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Abstract. Hybrid PET-MR scanners acquire multi-modal signals si-
multaneously, eliminating the requirement of software alignment between
the MR and PET imaging data. However, the acquisition of high-resolution
MR and PET images requires long scanning times, therefore movement
of the subject during the acquisition deteriorates both the PET and the
MR images. In this work we have developed an approach for tightly
integrated PET-MR imaging, making use of volumetric MR navigators
to inform, in real-time, both the MR acquisition and the PET recon-
struction. The integrated imaging procedure that we describe exploits
the simultaneity of MR and PET in hybrid PET-MR systems, produc-
ing inherently-aligned motion-free MR and PET images. We describe
the system setup, the algorithm for motion-corrected reconstruction, an
adaptive sinogram binning algorithm and software design decisions aimed
at integrating tightly the MR and PET subsystems. Application of the
integrated motion-corrected acquisition procedure to a phantom study
and to a volunteer subject demonstrates the validity of the approach for
a variety of motion patterns.

1 Introduction

Hybrid PET-MR scanners acquire multi-modal signals simultaneously, eliminat-
ing the requirement of software alignment between the MR and PET imaging
data. However, the acquisition of high-resolution MR and PET images requires
long scanning times. Movement of the subject during the acquisition determines
a deterioration of both the PET and the MR images. In the context of neuro-
imaging, recent advancements of MR technology have seen the development of
prospective motion correction algorithms [1] [2] based on the insertion, in the
MR sequences, of navigators designed to acquire information about the position
of the head. In this work we have developed an approach for tightly integrated
PET-MR imaging, making use of navigators to inform both the MR acquisition
and the PET reconstruction. The integrated imaging procedure that we describe
exploits the simultaneity of PET and MR, producing inherently-aligned motion-
free PET and MR images. The methodology that we describe is based on a
spatio-temporal model of PET imaging that enables the inclusion of sparsity
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constraints. We describe a reconstruction algorithm based on the Alternating
Direction Method of Multipliers that enables the use of the non-smooth sparsity
prior while incorporating efficiently the information from multiple time frames.

2 Method

2.1 Volumetric navigators

High resolution tissue contrast images are acquired with the MEMPRAGE se-
quence, widely employed for morphometry studies. In order to acquire motion
information, sampling of k-space is interleaved with the acquisition, during the
dead time of each repetition (TR) of a volumetric navigator (vNav) [2]. The
vNav consists of a 323 isotropic volume 3D-encoded with EPI, requiring 275 ms
to acquire. Motion estimation is performed using the PACE [3] library to register
each vNav’s image to the reference vNav acquired in the first TR. Due to the
low resolution of the vNav image, this is performed reliably in under 100 ms on
current scanner hardware (Siemens Biograph mMR). The direction of the MR
gradient for the acquisition of each new slice of k-space for the MEMPRAGE
sequence is adjusted in real-time according to the pose estimate provided by the
vNav, effectively acquiring all of k-space in the moving frame attached to the
head of the subject.

2.2 Compressive model-based motion correction

The PET list-mode data is binned into Nt sinograms qtd, with t = 1, 2, . . . , Nt
indexing the time frames and d indexing the lines-of-response (LOR) of the
scanner. Let pvd be the probability that a decay event at location Xv within
the imaging volume of the scanner is detected in LOR d; let Lt be the [4 × 4]
transformation matrix that maps the coordinate system attached to the head

of the patient to the coordinate system of the PET scanner and let L̃t be the
corresponding [Nv × Nv] resampling operator, with Nv voxels of the imaging
volume. The model is framed in the probabilistic setting. In order to account
for motion, in this first formulation, we introduce the assumption that the ac-
tivity in the coordinate system attached to the head of the patient is constant:
λ = λ1, . . . , λv, . . . , λNv . Under this assumption, the conditional probability dis-
tribution associated to the number of counts in LOR d at time t is given by:

p(qtd|λ, L̃t) = P

(∑
v

pvd[L̃tλ]v; qtd

)
(1)

