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Abstract

There are two main subjects of this work: Kinematic and dynamic modeling and
analysis of roller chain drives. In the kinematic analysis we contribute first with a
complete treatment of the roller chain drive modeled as a four-bar mechanism. This
includes a general, exact and approximate analysis with a clear derivation of the
seating and release configurations, as well as the driven sprocket angular position,
velocity and discontinuous acceleration. The approximate analysis allows for simple
expressions describing the seating and release configurations and shows the influence
of main design parameters which is useful for predicting the characteristic loading
of the roller chain drive. As a completely novel contribution, a kinematic model
and analysis is presented which includes both spans and sprockets in a simple chain
drive system. A general procedure for determination of the total wrapping length
is presented, which also allows for exact sprocket center positions for a chain with a
given number of links. Results show that the total chain wrapping length varies
periodically with the tooth frequency. These results are of practical importance to
both the design, installation and operation of roller chain drives.
For the analysis of roller chain drive dynamics we present a novel model of a chain
drive that couples the vibrations of the chain spans and the driven sprocket. This
also includes contributions to the studies of axially moving materials, as the chain
is modeled as a string with a variable length supported by moving boundaries.
A stationary operating state is introduced for the dynamic model and employing
a perturbation method for the analysis of the approximate model results show a
multitude of internal and external resonance conditions, thereby identifying critical
operating conditions for real chain drives. Examples are presented of both decoupled
and coupled motion. Together, the kinematic and dynamic model and analytical
results provides a framework for numerical and experimental investigations of roller
chain drive motion and deepens the understanding of roller chain drive operation.
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Resumé

For denne afhandling er der to hovedtemaer: Kinematisk og dynamisk modellering
og analyse af kædetræk. Det første bidrag i den kinematiske analyse er et komplet
studie af et kædetræk modelleret som en fire-leds mekanisme. En generel, eksakt og
approksimativ analyse præsenteres med en klar udledning for de konfigurationer hvor
kæderullerne opn̊ar og mister kontakt med kædehjulene, samt det drevne kædehjuls
vinkel-position, hastighed og diskontinuerte acceleration. Med approksimativ analyse
opn̊as simple analytiske udtryk for konfigurationerne hvor kæderullerne opn̊ar og
mister kontakt med kædehjulene. Den kinematiske analyse demonstrerer indflydelsen
af de vigtigste design parametre og resultaterne kan anvendes til at bestemme den
karakteristiske belastning af kædetræk. Som et nyt og originalt bidrag præsenterers
en kinematisk model og analyse der inkluderer begge kædespan og kædehjul i et
kædetræk. For dette system gives en generel procedure til at bestemme en kædes
samlede omslyngede længde, hvilket giver mulighed for beregne den præcise placering
af kædehjulenes centrum for en kæde med et givent antal led. Analysen viser at
kædens omslyngede længde varierer periodisk med tandfrekvensen. Resultaterne
har betydning b̊ade for design, montering og drift af kædetræk.
I analysen af kædetræks dynamik præsenteres en ny model hvor vibrationer af
kædespan og det drevne kædehjulder kobles. Dette inkluderer ogs̊a et bidrag til stu-
dierne af aksialt bevægede legemer, da kæden modelleres som en streng med variabel
længde og bevægende understøtninger. For den dynamiske model introduceres en
stationær drift-tilstand og ved at benytte en perturbationsmetode i analysen af den
approksimative model opn̊as betingelser for intern og extern resonans. Resultaterne
illustreres med eksempler p̊a b̊ade koblede og isolerede svingninger. Tilsammen
danner den kinematiske og dynamiske model, analyse og resultater et fundament
for videre eksperimentelle og numeriske undersøgelser og bidrager til en dybere
forst̊aelse af kædetræks drift.
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1 Introduction

Motivated by mechanical failure of roller chain drives in low-speed marine propulsion
engines, this thesis aims at providing a better theoretical understanding of roller
chain drive characteristics. The engineering challenges of designing and operating
roller chain drives, to achieve an optimal performance, are significant. The present
study focuses on the subjects of kinematics and dynamics of roller chain drives.
Kinematic studies deal with the chain drive properties introduced by the geometry
of the drive, i.e. shaft center distance, chain pitch length, and number of teeth on
the sprockets. Dynamic studies deal with the properties derived mainly from mass,
sti↵ness and damping properties of the drive components, and the loading of the
roller chain drive. Since the work carried out in this thesis is of a general theoretical
character, it may also be of academic interest to related fields such as belt drive
dynamics, band saws etc.

In 2004 Sine L. Pedersen completed a ph.d. project on the multi-body simulation
and analysis of roller chain drive systems. In the engineering application of this
program, for large chain drives applied in low-speed ship propulsion engines, it
became apparent that interpreting the results were di�cult, and making sugges-
tions for design improvements equally challenging. Furthermore, it was di�cult
to design (numerical) experiments, which would produce the kind of vibratory
motion experienced in practical roller chain drives to be detrimental. Planning such
experiments requires a strong theoretical understanding of the dynamic phenomena,
and successful interpretation of the simulation and measurement results requires a
good understanding of the chain drive kinematics.
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Chapter 1. Introduction

Roller chain drive kinematics take into consideration that roller chains are made out
of a series of discrete connected links. In the kinematic analysis of chain drives, it is
traditionally assumed that there are no deformation of the chain drive components,
i.e. all chain and sprocket elements are rigid. Since roller chains are characterized
by having a high axial sti↵ness, compared to related drives such as belts, the
axial deformations are very small compared to the link length, and the kinematic
predictions of e.g. positions are practically useful. Furthermore, roller chains are
non-uniform, and the most characteristic feature is the uneven bending sti↵ness EI

as well as non-uniform axial sti↵ness EA and mass distributions ⇢A, schematized
as a function of the span length x in Figure 1.1. The discrete properties are di�cult
to handle analytically, but throughout the project these properties have been taken
into consideration, in order to ensure that the produced research would be directly
relevant to the field of roller roller chain drives.

As a consequence of the roller chain discrete properties, a chain wrapped around
sprockets form polygons rather than circles, as illustrated in Figure 1.2. The col-
lected e↵ects that chain discreteness introduces are known as polygonal action,
and generally include: A periodically varying span length, non-smooth changes
of span endpoint velocities leading to impulsive loading at the span endpoints,
and a non-smooth driven sprocket angular velocity, even when the driver sprocket
angular velocity is constant. This last e↵ect is also apparent in cardan-joints, but
in roller chain drives this variation is non-smooth. A thorough study of the chain
drive modeled as a four-bar mechanism is carried out in this study. As an original
contribution to the e↵ects of polygonal action, it is demonstrated in this work that
the total length of a chain wrapping around two sprockets generally varies, due to
the sprockets being e↵ectively eccentric. The study of roller chain drive kinematics
is not a very large, or currently active field; the latest contribution was published
in 1988.

Due to the e↵ects of polygonal action, roller chain drives are inherently prone to
vibration and noise, and especially the discontinuous e↵ects of polygonal action
makes the subject challenging. Despite this, roller chain drives are used in many
mechanical applications due to numerous reasons: Large power transmitting capa-
bilities, the possibility of obtaining a very high e�ciency (> 98%), the flexibility
in choosing shaft center distances, the successful application in harsh operating
environments, the ease of both installation, inspection and maintenance, as well
as the option of replacing worn chain drive components at a relatively low cost.
Together these properties make roller chain drives attractive in many applications.
There are currently no better alternatives to roller chain drives applied in low-speed
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Figure 1.1: Picture showing a chain from a marine diesel engine, and a sketch of
the non-uniform properties of roller chains. The bending sti↵ness EI of each link is
very large, but vanishing at the pin joints. Also the mass distribution ⇢A, and the
axial sti↵ness EA, are non-uniform along the chain length.
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Figure 1.2: Sketch of a roller chain consisting of discrete links connecting two
sprockets. A chain wrapped on a sprocket forms a polygon, and therefore the velocity
ratio between two sprockets vary during one tooth period. The span endpoints A and
B move in the plane as the sprockets rotate, and the chain is subject to impulsive
loading when meshing with the sprockets. As the sprockets rotate, and links enter
and leave the span, the span length �AB� varies. The e↵ects that the discreteness of
a chain introduces are referred to as polygonal action.
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Chapter 1. Introduction
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Figure 1.3: Sketch of uncoupled axially moving string traveling with veloc-
ity V (t) between boundaries with prescribed endpoint longitudinal displacements
u(0, t) and u(1, t). In this type of analysis there is no dynamic coupling to the
surrounding system. In the present study, the dynamic coupling between a driven
sprocket and two connecting chain spans will be treated analytically.

marine propulsion engines, and they are expected to be the best choice within the
foreseeable future.

In the limit, when the number of links is increased and the pitch length decreases,
the dynamics of a roller chain span can be studied by modeling the span as an axially
moving string. A decoupled axially moving string is illustrated in Figure 1.3. From
the considerations of polygonal action there are numerous excitation sources to
both longitudinal, and transverse vibration of a chain span. The most often studied
sources of longitudinal excitation of strings are either the varying transport velocity,
or excitation coming from the prescribed relative motion of the string endpoints.
In a chain drive, this corresponds to prescribing both the angular position of the
driver and the driven sprocket, and assuming those to be una↵ected by the dynamic
response of the chain span. In the study of decoupled axially moving strings, the
relative endpoint displacements of the string are prescribed through statements such
as: ”The relative longitudinal motion of the endpoints u(1, t) − u(0,1) is specified.
In serpentine belt drives, it is calculated from dynamic analysis of the discrete pulley
rotations induced by crankshaft excitations and dynamic accessory torques.” [6].
When statements like these are put forward, it is done without reference to how,
in this case, the discrete pulley rotations are calculated. To the designer of chain
drives this makes for a significant limitation, since the decoupling appear to be
di�cult to realize in both laboratory experiments, and practical applications. The
coupled dynamic motion may also introduce important phenomena of both practical
and academic interest.

A lot of research has been aimed towards the study of belt drives; supported and
motivated by the application in the automotive industry. The research on belt
drives also included analytical models which accounted for the coupling between
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1.1. Literature review

span and sprocket dynamics. However, these models were non-linear and compre-
hensive; including up to ten coupled partial and ordinary di↵erential equations,
and therefore di�cult to solve. When analyzed analytically, it was done by making
simplifications leading to complete decoupling. Otherwise, solutions were obtained
by direct numerical simulation.

This has motivated the formulation of a new mathematical model; undertaken
in this study, which include the dynamic coupling, but still allows for analytical
solutions. In this work a model of a chain drive is derived, which includes the
coupling between two chain spans transverse vibrations and the driven sprocket
angular vibration. The model is non-linear, but approximate analytical solutions
can be obtained, and demonstrate e.g. under which conditions the dynamics of a
chain can be treated as decoupled. Using the model, insight can also be gained into
the resonance phenomena that can occur. Approximate analytical solutions show
results of great practical relevance, and contribute significantly to the understanding
of roller chain drive dynamics.

1.1 Literature review

As indicated in the motivational and informal introduction above, there are several
research areas under the headline of roller chain drives. Naturally, the subjects
are overlapping, but for providing a better overview, these studies are categorized
according to their main focus: Kinematics, roller impact and noise, load distributions,
coupled sprocket and span dynamics, full system (multi-body) simulation models,
axially moving materials, and finally published reviews covering these di↵erent
topics. In the following, the literature on these subjects is grouped and reviewed.

Kinematic studies consider the chain drive components to be rigid, and examines
the resulting motion of the sprockets and chain span. Bartlett 1931 [7] was the
first to realize that a chain wrapping around a sprocket could be compared with
that of a non-slippable belt traveling over a prism, i.e. a sprocket could be modeled
as a polygon. He derived analytical expressions for the minimum and maximum
variation of velocity ratios, and showed that these occur for span lengths equal to
an integer number of pitch lengths, or an odd number of pitch lengths, respectively.
The concept of treating the kinematic motion of the chain drive to happen through
a series of four-bar mechanisms was introduced by Morrison 1952 [8]. An expression
for the shaft center distance of the sprockets giving the smallest velocity ratio
variation was derived. The four-bar mechanism is made out by points OABC in
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Chapter 1. Introduction

Figure 1.2, and the use of this modeling approach has been central to the studies of
chain drive kinematics. Radzimovsky 1955 [9] suggested a mechanism for eliminat-
ing the velocity pulsation occuring in drives with a small number of teeth. A full
monograph was on roller chain drives was written by Binder 1956 [10], in which
many subjects relevant for chain drive designers were presented, including; velocity
variations, standard tooth geometry, static loading, friction, and wear. Bouillon and
Tordion 1965 [11] presented both numerical and experimental investigations of the
periodic fluctuation of the driven sprocket angular velocity. They concluded that
for drives with average velocity ratios smaller than 1/4, the velocity variations are
insensitive to the shaft center distance. It was shown that the angular- velocity and
displacement errors decrease approximately as the square and cube, respectively,
of the number of teeth on the driver sprocket. Turnbull and Fawcett 1975 [12]
carried out an approximate analysis of the driven sprocket angular velocity using a
series expansion, and illustrated the influence of the number of expansion terms for
di↵erent tooth ratios and centre distances. Chen and Freudenstein 1988 [13] gave
a more general kinematic analysis, where the center distance could be arbitrary.
The discontinuous span length, driven sprocket angular- velocity and accelerations
were considered, and the configurations for a roller seating on the driver sprocket
were introduced. However, the presentation by [13] was not given in su�cient detail
to make it possible to derive the analytical solutions presented, and the work was
incomplete in that only the seating configuration was presented. This motivated
a more thorough, complete and full kinematic analysis of the roller chain drive
modeled as a four-bar mechanism, which was undertaken in the present study. A
common motivation mentioned in the above studies is that the kinematic properties
are relevant for the dynamic loading of the chain drive, although the dynamics were
not considered.

Impact studies concerns the forcing and response of roller and span, due to a
non-zero relative velocity between rollers and sprockets at the instant of meshing.
Binder and Covert 1948 [14] presented di↵erent expressions for the relative impact
velocities between a seating roller and a sprocket. The given formulas were derived
under the assumptions of; both sprockets having the same size, sprocket pitch equal
to chain pitch, constant sprocket angular velocity, and the chain span always being
parallel to the line of sprocket centers. The study also presented results of wear
and failure tests. Archibald 1946 [15] studied energy losses in chain drives due
to impact using energy considerations. A series of experimental and theoretical
studies on the uneven transmission by roller chain drives were carried out by Okoshi
and Uehara 1959 [16][17] (in Japanese). Results showed that deflecting the tight
span by a leaf-spring could smoothen the chain drive transmission. Using energy
considerations, Ryabov 1968 [18] discussed the e↵ective weight of the span to
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1.1. Literature review

included in the calculation of meshing impulse, and showed it to be equivalent
to the weight of 1.67 links. Fawcett and Nicol 1977 [19] carried out experimental
studies of the driven sprocket response to impact loading between rollers and
sprockets, and showed that the impulsive loading could be significantly reduced by
appropriate lubrication. Nicol and Fawcett 1977 [20] introduced a guiding device
and showed theoretical and experimental studies of how this device could reduce
the undesired e↵ects of impact from meshing. Conwell et al. 1992 [21] designed an
machine for measuring impact forces and link tension. Results showed an increased
impact intensity at higher sprocket speeds and increased axial tension of the chain
[22, 23]. Including the chain span transverse vibration in the study of impact
intensity was first done by Wang et al. 1992 [24]. They carried out theoretical
modeling of the meshing impulse, and by numerical simulation showed that through
a sprocket speed range, the transverse chain vibration may greatly a↵ect the impact
intensity. The study [24] was expanded by Liu et al. 1997 [25] to include also the
longitudinal chain vibration, and the coupling to the driven sprocket. Numerical
simulation of the linear model-equations subjected to impulse forcing showed that
the impact intensity varies greatly around system natural frequencies. It was also
shown that a model including dynamic coupling produced results in agreement
with experimental measurements of impact noise. Ryabov and Kryukov 1997 [26]
formulated a set of coupled linear equations for the discrete connected chain links,
and through a sequence of numerical simulations obtained graphs for the steady-
state impact intensity under varied system parameters. Zheng et al. 2001 [27]
presented an acoustical model relating the sound pressure from meshing with the
dynamic response of the rollers only, reporting that the rollers had experimentally
been observed to be the main source of noise. Using finite element modeling and
numerical simulation they produced results in agreement with existing experimental
measurements. Further experimental and finite-element investigations of noise in
motor-cycle chain drives were carried out by Zheng et al. 2002 [28]. These showed
that the generated noise is highest for rollers meshing with the smallest sprocket,
and that noise can be reduced significantly by adding damping-material to the
sprockets in the drive [29]. With a multi-body dynamics approach, Schiehlen and
Seifried 2004 [30] presented three approaches for modeling the impact dynamics.
Wang et al. 2013 [31] presented a study showing that a modified tooth profile could
reduce the meshing impact in chain drives. A common motivation for the above
studies has been noise reduction, and the reduction of impact intensity, in order to
extend the service time of a roller chain drive.

Load distribution concerns the engagement of a loaded chain wrapped on a sprocket,
with distribution referring to the distribution of sprocket tooth load, and distribution
of chain link tension. Binder 1956 [10] presented a the geometric progression load
distribution (GPLD) analysis to determine the tension in the roller chain links.
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Chapter 1. Introduction

This method is based on the following assumptions: Mechanical clearances are not
present, chain pitch is exactly equal to sprocket pitch, friction is neglected, the
pressure angle is constant, chain and sprocket are considered as rigid bodies, the
angular velocity of the sprocket is constant, the driving strand angle is una↵ected
by the driver position, and the line of sprocket tooth reaction is on the line of
the tooth pressure angle. The result is analytical expressions for the progressive
reduction of link tension from the tight to the slack span side. Marshek 1979 [32]
introduced a spring-model analysis which considered flexibility of the chain and
tooth, and by formulating a set of coupled equations for the link forces, with the
free span axial forces acting boundary values, and assuming the rollers to be bedded,
determined the link force distribution. Ryabov 1980 [33] studied the engagement of
worn chain with a sprocket, in order to estimate the maximun permissible wear of a
chain. In a later study, elastic deformation of the chain was also included [34]. Naji
and Marshek 1983 [35] studied the load distribution using GPLD, and compared
results obtained with a spring model. Results showed that for a large selection of
steel chain and sprocket combinations, the elastic properties do not have an a↵ect
on the load distribution. In a following experimental study, e↵ects of lubrication,
misalignment, sprocket speed and slack span load was investigated. Results were
compared to the analytical results obtained using the GPLD, and showed very good
agreement. Lubrication, minor misalignment and variations of sprocket speed did
not have a noticable e↵ect on load distribution [36]. To further investigate the e↵ects
of sprocket flexibility, Eldiwany and Marshek 1989 [37] conducted experimental
studies of load distributions of a steel chain wrapped on polymer sprockets. Naji
and Marshek 1989 [38] extended the GPLD method to include the e↵ect of the
pitch di↵erence between the sprocket teeth and roller chain, the frictional forces
between the rollers and the sprocket teeth, and the centrifugal forces on the chain
caused by rotation of the sprocket. Results showed that wear elongation of a chain
causes an increased load level on the sprocket teeth. Kim and Johnson 1992 [39]
modified the GPLD method to include a more accurate description of the tooth
profile, according to the ANSI standard. Their theoretical results compared very
well with existing experimental results [40]. Simulation studies of load distribution
including two spans and two sprockets were presented by Troedsson and Vedmar
1999 [41] and [42]. A common motivation to the above studies has been to develop
theoretical models of the load distribution, which compared well with experimental
results. The development of the GPLD model has been successful in this. With
good theoretical models, accurate predictions for the influence of wear and exact
sprocket tooth geometry can be applied when deriving recommendations for the
maximum allowable chain wear. Accurate theoretical load-distribution models can
also be utilized in the development of improved geometric designs of the sprocket
tooth.

8



1.1. Literature review

System dynamics concerns the response of sprockets and/or spans when the in-
teraction between these are taken into account. This does not necessarily imply
a dynamic coupling, but the analysis of chain or sprocket response under loading
which seem typical of roller chain drives. Mahalingam 1957 [43] showed that a
varying axial tension in a (decoupled) chain span coming from polygonal action
could be modeled as a string subjected to parametric excitation, and that varying
axial tension of a (decoupled) span acting as a linear spring connected to the driven
sprocket cause direct excitation of sprocket angular vibrations [44]. With simple
theoretical models Nicol and Fawcett 1977 [45] reviews the types of vibration present
in roller chain drives. Turnbull et al. 1977 [46] carried out experimental studies to in-
vestigate the dynamics of the driven sprocket under operating conditions dominated
by dynamic e↵ects, as opposed to the motion predicted by purely kinematic analysis.
Fawcett and Nicol 1980 [47] also carried out experimental studies, which included
measurements of the driven sprocket angular acceleration under constant operating
conditions, and made comparisons with simple theoretical models. Wang and Mote
1987 [48] presented a comprehensive model of a belt drive with the endpoints sub-
jected to impulsive displacements coming from the butt weld connecting the ends of
a continuos span. Stability was examined of a single decoupled span. In a later study
by Wang 1992 [49], the belt-drive model was re-introduced as a generic model for a
timing chain drive, and stability of a decoupled span was investigated. The model
consists of ten coupled non-linear ordinary- and partial di↵erential equations, for the
sprocket center positions, and angular displacements, as well as span longitudinal
and transverse displacements. Ryabov 1971 [50] presented (empirical) formulas for
the longitudinal wave propagation speed for di↵erent axial tensions. Ariaratnam
and Asokanthan 1987 [51] reworked the study of Mahalingam [43], and in both these
studies the argumentation is as follows: First, assume the span to be rigid, and
calculate the tooth periodic variation of the driven sprocket angular motion from
the kinematic analysis of the resulting the four-bar mechanism. Secondly, assume
the span to be flexible, and calculate the resulting tension variation of the span
from the (now prescribed) motion of the sprockets. While not completely obvious in
their presentation, this is the argumentation that demonstrates how a (decoupled)
chain span can be modeled as a string subjected to parametric excitation. The
contradiction between the first and second assumption stands out to this author as
significant, and it has motivated the development of more coherent model of the
coupled motion of the chain spans and the driven sprocket. Choi and Johnson 1993
[52] presented results of coupled span and sprocket motion obtained by numerical
simulation, and also carried out a study where a tensioner sprocket was included
[53]. Lodge and Burgess 2002 [54] studied the transmission e�ciency in roller chain
drives, and the selection of chain and sprocket size for minimizing power loss [55].
A common motivation to the above studies is to minimize undesired vibration of
the chain drive components coming from their dynamic interaction.
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Chapter 1. Introduction

Full system simulations concerns the formulation of models aimed at the numerical
simulation of the full coupled motion of roller chain drives components, where each
link is included as separate degrees of freedom, and the interaction between the
sprocket tooth and the rollers rely on a detailed modeling of the sprocket geometry.
Troedsson and Vedmar 2001 [56] formulated a dynamic model for the coupled
motion of a chain drive with two sprockets and two spans. Pedersen et al. 2004 [57]
developed a multi-body simulation model for the analysis of roller chain drives in
large marine diesel engines, and refined the modeling strategy for the roller-sprocket
contact and an updated sprocket tooth geometry [58].

Axially moving materials concerns the study of string-, beam- and belt like structures
traveling at a non-zero velocity between boundaries. This is a very large and active
field, with publications added on a weekly basis. Here are presented the main
references, which gives the best insight into the subject, in relation to the study of
chain span dynamics. Axially moving materials belong to the class of gyroscopic
systems, due to the presence of Coriolis forces. Thurman and Mote 1969 [59] used
Hamiltons principle to derive the non-linear equations of motion for an axially moving
string, and the influence of of transport velocity and non-linearity on the natural
frequencies were analyzed, along with examples of the spatial modal distributions
[60]. Meirovitch 1974 [61] analyzed the eigenvalue problem of gyroscopic systems,
and carried out a modal analysis of discrete gyroscopic systems [62]. Based on
these studies, Wickert and Mote 1990 [63] presented the exact modal solution for
continuos systems, as well as energy studies, and studies of the forced and free
response around super- and sub critical velocities [64, 65], respectively. The above
studies demonstrate that the characteristics of an axially moving string is velocity
dependent natural frequencies, the presence of a critical speed where the string axial
tension reduces to zero, and complex-valued eigenfunctions, which are utilized by
casting the system in a first order form. Mockensturm et al. 1996 [66] showed that
the complex eigenfunctions were a superior basis compared to the eigenfunctions for
stationary strings, when predicting parametric instability. Parker and Lin 2001 [6]
analyzed the stability boundaries and non-linear response of axially moving strings
subjected to multi-frequency parametric excitation. For experimental studies, the
analytical and experimental work on parametric instability in belt drives by Michon
et al. 2008 [67] and [68] could be of special interest to similar studies for roller chain
drives. A main di↵erence between chain and belt drive dynamics is that belt drives
wrapped on pulleys have di↵erent contact zones, where there is sliding or adhesion,
as opposed to chain drives, where there is no noticable relative motion between the
rollers and sprockets. The models are therefore not directly comparable, but the
studies of belt may continue to provide valuable input to the field of roller chain
drives.
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1.2. Contribution of this work

Reviews on the subjects related to the study of roller chain drives are presented here.
Mote 1972 [69] introduces axially moving material research as problems considering
the lateral response, vibration or stability of long slender members in which mass
is continuously transported. Examples of such systems are magnetic and paper
tapes, moving bands and belts, chain drives, moving strings, textile and fiberglass
fibers, bandsaws, pipes containing flowing fluids, hydroelectric power plant conduits,
oil lines, and fuel lines. Ulsoy et al. 1978 [70] reviews the principle developments
related to band saw vibration and stability research. Fawcett 1981 [71] reviews
papers relating to the general problem of axially moving materials, and papers
relating to belt- and chain drives. Wickert and Mote 1988 [72] reviews the literature
on the vibration and dynamic stability, and present fundamental modeling issues
and research conclusions, excluding pipes conveying fluids. Wang and Liu 1991
[73] reviews research on the noise and vibration of chain drive systems, including
noise source identification, load analysis, kinematic analysis, dynamic and vibration
analysis, and noise and vibration controls. Rahnejat 2000 [74] reviews research
on multi-body dynamics. Chen 2005 [75] considers research on the analysis and
control of transverse vibrations of axially moving strings in a comprehensive review
including 242 references. In another review, the latest progress on the nonlinear
dynamics for transverse motion of axially moving strings is considered by Chen
et al. [76]. Marynowski and Kapitaniak 2014 [77] reviews research on axially moving
continua, including string- and beam like systems, elastic and viscoelastic plates.

1.2 Contribution of this work

The original contributions of this work, in relation to the existing research, can
be outlined as follows: In [P1] is presented a formal and self contained analysis of
the roller chain drive modeled as a four-bar mechanism. The kinematic analysis
is general and o↵ers both exact and approximate solutions for the motion of all
four-bar members and the determination of both seating and release configurations.
Presented are also novel approximate results for the phase between the seating and
release events, as well as approximate analytical expressions for the driven sprocket
angular motion, taking the discontinuous characteristics into account, as opposed
to the existing approximate analysis [12], which was based on a Fourier expansion.
The early kinematic studies were limited to specific cases of span lengths and shaft
center distances, but the analysis carried out in this work is general. This work
supplements the existing general kinematic analysis, specifically [13], which was
incomplete, and not presented in a form that allowed for the use or reproduction of
the presented results. Furthermore, the influence of the pitch fraction, which is a
main design parameter, has been discussed, and shown to be less significant than
has been stated previously for chain drives where the sprockets have a moderate or
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Chapter 1. Introduction

high number of teeth.

As a completely novel contribution, the kinematic analysis is extended in [P2] to
include both spans in a chain drive with two sprockets with the connecting spans
tensioned to form straight lines. This type of analysis has not been undertaken
previously; in all the existing studies, only the tight span connecting two sprockets
has been considered. A method for calculating the total length of chain wrapping
around two sprockets is given, and results show that the wrapping length varies
during one tooth period, which is a novel contribution to the e↵ects of polygonal
action. The method allows for the exact calculation of sprocket center positions
for a given chain length, which is not trivial, due to sprockets e↵ectively forming
polygons.

As a contribution to the study of string dynamics, in [P2] is presented the analysis
of a string supported by moving boundaries, with endpoint displacements prescribed
from a non-constant position. This models how a chain span has a variable length,
and by assuming the length to be a first order vibration, it is shown that the e↵ect
of this is a second order e↵ect in the equation of motion and boundary conditions
for the axially moving string, which is an original contribution.

In [P2] is presented a novel contribution in both roller chain drive modeling, and
(approximate) analysis. The prime goal of this work is to analyze the coupled
dynamics of transverse span vibrations and driven sprocket angular vibrations.
Existing models of roller chain drive dynamics did either not include the dynamic
coupling at all [43, 51], or included the dynamic using models derived for belt drives
[49] which su↵ered from being to complex to handle analytically. The analysis [49]
did not take advantage of the kinematic coupling between the spans connected
across a sprocket, where there is no slipping and relative motion between the
sprockets and chain. This feature of roller chain drives introduced in this work
allowed for the formulation of the coupling of span and sprocket motions. The
perturbation analysis of the presented model identifies cases of internal and external
resonance, thereby providing new insight into critical operating conditions in real
chain drives. Example results show that compliance of the driven sprocket increases
the frequency range where a chain span subjected to parametric excitation has a
vibratory response, which is also a significant and novel result.

Finally, in this thesis, comparison is made between results of the kinematic analysis
and multi-body simulation results, which is also a novel contribution to the study
of chain drive kinematics.
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1.3. Structure of this thesis

1.3 Structure of this thesis

There are two accepted ways to write a PhD thesis at the Technical University of
Denmark. One accepted form is to present a self contained thesis in which the author
presents all the work done throughout the PhD-study. Another option is to publish
scientific papers during the PhD-study, and then summarize the contributions of
these papers in the thesis. The present thesis is of the second form, i.e. article
based and thus containing a summarizing part and an article part.

The summarizing part attempts to balance the mathematical and theoretical nature
of the publications, and at the cost of mathematical rigor, the emphasis is directed
towards several themes, intended to: Provide a thorough motivation for the work
carried out. Introduce the existing published research on the subject. Place the
published work in this context. Present the relevant background information on
real roller chain drives, and their applications in marine propulsion engines. Initiate
readers which are not experts in this field to the characteristics of roller drives.
Point out critical aspects of the research, which can motivate further studies. Give
an overview of the work presented in the article publications. Make an emphasis
of the engineering perspective, and application of the obtained results. Provide
recommendations for the direction of future research.

After a review on the existing literature presented in this chapter, the next chapters
introduce and summarize the kinematic and dynamic modeling and analysis of the
roller chain drive. The full details and stringent treatment of the kinematic and
dynamic contributions are given mainly in publications [P1, P2].
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2 Classic kinematic analysis

This chapter summarizes the kinematic analysis of a roller chain drive modeled
as a four-bar mechanism [P1]. The purpose of the presentation here is to provide
insight into the motion of the chain drive components, as this forms the basis for
interpretation of simulation and measurement results, and lays the foundation for
the analysis of the chain drive dynamics. Due to sprockets forming polygons, the
chain span and the driven sprocket is subjected to a characteristic loading which is
important to understand when analyzing the chain drive dynamics.

In this analysis, the exact kinematic motion of the chain span components is
determined, i.e. the position of the span endpoints as well as angular position,
velocity and acceleration of the driven sprocket during one tooth-period of the driver
sprocket. From these one can predict e.g. the positions of all the chain rollers in
the span, assuming dynamic e↵ects to be negligible. Kinematic analysis neglects
deformation and dynamics e↵ects, although these are of course are important, and
in real operating chain drives, not negligible. However, the results presented here
will still be useful for understanding measurement results obtained e.g. when the
chain drive is subjected to slow turning of the driver, which is relevant for verifying
both the numerical modeling of chain drive geometry and constraints, as well as
experimental results. In both experimental and numerical simulation, a natural first
step is to monitor the sensor output at the simplest possible operating conditions,
which is the quasi-static motion of the drive operating at low angular velocities, for
which results should be comparable with the kinematic predictions.

