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Evolution of microstructure and texture during 
recovery and recrystallization in heavily rolled 
aluminum 
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1 Danish-Chinese Center for Nanometals, Section for Materials Science and Advanced 
Characterization, Department of Wind Energy, Technical University of Denmark, Risø 
Campus, 4000 Roskilde, Denmark 
2 Key Laboratory of Advanced Materials (MOE), School of Materials Science and 
Engineering, Tsinghua University, Beijing 100084, China  
E-mail: olmi@dtu.dk 

Abstract. The annealing behavior of nanostructured aluminum AA1050 prepared by cold 
rolling to an ultrahigh strain (vM = 6.4) has been investigated using both transmission electron 
microscopy and electron backscatter diffraction techniques, paying particular attention to 
changes in microstructure and texture during recovery and their influence on subsequent 
recrystallization. It is found that coarsening of lamellar structures during recovery can occur via 
triple junction motion, and that this process can modify the proportion of different boundary 
types and texture components compared to those in the cold rolled material. Additionally, the 
heavily deformed material is characterized by different textures and different spatial 
arrangements of rolling texture components in the center and subsurface. It is found that 
changes in the misorientation distribution and texture during coarsening are greatly affected by 
the initial spatial distribution of crystallographic orientations. In particular, the reduction in the 
fraction of high angle boundaries observed during recovery is much more pronounced in the 
subsurface layers than in the center layer. The initial through-thickness heterogeneity is thus 
greatly enhanced during recovery, which leads to significant differences in recrystallized 
microstructure and texture in the different layers. 

1. Introduction
Materials deformed to high strains are characterized by very small boundary spacings and 
typically contain large fractions of high angle boundaries (HABs), which can result in a 
modified annealing behavior compared to materials deformed to low strains. For example, it 
has been recently reported that coarsening of deformation structures in heavily rolled 
aluminum may occur via triple junction (TJ) motion [1,2]. Depending on the spatial distri-
bution of different texture components, such coarsening can lead to very different recovered 
microstructures in which subsequent recrystallization takes place [3]. This has been 
demonstrated in our previous electron backscatter diffraction (EBSD) study of an AA1050 
sample cold rolled to a von Mises strain of 6.4, which had different proportions and different 
spatial distributions of rolling texture components in the center and subsurface layers [3]. In 
the present work, we complement the EBSD data with new transmission electron microscopy 
(TEM) observations of TJ motion, and discuss the evolution of texture and microstructural 
parameters during recovery and recrystallization in heavily rolled aluminum. 

2. Experimental
A plate of aluminum AA1050 was cold rolled by multiple passes from 10 cm to ~0.4 mm. 
Cold rolling was conducted with lubrication, unidirectionally by alternating the top and 
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bottom sides between passes, and applying predominantly intermediate draughts [4]. The 
cold-rolled material was then annealed in air at 300 °C for different periods of time. The 
microstructure and texture were characterized in the section containing the rolling direction 
(RD) and the normal direction (ND). For the deformed and recovered samples, EBSD maps 
were obtained in the center and at 30130 µm from the surface. For texture analysis of all 
samples and for microstructural analysis of partially and fully recrystallized samples, the 
entire sample thickness was covered by EBSD. Each through-thickness data set was divided 
into three subsets of equal size to obtain information separately for the center and subsurface 
layers. The data from the two opposite subsurface layers were combined for determining 
boundary spacings, proportions of different boundary types and fractions of different texture 
components. In addition, thin foils were investigated in a JEM 2100 transmission electron 
microscope equipped with a double-tilt heating holder. The foils were heated to 270 °C within 
~4 min, and then to 300 °C over a period of 2 minutes. TEM images were taken both in the 
cold-rolled condition and during in-situ annealing using a TVIPS FastScan camera.  
 
3. Results and Discussion 
Lamellar structures combined with microshear bands are seen in the heavily rolled micro-
structure (see Fig. 1). The EBSD data indicate that the dominant texture in the center is the S 
{123}634 component, whereas the texture in the subsurface layers is dominated by one of 
the symmetric variants of a component near the ideal Cu {112}111 orientation [3]. These 
dominant components compose broad texture bands subdivided both by HABs (between 
symmetric variants of one texture component) and by LABs. The broad bands are 
interspersed with narrower bands representing weaker components of the rolling texture, of 
which the Brass (Bs) {110}112 component was the weakest (Fig. 1). Interestingly, despite the 
significant differences in the spatial distribution of the rolling texture components, the 
average boundary spacing along the ND and the fraction of HABs are very similar in the 
different layers, being ~0.2 µm and 5456%, respectively. 
 

 
Figure 1. EBSD maps showing deformation structures in the center (a) and the subsurface (b) of the 
cold-rolled sample. LABs ( =1.515°) and HABs ( >15°) are shown by white lines and black lines, 
respectively. The RD is parallel to the scale bar. Reprinted from [3] with permission from Elsevier. 
 
