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Abstract   18 

A novel substrate design is presented for scalable industrial production of filamentary coated 19 

conductors. The new substrate, called “two level undercut-profile substrate (2LUPS)”, has two 20 

levels of plateaus connected by walls with an undercut profile. The undercuts are made to produce a 21 

shading effect during subsequent deposition of layers, thereby creating gaps in the superconducting 22 

layer deposited on the curved walls between the two levels. It is demonstrated that such 2LUPS-23 

based coated conductors can be produced in a large-scale production system using standard 24 

deposition processes, with no additional post-processing. Inspection of the conductor cross-section 25 

reveals that the deposited superconducting layer is physically separated at the 2LUPS undercuts. 26 

Filament decoupling is also seen in maps of the remanent magnetic field and confirmed by transport 27 

measurements.  28 

Keywords: Coated conductors, metal substrate, filamentary structures, critical current, remanent 29 

magnetic field  30 
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1. Introduction 1 

Rare-earth barium-copper-oxide (REBCO) coated conductors (CCs) are promising high temperature 2 

superconductors for ultra-high magnetic field and power applications [1,2]. Due to the very high 3 

current density of such CCs even in strong magnetic fields and at liquid nitrogen temperatures, CC 4 

technology outperforms other types of superconductors [1,3] used in such conditions. The superior 5 

performance is achieved by bi-axial texturing of the thin REBCO layer, which is grown epitaxially 6 

using either physical or chemical deposition techniques [1]. A typical architecture of a commercial 7 

CC comprises a metal substrate, a stack of ceramic buffer layers, a superconducting REBCO layer, 8 

and an Ag layer possibly together with a mechanically supporting Cu layer [4,5]. There are two 9 

widely applied fabrication routes to obtain a strong bi-axial crystallographic texture in the 10 

superconducting layer: (i) the so-called rolling assisted bi-axially textured substrate method, where 11 

a very strong cube texture is formed during high temperature annealing of a heavily rolled substrate 12 

[6-8], and which is then transferred to the superconducting layer via epitaxy; and (ii) ion beam 13 

assisted deposition [9] or alternating beam assisted deposition (ABAD) [4], which involve 14 

deposition of a strongly textured buffer layer on a randomly textured metal tape.  15 

Despite significant progress in commercialization and large-scale production of CCs, the 16 

standard design of flat superconducting tapes is still not well suited for alternating current (AC) 17 

applications. Such flat tapes are characterized by a very high (~10,000) aspect ratio between the 18 

width and the thickness of the REBCO layer, which results in considerable AC losses, i.e.  eddy 19 

current, coupling and hysteretic losses [10], induced by applied alternating transport current and/or 20 

a varying magnetic field. These losses can cause large heat loads on cryogenic systems, when the 21 

CCs are used in transformers, fault current limiters and generators, thus making them less efficient 22 

[11-13]. Transposing or twisting of multiple CCs using either a Roebel configuration or conductor-23 

on-round-core cables [10,14] is known to significantly reduce eddy current and coupling losses.  24 

Since the hysteretic loss scales inversely with the width of the superconducting layer, this loss can 25 

effectively be reduced if a superconducting layer consists of narrow filaments [15]. 26 

Filamentary structures in CCs have previously been produced using top-down processing 27 

techniques, such as mechanical striation [16], i.e. scribing into the buffer or REBCO layer, and by 28 

laser striation [5,17], where the filaments are formed by ablating material (figure 1(a)). Although 29 

these techniques do enable reduced hysteretic losses, their use also leads to large undesirable 30 

reductions in the critical current IC (due to the significantly reduced functional CC width) [16-18]. 31 
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In addition, since the filaments are formed after depositing the CC stack, it is reasonable to expect 1 

that the sensitive superconducting layer will be vulnerable to damage during filament formation. 2 

We propose instead a new CC design that allows production of a filamentary superconducting 3 

tape with potentially full-width IC. This novel design is based on a substrate with two levels of 4 

plateaus connected by walls with an undercut profile (figure 1(b)), in the following called “two 5 

level undercut-profile substrate (2LUPS)”. The undercuts are made to produce a shading effect 6 

during subsequent deposition of additional layers, ultimately creating gaps in the superconducting 7 

layer on the curved walls between the two levels (see figure 1(b)). Therefore, it is expected that 8 

self-formed superconducting filaments can easily be deposited on such a 2LUPS using standard 9 

deposition processes with no additional post-processing. To verify this, a 2LUPS-based coated 10 

conductor is produced and investigated in the present work. 11 

 12 

 13 

Figure 1. Schematic illustration of different types of filamentary CCs, where the substrate and a coating are 14 

shown in dark gray and light gray, respectively: (a) state-of-the-art design of laser-striated CCs; (b) 2LUPS 15 

design.  16 
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2. Experimental 1 

