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The Cobweb Effect in Balancing Markets with
Demand Response

Emil M. Larsen, Pierre Pinson, Jianhui Wang, Yi Ding, Jacob Østergaard

Abstract—Integration of renewable energy sources (RES) like
wind into the power system is a high priority in many countries,
but it becomes increasingly difficult as renewables reach a
significant share of generation. Demand response (DR) can
potentially mitigate some of these difficulties, but the best way
to control and integrate DR into the power system remains an
open question. Integration into existing electricity markets is one
option, but dynamic pricing with DR has been observed to be
unstable, resulting in oscillations in supply and demand. This so-
called Cobweb effect is presented here using the market structure
and measurements from the EcoGrid EU demonstration, where
five minute electricity pricing is sent to 1900 houses. A new tool
for quantifying volatility is presented, and the causes for volatility
are investigated. A key outcome of this study shows that increases
in social welfare due to DR appear to be limited by the cost of
volatility in existing market structures.

Index Terms—Demand response (DR), demand forecasting,
real-time pricing, volatility, smart grid.

NOMENCLATURE

t ∈ T Index for time

g ∈ G Index for conventional generation

n ∈ N Index for demand model parameters

s ∈ S Index for scenario

qt,s Scenario probability

ct,s Real-time demand

θn Demand model parameters

θλ Price-elasticity parameters

cDt Day-ahead demand forecast

cλt,s Demand response

cshedt,s Load shedding

λD
t Day-ahead price for demand

λR
t Real-time price for demand

λshed Price for load shedding

λspill Price for wind spillage

Bt,s System imbalance

pDg,t Conventional generation scheduled day-ahead

wD
t Wind power day-ahead forecast

w
spill
t,s Wind power spillage

λ
↑
g,t, λ

↓
g,t Price for up/down regulation

p
↑
g,t,s, p

↓
g,t,s Up/down regulation delivered

P
↑
g,t, P

↓
g,t Up/down regulation bid into market
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ng,t,s,mg,t,sUp/down regulation on/off

rg,t Generator ramp rate

I. INTRODUCTION

DEMAND response (DR) is being strongly pursued be-

cause it increases the value of renewable energy sources

(RES) when they are available, provides some additional

capacity when renewables are not available, and balances the

system when renewables do not behave as predicted [1]. In

Denmark, the shift to RES meant that wind power met 39%

of national electricity consumption in 2014, and is well on

its way to hitting goals of 50% electricity consumption from

wind power in 2020, and 100% of all energy consumption

from renewable energy in 2050 [2].

There are many dynamic and static electricity price tariffs

that can be used to activate DR, but two methods in particular

have gained traction in recent years due to their fast activation

characteristics that compliment the uncertainty in RES gen-

eration. These are direct control, where utilities turn devices

on and off remotely, and indirect control, where an incentive

signal, e.g. an electricity price, is used to influence the load

to change its consumption. Direct control is typically targeted

at medium and large commercial and industrial loads and has

the challenges of requiring reliable communication equipment,

while indirect control is aimed at a large number of small-

scale loads and has challenges of predictability [3], [4]. Key

benefits of indirect control include lower equipment costs and,

when a price-based mechanism is used, there can be a clear

value attributed to the resource. When used in conjunction

with a market, indirect control has the additional benefit of

improving liquidity and lowering the cost of supply, since it

reduces the market power of price-maker generators. However,

true market-based pricing sent to supply and demand has long

been associated with unstable behavior, as first identified in

[5], where it was named the Cobweb effect due to the spider

web-like back-and-forth oscillations that occur when a stable

market equilibrium cannot be achieved.

The Cobweb effect has traditionally been studied in markets

where demand for a commodity, for example apples, was

higher or lower than supply had expected. The following

season, apple growers then change their production level, but

the market becomes over- or under-supplied and an overshoot

causes demand to behave in a seemingly opposite fashion

to what had been experienced the previous season. If every

market participant has a perfect forecast of supply and demand,

then the Cobweb effect should not happen, but uncertainty is

usually present in markets. This is true in a modern power
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system and especially true for DR [6]. Electricity market clear-

ing algorithms must also make assumptions about demand,

including linearising non-linear behavior, in order to find a

feasible and timely solution in an optimization framework.

