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Abstract:  

The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon 

nanotube reinforcement for wind energy applications is investigated here with the use of 

computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber 

reinforced composites with and without secondary CNT reinforcement is simulated using 

multiscale 3D unit cells. The materials behavior under both mechanical cyclic loading and 

combined mechanical and environmental loading (with phase properties degraded due to the 

moisture effects) is studied. The multiscale unit cells are generated automatically using the 

Python based code. 3D computational studies of environment and fatigue analyses of 

multiscale composites with secondary nano-scale reinforcement in different material phases 

and different CNTs arrangements are carried out systematically in this paper. It was 

demonstrated that composites with the secondary CNT reinforcements (especially, aligned 

tubes) present superior fatigue performances than those without reinforcements, also under 

combined environmental and cyclic mechanical loading. This effect is stronger for carbon 

composites, than for hybrid and glass composites.  

 

Keywords: A: Nano composites; A: Carbon nanotubes; B: Fatigue, B: Interfacial strength, C: 

Finite element analysis (FEA) 

 

1. Introduction 
 

The future perspectives of wind energy utilization depend on the development and reliability of 

extra-large off-shore wind turbines [1]. Wind turbines are subject to long term cyclic 

mechanical and environmental loading, involving complex off-axis tensile, compressive and 

shear loading. The creation of such wind turbines requires the development of new, strong, 

fatigue resistant materials, which can sustain cyclic, random mechanical, thermal and 

environmental loadings over years keeping their high stiffness and integrity.  

A number of experimental and computational studies have been carried out to develop better 

materials for wind turbines [1-7]. Among various ideas to enhance the performances of the 
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composite materials for wind energy applications, two approaches attract a growing interest of 

research community and industry: hybrid composites and nanoreinforced composites.  

Hybrid composites (e.g., mixed carbon and glass fibers) allow to combine the advantages of 

both groups of fibers (for the case of carbon/glass composites, low price of glass fibers, low 

weight and high tensile strength and stiffness of carbon fibers) and compensate their 

weaknesses (again, high costs and low compressive strength of carbon fibers) [4-17]. So, Ong 

and Tsai  [4] demonstrated that the full replacement of cheap and easily available glass fibers 

by very stiff, strong and lightweight carbon fibers for a 8 m wind turbine blades leads to 80% 

weight savings, and cost increase by 150%, while a partial (30%) replacement would lead to 

only 90% cost increase and 50% weight reduction. In a number of works, the strength and 

damage mechanisms of hybrid composites were studied It was reported, among others, that the 

incorporation of glass fibers in carbon fiber reinforced composites allows the improvement of 

their impact properties and tensile strain to failure of the composite. Manders and Bader [11] 

observed an enhancement of the failure strain of the carbon fiber reinforced phase when 

“carbon fiber is combined with less-stiff higher-elongation glass fiber in a hybrid composite”.  

Another approach to improve the composite performances (additionally to and keeping in place 

the advantages of both strong fibers and polymer matrix) is nanoreinforcing the matrix. It has 

been observed in many studies that the addition of small amount of nanoparticles (e.g. 

graphene, carbon nanotubes, or silicates and clay particles with high aspect ratios) to fiber 

reinforced composites can be used to improve composite properties [18-29]. According to [18], 

matrix-dominated properties (flexural and interlaminar shear strength) are drastically improved 

by the CNT additions to fiber-reinforced thermoplastic composites, while fiber-controlled 

properties (such as tensile strength and stiffness) are improved only slightly. In [19-21], the 

authors compared the composites with CNTs dispersed in matrix and distributed in fiber sizing.  

They observed that the crack initiation toughness increases (by 10% if CNTs in sizing and by 

25% if in matrix) and the crack propagation toughness decreases (by 30…50%) when CNTs are 

placed in sizing [20]. However, in the system with carbon fibers, both crack initiation and 

propagation energies were improved by CNT addition in matrix [21], what is related with CNT 

bridging and other toughening mechanisms (crack deflection, blocking). In [22], it was shown 

that the tensile strength of glass fibers increases significantly with increasing CNT content. 

45% increase in shear strength is achieved by adding 0.015 wt% nanotubes into glass fiber 

reinforced vinyl ester composite [23]. 30% enhancement of the interlaminar shear strength was 

achieved by deposition of multi and single walled CNT on woven carbon fabric fibers in epoxy 

matrix [26, 27]. Interlaminar toughness and strength of alumina fiber reinforced plastic 

laminates were improved by 76% and 9% due to the radially aligned CNTs in both inter-

laminar and intra-laminar regions [28]. Thus, the secondary nanoreinforcement (e.g., carbon 

nanotubes or nanoclay distributed in polymer matrix or fiber sizing) have positive effect on the 

shear and compressive strength, fracture toughness and fatigue resistance of composites. 

However, the question arises whether and to which degree this potential of material 

improvement is useful and usable for wind turbine blades, i.e. structures to be used under 

http://link.springer.com/search?facet-author=%22P.+W.+Manders%22
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conditions of combined mechanical and environmental loading, high humidity, off-axis, 

complex loadings. A series of computational studies is carried out here in order to clarify the 

potential of these material modifications for wind blade materials. Using the numerical 

experiments, we seek to investigate how and whether the effects of hybrid and nanoreinforced 

structures of polymer composites (both each of them and combined) are beneficial for the 

fatigue resistance and service properties of the composites to be used in the wind turbine 

conditions. To do this, we use the computational micromechanics approach, based on 

multiscale and multi-element unit cell models [8, 29], developed and tested in [29]. Collecting 

the literature data on the local materials properties and humidity effect on the properties of 

different phases, we introduce these data into the 3D multiscale computational models of 

composites and evaluate and compare the output materials performances.  Carrying out 

computational experiments (numerical testing) of various composite structures, we explore the 

structure-mechanical properties relationships and can develop recommendations toward the 

improvement of the materials properties.  

