over the days. Besides that, two 

main issues can be observed; the scores from the two batches are different in most cases. In 

addition, there is not a consistent trend from lower scores toward the higher ones (freshness 

toward lower qualities), as the number of storage days increases. In some cases such as day 14 of 

the first batch of carrot for smell attribute, there is even inconsistency between the two replicates 

of the same batch. The reason can be due to the variability in different pieces of the same 

vegetable, between the two batches or the panelist’s perceptions. Generally, the types food 

products used in this study have a large variation.    

2.6 Prediction of Sensory attributes using spectral features 

Considering the simplest form of a linear prediction model: 

        

To predict the sensory attributes using the spectral features formed from multispectral images, 

each sensory attribute (its sensory scores) are considered as the response vector          is the 

vector of regression parameters,   is the error and the input matrix      is the matrix of spectral 

features of all samples (petry dishes). To form the   matrix, the median of all vegetable pieces 

inside a petri dish was considered as a unique sample in each row of  . 
 

‎2.1 
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Figure 4. Comparison of the sensory scores for carrot attributes. There are two replicates per batch for each attribute 

at each day. The replicate samples are overlaid in most cases. 

 

Figure 5. Comparison of the sensory scores for celeriac attributes. There are two replicates per batch for each 

attribute at each day. The replicate samples are overlaid in most cases 

2.6.1 Pre-processing of the matrix of spectral features ( ) 

The number of columns in   is equal to the number of spectral features (3078) and compared 

to its rows that show the number of samples is very high. This makes it difficult to train the 

prediction models. To alleviate this problem, a “pre-processing” was performed on the spectral 

features to reduce their dimensionality. For this aim, the significant features, found between pairs 

of days in section ‎2.5.1 were considered. Then for each of the 3078 features, the number of times 

that it was significant in the analysis of pairs of days was counted and a vector of counts was 

formed            Finally those spectral features that have been significant in most of the tests 

(have high values in    ) were selected to be used for developing the prediction models.  
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2.6.2 Pre-processing of the sensory attributes (Y) 

As mentioned before, suitable sensory attributes for prediction models should have some 

variation over the storage days. However, as shown in Figure 4 and Figure 5, some of the 

sensory attributes do not show temporal variation during the days of experiments in both batches. 

These attributes aren’t considered for the analysis and the remaining varying attributes (active 

attributes) of each batch (  ,   ) are used. The active attributes are not completely similar for the 

two batches. 

2.6.3 Regression method 

The EN linear regression method (Zou & Hastie, 2005) is used for building the prediction 

models. Compared to the other linear and non-linear regression methods, this method obtained 

better results. EN is a sparse regression method. This means that some of its regression 

coefficients   are zero. The sparsity is obtained by penalization of the EN regression coefficients 

as follows:  

             
 

 
              

 

   
  

 

   
        

 

   
        

  

   
  

where   is the number of used spectral variables and   is the number of observations (sensory 

scores or tested petry dishes). The norm one (    part of the penalty generates a sparse model 

(zero coefficients) and the quadratic part of the penalty removes the limitation on the number of 

selected variables and encourages a grouping effect. Therefore, it can cancel out the noise effect. 

In addition, EN is an appropriate method when the (   ) which is called an ‘ill-posed’ 

problem (Hastie, Tibshirani, & Friedman, 2009) that is the case in our work.  

In order to evaluate the accuracy of the prediction models, the RMSE is used. 

2.6.4 Prediction tests 

Based on the objectives of this work, three different prediction tests are performed. 

2.6.4.1 Test I 

The first objective of this work is to investigate the general relationship between the sensory 

attributes and multispectral images. To address this, regression models are developed for 

prediction of each batch sensory attributes using the spectral features of the same batch. This will 

help to evaluate the predictability of each batch data.  