Furthermore, the kinematic analysis is intended to help the designer make the
optimal choices of the chain drive parameters relating directly to the kinematics:
Shaft center distance, sprocket radii, and number of teeth on the sprockets. As can
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be expected, the e↵ects of polygonal action are minimized by choosing sprockets
which have short pitch lengths, and sprockets with a large radii, and operating
at low angular velocities, as this ensures a smoother operation of the chain drive.
In praxis, these choices are limited for the designer by concerns such as limited
space for the drive, sprocket torque transmitting capabilities, specific gear ratios,
shaft center requirements and torque transmitting capabilities. Thus, the kinematic
analysis may aid the designer to make optimal choices under the given limiting
circumstances.

This chapter is titled classic kinematic analysis, and this refers to the analysis
considering only the tight span connecting two spockets, with the drive modeled
using the equivalent four-bar mechanism. If the chain drive consists of only two
sprockets there will also be a slack chain span connecting the two sprockets opposite
of the tight span, but this is traditionally not considered in this type of analysis. In
case there are more than two sprockets in the drive, there will be not be a slack span
opposite to the tight span, and the analysis covers the transfer of torque between
two neighboring sprockets connected to rotate in the same direction in a larger
chain drive system.

In the following, approximate results for the motion of the driven sprocket are also
presented. Simple approximate expressions for the seating and release configurations
are given, and these are used for obtaining the first analytical expression for the
phase between rollers seating and releasing. The exact and approximate results are
compared and shown to be in very good agreement for practical chain drives. These
approximate results ease the calculation of the motion of the driven sprocket, and
may aid designers to quickly evaluate designs and estimate chain drive loads. The
obtained results include the discontinuous properties of the driven sprocket motion.

In Figure 2.1 is shown the typical design for roller chains applied in marine diesel
engines. The chain element in contact with the sprocket is the chain roller. Friction
occurs due to relative motion among the chain elements, which is necessary for
the continued motion of the drive. Therefore, lubrication is important in order to
ensure a high e�ciency and minimize wear between the pin and bushings, which
causes chain elongation during the coarse of operation. The ANSI standard roller
chain sprocket geometry is shown in Figure 2.2. The curves at the bottom of the
tooth form is called the seating curve, while the curves next to the seating curve
are called the working curves. New chains have an over length error, and the over
length error increases in the course of operation, due to wear between the pin and
the bushing.
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Figure 2.1: Roller chain components, Tsubaki chain (figure from [58]).

Figure 2.2: ANSI standard sprocket geometry (figure from [39]).
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2.1 Exact kinematic analysis

In the kinematic analysis of the roller chain drive modeled as a four-bar mechanism,
friction, mass, elasticity, tolerances, clearances and manufacturing inaccuracies of
the drive components are ignored. It is assumed that the span is tensioned to form
a straight line, and chain rollers are positioned exactly at the center of the seating
curves. Results therefore describe the motion of ideal chain drives operating at
non-resonant conditions and very low speeds.

Figure 2.3 shows sketch of a chain span meshing with a sprocket. Rollers are shown
as small circles, thereby marking the chain as a connection of rigid links. The chain
moves from left to right and the roller S

N

will be removed from the free span as
the sprocket rotates clockwise around point C. Shown in the sketch is the exact
moment where roller B

1

gets in contact with the sprocket and thereby define the
new endpoint for the span.

Several geometric properties are defined from Figure 2.3. The pitch, p, is the
distance between two chain rollers and also the length of the sides of the pitch
polygon, witch is formed by connecting the centers of the sprocket seating curves.
Half the angle between two seating curve centers is referred to as the pitch angle
↵. The pitch polygon has inscribed circle radius r and the circle drawn out by the
centers of the seating curves on the sprockets is referred to as the pitch circle and
has radius R. By formula, these variables are given by, respectively,

↵ = ⇡
m
, r = p

2 tan↵
, R = p

2 sin↵
, (2.1)

where m is the number of teeth on the sprocket.

It is seen from Fig. 2.3 that the length and endpoint positions of the free span
varies discontinuously as the sprocket rotate clockwise around C. Rotation of the
sprocket causes a vertical movement of the span endpoint between values r and
R, and a horizontal movement between positions B

1

and B
2

. The angle between
the chain span S

N

B
1

and the line CB
1

varies during rotation of the sprocket, and
therefore a constant driving torque will not be transmitted evenly to the chain.
Vectors u

1

and u
2

indicate the sprocket velocities at rollers B
1

and B
2

, respectively.
These velocities di↵er in direction and this cause an impact between the roller B

1

and the sprocket. Collectively, these e↵ects are referred to as polygonal action, their
magnitude decrease as the number of sprocket teeth increase, but remains finite
and, a characteristic for roller chain drives.

Figure 2.4 shows the kinematic model in the coordinate system used throughout
the analysis. The driving sprocket constraining the motion is centered at C and
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Figure 2.3: Sprocket meshing with chain

the driven sprocket at O. Subscripts c and o are used to refer to those sprockets,
e.g. ↵

o

and R
c

. Both sprockets are drawn as pitch polygons, connected by a line
A

1

B
1

representing the tight chain span.

When the chain drive consists of only two sprockets there will be a slack chain
span connecting the two sprockets opposite of the tight span, and this will not be
considered in the present analysis. In case there are more than two sprockets there
will be no slack span between sprockets O and C and the analysis presented here
covers the transfer of torque between two neighboring sprockets in a larger chain
drive system.

The origin of the fixed Cartesian XY -coordinate system is coincident with the
center O of the driven sprocket. It is orientated such that the X-axis is parallel
with the tangent T

o

T
c

common to the two inscribed circles, so that the coordinates(x
c

, y
c

) of C is:

x
c

= �T
o

T
c

� = (N + 1 + f)p, f ∈ [0, 1[, N ∈ N, y
c

= r
o

− r
c

, (2.2)

thereby defining the integer number of pitches N plus a fraction of pitch lengths f .
For a wide range of typical chain drives lines OA

1

and CB
1

, make small variations
around the vertical direction and the slope of the span make small variations around
the horizontal direction, while OC remain fixed. The smallness in variations makes
the kinematic model suitable for approximate analysis.

When the roller chain drive is in operation, chain links will recurrently enter and
leave the chain span and consequently the span length varies discontinuously with
sprocket angular rotation, c.f. Fig. 2.4. The driving sprocket constrain the motion,
and as it rotates the angle 2↵

c

in clockwise direction, one tooth period passes and
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Figure 2.4: Chain drive kinematically modeled as a four-bar mechanism

two events occurs: Roller A
1

loses contact with the driven sprocket and is released
into the free span, thereby increasing the span length by one pitch. Similarly, roller
S
N

gets in contact with the driving sprocket, thereby decreasing the length of the
span by one pitch. In the general case where f ≠ 0 the span length �A

1

B
1

� can be
shown to vary between the two lengths given by

�A
1

B
1

� = (N + j)p, j = 1,2, for f ≠ 0. (2.3)

Exactly how the length varies in time depends on the driver position, and requires
the analysis of the four-bar mechanism OABC in Figure 2.4. The vectors in the four-
bar mechanism in Figure 2.4 are written in polar form as r

n

= r
n

ei✓n , n = 1,2,3,4,
where r

n

is the length of the vector, ✓
n

the orientation measured positive counter
clockwise from the X-axis, and the real and imaginary parts of the vector are
parallel to the X- and Y -axis, respectively. The equations governing the position,
velocity and acceleration of the four-bar mechanism members are

r
2

+ r
3

= r
1

+ r
4

, (2.4)

i!
2

r
2

+ i!
3

r
3

− i!
4

r
4

= 0 (2.5)

(i↵
2

− !2

2

)r
2

+ (i↵
3

− !2

3

)r
3

− (i↵
4

− !2

4

)r
4

= 0. (2.6)

where !
n

= d✓
n

�dt, ↵
n

= d!
n

�dt, n = 2,3,4, and
r
1

=�x2

c

+ y2
c

, r
2

= R
o

, r
3

= L + hp, r
4

= R
c

, L ≡ (N + 1)p. (2.7)

The span length r
3

= �A
1

B
1

� is introduced here as L, and a step function h, for which
the definition requires the determination of the seating and release configurations.

20



2.1. Exact kinematic analysis

2.1.1 Position analysis

The configuration of the four-bar mechanism for which a roller is just seated on the
driver sprocket is shown in Figure 2.5. Variables related to the seating and release
of a roller are subscripted s and r, respectively. The two solutions for ✓

4s

can be

r

r

r
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Figure 2.5: Equivalent four-bar mechanism at the instant where a roller seats on
the driver sprocket C.

shown to be

✓
4s

= 2arctan(⌧
1,2

), ✓
3s

= ✓
4s

− �, � = ⇡�2 + ↵
c

(2.8)

✓
2s

= arctan � r1 sin ✓1 + r4 sin ✓4s − r3 sin ✓3s
r
1

cos ✓
1

+ r
4

cos ✓
4s

− r
3

cos ✓
3s

�. (2.9)

where

⌧
1,2

= −Bs

±�B2

s

−C2

s

+A2

s

C
s

−A
s

. (2.10)

and
A

s

= 2r
1

r
4

cos ✓
1

− 2r
1

r
3

(cos ✓
1

cos� − sin ✓
1

sin�),
B

s

= 2r
1

r
4

sin ✓
1

− 2r
1

r
3

(cos ✓
1

sin� + sin ✓
1

cos�),
C

s

= r2
1

+ r2
4

+ r2
3

− r2
2

− 2r
4

r
3

cos�.

(2.11)

where all lengths r
n

are given by (2.7) with h = 0. There are two solutions sets,
corresponding to the two values of ⌧ in (2.10). These correspond to configurations
where the sprockets are connected by the span to rotate either in the same or opposite
directions. The two solutions for ✓

2s

are of opposite sign, and the solution-set where
✓
2s

> 0 is the one for which both sprockets rotate in the same direction.
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The configuration for which a roller is released from the driven sprocket can be
determined following an approach similar to the determination of the seating
configration [P1]. When the seating and release configurations are determined, the
function h varies according to

h = h(✓
4

) = � 0 for ✓
4s

≥ ✓
4

≥ ✓
4r

1 for ✓
4r

≥ ✓
4

≥ ✓
4s

+ 2↵
c

(2.12)

Note that the angle ✓
4

decrease, as the driver rotates in clockwise direction. With
h determined, the span length varies according to r

3

= L + hp, cf. (2.7). The angles
✓
4s

and ✓
4r

are cumbersome to determine exactly, but simple and rather accurate
approximations are determined in the approximate analysis.

Determining the driven sprocket angular position ✓
2

and the span angle ✓
3

as a
function of ✓

4

follows steps similar to the ones carried out for the seating and release
configurations, i.e. factorization of coe�cients A,B and C from (2.4), and the
solution for ✓

2

given by arctan(⌧
1,2

), where ⌧
1,2

are polynomial roots. The result is
the input-output relation ✓

4

= f(✓
2

), i.e. the driven sprocket angular position as a
function of the driver sprocket angular position [P1].

The kinematic motion of the chain drive is tooth-periodic, i.e. the position of the
four-bar members repeat when the driver angle advances by 2↵

c

, the angle between
two consecutive teeth. During one period a roller will have been released into, and
another one removed, from the span.

2.1.2 Angular velocity and acceleration

The angular velocity of the driven sprocket !
2

generally varies with time, even if
the driver sprocket rotates at constant angular velocity !

4

. From (2.5) one finds

!
2

= !
4

r
4

r
2

sin(✓
4

− ✓
3

)
sin(✓

2

− ✓
3

) . (2.13)

Note here, that the driver angular velocity may vary, i.e. !
4

= !
4

(t). The angular
acceleration ↵

2

of the driven sprocket depends both on the driver sprocket angular
acceleration ↵

4

and the sprocket angular velocities !
2

and !
4

, and from (2.6) one
finds

↵
2

= ↵
4

!
2

!
4

+ !2

4

r
4

cos(✓
4

− ✓
3

) − !2

2

r
2

cos(✓
2

− ✓
3

) − !2

3

r
3

r
2

sin(✓
2

− ✓
3

) , (2.14)

With the above analysis, the exact angular motion of the driven sprocket has been
determined as a function of the driver angular motion. The exact seating and release
configurations have been determined, and the span length variation is thereby given.
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2.2 Approximate analysis

Presented here are approximate formulas for seating and release configurations,
as well as angular position, velocity and acceleration of the driven sprocket. In
the analysis above, exact solutions were obtained from coupled nonlinear algebraic
equations, e.g. (2.4) split into real and imaginary parts, with ✓

n

, n = 2,3,4 being
dependent variables of the resulting trigonometric functions. To obtain simple
approximate solutions, which are also accurate, the trigonometric functions are
expressed using carefully chosen Taylor expansions, e.g. the seating angle ✓

4s

is
obtained through a Taylor expansion around ⇡�2 + ↵

c

.

All parameters are nondimensionalized to reduce the number of variables and
make the order of magnitude of the various terms easily comparable. All lengths
are nondimensionalized by L, and nondimensional parameters are identified by
over-bars,

R̄
c

= R
c

L
, R̄

o

= R
o

L
, r̄

c

= r
c

L
, r̄

o

= r
o

L
, p̄ = p

L
, (2.15)

from which it follows that x̄
c

= 1 + fp̄ and ȳ
c

= r̄
o

− r̄
c

.

2.2.1 Seating and release configurations

The algebra required to obtain the approximations is comprehensive, and only the
results needs to be summarized here. For the seating configuration, the approximate
solution for the angular positions of the four-bar members are approximately

✓
4s

≈ ⇡
2
+ ↵

c

+ p̄↵
o

f(f − 1), (2.16)

✓
3s

≈ p̄↵
o

f(f − 1), (2.17)

✓
2s

≈ ⇡�2 + ↵
o

(1 − 2f). (2.18)

Similarly for the release configurations,

✓
2r

≈ ⇡�2 − ↵
o

− p̄↵
c

f(f − 1), (2.19)

✓
3r

≈ −p̄↵
c

f(f − 1), (2.20)

✓
4r

≈ ⇡�2 − ↵
c

(1 − 2f), (2.21)

For real chain drives both the non-dimensional pitch length p̄ and the pitch angle ↵
o

will be small. Therefore the terms in (2.16)-(2.21) containing products p̄↵
o

and p̄↵
c

will be small corrections to the remaining terms. Impact has not been the object
of investigation of this work, but in (2.16) it is shown that the seating position
✓
4s

is close to point z
3

in Fig. 2.4, as is often assumed in studies of impact and
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Chapter 2. Classic kinematic analysis

noise [52, 27]. In Fig. 2.3 the relative velocity between a seating roller and the
driver sprocket u

1

− u
2

, is therefore practically independent of f . Assuming the
span is a straight line, the main design factor a↵ecting the relative velocity, besides
the angular velocity of the driver, is therefore the number of teeth on the driver
sprocket (the pitch angle), and the sprocket radius. Comparison between the exact
and approximate seating and release configurations show a very good agreement
[P1].

The excitation of the chain drive coming from the polygonal e↵ect depends on
the phase between the seating and release of the rollers. There has previously not
existed analytical expressions for the phase, but with the approximate expression it
is possible to introduce this:

 = ✓
4s

− ✓
4r

≈ 2↵
c

(1 − f), (2.22)

where the approximation have been obtained using Eq. (2.21) and Eq. (2.16), in
which the small term p̄↵

o

have been assumed vanishing. This result show how there
is a very simple relation between the pitch fraction f and the phase between seating
and release of the rollers.

2.2.2 Driven sprocket angular motion

For the driven sprocket, approximate analytical expressions for angular position,
velocity and acceleration have been obtained. Needless to say, to evaluate the
driven sprocket motion, the driver sprocket motion must be given, i.e. ✓

4

, !
4

and
↵
3

are known functions of time. The approximate angular position, velocity and
acceleration of the driven sprocket is then, respectively:

✓
2

≈ ⇡
2
+ p̄(f − h)(1 + 1

2

p̄(f + h)) − R̄
c

(1 + fp̄)(✓
4

− ⇡�2)
R̄

o

R̄
c

(✓
4

− ⇡�2) − R̄
o

(1 + fp̄) , (2.23)

!
2

≈ !
4

R̄
c

(1 − (✓
4

− ⇡�2)2)
R̄

o

(1 − (✓
2

− ⇡�2)2) , (2.24)

↵
2

≈ ↵
4

!
2

!
4

+ !2

2

(✓
2

− ⇡�2) − !2

4

R
c

R
o

(✓
4

− ⇡�2). (2.25)

The seating and release event are taken into account in the expression for ✓
2

by
the discontinuous jump of the function h, which varies discontinuously with ✓

4

according to Eq. (2.12). Consequently, the span endpoints position shifts and the
angles ✓

2

and ✓
4

jumps discontinuously making the driven sprocket angular velocity
and acceleration, non-smooth and discontinuous, respectively.
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2.3 Example results

Three di↵erent chain drive configurations are used to illustrate the above analytical
results, with properties as listed in Table 3.1. For each of the configurations, the

n
c

n
o

N
Coarse 6 9 4
Medium 12 18 11
Fine 21 63 34

Table 2.1: Configurations

pitch fraction is chosen to be f = {0, 0.5, 0.75}. Minimum and maximum variation
of the driven sprocket velocity occurs for f = 0 and f = 0.5, and f = 0.75 have been
chosen to illustrate the general case. A constant angular velocity of !

4

= 100 rpm≈ 10 rad/s for the driver has been used when calculating the driven sprocket angular
velocity and acceleration.

Figure 2.6 shows the exact and approximate results for the coarse, medium and
fine configurations in columns C, M and F, respectively. The horizontal axis shows
the angular position of the driver normalized so that [0, 1] correspond to one tooth
period, starting when a roller seats on the driver.

Angular position of the driven sprocket is shown in Figure 2.6(a-b-c). There is seen
to be very good agreement between exact and approximate results, especially for
the medium and fine configurations, which are of most practical importance. The
phase  between rollers being seated (▽) and released (△) is shown with a double
arrow in Figure 2.6(a). Since the horizontal axis shows one tooth period, the phase
between seating and release is simply  = 1 − f , as shown in (2.22).

The velocity ratio between the driven and driver sprocket varies during one tooth
period and is shown in Fig. 2.6(d-e-f). All three graphs shows excellent quantitative
and qualitative agreement between exact and approximate results. For the coarse,
medium and fine configurations the variation of the velocity ratio is seen to be
on the first, second and third decimal point, respectively. This demonstrates how
the magnitude of the velocity variation decreases rapidly as the number of teeth is
increased.

In Fig. 2.6(d-e) it is seen that the velocity ratio variation decreases and smoothens
when f = 0, compared to f = 0.5. However, as the tooth ratio n

c

�n
o

decreases
(smaller than about 1/3), the e↵ect of changing f becomes less significant. This
can be seen in Fig. 2.6(f), where the curves for f = 0 and f = 0.5 are practically
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Figure 2.6: Exact (–) and approximate (--) angular position, velocity and acceleration
(first, second and third row, respectively) of the driven sprocket for one tooth period,
for the coarse, medium and fine chain drive configuration (first, second and third
column, respectively). A roller seating on the driver sprocket is indicated by ▽, and
the release of a roller from the driven sprocket is indicated by △.
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identical. Lastly, the velocity ratio will only be constant in the special case n
c

= n
o

and f = 0, as can be seen from Eq. (2.24).

The driven sprocket angular acceleration in Figures 2.6(g-h-i) shows good quanti-
tative and qualitative agreement between exact and approximate results. In the
results presented here the driver rotates with constant angular velocity, and despite
that, two sudden jumps in angular acceleration occurs when f ≠ 0, whereas for
f = 0 the acceleration only jumps at the end of the interval. The magnitude of a
discontinuous jump occurring when a roller is seated or released decrease rapidly as
the number of teeth is increased on the driver- and driven sprocket, respectively.
Thus, the discontinuous jumps are most prominent for sprockets with few teeth.

For a driver rotating with constant angular velocity the time between seating and
release will be given by  = (1 − f)T , where T is the tooth period. Seating and
release will only happen simultaneously if f = 0. Only in the special case where
f = 0 and n

c

= n
o

will the angular velocity and acceleration of the driven- and driver
sprockets be equal.

In studies of string and roller chain drive dynamics it is often assumed that polygonal
action leads to a parametric excitation described by time harmonic variation of span
tension or velocity. However, the driven sprocket acceleration in Fig. 2.6(g-h-i) is
shown to be non-smooth and this could be taken into consideration when modeling
chain drive loads.

The error has been calculated between the approximate and exact results for the
driven sprocket angular position, velocity and acceleration as the normalized root
mean square deviation. Approximation errors for the driven sprocket angular
position ✓̃

2

are less than 0.5 %, and decreasing when the chain span becomes longer
and the number of teeth on the sprockets increase, as expected. Similarly for the
approximation of the driven sprocket angular velocity !̃

2

, where errors are less than
0.1 %. The approximation errors for the driven sprocket angular acceleration ↵̃

2

are less than 10 % for n,N > 12 and reduce to a level of about 5 % [P1].

2.4 Comparison with multi-body simulation

To give another illustration of the motion of the chain span, the exact kinematic
predictions of roller span motion is shown together with the results of multi-body
simulation of a simple roller chain drive. The multi-body dynamics simulations
are carried out using the program described in [57, 58]. In the multi-body model
the mass of the chain is assumed to be lumped at the roller locations, and springs
and dampers with constant sti↵ness and damping coe�cients model the chain links.
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Chapter 2. Classic kinematic analysis

Clearances between pin and bushing are neglected as well as the rotational inertia
of the rollers about their centre of gravity. Tooth geometry in the program used
to produce the results presented here is Type II per ASA B29.1-1950. Since the
purpose is merely illustration, details of all the program input parameters are not
presented here, but given in Appendix A.1 as the program input file, which allows
for the full reproduction of the presented results with the program SIMCH.

The simulation is carried out with a constant driver speed of 10 rpm for the
configuration M in Table 3.1 with a chain consisting of 40 links, where f = 0.43 is
chosen to achieve a positive pretension of both spans. In Figure 2.7 is shown the
result of the kinematic analysis together with the results of multi-body simulation.
The figure shows the curves traced by the rollers of the tight span connecting
two sprockets and bears resemblance to a phase plane, i.e. the results obtained
by multi-body simulation shows the trace of the roller center coordinates as they
move in time, and similarly for the trace of the roller centers as predicted by the
kinematic analysis, where the span moves as a straight line connecting the two
rotating sprockets.

Knowing that the kinematic analysis predicts the roller trace of the span moves as
a straight line, the simulation results can be interpreted as a superposition of rigid
motion of a string with moving endpoints, with an overlay of harmonic vibrations of
the span at the first mode. In this way, the kinematic analysis provides a valuable
tool for interpreting simulation results. Furthermore, the kinematic analysis helps
to illustrate what type of results can be expected in the laboratory if e.g. an
accelerometer were to be mounted on a chain link to follow the path of the chain;
in this case the accelerometer will output measurements showing a contribution at
the tooth frequency which is not due to dynamic span vibration, but the kinematic
motion of the chain. Also, a motion sensor mounted to measure the transverse
motion of the chain span at e.g. the span midpoint will measure a clear contribution
at the tooth frequency, not due to span vibration, but due to the kinematic motion
of the span coming from the e↵ects of polygonal action.

2.5 Further remarks

The kinematic analysis of the roller chain drive modeled as a four-bar mechanism
has been thoroughly investigated. This is meant to aid the interpretation of results
of simulation and experimental measurements, and provide an understanding of the
characteristic loading of the chain drive components and the influence of the main
design parameters. Attention has been directed at deriving kinematic predictions of
the driven sprocket angular motion, and it was originally the intention to compare
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Figure 2.7: Shown are the curves traced out by the chain roller centers at they move
in time when the driver sprocket rotates. The results of multi-body simulation and
the kinematic predictions based on the present analysis are indicated in the figure.
Broken lines are drawn from the sprocket centers to the roller constituting the span
endpoint at the instant where a roller seats on the driver sprocket.

these predictions with the results of multi-body simulation. However, when doing
so it becomes apparent that the response of the driven sprocket is sensitive to
the parameters relating to the dynamics of the sprocket, i.e. inertia, rotational
damping, flexibility coming from the connected chain spans, and loading of the
driven sprocket. Therefore, the direct similarity to the kinematic predictions is
unlikely in the general case, and has therefore not been pursued.
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3 Closed system kinematics

It is common to the published kinematic studies that the analysis only considers
the tight span transferring the torque between two sprockets (rotating in the same
direction). In this chapter, a kinematic analysis is introduced which attempts to
also include the slack span. There are several motivations for this: First, there
exists no exact analytical predictions of how the shaft center distance can be chosen
to achieve a specific pretension of the chain, let alone the shaft center distance
that results in tight spans for a given chain length. Second, the development of
kinematic analysis to consider more than just one span may prove useful in the
design of real chain drives, which often includes drivers with the chain transmitting
torque to more than one sprocket. Third, the analysis may reveal new phenomena
related to the e↵ects of polygonal action, which are both of practical and academic
interest.

Results of the analysis [P2] demonstrates that the total wrapping length of the
chain varies periodically with the tooth frequency. This leads to a prediction of a
tooth-periodic variation of the axial tension in the chain spans. It also demonstrates
that a real chain drive must include compliant components for a tensioned chain to
wrap tightly around rotating sprockets, as the sprockets are e↵ectively eccentric.
The fact that the wrapping length varies with the tooth frequency in e↵ect renders
this analysis approximate. This is due to an assumption made in the analysis:
Only the slack span can deform. In a real chain drive the deformation would be
distributed to all the links of the chain. However, it is not readily apparant how to
perform an analysis which takes this into account, and this is left for future work.

The kinematic analysis presented is for two sprockets with arbitrary number of teeth
and center distance, where the sprockets are modeled as polygons, and the chain
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Chapter 3. Closed system kinematics

spans are pretensioned to form straight lines. The method allows for determination
of the shaft center distance for which a chain with a given number of links wraps
tightly around two sprockets. Results are exact when the total wrapping length
equals an integer number of chain links, since in this case, the chain is not deformed.
It is of practical relevance because real chains have a high axial sti↵ness, and the
axial span tension is therefore sensitive to the sprocket center positions. The e↵ect of
a variable wrapping length has been observed for real chains, but has not previously
been treated theoretically.

3.1 Wrap length determination

Here is presented an outline of the analysis. The approach relies on modeling
the chain drive as a four-bar mechanism: By letting the upper span and the two
sprockets move as constrained by the four-bar mechanism, the lower span length is
”measured” as the distance between the seating curve centers which constitutes the
lower span endpoints at the driver and driven sprocket. These lower span endpoint
positions are determined by considering which of the sprocket seating curves are
within the angular position intervals of the seating and release configurations. These
intervals are

✓
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∈ [✓
as

− 2↵
c

, ✓
as

], (3.1)

�
a

∈ [�
ar

, �
ar

+ 2↵
o

], (3.2)

✓
b

∈ [✓′
br

+ ⇡ + �, ✓′
br

+ ⇡ + � + 2↵
c

], (3.3)

�
b

∈ [�′
bs

+ ⇡ + � − 2↵
o

, �′
bs

+ ⇡ + �], (3.4)

where the angular position of the sprockets to the rollers constituting the current
span endpoint for the tight span a are given by ✓

a

and �
a

, for the the driver and
driven sprockets, respectively. Seating and release angles ✓

as

,�
ar

for the upper
span a are determined by analysis of the four-bar mechanism OABC in the X,Y

coordinate system shown in Figure 3.1. Similarly, for the lower span for the lower
span b the angular positions of the sprockets to the rollers constituting the current
span endpoint of the span b are given by ✓′

b

,�′
b

, which are determined in the X ′, Y ′
coordinate system by analysis of the four-bar mechanism CDEO. The angles 2↵

c

and 2↵
o

is the angle between two consecutive teeth on the driver and driven sprocket,
respectively, and the angle between the two coordinate systems is ⇡ + �, where � is
given by

� = 2arccos �x
c

��OC ��. (3.5)

Subscripts o, c and a, b are used to relate variables specific to sprockets O,C and
spans a, b respectively, e.g. ↵

o

and ✓
b

. It is convenient to consider one period of the
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Figure 3.1: Kinematic model of a chain drive consisting of two sprockets connected
by tight spans a and b of instantaneous length l

a

and l

b

, respectively. The driver
sprocket C rotates counter-clockwise.

angular motion to start from ✓
as

, the configuration where a roller from the span a

seats on the driver sprocket. As demonstrated in chapter 2 the upper span length
varies according to

l
a

= (N + 1 + h)p, h = � 0 for ✓
as

≥ ✓
a

≥ ✓
ar

,

1 for ✓
ar

≥ ✓
a

≥ ✓
as

+ 2↵
c

.
(3.6)

Note that ✓ and � decrease as the sprockets rotates in clockwise direction. Expressing
the angels to span b in terms of the angles to span a and integer increments of 2↵
gives

✓
b

= ✓
a

+ 2↵
c

n̂
c

, (3.7)

�
b

= �
a

+ 2↵
o

ň
o

− 2h↵
o

, (3.8)

where the function h ensures that �
b

decrease continuously, as �
a

jumps discon-
tinuously when a roller is released from the driven sprocket at �

ar

. In (3.7)-(3.8)
the total number of sprocket seating curves has been split into being either free or
occupied by a chain roller, i.e.

n = ň + n̂, ň, n̂ ∈ N, (3.9)

where the number of seating curves with a roller seated is ň and the number of
seating curves with no roller seated is n̂. Substituting (3.7) into (3.3) gives the
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number of free seating curves on the driver sprocket:

✓′
br

− ✓
a

+ ⇡ + �
2↵

c

≤ n̂
c

≤ ✓′br − ✓a + ⇡ + �
2↵

c

+ 1. (3.10)

Similarly, by substituting (3.8) into (3.4) the number of rollers seated on the driven
sprocket can be determined from

�′
bs

− �
a

+ ⇡ + �
2↵

c

− 1 + h ≤ ň
o

≤ �′bs − �a + ⇡ + �
2↵

c

+ h. (3.11)

With n̂
c

determined from (3.10), the contact angle to the lower span at the driver
sprocket can be determined from (3.7). The contact angle to the lower span at the
driven sprocket can be determined from (3.8) with ň

o

determined from (3.11) and
h given in (3.6). The total wrapping length of the chain is then

L = l
a

+ l
b

+ (ň
c

+ ň
o

)p, (3.12)

with l
a

given by (3.6), ň
c

by (3.9) and the lower span length calculated from
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The total length L of the chain wrapping around both sprockets was determined by
assuming that only span b could deform. To improve the quantitative estimate of
the wrapping length variation, the deformation of the other chain drive components
could be included, i.e. the deformation of the both spans, and the link-deformation
of chains wrapped on sprockets [35, 38, 39]. The above analysis serves as an initial
investigation of this e↵ect of polygonal action, which has not been treated previously.
However, the kinematic configuration of all the chain drive components determined
when the wrapping length equals an integer number of chain pitches is exact. It is
also useful for initializing e.g. multi-body simulations of roller chain drives.

One drawback of the above analysis, which may provide an indication of a more
elegant approach, is that the analysis does not make any advantages of symmetry,
which in fact is not present when the two four-bar mechanisms OABC and CDEO

are not analyzed in the same coordinate system. The analysis of the CDEO

four-bar mechanism is made in the X ′, Y ′ coordinate system, and results are then
”transferred” to the X,Y coordinate system using by the angle between the two
coordinate systems ⇡ + �. It is possible that an analysis which used a coordinate
system where the the abscissa connected the two sprocket centers could prove more
advantageous.
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3.2 Example results of wrapping length variation

To illustrate the results of the above wrapping length variation, twelve di↵erent
chain drive configurations are introduced. These specify the full and exact geometric
configurations of roller chain drives with two sprockets modeled as polygons, and
connected to have two tight spans. Besides illustrating the above analytical results
with examples, these configurations are also intended as benchmark configurations.
Either these can be used for comparison with experimental results, or for the
initializing of numerical simulations.

Properties and ID of the configurations are listed in Table 3.1. For a given pitch
length p, number of teeth n

c

, n
o

, span length given by N and pitch fraction f , the
sprocket center positions can be found from (2.2). The tight span length l

a

can be
determined from (3.6), and the total number of links in the chain is given by M .
Calculated values for the minimum, mean and maximum wrapping length obtained
from (3.12) are presented, all nondimensionalized with the pitch p. Configuration
C

1

has been subject to experimental measurements of ”angular displacement error”
[11] as well as kinematic studies of driven sprocket angular motion [P1].