 

2. Computational model: Generation, Simulation, Material 

properties 

2.1. 3D Hierarchical computational model: Python based model generation  

Due to the large difference of the dimension scale of the fiber reinforced composite (macro-

scale) and CNTs reinforcement (nano-scale), we use here the concept of macro-micro multiple-

step modeling [29], to simulate the damage evolution in the material.  

In order to carry our systematic computational studies of the microstructure-strength 

relationships of hybrid composites with secondary CNT reinforcements, a number of 3D 

computational models reflecting the hybrid composite structures should be generated. For this, 

a special Python based software code for the automatic generation of unit cells with multiple 

cylinder-like reinforcements [29-34] was generalized and improved. The newly developed code 

allows to generate hierarchical FE models with pre-defined structures, including the macro-

scale unit cell (with hybrid unidirectional/misaligned fibers and variable fiber content) and 

lower scale unit cell model (with aligned/random oriented carbon nanotubes, surrounded by the 

effective interface layers, see [37, 38]), automatically. Examples of the models are shown in 

Fig. 1(a). For comparison, we show a micrograph of a carbon fiber with CNTs, reprinted from 

[39] (Fig. 1b)  

 

2.2. Micro-scale unit cell generation with multiple high aspect ratio CNTs: Algorithm 

of cylinder distribution 

For the generation of lower scale unit cell models with many high aspect ratio carbon 

nanotubes, the following approach has been used. The carbon nanotubes were presented as 

cylinders. The reinforcing CNTs are randomly distributed in the fiber-matrix interface and (in 

some models) randomly oriented. To take into account the interface effect, the generalized 

effective interface layer concept was used [30-38]. 
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In order to distribute the high aspect ratio CNT cylinders in the microscope unit cell, the 

following algorithm was used. The condition that the CNTs do not overlap is written as 

follows:  

 

2

2

f f f

CNT CNT CNT

f CNT f CNT

d R

d r

d R r











 

                (1) 

where, df-f,  dCNT-CNT, df-CNT are distances between closest fibers, closest CNTs and a fiber and 

CNT, respectively, Rf - radius of fiber, rCNT - radius of carbon nanotube. When generating the 

unit cell with multiple randomly oriented CNTs, the program places each new CNT into the 

cell one after another, using random number generator to get the new CNT location and 

checking that the reinforcements don’t overlap. For this, the distance between straight lines 

(CNT cylinder axes) located in different planes was calculated using the spatial vector 

projection theory.  We take  P1(x1, y1, z1) and P2(x2, y2, z2) as two points on the central line of 

new CNT cylinder (the line is marked as L1) and P3(x3, y3, z3) and P4(x4, y4, z4) as two points on 

the central line of one of the existing CNT cylinders (marked as L2). From the 

analytic geometry, the direction vector of l1 and l2 are described as 
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The vector of common perpendicular (marked as l) of the two lines is given by: 
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After some simplifications 
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Taking arbitrary points (P1 and P3 as examples) on L1 and L2, we consider the projection of line 

P1P3 on the common perpendicular, which in fact represents the distance between the two lines. 

The direction vector of line P1P3 can be described as 

  1 3 3 1 3 1 3 1, ,PP x x y y z z      (5) 

and the distance between the lines (axes of CNTs) is then given as 
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  (6) 

The distance d between any two misaligned lines can calculated based on these equations.  The 

distance can be  
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2 2

1 2 1 2d x x y y      (7) 

The value d obtained from Eqs. (6) and (7) is introduced into Eq. (1). If at least one condition is 

not fulfilled, the possible new place for the CNT is generated again, and a new test is started.  

 

2.3. Modelling of material fatigue and moisture effect 

The 3D models were subjected to the uniaxial periodic cyclic compressive loading (displacement) u 

along the Z-axis direction (the same values but opposite directions on both upper and lower faces of 

the box). All the simulations were carried out using ABAQUS/STANDARD finite element 

program (version 6.11). The three-dimensional 8-node linear brick finite element with reduced 

integration element C3D8R were used in the global scale analysis, and three-dimensional 4-node 

linear tetrahedron element C3D4 were used in the submodel analysis. 

In order to simulate the fatigue damage evolution, two step procedure was employed [10, 29].Initial 

defects (with the sizes of the order of one…two finite elements) were introduced into the macro-

scale model by subjecting the unit cell to a quasi-static load before the cyclic loading.  After the 

initial defects are formed, the fatigue modeling for macro-scale model is carried out. Both the crack 

growth onset and crack propagation are described using the Paris law:   2

1

cda
c G

dN
  , where 

da/dN is the crack growth rate (fatigue crack length growth per loading cycle), c1 and c2 are 

material constants while ΔG represents the range of strain energy release rate, for example, the 

difference between the strain energy release rate at the peak and valley loading. The crack 

propagation analysis is carried out in the framework of the linear elastic fracture mechanics 

(LEFM) approach and is based on the extended-FEM method [40]. The Virtual Crack Closure 

Technique (VCCT) [41-43] is employed to calculate the strain energy release rate at the crack tip. 

The degradation of wind turbine materials under real conditions is controlled by both mechanical 

and environmental loadings. The time scales of the fatigue degradation and the moisture 

distribution in the composite body differ drastically: while the fatigue degradation might extend 

over several dozens of years, the moisture is distributed over the material during minutes till hours.  

That is why, as a first approximation, we neglect the time-dependency of the moisture-controlled 

degradation of phase properties. Instead, we assume the permanently reduced phase properties (due 

to the moisture effect) when simulating the material behavior of the materials under environmental 

loading. The degrees of reduction of the phase properties are different for fibers, interfaces, 

polymer, and are determined from experimental/literature data. These degrees are determined from 

reviewing literature data.  The overview of the data on the material properties degradation is given 

in the section 2.5. 