Another objective is to find the important factors for improving the prediction ability. One 

factor that influences the performance of a regression problem is to have a response vector   that 

has maximum variation especially in accordance to the variation of the input matrix  . In our 

work, we expect to observe the most important variation in the spectral features     and the 

sensory attributes ( ) between the days of storage. As a first strategy, we improve the response 

vector   in terms of variation and discrimination between the days of storage. As mentioned in 

section ‎2.6.2, the sensory attributes that show some variation over the storage days in each batch 

are already moved to an active set of attributes             . To improve the variation further, 

some of the active attributes are combined to form a response vector   with maximum variation and 

discrimination between the days of storage. The selection is performed based on the DPA, introduced 

in (Dabbaghchian, Ghaemmaghami, & Aghagolza, 2010). Considering each day of storage as a class 

(5 classes), we have chosen those sensory attributes of the active set              that their 

combination result        has the highest DP. A DP is the ratio of “between class variance (  )” to 

“within class variance     ”. In fact, we have selected those attributes that when summed, the result 

‎2.2 
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of their summation       has scores that are the closest to each other in each day of analysis (class) 

and the furthest from the scores of the other days (classes). The computation is as follows:  

         
 
              

   

        
  
              

  
     

       
 

  

  
 

                                      

where    is the number of scores of       in each day (class),    is the total average of the       

scores in all 5 days,    is the average of the       scores in each of the five storage days and   is the 

number of tested combination of attributes. 

Then, this new response vector   is used as the response variable for developing the prediction 

model.  

Another important factor to improve the prediction models is to form appropriate calibration 

and validation sets so that, they cover the existing variation of the batch samples. For this aim 

and as the second improvement strategy, a systematic sampling method called a “smooth 

arrangement” or “smooth fractionators” is employed in this work (Gundersen, 2002). The 

smooth arrangement is formed by ranking the sensory scores in the response vector   in 

increasing order. Then, every second score was pushed out from the order and moved to its end 

so that a monotonically increasing and then decreasing ordering of scores are formed. From this 

new ordering, a predefined systematic sampling interval of ‘4’ was applied to obtain 

approximately 25% of the samples for the test set. The remaining 75% of the samples comprised 

the training set. Both calibration and validation sets comprise the original variation of the data by 

using this method. The calibration and validation sets are formed four times using this method. 

The average results are used to evaluate the general performance of the regression method on the 

data sets. This strategy ensures that we represent all the variation in the data in our calibration 

set. However, the use of the same batch data for both calibration and validation in the first test 

introduces some uncertainty to whether the results will generalize to unseen batches. For this 

reason, the second test was performed to address the next objective of this paper about the 

generalization.  

2.6.4.2 Test II 

In this test, one batch was totally used to calibrate a prediction model and the other batch data 

was used for validation and vice versa. That is a more general test to evaluate the prediction 

models on totally new samples, i.e. we can test if the models will generalize to unseen batches. 

For the response vector  , the same combination strategy used in the test I was used. However, 

we are also interested to find the individual sensory attributes that have possible links to the 

spectral features as one of the objectives of this paper. This is performed in the final test. 

2.6.4.3 Test III 

In the third test, the second analysis (test II) was repeated on individual attributes instead of their 

combination. The aim is to find the most effective attributes on the prediction models. Then 

more than one prediction model is built in this test. This analysis is performed only on the active 
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set of attributes of each batch that have some variation along the storage days        
         . For example, in the case of the first batch of carrots shown in Figure 4, only the 

smell, taste, frying aroma and firmness can be used for this experiment.  

2.7 Analysis of significant wavelengths 

As the last objective of this paper, the most important wavelengths are found in two steps; first, 

the wavelengths contributing to the significant spectral features     found from multiple 

hypothesis testing between pairs of days (explained in section  2.6) are considered     . In the 

next step, the vector of EN regression coefficients     is used. Since EN is a sparse method, the 

irrelevant and noisy spectral feature’s coefficients are zero in     . Therefore, among the 

features of   , those with non-zero elements in     are found     . They are correlated to the 

sensory response    . Each spectral feature was built based on the ratio of two spectral 

wavelengths (section  2.4). Therefore, both contributing wavelengths in each of the features of 

     carry relevant information about their corresponding sensory response. Thus, for each 

wavelength, the number of times that it is involved in the formation of    features is computed 

and a density map     is formed for all of the wavelengths that can be used for finding the most 

important wavelengths.      