Table 3.1: Chain drive configurations

ID n
c

n
o

N M f L
min

�p L
mean

�p L
max

�p
A

1

6 12 4 20 0.3325 20.0020 20.0200 20.0411
A

2

8 28 0.4066 28.0027 28.0162 28.0329
A

3

16 44 0.4516 44.0046 44.0130 44.0236

B
1

12 12 8 31 0.5015 31.0030 31.0032 31.0034
B

2

16 46 0.0024 46.0048 46.0048 46.0048
B

3

24 63 0.5032 63.0064 63.0065 63.0066

C
1

12 18 11 40 0.4302 40.0040 40.0091 40.0149
C

2

22 62 0.4655 62.0066 62.0100 62.0138
C

3

33 84 0.4786 84.0085 84.0110 84.0138

D
1

24 32 16 63 0.4106 63.0064 63.0079 63.0094
D

2

24 79 0.4408 79.0080 79.0095 79.0112
D

3

32 95 0.4569 95.0097 95.0111 95.0126

Note from Table 3.1, that if both chain spans are to be in tension for a given
configuration, the pitch fraction f cannot be chosen freely.

Figure 3.2 shows how the wrapping length varies during one tooth period for the
configurations in Table 3.1. In general, the magnitude of the wrapping length
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Figure 3.2: Chain wrapping length variation L−Lmean normalized by pitch p for one
tooth period. Configurations A-D are shown in figures (a)-(d), respectively. The line
types −, −− and − ⋅ − identify the, short, medium and long span lengths, respectively.

variation is seen to decrease as the number of sprocket teeth and span length is
increased. For the special configuration B where n

c

�n
o

= 1, it is seen from Figure
3.2(b) that the length variation decreases significantly, and vanishes completely for
configuration B

2

, where the number of links M equals an even number and f � 0.
Except for configurations B, the wrapping length variation resembles a harmonic
function, albeit the variations are not completely symmetric.

3.3 Comparison with multi-body simulation

A comparison between the analytical predictions of the wrapping length variation
and results obtained from multi-body simulation is shown in Figure 3.3. The
Figure shows the wrapping length variation L normalized by the chain pitch p

for two tooth periods. Simulation results are obtained for the configuration C
1

at
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Figure 3.3: Chain wrapping length variation L normalized by pitch p for two tooth
periods for configuration C1 in Table 3.1. The full line is the kinematic prediction.
Broken lines −−,− ⋅− and ⋅ ⋅ ⋅ lines are results obtain from multi-body simulation, with
a driver speed of 10, 100 and 300 rpm, respectively.

10, 100 and 300 rpm. Input parameters for the simulation is given in Appendix
A.1, albeit the driver frequency has been set to the said values, and the sampling
frequency has been chosen appropriately. There is excellent qualitative agreement
between the analytical predictions and the numerical results, with all graphs bearing
resemblance to harmonic functions and . Quantitatively, the kinematic prediction
of the minimum wrapping length is also excellent. The wrapping length variation
amplitude is about a factor of two larger than the results obtained with multi-body
simulation. One contribution to this could be that the sprockets are compliant in
the multi-body model, which means that the chain rollers can be indented into to
the tooth, thereby reducing the e↵ective sprocket radius slightly. At the chosen
driver speeds, the chain spans has no significant vibratory response, and it seen
that the simulation results obtained at 10, 100 and 300 rpm are nearly identical,
which supports the hypothesis that the e↵ect of wrapping length variation should
not be limited to drives operating at low speeds.

3.4 Further remarks

A time-varying wrapping length demonstrates that a chain drive with tight spans
must generally include compliant components to function. During installation of
real chain drives, i.e. when the drive is stationary and unloaded, the span tension
will depend on the angular position of the driver sprocket. During operation the
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Chapter 3. Closed system kinematics

axial force is then expected to vary periodically with the tooth frequency. The
e↵ect appears here for chain drives with only two sprockets, but is also expected for
chain drive configurations with more sprockets and spans, and should also not be
limited to low-speed chain drives. We hypothesize that multiple sprockets can be
positioned to either attenuate or amplify the e↵ect of a variable wrapping length.
If this is the case, careful positioning of e.g. a tensioner sprocket could possibly
neutralize the e↵ect of a variable wrapping length, and allow for a constant span
tension even for chain drive configurations where the sprockets have few teeth.
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4 Dynamics

This chapter summarizes the e↵orts on modeling and analyzing the coupled angular
motion of the sprockets and the transverse vibration of the chain spans. The
chain spans are modeled as axially moving uniform strings subjected to parametric
excitation coming from the driven- and driver sprocket angular vibration and
transverse excitation coming from moving boundaries. All the chain spans are in
tension and this provide elastic coupling across the sprockets. Fundamental to the
analysis is the introduction of an assumed stationary operating state where the
chain spans operate at a nominal mean axial tension, and the input power balances
the output power, to ensures that there is no overall acceleration of the drive. The
presented model allows for the study of the coupled sprocket and span motion
which is analyzed through perturbation methods. Before introducing the analysis
e↵ort presented in [P2], some information is given on roller chain drives and marine
propulsion engines, which form the background for some important aspects of the
mathematical modeling.

4.1 Modeling background

The mathematical modeling relates directly to the presented kinematic analysis at
several points: The chain spans are supported by moving boundaries c.f. Figure
2.7. The span length changes c.f. Eq’s. (2.7) and (2.12) or (3.6). The e↵ect of a
tooth-periodic wrapping-length variation is included c.f. Figure 3.3.

Chain drives applied in low-speed marine propulsion engines are powered directly
by the crankshaft. An example of a chain drive layout is shown in Figure 4.1,
which is a four cylinder test engine, model 4T50MX. In the figure the silhouette

39



Chapter 4. Dynamics

of a person is included to provide a sense of scale. When the chain drive only
requires a small fraction of the power generated by the engine, and the inertia of
the drive is small compared to the full engine system, the dynamics of the chain
drive can be assumed not to a↵ect the crankshaft motion, i.e. the chain drive is
kinematically forced. This is relevant in combustion engines where the chain drive
powers auxiliary equipment using only a small fraction of the power required at the
main output. For example with ship propulsion engines, the chain drive powering
the hydraulic pumps is driven directly by the crankshaft, and consumes only about
1% of the power required for driving the propulsion propeller.

A combustion engine generates distinct pulses for each cylinder ignition, and there-
fore the angular velocity of the crankshaft is not constant. The engine crankshaft
motion can be predicted through modeling and simulation by the engineers design-
ing engines. Results of such engine simulations for the 4T50MX engine are shown
in Figure 4.2, which show the angular displacement during one revolution of the
crankshaft at the nominal speeds of 50, 80 and 110 rpm. In marine propulsion
engines there is no clutch or gearbox between the crankshaft and propeller, and the
maximum continuos rating of the engine is about 110 rpm.

In the mathematical modeling the angular displacements of the driver sprocket will
be assumed given, i.e. ✓∗

2

is introduced, and this refers to the type of engine angular
displacement shown in 4.2. As a reminder to the reader coming from the kinematic
analysis, it is emphasized that while the kinematic analysis considered e.g. the
driven sprocket angular position, velocity and acceleration, the dependent variables
of the dynamic analysis are now the angular displacements. The displacements can
be thought of as motion added to the nominal steady-state operation of the chain
drive components.

4.2 Chain drive design praxis

Selection of chains, sprockets and chain-drive layout can be done by following
directions provided by the chain drive manufactures, e.g. Tsubaki, Timken, Link-
Belt, Renold, and Diamond Chain Company. The content of these directions is given
a short review here. The design should take into account factors such as: Power
rating, number of sprocket teeth, multiple strands, types of driven load (smooth
load, moderate shock, heavy shock), types of input power (internal combustion
engine w. hydraulic drive, electric motor drive, internal combustion engine with
mechanical drive), arrangement, and lubrication (manual, drip, slinger disc, pump).
Chain manufactures also provide tools for measuring the chain elongation. The
typical data provided for a specific chain type, besides the geometric properties, are
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4.2. Chain drive design praxis

Figure 4.1: Four-stroke MAN Diesel engine, model 4TMX50, with roller chain
drive powering the hydraulic pump. Seen in this illustration are also the tensioner
mechanism which is adjusted to ensure the desired pretension, the balancing wheels
which counter-act the horizontal excitation from the pistons, and guide bars, which
in some designs are mounted along the spans to limit transverse vibration.
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Figure 4.2: Crankshaft angular displacements ✓

∗
2 for a four-stroke marine diesel

engine model 4TMX50 at 50, 80 and 110 rpm in red, green and blue lines, respectively.
These results are obtained by engine designers from numerical models (GTORSI).

values for: Minimum ultimate tensile strength, average tensile strength, maximum
allowable load, and approximate weight per unit length. The design guides does not
consider dynamic phenonema, and usually assumes that one span remains slack.

4.3 Critical chain drive parameter values

When comparing the sources that has been available to this project, it becomes
clear that specifically the axial sti↵ness, as understood in the context of vibration
and dynamics, EA with SI unit [N], is not readily available to the engineer through
the data provided by chain manufactures. Three examples are provided to make
this point clear: A) The specific sti↵ness given for a Tsubaki steel chain with pitch
1” is s′ = 5600 [kNm/m], according to the data sheet ”ChainCharacteristics.xls”
provided by MAN Diesel A/S. B) The average tensile strength given for a Tsubaki
RS80 steel chain with pitch 1” is 17640 [lb], or 78.4 [kNm/m], according to the data
sheet provided for the RS80 chain by Tsubaki. C) The axial sti↵ness EA given
for a timing chain of unspecified pitch length is 404.9 [kNm/m], according to the
research paper [49]. As can be seen from the three examples, the three values di↵ers
by three orders of magnitude. However, it may be that the data provided does not
represent the same physical quantity (although they are provided with the same
unit) but in that case it should be clarified how to obtain correct values for the
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4.4. Modeling chain drive dynamics

axial sti↵ness EA. Lastly, it appears from the available data that the maximum
allowable load of roller chains is much lower than the axial sti↵ness, and in that
case it is a reasonable assumption that the transverse wave speed is much lower
than the axial wave speed.

Choosing appropriate values for the axial sti↵ness EA in the work carried out on
multi-body simulation of roller chain drives [57, 58] was also subject to dispute,
and it is recommended that future choices of axial sti↵ness should preferably be
based on experimental measurements. In fact, based on a thorough review of the
simulation results, it is concluded by this author, that the manual for the multi-body
simulation program SIMCH is in error: For the chain axial sti↵ness, it states that
the input should be the chain axial sti↵ness for one meter chain, but this leads to
wrong results, and the correct input value should be the link sti↵ness.

As mentioned in the introduction and illustrated in Figure 1.1, the properties of the
chain are in fact not uniform, and the propagation of especially longitudinal waves
through a periodic structure is known to be non-trivial at certain frequencies, with
band-gaps being one phenomena known to this type of structures. For the experi-
mental investigations of roller chain drive dynamics, it is therefore recommended to
initialize experiments by investigating the wave propagation properties of the roller
chain. The only known experimental work on this topic was reported by Ryabov
1971 [50], where experimental results demonstrated that the longitudinal wave speed
depends on the axial tension of the chain, but approaches a constant value as the
axial tension is increased (for uniform rods and strings the longitudinal wave speed
is independent of the axial tension). The results were obtained for three specific
Soviet chain types, and it is suggested that the subject is investigated further.

4.4 Modeling chain drive dynamics

A simple model consisting of two sprockets is considered, with gravity ignored.
The local coordinate systems and definitions of displacements are shown in Figure

4.3. The dependent variables U, Ũ , Ŵ , ˆ̃W and ✓
1

are the displacements measured
at a steady state of operation, i.e. the particular solution of the forced response,
calculated when the mean of the input torque M

2

equals the mean of the output
torque M

1

.

The angular displacement of the driving sprocket is assumed to be given, i.e. ✓∗
2

is a
known function of time. Prescribed external forcing included in the multiple scales
analysis is identified throughout the analysis by a star ( )∗. Assuming the initial
total span (pre)tension P

tot

= P
pre

+ P̃
pre

at zero external load and zero angular
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Figure 4.3: Mechanical model of a chain drive system with two sprockets

velocity to be known, as well as the nominal span velocity S and input torque M̂
2

,
the longitudinal forces at steady state operation are, for the tight and slack spans

P
0

= 1

2

(P
tot

+ M̂
1

�R
1

), (4.1)

P̃
0

= 1

2

(P
tot

− M̂
1

�R
1

). (4.2)

The output torque M̂
1

is modeled as comprised of a constant (brake) load f̂
1

,
rotational viscous damping d̂

1

, and a time dependent torque M̂∗
1

(t), where t is time

M̂
1

= d̂
1

S�R
1

+R
1

f̂
1

+ M̂∗
1

. (4.3)

For M̂∗
1

= 0 Eq’s (4.1)-(4.2) and (4.3) demonstrate how the nominal tension, and
thereby the natural frequencies of the chain spans, varies with initial pretension,
operating speed, and constant external load. Centrifugal forces are not included
in this model, which could be relevant for high-speed roller chain drives. It is also
noted that chain wear corresponds to a reduction of P

tot

.

4.4.1 Governing equations

It is only the intention here to give an overview of the central equations. The full
derivation of the coupled equations of motion and their approximate solution is given
in [P2]. The roller chain is modeled as a uniform axially moving string supported
by moving boundaries, as illustrated in Figure 4.4. The coordinate system X,Y is
inertial, and the amount of string material within the boundaries varies. To take
this into account it is necessary to allow the position from which the span endpoint
displacements are prescribed from to be functions of time; X

1

(T ) and X
2

(T ) models
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4.4. Modeling chain drive dynamics

this. Between the seating and release events, the distance X
2

(T ) −X
1

(T ) equals
the span length, and the boundaries move in the positive x-direction at nominal
speed S ≥ 0. Longitudinal and transverse displacements of the string are denoted by
U(X,T ) and Ŵ (X,T ), respectively, while out of plane motion is not considered.
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Figure 4.4: Axially moving chain span supported by moving boundaries

The equation of motion for the transverse motion of the tight span becomes

w,
tt

+2sw,
xt

−(↵� − s2)w,
xx

−"↵�u∗
2

− u
1

+ 1

2

� 1

0

w,2
x

dx�w,
xx

= −y
1

,
tt

(1 − x) − y
2

,
tt

x − 2s(y
2

,
t

−y
1

,
t

) +O("2), (4.4)

where y
1

(t), y
2

(t) is the prescribed transverse displacement of the span endpoints,
as it can be prescribed by the kinematic motion of the span endpoints seated on
the sprockets. The terms u∗

2

, u
1

, and the integral term cause parametric excitation
of the axially moving string. The transverse vibration of the span is coupled
to the driven sprocket displacements u

1

, and parametrically forced by u∗
2

, which
is prescribed by the driver angular displacements. All displacements have been
made dimensionless by the shaft center distance l. Time T is made dimensionless
by the natural frequency of string of length l subjected to axial tension P

t

, and
dimensionless parameters have been introduced as

t =
�

P
t

⇢Al2
T, s = S�

P

t

⇢A

, ↵ = EA

P
t

, � = P
0

EA
, (4.5)

The boundary positions has been assumed to move in the axial and transverse
direction by a small amount O("), and it is shown that this leads to a second order
e↵ect in the equation of motion and boundary conditions for transverse vibrations
of the chain span,

w(0, t) = 0 +O("2), w(1, t) = 0 +O("2). (4.6)
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Chapter 4. Dynamics

Deriving the equation of motion for the driven sprocket and establishing the
stationary operating state relies on the assumption that longitudinal waves propagate
instantly, compared to the time scale of wave propagation for the lower transverse
modes. With this assumption the axial strain is constant along the chain span
length, i.e. only time dependent. With this the approximate solution for the
longitudinal displacements can be shown to be

u(x, t) = u
1

(t) + e(t)�x − x
1

(t)� − 1

2

� x

x1(t) ŵ,
2

x

dx, (4.7)

where e(t) is the axial dynamic strain

e(t) = u∗
2

− u
1

+ 1

2

� 1

0

w,2
x

dx +O("2). (4.8)

Here e(t) is termed the dynamic strain, as there is also a constant strain component
e
0

= P
0

�EA coming from the mean axial load of the chain operating at the assumed
stationary state where P

0

is given by (4.1). The equation of motion for the
driven sprocket is derived using Newton’s second law. Therefore the forces acting
on the body are specified directly, as opposed to being derived through energy
considerations. The axial force contains both the constant and dynamic part of the
axial strain, and can be shown to be:

N(t) = ↵�e(t) + �� − s2, (4.9)

where the first term relates to the dynamic strain component, the second to the
constant strain component, and s2 accounts for the reduction of axial tension due
to the non-dimensional axial transport velocity, which may ultimately cause the
axial tension to vanish at the so called critical transport velocity. To establish the
stationary state for the driven sprocket, it is assumed that the axial forces due
to the constant strain components of both spans balance the constant part of the
output torque (4.3). With this, the equation of motion for the driven sprocket can
be shown to be

Ju
1

,
tt

+du
1

,
t

+2↵u
1

= 2↵u∗
2

+ ↵
2 �

1

0

(w,2
x

−w̃,2
x

)dx +M∗
1

(t). (4.10)

This is an inhomogeneous ordinary second order di↵erential equation for the driven
sprocket displacements u

1

at the pitch circle, measured from steady state operating
conditions. The equation is nonlinearly coupled to the upper and lower span
transverse displacements w and w̃. On the left hand side the terms are inertia,
damping and sti↵ness, respectively. Sti↵ness 2↵ comes from the axial sti↵ness of
the two chain spans. The span endpoint axial displacement u∗

2

is given directly by
the kinematic forcing from the driver sprocket angular displacement ✓∗

2

.

46



4.5. Approximate analysis

4.4.2 Modeling transverse excitation

The span endpoint positions y
1

, y
2

follows curves which resemble a cycloid, as chain
rollers successively act as the span endpoints when the sprockets rotate, e.g. the
span endpoint recurrently moves between points B

1

and B
2

in Figure 2.3. At
the instant where a roller enters (or leaves) the chain span, the projections of the
nominal tangential velocity in the y-direction changes discontinuously, cf. u

1

− u
2

in Figure 2.3. Therefore, the endpoint transverse velocities are non-smooth in time,
and the span endpoint accelerations jumps discontinuously in time, which leads
to impulsive loading of the chain spans from meshing. To represent the impulsive
loading at the span endpoints, the acceleration jumps are modeled using Dirac pulse
trains,

y
1

,
tt

= ∞�
j=−∞

Q
1

�(t − j⌧
o

), y
2

,
tt

= ∞�
j=−∞

Q
2

�(t − ( + j)⌧
o

), (4.11)

where ⌧
o

is the non-dimensional tooth period. The Dirac pulses of the two endpoint
accelerations are separated in time by the phase  given by (2.22), which depends on
the shaft center distance, specifically the pitch fraction f defined by (2.2). Assuming
the span to remain straight, the relative velocities between two neighboring rollers
at the instant of seating and release, respectively, are given by

Q
1

= 2s sin↵
1

= sp

R
1

, Q
2

= 2s sin↵
2

= sp

R
2

, (4.12)

where ↵
1

,↵
2

are the pitch angles, R
1

,R
2

are the pitch circle radius, p is the pitch
length, and it has been used that R

1

= p�(2 sin↵
1

) and R
2

= p�(2 sin↵
2

). It is seen
from (4.12) that increased sprocket radius, shorter pitch length and lower velocities
reduce the endpoint acceleration discontinuities. The discontinuous accelerations
are assumed to be dominating.

The forcing coming from meshing is tooth-periodic, and in the analysis expanded as
Fourier series. Since the impulsive excitation acting at both span ends is represented
by Fourier series with harmonic terms of the same frequencies, the forcing can
be reduced to one expansion, where the coe�cients become the addition of the
two components from either span end. Thus, two impacts at either span end is
represented by a single Fourier series expansion with harmonic terms that are
multiples of the tooth frequency.

4.5 Approximate analysis

The vibrations of the chain spans and the driven sprocket are governed by coupled
non-linear partial di↵erential equations for the spans (4.4) (with an equivalent
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equation for the slack span), and the ordinary di↵erential equation for the driven
sprocket (4.10). To reduce the partial di↵erential equations for the spans to
ordinary di↵erential equations, a Galerkin expansion of the m’th and n’th mode is
employed of the tight and slack span, respectively, using test functions for stationary
uniform strings. The resulting equations neglects the Coriolis terms 2sw,

xt

, since
these require either the use of complex mode shapes for axially moving strings, or
an even+odd two-mode expansions of stationary strings. Following the Galerkin
expansion, the result is a system of three coupled non-linear second order di↵erential
equations, where ⇠

m

and ⇠̃
n

are the modal amplitudes of the spans, and u
1

is the
angular displacement of the driven sprocket:

⇠
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,
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To analyze the dynamics of this system the Method of Multiple Scales is employed.
It is a perturbation method which relies on the sorting of terms into orders of
magnitude, and the results and solution procedure depends on this ordering. To
analyze possible resonance conditions, the following terms are assumed small: linear
viscous damping terms with µ, parametric coupling terms in the parenthesis, squared
and cubic non-linearities, and the external forcing of the chain spans from impact
loading, which is represented by Fourier expansions. The terms p∗

0

model the
variable wrapping length introduced in chapter 3.

So far, the parametric excitation p∗
o

(t), the kinematic forcing of the driver sprocket
u∗
2

(t) and the external excitation of the driven sprocket M∗
1

(t) has been assumed
to have a zero mean, but otherwise arbitrary. Each of them is assumed to be
mono-frequency harmonic,

p∗
o

= p
0

cos(⌦
0

T
0

), (4.16)

M∗
1

�J = p
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cos(⌦
1

T
0

), (4.17)

u∗
2

= p
2

cos(⌦
2

T
0

), (4.18)

From the perturbation analysis, a set of resonance conditions can be deducted
which are all of practical relevance. For the tight span with natural frequency !

m

,

48



4.5. Approximate analysis

resonant excitation occurs under the following conditions

External resonance from meshing: j⌦
0

≈ !
m

,

Parametric resonance from driver or meshing: ⌦
2

≈ 2!
m

and/or ⌦
0

≈ 2!
m

,

Internal two-to-one sprocket-span resonance: !
✓

≈ 2!
m

.

Similarly for the slack span with natural frequency !̃
n

:

External resonance from meshing: j⌦
0

≈ !̃
n

,

Parametric resonance from driver or meshing: ⌦
2

≈ 2!̃
n

and/or ⌦
0

≈ 2!̃
n

,

Internal two-to-one sprocket-span resonance: !
✓

≈ 2!̃
n

.

For the driven sprocket with natural frequency !
✓

:

External resonance from sprocket excitations: ⌦
2

≈ !
✓

and/or ⌦
1

≈ !
✓

,

Internal two-to-one span-sprocket resonance: 2!̃
n

≈ !
✓

and/or 2!
m

≈ !
✓

.

Clearly, a multitude of resonance - and combined resonance cases exists, which
involves one, two or all three degrees of freedom. These are all of practical relevance,
and identify (less desirable) dynamic phenomenas which may occur in roller chain
drives.

Note that for e.g. the tight span motion, primary parametric and external resonance
coming from polygonal action (p

0

and k
m

terms in (4.13)) cannot exist simulta-
neously, since primary parametric resonance requires ⌦

0

≈ !
m

, in which case the
external forcing is has frequency j⌦

0

≈ j2!
m

, i.e. non-resonant. Primary parametric
resonance of both spans simultaneously is possible in real chain drives when there is
no torque on the driven sprocket, as in the case of a guide or coupler sprocket; under
these conditions the natural frequency of the two spans will be nearly identical, and
coupling could occur across the driven sprocket if it is compliant.

Out of the above possible resonance cases, three examples have been considered
which are of practical interest, but also demonstrate how the motions (de)couple in
this model; primary parametric resonance of the tight span, external resonance of
the driven sprocket, and lastly, those two cases combined, i.e. primary parametric
resonance of the tight span along with internal resonance of the driven sprocket.

49



Chapter 4. Dynamics

4.5.1 Primary parametric resonance of the tight span

The example demonstrates how decoupled transverse vibration of a single chain span,
coming from a harmonic variation of axial tension leading to parametric resonance,
could be realized in a real roller chain drive. Primary parametric resonance of the
tight span (4.13) is considered, with excitation coming the driver sprocket, i.e. p

2

.
There are no other external or internal resonances, and the tight and slack span are
detuned such that !

m

is away from !̃
n

.

For the external forcing coming from p
2

, the nearness to primary parametric
resonance of the tight span is quantified by a detuning parameter �

2

, such that

⌦
2

= 2!
m

+ "�
2

, (4.19)

The response is shown to be similar an isolated parametrically excited axially
moving string, see e.g. Figure 1.3. The slack span and the driven sprocket has a
respons that e↵ectively goes to zero. The tight span has a trivial solution

a = 0, cos( 
2

) = 2�
2

!
m

↵
m

p
2

, (4.20)

that is, a solution exists for which the span does not vibrate, but there exists also a
non-trivial solution:
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where a is the amplitude of the span response.

The direct external excitation of the driven sprocket is given by the term !2

✓

u∗
2

in (4.15), and specified by p
2

cos⌦
2

in (4.18), is assumed to be non-resonant and
of order O("), where " � 1. This in e↵ect renders the driven sprocket with a
zero vibratory response, i.e. the driven sprocket is not compliant to the driver
sprocket excitation. For this to hold in the case where the external excitation
of the driven sprocket coming from p

2

is not weak, but O(1), the frequencies ⌦
2

and !
✓

should be so far apart that the driven sprocket forced response given by
!2

✓

p
2

�(!2

✓

−⌦2

2

) cos(⌦
2

T
0

) becomes O("). The example demonstrates how the span
vibrations and sprocket response decouple from the remaining system, when the
excitation is weak and non-resonant.
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4.5.2 Primary external resonance of driven sprocket

During normal operation of a real chain drive, the nominal (angular) velocity varies
according to the desired operating conditions. As the excitation from the driver is
often period with the driver nominal angular velocity, cf. Figure 4.2, it is relevant
to examine the case where the external excitation is near-resonant to the driven
sprocket, ⌦

2

≈ !
✓

. The other direct and parametric excitations are assumed non-
resonant. To describe the nearness of external resonance, a detuning parameter �

✓

is by
!
✓

= ⌦
2

+ "�
✓

. (4.22)

For the driven sprocket response there exists no trivial solution, and the stationary
amplitude v and phase  

✓

can be shown to be

v = 1

2

!
✓

p
2�

µ2

✓

+ (!
✓

−⌦
2

)2 , tan 
✓

= −µ
✓

!
✓

−⌦
2

. (4.23)

The results demonstrate that for near-resonant excitation of the driven sprocket
there will be no transverse vibrations of the spans, if the excitation frequency is
not near primary parametric resonance of the spans. However, this is under the
assumption that the parametric excitation of the chain spans is small compared
to the linear axial sti↵ness of the chain spans in (4.13)-(4.14), which might not be
fulfilled under large resonant vibrations of the driven sprocket. However, in real
chain drives, the ratio between linear axial sti↵ness and parametric excitation can
be decreased by increasing the pretension P

tot

, which may also move the natural
frequencies of the span away from critical excitation frequencies. Note from (4.23)
that in the present model, rotational damping of the driven sprocket is the only
mechanism which will limit the response of the driven sprocket subjected to resonant
excitation.

This case indicates that for a real roller chain drive in operation, passing a natural
frequency of the driven sprocket does not lead to transverse span vibrations if
the excitation is not near parametric resonance of the spans, and that rotational
damping of the driven sprocket may reduce the resonant response.
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Chapter 4. Dynamics

4.5.3 Combined parametric and internal resonance between

span and sprocket

The first example analyzed the span response when the driven sprocket is not
compliant, i.e. the driver excitation let to a vibratory response of the chain span
only. The second example demonstrated near resonant excitation of the driver
sprocket, where the driver excitation only caused a vibratory response of the driven
sprocket. Here is analyzed the case where the driver excitation may cause a vibratory
response of both the driven sprocket and the chain span. This is both of practical
interest, and novel to the study of the dynamics of axially moving strings.

Thus we consider primary parametric excitation of the tight span ⌦
2

≈ 2!
m

combined
with internal two-to-one resonance between span and the driven sprocket !

✓

≈ 2!
m

.
All remaining excitations are assumed non-resonant, and the two spans are detuned
by loading of the driven sprocket, such that !

m

is away from !̃
n

. To describe the
nearness to primary parametric resonance we introduce the detuning parameter �

2

defined by (4.19).
⌦

2

= 2!
m

+ "�
2

. (4.24)

Similarly, to describe the nearness to internal resonance we introduce the detuning
�
✓

defined by
!
✓

= 2!
m

+ "�
✓

. (4.25)

The equations governing stationary amplitudes:

0 = −µ
m
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a sin 
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, (4.26)

0 = −µ
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There is a trivial solution given by,

a = 0, v2 = f2

2
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+ (�
2

− �
✓

)2 , tan( 
2
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1

) = µ
✓

�
✓

− �
2

, (4.30)

Representing pure rotational motion of the driven sprocket without transverse
vibrations of the upper span, as examined in section 4.5.2. As for non-trivial
solutions a ≠ 0, corresponding to coupled motions of the driven sprocket and the
tight span, the algebraic set of nonlinear equations (4.26)-(4.29) are not readily
solved for a and v; instead a numerical solution is obtained.
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4.6 Example results of the dynamic analysis

To illustrate results of the above three resonance cases, the solutions are obtained
for a specific chain drive, using again configuration C

1

in Table 3.1 with pitch
p = 0.0254 m, and mass, sti↵ness, damping and loading parameter values as listed
in Table 4.1. The first mode of the tight span is considered, i.e. ⇠

m

in (4.13), with
m = 1. With a stationary angular velocity of the driver of 400 rpm there will then
be internal resonance between the tight span and the driven sprocket.

Table 4.1: Dynamic parameters

P
tot

1000 N
EA 0.56e6 N
⇢A 2.61 kg/m
Ĵ
1

0.6 kg m2

f̂
1

200 N
d̂
1

1.1 Nms/rad
✓∗
2

0.005 rad
µ
✓

0.02
µ
m

0.02

4.6.1 Parametric resonance of the tight span

Here we present an example of the results derived in section 4.5.1 for the response
of the tight span under primary parametric excitation. The analysis demonstrated
that the tight span transverse motion decouples, because the driven sprocket is
non-compliant. The solution for the steady state span vibration amplitude a given
by (4.21) is shown in Figure 4.5 along with numerical solutions shown with circles ○.
Broken and full lines identifies stable and unstable solution states, respectively.

The resonance peak near ⌦
2

�!
m

= 2 bends to the right due to nonlinear hardening
coming from increased axial tension at large amplitudes, represented by the cubic
nonlinearity in the model. Increased parametric excitation amplitude p

2

and
decreased damping µ

m

widens the resonance peak. It is seen that as the upper
branch bends to the right, there are two co-existing stable solutions; one with zero
amplitude and another with a large amplitude. Since this is a non-linear response,
the solution to which the system converges depends on the initial conditions, which
for the numerical solutions were chosen at random, to demonstrate the presence of
coexisting solution branches.
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In real chain drives, adjusting the span tension to change the natural frequency of
the span can be used as an approach to ensure that the the span does not operate
near the critical excitation frequencies.

1 2 3 4

0

0.02

0.04

Ω 2/ωm

a

Figure 4.5: The tight span transverse vibration amplitude a at primary parametric
resonance according to perturbation results (4.21) (solid lines stable, dashed line
unstable), and numerical solution of the modulation equations (circles).

4.6.2 Resonant excitation of driven sprocket

The solution for the driven sprocket steady state amplitude v given by (4.23) is
shown in Figure 4.6 for the resonant excitation of the driven sprocket, as analyzed
in section 4.5.2. Near ⌦

2

�!
✓

= 1 there is a clearly defined maximum amplitude. The
analysis showed that increased damping reduces the height of the resonance peak.

In this example the sprocket motion decouples since the spans are tensioned to
prevent transverse vibration. Therefore, the response is essentially linear, and the
numerical solution confirms there is only a single, independent of initial conditions.
The analysis presupposes that the parametric excitation amplitude of the spans
is small compared to the span linear sti↵ness, and the solution is only a good
approximation when these conditions are fulfilled; they could be violated during
large resonant vibration amplitudes of the driven sprocket, which should therefore
still be avoided in real roller chain drives.
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Figure 4.6: The driven sprocket angular vibration amplitude v at resonant direct
external excitation according to the perturbation results (4.23) (solid line), and
numerical solutions of the modulation equations (circles).