 

2.4. Material properties in dry state 

Below, the mechanical properties of the main phases (glass and carbon fibers, epoxy, CNT, 

interphases/interfaces) used in the simulations are presented.  Most data are taken from 

literature, also from earlier works of the authors [10, 29, 34] (both because these data are 

relatively well justified and to ensure the comparability of results). 

Polymer (epoxy) matrix:  Young’s modulus of 1.9 GPa, Poisson’s ratio of 0.37; tensile strength 

of 68 MPa, compression strength of 88 MPa [10]. 

Carbon fiber: Young’s modulus 276 GPa, Poisson’s ratio is 0.37 [35]; tensile and compressive 

strengths are 3000 MPa and 2800 MPa, respectively [10]. Radius of carbon fiber is 4 µm. 
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Glass fibers: radius 8 µm, Young’s modulus is 72 GPa, Poisson’s ratio is 0.26; tensile and 

compressive strengths are 2500 MPa and 1500 MPa, respectively [29, 36]. 

Carbon nanotubes (CNT): The Young’s modulus of SWCNT was taken 1 TPa and the Poisson 

ratio is 0.2 [44]. The tensile strength is taken as 30GPa [45, 46].The radius of carbon nanotube 

is 0.01nm while the length of the CNT is 0.8 µm. 

CNT/matrix interface: Young modulus of CNT-matrix interface is taken here as 3.74 GPa, 

following the inverse analysis of graphene-epoxy interface [34].  

The interface thicknesses of both glass fiber-matrix interface and carbon fiber-matrix interface 

were taken as 1.0 µm (slightly larger than the CNT length of 0.8 µm). According to [47, 48], 

the soft interface layer can be assigned the elastic modulus of Ei=(ECNT+Emtrix)/20 while the 

stiff interface layer can be assigned a higher Young’s modulus as Ei=(ECNT+Emtrix)/2. The  

interface stiffness can vary therefore in the range from soft to stiff, with the ratio Ei/Ematrix from 

0.55 to 5.5. Thus, taking the interface layer stiffness as an average value, between “soft” and 

“stiff” ones, we have the elastic modulus of the fiber-matrix interface as Ei=(Efiber+Emtrix)/10. 

Then we get: Carbon/matrix interface: the Young’s modulus is EC-M=(ECarbonfiber+Emtrix)/10 = 

27.79 GPa. Glass/matrix interface: The Young’s modulus is EG-M=(EGlassfiber+Emtrix)/10 = 7.39 

GPa. According to [49], the interface strength between an epoxy resin and glass fiber is around 

0.57 of that between carbon and epoxy. 

The fatigue behavior is modelled using the Paris’s law 2

1/ ( G)
cda dN c  , where a – crack 

length, N – number of cycle.  The threshold and critical strain energy release rates of different 

material phases and different fracture modes have been  determined on the basis of literature 

data [50-59], inverse modelling and estimations. Using the estimation by Reeder [50] that “This 

is generic to any material with pure mode ratios of 3 and 6, (GIIc/GIc and GIIIc/GIc, respectively) 

which are reasonable values…”., we could determine the GII, IIIc values from GI,c. 

For the strain energy release rate for fibers, we used the formulation by Pinho et. al. [53]: 

fiber laminate matrix intra
2Ic Ic IcG G G                                                         (8) 

here, GIc|fiber, GIc|laminate and GIc|matrix stands for the critical strain energy release rate for fiber, 

the fiber reinforced laminate and the matrix, respectively.  Other data are listed below, with 

references:  

 Matrix: GIth =0.06 kJ/m
2
 [54], GIc =0.17kJ/m

2
 [54], GIIth =0.24 kJ/m

2
, GIIc =0.49kJ/m

2
 [54], 

GIIIth =0.306 kJ/m
2
, GIIIc  = 0.49 kJ/m

2
 [54].  

 Glass fiber: GIth =0.068 kJ/m
2
 (Eq. (8) and [55]), GIc =0.288 kJ/m

2
 (Eq. (8) and [55]), GIIth 

=0.59 kJ/m
2
 (Eq. (8) and [55]), GIIc =1.53 kJ/m

2
 (Eq. (8) and [55]), GIIIth =0.994 kJ/m

2
 (Eq. 

(8) and [[51]), GIIIc =1.21 kJ/m
2
 (Eq. (8) and [51]). 

 Carbon fibers: GIth =0.098 kJ/m
2
 (Eq. (8) and [57]), GIc =0.636 kJ/m

2
 (Eq. (8) and [56]), 

GIIth =0.712 kJ/m
2
 (Eq. (8) and [58]), GIIc =3.744 kJ/m

2
 (Eq. (8) and [58]), GIIIth =1.598 

kJ/m
2
, GIIIc =7.978 kJ/m

2
.  

 Glass-matrix interface: GIth =0.064 kJ/m
2
 [55], GIc =0.229 kJ/m

2
 [55], GIIth =0.415 kJ/m

2
 

[55], GIIc = 1.01 kJ/m
2
 [55], GIIIth =0.650 kJ/m

2 
[51]), GIIIc =0.850 kJ/m

2
 [51]);  

 Carbon-matrix interface: GIth =0.079 kJ/m
2 

[57], GIc =0.403 kJ/m
2
 [56], GIIth =0.476 kJ/m

2
 

[58], GIIc =2.117 kJ/m
2
 [58], GIIIth =0.952 kJ/m

2
, GIIIc =4.234 kJ/m

2
.  

Finally, two material constants c1, c2 from [40] were used: c1=2.44×10 
6
 and c2=10.61.  

 

2.5. Changing material properties under environmental (moisture) loading: Overview 

of literature and data collection 
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In order to evaluate the effect of environmental loading on the lifetime of various composites, 

we carried out an overview of literature data on the humidity effect on the mechanical 

properties and strength of the phases.  