This can result in power and prices being more volatile than

is optimal, as seen in Fig. 1. Here, an imbalance that exists

only at the first time step where supply and demand intersect,

oscillates outwards as the initial decision leads to a greater

imbalance (feedback) in subsequent steps.

In this paper, we investigate the Cobweb effect using the

market structure and data collected from the EcoGrid EU

project, which is an indirect control demonstration on the Dan-

ish island of Bornholm. The EcoGrid EU demonstration has

1900 residential households with a peak load of 5MW. Houses

are equipped with smart meters and a range of distributed

energy resources (DERs) with automated controllers that re-

ceive a new electricity price every five minutes and optimize

consumption levels accordingly. DR from these customers is

scheduled optimally with manual reserves from conventional

generation in a market structure to meet the imbalance caused

by wind power. A mathematical introduction to the EcoGrid

EU market can be found in [7].

The contribution of this work lies in identifying the different

causes of volatility, identifying volatility in realistic real-time

market that respects Scandinavian generation constraints and

was developed in conjunction with the Danish Transmission

System Operator (TSO), Energinet.dk, and developing an

intuitive method for measuring volatility. We also investigate

the impact the Cobweb effect has on social welfare, and the

influence market re-commitment frequency has on volatility

and social welfare. We believe the latter to be important as

system operators move to shorter settlement periods, like the

five minute period in the novel EcoGrid EU market.

The paper is structured with section II presenting existing

knowledge of the Cobweb effect. Section III describes the

simulation components, which include a model of the demand

based on EcoGrid EU measurements, the market structure,

Power [GW]

P
ri

ce
[e

/M
W

h
]

Supply
EcoGrid EU demand
Settlement trajectory

1.5 2.0 2.5 3.0 3.5 4 4.5 5.0 5.5 6.0
-500

-400

-300

-200

-100

0

100

200

300

400

500

Fig. 1. The Cobweb effect in the EcoGrid EU market, where the settlement
trajectory starts at the intersection of the initial supply (Nord Pool bid data)
and demand (EcoGrid EU demand model) curves shown.

and a tool for measuring volatility. Section IV presents results

for social welfare and volatility from simulations and the real

experiment. The final section concludes.

II. THE COBWEB EFFECT

Since initially investigated in 1938, the Cobweb effect

was expanded to markets with non-linear supply and demand

curves in [8], where it was also shown that the Cobweb effect

happens with monotonic demand and supply curves, as is

the case in electricity markets. In [9], the impact of demand

expectation using auto-regressive methods on the Cobweb

effect was identified. Traditional economics literature has been

more focused on identifying the problem and improving the

expectation of demand, including considering larger forecast

horizons, leading to more stable market outcomes [10]. So-

lutions other than a better demand forecast have not been

explored. Recent economics research on the Cobweb effect

has moved to analyzing games between different players, the

result of which is an equilibrium with the lowest forecast error

on both the supply and demand side [11].

In the field of power system research, market-based volatil-

ity due to real-time pricing was first identified in [12], where

it was noted that there is an upper limit on the market clearing

time and the delay of the price signal beyond which the

system becomes unstable. Here it was shown that delaying

communication of the price sent to customers increased system

stability greatly, while increasing the gate-closure time led

to fragile system behavior. Cobweb-like volatility has been

particularly problematic when using models from the New

York ISO power system [13], however, the authors there used a

mirror image of supply to represent demand in the absence of

reliable information about its actual shape. In addition, authors

there also assumed demand would only be non-linear with

respect to time, but not conditional on past and future prices.

Recently, [14] identified the boundaries for volatility when

closed-loop real-time pricing structures are used without an

appropriate feedback law. No remedy was offered for the

closed-loop instabilities simulated in this research, but it was

noted that price volatility increases as the price-elasticity of

consumers increases with respect to the price-elasticity of sup-

pliers, indicating that volatility will vary from power system

to power system. Real data was not used in [14], highlighted

by a demand profile with eight peaks per day, rather than

the archetypal one or two daily peaks. Consequently, there

remains a lack of evidence about how much volatility will

truly be observed in a power system with DR and real-time

pricing, hence our curiosity as to whether the Cobweb effect

is observable or significant in a realistic market setup.