4.6.3 Combined parametric resonance and internal resonance

The combination of internal resonance and parametric resonance was investigated
in section 4.5.3. The solution for the span and sprocket steady state response is
obtained through numerical integration of the modulation equations. Results for
the stationary amplitudes a of the span and v of the driven sprocket are shown in
Figures 4.7 and 4.8, respectively. In these figures exact parametric resonance occurs
for �

2

= 0, and exact internal resonance occurs on the line running diagonally across
the graphs where �

✓

= �
2

.

Figure 4.7(a) shows three projections of the span vibration amplitude for three
values of the detuning of internal resonance �

✓

, as indicated by bold lines in Figure
4.7(b). First, note the qualitative and quantitative similarity between the bended
resonance peak in the response of the decoupled span motion in Figure 4.5 and the
response drawn with solid bold lines for �

✓

�!
m

= −1.9 in Figure 4.7(a) and at the
edge of Figure 4.7(b). For �

✓

�!
m

= −1.9 the amplitude a is zero until �
2

�!
m

> −0.3.
For �

2

�!
m

> 0.5 the stationary amplitude jumps between two solution states. This is
similar to what is shown in Figure 4.5, where the span motion was decoupled, and it
also appears from Figure 4.7 that for �

2

�!
m

> 0.5 there are two coexisting solutions
between which the response jumps between depending on the initial conditions.
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Figure 4.7: Tight span transverse vibration amplitude a under combined primary
parametric resonance and internal resonance obtained by integration of the modulation
equations. In (a) cross sections of (b) for values �

✓

�!
m

� [−1.9, −1.1, −0.3] are shown
with lines [−, −−, − ⋅ −], respectively.

Secondly, it is seen Figure 4.7 that there is a large upright amplitude peak running
diagonally across Figure 4.7(b) near exact internal resonance �

✓

= �
2

. As �
✓

�!
m

=
�
m

�!
m

increase from below to approach zero, the upright resonant peak combines
with the bended resonance peak and the amplitude reaches maximum for �

✓

�!
m

=
�
m

�!
m

� −0.3. The upright peak is present for values of �
2

�!
m

much lower than
zero, and the upright and bended resonance peaks are separated for �

✓

�!
m

< −1.1.
This indicate that when the driven sprocket is compliant, chain span vibrations
excited by parametric excitation can occur for much lower values of �

2

�!
m

than
when the span is decoupled, which is a significant and novel result. In real chain
drives, this means that span transverse vibration can be excited at frequencies lower
than parametric resonance when the driven sprocket has a vibratory response.

Figure 4.8(a) shows three projections of the driven sprocket amplitude for three
values of the detuning of parametric resonance �

2

indicated with bold lines in Figure
4.8(b). We observe a qualitative and partly quantitative similarity to the upright
resonance peak in the response of driven sprocket motion in Figure 4.6 and the cross
sections in Figure 4.8(a). The maximum value of v is observed for �

2

�!
m

� −0.5.
For all the presented examples it is noted that the response is obtained using a
perturbation method assuming near-resonance. Thus, predictions will be most
accurate near �

✓

= �
m

= 0.
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Figure 4.8: Driven sprocket angular vibration amplitude v under combined para-
metric and internal resonance obtained by integration of the modulation equations.
In (a) cross sections of (b) for values �2�!m

� [−0.9, −0.5, 0] are shown with lines[−, −−, − ⋅ −], respectively.

4.7 Further remarks

There are several points at which the approximate analysis could be improved and
extended. To to obtain a better quantitative agreement with numerical solutions of
the full model equations, more accurate test functions for the Galerkin expansion
could be applied, as introduced in [P4]. Di↵erent choices for the ordering of
magnitude, i.e. assignment of smallness to specific terms, could be changed to yield
more even more results for the coupled dynamics of the system. Also, more than
one mode could be considered for each span. However, the main contribution of
this work is the model given by the three coupled equations for the two spans and
the driven sprocket, and the approximate analysis demonstrating that solutions of
the coupled equations can be obtained in a systematic manner.
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5 Conclusion

5.1 Summary and discussion

The work comprising this thesis is focused on developing analytical predictions for
the properties of roller chain drives which are relevant to the engineering community.
It is focused on two separate subjects: Kinematics and dynamics. Besides theoretical
analysis the work e↵ort has been focused on mathematical modeling and these
results are also considered to be important contributions to the field.

Kinematic analysis based on the analysis of the chain drive modeled as a four bar
mechanism have been considered, with the main points being:

• A chain drive is modeled as a four-bar mechanism. Equations governing posi-
tion, velocity and acceleration are derived, conveniently nondimensionalized,
and solved exactly and approximately.

• Seating and release configurations are determined, and simple approximate
expressions including only the dominant design parameters are derived.

• The instantaneous span length is determined, and its discontinuous variation
with time is given a simple formulation.

• An approximate expression for the phase between chain roller seating and
release is determined, giving insight into the time intervals between the
discontinuous accelerations of the driven sprocket.

• Example results are presented for coarse, medium and fine chain drive con-
figurations, showing very good agreement between exact and approximate
results.
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• Comparison is made between multi-body simulation and the results of kine-
matic analysis. It is demonstrated how the kinematic analysis is useful for
aiding the interpreting both simulation results and experimental measure-
ments.

The closed form approximate results provide insight into the e↵ects of changing
design parameters, and allows for a convenient estimation of the chain drive kine-
matics. The study treats only the case where the span connects the sprockets
such that they rotate in the same direction. However, it is expected that spans
connecting the two sprockets as the inner tangent could be treated following a
similar approach.

An extension of the kinematic analysis considering only one chain span connecting
two sprockets is introduced. The approach is based on the analysis of the four-bar
mechanism, and is aimed at determining the wrapping length of a chain when the
chain spans are tensioned to form straight lines connecting the driver and driven
sprocket. The main points of these results are:

• A kinematic model of a two-sprocket roller chain drive with straight spans was
presented, along with a procedure for calculating the total chain wrapping
length.

• Results demonstrated that the total wrapping length of the chain generally
varies periodically with the tooth frequency.

• Twelve exact chain drive configurations where presented, which may serve as
bench-mark configurations for numerical models.

• The chain wrapping length was shown to be constant for a configuration
where both sprockets have the same number of teeth and the chain consists
of an even number of chain links.

• Comparison was between the kinematic prediction of a variable wrapping
length and multi-body simulations. The results showed excellent qualitative
agreement, and good quantitative agreement.

• Based on the kinematic analysis, it is predicted that there will generally be a
tooth period variation of axial tension in real chain drives.

The kinematic analysis considering the chain wrapping tightly around the sprockets
is a new field in the study of chain drive kinematics, and although the analysis
presented here is approximate, it demonstrates an important phenonema, and could
motivate further research.
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Dynamic modeling and approximate analysis of a simple roller chain drive is
undertaken, and the main points are:

• Equations of motion for the chain spans is derived, treating the problem of
an axially moving string supported by moving boundaries. It is demonstrated
that a first order variable string length leads to a second order e↵ect.

• A new dynamic model of the coupled motion of the tight chain spans transverse
vibration and the driven sprocket angular displacement is derived. The model
introduces, and assumes, a steady operation state from which displacements
are measured.

• The dynamic model provides insight into resonance conditions and amplitude
responses, and is analyzed approximately using a mode shape expansion and
perturbation analysis.

• Three example results of the dynamic analysis are presented, illustrating the
conditions where the motions of the span and sprockets decouple. Results for
a case of combined internal and parametric resonance showed that large span
vibrations can occur due to compliance of the driven sprocket.

• Though the model is simple, it provides useful insight into the coupled
dynamics of chain drives, and may aid the design and interpretation of
numerical and experimental results.

The approximate analysis of the dynamic model could be improved by exact mode
shapes for axially moving strings. However, these are complex and it would increase
the extend of the required algebra. It is also expected that this would only lead
to quantitatively better predictions, and not significant qualitative di↵erences.
Furthermore, the approximate analysis could be extended or modified by assuming
a di↵erent ordering of magnitude of the excitations etc., and it is expected that this
could be done successfully with the method of multiple scales employed here.

5.2 Suggestions for future work

For the kinematic analysis, there are several tasks that could be undertaken in
direct extension of this work: Analysis of the kinematics of two sprockets connected
to make the sprockets rotate in opposite directions. Further research of the varying
wrapping length variation: Development of a new analysis approach, and positioning
of sprockets in chain drives with more than two sprockets to either attenuate of
amplify the e↵ect of a varying wrapping length.
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It is expected that the dynamic model introduced here could be extended to include
roller chain drives with more than two sprockets, as e.g. the chain drive in Figure
4.1. Due to the systematic structure of multiple scales analysis presented [P2],
where the modulation equations decouple for non-resonant excitation, it is expected
that the dynamics of chain drives with more than two sprockets could be analyzed
using a similar modeling and analysis approach. In the analysis presented here
the coupled motion of transverse span vibrations happens across a single degree of
freedom oscillator, which is the driven sprocket with a given natural frequency. For
a larger chain drive with more sprockets, this would correspond to modal excitation
near the natural frequencies of the coupled rotational motion of the sprockets, with
the spans acting as linear springs.

Lastly, it is expected that the greatest outcome of further research in the field of
roller chain drives could be obtained through experimental work, in comparison
with the theoretical results presented here, and the simulation results that can be
obtained from the multi-body simulation program. As mentioned in section 4.3 the
experimental investigations should first give careful consideration to the correct
determination of the parameter values for roller chains that can be applied to obtain
correct theoretical results using uniform string models for the chain. Specifically
the longitudinal wave speed of roller chains. The correct axial sti↵ness of the roller
chain is important in both the predictions of the natural frequencies of transverse
span vibration, and the natural frequencies of the sprockets connected to the chain
spans acting as linear springs.

Following the experimental determination of the correct parameter values to assign
to the theoretical models, the analytical predictions of this study could be tested in
an experimental setup of chain drive with two sprockets. Ideally, the experiment
should be designed such that the driven sprocket damping, loading and inertia
can easily be modified, the sprockets and chain type can easily be interchanged,
and angular excitation can be applied to the driver sprocket, e.g. to mimic the
excitation coming from combustion engines.
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Abstract

An exact and approximate kinematic analysis of a roller chain drive mod-

eled as a four-bar mechanism is presented. The span connects the sprockets

such that they rotate in the same direction, and the sprocket size, number

of teeth, and shaft center distance can be arbitrary. The driven sprocket

angular position, velocity and acceleration, as well as span length, is calcu-

lated and their (discontinuous) variation with driver angular position and

main design parameters is illustrated. Kinematic predictions for the chain

span motion are compared to results of multibody simulation, and there is

seen to be very good agreement. All together this gives new insights into

the characteristics of chain drive kinematics and the influence of main design

parameters.

Keywords: Roller chain, chain drives, kinematics, four-bar mechanism,

multibody simulation
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1. Introduction

Roller chain drives are widely used machine elements due to high energy

e�ciency and timing capabilities. Research topics include kinematics, chain

span dynamics, load distributions, coupled sprocket and span dynamics,

alternative design, multibody dynamics, roller impact and noise emission.

A literature survey of noise and vibration was given by Wang and Liu [1].

Belt drives is a related research area and a survey including also this was

given by Fawcett [2]. Also relevant for chain span dynamics are the studies

of axially moving materials, surveyed by Chen [3].

The discrete nature of a chains introduce several e↵ects, collectively

known as polygonal action. Some of these e↵ects are less desirable, e.g. the

uneven transfer of torques between the sprockets and impact between chain

rollers and sprockets. Polygonal action is inherent of chain drives, because

a chain wrapped around sprockets form polygons rather than circles.

In chain drive kinematics, mass and elasticity are neglected and usually

also tolerances and manufacturing inaccuracies of the drive components.

Results therefore describe the motion of ideal chain drives operating at non-

resonant conditions and very low speeds. The main object of investigation is

often the velocity of the driven sprocket, and parameters of main concern are

shaft center distance and tooth ratio. A detailed kinematic analysis reveals

the characteristic loading of the chain drive and may aid the interpretation

of simulation- and measurement results.

Early studies of the kinematics includes the work by Bartlett [4], who

observed that sprockets could be modeled as polygons. He derived an ex-

pression for the minimum and maximum variation of the angular velocity

ratio. He also noted that these are obtained when sprockets are positioned
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such that the length of the driving span equals an integer number of pitch

lengths, or an odd number of half pitches, respectively. In the work by Mor-

rison [5] the kinematic motion of the chain drive is recognized to happen

through a series of four-bar mechanisms. An expression for the shaft center

distance giving the smallest velocity ratio variation was given. It was then

shown how shaft center distance influence the angular acceleration of the

driven sprocket, and thereby the chain drive loads.

A full monograph was written by Binder [6] on roller chain drives con-

taining treatments of many subjects relevant for chain drive designers, in-

cluding standard tooth geometry, static loading, velocity variations as well

as friction and wear. The dynamics of the driven sprocket was considered

by Mahalingam [7], who expressed the tension variation of the chain span

due to polygonal action using the first harmonic term of a Fourier approxi-

mation. With this approximation, the driven sprocket is subjected to mono-

frequency forced vibration and high-frequency components originating from

impact loading and discontinuity are unaccounted for. The periodic fluc-

tuations of driven sprocket velocity was studied by Bouillon and Tordion

[8] both numerically and experimentally. An approximate analysis, also of

the driven sprocket velocity, was made by Turnbull and Fawcett [9], who

expressed the driven sprocket velocity as a series expansion, and illustrated

the influence of the number of expansion terms for di↵erent centre distances

and tooth ratios. A general kinematic analysis was presented by Chen and

Freudenstein [10], where the shaft center distance could be arbitrary. The

configuration of the chain drive where a roller seats on the driver sprocket

was determined. The kinematic analysis also highlighted the discontinuous

variation of span length, angular velocity- and acceleration ratios. Standards

for design and dimensions of roller chains and sprockets are maintained by

3
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organizations such as ANSI, BS and DIN.

Numerical analysis of roller chain drive systems has been developed using

a multibody modeling approach by Pedersen et al. [11], which can take

into account non-linear dynamic coupling, exact tooth geometry and impact

phenonema [12]. A general methodology for planar models of multibody

chain drives has been suggested by Pereira et al. [13]. Models that can

include joint clearances are presented by [14].

In this study we present an exact kinematic analysis of the motion of

the chain span components, i.e. the position of the span endpoints as well

as angular position, velocity and acceleration of the driven sprocket during

one tooth-period of the driver sprocket. Approximate results for the motion

of the driven sprocket are also derived, based on the exact results. Sim-

ple approximate expressions for the seating and release configurations are

derived, and these are used for obtaining the first analytical expression for

the phase between rollers seating and releasing. The exact and approximate

results are compared and shown to be in very good agreement for practical

chain drives. The approximate results significantly ease the calculation of

the motion of the driven sprocket, and may aid designers to quickly evalu-

ate designs and estimate chain drive loads. The obtained results include the

discontinuous properties of the driven sprocket motion, as opposed to the

existing approximate analysis [9]. Comparison is made between kinematic

predictions of the chain span path, and results multibody simulation. There

is seen to be very good agreement and the kinematic analysis proves useful

for interpreting the simulation results.
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2. Exact kinematic analysis

The purpose of the analysis presentation is to make a clear illustration

and derivation of the kinematic movement of the chain drive modeled as

a four-bar mechanism. This presentation reworks and expands on results

presented [10], but with motion coordinates better suited for approximate

analysis. Attention is on presenting a self contained analysis, with complete

results and clear derivations.

2.1. Kinematic model

The kinematic model defines how the chain drive elements and their di-

mensions are simplified as rigid components connected by perfect frictionless

joints. The assumptions, geometry, coordinate system for the model, and

the governing equations are presented in the following.

2.2. Assumptions

In the kinematic analysis the geometry of the chain and sprockets are

assumed to be a perfect match, i.e. 1) sprocket pitch is equal to chain pitch,

2) the chain drive is without any mechanical clearances, and 3) a roller

seated on the sprocket is positioned in the center of the sprocket seating

curve. Neglecting dynamic e↵ects introduce the following assumptions: 4)

the span is perfectly straight, 5) chain and sprocket elements are rigid, and

6) the system is frictionless.

2.3. Basic geometry

Consider the sketch of a chain meshing with at sprocket in Fig. 1. Rollers

are shown as small circles, thereby marking the chain as a connection of rigid

links. The chain moves from left to right and the roller S
N

will be removed
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from the free span as the sprocket rotates clockwise around point C. Shown

in the sketch is the exact moment where roller B
1

gets in contact with the

sprocket and thereby define the new endpoint for the span.

Several geometric properties can be defined from Fig. 1. The pitch, p,

is the distance between two chain rollers and also the length of the sides of

the pitch polygon, witch is formed by connecting the centers of the sprocket

seating curves. Half the angle between two seating curve centers is referred

to as the pitch angle ↵. The pitch polygon has inscribed circle radius r and

the circle drawn out by the centers of the seating curves on the sprockets is

referred to as the pitch circle and has radius R. By formula, these variables

are given by, respectively,

↵ = ⇡
m
, r = p

2 tan↵
, R = p

2 sin↵
, (1)

where m is the number of teeth on the sprocket.

It is seen from Fig. 1 that the length and endpoint positions of the

free span varies discontinuously as the sprocket rotate clockwise around C.

Rotation of the sprocket causes a vertical movement of the span endpoint

between values r and R, and a horizontal movement between positions B
1

and B
2

. The angle between the chain span S
N

B
1

and the line CB
1

varies

during rotation of the sprocket, and therefore a constant driving torque will

not be transmitted evenly to the chain. Vectors u
1

and u
2

indicate the

sprocket velocities at rollers B
1

and B
2

, respectively. These velocities di↵er

in direction and this cause an impact between the roller B
1

and the sprocket.

Collectively, these e↵ects are referred to as polygonal action, their mag-

nitude decrease as the number of sprocket teeth increase, but remains finite

and, a characteristic for roller chain drives.
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Figure 1: Sprocket meshing with chain

2.4. Coordinate system

Figure 2 shows the kinematic model in the coordinate system used through-

out the analysis. The driving sprocket constraining the motion is centered

at C and the driven sprocket at O. Subscripts c and o will be used to re-

fer to those sprockets, e.g. ↵
o

and R
c

. Both sprockets are drawn as pitch

polygons, connected by a line A
1

B
1

representing the tight chain span. The

main object of investigation is the tight span, since it transfers the torque

from the driving sprocket to the driven sprocket.

When the chain drive consists of only two sprockets there will be a slack

chain span connecting the two sprockets opposite of the tight span, and

this will not be considered in the analysis. In case there are more than two

sprockets there will be no slack span between sprockets O and C and the

analysis presented here covers the transfer of torque between two neighboring

sprockets in a larger chain drive system.

The origin of the fixed Cartesian XY -coordinate system is coincident

with the center O of the driven sprocket. It is orientated such that the X-

axis is parallel with the tangent T
o

T
c

common to the two inscribed circles,
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so that the coordinates (x
c

, y
c

) of C is:

x
c

= �T
o

T
c

�, y
c

= r
o

− r
c

. (2)

For a wide range of typical chain drives lines OA
1

and CB
1

, make small

variations around the vertical direction and the slope of the span make small

variations around the horizontal direction, while OC remain fixed. The

smallness in variations makes the kinematic model suitable for approximate

analysis.

r
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Figure 2: Chain drive kinematically modeled as a four-bar mechanism

2.5. Span length

When the roller chain drive is in operation, chain links will recurrently

enter and leave the chain span and consequently the span length varies

discontinuously with sprocket angular rotation, c.f. Fig. 2. The driving

sprocket constrain the motion, and as it rotates the angle 2↵
c

in clockwise

direction, one tooth period passes and two events occurs: Roller A
1

loses

contact with the driven sprocket and is released into the free span. It hap-

pens at the instant where the slope of A
m

A
1

equals the slope of the span,

and shifts the span endpoint from roller A
1

to A
m

, thereby increasing span

8
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length by one pitch. Similarly, roller S
N

gets in contact with the driving

sprocket at the instant where the slope of B
m

B
1

equals the slope of the

span. This makes S
N

the new span endpoint, thereby decreasing the length

of the span by one pitch.

The length of the span and its dependency on design parameters is de-

termined next. In Fig. 2, the common inner tangent T
o

T
c

of the inscribed

circles intersect the pitch circle of sprocket O in points z
1

and z
2

. Similarly,

the tangent intersects the pitch circle of sprocket C in points z
3

and z
4

. The

length �z
1

z
2

� equals one pitch, as do �z
3

z
4

�. The span A
1

B
1

must equal an

integral number of pitches and its length can be determined using the points

z
1

, z
2

, z
3

, and z
4

. From Fig. 2 one finds that the chain span length �A
1

B
1

�
fulfills

�z
2

z
3

� ≤ �A
1

B
1

� ≤ �z
1

z
4

�, (3)

where �z
2

z
3

� = �T
o

T
c

� − p and �z
1

z
4

� = �T
o

T
c

� + p. Generally �z
2

z
3

� equals an

integer number of pitches N plus a fraction of pitch lengths f , both defined

from

�z
2

z
3

� = (N + f)p, f ∈ [0, 1[, N ∈ N. (4)

In the chosen coordinate system the length of the common inner tangent

�T
o

T
c

� equals x
c

; using (4) its length can be expressed as

x
c

= �T
o

T
c

� = (N + 1 + f)p. (5)

With this (3) can be written

(N + f)p ≤ �A
1

B
1

� ≤ (N + 2 + f)p. (6)

In the general case where f ≠ 0 the span length �A
1

B
1

� fulfills the inequality

(6) with two solutions,

�A
1

B
1

� = (N + j)p, j = 1,2, for f ≠ 0. (7)

9
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The span length varies discontinuously between these two values when a

roller is seated on the driver sprocket, and released from the driven sprocket,

respectively.

In the special case where f = 0 the common inner tangent equals an

integral number of pitches. Then inequality (6) has three solutions for the

span length: �A
1

B
1

� = (N + j)p, j = 0,1,2, for f = 0. However, these

solutions exist simultaneously, and only in one instant, which is the specific

configuration of the chain drive where A
m

A
1

B
m

B
1

align and coincide with

points z
1

z
2

z
3

z
4

, respectively, c.f. Fig. 2. Further rotation of the sprockets

from this configuration will cause roller A
1

to be released from the driven

sprocket, making A
n

the new span endpoint. At the same time, roller S
N

is seated on the driver sprocket, making B
m

the new span endpoint. Thus,

when f = 0, the release and seating of rollers happens simultaneously and

the span length remains constant at

�A
1

B
1

� = (N + 1)p, for f = 0. (8)

With the above it has been determined how the chain span length generally

shifts between two values, depending on the design parameters, i.e. the

common inner tangent length �T
o

T
c

�, pitch length p, and pitch fraction f .

How the length varies depends on the driver position, as will be determined

in the following.

2.6. Governing vector equations

The vector equations presented here describe the position-, velocity- and

acceleration relations for the kinematic model of the chain drive. For ease

of notation, the vectors in the four-bar mechanism in Fig. 2 are written in

polar form as r
n

= r
n

ei✓n , n = 1,2,3,4, where r
n

is the length of the vector,

10
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✓
n

the orientation measured positive counter clockwise from the X-axis, and

the real and imaginary parts of the vector are parallel to the X- and Y -axis,

respectively. The vectors in the four-bar mechanism are defined as

r
1

= OC, r
2

= OA
1

, r
3

= A
1

B
1

, r
4

= CB
1

. (9)

Sprocket centers do not move and therefore r
1

is constant with time. From

Fig. 2, the equation governing the position of link joint B
1

is

r
2

+ r
3

= r
1

+ r
4

, (10)

sometimes referred to as the closure- or four-bar equation. For n = 2,3,4,

angular velocities and accelerations are introduced as !
n

= d✓
n

�dt and ↵
n

=
d!

n

�dt, respectively. Di↵erentiating (10) with respect to time gives, since

dv
n

�dt = 0, the equation relating the velocities

i!
2

r
2

+ i!
3

r
3

− i!
4

r
4

= 0. (11)

Finally, di↵erentiating (11) with respect to time gives the equation for the

accelerations

(i↵
2

− !2

2

)r
2

+ (i↵
3

− !2

3

)r
3

− (i↵
4

− !2

4

)r
4

= 0. (12)

The factor i =√−1 in the coe�cient of a vector indicates a direction perpen-

dicular to that vector, taken in clockwise direction. Equations (11) and (12)

represent the velocity and acceleration vector diagrams, respectively [15].

As noted above, the span length shifts between two fixed values as rollers

are seated and released from the sprockets. It is useful to express span length

r
3

= �A
1

B
1

� using the lower value of the span length, introduced here as L,

and a step function h. The function h is unity when the span length assumes

its upper value and zero otherwise. Vectors r
2

and r
4

have constant length

11
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given by pitch circle radii and, r
1

= �OC � can be determined from Fig. 2,

thus

r
1

=�x2
c

+ y2
c

, r
2

= R
o

, r
3

= L + hp, r
4

= R
c

, L ≡ (N + 1)p (13)

A formal definition of the function h = h(✓
4

) is given below using the seating

and release configurations.

2.7. Introduction to position analysis

The configurations of the chain drive for which a roller is just seated on

the driver sprocket and just released from the driven sprocket, are deter-

mined first. Between these two events, the span length remain constant.

The angular position of the driven sprocket during the rotation of the driver

sprocket is then determined in the subsequent input-output analysis.

Splitting (10) into real and imaginary parts gives the equations to be

solved in order to determine the positions of the four-bar members:

r
2

cos ✓
2

+ r
3

cos ✓
3

= r
1

cos ✓
1

+ r
4

cos ✓
4

, (14)

r
2

sin ✓
2

+ r
3

sin ✓
3

= r
1

sin ✓
1

+ r
4

sin ✓
4

, (15)

which can also be derived directly from Fig. 2.

2.8. Configuration with roller just seated on driver sprocket

Figure 3(a) shows the four-bar mechanism OA
1

B
1

C in the exact con-

figuration where roller B
1

seats on the driver sprocket C, making B
1

the

new span endpoint. Figure 3(b) shows the configuration when a roller is

just released from the driven sprocket. Variables related to the seating and

release of a roller are subscripted s and r, respectively.

When determining the seating and release configurations, the span length

in both cases attain its lower value. Therefore all lengths r
n

are given by

12
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Figure 3: Equivalent four-bar mechanism when a roller (a) just seats on

sprocket C, and (b) just releases from sprocket O.
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(13) with h = 0. What then remains for the configuration to be determined

are the angles ✓
n

, n = 2, 3, 4. At point B
1

in Fig. 3(a) it is seen that

✓
3s

= ✓
4s

− �, (16)

where � = ⇡�2 + ↵
c

is known, cf. (1). When ✓
3s

is expressed in terms of ✓
4s

and �, there are two remaining unknowns to be determined from (14)-(15),

namely ✓
2s

and ✓
4s

. To do this one can first square and add (14) and (15)

to eliminate ✓
2s

. Expanding the squared terms, and also the trigonometric

terms containing ✓
3s

using (16), e.g., sin ✓
3s

= sin ✓
4s

cos�−cos ✓
4s

sin�, gives

A
s

cos ✓
4s

+B
s

sin ✓
4s

+C
s

= 0, (17)

with coe�cents

A
s

= 2r
1

r
4

cos ✓
1

− 2r
1

r
3

(cos ✓
1

cos� − sin ✓
1

sin�),
B

s

= 2r
1

r
4

sin ✓
1

− 2r
1

r
3

(cos ✓
1

sin� + sin ✓
1

cos�),
C
s

= r2
1

+ r2
4

+ r2
3

− r2
2

− 2r
4

r
3

cos�.

(18)

Equations in the form of (17)-(18) will reappear in the following sections

and it is therefore useful to present the solution in a general formulation.

Consider the equation A cos ✓ +B sin ✓ +C = 0, from which ✓ is to be deter-

mined [16]. By introducing sin ✓ = 2⌧�(1+ ⌧2), cos ✓ = (1− ⌧2)�(1+ ⌧2), with
⌧ = tan(✓�2), the equation can be written as a second order polynomial in

⌧ , with solutions

⌧
1,2

= −B ±
√
B2 −C2 +A2

C −A . (19)

The two solutions for ✓ are then

✓ = 2arctan(⌧
1,2

). (20)

Following this approach, the solution for ✓
4s

is given by (20) when the coef-

ficients in (18) are substituted into (19). With ✓
4s

determined, the solution
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for ✓
3s

is given by (16). Finally, ✓
2s

is determined by division of (15) with

(14), leading to

✓
2s

= arctan � r1 sin ✓1 + r4 sin ✓4s − r3 sin ✓3s
r
1

cos ✓
1

+ r
4

cos ✓
4s

− r
3

cos ✓
3s

�. (21)

There are two solutions sets, corresponding to the two values of ⌧ in (19).

These correspond to configurations where the sprockets are connected by the

span to rotate either in the same or opposite directions. The two solutions

for ✓
2s

are of opposite sign, and the solution-set where ✓
2s

> 0 is the one for

which both sprockets rotate in the same direction.

2.9. Configuration with roller just released from the driven sprocket

Figure 3(b) shows the configuration where roller A
1

loses contact with

the driven sprocket O and thereby enters the span, making A
n

the new span

endpoint. At this event ✓
3

attains the value

✓
3r

= µ + ✓
2r

− ⇡, (22)

where µ = ⇡�2+↵
o

, the span length is at its lower value, and all lengths are

given by (13) with h = 0. With ✓
1

known and fixed, and ✓
3r

given by (22),

✓
2r

and ✓
4r

remain to be determined from (14)-(15). We do this by squaring

and adding (14) and (15) to eliminate ✓
4r

, expanding the squared terms,

substituting (22) for ✓
3r

, and expanding using trigonometric relations, e.g.

cos ✓
3r

= cos ✓
2r

cos(µ − ⇡) − sin ✓
2r

sin(µ − ⇡), and finds:

A
r

cos ✓
2r

+B
r

sin ✓
2r

+C
r

= 0, (23)

with coe�cients,

A
r

= −2r
2

r
1

cos ✓
1

− 2r
3

r
1

(cos ✓
1

cos(µ − ⇡) + sin ✓
1

sin(µ − ⇡)),
B

r

= −2r
2

r
1

sin ✓
1

+ 2r
3

r
1

(cos ✓
1

sin(µ − ⇡) − sin ✓
1

cos(µ − ⇡)),
C
r

= r2
2

+ r2
3

+ r2
1

− r2
4

+ 2r
2

r
3

cos(µ − ⇡).
(24)
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Substituting these coe�cients into (19), the solution for ✓
2r

is given by (20).

The angle ✓
3r

is then found from (22), and ✓
4r

from (14) and (15):

✓
4r

= arctan � r2 sin ✓2r + r3 sin ✓3r − r1 sin ✓1
r
2

cos ✓
2r

+ r
3

cos ✓
3r

− r
1

cos ✓
1

�. (25)

As for ✓
2s

the solution for which ✓
4r

> 0 correspond to the configuration

where the sprockets rotate in the same direction.

2.10. Span length variation

Calculation of the driven sprocket angular position, velocity and acceler-

ation using both exact and approximate methods can now take into account

that the span length r
3

varies according to (13), with the function h defined

as:

h = h(✓
4

) =
���������

0 for ✓
4s

≥ ✓
4

≥ ✓
4r

1 for ✓
4r

≥ ✓
4

≥ ✓
4s

+ 2↵
c

(26)

where ✓
4

is decreasing since the driver rotates in clockwise direction. The

angles ✓
4s

and ✓
4r

are cumbersome to determine exactly, but simple and

accurate approximations can be determined (sections 3.1 and 3.2).

2.11. Input-output angular position

In order to determine the motion of the driven sprocket it is required

that the angular position, velocity and acceleration of the driver sprocket

are known, i.e. that ✓
4

, !
4

and ↵
4

are given functions of time.