Due to the expected off-shore location of the large wind turbines, we consider the effect of 

seawater on the phase properties. The relative humidity in air is taken as 60% [60].   

Below, an overview of literature data and available estimations of the stiffness and strength 

reduction due to the humidity under given conditions are presented. These data are included in 

our simulations as input data. 

As noted in [61, 62], moisture absorption causes plasticization and swelling of epoxy matrix, 

and that weakens the interfacial strength between epoxy and reinforcements, degradation of 

crosslinks and segments rigidity.  Let us consider all the main phases in the materials and the 

dependences of their properties on the long term high humidity:  

Polymer (epoxy) matrix: Zafar et al . [63] observed that Young modulus of epoxy is reduced by 

5% and tensile strength is reduced by 15…18% due to moisture. As observed by Mei Li [64], 

epoxy matrix can absorb up to 2.2% moisture. (Chawla [65] however noticed that matrices can 

absorb only up to 1% of weight).  

Carbon fiber: According to [65], “the carbon fiber itself is unaffected by moisture”, so the 

Young’s modulus of carbon fiber under moisture condition will be the same as the dry 

condition. According to [63], the maximum applied stress before the fiber fracture is reduced in 

seawater by 1.33 times (after 60 hours)…2 times (after 230 hours). The GIC remains almost 

constant as a result of moisture [49], while GIIC is reduced drastically, 2.04 times. According to 

[66], carbon fiber has the GIc=0.860 KJ/m
2
 and GIIc=3.076 KJ/m

2
, respectively under humidity 

condition. 

Glass fibers: As noted by Li [64], the tensile strength of glass fibers can be reduced up to 20% 

if the moisture content is above 1%. In Guedes et al.’s work [67], they present that the critical 

strain energy release rate in model I, GIC, show a decrease between 5% and 10% when 

conditioned in water. According to [66], glass fiber has the GIc=2.152 KJ/m
2
 and GIIc=4.668 

KJ/m
2
, respectively under humidity condition. 

Carbon nanotubes (CNT): CNT properties are not changed under changing humidity 

conditions.  

Carbon/matrix interface:  According to [63], the maximum applied stress before the interfacial 

failure is reduced by 1.9 times after 60 hours in seawater. Van der Wal [68], referring to Ray 

[49] noticed that epoxy carbon interface is reduced by 10% at high temperature under the 

humidity effect. Considering the interface as a three layer multilayer [69] (fiber/sizing interface 

with covalent chemical bonding; an interphase of oligomers with increasing crosslink density 

towards the fiber/sizing interface and the sizing/epoxy interface with covalent chemical 

bonding), van der Wal [68] noted that reaction with water and the formation of the microscopic 

solution can take place probably in oligomer phase. Grant and Bradley [70] studied the 

degradation of graphite/epoxy composites due to sea water immersion. Through observation by 

scanning electron microscopy (SEM), they found out that the measured 17% decrease in 

transverse tension strength was associated with the degradation of the interface. 

CNT/matrix interface: According to [61], tensile strength of unmodified CNT/epoxy composite 

is 16 % lower in seawater state than in dry state; Young modulus is 5 % lower, fracture load 

and toughnes-66% lower, KIC-40% lower. In [61], the fracture surface (of unmodified 

CNT/epoxy) showed brittle fracture in dry state and “delaminated epoxy matrix due to tear 

down” in humid composite. Jen and Huang [71], however, studied fracture surface on 
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CNT/epoxy nanocomposites, and did not observe the visible increase in the length of pulled out 

CNTS due to the moisture effect (but did observe it due to the combined moisture and high 

temperature effects).  

Glass/matrix interface: According to the experiments by Ray [49], the ILSS (interlaminar shear 

stress) of both carbon and glass /epoxy interfaces are reduced by 1.5 times (while it is 120 for 

carbon and 27 for glass in dry conditions; the same numbers are mentioned in [68], around 100 

and 27 MPa). The authors of [72] noted that the mode I interlaminar fracture toughness 

decreases “upon water absorption for the glass fiber laminates, while the carbon fiber materials 

showed an increase in GIC under the same conditions. Mode II interlaminar fracture toughness 

as well as flexural modulus and flexural strength were observed to decrease upon water 

absorption, and to recover slightly after water desorption.” Also, Adams and Singh [73] 

observed that glass/polymer interfaces are much more severely degraded due to the moisture 

than the carbon/polymer interfaces. 

The parameters c1 and c2 of Paris’s law 2

1/ ( G)
cda dN c   have been obtained as follows: 

For the polymer matrix, the experimental data of the delamination growth rate versus the strain 

energy release rate of fracture toughness for an epoxy material from [74] were fitted into a 

power law function. From the fitting curves, the parameters c1 and c2 were determined: 

c1=3.2187×10
-8

 and c2=8.776. The material parameters for other phases (glass and carbon fibers 

and interfaces) were determined using the same fitting procedures. The curves for glass fiber 

and glass fiber-matrix interface were fitted using the data from [75]. The resulting values are: 

c1=11.07×10
-2

 and c2=22, for glass fibers. For glass fiber/matrix interfaces, the values are 

c1=12.1×10
-1.1

 and c2=16.10, respectively.  The curves for carbon fiber and carbon fiber-matrix 

interface were determined using the inverse method presented in work [40] and the data given 

in [76]. The parameter values for the carbon fibers are:  c1=7.4×10
-4.3

 and c2=29.54, 

respectively. The parameters for carbon fiber-matrix interface is c1=14.1×10
-1.8

 and c2=19.73, 

respectively. 

The resulting values used in the following simulations (for dry case and a case of long term 

60% sea water humidity effect) are given in Table 1. 