III. METHODOLOGY

In this section, a model of demand based upon the data

collected in the EcoGrid EU demonstration is described. The

market structure is presented and measures for volatility are

defined. The demand model is used with the market to simulate

several weeks of operation assuming that indirect control was

rolled-out nationwide in Denmark.
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A. Model of the Demand

Demand is broken down into non-interacting parts com-

prised of autoregressive components that are a function of

recent demand, a component that is dependent on the price,

and a component that is only dependent on external variables

using the notation from [15], [16]. An initial abstract split of

the price and non-price responsive parts is considered,

ct = f (c̃t−1, z̃t) + g
(

λ̃t, z̃t

)

(1)

with

c̃t−1 = [ct−1, . . . , ct−nc
]
⊤

λ̃t = [λt+uλ
, . . . , λt−nλ

]
⊤

z̃t = [zt+uz
, . . . , zt−nz

]
⊤

where nc, nλ and nz are a finite number of lagged values

of demand, c, price, λ, and external variables, z respectively.

For the price and external variables there are uλ and uz

forecast values, which capture the scheduling dynamics of

DERs. External variables, z, include weather data such as

temperature, wind speed, and solar irradiance, as well as a base

load term, y. The base load is a Fourier series that describes

demand due to the time of day, day of the week, and day of

the month [17], such that, for a given time t,

yt = a0 +

J
∑

j=1

aj sin

(

2πkt

j

)

+ bj cos

(

2πkt

j

)

(2)

The cardinality of j must be suitably large to cover different

seasonal variations (for example 288 when capturing trends

of different hours of the day using five minute data) and k is

increased until enough high-resolution detail is captured.

The full model for demand can be expressed in general

linear model form, i.e.

ct = c̃⊤t−1θc + λ̃⊤
t θλ + z̃⊤t θzǫt = x⊤

t θ + ǫt (3)

where ǫt is Gaussian noise with zero mean and finite variance.

Variables c, λ and z were populated with measurements

from 2014 and the parameters θ of the general linear model

were found by minimizing the residual sum of squares while

shrinking parameters using the Lasso penalisation [18], the

objective of which is

min
T
∑

t=1

(

ct −
I
∑

i=1

θixi,t

)2

+ η

N
∑

i=1

|θi| (4)

where η is the tuning parameter and is found using a 10-

fold cross-validation routine, minimising the error over all

folds. Fig. 2 shows the main outcome of the price terms in

the general linear model for the coldest six months of the

year. DR peaks 20 minutes after the price change, and the

main response lasts for 90 minutes before a rebound effect is

observed. Smart controllers prepare in the hour preceding price

change by scheduling an opposing response, causing load to

shift.

The relationship between price and demand has previously

been observed to be non-linear [15], and we model this by
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Fig. 2. Finite impulse response (FIR) of the EcoGrid EU demand in 2014,
corresponding to the parameters θλ peaking at 36kW when given a e 10 price
decrease at t0.

redefining the price terms in a generalised logistic function

that is centred around zero, i.e.

cλt =

nλ
∑

t=1

−
At

2
+

At

1 + e−εtλt

(5)

where cλt contains only price information with other linear

components removed. Parameters in this model are found by

minimising the sum of square errors using the Levenberg-

Marquardt algorithm [19], with the linear parameters for price

used as starting estimates for ε. The upper and lower bounds

of the price response are the amplitude of the logistic function

and are defined with respect to the instantaneous price only

(at t = 1), so that

c
λ,max
t =

|A1|

2
(6)

c
λ,min
t = −

|A1|

2
(7)

The final demand model exhibits a non-linear response to

price and behaves dynamically according to future and past

prices. The model has been used to forecast demand in real-

time in the EcoGrid EU demonstration, with a five-minute

ahead mean absolute percentage error (MAPE) of under 2%

for 1900 houses.