3 Experimental results 

In this section, the results of analyses explained in the previous section will be presented. 

3.1 Multispectral image analysis results 

Based on the number of significantly changed spectral features, the days of significant change 

was found. The results are shown in Table 1. These results show that there are significant 

variations in the features extracted from the multispectral images. It also shows that the spectral 

images of the two batches of the same vegetables are not exactly similar. 

Table 1. The days of significant change found by the analysis of spectral images 

 Batch 1 Batch 2 

Carrot 2,14 2,8 

Celeriac 2,5,8,11,14 8,14 

3.2 Prediction results 

In evaluation of the prediction models, the RMSE was compared with the standard deviation of 

the corresponding population. 

For the prediction result of test I, the average and standard deviation of the RMSE from the 

four calibrations and validation sets formed by the smooth arrangement are presented in Table 2. 

The standard deviations of the response vectors are also shown. They are comparable with the 

RMSEs. The last row shows the active attributes contributing in the combined sensory response 

vector. In Figure 6, the predicted response vector (  ) versus the real response vector ( ) for the 

validation sets are shown. The pink line shows the ideal case.  

The prediction test II was based on training the models using one of the     or    as the 

calibration batch        and validating using the other batch (    ). The results of this test are 

shown in Table 3. These results show the difficulty of prediction for a new batch of sensory data 
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using a pre-trained model.  From a statistical point of view, this may be due to training the model 

based on the response vectors   formed from the active attributes of the calibration batch        , 
while such attributes are not necessarily active in the validation batch (    ). This can be seen in 

the last row of Table 3. For example, in the last column, the celeriac model is trained based on 

the active attributes of the second batch (   ), smell, frying aroma and off taste, while in the 

validation batch (    just two of them (smell and frying aroma) together with discoloration, taste 

and firmness are the active attributes. This inconsistency in the two batches may be due to their 

limited number of samples that do not capture all possible variation of the population. Naturally, 

there is variation between the vegetable pieces even when they come from the same batch (with-

in batch variation). Besides that, there is also a biological variation between the two batches 

(between-batch variation). When the level of variation is high, more samples are required for 

forming a general prediction model.  

In the test III, the single attributes with some variation over the days of storage were used for 

training the prediction models. Table 4 and Table 5 show the results of this test for carrot and 

celeriac respectively. Training the models based on the single attributes makes the prediction 

results more comparable between the calibration and validation sets. This also helps to find those 

single attributes appropriately correlated to the spectral data. For carrot, the smell and taste 

attributes obtained the best results with consistency between the two batches. These two 

attributes have some variation over the days in Figure 4 and some of their two batches scores are 

similar. In the case of celeriac, the off-taste attribute gave the most consistent result between the 

two batches. It does not have a lot of variation between the days as shown in Figure 5. However, 

it is completely consistent between the two batches.  After that, smell gave the second best result. 

It has more variability and less consistency than the off-taste scores. The results of smell and off- 

taste are plotted in Figure 7 for carrot and celeriac respectively. 

Table 2. Results of the prediction test I. The active attributes were combined and the prediction was performed on 

each batch sensory data using the image features of the same batch.  

Method: EN Carrot-   Carrot-   Celeriac-   Celeriac-   

Calibration RMSE 0.42±0.06 0.92±0.16 0.57±0.18 0.36±0.08 

Validation RMSE 0.48±0.04 1.17±0.07 1.19±0.57 0.49±0.04 

Population std. 0.50 1.71 2.27 0.82 

Used Attributes Smell 

Smell, Cloying 

Sweet, Off-taste, 

firmness 

Discoloration, Smell, 

Taste, Off-taste, 

Firmness 

Smell, Frying 

Aroma, Off-

Taste 

Table 3. Results of the prediction test II. The active attributes were combined and one batch was totally used for 

calibration and the other batch data was used for validation and vice versa.  