We assume a sparsifying L1-norm prior probability distribution for the activity:

p(λ) ∝ e−β‖λ‖1 (2)
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2.3 Alternating Direction Method of Multipliers

The most commonly employed algorithm for PET reconstruction is Maximum
Likelihood Expectation Maximization - MLEM (and its variant OSEM). Com-
pared to other optimization algorithms, MLEM has the advantage of not re-
quiring the selection of the step size, providing a simple and reliable solution.
However MLEM is only applicable to the unconstrained reconstruction (see e.g.
[4]). Although approximations of MLEM have been devised to include differen-
tiable constraints, there use of a non-differentiable prior such as the sparsity prior
(2) poses an additional challenge. Here, in order to include the sparsity prior,
we adopt a data-augmentation method, the Alternating Direction Method of
Multipliers (ADMM). As discussed in the review of ADMM presented in [5], in
order to derive the ADMM update formula, for the maximum probability prob-
lem, we reformulate the problem as a constrained linear program with equality
constraints:

λ̂ = arg min−
∑
t

log p(qtd|λt, L̃t)− log p(λ) (3)

subject to λt = λ, for each t (4)

The point is that the variables λi must ultimately equal each other, but they
can temporarily be unequal while they separately try to satisfy different cost
functions. This optimization problem corresponds to the maximization of the
augmented Lagrangian:

L(λ,λ1, . . . ,λt, u1, . . . , ut) = −
∑
t

log p(qtd|λt, L̃t)− log p(λ)+ (5)

+
∑
t

uTt (λ− λt) +
ρ

2

∑
t

‖λ− λt‖22, (6)

where ut are the Lagrange multipliers and ρ
2

∑
t ‖λ− λt‖22 is the augmentation

term. Minimization of the augmented Lagrangian with dual descent yields the
ADMM algorithm [5]:

λn+1
t := arg min

v
− log p(qtd|v, L̃t) +

ρ

2
‖v + unt − λn‖22 (7)

λn+1 := S ρ
β

(
1

Nt

∑
t

λn+1
t +

1

ρN

∑
t

unt

)
(8)

un+1
t := unt + λn+1

t − λn+1, (9)

where S ρ
β

is the soft-thresholding operator (see [5]). For the update of λn+1
t we

adopt a single iteration of OSEM with warm start (i.e. initializing v at λnt ) and
with the One Step Late approximation proposed by Green [4]. In order to account
for scatter and randoms, we adopt the Ordinary Poisson version, obtaining:

λn+1
t,v = λn

t,v[L̃
t]
T

 1∑
d∈Dt

pvd − ρ(λn
t + un

t − λn)

∑
d∈Dt

pvdq
t
d∑

v′

pv′d[L̃tλ]v′ + rtd + std

 ,
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where Dt are time-dependent subsets of the LORs of the scanner. In the exper-
iments that follow, time-dependent randoms rates rtd are estimated from single
crystal event rates obtained by instantiating singles sinograms for each time
frame; the scatter estimates std are obtained by weighting, by the duration of the
time frames, the scatter estimate obtained by single scatter simulation (SSS) [6]
based on the static, non motion-corrected, reconstruction. The estimate of the
attenuation map is derived from a radial-VIBE MR image acquired right before
the first TR of the vNav MEMPRAGE sequence. As dictated by the model,
projections and back-projections account for the attenuation by transforming
the attenuation map by L̃t at each time frame.

Fig. 1. Pineapple with helicoidal FDG capillary source. (A) Estimated motion profiles
(tanslation along the axis of the scanner Z and rotation around Z). Each gray box
corresponds to a sinogram. (B-C-D) Volume renderings of the PET reconstructions
without motion correction (B), with motion correction (C), with motion correction
and sparsity (D). (E-F-G) Representative slice of fused MR and PET images without
motion correction (E), with motion correction (F), with motion correction and sparsity
constraint (G).
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2.4 Extraction of the motion events

In order to optimize the computing resources, binning of the list-mode data into
the 4-D sinogram qtd is performed adaptively. Let us index with t′ = 1, 2, . . .