Upon annealing the microstructure coarsens during recovery, followed by pronounced 
discontinuous recrystallization after ~10 minutes at 300 °C. The coarsening occurs without 
significant changes in the lamellar morphology and is accompanied by reductions in the HAB 
fraction to ~40% in the center and 20% in the subsurface. The reduction in the fraction of 
HABs observed during coarsening in this work is consistent with several previous 
observations in heavily deformed and annealed materials [58]. 
In our previous publication [3], based both on EBSD maps collected after short-time 
annealing at 300 °C and on TEM findings in samples annealed at lower temperatures [1,2], 
the coarsening of the lamellar structures was attributed to TJ motion. In the present work, we 
reinforce this conclusion by direct TEM observations of TJ motion at temperatures 
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approaching 300 °C. Although structural coarsening takes place already during the heating-
up to 270 °C, significant changes continue to occur as the temperature approaches 300 °C. 
Figure 2 shows a sequence of TEM images taken during in-situ heating as the temperature 
reached ~290 °C. Initially the TJ marked by an arrow in Fig. 2a was pinned by an 
interconnecting boundary in a neighboring lamella on the left side (this interconnecting 
boundary is shown as a dashed line near the TJ marked in Fig. 2e). Within 0.37 s the TJ 
moved rapidly over a distance of ~2 µm (Fig. 2b), then slowed down as it migrated past two 
more interconnecting boundaries on the left side (Fig. 2c), after which the TJ moved rapidly 
again (Fig. 2d and Fig. 2f). The migration of this TJ therefore increased the boundary spacing 
in the inspected region (cf. Fig. 2e and Fig. 2f), while preserving the lamellar morphology. 
 

 
 
Figure 2. TJ motion observed in a TEM foil (center layer) at ~290 °C: (a-d) TEM images obtained 
after different periods of time (0 to 0.93 s), where a rapidly migrating TJ is marked by an arrow. The 
changes before and after the TJ motion are shown schematically in (e,f). Solid and dashed lines in (e,f) 
indicate lamellar and interconnecting boundaries, respectively. 
 
Most subgrains and narrow lamellae of non-dominant texture components are located 
between coarser lamellae of the dominant texture components, and as such are typically 
surrounded by HABs. Therefore, their shrinkage by TJ motion leads to a reduction in the 
HAB fraction as newly formed boundaries between the broad lamellae of similar orientations 
are LABs (Fig. 3).  
 

 
 

Figure 3. Schematic showing coarsening via lateral motion TJs in a deformed lamellar 
microstructure: (a) initial microstructure; (b) microstructure after TJ motion. Black and gray lines 
indicate HABs and LABs, respectively. Reprinted from [3] with permission from Elsevier. 
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Since in each subsurface layer there is only one dominant orientation variant, the reduction 
in the fraction of HABs in these layers is much more pronounced than in the center, where 
the dominant S component is represented by four symmetric variants [3]. Consequently, by 
the time pronounced recrystallization starts, the center still contains a high frequency of 
mobile HABs, whereas there are very few such boundaries left in the subsurface (see Fig. 2b). 
These differences in the frequency of mobile boundaries result in a very large difference in 
the frequency of recrystallization nuclei and in the recrystallization kinetics in the different 
layers. Accordingly, in the center layer, recrystallization was found to take place initially more 
rapidly and with a higher nucleation density, thus resulting in a smaller final grain size 
(13 µm) compared to that in the subsurface layers (~30 µm). In each layer, the nuclei were 
observed to form within lamellar structures and near coarse particles. The former ones 
typically had orientations of the rolling texture components, whereas nuclei near coarse 
particles had orientations of the rolling texture, or of the P {011}566, CubeND {001}310 and 
“random” orientations. As the rolling texture in the recovered material was extremely strong 
(96  98% of all orientations), nuclei of the rolling texture components were susceptible to 
the effect of orientation pinning [9]. It is considered that in the subsurface layers orientation 
pinning experienced by nuclei of the dominant Cu component was especially pronounced, 
whereas the growth of nuclei with P, CubeND and other orientations was mostly unhindered 
[3]. As a result, during recrystallization (annealing at 300 °C for 2 h) the fraction of the 
rolling texture components in the subsurface dropped to 23%, while the fraction of 
P + CubeND components increased to 55%. In contrast, in the center, where orientation 
pinning was not as strong as in the subsurface, the fractions of the rolling texture and 
P + CubeND components after 2 h at 300 °C were 53% and 27%, respectively. These 
observations emphasize the importance of considering changes during recovery when 
examining recrystallization in heavily deformed metals. 
 
Conclusions 
The microstructural evolution during recovery in heavily rolled aluminum is strongly 
influenced by the initial spatial arrangement of different rolling texture components in the 
deformed material. In this material, coarsening of lamellar structures via TJ motion leads to 
the loss of HABs. This reduction in the HAB fraction is more pronounced in the subsurface 
layers than in the center, and is related to the initial differences in the distribution of the 
rolling texture components between the layers. Recrystallization in the center, which after 
initial coarsening still contains a large frequency of mobile HABs, proceeds more rapidly and 
with a higher nucleation density, resulting in a smaller recrystallized grain size than in the 
subsurface layers.  
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