Method: EN 
Carrot Celeriac 

   cal.    val.    cal.    val.    cal.    val.    cal.    val. 

Cal. RMSE 0.46 0.32 0.38 0.32 

Val.  RMSE 0.50 1.89 2.68 3.89 

Used Attributes 

for training 

Smell Smell, Cloying Sweet, 

Off-taste, firmness 

Discoloration, Smell, Taste, 

Off-taste, Firmness 

Smell, Frying 

Aroma, Off-Taste 
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Figure 6. The predicted response vector (  ) versus the real response vector     for validation sets of the test I. 

Table 4. Results of the third prediction test for carrot. Similar to the second test, one batch was totally used for 

calibration and the other batch data was used for validation and vice versa. However, individual attributes were used 

instead of their combination to find the most effective attributes for prediction. 

Carrot discoloration smell 
cloying 

sweet 
taste 

frying 

aroma 
off-taste firmness 

   cal.     
val. 

Cal. RMSE - 0.34 - 0.28 0.24 - 0.05 
Val. RMSE - 0.71 - 0.63 1.02 - 0.57 
pop. Std. - 0.50 - 0.50 0.50 - 0.50 

    cal.    

val. 

Cal. RMSE 0.22 0.17 - 0.19 0.29 0.14 0.27 
Val. RMSE 1.43 0.54 - 0.42 1.58 0.56 1.06 
pop. Std. 0.82 0.50 - 0.50 0.82 0.50 0.50 

Table 5. Results of the third prediction test for celeriac. Similar to the second test, one batch was totally used for 

calibration and the other batch data was used for validation and vice versa. However, individual attributes were used 

instead of their combination to find the most effective attributes for prediction. 

celeriac discoloration smell 
Frying 

aroma 
taste Sweetness off-taste firmness 

   cal.     
val. 

Cal. RMSE 0.24 0.22 - 0.05 - 0.00 0.15 
Val. RMSE 1.14 0.80 - 0.75 - 0.32 0.60 

Pop. Std. 0.82 0.50 - 0.82 - 0.50 0.50 

    cal.    

val. 

Cal. RMSE 0.26 0.26 0.19 0.27 - 0.02 - 
Val. RMSE 3.75 1.09 1.43 2.07 - 0.32 - 

Pop. Std. 1.12 0.50 0.50 0.50 - 0.50 - 

3.3 Wavelength analysis results 

As explained in section ‎2.7, we are interested in finding the wavelengths most correlated to the 

vegetables quality. Therefore, the density map     obtained in section ‎2.7 is visualized for the 

first batch of carrot and celeriac in Figure 8. As can be seen, some of the visible band 

wavelengths around the yellow and orange color (630 and 645 nm) as well as some of the NIR 

bands are among the most frequently contributing wavelengths. The results of this analysis for 

the second batch of these vegetables were similar to the first batch and are not presented here. 

The visible wavelengths are mostly correlated to the pigmentation or color characteristics of the 
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vegetables, while the NIR wavelengths are mostly correlated to their chemical characteristics 

(Herold, Kawano, Sumpf, Tillmann, & Walsh, 2008).  

 

Figure 7. Illustration of two predicted sensory attributes versus their corresponding real values from the third test. 

For carrot, smell and for celeriac, taste attribute obtained the best result in this test.  

 

Figure 8. The wavelength analysis results for the first batches of vegetable. 

4 Discussion and future work 

The results of the first prediction test confirm that there is a link between the sensory attributes 

and spectral features extracted from the multispectral images. 