the MR repetitions and denote by M t′ the [4 × 4] transformation matrix that
maps the vNav at time t′ to the first vNav. After each vNav acquisition and
registration, at time t′, the binning algorithm decides whether a motion event
has occurred by setting a threshold on the extent of motion since the previous
motion event t′∗ (starting with t′∗ = 1). As the measure of the extent of motion,
we employ the mean voxel displacement in the imaging volume:

wt′ =
1

Nv

Nv∑
v=1

‖M t′∗Xv −M t′Xv‖ (10)

Each time a motion event is detected, the PET time frame index t is increased;
a new sinogram is instantiated and Lt is set to Lt = M t′MMR→PET, where
the calibration matrix MMR→PET is computed initially according to the MR
acquisition settings, the geometry of the system and the position of the bed of
the scanner. In the current implementation, interaction events acquired during
the period TR preceding each motion event are discarded.

2.5 Software framework for 4-D reconstruction

A considerable software design effort was necessary in order to implement the
4-D reconstruction algorithm that processes the list-mode data, synchronizing
the MR and PET subsystems. Projection and back-projection algorithms based
on ray-tracing have been designed with the aim of computing, without overhead,
the spatial transformations required by the algorithm of eq. (10). The projection
and back-projection algorithms operate directly on compressed 4-D sinograms
designed to enable storage of the full sequence on the memory of a single Graphics
Processing Unit (GPU).

3 Experiments

Experiments were performed on a Siemens scanner Biograph mMR. TR was set
to 2.5 sec and the threshold of wt

′
was set to 0.5 mm.

Phantom study - A pineapple with attached a helicoidal capillary filled with 1.5
mCi of FDG was scanned for 400 sec. The phantom was translated periodically
by 12 mm along the axis of the scanner every 40 sec. Fig. 1 (A) reports the
motion estimates. Fig. 1 (B-G) display the reconstructions with and without
motion correction and with and without sparsity constraint (sparsity parameter
β = 0.1).
Healthy volunteer - A healthy volunteer was scanned for 400 sec, 20 min post
injection of 4.7 mCi of FDG. Fig. 2 reports the motion estimates, the extent of
motion, the motion events, and the unconstrained reconstructions without mo-
tion correction and the constrained motion corrected reconstruction. The subject
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MR repetition(A)

Fig. 2. Healthy volunteer. (A) Estimated motion profiles and extent of motion wt′ . (B)-
(C) Representative slices of the fused MR and PET images without motion correction
(B) and with motion correction and sparsity constraint (C).
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MR repetition

Fig. 3. Healthy volunteer on 3 cm-thick latex pillow. The adaptive binning algorithm
produces sinograms with longer duration (gray boxes) when the pillow is fully com-
pressed.
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was scanned again for 400 sec after insertion of a 3 cm-thick latex pillow. Note
that in case of continuous motion, as displayed in Fig. 3, the algorithm of para-
graph (2.4) adapts the duration of the sinograms according to the rate of change
of the extent of motion. Note, in Fig. 2 and Fig. 3, that the binning algorithm
generated, in both experiments, 11 time frames. The reconstruction time, which
scales linearly with the number of time frames, was 14 minutes.

4 Conclusion

We have developed an integrated approach to PET-MR that enables the recon-
struction of motion-free PET and MR images in the same frame of reference. The
model-based approach for PET reconstruction that we have described enables us
to account for attenuation, randoms and scatter, while integrating motion infor-
mation. The event-based methodology based on a relative measure of extent of
motion enables the correction of large motion events and of slow drifts, adapting
the demand of computing resources to the motion patterns. The optimization al-
gorithm, based on the Alternating Direction Method of Multipliers, enables the
inclusion of a sparsity constraint, which improves image quality. The GPU ac-
celerated software implementation (http://niftyrec.scienceontheweb.net)
enables reconstruction times comparable to static reconstruction. In future work
we will explore the inclusion of pharmacokinetics in the imaging model, the ac-
quisition of multiple MR sequences with embedded volumetric navigators and
non-rigid motion.
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