Determining ✓
2

as a function of ✓
4

follows steps similar to the ones carried

out in the above analysis for the seating and release configurations. By

squaring and adding (14)-(15) to eliminate ✓
3

, expanding the squared terms

and canceling out terms, the equation governing the output position ✓
2

can

be written in the form

A cos ✓
2

+B sin ✓
2

+C = 0, (27)
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where

A = −2r
1

r
2

cos ✓
1

− 2r
4

r
2

cos ✓
4

,

B = −2r
1

r
2

sin ✓
1

− 2r
4

r
2

sin ✓
4

,

C = r2
1

+ r2
4

+ r2
2

− r2
3

+ 2r
1

r
4

(cos ✓
1

cos ✓
4

+ sin ✓
1

sin ✓
4

).
(28)

Using these coe�cients the solution for ✓
2

is given by (20), with ⌧
1,2

de-

termined from (19). For completeness, the solution for ✓
3

is found from

(14)-(15) to be

✓
3

= arctan � r1 sin ✓1 + r4 sin ✓4 − r2 sin ✓2
r
1

cos ✓
1

+ r
4

cos ✓
4

− r
2

cos ✓
2

�. (29)

There are agin two solution sets, corresponding to the two values of ⌧ ,

where the two solutions for ✓
2

are of opposite sign, and ✓
2

> 0 corresponds

to the configuration where the sprockets rotate in the same direction. With

the chain span assumed to be straight, motion of the chain drive is tooth-

periodic, i.e. the position of the four-bar members repeat when the driver

angle advances by 2↵
c

, the angle between two consecutive teeth. During one

period a roller will have been released into, and another one removed, from

the span.

2.12. Angular velocity

The angular velocity of the driven sprocket !
2

generally varies with time,

even if the driver sprocket rotates at constant angular velocity !
4

. This

velocity variation can be determined from (11): We split (11) into real and

imaginary parts, eliminate !
3

from the real part using the imaginary part,

expand the products of trigonometric functions, and find

!
2

= !
4

r
4

r
2

sin(✓
4

− ✓
3

)
sin(✓

2

− ✓
3

) . (30)

When ✓
3

is neglected in the above expression, the result agrees with existing

approximate result [7]. Note here, that the driver velocity may vary, i.e.
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!
4

= !
4

(t). The angular velocity !
3

of the span can be determined following

an approach similar as for the calculation of !
2

. This gives

!
3

= !
4

r
4

r
3

sin(✓
2

− ✓
4

)
sin(✓

2

− ✓
3

) . (31)

2.13. Angular acceleration

Accelerations of the driven sprocket are relevant for calculating forces

transmitted to the chain drive components and attached machinery. The

angular acceleration ↵
2

of the driven sprocket depends both on the driver

sprocket angular acceleration ↵
4

and the sprocket angular velocities !
2

and

!
4

. From the real part of (12) we eliminate ↵
3

using the imaginary part,

simplify using sum and products of trigonometric functions, and rewrite to

get the result:

↵
2

= ↵
4

!
2

!
4

+ !2

4

r
4

cos(✓
4

− ✓
3

) − !2

2

r
2

cos(✓
2

− ✓
3

) − !2

3

r
3

r
2

sin(✓
2

− ✓
3

) , (32)

where the first term has been simplified using (30).

3. Approximate analysis

The exact results presented above are cumbersome to calculate and pa-

rameter dependency is hard to interpret. In the following, we seek simple

approximate but accurate formulas for seating and release configurations,

as well as angular position, velocity and acceleration of the driven sprocket.

In obtaining approximate solutions it is utilized that contact angles an-

gles ✓
2

and ✓
4

make small variations about ⇡�2. This is utilized by intro-

ducing shifted angles, marked by a tilde, which are bounded by the angle ↵,

c.f. Fig. 2, thus:

✓
2

= ⇡�2 + "✓̃
2

, "✓̃
2

∈ [−↵
o

, ↵
o

],
✓
4

= ⇡�2 + "✓̃
4

, "✓̃
4

∈ [−↵
c

, ↵
c

], (33)
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where " here and below is used to bookmark small terms. It will also be

used that span slope ✓
3

is small, with a conservative estimate for an upper

limit given by

tan ✓
3

≤ R
c

− r
c

+R
o

− r
o

x
c

, (34)

obtained by recognizing that the lower and upper limit of a span endpoints

are, respectively, the circumscribed circle radius r and the pitch circle radius

R. The estimate gives ✓
3

< 0.015 rad and ↵ � 0.25 in the case n
o

= n
c

= 12
and N = 7. Since most real chain drives have sprockets with more than 12

teeth, and spans more than 8 pitches long, these assumptions are indeed

appropriate.

All parameters are nondimensionalized to reduce the number of variables

and make the order of magnitude of the various terms easily comparable.

All lengths are nondimensionalized by L, and nondimensional parameters

are identified by over-bars,

R̄
c

= R
c

L
, R̄

o

= R
o

L
, r̄

c

= r
c

L
, r̄

o

= r
o

L
, p̄ = p

L
, (35)

from which it follows that x̄
c

= 1 + fp̄ and ȳ
c

= r̄
o

− r̄
c

.

3.1. Approximate seating configuration

Simple expressions for the configuration where a roller seats on the driver

sprocket will be obtained from an approximate solution of (17). Looking at

Fig. 2 it is expected that ✓
4s

is close to z
3

, so we let

✓
4s

= ⇡
2
+ ↵

c

+ "✓̂
4s

, (36)

where the shifted variable is marked with a hat, and "✓̂
4s

is assumed to

be small. We insert this into (17), expand the trigonometric functions

and approximate them by the linear part of their Taylor expansions, e.g.
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sin(⇡�2+↵
c

+"✓̂
4s

) ≈ 1−↵
c

"✓̂
4s

. With this the approximate solution for "✓̂
4s

can be expressed as,

"✓̂
4s

≈ B
s

+C
s

−A
s

↵
c

A
s

+B
s

↵
c

. (37)

We then simplify the coe�cients A
s

, B
s

and C
s

from (18) by inserting

sin ✓
1

= y
c

��OC �, cos ✓
1

= x
c

��OC �, � = ⇡�2 + ↵
c

and r
1

= �OC �. Next sub-

stitute x
c

= L + fp, y
c

= r
o

− r
c

, the lengths given by (13) with h = 0 and

nondimensionalize using (35). Approximating the resulting coe�cients is

done by assuming the radius of the inscribed- and pitch circles to be identi-

cal. This follows from expressing the radii in (1) using only the first term of

the Taylor expansions for the trigonometric functions, i.e. tan↵ ≈ sin↵ ≈ ↵.
Inserting these approximate expression for the radii as well as cos↵ ≈ 1 gives

Â
s

= p̄� p̄
↵
c

+ 2↵
c

�f + p̄

↵
o

+ 2↵
c

,

B̂
s

= −2p̄f + p̄2

2
� 1

↵
c

↵
o

− 1

↵2

c

� + p̄�↵c

↵
o

− 1� − 2,
Ĉ
s

= p̄2f2 + 2p̄f + p̄2

2
� 1

↵2

c

− 1

↵
c

↵
o

� + 2 + p̄.
(38)

These approximations of the coe�cients in (18) are marked with a hat and

nondimensionalized by L2. We then approximate "✓̂
4s

by a polynomial in f ,

"✓̂
4s

= a
0

+ a
1

f + a
2

f2. (39)

We substitute this and (38) into (37) and determine the coe�cients a
0

, a
1

and a
2

by equating to zero like powers of f , which gives:

a
0

= −4↵3

c

↵
o

p̄�(2↵2

c

+ p̄)(↵
c

− ↵
o

) + 2↵
c

� ,
a
1

= −2(2↵2

c

+ p̄)↵
c

↵
o(2↵2

c

+ p̄)(↵
c

− ↵
o

) + 2↵
c

,

a
2

= 2p̄(p̄↵
o

+ ↵
c

)↵
o(2↵2

c

+ p̄)(↵
c

− ↵
o

) + 2↵
c

.

(40)
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These coe�cients are approximated by retaining only the dominating linear

terms, giving a
o

≈ 0, a
1

≈ −p̄↵
o

, and a
2

≈ p̄↵
o

. With these coe�cients

substitute (39) into (36) to get

✓
4s

≈ ⇡
2
+ ↵

c

+ p̄↵
o

f(f − 1). (41)

Using this, the angle of the span when a roller seats on the driver sprocket

can be found from (16):

✓
3s

≈ p̄↵
o

f(f − 1). (42)

With real chain drives, both p̄ and ↵
o

are expected to be small.

A simple expression for ✓
2s

is determined using the approximate results

for ✓
4s

and ✓
3s

: In (14)-(15), use that ✓
3s

≈ 0 and insert cos ✓
3

≈ 1 and

sin ✓
3

≈ 0. Shift to the variable "✓̃
2s

using (33) and insert the approximation

✓
4s

= ⇡�2 + ↵
c

, including only the first term of the Taylor expansions of the

trigonometric functions. Divide the two resulting equations to eliminate r
2

and obtain an equation for "✓̃
2s

. Nondimensionalize using (13) and (35)

with h = 0, use r̄
c

≈ R̄
c

and R̄
c

≈ p̄�(2↵
c

), shift back the variable to obtain:

✓
2s

≈ ⇡�2 + ↵
o

(1 − 2f). (43)

3.2. Approximate release configuration

To determine simple approximate expressions for the release configura-

tion one can proceed as for the seating configuration. In this case however,

shift the variable in (23) by introducing ✓
2r

= ⇡�2 −↵
c

− "✓̂
2r

. Following the

same principal steps as in section 3.1 leads to

✓
2r

≈ ⇡�2 − ↵
o

− p̄↵
c

f(f − 1), (44)

✓
3r

≈ −p̄↵
c

f(f − 1), (45)

✓
4r

≈ ⇡�2 − ↵
c

(1 − 2f), (46)
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where (22) has been used to calculate ✓
3r

.

3.3. Phase between seating and release

The excitation of the chain drive coming from the polygonal e↵ect de-

pends on the phase between the seating and release of the rollers. Such a

phase can be defined in various ways, but one choice would be

 = ✓
4s

− ✓
4r

≈ 2↵
c

(1 − f), (47)

where the approximation have been obtained using (46) and (41), in which

the small term p̄↵
o

have been assumed vanishing.

3.4. Approximate I/O-analysis

Expressing the driven sprocket angular position directly as a function of

the driver position and span length requires an approximate solution of (27).

Shifting to "✓̃
2

using (33) and approximating the trigonometric functions by

the linear terms of their Taylor expansion gives

"✓̃
2

≈ B +C
A

. (48)

We then simplify the coe�cients in (28) using sin ✓
1

= y
c

��OC �, cos ✓
1

=
x
c

��OC � and (13), substitute x
c

= L+fp, y
c

= r
o

−r
c

, the lengths given by (13)

with h ≠ 0 and nondimensionalize using (35). Shifting ✓
2

and ✓
4

according

to (33) and approximating the resulting coe�cients assuming R
o

≈ r
o

and

R
c

≈ r
c

, and using the first term of the Taylor expansions of the trigonometric

functions gives

Ã = −2R̄
o

(1 + fp̄) − 2R̄
c

R̄
o

"✓̃
4

,

B̃ = −2R̄2

o

,

C̃ = 2R2

o

+ (1 + fp̄)2 − (1 + hp̄)2 − 2R
c

(1 + fp̄)"✓̃
4

,

(49)

22

93



where the approximate coe�cients (marked by a tilde) have been nondimen-

sionalized by L2. Inserting (49) into (48) and shifting back the angles with

(33) gives

✓
2

≈ ⇡
2
+ p̄(f − h)(1 + 1

2

p̄(f + h)) − R̄
c

(1 + fp̄)(✓
4

− ⇡�2)
R̄

o

R̄
c

(✓
4

− ⇡�2) − R̄
o

(1 + fp̄) , (50)

where h varies discontinuously with ✓
4

according to (26).

3.5. Velocity

The exact driven sprocket angular velocity given by (30) can be approx-

imated. We do this by neglecting ✓
3

in (30), shifting the angles ✓
2

and ✓
4

using (33), shifting to cosine functions and approximating them using the

first two terms of their Taylor expansions. Then substituting the nondimen-

sional radii gives

!
2

≈ !
4

R̄
c

(1 − (✓
4

− ⇡�2)2)
R̄

o

(1 − (✓
2

− ⇡�2)2) . (51)

Since it is relevant for the approximation of the acceleration, the span veloc-

ity !
3

given by (31) is also considered. The span angle ✓
3

is again assumed

vanishing and the trigonometric functions are approximated by the first term

of their Taylor expansion, which gives

!
3

≈ !
4

R̄
c

1 + hp̄�✓2 − ✓4�. (52)

For a conservative estimate of the order of magnitude of !
3

assume �✓
2

−✓
4

� ≤
0.5 and 1�R̄

c

≈ 5 to get !
3

≈ !
4

�10. Thus, !
3

is one order of magnitude

smaller than !
4

when spans are long compared to the sprocket size R̄
c

.

3.6. Acceleration

In the exact expression for the angular acceleration given by (32) we

assume both ✓
3

and !
3

to be vanishing. Including only the first term of the
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Taylor expansions of the trigonometric functions then gives an approximate

expression for the angular acceleration of the driven sprocket:

↵
2

≈ ↵
4

!
2

!
4

+ !2

2

(✓
2

− ⇡�2) − !2

4

R
c

R
o

(✓
4

− ⇡�2). (53)

In the expressions for both angular velocity and acceleration the angles ✓
2

and ✓
4

jumps discontinuously every time a roller is released from and seated

on the sprockets, respectively.

4. Example results

4.1. Test configurations

Three di↵erent chain drive configurations are used when presenting re-

sults of the kinematic analysis, with properties as listed in Table 1. The

n
c

n
o

N

Coarse 6 9 4

Medium 12 18 11

Fine 21 63 34

Table 1: Configurations

pitch fraction f = {0, 0.5, 0.75} will be stated explicitly as results are

presented. These values of f are chosen because minimum and maximum

variation of the driven sprocket velocity occurs for f = 0 and f = 0.5, re-

spectively, [4, 5, 8]. Most previous studies have utilized either f = 0 or

f = 0.5, and f = 0.75 have been chosen to illustrate the general case. The

coarse configuration was used in [4] and with a di↵erent span length also [8].

Experimental measurements of “angular displacement error” (the di↵erence
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between angular position and angular position for constant velocity), for the

driven sprocket exists for the medium configuration [8]. The fine configura-

tion was also analyzed [10]. A driver angular velocity of !
4

= 100 rpm ≈ 10
rad/s has been used when calculating driven sprocket angular velocity and

acceleration.

4.2. Angular position, velocity and acceleration

Figure 4 shows the exact and approximate results for the coarse, medium

and fine configurations in columns C, M and F, respectively. The horizontal

axis shows the angular position of the driver normalized so that [0,1] corre-
spond to one tooth period, starting when a roller seats on the driver. Exact

results were obtained by discretizing ✓
4

and calculating the configuration

of the chain drive for each f . The approximate results for driven sprocket

angular position, velocity and acceleration are calculated using Equations

(50), (51) and (53), respectively, with seating and release positions obtained

from the exact analysis.

Angular position of the driven sprocket is shown in Fig. 4(a-b-c). There

is seen to be very good agreement between exact and approximate results,

especially for the medium and fine configurations which are of most practical

importance. The phase  between rollers being seated (▽) and released (△)
is shown with a double arrow in Fig. 4(a). Since the horizontal axis shows

one tooth period the phase between seating and release is simply  = 1 − f ,
as shown in Equation (47).

The velocity ratio between the driven and driver sprocket varies during

one tooth period and is shown in Fig. 4(d-e-f). All three graphs shows excel-

lent quantitative and qualitative agreement between exact and approximate

results. For the coarse, medium and fine configurations the variation of the
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Figure 4: Exact (–) and approximate (- -) angular position, velocity and ac-

celeration (first, second and third row, respectively) of the driven sprocket

for one tooth period, for the coarse, medium and fine chain drive configura-

tion (first, second and third column, respectively). A roller seating on the

driver sprocket is indicated by ▽, and the release of a roller from the driven

sprocket is indicated by △.
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velocity ratio is seen to be on the first, second and third decimal point, re-

spectively. This demonstrates how the magnitude of the velocity variation

decreases rapidly as the number of teeth is increased. The velocity variation

was shown empirically to be inversely proportional to n2

c

, assuming n
c

< n
o

[8]

In Fig. 4(d-e) one can see the how the velocity ratio variation decreases

and smoothens when f = 0, compared to f = 0.5. However, as the tooth ratio

n
c

�n
o

decreases (smaller than about 1/3), the e↵ect of changing f becomes

less significant. This can be seen in Fig. 4(f), where the curves for f = 0

and f = 0.5 are practically identical. Lastly, the velocity ratio will only be

constant in the special case n
c

= n
o

and f = 0, as can be seen from (51).

The driven sprocket angular acceleration in Figures 4(g-h-i) shows good

quantitative and qualitative agreement between exact and approximate re-

sults. In the results presented here the driver rotates with constant angular

velocity, and despite, that two sudden jumps in angular acceleration occurs

when f ≠ 0, whereas for f = 0 the acceleration only jumps at the end of the

interval. The magnitude of a discontinuous jump occurring when a roller is

seated or released decrease rapidly as the number of teeth is increased on

the driver- and driven sprocket, respectively. Thus, the discontinuous jumps

are most prominent for sprockets with few teeth.

For a driver rotating with constant angular velocity the time between

seating and release will be given by  = (1 − f)T , where T is the tooth

period. Seating and release will only happen simultaneously if f = 0. Only

in the special case where f = 0 and n
c

= n
o

will the angular velocity and

acceleration of the driven- and driver sprockets be equal.

In studies of string and roller chain drive dynamics it is often assumed

that polygonal action leads to a parametric excitation described by time
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harmonic variation of span tension or velocity [17]. However, the driven

sprocket acceleration in Fig. 4(g-h-i) is shown to be non-smooth and this

could be taken into consideration when modeling chain drive loads.

4.3. Seating and release angles

Figure 5 shows the exact angular seating- and release positions for the

coarse configuration, together with the closed form approximations. The

phase  between seating and release given by (47) is indicated with an

arrow in Fig. 5(b). In Fig. 5(a) it is seen that the approximation given

0 0.25 0.5 0.75 1

π /2 + α o

π /2

π /2 − α o

θ
2

f

(a)

0 0.25 0.5 0.75 1

π /2 + α c

π /2

π /2 − α c

ψ

θ
4

f

(b)

Figure 5: Exact seating ▽ and release angles △ as a function of the pitch

fraction f for the coarse configuration. Approximations for seating (–) and

release (− ⋅ −) are shown for (a) the driven sprocket and (b) the driver

sprocket.

by (44) capture correctly that ✓
2r

is almost constant. There is only slight

movement toward the horizontal position ⇡�2 for f around 0.5. This is due

to the rise of the span endpoint at the opposite sprocket, e.g. ✓
4r

= ⇡�2 for

f = 0.5. Similarly for ✓
4s

in Fig. 5(b) as predicted by (41).
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The driven sprocket angular seating position ✓
2s

is proportional to f and

moves between the outer limits given by z
1,2

= ⇡�2±↵
o

in Fig. 2, as predicted

by the approximation in (43). Similarly, the driver sprocket angular position

✓
4r

given by (46) moves between limits z
3,4

= ⇡�2 ± ↵
c

, in agreement with

the exact results.

Impact has not been the object of investigation of this work, but it has

been shown that the seating position ✓
4s

is close to point z
3

in Fig. 2, as is

often assumed in studies of impact and noise [18, 19]. In Fig. 1 the relative

velocity between a seating roller and the driver sprocket u
1

−u
2

, is therefore

practically independent of f . Assuming the span is a straight line, the main

design factor a↵ecting the relative velocity, besides the angular velocity of

the driver, is therefore the number of teeth on the driver sprocket (the pitch

angle).

Results are not presented here for the medium and fine configurations,

but when calculated the curves for ✓
2r

and ✓
4s

straighten and approximations

improve slightly as the number of teeth increase.

4.4. Approximation error

The error is calculated between the approximate and exact results for

the driven sprocket angular position, velocity and acceleration. The error is

calculated as the normalized root mean square deviation:

✏
x

=
���� 1

n

n�
i=1(x̃i − xi)2�

���� 1

n

n�
i=1x

2

i

, (54)

where x̃
i

represent the approximation and x
i

the exact value of sample i.

Figure 6 shows approximation errors for angular position ✓
2

, velocity !
2

and

acceleration ↵
2

.
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The errors in Fig. 6 were calculated using a tooth ratio of unity. Since

the trigonometric functions were approximated by Fourier expansions the

largest errors are to be expected for the chain drive configurations with

the lowest number of teeth, hence n = n
o

= n
c

. Obtaining the approxi-

mate results made use of the span slope being small, so it is expected that

the approximations will improve as span length is increased. The errors

presented are the maximum errors obtained for n = 10..40, when the span

length and pitch fraction are varied as N = 10 . . .40 and f = 0.1 . . .0.9. Error
calculations for di↵erent tooth ratios are not presented here but show both

quantitative and qualitative similarity to Fig. 6.

Approximation errors for the driven sprocket angular position ✓̃
2

in Fig.

6(a) are less than 0.5 %, and decreasing when the chain span becomes longer

and the number of teeth on the sprockets increase, as expected. Similarly

for the approximation of the driven sprocket angular velocity !̃
2

, where

errors are less than 0.1 %. The approximation errors for the driven sprocket

angular acceleration ↵̃
2

are less than 10 % for n,N > 12 and reduce to a

level of about 5 %.
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Figure 6: Error between exact and approximate angular (a) position, (b)

velocity, (c) acceleration of the driven sprocket.
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5. Comparison with multibody simulation

The exact kinematic prediction of the chain span motion is compared

with results from multibody simulation of a roller chain drive. multibody

simulations are carried out using the program described in [11, 12]. In the

multibody model the mass of the chain is lumped at the roller center loca-

tions, and springs and viscous dampers with constant sti↵ness- and damping

coe�cients model the chain links. Clearances between pin and bushings are

neglected as well as rotational inertia of the rollers about their center of

gravity. Tooth geometry is Type II per ASA B29.1-1950.

Simulation is carried out for the medium configuration in Table 1 with a

chain consisting of 40 links, p = 0.0254 m, and for the shaft center distance

f = 0.43 is chosen to ensure a positive pretension of both the upper and

lower spans connecting the two sprockets. Angular velocity of the driver

sprocket is 10 rpm and constant. The main parameters for the simulation

are chain link sti↵ness 0.221 GN/m, link mass 0.066 kg and link damping

0.01 Ns/m. The radius of the driven sprocket is 0.073 m, mass is 1.68 kg,

rotational inertia 0.046 kg m2 and the rotational damping coe�cient is 0.1

Nms/rad.

Figure 7 shows the curves traced out by the roller centers for the upper

span, as the driver sprocket rotates in clockwise direction. Assuming the

span moves as a rigid string supported by moving endpoints, the kinematic

analysis gives the presented wavy path of the chain span roller centers. The

shape of the wavy path depends on the phase between seating and release,

i.e. f . In Figure 7 the simulation results shows the chain span endpoints

moves as predicted by the kinematic analysis. In the simulation results

however, there are transverse vibration of the chain span at the first mode,
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but the averaged motion of the span is in excellent agreement with the

kinematic prediction.

All together, the comparison demonstrate how the kinematic analysis can

be useful for predicting and understanding e.g. simulation and experimental

results, even when these include dynamic e↵ects. The results in Figure 7 are

comparable to an idealized sketch presented for f = 0 in a discussion of the

path of the chain span in chapter 13 [6], and existing simulation results [13].

0 0.1 0.2 0.3

0.069

0.072

0.075

x [ m ]

y
[m

]

multi body simulation

kinematic prediction

Figure 7: Phase plane for the chain roller centers as predicted by kinematic

analysis, and as obtained from multibody simulation. The broken lines −−
are drawn from the sprocet centers to the roller centers which are the span

endpoints at the instant where a roller seats on the driver sprocket.

Comparison between the kinematic predictions for the angular motion

of driven sprocket and multibody simulation results are not presented. In

the analysis of multibody simulation results it becomes apparant that the

response of the driven sprocket is sensitive to the parameters relating to

the dynamics of the sprocket, i.e. inertia, rotational damping and flexibility

coming from the connected chain spans. The driven sprocket angular vi-

bration response generally shows resemblence to an impulse respons, where
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the discontinous excitation results in a smoothend transient respons. An

analytical study which includes the coupled dynamics of transverse chain

vibration and angular vibration of the driven sprocket is given by Fuglede

and Thomsen [20].

6. Conclusion

A chain drive is modeled as a four-bar mechanism, and equations govern-

ing position, velocity and acceleration are presented and solved exactly and

approximately. The instantaneous span length is determined, and its discon-

tinuous variation with time is given a simple formulation. It is shown how

the chain drive geometry is conveniently nondimensionalized. The seating

and release configurations are determined, and simple approximate expres-

sions including only the dominant design parameters are derived.

The driven sprocket angular position, velocity and acceleration is de-

termined, and results presented for a coarse, medium and fine chain drive

configurations show very good agreement between exact and approximate

results. Errors between exact and approximate results were shown to be

small for all practical chain drives. The closed form approximate results

provide insight into the e↵ects of changing design parameters, and allows

for a convenient estimation of the chain drive kinematics.

An approximate expression for the phase between chain roller seating

and release is determined, giving insight into the time intervals between the

discontinuous accelerations of the driven sprocket.

Comparison is made between multibody simulation results and analytical

kinematic predictions, and there is seen to be very good agreement. It is

demonstrated how the kinematic analysis can be used for interpreting e.g.
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simulation results.

This study treats the case where the span connects the sprockets such

that they rotate in the same direction. However, it is expected that the case

where the span connects the two sprockets as the inner tangent could be

treated following a similar approach.
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Kinematic and dynamic modeling and approximate

analysis of a roller chain drive

Niels Fuglede, Jon Juel Thomsen1,
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DK-2800, Lyngby, Denmark

Abstract

A simple roller chain drive consisting of two sprockets connected by tight

chain spans is investigated. First, a kinematic model is presented which

include both spans and sprockets. An approach for calculating the chain

wrapping length is presented, which also allows for the exact calculation of

sprocket center positions for a given chain length. The kinematic analysis

demonstrate that the total length of the chain wrapped around the sprock-

ets generally varies during one tooth period. Analytical predictions for the

wrapping length are compared to multibody simulation results and shows

very good agreement. It is thereby demonstrated that chain drives with

tight chain spans must include compliant components to function. Second,

a dynamic model is presented which includes the two spans and the driven

sprocket. Assuming the presence of a stationary operating state, the pre-

sented dynamic model allows for analytical studies of the coupled motion

of the chain spans and driven sprocket. Parametric excitation of the spans

come from sprocket angular displacements, and the driven sprocket acts as a

boundary which can be compliant in the axial direction. External transverse

1Corresponding author: jjt@mek.dtu.dk
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excitation of the spans comes from polygonal action, and is treated through

kinematic forcing at the moving string boundaries. Perturbation analysis

of the model is carried out using the method of multiple scales. Results

show a multitude of internal and external resonance conditions, and some

examples are presented of both decoupled and coupled motion. Together,

the kinematic and dynamic model are aimed toward providing a framework

for conducting and understanding both numerical, and experimental inves-

tigations of roller chain drive dynamics.

Keywords: Roller chain drive, axially moving string, moving boundaries,

polygonal action, kinematic analysis, multibody simulation

1. Introduction

Roller chain drives are applied for power transmission in many mechan-

ical systems due to a high energy e�ciency, large power capacities, timing

capabilities, flexibility in choosing shaft center distance, and ease of installa-

tion and maintenance. However, roller chain drives are also challenging due

to the presence of undesired noise and vibration, and is therefore subject to

ongoing studies [1].

Kinematic studies of roller chain drives are carried out by modeling the

sprockets as polygons [2]. The angular motion of two sprockets connected by

a chain span is considered to happen through a series of four-bar mechanisms

[3]. Because a chain wrapped around a sprocket forms a polygon rather than

a circle, several less desirable e↵ects are introduced. These are referred to

as polygonal action and include; impact when a roller seats on a sprocket,

non-constant torque transmission and velocity ratio between sprockets. The

monograph [4] introduces subjects such as tooth geometry, load distribution,

friction, wear, and driven sprocket velocity variations. Studies demonstrate
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how the center distance can be chosen to minimize velocity variations of

the driven sprocket [5]. A procedure for calculating the driven sprocket

motion for a general chain drive was developed, and examples demonstrated

how design parameters influence the polygonal action [6]. An exact and

approximate kinematic analysis of the chain drive modeled as a four-bar

mechanism was given [7]. The presentation included the derivation of the

driven sprocket angular- position, velocity, and acceleration. Seating and

release configurations were also determined, and the analytical results were

illustrated using three chain drive configurations.

It is common to the above kinematic studies that the analysis only con-

siders the tight span transferring the torque between two sprockets. In

this work, the slack span is also considered, which is relevant for practical

roller chain drives where the sprockets are positioned to keep all the chain

spans in tension during operation, as in e.g. low speed marine propulsion en-

gines. The kinematic analysis of a roller chain drive presented here is for two

sprockets with arbitrary number of teeth and center distance. Our results

demonstrate that when sprockets are modeled as polygons, and the chain

spans are pretensioned to form straight lines, the total wrapping length of

the chain varies periodically with the tooth frequency. This leads to a pre-

diction of a tooth-periodic variation of the axial tension in the chain spans.

The analytical kinematic prediction is compared to multibody simulation

results and shows very good agreement. Simulation results are obtained

using a simulation program which include dynamic e↵ects, flexible contact,

and the exact geometry of the sprocket teeth [8, 9]. These results demon-

strate that a real roller chain drive must include compliant components for

a tensioned chain to wrap around rotating sprockets, as the sprockets are

e↵ectively eccentric. The kinematic results allow for the exact prediction of
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the shaft center distance, for which a chain with a given number of links

wraps tightly around two sprockets.

Under the assumption that the chain span motion decouples from the

dynamics of sprockets and attached machinery, the studies of roller chain

drive dynamics is found to border the analysis of axially moving strings,

which belongs to the class of gyroscopic systems. For a decoupled axially

moving string, equations governing non-linear oscillations were derived using

Hamiltons principle, and the influence of transport velocity and nonlinear-

ity on the natural frequencies was analyzed [10], along with examples of

the modal distributions [11]. Based on the modal analysis of discrete gyro-

scopic systems [12, 13], the result of exact modal analysis of axially moving

continua was presented [14], as well as asymptotic studies of the forced

and free response around super- and sub-critical axial velocity [15]. From

these studies, the characteristics of axially moving strings are shown to be

transport-velocity dependent natural frequencies, the presence of a critical

speed, and complex-valued traveling string eigenfunctions utilized by casting

the system in a first order form. The complex eigenfunctions are shown to

be a superior orthogonal discretization basis, compared to real-valued sta-

tionary string eigenfunctions, when predicting parametric instability [16].

For an extensive review of the research on axially moving materials until

2004 we refer to [17].

In this study we analyze the e↵ect of the span being supported by moving

boundaries with prescribed endpoint displacements, and demonstrate that

a span with a first order variable length introduces a second order e↵ect.

Central to many studies of string dynamics is the presence of parametric

excitation from prescribed tension fluctuations, which may lead to para-

metric instability. Most often these excitations are single frequency har-
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monic excitations, but the response have also been analyzed for multiple

frequency excitations [18]. Tension variation can have many sources, e.g.

camshaft excitation, eccentricity of belt pulleys or variable transport ve-

locity, cf. the review [19]. The study of sprocket and chain span motion

introduced in [20, 21] and subsequent studies [22] are based on the assump-

tion that the driven sprocket angular velocity varies time-harmonically at

the tooth frequency, due to the excitation coming from the variable velocity

ratio between driver and driven sprocket. Comprehensive models are de-

rived for belt drives [23] and engine timing chain drives [24], with non-linear

transverse and longitudinal motion of the chain spans coupled to the dis-

placements of pulleys/sprockets with flexible supports. In the case where

chain span decouples from the motion of the driven sprocket, the chain span

stability was analyzed [24].

Here we present a model which takes into account the coupled motion

of span and sprocket angular displacements, i.e. motion of the chain span

when it is connected to a sprocket which is compliant, and the sprocket

motion is not assumed to be given. We demonstrate how the coupled non-

linear system of the spans and driven sprocket can be analyzed analytically

using perturbation methods, and predictions are provided for the amplitude

frequency response.

Meshing between the chain span and sprockets introduce problems with

noise and wear in real chain drives. It is therefore of interest to study the

chain span subjected to transverse excitation at, or near, the span bound-

aries. One approach is to analyze the impulse created when a roller seats

on a sprocket, and assume the impulse to be independent of the chain span

dynamic response [25, 26]. Noise and vibration problems has also moti-

vated several experimental studies [27, 28]. Including the chain vibrations
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in the estimate of the impulse function improves the analytical predictions,

and gives better agreement with experimental results [29, 30]. Predictions of

meshing noise that compare well with measurements has also been presented

[31, 32].