B. Market Structure

The EcoGrid EU demonstration has two hardware in-the-

loop market steps, as shown in Fig. 3, which were used to

generate five minute electricity pricing for 1900 houses in 2014

and 2015. Generator bids are based on historical Nord Pool bid

data, as shown in Fig. 1, while inflexible demand and wind

power injection comes from commercial real-time forecasts.

The imbalance signal is derived from the day-ahead wind

power forecast error, scaled by the Danish nominal capacity,

which is around 5%.

The first step is a day-ahead market that minimizes the

cost of conventional generation, considering the day-ahead
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wind power production forecast, the known Nord Pool spot

price, and the demand forecast including price-response to

spot prices. It is not the main area of focus, because it does

not generate the day-ahead price and demand is a fixed input.

This step is only needed to find reasonable and feasible starting

points for generators participating in the real-time market. The

overall problem reads

min
∑

g,t

λg,tp
D
g,t +

∑

t

λshedcshedt −
∑

t

λspillw
spill
t (8a)

subject to
∑

g

pDg,t + wD
t − w

spill
t = cDt − cshedt ∀t (8b)

pDg,t ≥ Pmin
g ∀g, t (8c)

pDg,t ≤ Pmax
g ∀g, t (8d)

pDg,t − pDg,t−1 ≤ rg,t ∀g, t (8e)

pDg,t−1 − pDg,t ≤ rg,t ∀g, t (8f)

Scheduled generation, day-ahead wind power forecasts,

wind spillage, load shedding and day-ahead load forecasts are

balanced in (8b). Wind power injection is a parameter that is

treated as a negative load. Minimum and maximum generation

is constrained in (8c) and (8d), while up and down ramp rates

are bound by rg,t in (8e) and (8f).
The second market step is the novel EcoGrid EU market,

where social welfare is maximized with respect to the day-

ahead market outcome. The market schedules an optimal

amount of manual reserves and flexible demand, and is formu-

lated as a stochastic optimization problem that commits bids

for conventional generation and creates real-time prices (RTP)

for demand until the market is cleared again. Unscheduled

and scheduled generation from the first market step is used as

the up and down regulation bids respectively in the real-time

market, i.e. p
↑
g,t,s = Pmax

g − pDg,t and p
↓
g,t,s = pDg,t − Pmin

g .

This yields

max
∑

t

∑

s

qt,s

{

(

λD
t c

λ
t,s + diag (θt,t′,s) 0.5c

λ
t,s

2
)

(9a)

−
∑

g

βg,t,s − λspillw
spill
t,s − λshedcshedt,s

}

Generator schedule 

and intra-day bids

EcoGrid EU 

market

Real-time prices

Balancing 

needs

Actual 

demand

Forecast wind 
power and load

Feedback

Day-ahead 

market

Fig. 3. Hardware-in-the-loop market structure of the EcoGrid EU demonstra-
tion.

subject to

cλt,s =
∑

t′

(

θt,t′,s
(

λR
t − λD

t

))

∀t, s (9b)

cλt,s ≤ c
λ,max
t ∀t, s (9c)

cλt,s ≥ c
λ,min
t ∀t, s (9d)

cλt,s = 0 ∀s, t > h (9e)

ct,s = cDt − cshedt,s + cλt,s ∀t, s (9f)

wt = wD
t − w

spill
t,s ∀t, s (9g)

βg,t,s = λ
↑
g,tp

↑
g,t,s − λ

↓
g,tp

↓
g,t,s ∀g, t, s (9h)

pg,t,s =
∑

g

pDg,t,s + p
↑
g,t,s − p

↓
g,t,s ∀g, t, s (9i)

ct,s = pg,t,s + wt,s −Bt,s − et ∀t, s (9j)

∆p
↑
g,t,s = p

↑
g,t,s − p

↑
g,t−1,s ∀g, t, s (9k)

∆p
↓
g,t,s = p

↓
g,t,s − p

↓
g,t−1,s ∀g, t, s (9l)

∆p
↑
g,t,s = ∆p

↑
g,t−1,s ∀g, t, s, γt = 0 (9m)

∆p
↓
g,t,s = ∆p

↓
g,t−1,s ∀g, t, s, γt = 0 (9n)

∆p
↑
g,t,s = 0 ∀g, t, s, γt = 2 (9o)