 

3. Computational experiments: Effect of environmental 

loading on fatigue lifetime 
 

In this section, the effect of environmental loading, overlaying the cyclic mechanical loading, 

on the fatigue performances of hybrid and nanoreinforced composites is systematically studied 

in numerical experiments. Various microstructures of hybrid and hierarchical composites, with 

different fractions of carbon fibers, distribution and alignment of CNT are considered in the 

computational experiments. The generated unit cell models are subject to tension-compression 

cyclic loading with the stress ratio R= -1.  

 

3.1 Hybrid composites: Effect of carbon content on lifetime under combined 

environmental plus cyclic loading 

 

Here, we seek to investigate the effect of the hybrid structure of UD composites (with carbon 

and glass fibers, and varied fractions of carbon versus glass) on the fatigue performance of 
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composites under combined environmental/mechanical cyclic loading. Fig. 2a shows an 

example of unit cell FE models with 50% carbon fiber content.  

Fig. 3a shows the calculated S-N curves for hybrid composites under pure mechanical cyclic 

loading (tension-compression) and under combined mechanical/environmental loading. All 

the data are normalized by the original maximum applied stress (311.65 MPa) of the 50/50% 

hybrid composite without environmental loading.  

One can see that the composite with pure carbon fiber reinforcement shows the highest stress 

and longest life under the same while the composite with glass fiber reinforcement 

demonstrate the lowest stress and shortest lifetime.  

The stress corresponding to a given cycles number (here 1.43 x 10
7
 cycles) strongly depends 

on the moisture effect. While the high humidity environment leads to the 14.28% reduction of 

the stress for the given N for pure carbon fiber reinforced composites, it leads to 36.53% 

reduction for 50/50% hybrid composites and even 489.24% reduction for pure glass 

composites. For comparison, the differences in stresses for quasi-static/low cycle case (1…2 

cycles) are much lower: 7.89% (carbon), 9.91% (50/50 hybrid) and 11.21% (pure glass). 

The ratio between the stresses (corresponding to a given number of cycles) for different 

composites depends on the humidity as well.  

For the dry cyclic (low cycle) loading, this stress for carbon composite is 1.18 times higher 

than that for 50/50 hybrid composite and 1.51 times higher than that for pure glass. For the 

case of  1.43 x 10
7
 cycles (dry loading),  these ratios are 1.98 and 4.12.  

This corresponds also to results of Shan and Liao [77] who noticed that “because carbon 

fibers are resistant to water and dilute acid, glass-carbon hybrid composites as a whole are 

more resistant to stress corrosion than all-glass fiber composites”. They demonstrated 

experimentally that hybrid carbon/glass composites show much higher lifetime than pure 

glass composites under environmental plus mechanical cyclic loading, and observed 500% 

fatigue life difference for wet hybrid samples and wet pure glass samples [77, 78]. Selzer and 

Friedrich [79] observed 7…15% reduction of fatigue lifetime for the carbon  fiber reinforced 

composites under dry and high moisture conditions. These numbers correspond qualitatively 

to the above estimations.  

 

3.2 CNT reinforced composites: Effect of secondary CNT reinforcement on fatigue 

resistance under cyclic loading 

In this section, we investigate the effect of secondary CNT reinforcement on the fatigue 

performance of composites under mechanical tension-compression cyclic loading.  

Fig. 2bc shows some examples of macro-micro FE unit cell models of composites with CNT 

reinforcements. The CNT reinforcement is localized in the fiber/matrix sizing (interface 

layer). The volume content is 0.05%. 

Fig. 3b shows the calculated S-N curves for hybrid composites with/without CNT 

reinforcements under pure mechanical cyclic loading (tension-compression) and under 

combined mechanical/environmental loading. One can see that the CNT enhances the 

fatigue performance (maximum stress and lifetime) in all considered composites.  

Again, considering the stress corresponding to a given cycles number (again, 1.72 x 107 

cycles), we can see that the effect of CNT reinforcement strongly depends on the kind of 

loading. While CNT reinforcement always increases the fatigue resistance, it works 

differently for very low cycle loading and high cycle loading. For the very low cycle 

loading, the CNT reinforcement leads to 25%...43% increase in the stress, while for the 
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millions of cycles, the CNT effect increases the stress by 64…120%. It is of interest also 

that while for quasi-static/low cycle loading, the strongest effect is observed for carbon 

composites (43%, versus 25% for pure glass and 32% for hybrids), the strongest effect of 

high cycle loading is observed for glass fiber composite (120%, versus 64% for pure carbon 

and 107% for hybrids). 

The ratio between the stress (corresponding to a given number of cycles) for different 

composites slightly depend on the CNT reinforcement: this stress for carbon composites is 

(for high cycle fatigue) 43% (no CNT)….80% (with CNT) higher than that for 50/50 

hybrids and 3.6 (no CNT)….4.8 (CNT) times higher than for glass composites.   

Fig. 4 shows the crack interaction with the CNTs in the fiber/matrix interface. The damage 

mechanisms such as nanotube breaking, bridging and pull-out are observed.  The same 

damage and toughening mechanisms were observed on the fatigue crack surfaces of 

CNT/polymer nanocomposites analyzed by Jen and Huang [80]. Knoll et al. [81] also 

observed 2 to 5 fold increase in the fatigue life of carbon fiber composites due to the 

MWCNT secondary reinforcement.  

 

3.3 Environmental loading of hybrid composites with secondary CNT reinforcement  

In this section, we investigate the effect of secondary CNT reinforcement on the fatigue 

performance of composites under combined environmental/mechanical cyclic loading.  