For this study we consider an impulsive excitation acting at the tooth

frequency at both span ends, in order to model the kinematic transverse

excitation coming from polygonal action. The impulses are assumed to be

independent of the span dynamics, and are derived only from the chain ge-

ometry and operating speed. The time between the impulses acting at either

span end can be determined from the kinematic configuration of the chain

drive [7]. This type of excitation is of specific interest to designers of chain

drives operating in low-speed marine engines. Our analysis demonstrate

how the impulse loading leads to multifrequency excitation, and identifies

the operating conditions where the transverse excitation from meshing can

be resonant to other excitation sources.

The structure of the paper is as follows: First we present a kinematic

model, carry out the analysis for the total wrapping length, and demon-

strate the analytical results by some examples. Analytical predictions for

the kinematic analysis are then compared to multibody simulation results.

Secondly, we derive the governing equations for the coupled chain-sprocket

dynamic model, perform an approximate analysis, and present three exam-

ples to illustrate the type of results that can be achieved.

2. Kinematic modeling and analysis

First we introduce the model assumptions followed by the definition of

the coordinate systems and main kinematic parameters. When defining the
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kinematic model we also introduce the seating and release configurations for

both spans, as well as the driven sprocket angular position determined as a

function of the driver angular position. These kinematic relations provide

the initial steps required for the determination of the lower span length,

and are based on the analysis [7]. With the seating, release and driven

sprocket motion determined, a procedure for determining the lower span

length is given. With the lower span length determined, the (approximate)

total wrapping length can be calculated, which is the main object of the

kinematic analysis.

2.1. Kinematic model assumptions

The kinematic model neglects all dynamic e↵ects. It is assumed that the

chain spans are tensioned into straight lines, sprockets are rigid and match

the chain such that the sprocket pitch is equal to the chain pitch, and rollers

are seated at the center of the seating curves. There are no mechanical

clearances, and the system is frictionless.

By modeling the two sprockets and the upper span a as a four-bar mech-

anism, the length l
b

of the lower span b is determined as a function of the

driver angle ✓. As will be shown, this length is not constant, but varies

during each tooth period. The length l
b

is calculated by assuming that span

b is the only member which can deform, i.e. for the upper span a, as well

as the parts of the chain seated on the sprockets, the distance between the

rollers equals the chain pitch. It is necessary to make this assumption in

order to obtain results for the total wrapping length of a chain using the

existing methods, i.e. the chain drive modeled as a four-bar mechanism. In

a real chain drive, the deformation would be distributed on all the chain

drive components, but taking this into account would require a di↵erent
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approach, which is not readily apparent.

The method is exact when the total wrapping length equals an integer

number of chain links, since in this case, the chain is not deformed. The

analysis thereby provides a method for calculating the exact sprocket center

positions for a given chain length. This is of practical relevance, since real

chains has a high axial sti↵ness, and the axial span tension is therefore

sensitive to the sprocket center positions. With this analysis we identify and

approximately quantify the property of roller chain drives having a variable

wrapping length. This e↵ect has been observed for real chains, but has not

previously been treated theoretically.

2.2. Kinematic model

Figure 1 shows the kinematic model of a chain drive consisting of a

driven sprocket O connected by the chain to make both sprockets rotate

in the clockwise direction, as prescribed by the driver sprocket C. The

sprockets are positioned such that the two spans are both in tension and

form straight lines. The angular position of the sprockets to the rollers

constituting the current span endpoint are given by ✓
a

and �
a

, for the the

driver and driven sprockets, respectively; similarly for the lower span, where

the span endpoint positions are ✓
b

and �
b

. Subscripts o, c and a, b are used

throughout the kinematic analysis to relate variables specific to sprockets

O,C and spans a, b respectively, e.g. ↵
o

and ✓
b

.

As the sprockets rotate, chain links will recurrently be released from a

sprocket to enter the connecting span and seated on a sprocket, thereby being

removed from the connecting span; these seat and release configurations are

referred to with subscripts r and s, respectively.

A sprocket with n teeth is modeled as a pitch polygon with n sides
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Figure 1: Kinematic model of a chain drive consisting of two sprockets connected by tight

spans a and b of instantaneous length l

a

and l

b

, respectively. The driver sprocket C rotates

counter-clockwise.

of length p, where p is the chain pitch length. A chain roller seated on

a sprocket is positioned such that the center of the sprocket seating curve

and the roller center traces out the pitch circle with radius R = p/(2 sin↵),

circumscribing the pitch polygon. The circle inscribed of the pitch polygon

has radius r = p/(2 tan↵) and the pitch angle is given by ↵ = ⇡/n, making

the angle between two seated rollers 2↵.

The origin of the inertial X,Y coordinate system coincides with the

center of sprocket O. It is orientated such that the X-axis is parallel with

the upper tangent t
u

which is common to the two inscribed circles. The

center position of sprocket C is (x
c

, y
c

), where

x
c

= (N + 1 + f)p, y
c

= r
o

� r
c

. (1)

By this definition of x
c

, two parameters have been introduced: The number

of chain links N 2 N and the pitch fraction f 2 [0, 1[. For the lower span,
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the X 0, Y 0 coordinate system has its origin coinciding with the center of

sprocket C, and is orientated such that the X 0-axis is parallel to the lower

tangent t
l

.

For real chain drives, a chain wrapped around two sprockets must contain

an inter number of chain pitches. Therefore the pitch fraction f will not be a

parameter than can be chosen independently when the spans form straight

lines, since the shaft center distance OC must be adjusted to obtain the

desired pretension of the chain.

It is necessary to determine the seating and release configurations, as

these are required for calculating the chain wrapping length. Seating and

release configurations for the upper and lower span can be determined ac-

cording to [7]: By considering the two sprockets to be connected by one

span only, the seating and release configurations are determined from the

kinematic analysis of the resulting four-bar mechanism. Following [7], the

upper span seating and release configurations are: (✓
as

,�
as

) and (✓
ar

,�
ar

),

and similarly for the lower span, (✓0
bs

,�0
bs

) and (✓0
br

,�0
br

). These seating

and release configurations are determined in the X,Y and X 0, Y 0 coordinate

systems, respectively.

It is also necessary to determine the driven sprocket angular position and

the span length l
a

as a function of the driver angular position, as it is required

for calculating the chain wrapping length. The kinematic motion of the four-

bar mechanism with span a can determined according to [7]: By considering

the two sprockets to be connected by span a only, the angular position of

the driven sprocket can be determined as a function of the angular position

of the driver sprocket, i.e. � = �(✓). Also, the span length l
a

= l
a

(✓) can be

determined according to [7]. The span length l
a

varies discontinuously with

the driver angular position, because links enter and leave the span. Here,

10
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and in the following, a variable marked with prime denotes angles given in

the X 0, Y 0 coordinate system. In the following, a procedure for determining

the lower span length l
b

will be given.

2.3. Calculating the lower span length

It is convenient to consider one period of the angular motion to start

from ✓
as

, the configuration where a roller from the span a seats on the

driver sprocket. The upper span length varies according to

l
a

= (N + 1 + h)p, h =

8
<

:
0 for ✓

as

� ✓
a

� ✓
ar

,

1 for ✓
ar

� ✓
a

� ✓
as

+ 2↵
c

.
(2)

Note that ✓ and � decrease as the sprockets rotates in clockwise direction.

The angle between the two coordinate systems is ⇡+�, where � is given by

� = 2arccos
�
x
c

/|OC|
�
. (3)

The seating and release configurations provides limits for the angles to the

span endpoints. Expressing these limits in the X,Y coordinate system gives

✓
a

2 [✓
as

� 2↵
c

, ✓
as

], (4)

�
a

2 [�
ar

, �
ar

+ 2↵
o

], (5)

✓
b

2 [✓0
br

+ ⇡ + �, ✓0
br

+ ⇡ + � + 2↵
c

], (6)

�
b

2 [�0
bs

+ ⇡ + � � 2↵
o

, �0
bs

+ ⇡ + �]. (7)

These limits will be used to determine the number of rollers seated on the

two sprockets. Expressing the angels to span b in terms of the angles to

span a and integer increments of 2↵ gives

✓
b

= ✓
a

+ 2↵
c

n̂
c

, (8)

�
b

= �
a

+ 2↵
o

ň
o

� 2h↵
o

, (9)
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where the function h ensures that �
b

decrease continuously, as �
a

jumps

discontinuously when a roller is released from the driven sprocket at �
ar

.

In (8)-(9) the total number of sprocket seating curves has been split into

being either free or occupied by a chain roller, i.e.

n = ň+ n̂, ň, n̂ 2 N, (10)

where the number of seating curves with a roller seated is ň and the number

of seating curves with no roller seated is n̂. Substituting (8) into (6) gives

the number of free seating curves on the driver sprocket:

✓0
br

� ✓
a

+ ⇡ + �

2↵
c

 n̂
c


✓0
br

� ✓
a

+ ⇡ + �

2↵
c

+ 1. (11)

Similarly, by substituting (9) into (7) the number of rollers seated on the

driven sprocket can be determined from

�0
bs

� �
a

+ ⇡ + �

2↵
c

� 1 + h  ň
o


�0
bs

� �
a

+ ⇡ + �

2↵
c

+ h. (12)

With n̂
c

determined from (11), the contact angle to the lower span at the

driver sprocket can be determined from (8). The contact angle to the lower

span at the driven sprocket can be determined from (9) with ň
o

determined

from (12) and h given in (2). The total wrapping length of the chain is then

L = l
a

+ l
b

+ (ň
c

+ ň
o

)p, (13)

with l
a

given by (2), ň
c

by (10) and the lower span length calculated from

l
b

=
p

(x
c

+R
c

cos ✓
b

�R
o

cos�
b

)2 + (y
c

+R
c

sin ✓
b

�R
o

sin�
b

)2. (14)

In summary, the total length L of the chain wrapping around both sprockets

was determined by assuming that only span b could deform. Because the

lower span length varies as the sprockets rotate, it has been shown that
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a roller chain drive with tight spans must in general include components

to function. To improve the quantitative estimate of the wrapping length

variation, the deformation of the other chain drive components should be

included, i.e. the deformation of the both spans, and the deformation of

chains wrapped on elastic sprockets [33, 34, 35]. The above analysis serves

as an initial investigation of this e↵ect of polygonal action, which has not

been treated previously. Lastly, the kinematic configuration of all the chain

drive components determined when the wrapping length equals an integer

number of chain pitches is exact. This is useful for initializing e.g. multi-

body simulations of roller chain drives.

3. Example results of the kinematic analysis

Twelve di↵erent chain drive configurations are used to present results

for the calculation of the wrapping length, with ID and properties as listed

in Table 1. For a given pitch length p, number of teeth n
c

, n
o

, span length

given by N and pitch fraction f , the sprocket center positions can be found

from (1). The tight span length l
a

can be determined from (2), and the

total number of links in the chain is given by M . Calculated values for

the minimum, mean and maximum wrapping length obtained from (13) are

presented, all nondimensionalized with the pitch p. Configuration C
1

has

been subject to experimental measurements of ”angular displacement error”

[5] as well as kinematic studies of driven sprocket angular motion [7]. Note

from Table 1, that if both chain spans are to be in tension for a given

configuration, the pitch fraction f cannot be chosen freely.

Figure 2 shows how the wrapping length varies during one tooth period

for the configurations in Table 1. In general, the magnitude of the wrapping
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Table 1: Chain drive configurations

ID n
c

n
o

N M f L
min

/p L
mean

/p L
max

/p

A
1

6 12 4 20 0.3325 20.0020 20.0200 20.0411

A
2

8 28 0.4066 28.0027 28.0162 28.0329

A
3

16 44 0.4516 44.0046 44.0130 44.0236

B
1

12 12 8 31 0.5015 31.0030 31.0032 31.0034

B
2

16 46 0.0024 46.0048 46.0048 46.0048

B
3

24 63 0.5032 63.0064 63.0065 63.0066

C
1

12 18 11 40 0.4302 40.0040 40.0091 40.0149

C
2

22 62 0.4655 62.0066 62.0100 62.0138

C
3

33 84 0.4786 84.0085 84.0110 84.0138

D
1

24 32 16 63 0.4106 63.0064 63.0079 63.0094

D
2

24 79 0.4408 79.0080 79.0095 79.0112

D
3

32 95 0.4569 95.0097 95.0111 95.0126

length variation is seen to decrease as the number of sprocket teeth and

span length is increased. For the special configuration B where n
c

/n
o

= 1,

it is seen from Figure 2(b) that the length variation decreases significantly,

and vanishes completely for configuration B
2

, where the number of links M

equals an even number and f ' 0. Except for configurationsB, the wrapping

length variation resembles a harmonic function, albeit the variations are not

completely symmetric. A time-varying wrapping length demonstrates that

a chain drive with tight spans must generally include compliant components

to function.
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Figure 2: Chain wrapping length variation L�Lmean normalized by pitch p for one tooth

period. Configurations A-D are shown in figures (a)-(d), respectively. The line types (—),

(��) and (� ·�) identify the, short, medium and long span lengths, respectively.

4. Wrap length comparison with multi body simulation

The kinematic analysis is based on a simplified model of a chain drive and

the results describe the motion when deformations, clearances, dissipation

and dynamics are neglected. In order to access the potential similarity with

chain drives in operation, the kinematic results are compared with results

from multibody simulations, which includes both greater detail of the chain

drive geometry and dynamic e↵ects. The multibody simulations are carried

out using a simulation program developed by Pedersen et al. [8], which
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includes a detailed modeling of the tooth geometry and the flexible contact

between teeth and chain rollers [9].

In the multibody model, the mass of the chain is assumed to be lumped

at the roller locations, and the rotational inertia of the rollers about their

centre of gravity is ignored. Springs and dampers with constant sti↵ness and

damping coe�cients model the links. Clearances between pin and bushing

are neglected. Tooth geometry in the simulation program used to produce

the results presented here is Type II per ASA B29.1-1950. For this compar-

ison the chain drive configuration C
1

is used, which has also been analyzed

experimentally [5]. Full details of the simulation parameters are compre-

hensive to present and only the main dynamic parameters are given: Chain

pitch 0.0254m, link sti↵ness 0.221GN/m, link mass 0.066kg, link damp-

ing 0.01Ns/m, driven sprocket rotational inertia 0.046kgm2 and rotational

damping 0.1Nms/rad. The driver angular velocity is constant at 10, 100

and 300 rpm, and the simulations show no significant vibratory response of

the chain spans or driven sprocket at these driver velocities.

Analytical predictions of the wrapping length given by (13) are compared

to the results of multibody simulation and presented in Figure 3. It is seen

that the minimum wrapping length predicted by the kinematic analysis is

in excellent agreement with the simulation results. The wrapping length

variation shows resemblance to harmonic functions, and the simulation and

analytical results are in very good qualitative agreement. Quantitatively,

the kinematic analysis predicts an amplitude of the wrapping length which

is about a two times larger than what is observed in the simulation results.

One reason for this could be that the multibody model allows for indentation

of the rollers into the sprockets. Finally, it is seen that the phenomena

is not limited to quasi static (low speed) operation of the chain drive, as

16

125



the simulation results for 10, 100 and 300 rpm all shows a tooth periodic

variation of the wrapping length. As the driver velocity increases there

is seen to be a slight increase in the minimum wrapping length, and one

explanation for this could be an increased axial tension of the chain due to

centrifugal e↵ects.

0 0.5 1 1.5 2

40.004

40.01

40.016

t/T

L
/
p

Figure 3: Normalized chain wrapping length L/p for configuration C1 for two tooth pe-

riods. Results in broken lines (��), (� · �) and (· · ·) identify results from multibody

simulation at a driver speed of 10, 100 and 300 rpm, respectively. Shown in solid line (—)

is the analytical kinematic prediction for the chain wrapping length.

During installation of real chain drives, i.e. when the drive is stationary

and unloaded, the span tension will depend on the angular position of the

driver sprocket. During operation the axial force is then expected to vary pe-

riodically with the tooth frequency. The e↵ect appears here for chain drives

with only two sprockets, but is also expected for chain drive configurations

with more sprockets and spans, and should also not be limited to low-speed

chain drives. We hypothesize that multiple sprockets can be positioned to

either attenuate or amplify the e↵ect of a variable wrapping length. If this
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is the case, careful positioning of e.g. a tensioner sprocket could possibly

neutralize the e↵ect of a variable wrapping length, and allow for a constant

span tension even for chain drive configurations where the sprockets have

few teeth.

5. Dynamic modeling and analysis

First a model is derived which is capable of representing the coupling be-

tween the chain span transverse vibrations with the driven sprocket angular

vibration. Then we present approximate solutions for the longitudinal dis-

placements, and perform a mode shape expansion leading to coupled equa-

tions of motion of the tight span, the slack span and the driven sprocket.

This resulting 3-DOF model is analyzed using the method of multiple scales,

and three example results are presented.

The tight- and slack chain spans are assumed to have axial tension P, P̃ >

0, respectively, thereby providing elastic coupling across the driven sprocket.

In real applications of roller chain drives such as low speed marine engines,

the roller chain is pretensioned in this way in order to minimize chain span

transverse vibrations. Pretension is achieved by the positioning of a fixed

tightener sprocket, ensuring that all chain spans in the drive are in positive

tension. However, the choice of pretension giving the optimal vibration

suppression at various operating conditions is not well understood, and in

some designs guide-bars must be applied to limit transverse vibrations.

In roller chain drives both ends of the chain spans are subjected to trans-

verse excitation from chain and sprocket meshing. Axial excitation of the

chain span coming from polygonal action, non-uniform motion of the driver

sprocket, and external loading of the driven sprocket will be included.
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Throughout the modeling and analysis we identify prescribed external

forcing to be included in the multiple scales analysis by a star ( )⇤. Whenever

possible, we do not present equations for the slack span, as for P̃ > 0 they

are equivalent to equations for the tight span. Parameters and variables for

the slack span are identified by a tilde (̃ ), and their definitions are equivalent

to the similar variables for the tight span without a tilde.

5.1. Dynamic model

A simple model consisting of two sprockets is considered, with gravity

ignored. The local coordinate systems and definitions of displacements are

shown in Figure 4. The dependent variables U, Ũ , Ŵ , ˆ̃W and ✓
1

are the

displacements measured at a steady state of operation, i.e. the particular

solution of the forced response, calculated when the mean of the input torque

M
2

equals the mean of the output torque M
1

.

The motion of the driving sprocket is assumed to be given, i.e. ✓⇤
2

is a

known function of time. This represents the case where angular motion of

e.g. a crankshaft is given, and the crankshaft kinematically forces the chain

drive, as is relevant with combustion engines, where the chain drive powers

auxiliary equipment requiring only a small fraction of the power required

at the main output. For example with ship propulsion engines, the chain

drive powering the hydraulic pumps is driven directly by the crankshaft, and

consumes only about 1% of the power required for driving the propulsion

propeller.

At steady state the input torque balances the output torque, such that

there is no net transient acceleration and change of velocity of the drive.

This is equivalent to the chain drive operating at nominal angular velocity

[24]. Assuming the initial total span (pre)tension P
tot

= P
pre

+ P̃
pre

at zero
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Figure 4: Mechanical model of a chain drive system with two sprockets

external load and zero angular velocity to be known, as well as the nominal

span velocity S and input torque M̂
2

, the longitudinal forces at steady state

operation are, for the upper and lower spans

P
0

= 1

2

(P
tot

+ M̂
1

/R
1

), (15)

P̃
0

= 1

2

(P
tot

� M̂
1

/R
1

). (16)

The output torque M̂
1

can me modeled as comprised of a constant (brake)

load f̂
1

, rotational viscous damping d̂
1

, and a time dependent torque M̂⇤
1

(t),

where t is time

M̂
1

= d̂
1

S/R
1

+R
1

f̂
1

+ M̂⇤
1

. (17)

For M̂⇤
1

= 0 (15)-(16) with (17) demonstrate how the nominal tension of

the chain spans varies with initial pretension, operating speed, and constant

external load. Centrifugal forces are not included in this model, which could

be relevant for high-speed roller chain drives, and we note that chain wear

corresponds to a reduction of P
tot

.
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In the following section, the equations of motion for the chain spans are

derived using Hamiltons principle. For the driven sprocket, the equation of

motion will be derived using Newtons 2nd law. The governing equations are

formulated such that the driven sprocket motion couples the tight and slack

span motion through their boundary conditions.

5.2. Equation of motion for the chain spans

The roller chain is modeled as an axially moving string supported by

moving boundaries, as illustrated in Figure 5. The coordinate system X,Y

is inertial and the moving string endpoint displacements are prescribed from

the axial positions X
1

(T ) and X
2

(T ). In a chain drive, the chain span

travels in the axial direction with the span endpoint constituted by the

rollers seated on the rotating sprocket which has a neighboring roller in the

free span. As the sprockets rotate, chain links recurrently enter and leave

the span. Therefore the positions of the span endpoints from which the

displacements are prescribed moves instantly at these events cf. Figure 1.

Consequently, the amount of string material within the boundaries varies,

as we see from the periodically varying span length given by (2) for the tight

span. To model this, it is necessary to allow the position from which the

span endpoint displacements are prescribed from to be functions of time;

X
1

(T ) and X
2

(T ) models this. Between the seating and release events, the

distance X
2

(T ) � X
1

(T ) equals the span length, and the boundaries move

in the positive x-direction at nominal speed S � 0.

From the moving span endpoint axial positions X
1

, X
2

, we denote the

span endpoint longitudinal displacements by U
1

(T ), U
2

(T ), respectively. In

the transverse direction, the string endpoint displacements are given by

Y
1

(T ), Y
2

(T ).
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Figure 5: Axially moving chain span supported by moving boundaries

The string is assumed to have constant axial sti↵ness EA and mass per

unit length ⇢A, and is subjected to axial tension P > 0. Longitudinal and

transverse displacements of the string are denoted by U(X,T ) and Ŵ (X,T ),

respectively, while out of plane motion is not considered. Both longitudinal

and transverse displacements is possible at the moving span endpoints, i.e.

the boundary conditions are inhomogeneous:

U(X
1

(T ), T ) = U
1

(T ), U(X
2

(T ), T ) = U⇤
2

(T ) (18)

Ŵ (X
1

(T ), T ) = Y
1

(T ), Ŵ (X
2

(T ), T ) = Y
2

(T ). (19)

Kinematic forcing from the angular motion of the driver sprocket is assumed

prescribed and identified by a star, U⇤
2

.

The axial and transverse velocity components are U,
T

+S(1 +U,
X

) and

Ŵ ,
T

�SŴ ,
X

, respectively. With this, the kinetic energy of the string is

K(T ) =
⇢A

2

Z
X2(T )

X1(T )

⇣�
U,

T

+S(1 + U,
X

)
�
2

+
�
Ŵ ,

T

�SŴ ,
X

�
2

⌘
dX. (20)

Since X
2

(T )�X
1

(T ) is not constant for all T , the amount of string material

within the boundaries varies, and we can investigate the e↵ect of a chain

span having a time-varying length. When P
0

is the mean over time of the

axial force P , the mean axial strain is e
0

= P
0

/EA, and the total strain is
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e
0

+ e(X,T ). The approximate nonlinear measure for the dynamical strain

is [15]:

e(X,T ) = U,
X

+1

2

Ŵ ,
X

. (21)

Using this, the potential energy associated with elastic string deformation

is

V (T ) =
EA

2

Z
X2(T )

X1(T )

✓
P
0

EA
+ U,

X

+1

2

Ŵ ,2
X

◆
dX, (22)

where K(T ) and V (T ) are most accurate when |Ŵ ,
X

| = |U,
X

| = O("),

" ⌧ 1 and U = O(Ŵ 2), such that nonlinear strain deriving from U is

negligible. The equations of motion and the associated boundary conditions

can be derived using Hamilton’s principle,

�

Z
T2

T1

(K � V )dT = 0. (23)

By specifying the motion at the boundaries, and requiring the virtual

displacements to be kinematically admissible, the displacement variations

at the boundaries where motion is prescribed is zero; this ensures that the

virtual work done at either boundary is zero [36]. The actual work done by

the boundaries is not zero, and not required to be [37]. The total mechan-

ical energy is not constant, even for fixed boundary conditions [38]. But

the application of Hamiltons principle presupposes the applied forces to be

derivable from a potential; it does not require constant energy. Non-constant

energy is usually associated with damping (or external non-potential forces),

but there are no dissipative forces in the system so far, and the equations of

motion can be derived using (23).

Since the limits of integration in (20) and (22) are time dependent, the

usual process of deriving the governing equations [10] using integrations

by parts is not possible, and the use of Leibniz rule for di↵erentiation of
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integrals is required, as in [39]. This gives:

⇢A(U,
TT

+2SU,
XT

+S2U,
XX

)� EA(U,
X

+1

2

Ŵ ,2
X

),
X

= 0, (24)

⇢A(Ŵ ,
TT

+2SŴ ,
XT

+S2Ŵ ,
XX

)� EA
�
Ŵ ,

X

(U,
X

+1

2

Ŵ ,2
X

+
P
0

EA
)
�
,
X

= 0,

(25)

with boundary conditions given by (18)-(19). The functions U
1

(T ) and

U⇤
2

(T ) relates to the non-constant angular motion of the driven and driver

sprockets, respectively; U⇤
2

(T ) is assumed to be given, and U
1

(T ) will be

formulated in terms of the angular displacements of the driven sprocket in

section 5.5. Equations (24)-(25) are non-dimensionalized with all lengths

measured relative to the length l,

(x, u, ŵ, x
1

, x
2

, y
1

, y
2

) =
(X,U, Ŵ ,X

1

, X
2

, Y
1

, Y
2

)

l
, (26)

where l = |OC|, and time is non-dimensionalized by the fundamental fre-

quency of a fixed-fixed string of length l under constant axial tension P
t

,

t =

s
P
t

⇢Al2
T. (27)

Here we do not specify P
t

, as the convenient choice for P
t

depends on the

object of the analysis; e.g. engine builders usually normalize to the driver

frequency, in which case P
t

can be chosen accordingly. The corresponding

non-dimensional equation of motion for the transverse motions ŵ of the tight

span becomes

ŵ,
tt

+2sŵ,
xt

+s2ŵ,
xx

�↵
�
ŵ,

x

(u,
x

+1

2

ŵ,2
x

+�)
�
,
x

= 0, (28)

while longitudinal motions u of the tight span are governed by

u,
tt

+2su,
xt

+s2u,
xx

�↵(u,
x

+1

2

ŵ,2
x

),
x

= 0, (29)
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where dimensionless parameters have been introduced as

s =
Sq
P

t

⇢A

, ↵ =
EA

P
t

, � =
P
0

EA
, �̃ =

P̃
0

EA
. (30)

Note that, if P
t

= P , then ↵� = 1 and ↵�̃ = P̃ /P . The non-dimensional

boundary conditions are

ŵ(x
1

(t), t) = y
1

(t), ŵ(x
2

(t), t) = y
2

(t), (31)

u(x
1

(t), t) = u
1

(t), u(x
2

(t), t) = u⇤
2

(t), (32)

where u
1

depends on the driven sprocket angular displacements and u⇤
2

is

given by the driving sprocket angular displacements.

5.3. Solution for the longitudinal displacement and axial tension

The transverse wave speed for at roller chain under axial tension P
0

and

mass per unit length ⇢A is c
w

=
p

P
0

/⇢A. The natural frequencies of a

stationary (s = 0) fixed-fixed string with length l are f
n

= nc
w

/2l, n =

1, 2, . . .. Assuming EA and ⇢A to be constant, the longitudinal wave speed

is c
u

= EA/⇢A. The analysis is restricted to roller chain spans operating

under low or moderate loads, and with a maximum allowable tension P
max

being small compared to the axial sti↵ness EA. The longitudinal waves

propagate much faster than the lower transverse waves, and the influence of

longitudinal inertia is small. Under this assumption the axial force is only

time dependent, i.e. N,
x

= 0.

The instantaneous axial tension N can be identified from (28) as the

coe�cient to ŵ,
xx

:

N(x, t) = ↵(u,
x

+1

2

ŵ,2
x

+�)� s2. (33)
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Using N,
x

= 0 gives

(u,
x

+1

2

ŵ,2
x

),
x

= 0, (34)

which shows that the strain is also constant along the axial direction, e,
x

=

0. Integrating (21) with the boundary conditions (32), the axial dynamic

dynamic strain becomes:

e(t) =
u⇤
2

(t)� u
1

(t) + 1

2

R
x2(t)

x1(t)
ŵ,2

x

dx

x
2

(t)� x
1

(t)
. (35)

Integrating (21) from x
1

(t) to x gives the solution for the axial displacement

u(x, t) = u
1

(t) + e(t)
�
x� x

1

(t)
�
� 1

2

Z
x

x1(t)

ŵ,2
x

dx. (36)

Which shows how u depends nonlinearly on the transverse motion ŵ,
x

. The

axial force is then given by

N(t) = ↵
�
e(t) + �

�
� s2, (37)

which becomes useful when deriving the equation of motion for the driven

sprocket.

5.4. Obtaining homogeneous boundary conditions for the transverse motion

To obtain homogeneous boundary conditions we employ a linear trans-

formation

ŵ(x, t) = w(x, t) + y
1

(t)
�
1� x

�
+ y

2

(t)x. (38)

Substituting into (28) and (35) for the dynamic strain, the equation of trans-

verse motion becomes

w,
tt

+2sw,
xt

�(↵��s2)w,
xx

�↵e(t)w,
xx

= �y,
tt

(1�x)�y
2

,
tt

�2s(y
2

,
t

�y
1

,
t

),

(39)
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with boundary conditions

w
�
x
1

(t), t
�
= 0, w

�
x
2

(t), t
�
= 0. (40)

Although homogeneous, the boundary conditions are specified from a mov-

ing position. For roller chain drives the change in span endpoint position

is small compared to the span length; it is therefore reasonable to limit the

analysis to small axial variations of the support positions. They are assumed

to be of the form

x
1

(t) = "�x
1

(t), x
2

(t) = 1 + "�x
2

(t), (41)

where " ⌧ 1 denotes smallness of terms. Taylor expanding the boundary

conditions (40) around x = 0 and x = 1 gives

w(x
1

(t), t) = w(0, t) + "�x
1

(t)w(0, t),
x

+O("2) (42)

w(x
2

(t), t) = w(1, t) + "�x
2

(t)w(1, t),
x

+O("2). (43)

When deriving the kinetic and potential energies it was used that |U,
x

| =

|Ŵ ,
x

| = O("), which is fulfilled when |w,
x

| = O("). Then (42)-(43) reduce

to

w(x
1

(t), t) = w(0, t) +O("2), (44)

w(x
2

(t), t) = w(1, t) +O("2). (45)

For roller chain drives the transverse displacements of the chain span end-

points is also small compared to the span length, and it is reasonable to

specify the displacements of the boundaries to satisfy |y
2

� y
1

| = O(") and

|x
1

� x
2

| = O(1). Then the dynamic strain (35) reduces to

e(t) = u⇤
2

� u
1

+ 1

2

Z
1

0

w,2
x

dx+O("2), (46)
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and the equation of motion for the transverse motion of the tight span

becomes

w,
tt

+2sw,
xt

�(↵� � s2)w,
xx

�"↵
⇣
u⇤
2

� u
1

+ 1

2

Z
1

0

w,2
x

dx
⌘
w,

xx

= �y
1

,
tt

(1� x)� y
2

,
tt

x� 2s(y
2

,
t

�y
1

,
t

) +O("2). (47)

with boundary conditions

w(0, t) = 0 +O("2), (48)

w(1, t) = 0 +O("2). (49)

Thus, the e↵ect of boundary positions moving in the axial and transverse

direction by a small amount O(") leads to a second order e↵ect in the equa-

tion of motion and boundary conditions for transverse vibrations of the chain

span.