However, the second test result showed that, it is difficult to build a general prediction model 

using limited calibration samples. This matches to the research findings of similar works on 

other food items (Barbina, ElMasrya , & Sun, 2012; Baiano, Terracone, Peri, & Romaniello, 
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2012). The reasons can be described based on two main issues; first is the wide variability in the 

population (with-in and between batches) that is not captured in the limited calibration samples. 

The second reason is the inconsistency in variations of the active attributes of the two batches.  

Finally, the analysis of the single attributes made it possible to distinguish the attributes that 

fulfilled these two issues. So that, the resulting prediction models have an acceptable level of 

generalization linking the spectral data to the corresponding quality attributes such as off-taste 

and smell. Then, variability and consistent variation can be considered as the requirements of 

generalization which was another objective of this work.  

On the other hand, the analysis of the wavelengths helped to distinguish the most contributing 

bands in the significant features used in the prediction models. There were some of the NIR 

bands among the most frequently used wavelengths. This can explain the reason for the absence 

of discoloration among those successful single attributes. The discoloration is mostly related to 

the visible bands and its corresponding scores for carrot and celeriac in Figure 4 and Figure 5 do 

not show variation for the former and consistency for the latter. Furthermore, the pseudo-RGB 

images in Figure 3 explain the assessors difficulties in scoring the discoloration attribute. That is, 

the human eye is not able to observe the subtle changes that a vision system can distinguish 

using both the visible and NIR regimes. This is an important achievement for the spectral 

imaging system and can be utilized in developing an on-line quality monitoring set-up. 

Based on these findings, a simple spectral vision-based system with a few visible and NIR 

wavelengths can be used for prediction of those sensory attributes with some consistent variation 

over the batches. In our work, taste and smell sensory attributes fulfill this. However, the number 

of batches and samples were limited. The use of more batches and samples that cover possible 

variability of the population might change this. Further research work is required in this case.    

In addition, the appropriate sensory attributes may also depend on the characteristics of the food 

item. For example, in (Løkke, Seefeldt, Skov, & Edelenbos, 2013), color and texture were the 

appropriate sensory attributes to be predicted using multispectral images of green Wild Rocket 

vegetables. The suitable wavelengths are also different based on the spectral characteristics of 

the food item.  

Another important issue for such analyses is the modeling method for prediction. In all similar 

previous works (Barbina, ElMasrya , & Sun, 2012; Kamruzzaman , ElMasry , Sun, & Allen, 

2013; Løkke, Seefeldt, Skov, & Edelenbos, 2013), the PLSR regression method was used for 

prediction and the relevant wavelengths were found in a separate step. However, both tasks can 

be performed in a single step using the sparse EN regression method as also was used in this 

work. In this way, the number of contributing wavelengths in prediction will be reduced, which 

is important regarding simplification of an imaging system in practice. Generally, the accuracy 

of EN method is very good and comparable to the PLSR.  

The two main limitations of this work were the number of batches and ranges of wavelengths. 

To improve the prediction models in the future in terms of generalization, the number of batches 

should be increased. In this way, the calibration set will cover the most possible with-in and 

between batch variations of the population. In addition, because of the important effect of the 

NIR ranges, the vision system range can be extended to higher wavelengths.  

5 Conclusion 

The relationship between the multispectral images and the sensory evaluations of two types of 

vegetables was investigated in this paper. Two types of stir-fried vegetables, carrot and celeriac 
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were analyzed over a period of 14 days. There were two different batches of each vegetable type. 