Fig. 3c shows the S-N curves of 50/50 glass/carbon fiber reinforced hybrid composites with 

secondary CNT reinforcement under cyclic fatigue with high humidity. Considering the stress 

corresponding to a given cycles number (1.72 x 10
7
 cycles), we can see that the effect of 

environmental (moisture) loading on the fatigue behavior of CNT reinforced composites in 

general follows the effect of moisture on the properties of hybrid composites without CNT 

reinforcement. One can see that the moisture effect on the CNT reinforced glass composites is 

weaker than on pure glass composites: the stress is only 3.5 times higher for mechanical high 

cycle loading and 35% higher for mechanical low cycle fatigue than for combined mechanical 

+ environmental loading (compared with 5 times higher for non-CNT high cycle case) and 

65% higher for low cycle case). For pure carbon composites, the CNT reinforcement doesn’t 

have visible effect of the moisture resistance.  

These results correspond to a number of experimental studies. So, Loos et al. [82] observed 

the increase of fatigue lifetime by 1550% in the high-cycle, low-stress amplitude regime due 

to the small additions of CNTs. The crack propagation rate in epoxy is reduced by an order of 

magnitude if 0.5 wt% CNTs is added [83]. The authors of [84] demonstrated that fatigue 

crack growth rates can be reduced up to 20-times by controlling CNT parameters, namely, 

choosing CNTs with smaller diameter, increasing the CNT length and  improving its 

dispersion.  

 

3.4 Effect of the orientation of secondary CNT reinforcement on the composite 

performances 

In this section, the effect of the orientation of the secondary CNT reinforcements (aligned 

versus randomly oriented) on the fatigue behavior under high humidity conditions is 

considered. We consider 50/50 glass/fiber reinforced hybrid composites with various CNT 

secondary reinforcements (aligned along the fibers and randomly oriented).  

Fig. 5 shows the results of the fatigue analysis (a) and the unit cell models of composite with 

CNT reinforcements (b). The stress values are normalized by the maximum applied stress of 

http://www.sciencedirect.com/science/article/pii/S1364032113007570#bib26
http://www.sciencedirect.com/science/article/pii/S1364032113007570#bib26
http://www.sciencedirect.com/science/article/pii/S1364032113007570#bib27
http://www.sciencedirect.com/science/article/pii/S1364032113007570#bib27
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the aligned CNT reinforced hybrid composite without moisture effect (524.41 MPa). One can 

see that the composite with aligned CNTs in the sizing is much stronger than that with 

randomly oriented CNTs. The stress level of the composite with aligned CNTs, corresponding 

to low level cycle fatigue/static loading, is 17% higher than that with random CNTs (under 

dry conditions). The number increases to 22% under high humidity conditions.  

The (mis)orientation of CNTs has a strong influence on the composite sensitivity to humidity 

as well: the low cycle fatigue stress is reduced by 4% as a result of high humidity if the CNTs 

are aligned, and by 9% if they are random oriented. The stress, corresponding to the long 

cycle loading (here, 1.43 x 10
7
) stress is reduced by 26% as a result of high humidity if the 

CNTs are aligned, and by 31% if they are random oriented. 

 

3.5 Effect of CNT distribution (fiber sizing vs. matrix) on the composite performances 

In this subsection, we seek to study the effect of the CNT distribution/location on the fatigue 

resistance of the composites. The cases of hybrid composites with CNTs localized either in 

the fiber sizing or distributed in the matrix are considered. The total number of CNTs in the 

model (9.450 *10
5
) is fixed and the same in both cases. Apparently, the content of CTts in the 

sizing is therefore much higher than in the matrix (0.02% is the model with nanoreinforced 

sizing, and 0.005% in the model with CNTs in the matrix). They have been defined following 

the procedure described in [29]. All the CNTs are random arranged in either fiber sizing or 

matrix.  

Fig. 6a shows S-N curves of hybrid composite with secondary CNT reinforcements in fiber 

sizing or in matrix, subject to the mechanical cycling loading with and without high humidity.  

The examples of the unit cell models are shown in Fig. 6bc. It is seen that the composite with 

CNT reinforcements in fiber sizing show the better fatigue performance than those with the 

CNT reinforcements in matrix, both in dry and high humidity conditions.  

The stress level strongly depends on the location of the CNT reinforcements and the moisture 

effect, but these dependences are different for different composites. The high humidity leads 

to the 14.3% reduction of the stress for the given amount of cycles N=1.43×10
7
 for hybrid 

composites with CNT reinforcements in fiber sizing, and to even higher 25.5% reduction for 

hybrid composite with CNT reinforcements in matrix. For comparison, the differences in 

stresses for quasi-static/low cycle case (1…2 cycles) are much lower, which are 4.2% and 

8.4% for the hybrid composite with CNT reinforcements in fiber sizing and matrix, 

respectively. 

The conclusion that the CNT reinforcement in the fiber sizing increases drastically both the 

fatigue lifetime and the moisture sensitivity of the composites, much more efficiently than for 

the CNTs distributed in the matrix, corresponds also the observations from [85] about 

nanostructured interfaces as a best way to enhance the materials strength.  

 

 

3.6 Effect of off-axis loading 

While most material testing procedures are based on axial tensile or compression loading, the 

wind blade composites are subject to off-axis, often multiaxial, compression plus shear 

loading [86]. 

In his section, we seek to investigate the effect of the CNT reinforcement on the fatigue 

lifetime under off-axis cyclic loading, under dry and high humidity conditions. The angle 
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between fibers and loading vectors in the off-axis model was 12%.  The two models have the 

same fiber and CNTs volume fraction and loading condition. 

Fig. 7 shows S-N curves of hybrid composite with and without secondary CNT 

reinforcements, subject to the axial and off-axis mechanical cycling loading with and without 

high humidity. As expected, the fatigue life is much lower under off-axis loading than under 

axial loading. 

The stresses corresponding to low cycle loading and to the given cycle number, 1.43×10
7
, are 

12.2% and 14.1% lower for the off-axis loading, respectively. For the case under high 

humidity conditions, these values are lower for the off-axis loading by 7.6 and 9.7 % 

respectively.  