5.5. Driven sprocket equation of motion

For the driven sprocket it is assumed that the sprocket center is fixed

such that only rotation around the sprocket center is possible. The equation

of motion can be obtained using Newton’s second law, which gives

Ĵ
1

✓
1

,
TT

+d̂
1

✓
1

,
T

= R
1

(N � Ñ) + M̂
1

, (50)

where Ĵ
1

is the mass moment of inertia for the driven sprocket and attached

machinery, d̂
1

is the coe�cient of viscous rotational damping of sprocket

motion, M̂
1

, is the externally applied torque, and N, Ñ are the axial reaction

forces from the upper and lower chain span, respectively. Assuming a purely

kinematic relationship between the sprocket angular displacements ✓
1,2

⇤ and

the span endpoint longitudinal displacements u
1,2

⇤ allows us to write

✓
1

=
l

R
1

u
1

, ✓⇤
2

=
l

R
2

u⇤
2

. (51)
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Inserting this, and using (27) and (33) gives

J
1

u
1

,
tt

+d
1

u
1

,
t

= ↵

✓
u,

x

+1

2

ŵ,2
x

+� � s2

↵

◆
� ↵

✓
ũ,

x

+1

2

ˆ̃w,2
x

+�̃ � s2

↵

◆
+M

1

,

(52)

where

J
1

=
Ĵ
1

⇢AlR2

1

, d
1

=
d̂
1

R2

1

p
⇢AP

t

, M
1

=
M̂

1

R
1

P
t

. (53)

When the mean axial forces P and P̃ in (30) are chosen such that they

balance the nominal output torque (17), (52) reduces to

Ju
1

,
tt

+du
1

,
t

= ↵(u,
x

+1

2

ŵ, x2)� ↵(ũ,
x

+1

2

ˆ̃w,2
x

) +M⇤
1

(t), (54)

where M⇤
1

(t) is the time dependent driven sprocket torque with zero mean.

The two terms multiplied by ↵ can be recognized to be the dynamic axial

strains of the upper and lower spans. Under the already made assumptions of

e,
x

= 0 and small endpoint displacements these are given by (46). Assuming

rigid connection of the upper and lower span across the sprocket, i.e.

u
1

= �ũ
1

, u⇤
2

= �ũ⇤
2

, (55)

and inserting the dynamic strains given by (46), using (55) to eliminate

ũ
1

, ũ
2

, (54) becomes

Ju
1

,
tt

+du
1

,
t

+2↵u
1

= 2↵u⇤
2

+
↵

2

Z
1

0

(w,2
x

�w̃,2
x

)dx+M⇤
1

(t). (56)

This is an inhomogeneous ordinary second order di↵erential equation for

the driven sprocket angular displacements u
1

measured from steady state

operating conditions. The equation is nonlinearly coupled to the upper and

lower span transverse displacements w and w̃.
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5.6. Mode shape expansion

Because the main focus is to study the coupling between the two spans

and the driven sprocket it is chosen to use stationary mode shapes for the

discretization of the equations governing the transverse vibrations of the

string. As noted in the introduction, using complex mode shapes provides a

better basis for estimating parametric instability. However, to simplify the

algebra and produce results which are more easily interpreted, and still valid

at lower speeds s, (47) is discretized using the standard Galerkin method

with test functions chosen as mode shapes for transverse vibrations of an

axially non-moving uniform string:

w(x, t) =
NX

n=1

⇠
n

(t)�
n

(x), �
n

(x) = sinn⇡x. (57)

Following the standard Galerkin procedure, the equation governing the modal

amplitudes ⇠
m

, m = 1, 2, . . . , N becomes

⇠
m

,
tt

+2sC
mn

⇣
m

,
t

+(↵��s2)(m⇡)2⇠
m

+↵(m⇡)2
⇣
u⇤
2

�u
1

+1

4

NX

n=1

⇠2
n

(n⇡)2
⌘
⇠
m

= �(y
1

,
tt

�2s(y
2

,
t

�y
1

,
t

))G
m

+ (y
1

,
tt

�y
2

,
tt

)E
m

, (58)

where

C
mn

=
2mn (1� (�1)m+n)

m2 + n2

, G
m

=
2 (1� (�1)m)

m⇡
, E

m

=
�2(�1)m

m⇡
. (59)

It is seen here that the non-linear term introduces modal coupling. The

Coriolis term (with C
mn

) will only be included with an expansion including

an even and an odd mode.

5.7. Single mode approximation

For the purpose of this analysis, where there is modal coupling between

the tight and slack span, only a single mode expansion will be used for
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each span. For a single m mode, the equation for the corresponding modal

coordinate becomes:

⇠
m

,
tt

+2µ
m

⇠
m

,
t

+!2

m

⇠
m

+ "↵
m

�
u⇤
2

� u
1

+ p⇤
o

(t)
�
⇠
m

+ "
m

⇠3
m

= �(y
1

,
tt

�2s(y
2

,
t

�y
1

,
t

))G
m

+ (y
1

,
tt

�y
2

,
tt

)E
m

, (60)

where

!2

m

= (↵� � s2)(m⇡)2, ↵
m

= (m⇡)2↵, 
m

= 1

4

(m⇡)4↵, (61)

linear modal damping with coe�cient 2µ
m

has been added, and axially

varying tension coming from the varying wrapping length as specified by

the function p⇤
o

(t) has been included.

5.8. Modeling transverse excitation

The span endpoint positions y
1

, y
2

follows curves which resemble a cy-

cloid. At the instant where a roller enters (or leaves) the chain span, the

projections of the nominal tangential velocity s in the y-direction changes

discontinuously, cf. Figure 1. Therefore, the endpoint transverse velocities

are non-smooth in time, and the span endpoint accelerations also jumps

discontinuously in time, which leads to impulsive loading of the chain spans

from meshing. The external non-dimensional modal forcing f
m

depends on

the transverse velocity and acceleration of the span endpoints, and is given

by the right hand side of (60):

f
m

(t) = �(y
1

,
tt

�2s(y
2

,
t

�y
1

,
t

))G
m

+ (y
1

,
tt

�y
2

,
tt

)E
m

, (62)

where G
m

= 0 for m even, while E
m

6= 0 for all m. To represent the

impulsive loading at the span endpoints, the acceleration jumps are modeled
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using Dirac pulse trains,

y
1

,
tt

=
1X

j=�1
Q

1

�(t� j⌧
o

), y
2

,
tt

=
1X

j=�1
Q

2

�(t� ( + j)⌧
o

), (63)

where ⌧
o

=
p

P
t

/⇢Al2(n
2

f
2

)�1 is the non-dimensional tooth period, f
2

is the

driver frequency in Hz, and n
2

the number of teeth on the driver sprocket.

The acceleration jump at the driven sprocket Q
1

occurs at the instant where

a roller is released from the sprocket. Similarly, the acceleration jump Q
2

occurs at the instant where a roller seats on the driver sprocket. The Dirac

pulses of the two endpoint accelerations are separated in time by a phase

 , which relates to the shaft center distance, specifically the pitch fraction

f [7]. Assuming the span to remain straight, the relative velocities between

two neighbouring rollers at the instant of seating and release, respectively,

are given by

Q
1

= 2s sin↵
1

=
sp

R
1

, Q
2

= 2s sin↵
2

=
sp

R
2

, (64)

where ↵
1

,↵
2

are the pitch angles, R
1

, R
2

are the pitch circle radius, p is

the pitch length, and it has been used that R
1

= p/(2 sin↵
1

) and R
2

=

p/(2 sin↵
2

). The same relative velocities are used in [32] for the study

of impact between a roller seating at the driver sprocket. It is seen from

(64) that increased sprocket radius, shorter pitch length and lower velocities

reduce the endpoint acceleration discontinuities. Assuming the acceleration

terms to be dominating, the terms proportional to s are neglected in (62),

and the approximation of the modal forcing becomes

f
m

(t) = (E
m

�G
m

)
1X

j=�1
Q

1

�(t� j⌧
o

)�E
m

1X

j=�1
Q

2

�(t� ( + j)⌧
o

). (65)
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Since the forcing is time-periodic, it can be written as a (complex-valued)

Fourier series,

f
m

(t) =
1X

p=�1
k
p

ei2⇡pt/⌧o , (66)

where

k
p

=
1

⌧
o

�
(E

m

�G
m

)Q
1

� E
m

Q
2

e�i2⇡p 

�
. (67)

The Fourier coe�cients have the same value for all p, due to the properties

of the Dirac pulse train. The coe�cient k
m

is complex, due to the phase  

and forcing can be obtained as the real part of (66). For high-speed drives,

the loading coming from Q
2

will be dominant, as intertial forces reduce

the discontinuous velocity jump at the driven sprocket. The approximate

forcing introduced here is suitable for the purpose of investigating the tooth-

periodic impulsive loading inherent to chain drives; shown here to lead to

multi-frequency external transverse excitation.

5.9. Multiple scales perturbation analysis

The vibrations of the chain spans and the driven sprocket are governed

by coupled non-linear equations. To analyze the dynamics of this system the

Method of Multiple Scales is employed. This relies on the sorting of terms

into orders of magnitude, and the results and solution procedure depends on

this ordering. Here, aiming at identifying and analyzing possible resonance

conditions, we assume damping, parametric coupling and excitation to be

weak, as well as non-linearity, and the forcing on the chain spans from

impact loading. Under these assumptions, with smallness of terms identified

by a book keeping parameter "⌧ 1, the governing equations for transverse

vibrations of the upper and lower span given by (60) with external forcing
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(66), and rotational vibrations of the driven sprocket (56) are:

⇠
m

,
tt

+2"µ
m

⇠
m

,
t

+!2

m

⇠
m

+ "↵
m

�
u⇤
2

� u
1

+ p⇤
o

(t)
�
⇠
m

+ "
m

⇠3
m

= "
1X

j=�1
k
m

eij⌦o

t, (68)

⇠̃
n

,
tt

+2"µ̃
n

⇠̃
n

,
t

+!̃2

n

⇠̃
m

+ "↵̃
n

�
u
1

� u⇤
2

+ p⇤
o

(t)
�
⇠̃
n

+ "̃
n

⇠̃3
n

= "
1X

j=�1
k̃
n

eij⌦o

t+�, (69)

u
1

,
tt

+2"µ
✓

u
1

,
t

+!2

✓

u
1

+ "⌘
n

⇠̃2
n

� "⌘
m

⇠2
m

= "!2

✓

u⇤
2

+ "M⇤
1

J�1, (70)

where (57) has been inserted in (56), ⌦
o

= 2⇡/⌧
o

, a phase � 2 [0, ⌧
o

] has

been introduced between the upper and lower span external loading (which

depends on the chain drive configuration), and

2µ
✓

=
d

J
, !

✓

=

r
2↵

J
, ⌘

m

=
↵(m⇡)2

4J
, ⌘̃

n

=
↵(n⇡)2

4J
. (71)

We seek solutions in the form of uniformly valid expansions:

⇠
m

(t) = q
0

(T
0

, T
1

) + "q
1

(T
0

, T
1

) +O("2), (72)

⇠̃
n

(t) = q̃
0

(T
0

, T
1

) + "q̃
1

(T
0

, T
1

) +O("2), (73)

u
1

(t) = ⌫
0

(T
0

, T
1

) + "⌫
1

(T
0

, T
1

) +O("2), (74)

where T
0

= t and T
1

= "t is the slow time. Substituting into (68)-(70) and

equating to zero like powers of " gives, to order "0:

D2

0

q
0

+ !2

m

q
0

= 0, (75)

D2

0

q̃
0

+ !̃2

n

q̃
0

= 0, (76)

D2

0

⌫
0

+ !2

✓

⌫
0

= 0, (77)
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where Di

i

⌘ @j/@T j

i

, and to order "1:

D2

0

q
1

+ !2

m

q
1

= �2D
0

D
1

q
0

� 2µ
m

D
0

q
0

+ ↵
m

(⌫
0

� u⇤
2

+ p⇤
o

(T
0

))q
0

� 
m

q3
0

+
1X

j=�1
k
m

eij⌦o

t, (78)

D2

0

q̃
1

+ !̃2

n

q̃
1

= �2D
0

D
1

q̃
0

� 2µ̃
n

D
0

q̃
0

+ ↵̃
n

(u⇤
2

� ⌫
0

+ p⇤
o

(T
0

))q̃
0

� ̃
n

q̃3
0

+
1X

j=�1
k̃
n

eij⌦o

t+�, (79)

D2

0

⌫
1

+ !2

✓

⌫
1

= �2D
0

D
1

⌫
0

� 2µ
✓

D
0

⌫
0

+ ⌘
m

q2
0

� ⌘̃
n

q̃2
0

+ !2

✓

u⇤
2

+M⇤
1

/J. (80)

The general solutions to (75)-(77) are

q
0

= A(T
1

)ei!m

T+ + cc, (81)

q̃
0

= Ã(T
1

)ei!̃n

T+ + cc, (82)

⌫
0

= V (T
1

)ei!✓

T0 + cc, (83)

where the unknown functions A, Ã, V are complex functions of slow time to

be determined, and cc complex conjugates of preceeding terms.

So far, the parametric excitation p⇤
o

(t), the kinematic forcing of the driver

sprocket u⇤
2

(t) and the external excitation of the driven sprocket M⇤
1

(t) has

been assumed to have a zero mean, but otherwise arbitrary. Assuming each

of them to be mono-frequency harmonic,

p⇤
o

= p
0

cos(⌦
0

T
0

), (84)

M⇤
1

/J = p
1

cos(⌦
1

T
0

), (85)

u⇤
2

= p
2

cos(⌦
2

T
0

), (86)
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and substituting (81)-(83) into (78)-(80), gives

D2

0

q
1

+ !2

m

q
1

=
1

2
k
m

� (2i!
m

A0 + 2iµ
m
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p
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m

A3e3i!m
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1X
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t + cc (87)
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n
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n

Ã+ 3̃
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Ã2 ˜̄A)ei!̃n
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(ÃV ei(!̃n
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✓

)T0) + ˜̄AV ei(!✓

�!̃
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)T0)
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2
↵̃
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p
2

(Ãei(⌦2+!̃n

)T0 + ˜̄Aei(⌦2�!̃n

)T0)

+
1

2
↵̃
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p
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(Ãei(⌦0+!̃n
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)T0)

� ̃
n

Ã3e3i!̃n

T0 +
1X

j=1

k̃
n

ei(j⌦o

t+�) + cc (88)

D2

0

⌫
1

+ !2

✓

⌫
1

= ⌘
m

AĀ� ⌘
n

Ã ˜̄A� (2i!
✓

)V 0 + 2iµ
✓

!
✓

V )ei!✓

T0

+ ⌘
m

A2ei2!m

T0 � ⌘̃
n

Ã2ei2!̃n

T0 +
1

2
!2

✓

p
2

ei⌦2T0 +
1

2
p
1

ei⌦1T0 + cc (89)

The external sources of parametric excitation of the spans are from p
0

and

p
2

. When p
1

= 0 and p
0

6= 0 there will be parametric excitation of the

spans, and the driven sprocket is only forced by span transverse vibration.

When p
1

6= 0 or p
2

6= 0, there is parametric excitation of the spans and

also direct excitation of the driven sprocket. To proceed with the solution

of the coupled equations (87)-(89) it is necessary to identify resonant terms
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for each equation. For (87), certain right hand terms are resonant to the

homogeneous part under conditions of:

External resonance: j⌦
0

⇡ !
m

,

Primary parametric resonance: ⌦
2

⇡ 2!
m

and/or ⌦
0

⇡ 2!
m

, (90)

Internal two-to-one resonance: !
✓

⇡ 2!
m

.

Similarly for (88):

External resonance: j⌦
0

⇡ !̃
n

,

Primary parametric resonance: ⌦
2

⇡ 2!̃
n

and/or ⌦
0

⇡ 2!̃
n

, (91)

Internal two-to-one resonance: !
✓

⇡ 2!̃
n

,

and for (89):

External resonance: ⌦
2

⇡ !
✓

and/or ⌦
1

⇡ !
✓

,

Primary parametric resonance: ⌦
2

⇡ 2!̃
n

and/or ⌦
0

⇡ 2!̃
n

, (92)

Internal two-to-one resonance: 2!̃
n

⇡ !
✓

and/or 2!
m

⇡ !
✓

.

Thus, a multitude of resonance - and combined resonance cases exists, which

involves one, two or all three degrees of freedom q
1

, q̃
1

, and ⌫
1

. Note that

for e.g. the tight span motion q
1

, primary parametric and external reso-

nance coming from polygonal action (p
0

and k
m

terms) cannot exist simul-

taneously, since primary parametric resonance requires ⌦
0

⇡ !
m

, in which

case the external forcing is has frequency j⌦
0

⇡ j2!
m

, i.e. non-resonant.

Primary parametric resonance of both spans simultaneously is practically

possible when there is no torque on the driven sprocket, as in the case of a

guide or coupler sprocket; under these conditions the natural frequency of

the two spans will be nearly identical, and coupling could occur across the
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driven sprocket if it is compliant. This case, as well as resonant transverse

span excitation (k
m

terms), possibly in combination with other resonant

excitations, are left for future studies.

In the following we investigate three resonance cases which are of practi-

cal interest, but also demonstrate how the motions (de)couple in this model;

primary parametric resonance of the tight span is treated first, then external

resonance of the driven sprocket, and lastly, the two cases combined, i.e. pri-

mary parametric resonance of the tight span along with internal resonance

of the driven sprocket.

5.10. Primary parametric resonance of the tight span

This example is relevant, since it demonstrates how decoupled transverse

vibration of a single chain span, coming from a harmonic variation of axial

tension leading to parametric resonance, could be realized in a real roller

chain drive. We consider primary parametric resonance of the tight span

q
1

coming from p
2

. There are no other external or internal resonances, and

the tight and slack span are detuned such that !
m

is away from !̃
n

. For

the external forcing coming from p
2

, the nearness to primary parametric

resonance of the tight span is quantified by a detuning parameter �
2

, such

that

⌦
2

= 2!
m

+ "�
2

, (93)

Inserting into (87)-(89) and requiring secular terms to vanish gives the solv-

ability conditions:

2i!
m

(A0 + µ
m

A) + 3
m

A2Ā+ 1

2

↵
m

p
2

Āei�2T1 = 0, (94)

2i!̃
n

(Ã0 + µ̃
n

Ã) + 3̃
n

Ã2 ˜̄A = 0, (95)

2i!
✓

(V 0 + µ
✓

V ) = 0, (96)
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where a prime denotes di↵erentiation with respect to T
1

. Letting

A = 1

2

aei', a,' 2 R, (97)

Ã = 1

2

ãei'̃, ã, '̃ 2 R, (98)

V = 1

2

vei⇢, v, ⇢ 2 R, (99)

and substituting first into (94) gives, when separating real and imaginary

parts:

a0 = �µ
m

a� 1

4!
m

↵
m

p
2

a sin 
2

, (100)

 0
2

= �
2

� 3

4!
m


m

a3 +
1

2!
m

↵
m

p
2

cos 
2

, (101)

where

 
2

= �
2

T
1

� 2'. (102)

Substituting (102), (97) and (93) into (72), then gives

⇠
m

= a cos(1
2

⌦
0

T
0

+ 1

2

 
2

) +O("), (103)

from which it is seen, that in seeking a stationary response of ⇠
m

where the

amplitude and phase does not change, we must require a0 =  0
2

= 0. In this

case (100)-(101) has a trivial solution

a = 0, cos( 
2

) =
2�

2

!
m

↵
m

p
2

, (104)

that is, a solution exists for which the span does not vibrate. A non-trivial

solution also exists:

a2 =
4!

m

3
m

✓
�
2

±
r⇣↵

m

p
2

2!
m

⌘
2

� 4µ2

m

◆
, tan 

2

=
2µ

m

4!

m

a

2

3

m

� �
2

, (105)

when the following conditions are fulfilled,

⇣↵
m

p
2

2!
m

⌘
2

� 4µ2

m

and �
2

±
r⇣↵

m

p
2

2!
m

⌘
2

� 4µ2

m

� 0. (106)
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For the solution of Ã we substitute (98) into (95) and readily solve to find:

ã = ã
0

e�µ̃

n

T1 , (107)

'̃ = '̃
0

� 3̃
n

ã2
0

µ̃
n

T
1

e�2µ̃

n

T1 , (108)

where ã
0

and '̃
0

are arbitrary real-valued constants. Equation (107) shows

that ã ! 0 as T
1

! 1, since µ̃
n

> 0, and consequentially ⇠̃
n

remain small

under the specified loading conditions. For the driven sprocket (96) gives

the solution

v = v
0

e�µ

✓

T1 , (109)

⇢ = ⇢
0

, (110)

where v
0

and ⇢
0

are arbitrary real-valued constants. Here equation (109)

shows that v ! 0 as T
1

! 1, since µ
✓

> 0. Therefore also the driven

sprocket angular displacements u
1

remain small under the specified loading

conditions.

Inserting (102) and (93) in (97)-(99) and substituting according to (93) in

the oscillatory terms of (88)-(89) the solutions to (81)-(83) can be expressed

as

⇠
m

= a cos(1
2

⌦
0

T
0

+ 1

2

 
2

) + "

"
k
m

!2

m

+
↵
m

p
2

a

16!2

m

cos(3
2

⌦
0

T
0

� 1

2

 
2

)

+
↵
m

p
0

a

⌦
0

(2!
m

� ⌦
0

)
cos((⌦

0

+ 1

2

⌦
2

)T
0

� 1

2

 
2

)

� ↵
m

p
0

a

⌦
0

(2!
m

+ ⌦
0

)
cos((⌦

0

� 1

2

⌦
2

)T
0

+ 1

2

 
2

)

+

m

a3

4!2

m

cos(3
2

(⌦
2

T
0

�  
2

))

+
1X

j=1

2k
m

!2

m

� (j⌦
0

)2
cos(j⌦

o

T
0

)

#
+O("2), (111)
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⇠̃
n

= "

"
k̃
n

!̃2

n

+
1X

j=1

2k̃
n

!̃2

n

� (j⌦
0

)2
cos(j⌦

0

T
0

+ �)

#
+O("2), (112)

u
1

= "

"
2⌘

m

a2

!2

✓

+
2⌘

m

a2

!2

✓

� ⌦2

2

cos(⌦
2

T
0

�  
2

)

+
!2

✓

p
2

!2

✓

� ⌦2

2

cos(⌦
0

T
0

) +
p
1

!2

✓

� ⌦2

1

cos(⌦
1

T
0

)
i
+O("2). (113)

By assuming the external excitation of the driven sprocket coming from p
2

to be non-resonant and of order O("), as prescribed by the term "!2

✓

u
2

in

(70), we in e↵ect render the driven sprocket with a zero vibratory response,

i.e. the driven sprocket is not compliant to the driver sprocket excitation.

For this to hold in the case where the external excitation of the driven

sprocket coming from p
2

is not weak, but O(1), the frequencies ⌦
2

and !
✓

should be so far apart that the driven sprocket forced response given by

!2

✓

p
2

/(!2

✓

� ⌦2

2

) cos(⌦
2

T
0

) becomes O("). With this we have demonstrated

under which conditions span vibrations decouple from the remaining system,

with the response being similar to the decoupled motion of an axially moving

string.

5.11. Primary external resonance of driven sprocket

During normal operation of a real chain drive, the nominal (angular) ve-

locity varies according to the desired operating conditions. As the excitation

from the driver is often period with the driver nominal angular velocity, it is

relevant to examine the case where the external excitation is near-resonant

to the driven sprocket, ⌦
2

⇡ !
✓

. The other direct and parametric excitations

are assumed non-resonant. To describe the nearness of external resonance,

we introduce the detuning parameter �
✓

by

!
✓

= ⌦
2

+ "�
✓

. (114)
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Inserting into (87)-(89) and requiring secular to terms vanish we obtain the

solvability conditions,

2i!
m

(A0 + µ
m

A) + 3
m

A2Ā = 0, (115)

2i!̃
n

(Ã0 + µ̃
n

Ã) + 3̃
n

Ã2 ˜̄A = 0, (116)

2i!
✓

(V 0 + µ
✓

V )� 1

2

!2

✓

p
2

e�i�

✓ = 0, (117)

which are decoupled. Equations (115) and (116) have the same form as (95),

thus the response for ⇠
m

and ⇠̃
n

will decay to zero in the stationary state.

Inserting (99) into (117), and introducing

 
✓

= �
✓

T
1

+ ⇢, (118)

the modulation equations becomes

v0 = �µ
✓

v � 1

2

!
✓

p
2

sin 
✓

, (119)

v 0
✓

= v�
✓

� 1

2

!
✓

p
2

cos 
✓

. (120)

Back substitution as in the previous case gives ⌫
0

= v cos(⌦
2

T
0

+  
✓

), from

which we require v0 =  0
✓

= 0 for stationary solutions. Using this in (119)-

(120) we note that v = 0 is not a solution, and the stationary amplitude

and phase are given by

v =
1

2

!
✓

p
2q

µ2

✓

+ (!
✓

� ⌦
2

)2
, tan 

✓

=
�µ

✓

!
✓

� ⌦
2

. (121)
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With A = Ã = 0 and V given by (99) with (121)-(121) and (118), the

solution of (87)-(89) and (81)-(83) becomes

⇠
m

= "
h k

m

!2

m

+
1X

j=1

2k
m

!2

m

� (j⌦
0

)2
cos(j⌦

o

T
0

) +O("2)
i
, (122)

⇠̃
n

= "
h k̃

n

!̃2

n

+
1X

j=1

2k̃
n

!̃2

n

� (j⌦
0

)2
cos(j⌦

0

T
0

+ �) +O("2)
i
, (123)

u
1

= v cos(⌦
2

T
0

+  
✓

) + "
h p

1

!2

✓

� ⌦2

1

cos(⌦
1

T
0

)
i
+O("2). (124)

This case demonstrates that for-near resonant excitation of the driven sprocket

there will be no transverse vibrations of the spans, if the excitation frequency

is not near primary parametric resonance of the spans. However, this is un-

der the assumption that the parametric excitation of the chain spans is

small compared to the linear axial sti↵ness of the chain spans, as assumed

in (68)-(69), which might not be fulfilled under large resonant vibrations of

the driven sprocket. However, in real chain drives, the ratio between linear

axial sti↵ness and parametric excitation can be decreased by increasing the

pretension P
tot

. We note from (121) that, with the present model, rotational

damping of the driven sprocket is the only mechanism which will limit the

response of the driven sprocket subjected to resonant excitation. For a real

roller chain drive this case indicates that for a chain drive in operation, pass-

ing a natural frequency of the driven sprocket does not lead to transverse

span vibrations if the excitation is not near parametric resonance of the

spans, and that rotational damping of the driven sprocket may reduce the

resonant response.

5.12. Combined parametric and internal resonance between span and sprocket

In the first example (section 5.10) we analyzed the span response when

the driven sprocket is not compliant, i.e. the driver excitation let to a
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vibratory response of the chain span only. The second example (section

5.11) demonstrated the response in the case where the driver excitation

caused a vibratory response of the driven sprocket only. Here we analyze

the case where the driver excitation may cause a vibratory response of both

the driven sprocket and the chain span. This is both of practical interest,

and novel to the study of the dynamics of axially moving strings.

Thus we consider primary parametric excitation of the tight span ⌦
2

⇡

2!
m

combined with internal two-to-one resonance between span and the

driven sprocket !
✓

⇡ 2!
m

. All remaining excitations are assumed non-

resonant, and the two spans are detuned by loading of the driven sprocket,

such that !
m

is away from !̃
n

. To describe the nearness to primary para-

metric resonance we introduce the detuning parameter �
2

defined by (93).

Similarly, to describe the nearness to internal resonance we introduce the

detuning �
✓

defined by

!
✓

= 2!
m

+ "�
✓

. (125)

Inserting into (87)-(89) and equating to zero the resulting secular terms gives

the solvability conditions,

2i!
m

(A0 + µ
m

A) + 3
m

A2Ā� ↵
m

ĀV ei�✓T1 + 1

2

↵
m

p
2

Āei�2T1 = 0, (126)

2i!̃
n

(Ã0 + µ̃
n

Ã) + 3̃
n

Ã2 ˜̄A = 0, (127)

2i!
✓

(V 0 + µ
✓

V )� ⌘
m

A2e�i�

✓

T1 � 1

2

!2

✓

p
2

ei(�2��✓)T1 = 0. (128)

The condition for Ã is decoupled, and when represented in polar form (95)

the solution is given by (107)-(108), showing that Ã ! 0 as T
1

! 1.

The two other conditions are coupled. Using (97) and (99) the modulation
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equations (126) and (128) becomes:

a0 = �µ
m

a� ⇤
1

av sin 
1

� f
1

a sin 
2

, (129)

v0 = �µ
✓

v + ⇤
2

a2 sin 
1

� f
2

sin( 
2

�  
1

), (130)

a'0 = ⇤
0

a3 + ⇤
1

av cos 
1

+ f
1

a cos 
2

, (131)

v⇢0 = ⇤
2

a2 cos 
1

+ f
2

cos( 
2

�  
1

), (132)

where

 
1

= �
✓

T
1

� 2'+ ⇢, (133)

 
2

= �
2

T
1

� 2', (134)

⇤
0

=
3

m

8!
m

, ⇤
1

=
�↵

m

4!
m

, ⇤
2

=
�⌘

m

4!
✓

, f
1

=
↵
m

p
2

4!
m

, f
2

= �1

2

!
✓

p
2

. (135)

Back substitution gives q
0

= a cos(1
2

⌦
2

T
0

� 1

2

 
2

) and ⌫
0

= v cos(⌦
2

T
0

+ 
2

�

 
1

). Thus, for stationary solutions of (129)-(132) we require a0 = v0 =  0
1

=

 0
2

= 0, which with (133)-(134) gives the equations governing stationary

amplitudes:

0 = �µ
m

a� ⇤
1

av sin 
1

� f
1

a sin 
2

, (136)

0 = �µ
✓

v + ⇤
2

a2 sin 
1

� f
2

sin( 
2

�  
1

), (137)

1

2

a�
2

= ⇤
0

a3 + ⇤
1

av cos 
1

+ f
1

a cos 
2

, (138)

v(�
2

� �
✓

) = ⇤
2

a2 cos 
1

+ f
2

cos( 
2

�  
1

). (139)

There is a trivial solution given by,

a = 0, v2 =
f2

2

µ2

✓

+ (�
2

� �
✓

)2
, tan( 

2

�  
1

) =
µ
✓

�
✓

� �
2

, (140)

Representing pure rotational motion of the driven sprocket without trans-

verse vibrations of the upper span, as examined in section 5.11. As for
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non-trivial solutions a 6= 0, corresponding to coupled motions of the driven

sprocket and the tight span, the algebraic set of nonlinear equations (136)-

(139) are not readily solved for a and v; here we must rely on numerical

solution.

6. Example results of the dynamic analysis

To illustrate results of the above three resonance cases, we present solu-

tions for a specific chain drive, using configuration C
1

in Table 1 with pitch

p = 0.0254 m, and mass, sti↵ness, damping and loading parameter values as

listed in Table 2. We consider the first mode m = 1. With a stationary an-

Table 2: Dynamic parameters

P
tot

1000 N

EA 0.56e6 N

⇢A 2.61 kg/m

Ĵ
1

0.6 kg m2

f̂
1

200 N

d̂
1

1.1 Nms/rad

✓⇤
2

0.005 rad

µ
✓

0.02

µ
m

0.02

gular velocity of the driver of 400 rpm there will then be internal resonance

between the tight span and the driven sprocket.

6.1. Parametric resonance of the tight span

Here we present an example of the results derived in section 5.10 for

the response of the tight span under primary parametric excitation. The
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analysis demonstrated that the tight span transverse motion decouples, be-

cause the driven sprocket is non-compliant. The solution for the steady state

span vibration amplitude a given by (105) is shown in Figure 6 along with

numerical solutions of the modulation equations (100)-(101) shown with cir-

cles �. Broken and full lines identifies stable and unstable solution states,

respectively.

The resonance peak near ⌦
2

/!
m

= 2 bends to the right due to non-

linear hardening coming from increased axial tension at large amplitudes,

represented by the cubic nonlinearity in the model. Increased parametric

excitation amplitude p
2

and decreased damping µ
m

widens the resonance

peak. It is seen that as the upper branch bends to the right, there are two

co-existing stable solutions; one with zero amplitude and another with a

large amplitude. Since this is a non-linear response, the solution to which

the system converges depends on the initial conditions, which for the nu-

merical solutions were chosen at random, to demonstrate the presence of

coexisting solution branches.

In real chain drives, adjusting the span tension to change the natural

frequency of the span can be used as an approach to ensure that the the

span does not operate near the critical excitation frequencies.

6.2. Resonant excitation of driven sprocket

The solution for the driven sprocket steady state amplitude v given by

(121) is shown in Figure 7 for the resonant excitation of the driven sprocket,

as analyzed in section 5.11. Near ⌦
2

/!
✓

= 1 there is a clearly defined

maximum amplitude. The analysis showed that increased damping reduces

the height of the resonance peak.