∆p
↓
g,t,s = 0 ∀g, t, s, γt = 2 (9p)

p
↑
g,t,s ≤ ng,t,sp

↑
g,t,s ∀g, t, s (9q)

p
↓
g,t,s ≤ mg,t,sp

↓
g,t,s ∀g, t, s (9r)

p
↑
g,t,s ≥ ng,t,sχgp

↑
g,t,s ∀g, t, s, γt = 2 (9s)

p
↓
g,t,s ≥ mg,t,sχgp

↓
g,t,s ∀g, t, s, γt = 2 (9t)

ng,t,s = 0 ∀t, s, P ↑
g,t = 0 (9u)

mg,t,s = 0 ∀t, s, P ↓
g,t = 0 (9v)

p
↑
g,t,s ≤ dt,sp

↑
g,t,s ∀g, t, s (9w)

p
↓
g,t,s ≤ lt,sp

↓
g,t,s ∀g, t, s (9x)

dt,s + lt,s ≤ 1 ∀g, t, s, γt = 2 (9y)

The objective function (9a) maximises social welfare, where

the first term is customer utility and the last terms are cost

of generation and slack variables. Customer utility includes

the instantaneous price-elasticity, diag (θt,t′), and the change

in consumption due to all past and future prices, cλt . The

full finite impulse response (FIR) for price, θλ, which comes

from the demand model, is contained t’ times in the square

matrix (θt,t′), where the diagonal term represents t = 1 of

the FIR. Each price contribution to the load is summed for

all cross-elasticities in constraint (9b), giving the total DR

and the real-time price for demand, λR
t . The EcoGrid EU

market produces separate prices for supply and demand when

supply and demand constraints are reached (e.g. generator

ramping), but identical ones when such constraints are not

binding. Actors that caused the imbalance receive the average

price for balancing power from supply and demand.
When cross-elasticity is ignored, as in Scandinavia today

and in the original EcoGrid EU design, then only the diagonal

term in θt,t′ is non-zero, and is fixed to the average FIR from

the general linear model parameters (3) until the market is

cleared again, i.e. if the market is run hourly, then the first 12

values of the FIR after a price change are used to determine
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price elasticity, e.g.

θλ =
1

12

12
∑

n=1

1

θλn

(10)

Clearing an electricity market considering cross-elasticity is

not needed in today’s deregulated power systems because the

loads that participate in existing DR schemes have a cross-

elastic time constant that is longer than the re-commitment

time of the system they participate in. For example, a factory

that reduces its consumption for an hour to meet the terms

of a DR contract will not compensate for this reduction in

the following hour, since it will cause an imbalance and be

penalised as a result. Instead, its cross-elastic time constant

depends on long term planning ranging from days to years,

far slower than day-ahead and real-time markets recommit bids

today. Small-scale DR, which indirect control leans towards,

can have a time-constant of just a few minutes, as seen

in the EcoGrid EU demand model. This time-constant is a

similar order of magnitude to the re-commitment frequency

in real-time markets today, which suggests that cross-elastic

effects must be fully incorporated into the market to obtain an

economically efficient and controllable outcome.

A method for clearing a market considering the cross-elastic

nature of the load was previously proposed in [20]. However,

the algorithm used does not converge on a solution if the

demand’s self-elasticity is smaller than its cross-elasticity. This

solution may work well in an hourly market, where the demand

characteristics are likely to lead to a solution, but in a five

minute market like EcoGrid EU, the cross-elastic terms are

larger than the self-elastic terms, hence our proposed modified

market structure.

Constraints (9c) and (9d) determine the flexible demand

limits. Constraint (9e) sets DR to zero for twice the FIR length,

h = 2 (uλ + nλ), so that market outcomes do not create

infeasible starting points for subsequent re-commitments.