Comparing the stresses corresponding to the low and high cycle numbers for non-CNT-

reinforced and CNT reinforced hybrid composites and dry/humid cases, one can see that the 

stress is reduced by 30% in dry case (without CNT) due to the off-axis loading. In humid 

conditions, the stress is reduced much stronger: 45% for low cycle/static and 6 times for high 

cycle loading. In the case with CNT, the stress is reduced by 13…23% in dry conditions, and 

by only 19…30% in humid conditions. This is an important conclusion: the CNT 

reinforcement allows to drastically reduce the fatigue life sensitivity to off-axis loading, also 

under high humidity conditions. 

 

4. Applicability to wind turbine blade materials 
In this section, we seek to evaluate the feasibility of using hybrid and nanoreinforced 

composites in wind blades, as a replacement for the currently used glass fiber/epoxy 

composites. As noted above, the reliability of wind turbine blades is determined in many cases 

by the matrix and sizing controlled properties, i.e. those which are controlled and influenced by 

the secondary nanoreinforcement. Thus, the nanoreinforced and hybrid composites have a great 

potential to be used in order to improve the wind blade materials performances.  

The important requirement toward wind blade materials is their economic efficiency, i.e. the 

gains in strength and lifetime should overweight the additional costs. Let us make a rough 

estimation of the economic feasibility of new materials for wind energy applications.  

The cost of energy over whole lifetime of the wind turbine can be estimated using the following 

formula [87]: 

TP

MFCRC
CoE

Avg

total




*
 

(9) 

where AvgP – average power generation per hour, T – lifetime in hours, FCR – fixed charge rate 

(taken in [87] as 10%), M – maintenance costs (taken as 2% installed capital costs in [87]), C – 

capital investment for a turbine, which is calculated as [88]: ratcPC  , ratP  – rated (maximum) 

turbine power, c – coefficient, c=1100 €/kW (land based) or 1500…2000 €/kW (off-shore 

turbine).  The average power generation AvgP  is calculated as [88]: 
out

in

U

U

Avg dUUfUPP )()( , 

where U – undisturbed wind speed, f(U) – wind speed probability density given by Weilbul 

distribution with shape factor 2, Uin and Uout – start and stop wind speeds of the wind 

turbine,P(U) – power at the wind speed U, P(U) can be calculated as CpρAU
3
/2, Cp – power 
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coefficient (≤0.59), ρ- air density, A –rotor swept area, A=πR
2
, R- turbine radius. Cp can be 

taken 0.45[88]. Simplifying, we have: UAvg CRP 223.0  , where 
out

in

U

U

U dUUfUC )(3 .  

Let’s assume that the cost of a wind turbine is increased by Cnano times, as a result of using 

nanoengineered materials. From the formula (9), one can see that if additional costs for the 

fabrication of a blade from nanoengineered material lead to the increase of capital investments 

per turbine for instance by 20%, the expected increase of the lifetime of the turbine should be at 

least higher than that, to keep the costs of energy at the same level.  

Veers and colleagues [89] derived a very simplified analytical equation linking the lifetime of a 

turbine component to the wind speed and materials fatigue properties: 
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where C and b – coefficient and power coefficient of S-N curve of the material, bCN   , f0 – 

average frequency, Sm, Su are mean stress and ultimate strength  of WT material, Vm – mean 

wind speed, α – parameter of Rayleigh law distribution for wind speed variation, K – stress 

concentration factor [90]. Collecting all the material-independent terns in a coefficient, we can 

rewrite equation (10) as: 
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for a basic case (glass fiber epoxy composites) as CoE1, and using equation (9), we can define 

the allowable upper limit for Cnano as a relative increase of the lifetime of blade from each 

material as compared with basic cases (here, glass fiber epoxy composite): 
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Where indices 1 and 2 refer to the basic case (here, glass fibers) and considered case of a 

composite with modified structure, respectively. These formulas are very approximate, but can 

give some qualitative estimations under which conditions the replacement of the traditional    

Let us estimate how the materials modifications considered above influence the turbine 

lifetime. Table 2 shows the coefficients b and C determined in our simulations above. 

Substituting these values into the formula (11), we can calculate that the replacement of the 

glass fibers by carbon leads to the 33.2% more lifetime. 50% replacement leads to the 12.6% 

increased lifetime. 0.5% CNT nanoreinforcements (in fiber sizing) increase the lifetime by 16% 

(if the fibers are still from glass) or even 86% (if the fibers are replaced by carbon fibers). (All 

this for the dry conditions). For the high humidity conditions, positive effects of the structural 

modifications are much stronger: 43% increased lifetime of the glass fibers are replaced by 

carbon (10%, if only 50% replaced), 24% increase if the glass composite is CNT 

nanoreinforced and 110% if both. If the carbon nanotubes in the fiber sizing are not randomly 

oriented but aligned, their positive effect increases by 16% additionally. Thus, one can state 

that the gains in the lifetime of the composites do justify some additional investments to 

produce the wind turbine blades from hybrid and nanoreinforced composites, with the 

investments in the range between 12 and 86% of the current costs. The justifiability of these 
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investments becomes even more apparent when considering the blades which should work in 

off-shore conditions.  

For comparison, Merugula and colleagues [24, 25] demonstrated that the addition of 1…5 wt% 

of carbon nanofibers (CNF)  to the interfaces of glass fiber reinforced epoxy composites for 

blades in 2 MW and 5 MW turbines leads to improved tensile stress and modulus, and  allows 

20% weight reduction of the blades, leading to the increased lifetime. 