The spectral features, formed from multispectral images, were used to develop regression models 

for prediction of sensory attributes. The results show that the sensory attributes that had some 

variation over the storage days and consistency over the two batches resulted in better models in 

terms of generalization. For carrot, the smell and for celeriac, the off-taste were the attributes that 

gave the best results. Based on this, the use of more batches and further samples can help to 

develop better prediction models in terms of generalization. In addition, analysis of wavelengths 

showed that, both visible as well as NIR bands were among the most contributing wavelengths in 

the image features that were used by the prediction models. However, the discoloration scores 

were not appropriate due to the limitation in human visual perception. Therefore, we conclude 

that a vision-based quality assessment system should utilize multispectral images of some visible 

and NIR wavelengths together with an appropriate set of calibration sensory attributes (in this 

case excluding color), to improve the prediction task. In addition, the multispectral images 

provided a basis for assessing color changes not visible to the human eye. 
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Appendix 

A.1 QIM test 

One aspect of Sensory testing includes the descriptive and discriminative tests to measure the 

intrinsic quality of a product such as taste, appearance, etc. On the other hand, it can also include 

the consumer attitude and emotional response toward the product including both intrinsic and 

extrinsic quality of the product such as price, origin and etc.  The QIM is a sensory evaluation 

method that was originally developed for fish species. The aim of developing this method was to 

integrate both of the above mentioned aspects of the sensory analysis. It can build a bridge 

between research, product development, industry, marketing personnel and consumers (Hyldig & 

Green-Petersen, 2004). It is a structured scaling method with a scoring system from 0 to a 

maximum value demerit points. A food item is inspected and the fitting demerit point is 

recorded. The scores for all the attributes are then summed to give an overall sensory score, the 

so-called quality index. QIM gives scores of zero for very fresh food while increasingly larger 

totals result as when the food deteriorates.  

A.2 Multiple hypothesis testing 

Feature Assessment based on multiple hypothesis testing is a statistical approach used for test 

and selection of features in problems that the number of features are very high compared to the 

number of observations      . It is used mostly used for genomic data (Skibinski, Diz, & 

Carvajal-Rodríguez, 2011; Dudoit, Shaffer, & Boldrick, 2003) to assess the significance of 

individual features (genes). 

Considering having   features and their p-value (e. g. by using the theoretical t-distribution 

probabilities, which assumes the features are normally distributed or a permutation distribution 

that does not make any assumption about their distribution), a hypothesis   is formed so that: 

 
                   
             

      

This hypothesis is tested for all features             and it is accepted        or in other 

words the result is significant at level α if         . This test has        error equal to   (for 

each individual test). That is, the probability of falsely rejecting         is α as shown in table 

A.1. 

Table A.1: Possible outcomes from   hypothesis tests. 

 Called Not Significant Called Significant Total 

                          

                           

Total         

 

Since there are a lot of individual tests (  is high), the overall measure of this error is quite high 

and should be corrected. In cases that M is quit high and high correlation exists between the co-

variates,  

The Benjamin-Hachberg (BH) (Benjamini & Hochberg, 1995) method is used. In this method 

the False Discovery Rate (   ) is introduced as follows: 

        
 

 
  

A. 1 

A. 2 
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It is the expected proportion of the false positive features   among the   features that are called 

significant. In this method, the     rate is bounded by a user defined level  . It is calculated 

based on the p-values obtained from an asymptotic approximation of the test statistic like a 

Gaussian or a permutation distribution. If the hypotheses are independent, Benjamini and 

Hochberg (Benjamini & Hochberg, 1995) showed that regardless of how many null hypotheses 

are true and regardless of the distribution of the p-values when the null hypothesis is false 

     , this procedure has the property: 

       

In this method, the     is fixed at   level and the p-values are ordered                

     . Then a threshold point     is defined based on a threshold line  
 

 
           so that: 

              
 

 
  

 

Figure A.1: A plot of the ordered p-values     , the threshold line   
 

 
   as well as the critical point of the BH 

method (Hastie, Tibshirani, & Friedman, 2009). 

This is illustrated in Figure A.1. The null hypotheses is rejected (     ) for all tests for which 

          , the BH rejection threshold (Hastie, Tibshirani, & Friedman, 2009). The red points in 

figure A.1 are the significant points that the null hypothesis is rejected for them (     ). As the 

    rate was kept fixed, the        error is limited.  

A. 3 

A. 4 
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