The total demand and production from wind are defined in

(9f) and (9g). The regulating cost from conventional generation

is defined in (9h). The total power produced by conventional

generation is stated in (9i). Constraint (9j) is the balance

constraint, also considering the imbalance from wind and

inflexible demand, Bt, and feedback from the load, et. Con-

straints (9k) - (9y) dictate generator behavior like minimum

on-times and ramping characteristics that are in-line with the

Scandinavian regulating market today. Constraints (9k) and

(9l) define generator ramp rates. Constraints (9m) and (9n)

keep ramping constant for 15 minutes. Constraints (9o) and

(9p) ensure that a generator is at a fixed setpoint for at least

15 minutes. When used with the generator behavior of γt =
{1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0...}, (9k)-(9p) result in a minimum

on-time of 45 minutes. Constraints (9q) and (9r) are maximum

regulation constraints. Constraints (9s) and (9t) are minimum

generation constraints. In the Scandinavian regulating market,

bids under 10MW must be activated in full, while bids above

10MW can be activated in part; the proportion of each bid to

be activated is described by the parameter χg. Constraints (9u)

and (9v) ensure that a generator is off when it bids zero into

the market. Constraints (9w) and (9x) determine whether any

up or down generation is active, according to binary variables

dt,s and lt,s respectively, and (9y) prevents simultaneous up

and down regulation.

For each scenario-based decision variable there exists a non-

anticipativity constraint that ensures its outcome is identical

across all scenarios in the first few time periods for which

prices are fixed, for example t = 1 . . . 6 if the market is cleared

every half hour. Scenarios for imbalance, B, are generated

using a non-parametric method. Bootstrapping is employed,

where historical outcomes are sampled with replacement. Sce-

narios for price-elasticity are normally distributed and scenario

reduction is done using the Fast Forward method [21].

Any imbalance after the market cleared is penalised by a

primary frequency reserve (PFR) energy cost, which is set to

the highest and lowest marginal cost for energy in each time

period.

EcoGrid EU market clearing code in the GAMS language

and without proprietary datasets is available in [22]. The main

EcoGrid EU market is a mixed integer quadratically con-

strained program (MIQCP) solved using the CPLEX solver.

C. Quantifying Volatility

We propose quantifying volatility using a rainflow counting

algorithm [23], which is traditionally used in material fatigue

and battery ageing analysis. The rainflow counting algorithm

is a simple but powerful tool and the result is intuitive;

Whenever there is a change of sign in the signal of interest, a

turning point is defined. The distance between turning points

is measured and binned for similar distances to give the

number of oscillations observed per day. The algorithm can

be described as

1) Reduce the time-series to sequential peaks and troughs.

2) Conceptually rotate the time-series 90◦, so that the time-

series starts at the top and ends at the bottom.

3) Represent each peak and trough as the source of water

that drips down the time-series.

4) Count the number of half-cycles by looking at where

the drops of water end, which is when either

a) The drop reaches the end of the time-series;

b) The the drop merges with the flow from an earlier

drop; or

c) An opposite peak or trough of greater magnitude

occurs.

5) Determine the distance of each half-cycle between its

start and end.

6) Pair up half-cycles of equal distance but opposite effect

(falling off a peak or trough).

In Fig. 4, trough half cycles are counted and the distance for

each cycle is measured for a time-series of DR. The total

number of full cycles (troughs plus peaks) in this example are

16, with an average amplitude of 80.6MW.

IV. RESULTS

A. The cause of the Cobweb effect

The main cause for the Cobweb effect is uncertainty, but

this can be further specified as structural uncertainty, that is
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Fig. 4. Rainflow counter, where the black lines are half-cycles used count
the number and amplitude of oscillations.

the linearisation of demand characteristics to fit into a market

structure, and aleatoric uncertainty, which is the intrinsic

randomness in natural processes. Structural uncertainty in our

system comes from the non-linear demand curve, assumed to

be linear in the market, and ignoring cross-elastic effects in

the market.