 

5. Conclusions 
In this work, the potential of using hybrid and nanoreinforced composites for wind turbine and 

other long term cyclic, high humidity service conditions is analyzed, using computational 

experiments.  Using 3D multiscale computational models of hybrid and nanoreinforced 

composites, we carry out systematic numerical experiments and determine the fatigue lifetime 

of composites with various structures under ideal dry conditions and expected off-shore service 

conditions (seawater humidity 65%). Having determined the local properties of the phases 

(carbon and glass fibers, CNT, epoxy, interface layers) under both dry and high humidity 

conditions from literature review, we introduced these data in our computational models and 

compared the fatigue performances of different composite structures.  

The computational studies allowed to draw the following conclusions. Carbon reinforced 

composites have much better fatigue lifetime than glass reinforced composites (the 50/50 

hybrids lie in between). The lifetime of composites depends strongly on the humidity 

conditions, and the glass fiber composites are most sensitive to humidity, while the carbon 

composites are least sensitive to it. The secondary CNT reinforcement ensures a much higher 

lifetime of composites, especially, when it is localized in the fiber sizing. The CNT reinforced 

glass fiber composites show lower humidity sensitivity than pure glass reinforced composites; 

yet, this effect is much weaker for carbon fiber composites. The CNT reinforcement in 

composites allows to reduce the sensitivity of the composite fatigue lifetime  to the off-axis 

loading, also under high humidity conditions. The carbon fiber reinforced composites with 

CNT reinforcement is the fiber sizing have the best potential for use in the large wind turbine 

blades, especially, off shore turbines. Also, hybrid carbon/glass composites with the secondary 

CNT reinforcement have a high potential to replace the common composites, with sufficient 

improvement of the materials performances.  
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GFRC

HC

CFRC

fibers

EI

GFRC: glass fiber reinforced composite   HC: hybrid composite   CFRC: carbon fiber reinforced composite

EI: effective interface

fiber with CNT reinforcements

CNT CNT EI

 
a 

Fig. 1. Schema of the multiscale model, (a) and a micrograph of a carbon fiber with CNT reinforcements in fiber-

matrix interface (Reprinted from [39] with kind permission from Elsevier). 

 

   
a. b. c. 

Fig. 2  Examples of multielement unit cells (a) 50/50 glass/carbon hybrid composite without CNT (b) with 

CNT reinforcement, (c ) carbon reinforced composite with CNTs 

 

 

 

 
b 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=James%20F.%20Manwell&search-alias=books&sort=relevancerank
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a 
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c 

Fig. 3 S-N curves for hybrid composites under pure mechanical cyclic loading (tension-compression) under 

dry and long term high humidity conditions (a) without CNT reinforcement, and (b) with CNT reinforcement 

under dry  and (c) with CNTs under humid conditions 
 

 

 

 

Fig. 4 Crack interaction with CNTs 
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a 

 
b 

 
c 

Fig. 5 S-N curves of the composites with different alignment of CNTs (a) and unit cell models with varied 

CNT alignment: b)  aligned  c) random  

 

 

 
a 

 
b 

 
c 

Fig. 6 S-N curves of hybrid composite with secondary CNT reinforcements in fiber sizing or in matrix (a) and 

examples of the models (b) 
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Fig. 7 S-N curves of the composites with CNT reinforcement axial loading and off-axial loading (a) and 

schemas of unit cell models and loading (b) 
 

 

 

Table 1. Effect of moisture on the local phase properties 

  Young, GPa GI, KJ/m
2
 GII, KJ/m

2
 c1 c2 

CNT  2550 - - - - 

Carbon 

fiber 

Dry 276 0.919 4.995 2.76×10
-8 

6.4 

Humid 276 0.860 3.076 7.4×10
-4.3

 29.54 

Glass 

fiber 

Dry 72 2.302 5.768 1.26×10
-5

 4.53 

Humid 57.6 2.152 4.668 11.07×10
-2

 22 

Epoxy 
Dry 1.9 0.173 0.648 2.8461×10

-9 
-12.415 

Humid 1.805 0.173 0.324 3.2187×10
-8 

8.776 

IF 

CNT/E 

Dry 3.74 0.447 1.93 4.253×10
-6

 -8.121 

Humid 3.553 0.2682 1.1966 1.354×10
-4

 14.21 

IF C/E 
Dry 27.79 0.379 1.70 2.125×10

-7
 5.26 

Humid 19.125 0.252 1.13 6.148×10
-3

 22.65 

IF G/E 
Dry 7.39 0.682 2.245 5.7623×10

-7 
-9.542 

Humid 6.72 0.455 1.497 3.678×10
-2

 14.321 

(IF: interface; C/E: carbon fiber and epoxy; G/E: glass fiber and epoxy) 
 

Table 2. Proportionality and power coefficient of S-N curve of the considered model materials 

 Dry conditions Humidity conditions 

Case Pure glass 

reinforced 

composite (GRC) 

Carbon RC 50/50 

glass/carbon 

hybrid 

Glass RC Carbon RC 50/50 

glass/carbon 

hybrid 

C, *10
10 

2.405 3.188 2.703 2.104 3.078 2.486 

b 0.542 0.333 0.463 0.687 0.375 0.514 
 

 Dry conditions, + CNT reinforcement Humidity conditions, + CNT reinforcement 

Case Glass RC Carbon RC 50/50 

glass/carbon 

hybrid 

Glass RC Carbon RC 50/50 

glass/carbon 

hybrid 

C, *10
10 

2.804 4.455 3.704 2.588 4.386 3.533 

b 0.486 0.318 0.408 0.557 0.338 0.446 
 

 Dry conditions, 50/50 hybrid with CNT Humidity conditions, , 50/50 hybrid with CNT 

Case Aligned CNTs in fiber 

sizing 

Random CNTs in 

matrix 

Aligned CNTs in fiber 

sizing 

Random CNTs in 

matrix 

C, *10
10 

4.313 3.163 4.128 2.92 

b 0.382 0.433 0.415 0.504 

 