In this example the sprocket motion decouples since the spans are ten-
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1 2 3 4

0

0.02

0.04

Ω 2/ωm

a

Figure 6: The tight span transverse vibration amplitude a at primary parametric resonance

according to perturbation results (105) (solid lines stable, dashed line unstable), and

numerical solution of the modulation equations (100)-(101) (circles).

sioned to prevent transverse vibration. Therefore, the response is essentially

linear, and the numerical solution confirms there is only a single, indepen-

dent of initial conditions. The analysis presupposes that the parametric

excitation amplitude of the spans is small compared to the span linear sti↵-

ness, and the solution is only a good approximation when these conditions

are fulfilled; they could be violated during large resonant vibration ampli-

tudes of the driven sprocket, which should therefore still be avoided in real

roller chain drives.

6.3. Combined parametric resonance and internal resonance

The combination of internal resonance and parametric resonance was

investigated in section 5.12. The solution for the span and sprocket steady

state response is obtained through numerical integration of the modulation
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0.8 0.9 1 1.1 1.2

0

0.02

0.04

0.06

0.08

Ω 2/ω θ

v

Figure 7: The driven sprocket angular vibration amplitude v at resonant direct external

excitation according to the perturbation results (121) (solid line), and numerical solutions

of the modulation equations solutions (119)-(120) (circles).

equations (129)-(132). Results for the stationary amplitudes a of the span

and v of the driven sprocket are shown in Figures 8 and 9, respectively. In

these figures exact parametric resonance occurs for �
2

= 0, and exact inter-

nal resonance occurs on the line running diagonally across the graphs where

�
✓

= �
2

. Figure 8(a) shows three projections of the span vibration ampli-

tude for three values of the detuning of internal resonance �
✓

, as indicated

by bold lines in Figure 8(b). First we point to the qualitative and quanti-

tative similarity between the bended resonance peak in the response of the

decoupled span motion in Figure 6 and the response drawn with solid bold

lines for �
✓

/!
m

= �1.9 in Figure 8(a) and at the edge of Figure 8(b). For

�
✓

/!
m

= �1.9 the amplitude a is zero until �
2

/!
m

> �0.3. For �
2

/!
m

> 0.5

the stationary amplitude jumps between two solution states. This is similar

to what is shown in Figure 6, where the span motion was decoupled, and
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a

Figure 8: Span transverse vibration a under combined primary parametric resonance and

internal resonance obtained by integration of the modulation equations (129)-(132). In

(a) cross sections of (b) for values �

✓

/!

m

' [�1.9, �1.1, �0.3] are shown with lines

[�, ��, � ·�], respectively.

it also appears from Figure 8 that for �
2

/!
m

> 0.5 there are two coexist-

ing solutions between which the response jumps between depending on the

initial conditions.

Secondly, we observe in Figure 8 that there is a large upright amplitude

peak running diagonally across Figure 8(b) near exact internal resonance

�
✓

= �
2

. As �
✓

/!
m

= �
m

/!
m

increase from below to approach zero, the

upright resonant peak combines with the bended resonance peak and the

amplitude reaches maximum for �
✓

/!
m

= �
m

/!
m

' �0.3. The upright

peak is present for values of �
2

/!
m

much lower than zero, and the upright

and bended resonance peaks are separated for �
✓

/!
m

< �1.1. This indicate

that when the driven sprocket is compliant, chain span vibrations excited

by parametric excitation can occur for much lower values of �
2

/!
m

than

when the span is decoupled, which is a significant and novel result. In real
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chain drives, this means that span transverse vibration can be excited at

frequencies lower than parametric resonance when the driven sprocket has

a vibratory response.
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Figure 9: Driven sprocket angular vibration v under combined parametric and internal

resonance obtained by integration of the modulation equations (129)-(132). In (a) cross

sections of (b) for values �2/!m

' [�0.9, �0.5, 0] are shown with lines [�, ��, � · �],

respectively.

Figure 9(a) shows three projections of the driven sprocket amplitude

for three values of the detuning of parametric resonance �
2

indicated with

bold lines in Figure 9(b). We observe a qualitative and partly quantitative

similarity to the upright resonance peak in the response of driven sprocket

motion in Figure 7 and the cross sections in Figure 9(a). The maximum

value of v is observed for �
2

/!
m

' �0.5.

In both Figure 8(b) and 9(b) we observe an amplitude peak around

�
✓

/!
m

= �
2

/!
m

' �1.5. The explanation for this may require further anal-

ysis. For all the presented examples we note that the response is obtained

using a perturbation method assuming near-resonance. Thus, predictions
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will be most accurate near �
✓

= �
m

= 0.

7. Conclusion(s)

1. A kinematic model of a two-sprocket roller chain drive with straight

spans was presented, along with a procedure for calculating the to-

tal chain wrapping length. Analytical predictions were compared to

multibody simulation results and demonstrated that the total wrap-

ping length of the chain generally varies periodically with the tooth

frequency. The chain wrapping length was shown to be constant for

a configuration where both sprockets have the same number of teeth

and the chain consists of an even number of chain links.

2. Since the chain wrapping length generally varies during rotation of the

sprockets, it is hypothesized (and left for future studies) that careful

positioning of more than two sprockets can be done so as to attenuate

or amplify the e↵ect of a variable wrapping length.

3. Deriving the equations of motion for the chain spans we treated the

problem of an axially moving string supported by moving boundaries,

and showed that a first order variable string length leads to a second

order e↵ect.

4. We presented a new dynamic model for the coupled motion of the

tight chain spans transverse vibration and the driven sprocket angular

displacement. The model assumed the presence of a steady operation

state from which displacements are measured.

5. The dynamic model provides insight into resonance conditions and

amplitude responses, and was analyzed approximately using a mode

shape expansion and perturbation analysis.
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6. Three example results of the dynamic analysis were presented, illus-

trating the conditions where the motions of the span and sprockets

decouple. Results for a case of combined internal and parametric res-

onance showed that large span vibrations can occur due to compliance

of the driven sprocket.

7. Though the model is simple, it provides useful insight into the coupled

dynamics of chain drives, and may aid the design and interpretation

of numerical and experimental results.

8. Due to the systematic structure of multiple scales analysis presented

here, where the modulation equations decouple for non-resonant ex-

citation, it is expected that the dynamics of chain drives with more

than two sprockets could be analyzed using a similar modeling and

analysis approach. In the analysis presented here, the coupled motion

of transverse span vibrations happens across a single degree of freedom

oscillator, which is the driven sprocket with a given natural frequency.

For a larger chain drive with more sprockets, this would correspond to

modal excitation near the natural frequencies of the coupled rotational

motion of the sprockets with the spans acting as linear springs.
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The following abstract [P3] was submitted to and presented at the 3rd International
Conference on Vibro Impact Systems and Systems with Non-smooth Interactions
(ICOVIS 2013) held in Leinsweiler, Germany, July 2013. It reports on the results of
the kinematic analysis and the treatment of the boundaries as non-smooth functions.
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ICOVIS 2013 – Leinsweiler, Germany, July 22–26 2013
3rd International Conference on Vibro Impact Systems and Systems with Non-smooth Interactions

Roller chain drive vibration analysis based on a string model with
boundaries moving non-smoothly
N. Fuglede1,⇤ and J. J. Thomsen1

1 Department of Mechanical Engineering, Technical University of Denmark, Building 404, DK-2800, Lyngby,

Denmark, ⇤nfug@mek.dtu.dk

A general kinematic analysis of roller chain drives is presented. We analyze the inherent non-smooth
properties of chain drives, which causes impact loading of the drive components. Chain span vibrations
are then analyzed by considering the chain as a string, forced by boundaries moving non-smoothly as
determined by the kinematic analysis. Resonance phenomena are identified, and conclusions about
critical operation parameters such as pretension, axial velocity, and impact frequency are presented.

General kinematic analysis of roller chain drives

Chains wrapped around sprockets form polygons rather than circles. This introduce several effects,
collectively known as polygonal action. Some of these effects are less desirable, e.g. non-smooth
transfer of torques between sprockets, and impact between chain rollers and sprockets during meshing.
By modeling the sprockets as polygons, and the chain drive as a four-bar mechanism, the configurations
are determined for which a) a roller loses contact with the driven sprocket, and b) a roller gets in contact
with the driving sprocket. It is shown how the span endpoints move discontinuously in time, leading
to impulsive loading as rollers are released into- or removed from the free span. When the driver
sprocket rotates at constant speed, the driven sprocket speed and acceleration is shown to generally
vary discontinuously in time, leading to a non-smooth excitation of the drive system. The analysis is
carried out analytically, and main parameters are shown to be shaft center distance and pitch fraction.

Vibrations of axially moving strings supported by moving boundaries

Vibrations of a chain span are analyzed approximately by modeling the chain as an axially moving
string, supported by boundaries moving as prescribed by the above mentioned kinematic analysis. The
equation governing transverse string vibrations is nonlinear due to axial stretching with gyroscopic
terms, and parametric as well as external excitation. By employing a single-mode approximation in
terms of velocity dependent mode shapes, the response is approximated using The Method of Multiple
Scales. The external loading is described as a temporal Dirac pulse train. This makes it possible to
describe analytically the response of the string subjected to periodic impact loading.

Currently work is in progress to include the effects of modal coupling, internal resonance and dissipa-
tion of impact energy into higher modes, using a two-mode approximation. Furthermore, we intend to
study the case where excitation frequencies are much higher than the underdamped natural frequencies,
which is relevant for chain drives operating at high speeds of revolution. This analysis will be carried
out using The Method of Direct Partition of Motion; it should give insight into how system properties
such as stiffness, natural frequencies and stability change under this type of excitation.

February 14th 2013
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P4 Publication 4

The following extended abstract [P4] was submitted and presented at the 1st
International Colloquium on Time-periodic Systems, Current trends in theory and
application (EUROMECH 532) held in Darmstadt, Germany, August 2012. It
reports on analyzing the dynamics of an axially moving string supported by moving
boundaries. At this point the expansion utilized complex mode shapes obtained as
eigen solutions to the gyroscopic system.
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EUROMECH 532 – 1st International Colloquium on Time-periodic Systems
Current trends in theory and application, TU Darmstadt, Germany, August 27–30, 2012

Vibrations of axially moving strings with in-plane oscillating
supports

N. Fuglede1,⇤ and J. J. Thomsen1

1 Department of Mechanical Engineering, Technical University of Denmark, Building 404, DK-2800,
Lyngby, Denmark, ⇤nfug@mek.dtu.dk

Abstract
For a traveling string moving in the plane we analyze analytically the transverse vibrations arising from
oscillation of the string supports. Of special interest is the excitation typical of roller chain drives, where
meshing between chain and sprockets cause both noise and vibration. Considering a uniform, heavy
string moving at subcritical speed with prescribed endpoint motion, and ignoring longitudinal inertia,
one obtains a continuous, nonlinear, gyroscopic, parametrically and externally excited system. By
employing a single-mode approximation, using velocity dependent mode shapes, the system response
is approximated using the method of multiple scales. Vibrations from support oscillations characteristic
of roller chain drives are investigated. Conclusions about critical values for chain drive parameters such
as pretension and meshing frequency are sought and identified.

INTRODUCTION

Research in the field of axially moving strings has been motivated by applications like chain
saws, belt drives, roller chains and fibre winding. Fluctuation of transport speed and string ten-
sion both leads to parametric excitation. Usually mono-frequency excitation has been consid-
ered, but meshing impacts, attached machinery and crankshaft powered drives may introduce
multifrequency excitation [1]. The discrete nature of chain drives introduce effects known
as polygonal action [2]. In this work we recognize that polygonal action leads to combined
non-smooth longitudinal and transverse excitation, corresponding to parametric and direct ex-
citation, respectively, of transverse string vibration. A model is presented capable of including
these effects by prescribing the positions of the string endpoints in the plane. The formulation
utilizes velocity dependent mode shapes and analysis of nonlinear effects is done using the
method of multiple scales. For a comprehensive review of research on transverse vibrations of
axially moving strings see e.g. [3].

MATHEMATICAL MODEL

Figure 1a shows meshing between a roller chain and a sprocket. Relative velocity between
the impact roller and the tangential velocity of the sprocket causes impact, which is a signif-
icant source of noise and vibration. A mathematical model is formulated in order to analyze
transverse vibration arising from this type of excitation. Figure 1b shows a uniform string with
mass per unit length ⇢A, axial stiffness EA moving with constant velocity V between supports
positioned in the inertial coordinate system (X, Y ) at

�
x̃

0

(

˜

t), ỹ

0

(

˜

t)

�
and

�
x̃

L

(

˜

t), ỹ

L

(

˜

t)

�
. Trans-

verse and longitudinal deformations are given by (U,W ) in (X, Y )-directions, respectively.
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Figure 1. a) Meshing between chain and sprocket. The discrete nature of a chain leads to non-smooth
contact between the chain roller and sprocket. b) Tensioned string traveling longitudinally between
two supports moving in the plane. Shown in grey is the undeformed string moving between stationary
supports.

The equation of motion is formulated using Hamilton’s principle. Since finite amplitude vi-
bration response during resonant excitation is of interest, the mathematical model is formulated
using the approximate nonlinear strain measure

✏(X, T ) = U

X

+

1

2

W

2

X

. (1)

In a roller chain, wear affects chain tension, and therefore pretension P

0

> 0 is an important
parameter, defined here as the tension of the undeformed stationary string. The potential en-
ergy for the string can be formulated using the approximate strain measure and the pretension.
Kinetic energy is formulated using the transverse- and longitudinal velocity components of a
string element V

1

= V (1+U

X

)+U

˜

t

and V

2

= VW

X

+W

˜

t

, valid for small |U
X

|, |W
X

|, where
(·)

X,T

denotes partial differentiation with respect to X, T , respectively. Requiring the virtual
displacements to be kinematically admissible means that their variation is zero at the supports
where motion is specified, i.e. �U |L

0

= �W |L
0

= 0. Therefore, virtual work at the supports be-
come zero and Hamilton’s principle can be applied in its standard form. The actual work done
by the reaction forces are not zero, the system is non-conservative, and the support conditions
classify as rheonomic. The non-dimensional equations of motion governing longitudinal and
transverse vibration become, respectively,

ũ

tt

+ 2vũ

xt

+ v

2

u

xx

� µ(u

x

+

1

2
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2

x

)

x
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1 + µ(ũ
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1
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2

x

)

�
w̃

x
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x

= 0 (3)

with dimensionless parameters

x, ũ, w̃ =

X,U,W

L

, t =

s
P

0

⇢AL

2

˜

t, v̄ = V

.s
P

0

⇢A

, µ =

EA

P

0

(4)

and inhomogeneous support conditions

ũ(0, t) = x

0

(t), ũ(1, t) = x

1

(t), w̃(0, t) = y

0
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In the case where transverse wavespeed v

0

=

p
P

0

/⇢A is much lower than longitudinal wave
speed c =

p
E/⇢, changes in tension N(x, t) = 1 + µ(ũ

x

+

1

2

w̃

2

x

) propagates nearly instanta-
neously and dynamic tension can be approximated as being independent of x. Utilizing this by
requiring N

x

= 0 leads to ✏
x

= 0, and integration of (1) from 0 to x with respect to x and use of
the support conditions leads to a solution of (2), thus neglecting longitudinal inertia. The strain
independent of x is found by integrating (1) over the interval. Support conditions for (3) are
made homogeneous by introducing the transformation w̃(x, t) = w(x, t)+y

0

(t)

�
1�x

�
+y

1

(t).
Inserting this and the time dependent strain into (3) yields
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�
1� x
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1,tt

(t)� 2v

�
y

1,t

(t)� y

0,t

(t)

�
(9)

and boundary (support) conditions for (7) are w(0, t) = w(1, t) = 0. Equation (7) governs
the transverse motion of the string. It is a second order partial differential equation which is
non-linear due to effects of longitudinal stretching, parametrically excited from longitudinal
support motion and directly excited due to transverse support motion.

ANALYSIS

Linear solution
The analysis of (7) is carried out using eigenvalues and eigenvectors obtained from the cor-
responding linear unforced system; �

n

= i!

n

= in⇡(1 � v

2

), 

n

=

1

n⇡

p
1�v

2 e
in⇡vx

sin(n⇡x),
where i =

p
�1 is the imaginary unit [5]. Velocity dependent eigenpairs are chosen because

the (non-dimensional) transport speed v̄ depends on pretension, which may decrease signifi-
cantly due to chain wear, thus affecting chain tension. Furthermore, the Coriolis acceleration
is proportional to v̄ and therefore has an increased significance as pretension is reduced.

Nonlinear perturbation analysis
An approximate solution of (7) valid for small nonlinearity and parametric excitation is deter-
mined using a single term Galerkin approximation based on the n’th (complex) mode. As is
customary, [1], the system is analyzed in state space formulation, with v = {w

t

, w}T . Intro-
ducing the excitation vector q = {f, 0}T and using the standard notation [5] the equation of
motion (7) becomes

Av
t

+Bv + "C(w)v = q (10)

where the non-standard nonlinear matrix operator is defined as

C =


0 Q
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p(t) +N(w
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0 0

�
with Q = �µ

@

2

@x

2

, N(w

x

) =

1

2

Z
1

0

w

2

x

dx. (11)

For "⌧ 1 an approximate solution of (10) is sought using the method of multiple scales.
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RESULTS

The aim of the analysis is to obtain approximate analytical solutions for the frequency response
and resulting stability properties. Periodic support motion is analyzed by decomposing para-
metric and direct excitation terms into spectral components using (truncated) Fourier series.
Solutions are sought for support motion such as

x

0

= r

1

sin(⌦t), y

0

= r

1

cos(⌦t) x

1

= r

2

sin(⌦t+ '), y

1

= r

2

| cos(⌦t+ ')|. (12)

Load case (12) represents the typical case where a chain roller experiences smooth motion
when it enters the free span at x = 0 (looses contact with a sprocket) and impact as it leaves
the free span at x = L (gets in contact with the sprocket). Two events generally happening out
of phase. In this case, a one term Fourier decomposition of (8) gives frequency components
of both ⌦ and 2⌦. This combined with direct excitation (9) of frequency ⌦ may lead to
parametric amplification. Similar types of support motion introduce cases of combination
resonance. Using such examples, relevant conclusions for safe operation of roller chain drives
are sought, e.g. critical excitation- frequencies, motion patterns and pretension effects.

Physical approximations will be tested against simulation software for detailed chain drive
simulation. If possible, results will also be tested using commercially available simulation
software for analyzing chain drives. Mathematical approximations will be tested by applying
numerical continuation.

CONCLUSION

This work is in progress. So far a model has been established for theoretically analyzing the
dynamics of a moving string fixed between supports undergoing simultaneous transverse and
longitudinal motion. The method of multiple scales will be used for analyzing the nonlinear
system to obtain analytical results useful for understanding the dynamics of roller chain drives.
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P5 Publication 5
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Roller chain drive analysis: simplified modeling and analysis of the dynamic effects of
meshing

Niels Fuglede⇤ and Jon Juel Thomsen⇤
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Lyngby, Denmark

Summary. Transverse vibration of a roller chain and the effects of the interaction with sprockets is examined analytically. Modeling the
chain as a uniform string, we consider the meshing process either as a moving boundary, or as boundary impacts and apply perturbation
methods to predict dynamical responses.

Introduction

We analyze the transverse vibrations of a traveling string subjected to the excitation at the boundaries that is typical of
roller chain drives. Meshing of a roller chain with a sprocket causes noise and vibration, and by modeling the chain as
a moving, heavy, uniform string we present two approaches to how the dynamical effects of meshing can be analyzed.
Modeling a roller chain as a uniform heavy string and studying the transverse vibrations for simple harmonic excitation
was considered already by [1]. Traveling strings in general is a rich field which has been subject to many studies, see e.g.
the comprehensive review by [2]. In a roller chain drive, the chain is subjected to complicated excitation when it interacts
with the sprockets, because of the discrete nature of the chain and sprockets, known as polygonal action. A detailed study
of the kinematic characteristics of roller chain drives is given in [3] and studies of impact intensities between roller and
sprockets were carried out by [4]. Linear transverse vibrations of moving strings was considered by [5] and also weak
nonlinearity has been investigated [6]. Here, it is demonstrated how the interaction between a chain and two sprockets is
nonlinear. We present a simplified model of the chain, and two methods for how the system can be analyzed by considering
the meshing process as equivalent to a) kinematically forced boundary conditions, or b) boundary impacts.

Physical system

Figure 1a shows a schematic of a chain drive consisting of two sprockets and illustrates the discrete nature of the drive.
The driving sprocket rotates at an angular velocity ✓̇

1

and the chain travels axially with velocity v. Relative velocities
between the approaching roller, � and the sprocket seat ⇥ causes impacts, and this meshing process is a significant source
of noise and vibration. This and e.g. a periodically varying chain tension are inherent for roller chain drives, owing to the
sprockets forming polygons instead of circles. Meshing is shown in greater detail in Figure 1b, and here it is seen that the
chain and sprocket interaction is nonlinear, because it depends on the vibration of the axially moving chain. Similarly,
guide bars installed to limit transverse vibrations of chain spans may also introduce impact effects. We aim at analyzing
the transverse vibration of the chain when subjected to this characteristic excitation, specifically the effects of meshing,
and we consider only the dynamics of a single chain span, i.e. the tight chain span is analyzed while the dynamic responses
of the sprockets and other chain drive components are not considered.

Analysis

Fundamental mathematical model
Our first approximations for a model to analyze transverse vibrations of a roller chain span is to assume that the chain can
be modeled as a uniform heavy string, with mass per unit length m, i.e. the periodic variation of chain density and cross
sectional area are both neglected, and the bending stiffness is assumed to be vanishing. Chain tension T and length L are
considered to be constant, and we assume ✓̇

1

is given such that the axial velocity v is constant and lower than the speed

d�
�

d�
�

8

Slack Span

Tight Span
Impact Roller Seated Rollerb)

a)

Figure 1: a) Principal sketch of a chain drive consisting of two sprockets. Sprockets form polygons, and impact happens between the
approaching chain roller � and the sprocket seat ⇥. b) Sketch showing a more realistic drawing of the situation where the impact roller,
suspended between the seated roller and the remaining chain span gets into contact with the sprocket seat.
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of propagating transverse waves, v
0

=
p

T/m. The equation of motion governing the transverse displacement w(x, t) of
the traveling string is [1]:

w,
tt

+2vw,
xt

+(v2
0

� v2)w,
xx

+N(w) = 0, (1)

where a comma subscript denotes partial differentiation and N(w) has been added to contain nonlinear operators of w.
With N = 0 equation (1) is linear, but nonlinearity must be included if e.g. finite vibration amplitudes between axially
fixed boundaries are to be considered, as could be necessary for obtaining realistic solutions at resonant excitation.

Kinematically forced boundaries
First, we analyze the effect of chain and sprocket meshing by making the string kinematically forced, that is by specifying
boundary motion as a function of time, i.e. w(0, t) = �

1

(t) and w(L, t) = �
2

(t), as illustrated in Figure 2a. Such a system
is conveniently analyzed by applying the transformation w(x, t) = w̃(x, t) + �

1

(t)(1� x/L) + �
2

(t)x/L, which renders
the boundary conditions homogeneous while the excitation at the boundaries is moved to the differential equation for w̃.
When N(w) = 0 equation (1) has exact closed form solutions for arbitrary excitation and this will be used as a basis for
a perturbation solution when nonlinearity is included.

Boundary impact forces
As an alternative to the kinematic forcing described above, we analyze the effect of meshing by specifying the position of
an impact surface w

0

= w
0

(x, t), allowing for contact between the chain and sprocket away from the boundaries. This
contact will depend on the vibration of the chain and is a nonlinear force g(w � w

0

) of the discontinous clearance type.
Boundary conditions for equation (1) are homogeneous in this case, and of special interest are the effects of nonlinear
terms of the clearance type, see Figure 2b. A system of this type can be analyzed through, e.g., discontinuous transfor-
mations, by doing a Fourier expansion of the nonlinear terms, or by use of numerical methods such as continuation. As
a first step, we aim towards a perturbation solution of (1) when nonlinearity of the clearance type is included, and treated
analytically by Fourier expansion.

Expected results

By making simplified mathematical models of a chain span and examining specific phenomena, we aim at contributing
with simple predictions that are relevant for understanding the complexity of full chain drive systems. With perturbation
solutions obtained by the approaches outlined above, we aim towards analytical predictions of frequency responses, and
effects of nonlinearity to be investigated for, e.g., slow- medium- and fast excitation frequencies. Approximate analytical
results will be tested against numerical simulation of the simple models. Furthermore we aim to examine the validity of
the physical approximations by comparing analytical results with detailed Multibody Dynamics Simulations, and possibly
with existing experimental results.

Conclusions

This work is in progress. We expect to find an analytical expression for the transverse vibrations of a traveling string
subjected to the characteristic excitation from chain and sprocket meshing.
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Figure 2: The chain is modeled as a moving string and the effect of meshing is examined by a) specifying the motion of the boundaries,
or b) by specifying the motion of a contact surface w0(x, t) away from the boundaries with a nonlinear forcing of the clearance type
g(w � w0) used to examine the effects of meshing.
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A Input file for SIMCH

A.1 Configuration C, 10 rpm

# ———————————————————————————–
# Filename: two 10rpm.dap
# Type: Inputfile for SIMCH
# Author: Niels Fuglede
# Edited: 06/03/2014
# Purpose: Generate the medium 12-18 configuration, c.f. kinematics paper.
# Purpose: Comparison with analytical kinematic and dynamics results.
# Purpose: Calculate 10 tooth periods for t≥3 with 2048 samples per tooth period.
# Purpose: Correct chain sti↵ness to LINK STIFFNESS, correct yc position
# Purpose: Reduce chain damping, both longitudinal and rotational
# Purpose: Increase pretension; move driver sprocket in + x-direction
# Purpose: Create Velocity Sweep Set
# ———————————————————————————–
# DEFINING CHAIN DRIVE - Geometry and Mechanics
# 1.1) Declaration of datasets for the ”Continous contact force method”
# Syntax: continousforcedata number <number> [power n <n>] equivalent sti↵ness<Keq> restitution coe�cient <e> [friction <µ>]
contin num 2 eq 5.5D8 power n 1.5 rest 0.5 fric 0.1D0

# 2.1) Declaration of Sprockets
# Syntax: sprocket name <text> geometric center <X> <Y> [center mass <X> <Y>]
teeth <number> radius <radius> [mass <mass>] inertia <inertia>
status <1=driver—2=driven> dataset <number> externalforces <value> <value><value> direction <1—-1> [damping <coe�cient>]
spro nam spro2 geo 0.0 0.0 cen 0.0 0.0 te 18 rad 0.0731393 mass 1.68 /
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in 0.046 sta 2 ext 0. 0. 0. dat 2 dir -1 damp 0.1

spro nam spro4 geo 0.315980 0.024628233853020 /

cen 0.315980 0.024628233853020 te 12 rad 0.0490728 mass 0.68 /

in 0.000867 sta 1 ext 0. 0. 0. dat 2 dir -1 damp 0.1

# 2.2) Declare Sprocket Tooth (Optional, default is BSreal)
# Syntax: Tooth [BSreal — real — non — beta — circle — 2BSreal — 2real]
tooth real

# 2.3) Declare friction method (Optional, default 1heaviside v0=0.1D0, v1=0.3D0,
v2=0.01D0)
# Syntax: friction linear — polynomial — bezier — 1heaviside — 2heaviside —
3heaviside <value> <value> <value>
friction 1heaviside 0.5D0 0.6D0 0.05D0

# 3.1) Declaration of Chain
# Syntax: chain number of links <number> pitch <pitch> radius <r> sti↵ness <K>
mass pr link <mass> damping <LD> rotdamping <RD>
chain num 40 pitch 0.0254 radius 0.0079375 /

sti 0.221D9 mass 0.066 da 0.01 Rotdamp 0.001

# 4.1) Declaration of Guidebars (Optional), delta = 0.003
# guid num 1 data 2 si 1 sj 2 ri 1.75 rj 2.25 inde 0.005 roun 0.55 end 0.2 angle 0.0
# guid num 2 data 2 si 2 sj 1 ri 2.25 rj 1.75 inde 0.005 roun 0.55 end 0.2 angle 0.0
# 5.1) Declaration of Tightner Mechanism (Optional, use only when tightner in-
volves mass, spring and dampers)
# ———————————————————————————–
# LOADING AND EXITATION
# 6.1) Declaration of chain pre-tension
# Syntax: tension sprocket <name1> circle — linear <value2> <value3> <value4>
pretension <value5> [tolerance <value6>] [method <value7>] [relaxparameter <value8>]
# tens spro spro4 lin -1.0 1.0 0.049069 preten 40 meth 1 tolera 0.001 relax 1.00
# 7.1) Declaration of Torsional Vibration (Applied to driver, from data file)
# Syntax: TorsionalVibration file <file.name> [acc vs angle — vel vs angle —
acc vs time — vel vs time][scaletime <value>] [phase <value>] [convel time <value>]
[amplitudescale <value>]
# From 4T40MX: TorsionalVibration file time vs ang 100rpm GTORSI.txt acc vs time
scaletime 10.0 phase 0 convel time 0.0 amplitudescale 1.0
# Declare angular acceleration file
# torsion file sineAngAcc120rpm.txt acc vs angle scale 2.0
# phase 0.0 convel time 20.0
# 8.1) Declaration of Contramoment (From file containing angle vs. acceleration
in two collums)
# Syntax: contramoment file <file name> sprocket <sprocket name>
# contramoment file forcing Acc vs Angle.txt sprocket spro1
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# 9.1) Declaration of Gravity (Default is o↵)
# Syntax: gravity <on—o↵>
gravity o↵

# 10.1)Declaration of Move Sprocket
# Syntax: movesprocket sprocket <name> centre <value1> <value2> <circle <value3><value4> <value5> — line > time <value6>
# 11.1)Declaration of orbit sprocket
# Syntax: Orbit spro sprocket <value1> file < value2>
# ———————————————————————————–
# PROGRAM EXECUTION
# 12.1) Declaration of simulation time
# Syntax: Time BegTime <value> EndTime <value> DeltaTime <value>
driver frequency <value>
time beg 0.0 end 8.0 delta 0.00001 driv 10.0

# 14.1) Declaration of Integrator
# Syntax: Integrator abserr <value> relerr <value>
# 15.1) Declaration of static equillibrium
# static equilibrium
# 16.1) Declaration of LinScaleVelocity
# Syntax: linscalevelocity startvelocity <rpm1> endvelocity <rpm2> starttime <time1>
# endtime <time2> [minorder <min>] maxorder <max> amplitude <mag> [ cosine ]
# 17.1) Declaration of NewPositionsFile
# Syntax: newpositionsfile <filename>
# newpositionsfile t17/two stateq.out
# 18.1) Declaration of newpvfile
# newpvfile sim2014/t07/two posvel.out
# ———————————————————————————–
# PLOTTING AND REPORTING
# 27) Declaration of what to report
# Syntax: report roller <pos — vel — acc > — sprocket <pos — vel — acc > —
LinkForce <number> — Displacement — Energy — AverageForce — Tightener
report rol pos rol vel rol acc spro pos spro vel spro acc linkforce 1 link-

force 40 displ ener aver

# 28) Declaration of Animation
# Syntax: animation <on—o↵>
ani on

# 29) Declaration of what to plot
# Syntax: plot [sprocket] [segment] [chain] [configuration] [forceconfiguration]
# [window <value1> <value2> <value3> <value4>] [roller numbers] [scaleforce <value5><value6> <value7>]
# [win1] [win2] [win3] [win4] [xwin] [?] [zoomO↵ ] — [gif ] — [close] — [closeall]
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plot forceconfiguration scaleforce 0.300E-03 0.300E-03 0.3000E-02

# ———————————————————————————–
# 13.1) Declaration of Simulation (default windows)
# Syntax: Simulation [gif — xwin — windows — win1 — win2 — win3 — win4<rate>] [plot time <start> <end>]
# [report time <start> <end>] [roller numbers <value>] [SampleFrequency <value>]
[ScreenOutMin]
# [tolerance <tolerance>] [time <value>] [tzero <value>]
sim gif 1.0 plot time 0.0 60.0 report time 3.0 8.0 samplefrequency 4096
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