A commercial Hastelloy C276 tape (L×W×T=150×10×0.89 mm3) was used in this work for 2 

producing a 2LUPS. The tape was first electrochemically polished at 55 °C in a H2SO4/H3PO4-3 

based electrolyte applying a current density of 200 mA/cm2 for 3 min to obtain a smooth surface. 4 

The tape was then covered with a protective adhesive film and several cuts were made manually on 5 

the film parallel to the tape rolling direction to divide the film into 12 strips, each with a width of 6 

0.8 mm. The adhesive film on every second film strip was peeled off and the tape was etched in the 7 

same solution to form lower plateaus with undercuts [19], after which the adhesive films on the 8 

remaining adhesive film strips were also peeled off. Yttria-stabilized-zirconia (YSZ) was then 9 

deposited on the tape using the ABAD method, followed by pulsed laser deposition of first a 70 nm 10 

CeO2 layer and then a ~1.5 µm superconducting YBa2Cu3O7 (YBCO) layer. Each deposition 11 

process was carried out using a large-scale production system at Bruker HTS by simply attaching 12 

the 2LUPS to the end of a standard 4 mm wide stainless steel substrate. The sample was then 13 

protected by an Ag layer deposited via thermal vacuum deposition and finally oxygenated [4]. 14 

A Carl Zeiss 1540 XB scanning electron microscope (SEM) was used for inspecting the sample 15 

cross section prepared by focused ion beam milling. The milling was performed using a Ga-ion 16 

source operated at an accelerating voltage of 30 kV. Trenches were made using a 10 nA ion-probe 17 

followed by surface polishing using a 500 pA beam. SEM images were then taken at 3 kV.  18 

A four-point probe IC analysis was conducted on a 50 mm long specimen with current Ii and 19 

voltage Vi taps (i = 1–4) soldered directly onto the Ag cap layer over groups of five filaments 20 

numbered 1 to 5 and 8 to 12, as shown in figure 2. Transport currents were applied by a Sorensen 21 

DCS 12-250E power supply and voltages were recorded using a Keithley 2010 multimeter. Another 22 

20 mm long specimen of the 2LUPS CC (filaments 2 to 6) was scanned using a Hall probe [20] 23 

within 75 minutes at a temperature of 77 K (zero field-cooled) after a magnetic field was applied 24 

perpendicular to the tape normal, ramped from 0 to −20 mT and then back to 0. The distance 25 

between the superconducting layer and the Hall probe was 180 µm and 195±2 µm for the upper 26 

plateaus and lower plateaus, respectively. No significant flux creep was identified during these 27 

measurements. 28 
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 1 

Figure 2. A schematic illustration showing positions of the current Ii and voltage Vi taps for the four-point 2 

probe analysis of the 2LUPS CC, where i=1-4. Labels 1 to 12 on the Y-axis indicate filament numbers, 3 

where even and odd numbers correspond to lower and upper plateaus, respectively. 4 

3. Results and discussion 5 

A representative fragment of the sample cross-section shown in figure 3 provides evidence that 6 

a gap in the YBCO layer exists in region A near the undercut B even though the undercut length L, 7 

defined as shown in the inset, is only 0.3 µm. There is also a gap in the Ag layer, which is expected 8 

to have an additional beneficial effect as it reduces resistive coupling losses through the stabilizing 9 

layer [21]. The deposited layers also have cracks in the corner region (C in figure 3). One of these 10 

cracks is clearly seen to initiate at the substrate tip, while other cracks appear to initiate in the Ag 11 

layer on the top surface. Figure 3 also shows that each deposited layer on the horizontal surface has 12 

a relatively uniform thickness and that the thickness within each layer starts to vary on the curved 13 

wall. Furthermore, rather coarse pores are seen along the interface between the substrate and the 14 

YSZ layer (D in figure 3). Note that whereas this layer is not physically separated near the undercut 15 

B, the thickness of this layer is reduced here by a factor of 3-4 compared to the thickness of the 16 

YSZ layer in other locations. This reduction is due to deviations from the optimum 55° incident 17 

angle for the assisting argon beam [4] at the undercut. Such deviations also result in a non-uniform 18 

thickness and rough surface of the layers deposited on the wall. 19 
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 1 

Figure 3. SEM image from the cross-section of a 2LUPS CC showing the effect of the undercut. Numbers 1 2 

to 4 mark deposited layers: YSZ (1), CeO2 (2), YBCO (3) and Ag (4). Labels A to D mark different features: 3 

gap in the YBCO and Ag layers (A), undercut (B), cracks (C) and pores (D). The inset defines the undercut 4 

length L. 5 

 6 

Figure 4(a) shows the I-V characteristics for the filaments connected by the taps measured at 7 