To understand which source of uncertainty causes the great-

est volatility, we performed simulations for Denmark for one

month for a range of different cases. The first case is one

with no DR. The second case is an open loop system, where

feedback is ignored by the market and left for faster moving

reserves like PFR to remedy. An open loop is unrealistic, be-

cause it requires no uncertainty in the source of an imbalance,

and undesirable, because it requires larger PFR capacity. The

next case is a closed loop system, where the market is run

as was originally designed, and feedback from an unexpected

response creates a new imbalance in subsequent market re-

commitments. In the fourth and fifth cases (Closed NL and

CE), feedback from non-linear and cross-elastic behaviour is

remedied by the market, one at a time, while the other is

left as an open loop imbalance. This allows us to identify

which is the bigger cause of the Cobweb effect. The sixth case

(Closed M) simulates a full closed loop but with a modified

market, where the full cross-elastic effects are modelled in

our novel market constraint (9b). Finally, demonstration results

are included. The demonstration cannot be directly compared

to simulated cases because it uses a local imbalance signal,

is subject to additional price delays, and is a pseudo-closed

loop where delayed meter data is used to update the demand

forecast.

Fig. 5 shows a simulation day with outcomes demand price

and consumption, regulating price for generation, and regu-

lating power activated respectively. In a closed-loop system,

oscillating behaviour is seen in both generation and load. In an

open loop system, similar volatility as the closed loop system

can be seen in the first few hours of demand price, but this

does not translate to volatility on the generation side. Increased

volatility is therefore not a problem in itself from a market

perspective - DR increases volatility of the demand even when

expectation of demand is perfect, and this is to be cherished

if DR is to help balance volatile renewable energy production.

However, increased activation of regulating power is a clear

indicator of the Cobweb effect in action.

Table I summarises the number of cycles counted by the

rainflow counting algorithm for different cases. There is an

increase in demand cycles across all scenarios with DR, which

occurs naturally as the demand becomes dynamic. There is a

reduction in supply cycles for all DR cases, which should be

interpreted as fewer regulating bids being committed, which

in turn means that DR has achieved its goal of reducing

reliance on conventional power generation. The closed loop

experiences the most volatile pricing, as it has the most supply

price cycles.

Table II shows the cycle amplitude summed per day. For

supply and demand, this relates to the total amount of balanc-

ing power activated, and for prices, this represents the sum of
P
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Fig. 5. Prices and power for supply and demand for an open- and closed-loop
simulation day.
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changes in activation price. Higher demand cycle amplitudes

in all DR cases suggests load shifting is occurring. Real-

time price amplitudes are lowest in the open loop and the

Closed NL case, suggesting they behave in a similar manner

and that feedback from a non-linear demand curve is less

significant for volatility. In the original closed loop design

and the Closed CE case, demand price amplitude is quadruple

the open loop case. Daily supply and supply price amplitudes

paint a similar picture, with the greatest volatility in the cases

with feedback from cross-elasticity, and less volatility in the

non-linear feedback case. The modified case should be directly

compared to the closed loop case, where it exhibits half the

supply volatility and a reduction of 46% in supply price.

Despite this, it exhibits higher supply amplitudes (but at a

lower price) than the zero-DR case, suggesting the Cobweb

effect is still present here, but the market is able to exploit

lower generation cost in spite of volatility.

B. Demand response penetration

To see if the Cobweb effect increases cost, cases were

simulated for different levels of DR penetration. DR pene-

tration was scaled from 0% to 100%, as shown in Fig. 6.

The upper limit assumes that all of Denmark behaves like

an EcoGrid EU load and represents a DR peak response

about twice that of DR in the Nord Pool day-ahead market

today, albeit with significantly more activations due to a lower

price-elasticity characteristic (i.e. DR is cheaper to activate).

DR penetration beyond 30% results in a reduction in social

welfare in the closed-loop system, as the cost of volatility

outweighs the benefit of DR. The case where feedback stems

from cross-elastic effects (Closed CE) results in equally low

social welfare, while the case where only non-linear effects

are feedback has a very similar result to the open loop case.

As with the rainflow counting results, this confirms that cross-

elasticity is a bigger cause of the Cobweb effect than the non-

linear demand curve. Finally, the modified market, which is

a full closed loop, successfully increases social welfare for

all levels of DR penetration. At low levels of DR penetration,

social welfare gains are very small compared to the other cases

because the modified market treats DR far more rigidly with

fewer activations when it knows that a rebound will occur

after 90 minutes. Lower DR activations means that costly

conventional generator bids are activated instead, when leaving

residual imbalances to faster moving reserves might have been

more cost efficient.