77 K and in the absence of an applied magnetic field. Using the standard E0 = 1 µV/cm criterion 8 

(see dashed lines in figure 4(a)) it is found that IC for filaments 8 to 12 is lower (47 A) than that for 9 

filaments 1 to 5 (80 A). Thus, the average critical current per filament (IC/5) is 16 A for filaments 1 10 

to 5 and 9.4 A for filaments 8 to 12. Also, the n-parameter in the fitted power function V=E0l (I/IC)n, 11 

where l is the length between the voltage taps, is lower for filaments 8 to 12 (n=24) than for 12 

filaments 1 to 5 (n=46). The much lower IC and n-values for filaments 8 to 12 are most likely due to 13 

aperture shielding during the vapor deposition, resulting from the fact that the aperture size was 14 

adjusted for the standard 4 mm wide substrates used in the Bruker HTS production system, whereas 15 

the width of the 2LUPS substrate was larger, 10 mm. I-V measurements across contacts I2,V2 and 16 

I3,V3, i.e. across the unconnected groups of filaments, show a linear relationship (figure 4(b)), with 17 

a resistance of 84 µΩ. This linear relationship is characteristic of normal metal conductivity 18 

provided by the Ag layer on the backside of the 2LUPS CC. The normal metal conductivity 19 
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observed across these two groups of filaments proves that these groups are decoupled with respect 1 

to superconducting currents.  2 

 3 

Figure 4. I-V characteristics of the 2LUPS CC: (a) I-V curves for filaments 1 to 5 and 8 to 12 measured at 4 

77 K and in the absence of applied magnetic field. Symbols and lines indicate individual experimental data 5 

and fitted curves, respectively; (b) I-V curve measured using taps I2,V2 and I3,V3 (see figure 2) across the 6 

unconnected groups of filaments.  7 

Figure 5 shows a remanent magnetic field map obtained from the 2LUPS CC, from which it is 8 

evident that the tape is divided into decoupled superconducting filaments, in agreement with the 9 

results of the I-V characterization. For each filament (seen as blue bands in figure 5), the remanent 10 

magnetic field decreases from the sides towards the center line in accordance with the Bean critical 11 

state model [22]. Field gradients across filaments 3, 4 and 5 are seen to be smaller than those across 12 

filaments 2 and 6, which is probably caused by stronger shielding currents induced in the outer 13 

filaments. Figure 5 also reveals variations in the magnetic field along the filaments which can be 14 

attributed both to incomplete magnetic penetration of the superconducting layer and to variations in 15 

either the critical current density or layer thickness due to non-optimized deposition parameters. 16 
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Finally, the positive magnetic field value of ~0.15 mT obtained at the edge of filament 3 (see 1 

figure 5) likely reflects an artifact caused by cutting [23].  2 

 3 

Figure 5. Remanent magnetic field map for filaments 2 to 6 measured at 77 K after ramping the magnetic 4 

field from 0 to -20 mT and back to 0. The color bar represents the strength and direction of the magnetic 5 

field. Labels 2 to 6 on the right side indicate filament numbers. 6 

The critical current of filaments 1-5 can be compared to that of the standard flat Bruker HTS CC. 7 

Considering that the full width of these 5 filaments is ~4.2 mm, the critical current per unit width 8 

(IC*) is 193 A/cm-width, which is 19% lower than IC* of the standard flat CC from Bruker. This 9 

reduced IC* can be explained by the very small undercut length L obtained in this experiment (see 10 

figure 3)  and by a rougher surface [24] of the present 2LUPS as compared to the standard Bruker 11 

substrates (arithmetic surface roughness Sa is 7±1 nm and ~2 nm for the 2LUPS and the Bruker 12 

substrates [4], respectively). Although the present 2LUPS CC sample results in a lower IC* 13 

compared to the standard CC, the 2LUPS-design has a strong technical potential as the AC losses of 14 

the filamentary CC are expected to be significantly lower than those of the standard CC. 15 

Apparently, further development of 2LUPS CCs should focus on improving the substrate surface 16 

quality and increasing the undercut length. 17 
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 1 

4. Summary 2 

A novel 2LUPS design to manufacture filamentary CCs using the standard deposition processes in a 3 

large-scale coated conductor manufacturing system without additional post-processing has been 4 

developed. It has been verified that this new substrate enables self-forming filaments on the coated 5 

conductor. Superconducting layers deposited on the 2LUPS are physically separated, and 6 

decoupling of the filaments is confirmed by mapping the remanent magnetic field and measuring 7 

the critical current.  8 
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