TABLE I
AVERAGE CYCLES PER DAY

Demand Demand price Supply Supply price

[Cycles] [Cycles] [Cycles] [Cycles]

No DR 62.9 0 20.4 13.1

Open 58.6 56.8 15.9 10.8

Closed 39.6 38.9 18.1 15.7

Closed NL 56.1 56.1 15.9 10.8

Closed CE 36.7 39.4 16.9 14.8

Closed M 75.0 88.6 17.1 13.9

Demo 65.9 73.3 24.5 15.0
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Fig. 6. Social welfare as a function of DR penetration. There is a reduction
in social welfare as DR reaches significant proportions in closed-loop cases
that do not account for a cross-elastic response.

Fig. 6 shows that DR has the potential to significantly

increase social welfare in a real-time market, but only when

cross-elasticity is explicitly optimized for in the market. How-

ever, this result should be moderated by the fact that revenue

here is significantly smaller than in the day-ahead market,

where DR volumes are less according to the EcoGrid EU

demand model. In addition, this result is only applicable to the

winter months when DR from heating in Denmark is expected

to be active, so the year-round gain will be lower. The results

are also highly dependent on assumptions about the supply

curve; should DR become a significant reality, it’s possible

that bidding strategies would evolve.

C. Market re-commitment frequency

System dynamics change as system operators move to

shorter settlement periods, like five minutes in the EcoGrid

EU market, shorter gate-closure times, and more regular unit

re-commitments to reduce the impact of RES uncertainty. We

investigated re-commitment frequency by increasing how often

the market was cleared from 15 minutes to 150 minutes in 15

minute intervals. The settlement period remains five minutes

throughout (i.e. prices and set-points are valid for five minutes

at a time), but new decisions are only taken every time the

TABLE II
AVERAGE SUM OF CYCLE AMPLITUDES PER DAY

Demand Demand price Supply Supply price

[GWh] [e /MWh] [GWh] [e /MWh]

No DR 1.9 0 1.4 141.5

Open 4.3 482.8 1.1 91.5

Closed 16.1 2013.8 4.7 217.9

Closed NL 4.7 507.7 1.2 98.7

Closed CE 15.6 2122.0 4.2 224.9

Closed M 5.2 1690.3 2.3 133.1

Demo 3.8 125.2 3.6 72.9
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Fig. 7. Social welfare increases and volatility decreases as the re-commitment
frequency is reduced in the standard closed-loop case.

market is cleared. The theoretical benefit of using a higher re-

commitment frequency is that newer forecasts with less uncer-

tainty can be used, leading to lower costs and therefore higher

social welfare. Fig. 7 shows the outcome of changing unit

commitment frequency on generation volatility and social wel-

fare. The cross-elastic market exhibits similar behaviour for all

timings, while the closed loop market actually exhibits lower

volatility and higher social welfare for longer re-commitment

intervals, which is the opposite to what would traditionally

be expected. Volatility here translates to more generator bids

being activated for more frequent re-commitments. The local

peak in volatility at 45 minutes suggests also that the market

clearing frequency is resonating with the minimum-on time for

generation, and highlights additional market design challenges.

V. CONCLUSION

We have provided evidence that the Cobweb effect impacts

the EcoGrid EU market, provoking costly oscillations on the

supply side. In our case, the Cobweb effect causes three times

more generator bids to be activated than in a market with

no DR, leading to higher costs and lower social welfare.

We observed that the non-linear demand curve does cause

the Cobweb effect, but not enough to reduce social welfare.

However, ignoring cross-elasticity in a market does lead to

significant volatility and reduced social welfare. To mitigate

this, we have directly incorporated cross-elasticity into the

optimization problem. Such a solution may appear obvious, yet

new, DR-focussed market designs that ignore cross-elasticity

continue to appear in the literature [7], [24]. Reducing re-

commitment frequency may be another option for reducing

the Cobweb effect.

The question remains whether markets are the right tool to

control fast-moving, non-linear DR. Our market and demand

models are unlikely to capture all sources of volatility, and

our measure for social welfare does not count all the costs

that stem from it. Voltage and frequency instability could

result from a seemingly small amount of volatility, and future

research should determine how much volatility is acceptable.
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